1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 #include <linux/nospec.h> 93 94 #include <linux/uaccess.h> 95 #include <asm/unistd.h> 96 97 #include <net/compat.h> 98 #include <net/wext.h> 99 #include <net/cls_cgroup.h> 100 101 #include <net/sock.h> 102 #include <linux/netfilter.h> 103 104 #include <linux/if_tun.h> 105 #include <linux/ipv6_route.h> 106 #include <linux/route.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183 { 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212 { 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 static struct kmem_cache *sock_inode_cachep __ro_after_init; 238 239 static struct inode *sock_alloc_inode(struct super_block *sb) 240 { 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 ei->socket.wq = wq; 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 kfree_rcu(ei->socket.wq, rcu); 272 kmem_cache_free(sock_inode_cachep, ei); 273 } 274 275 static void init_once(void *foo) 276 { 277 struct socket_alloc *ei = (struct socket_alloc *)foo; 278 279 inode_init_once(&ei->vfs_inode); 280 } 281 282 static void init_inodecache(void) 283 { 284 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 285 sizeof(struct socket_alloc), 286 0, 287 (SLAB_HWCACHE_ALIGN | 288 SLAB_RECLAIM_ACCOUNT | 289 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 290 init_once); 291 BUG_ON(sock_inode_cachep == NULL); 292 } 293 294 static const struct super_operations sockfs_ops = { 295 .alloc_inode = sock_alloc_inode, 296 .destroy_inode = sock_destroy_inode, 297 .statfs = simple_statfs, 298 }; 299 300 /* 301 * sockfs_dname() is called from d_path(). 302 */ 303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 304 { 305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 306 d_inode(dentry)->i_ino); 307 } 308 309 static const struct dentry_operations sockfs_dentry_operations = { 310 .d_dname = sockfs_dname, 311 }; 312 313 static int sockfs_xattr_get(const struct xattr_handler *handler, 314 struct dentry *dentry, struct inode *inode, 315 const char *suffix, void *value, size_t size) 316 { 317 if (value) { 318 if (dentry->d_name.len + 1 > size) 319 return -ERANGE; 320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 321 } 322 return dentry->d_name.len + 1; 323 } 324 325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 328 329 static const struct xattr_handler sockfs_xattr_handler = { 330 .name = XATTR_NAME_SOCKPROTONAME, 331 .get = sockfs_xattr_get, 332 }; 333 334 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 335 struct dentry *dentry, struct inode *inode, 336 const char *suffix, const void *value, 337 size_t size, int flags) 338 { 339 /* Handled by LSM. */ 340 return -EAGAIN; 341 } 342 343 static const struct xattr_handler sockfs_security_xattr_handler = { 344 .prefix = XATTR_SECURITY_PREFIX, 345 .set = sockfs_security_xattr_set, 346 }; 347 348 static const struct xattr_handler *sockfs_xattr_handlers[] = { 349 &sockfs_xattr_handler, 350 &sockfs_security_xattr_handler, 351 NULL 352 }; 353 354 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 355 int flags, const char *dev_name, void *data) 356 { 357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 358 sockfs_xattr_handlers, 359 &sockfs_dentry_operations, SOCKFS_MAGIC); 360 } 361 362 static struct vfsmount *sock_mnt __read_mostly; 363 364 static struct file_system_type sock_fs_type = { 365 .name = "sockfs", 366 .mount = sockfs_mount, 367 .kill_sb = kill_anon_super, 368 }; 369 370 /* 371 * Obtains the first available file descriptor and sets it up for use. 372 * 373 * These functions create file structures and maps them to fd space 374 * of the current process. On success it returns file descriptor 375 * and file struct implicitly stored in sock->file. 376 * Note that another thread may close file descriptor before we return 377 * from this function. We use the fact that now we do not refer 378 * to socket after mapping. If one day we will need it, this 379 * function will increment ref. count on file by 1. 380 * 381 * In any case returned fd MAY BE not valid! 382 * This race condition is unavoidable 383 * with shared fd spaces, we cannot solve it inside kernel, 384 * but we take care of internal coherence yet. 385 */ 386 387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 388 { 389 struct file *file; 390 391 if (!dname) 392 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 393 394 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 395 O_RDWR | (flags & O_NONBLOCK), 396 &socket_file_ops); 397 if (IS_ERR(file)) { 398 sock_release(sock); 399 return file; 400 } 401 402 sock->file = file; 403 file->private_data = sock; 404 return file; 405 } 406 EXPORT_SYMBOL(sock_alloc_file); 407 408 static int sock_map_fd(struct socket *sock, int flags) 409 { 410 struct file *newfile; 411 int fd = get_unused_fd_flags(flags); 412 if (unlikely(fd < 0)) { 413 sock_release(sock); 414 return fd; 415 } 416 417 newfile = sock_alloc_file(sock, flags, NULL); 418 if (likely(!IS_ERR(newfile))) { 419 fd_install(fd, newfile); 420 return fd; 421 } 422 423 put_unused_fd(fd); 424 return PTR_ERR(newfile); 425 } 426 427 struct socket *sock_from_file(struct file *file, int *err) 428 { 429 if (file->f_op == &socket_file_ops) 430 return file->private_data; /* set in sock_map_fd */ 431 432 *err = -ENOTSOCK; 433 return NULL; 434 } 435 EXPORT_SYMBOL(sock_from_file); 436 437 /** 438 * sockfd_lookup - Go from a file number to its socket slot 439 * @fd: file handle 440 * @err: pointer to an error code return 441 * 442 * The file handle passed in is locked and the socket it is bound 443 * to is returned. If an error occurs the err pointer is overwritten 444 * with a negative errno code and NULL is returned. The function checks 445 * for both invalid handles and passing a handle which is not a socket. 446 * 447 * On a success the socket object pointer is returned. 448 */ 449 450 struct socket *sockfd_lookup(int fd, int *err) 451 { 452 struct file *file; 453 struct socket *sock; 454 455 file = fget(fd); 456 if (!file) { 457 *err = -EBADF; 458 return NULL; 459 } 460 461 sock = sock_from_file(file, err); 462 if (!sock) 463 fput(file); 464 return sock; 465 } 466 EXPORT_SYMBOL(sockfd_lookup); 467 468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 469 { 470 struct fd f = fdget(fd); 471 struct socket *sock; 472 473 *err = -EBADF; 474 if (f.file) { 475 sock = sock_from_file(f.file, err); 476 if (likely(sock)) { 477 *fput_needed = f.flags; 478 return sock; 479 } 480 fdput(f); 481 } 482 return NULL; 483 } 484 485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 486 size_t size) 487 { 488 ssize_t len; 489 ssize_t used = 0; 490 491 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 492 if (len < 0) 493 return len; 494 used += len; 495 if (buffer) { 496 if (size < used) 497 return -ERANGE; 498 buffer += len; 499 } 500 501 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 502 used += len; 503 if (buffer) { 504 if (size < used) 505 return -ERANGE; 506 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 507 buffer += len; 508 } 509 510 return used; 511 } 512 513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 514 { 515 int err = simple_setattr(dentry, iattr); 516 517 if (!err && (iattr->ia_valid & ATTR_UID)) { 518 struct socket *sock = SOCKET_I(d_inode(dentry)); 519 520 if (sock->sk) 521 sock->sk->sk_uid = iattr->ia_uid; 522 else 523 err = -ENOENT; 524 } 525 526 return err; 527 } 528 529 static const struct inode_operations sockfs_inode_ops = { 530 .listxattr = sockfs_listxattr, 531 .setattr = sockfs_setattr, 532 }; 533 534 /** 535 * sock_alloc - allocate a socket 536 * 537 * Allocate a new inode and socket object. The two are bound together 538 * and initialised. The socket is then returned. If we are out of inodes 539 * NULL is returned. 540 */ 541 542 struct socket *sock_alloc(void) 543 { 544 struct inode *inode; 545 struct socket *sock; 546 547 inode = new_inode_pseudo(sock_mnt->mnt_sb); 548 if (!inode) 549 return NULL; 550 551 sock = SOCKET_I(inode); 552 553 inode->i_ino = get_next_ino(); 554 inode->i_mode = S_IFSOCK | S_IRWXUGO; 555 inode->i_uid = current_fsuid(); 556 inode->i_gid = current_fsgid(); 557 inode->i_op = &sockfs_inode_ops; 558 559 return sock; 560 } 561 EXPORT_SYMBOL(sock_alloc); 562 563 /** 564 * sock_release - close a socket 565 * @sock: socket to close 566 * 567 * The socket is released from the protocol stack if it has a release 568 * callback, and the inode is then released if the socket is bound to 569 * an inode not a file. 570 */ 571 572 static void __sock_release(struct socket *sock, struct inode *inode) 573 { 574 if (sock->ops) { 575 struct module *owner = sock->ops->owner; 576 577 if (inode) 578 inode_lock(inode); 579 sock->ops->release(sock); 580 if (inode) 581 inode_unlock(inode); 582 sock->ops = NULL; 583 module_put(owner); 584 } 585 586 if (sock->wq->fasync_list) 587 pr_err("%s: fasync list not empty!\n", __func__); 588 589 if (!sock->file) { 590 iput(SOCK_INODE(sock)); 591 return; 592 } 593 sock->file = NULL; 594 } 595 596 void sock_release(struct socket *sock) 597 { 598 __sock_release(sock, NULL); 599 } 600 EXPORT_SYMBOL(sock_release); 601 602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 603 { 604 u8 flags = *tx_flags; 605 606 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 607 flags |= SKBTX_HW_TSTAMP; 608 609 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 610 flags |= SKBTX_SW_TSTAMP; 611 612 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 613 flags |= SKBTX_SCHED_TSTAMP; 614 615 *tx_flags = flags; 616 } 617 EXPORT_SYMBOL(__sock_tx_timestamp); 618 619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 620 { 621 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 622 BUG_ON(ret == -EIOCBQUEUED); 623 return ret; 624 } 625 626 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 627 { 628 int err = security_socket_sendmsg(sock, msg, 629 msg_data_left(msg)); 630 631 return err ?: sock_sendmsg_nosec(sock, msg); 632 } 633 EXPORT_SYMBOL(sock_sendmsg); 634 635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 636 struct kvec *vec, size_t num, size_t size) 637 { 638 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 639 return sock_sendmsg(sock, msg); 640 } 641 EXPORT_SYMBOL(kernel_sendmsg); 642 643 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 644 struct kvec *vec, size_t num, size_t size) 645 { 646 struct socket *sock = sk->sk_socket; 647 648 if (!sock->ops->sendmsg_locked) 649 return sock_no_sendmsg_locked(sk, msg, size); 650 651 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 652 653 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 654 } 655 EXPORT_SYMBOL(kernel_sendmsg_locked); 656 657 static bool skb_is_err_queue(const struct sk_buff *skb) 658 { 659 /* pkt_type of skbs enqueued on the error queue are set to 660 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 661 * in recvmsg, since skbs received on a local socket will never 662 * have a pkt_type of PACKET_OUTGOING. 663 */ 664 return skb->pkt_type == PACKET_OUTGOING; 665 } 666 667 /* On transmit, software and hardware timestamps are returned independently. 668 * As the two skb clones share the hardware timestamp, which may be updated 669 * before the software timestamp is received, a hardware TX timestamp may be 670 * returned only if there is no software TX timestamp. Ignore false software 671 * timestamps, which may be made in the __sock_recv_timestamp() call when the 672 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 673 * hardware timestamp. 674 */ 675 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 676 { 677 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 678 } 679 680 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 681 { 682 struct scm_ts_pktinfo ts_pktinfo; 683 struct net_device *orig_dev; 684 685 if (!skb_mac_header_was_set(skb)) 686 return; 687 688 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 689 690 rcu_read_lock(); 691 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 692 if (orig_dev) 693 ts_pktinfo.if_index = orig_dev->ifindex; 694 rcu_read_unlock(); 695 696 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 697 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 698 sizeof(ts_pktinfo), &ts_pktinfo); 699 } 700 701 /* 702 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 703 */ 704 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 705 struct sk_buff *skb) 706 { 707 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 708 struct scm_timestamping tss; 709 int empty = 1, false_tstamp = 0; 710 struct skb_shared_hwtstamps *shhwtstamps = 711 skb_hwtstamps(skb); 712 713 /* Race occurred between timestamp enabling and packet 714 receiving. Fill in the current time for now. */ 715 if (need_software_tstamp && skb->tstamp == 0) { 716 __net_timestamp(skb); 717 false_tstamp = 1; 718 } 719 720 if (need_software_tstamp) { 721 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 722 struct timeval tv; 723 skb_get_timestamp(skb, &tv); 724 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 725 sizeof(tv), &tv); 726 } else { 727 struct timespec ts; 728 skb_get_timestampns(skb, &ts); 729 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 730 sizeof(ts), &ts); 731 } 732 } 733 734 memset(&tss, 0, sizeof(tss)); 735 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 736 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 737 empty = 0; 738 if (shhwtstamps && 739 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 740 !skb_is_swtx_tstamp(skb, false_tstamp) && 741 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 742 empty = 0; 743 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 744 !skb_is_err_queue(skb)) 745 put_ts_pktinfo(msg, skb); 746 } 747 if (!empty) { 748 put_cmsg(msg, SOL_SOCKET, 749 SCM_TIMESTAMPING, sizeof(tss), &tss); 750 751 if (skb_is_err_queue(skb) && skb->len && 752 SKB_EXT_ERR(skb)->opt_stats) 753 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 754 skb->len, skb->data); 755 } 756 } 757 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 758 759 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 760 struct sk_buff *skb) 761 { 762 int ack; 763 764 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 765 return; 766 if (!skb->wifi_acked_valid) 767 return; 768 769 ack = skb->wifi_acked; 770 771 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 772 } 773 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 774 775 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 776 struct sk_buff *skb) 777 { 778 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 779 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 780 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 781 } 782 783 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 784 struct sk_buff *skb) 785 { 786 sock_recv_timestamp(msg, sk, skb); 787 sock_recv_drops(msg, sk, skb); 788 } 789 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 790 791 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 792 int flags) 793 { 794 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 795 } 796 797 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 798 { 799 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 800 801 return err ?: sock_recvmsg_nosec(sock, msg, flags); 802 } 803 EXPORT_SYMBOL(sock_recvmsg); 804 805 /** 806 * kernel_recvmsg - Receive a message from a socket (kernel space) 807 * @sock: The socket to receive the message from 808 * @msg: Received message 809 * @vec: Input s/g array for message data 810 * @num: Size of input s/g array 811 * @size: Number of bytes to read 812 * @flags: Message flags (MSG_DONTWAIT, etc...) 813 * 814 * On return the msg structure contains the scatter/gather array passed in the 815 * vec argument. The array is modified so that it consists of the unfilled 816 * portion of the original array. 817 * 818 * The returned value is the total number of bytes received, or an error. 819 */ 820 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 821 struct kvec *vec, size_t num, size_t size, int flags) 822 { 823 mm_segment_t oldfs = get_fs(); 824 int result; 825 826 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 827 set_fs(KERNEL_DS); 828 result = sock_recvmsg(sock, msg, flags); 829 set_fs(oldfs); 830 return result; 831 } 832 EXPORT_SYMBOL(kernel_recvmsg); 833 834 static ssize_t sock_sendpage(struct file *file, struct page *page, 835 int offset, size_t size, loff_t *ppos, int more) 836 { 837 struct socket *sock; 838 int flags; 839 840 sock = file->private_data; 841 842 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 843 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 844 flags |= more; 845 846 return kernel_sendpage(sock, page, offset, size, flags); 847 } 848 849 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 850 struct pipe_inode_info *pipe, size_t len, 851 unsigned int flags) 852 { 853 struct socket *sock = file->private_data; 854 855 if (unlikely(!sock->ops->splice_read)) 856 return generic_file_splice_read(file, ppos, pipe, len, flags); 857 858 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 859 } 860 861 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 862 { 863 struct file *file = iocb->ki_filp; 864 struct socket *sock = file->private_data; 865 struct msghdr msg = {.msg_iter = *to, 866 .msg_iocb = iocb}; 867 ssize_t res; 868 869 if (file->f_flags & O_NONBLOCK) 870 msg.msg_flags = MSG_DONTWAIT; 871 872 if (iocb->ki_pos != 0) 873 return -ESPIPE; 874 875 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 876 return 0; 877 878 res = sock_recvmsg(sock, &msg, msg.msg_flags); 879 *to = msg.msg_iter; 880 return res; 881 } 882 883 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 884 { 885 struct file *file = iocb->ki_filp; 886 struct socket *sock = file->private_data; 887 struct msghdr msg = {.msg_iter = *from, 888 .msg_iocb = iocb}; 889 ssize_t res; 890 891 if (iocb->ki_pos != 0) 892 return -ESPIPE; 893 894 if (file->f_flags & O_NONBLOCK) 895 msg.msg_flags = MSG_DONTWAIT; 896 897 if (sock->type == SOCK_SEQPACKET) 898 msg.msg_flags |= MSG_EOR; 899 900 res = sock_sendmsg(sock, &msg); 901 *from = msg.msg_iter; 902 return res; 903 } 904 905 /* 906 * Atomic setting of ioctl hooks to avoid race 907 * with module unload. 908 */ 909 910 static DEFINE_MUTEX(br_ioctl_mutex); 911 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 912 913 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 914 { 915 mutex_lock(&br_ioctl_mutex); 916 br_ioctl_hook = hook; 917 mutex_unlock(&br_ioctl_mutex); 918 } 919 EXPORT_SYMBOL(brioctl_set); 920 921 static DEFINE_MUTEX(vlan_ioctl_mutex); 922 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 923 924 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 925 { 926 mutex_lock(&vlan_ioctl_mutex); 927 vlan_ioctl_hook = hook; 928 mutex_unlock(&vlan_ioctl_mutex); 929 } 930 EXPORT_SYMBOL(vlan_ioctl_set); 931 932 static DEFINE_MUTEX(dlci_ioctl_mutex); 933 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 934 935 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 936 { 937 mutex_lock(&dlci_ioctl_mutex); 938 dlci_ioctl_hook = hook; 939 mutex_unlock(&dlci_ioctl_mutex); 940 } 941 EXPORT_SYMBOL(dlci_ioctl_set); 942 943 static long sock_do_ioctl(struct net *net, struct socket *sock, 944 unsigned int cmd, unsigned long arg, 945 unsigned int ifreq_size) 946 { 947 int err; 948 void __user *argp = (void __user *)arg; 949 950 err = sock->ops->ioctl(sock, cmd, arg); 951 952 /* 953 * If this ioctl is unknown try to hand it down 954 * to the NIC driver. 955 */ 956 if (err != -ENOIOCTLCMD) 957 return err; 958 959 if (cmd == SIOCGIFCONF) { 960 struct ifconf ifc; 961 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 962 return -EFAULT; 963 rtnl_lock(); 964 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 965 rtnl_unlock(); 966 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 967 err = -EFAULT; 968 } else { 969 struct ifreq ifr; 970 bool need_copyout; 971 if (copy_from_user(&ifr, argp, ifreq_size)) 972 return -EFAULT; 973 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 974 if (!err && need_copyout) 975 if (copy_to_user(argp, &ifr, ifreq_size)) 976 return -EFAULT; 977 } 978 return err; 979 } 980 981 /* 982 * With an ioctl, arg may well be a user mode pointer, but we don't know 983 * what to do with it - that's up to the protocol still. 984 */ 985 986 struct ns_common *get_net_ns(struct ns_common *ns) 987 { 988 return &get_net(container_of(ns, struct net, ns))->ns; 989 } 990 EXPORT_SYMBOL_GPL(get_net_ns); 991 992 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 993 { 994 struct socket *sock; 995 struct sock *sk; 996 void __user *argp = (void __user *)arg; 997 int pid, err; 998 struct net *net; 999 1000 sock = file->private_data; 1001 sk = sock->sk; 1002 net = sock_net(sk); 1003 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1004 struct ifreq ifr; 1005 bool need_copyout; 1006 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1007 return -EFAULT; 1008 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1009 if (!err && need_copyout) 1010 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1011 return -EFAULT; 1012 } else 1013 #ifdef CONFIG_WEXT_CORE 1014 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1015 err = wext_handle_ioctl(net, cmd, argp); 1016 } else 1017 #endif 1018 switch (cmd) { 1019 case FIOSETOWN: 1020 case SIOCSPGRP: 1021 err = -EFAULT; 1022 if (get_user(pid, (int __user *)argp)) 1023 break; 1024 err = f_setown(sock->file, pid, 1); 1025 break; 1026 case FIOGETOWN: 1027 case SIOCGPGRP: 1028 err = put_user(f_getown(sock->file), 1029 (int __user *)argp); 1030 break; 1031 case SIOCGIFBR: 1032 case SIOCSIFBR: 1033 case SIOCBRADDBR: 1034 case SIOCBRDELBR: 1035 err = -ENOPKG; 1036 if (!br_ioctl_hook) 1037 request_module("bridge"); 1038 1039 mutex_lock(&br_ioctl_mutex); 1040 if (br_ioctl_hook) 1041 err = br_ioctl_hook(net, cmd, argp); 1042 mutex_unlock(&br_ioctl_mutex); 1043 break; 1044 case SIOCGIFVLAN: 1045 case SIOCSIFVLAN: 1046 err = -ENOPKG; 1047 if (!vlan_ioctl_hook) 1048 request_module("8021q"); 1049 1050 mutex_lock(&vlan_ioctl_mutex); 1051 if (vlan_ioctl_hook) 1052 err = vlan_ioctl_hook(net, argp); 1053 mutex_unlock(&vlan_ioctl_mutex); 1054 break; 1055 case SIOCADDDLCI: 1056 case SIOCDELDLCI: 1057 err = -ENOPKG; 1058 if (!dlci_ioctl_hook) 1059 request_module("dlci"); 1060 1061 mutex_lock(&dlci_ioctl_mutex); 1062 if (dlci_ioctl_hook) 1063 err = dlci_ioctl_hook(cmd, argp); 1064 mutex_unlock(&dlci_ioctl_mutex); 1065 break; 1066 case SIOCGSKNS: 1067 err = -EPERM; 1068 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1069 break; 1070 1071 err = open_related_ns(&net->ns, get_net_ns); 1072 break; 1073 default: 1074 err = sock_do_ioctl(net, sock, cmd, arg, 1075 sizeof(struct ifreq)); 1076 break; 1077 } 1078 return err; 1079 } 1080 1081 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1082 { 1083 int err; 1084 struct socket *sock = NULL; 1085 1086 err = security_socket_create(family, type, protocol, 1); 1087 if (err) 1088 goto out; 1089 1090 sock = sock_alloc(); 1091 if (!sock) { 1092 err = -ENOMEM; 1093 goto out; 1094 } 1095 1096 sock->type = type; 1097 err = security_socket_post_create(sock, family, type, protocol, 1); 1098 if (err) 1099 goto out_release; 1100 1101 out: 1102 *res = sock; 1103 return err; 1104 out_release: 1105 sock_release(sock); 1106 sock = NULL; 1107 goto out; 1108 } 1109 EXPORT_SYMBOL(sock_create_lite); 1110 1111 /* No kernel lock held - perfect */ 1112 static __poll_t sock_poll(struct file *file, poll_table *wait) 1113 { 1114 struct socket *sock = file->private_data; 1115 __poll_t events = poll_requested_events(wait), flag = 0; 1116 1117 if (!sock->ops->poll) 1118 return 0; 1119 1120 if (sk_can_busy_loop(sock->sk)) { 1121 /* poll once if requested by the syscall */ 1122 if (events & POLL_BUSY_LOOP) 1123 sk_busy_loop(sock->sk, 1); 1124 1125 /* if this socket can poll_ll, tell the system call */ 1126 flag = POLL_BUSY_LOOP; 1127 } 1128 1129 return sock->ops->poll(file, sock, wait) | flag; 1130 } 1131 1132 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1133 { 1134 struct socket *sock = file->private_data; 1135 1136 return sock->ops->mmap(file, sock, vma); 1137 } 1138 1139 static int sock_close(struct inode *inode, struct file *filp) 1140 { 1141 __sock_release(SOCKET_I(inode), inode); 1142 return 0; 1143 } 1144 1145 /* 1146 * Update the socket async list 1147 * 1148 * Fasync_list locking strategy. 1149 * 1150 * 1. fasync_list is modified only under process context socket lock 1151 * i.e. under semaphore. 1152 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1153 * or under socket lock 1154 */ 1155 1156 static int sock_fasync(int fd, struct file *filp, int on) 1157 { 1158 struct socket *sock = filp->private_data; 1159 struct sock *sk = sock->sk; 1160 struct socket_wq *wq; 1161 1162 if (sk == NULL) 1163 return -EINVAL; 1164 1165 lock_sock(sk); 1166 wq = sock->wq; 1167 fasync_helper(fd, filp, on, &wq->fasync_list); 1168 1169 if (!wq->fasync_list) 1170 sock_reset_flag(sk, SOCK_FASYNC); 1171 else 1172 sock_set_flag(sk, SOCK_FASYNC); 1173 1174 release_sock(sk); 1175 return 0; 1176 } 1177 1178 /* This function may be called only under rcu_lock */ 1179 1180 int sock_wake_async(struct socket_wq *wq, int how, int band) 1181 { 1182 if (!wq || !wq->fasync_list) 1183 return -1; 1184 1185 switch (how) { 1186 case SOCK_WAKE_WAITD: 1187 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1188 break; 1189 goto call_kill; 1190 case SOCK_WAKE_SPACE: 1191 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1192 break; 1193 /* fall through */ 1194 case SOCK_WAKE_IO: 1195 call_kill: 1196 kill_fasync(&wq->fasync_list, SIGIO, band); 1197 break; 1198 case SOCK_WAKE_URG: 1199 kill_fasync(&wq->fasync_list, SIGURG, band); 1200 } 1201 1202 return 0; 1203 } 1204 EXPORT_SYMBOL(sock_wake_async); 1205 1206 int __sock_create(struct net *net, int family, int type, int protocol, 1207 struct socket **res, int kern) 1208 { 1209 int err; 1210 struct socket *sock; 1211 const struct net_proto_family *pf; 1212 1213 /* 1214 * Check protocol is in range 1215 */ 1216 if (family < 0 || family >= NPROTO) 1217 return -EAFNOSUPPORT; 1218 if (type < 0 || type >= SOCK_MAX) 1219 return -EINVAL; 1220 1221 /* Compatibility. 1222 1223 This uglymoron is moved from INET layer to here to avoid 1224 deadlock in module load. 1225 */ 1226 if (family == PF_INET && type == SOCK_PACKET) { 1227 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1228 current->comm); 1229 family = PF_PACKET; 1230 } 1231 1232 err = security_socket_create(family, type, protocol, kern); 1233 if (err) 1234 return err; 1235 1236 /* 1237 * Allocate the socket and allow the family to set things up. if 1238 * the protocol is 0, the family is instructed to select an appropriate 1239 * default. 1240 */ 1241 sock = sock_alloc(); 1242 if (!sock) { 1243 net_warn_ratelimited("socket: no more sockets\n"); 1244 return -ENFILE; /* Not exactly a match, but its the 1245 closest posix thing */ 1246 } 1247 1248 sock->type = type; 1249 1250 #ifdef CONFIG_MODULES 1251 /* Attempt to load a protocol module if the find failed. 1252 * 1253 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1254 * requested real, full-featured networking support upon configuration. 1255 * Otherwise module support will break! 1256 */ 1257 if (rcu_access_pointer(net_families[family]) == NULL) 1258 request_module("net-pf-%d", family); 1259 #endif 1260 1261 rcu_read_lock(); 1262 pf = rcu_dereference(net_families[family]); 1263 err = -EAFNOSUPPORT; 1264 if (!pf) 1265 goto out_release; 1266 1267 /* 1268 * We will call the ->create function, that possibly is in a loadable 1269 * module, so we have to bump that loadable module refcnt first. 1270 */ 1271 if (!try_module_get(pf->owner)) 1272 goto out_release; 1273 1274 /* Now protected by module ref count */ 1275 rcu_read_unlock(); 1276 1277 err = pf->create(net, sock, protocol, kern); 1278 if (err < 0) 1279 goto out_module_put; 1280 1281 /* 1282 * Now to bump the refcnt of the [loadable] module that owns this 1283 * socket at sock_release time we decrement its refcnt. 1284 */ 1285 if (!try_module_get(sock->ops->owner)) 1286 goto out_module_busy; 1287 1288 /* 1289 * Now that we're done with the ->create function, the [loadable] 1290 * module can have its refcnt decremented 1291 */ 1292 module_put(pf->owner); 1293 err = security_socket_post_create(sock, family, type, protocol, kern); 1294 if (err) 1295 goto out_sock_release; 1296 *res = sock; 1297 1298 return 0; 1299 1300 out_module_busy: 1301 err = -EAFNOSUPPORT; 1302 out_module_put: 1303 sock->ops = NULL; 1304 module_put(pf->owner); 1305 out_sock_release: 1306 sock_release(sock); 1307 return err; 1308 1309 out_release: 1310 rcu_read_unlock(); 1311 goto out_sock_release; 1312 } 1313 EXPORT_SYMBOL(__sock_create); 1314 1315 int sock_create(int family, int type, int protocol, struct socket **res) 1316 { 1317 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1318 } 1319 EXPORT_SYMBOL(sock_create); 1320 1321 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1322 { 1323 return __sock_create(net, family, type, protocol, res, 1); 1324 } 1325 EXPORT_SYMBOL(sock_create_kern); 1326 1327 int __sys_socket(int family, int type, int protocol) 1328 { 1329 int retval; 1330 struct socket *sock; 1331 int flags; 1332 1333 /* Check the SOCK_* constants for consistency. */ 1334 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1335 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1336 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1337 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1338 1339 flags = type & ~SOCK_TYPE_MASK; 1340 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1341 return -EINVAL; 1342 type &= SOCK_TYPE_MASK; 1343 1344 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1345 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1346 1347 retval = sock_create(family, type, protocol, &sock); 1348 if (retval < 0) 1349 return retval; 1350 1351 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1352 } 1353 1354 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1355 { 1356 return __sys_socket(family, type, protocol); 1357 } 1358 1359 /* 1360 * Create a pair of connected sockets. 1361 */ 1362 1363 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1364 { 1365 struct socket *sock1, *sock2; 1366 int fd1, fd2, err; 1367 struct file *newfile1, *newfile2; 1368 int flags; 1369 1370 flags = type & ~SOCK_TYPE_MASK; 1371 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1372 return -EINVAL; 1373 type &= SOCK_TYPE_MASK; 1374 1375 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1376 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1377 1378 /* 1379 * reserve descriptors and make sure we won't fail 1380 * to return them to userland. 1381 */ 1382 fd1 = get_unused_fd_flags(flags); 1383 if (unlikely(fd1 < 0)) 1384 return fd1; 1385 1386 fd2 = get_unused_fd_flags(flags); 1387 if (unlikely(fd2 < 0)) { 1388 put_unused_fd(fd1); 1389 return fd2; 1390 } 1391 1392 err = put_user(fd1, &usockvec[0]); 1393 if (err) 1394 goto out; 1395 1396 err = put_user(fd2, &usockvec[1]); 1397 if (err) 1398 goto out; 1399 1400 /* 1401 * Obtain the first socket and check if the underlying protocol 1402 * supports the socketpair call. 1403 */ 1404 1405 err = sock_create(family, type, protocol, &sock1); 1406 if (unlikely(err < 0)) 1407 goto out; 1408 1409 err = sock_create(family, type, protocol, &sock2); 1410 if (unlikely(err < 0)) { 1411 sock_release(sock1); 1412 goto out; 1413 } 1414 1415 err = security_socket_socketpair(sock1, sock2); 1416 if (unlikely(err)) { 1417 sock_release(sock2); 1418 sock_release(sock1); 1419 goto out; 1420 } 1421 1422 err = sock1->ops->socketpair(sock1, sock2); 1423 if (unlikely(err < 0)) { 1424 sock_release(sock2); 1425 sock_release(sock1); 1426 goto out; 1427 } 1428 1429 newfile1 = sock_alloc_file(sock1, flags, NULL); 1430 if (IS_ERR(newfile1)) { 1431 err = PTR_ERR(newfile1); 1432 sock_release(sock2); 1433 goto out; 1434 } 1435 1436 newfile2 = sock_alloc_file(sock2, flags, NULL); 1437 if (IS_ERR(newfile2)) { 1438 err = PTR_ERR(newfile2); 1439 fput(newfile1); 1440 goto out; 1441 } 1442 1443 audit_fd_pair(fd1, fd2); 1444 1445 fd_install(fd1, newfile1); 1446 fd_install(fd2, newfile2); 1447 return 0; 1448 1449 out: 1450 put_unused_fd(fd2); 1451 put_unused_fd(fd1); 1452 return err; 1453 } 1454 1455 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1456 int __user *, usockvec) 1457 { 1458 return __sys_socketpair(family, type, protocol, usockvec); 1459 } 1460 1461 /* 1462 * Bind a name to a socket. Nothing much to do here since it's 1463 * the protocol's responsibility to handle the local address. 1464 * 1465 * We move the socket address to kernel space before we call 1466 * the protocol layer (having also checked the address is ok). 1467 */ 1468 1469 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1470 { 1471 struct socket *sock; 1472 struct sockaddr_storage address; 1473 int err, fput_needed; 1474 1475 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1476 if (sock) { 1477 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1478 if (!err) { 1479 err = security_socket_bind(sock, 1480 (struct sockaddr *)&address, 1481 addrlen); 1482 if (!err) 1483 err = sock->ops->bind(sock, 1484 (struct sockaddr *) 1485 &address, addrlen); 1486 } 1487 fput_light(sock->file, fput_needed); 1488 } 1489 return err; 1490 } 1491 1492 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1493 { 1494 return __sys_bind(fd, umyaddr, addrlen); 1495 } 1496 1497 /* 1498 * Perform a listen. Basically, we allow the protocol to do anything 1499 * necessary for a listen, and if that works, we mark the socket as 1500 * ready for listening. 1501 */ 1502 1503 int __sys_listen(int fd, int backlog) 1504 { 1505 struct socket *sock; 1506 int err, fput_needed; 1507 int somaxconn; 1508 1509 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1510 if (sock) { 1511 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1512 if ((unsigned int)backlog > somaxconn) 1513 backlog = somaxconn; 1514 1515 err = security_socket_listen(sock, backlog); 1516 if (!err) 1517 err = sock->ops->listen(sock, backlog); 1518 1519 fput_light(sock->file, fput_needed); 1520 } 1521 return err; 1522 } 1523 1524 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1525 { 1526 return __sys_listen(fd, backlog); 1527 } 1528 1529 /* 1530 * For accept, we attempt to create a new socket, set up the link 1531 * with the client, wake up the client, then return the new 1532 * connected fd. We collect the address of the connector in kernel 1533 * space and move it to user at the very end. This is unclean because 1534 * we open the socket then return an error. 1535 * 1536 * 1003.1g adds the ability to recvmsg() to query connection pending 1537 * status to recvmsg. We need to add that support in a way thats 1538 * clean when we restructure accept also. 1539 */ 1540 1541 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1542 int __user *upeer_addrlen, int flags) 1543 { 1544 struct socket *sock, *newsock; 1545 struct file *newfile; 1546 int err, len, newfd, fput_needed; 1547 struct sockaddr_storage address; 1548 1549 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1550 return -EINVAL; 1551 1552 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1553 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1554 1555 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1556 if (!sock) 1557 goto out; 1558 1559 err = -ENFILE; 1560 newsock = sock_alloc(); 1561 if (!newsock) 1562 goto out_put; 1563 1564 newsock->type = sock->type; 1565 newsock->ops = sock->ops; 1566 1567 /* 1568 * We don't need try_module_get here, as the listening socket (sock) 1569 * has the protocol module (sock->ops->owner) held. 1570 */ 1571 __module_get(newsock->ops->owner); 1572 1573 newfd = get_unused_fd_flags(flags); 1574 if (unlikely(newfd < 0)) { 1575 err = newfd; 1576 sock_release(newsock); 1577 goto out_put; 1578 } 1579 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1580 if (IS_ERR(newfile)) { 1581 err = PTR_ERR(newfile); 1582 put_unused_fd(newfd); 1583 goto out_put; 1584 } 1585 1586 err = security_socket_accept(sock, newsock); 1587 if (err) 1588 goto out_fd; 1589 1590 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1591 if (err < 0) 1592 goto out_fd; 1593 1594 if (upeer_sockaddr) { 1595 len = newsock->ops->getname(newsock, 1596 (struct sockaddr *)&address, 2); 1597 if (len < 0) { 1598 err = -ECONNABORTED; 1599 goto out_fd; 1600 } 1601 err = move_addr_to_user(&address, 1602 len, upeer_sockaddr, upeer_addrlen); 1603 if (err < 0) 1604 goto out_fd; 1605 } 1606 1607 /* File flags are not inherited via accept() unlike another OSes. */ 1608 1609 fd_install(newfd, newfile); 1610 err = newfd; 1611 1612 out_put: 1613 fput_light(sock->file, fput_needed); 1614 out: 1615 return err; 1616 out_fd: 1617 fput(newfile); 1618 put_unused_fd(newfd); 1619 goto out_put; 1620 } 1621 1622 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1623 int __user *, upeer_addrlen, int, flags) 1624 { 1625 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1626 } 1627 1628 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1629 int __user *, upeer_addrlen) 1630 { 1631 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1632 } 1633 1634 /* 1635 * Attempt to connect to a socket with the server address. The address 1636 * is in user space so we verify it is OK and move it to kernel space. 1637 * 1638 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1639 * break bindings 1640 * 1641 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1642 * other SEQPACKET protocols that take time to connect() as it doesn't 1643 * include the -EINPROGRESS status for such sockets. 1644 */ 1645 1646 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1647 { 1648 struct socket *sock; 1649 struct sockaddr_storage address; 1650 int err, fput_needed; 1651 1652 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1653 if (!sock) 1654 goto out; 1655 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1656 if (err < 0) 1657 goto out_put; 1658 1659 err = 1660 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1661 if (err) 1662 goto out_put; 1663 1664 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1665 sock->file->f_flags); 1666 out_put: 1667 fput_light(sock->file, fput_needed); 1668 out: 1669 return err; 1670 } 1671 1672 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1673 int, addrlen) 1674 { 1675 return __sys_connect(fd, uservaddr, addrlen); 1676 } 1677 1678 /* 1679 * Get the local address ('name') of a socket object. Move the obtained 1680 * name to user space. 1681 */ 1682 1683 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1684 int __user *usockaddr_len) 1685 { 1686 struct socket *sock; 1687 struct sockaddr_storage address; 1688 int err, fput_needed; 1689 1690 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1691 if (!sock) 1692 goto out; 1693 1694 err = security_socket_getsockname(sock); 1695 if (err) 1696 goto out_put; 1697 1698 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1699 if (err < 0) 1700 goto out_put; 1701 /* "err" is actually length in this case */ 1702 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1703 1704 out_put: 1705 fput_light(sock->file, fput_needed); 1706 out: 1707 return err; 1708 } 1709 1710 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1711 int __user *, usockaddr_len) 1712 { 1713 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1714 } 1715 1716 /* 1717 * Get the remote address ('name') of a socket object. Move the obtained 1718 * name to user space. 1719 */ 1720 1721 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1722 int __user *usockaddr_len) 1723 { 1724 struct socket *sock; 1725 struct sockaddr_storage address; 1726 int err, fput_needed; 1727 1728 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1729 if (sock != NULL) { 1730 err = security_socket_getpeername(sock); 1731 if (err) { 1732 fput_light(sock->file, fput_needed); 1733 return err; 1734 } 1735 1736 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1737 if (err >= 0) 1738 /* "err" is actually length in this case */ 1739 err = move_addr_to_user(&address, err, usockaddr, 1740 usockaddr_len); 1741 fput_light(sock->file, fput_needed); 1742 } 1743 return err; 1744 } 1745 1746 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1747 int __user *, usockaddr_len) 1748 { 1749 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1750 } 1751 1752 /* 1753 * Send a datagram to a given address. We move the address into kernel 1754 * space and check the user space data area is readable before invoking 1755 * the protocol. 1756 */ 1757 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1758 struct sockaddr __user *addr, int addr_len) 1759 { 1760 struct socket *sock; 1761 struct sockaddr_storage address; 1762 int err; 1763 struct msghdr msg; 1764 struct iovec iov; 1765 int fput_needed; 1766 1767 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1768 if (unlikely(err)) 1769 return err; 1770 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1771 if (!sock) 1772 goto out; 1773 1774 msg.msg_name = NULL; 1775 msg.msg_control = NULL; 1776 msg.msg_controllen = 0; 1777 msg.msg_namelen = 0; 1778 if (addr) { 1779 err = move_addr_to_kernel(addr, addr_len, &address); 1780 if (err < 0) 1781 goto out_put; 1782 msg.msg_name = (struct sockaddr *)&address; 1783 msg.msg_namelen = addr_len; 1784 } 1785 if (sock->file->f_flags & O_NONBLOCK) 1786 flags |= MSG_DONTWAIT; 1787 msg.msg_flags = flags; 1788 err = sock_sendmsg(sock, &msg); 1789 1790 out_put: 1791 fput_light(sock->file, fput_needed); 1792 out: 1793 return err; 1794 } 1795 1796 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1797 unsigned int, flags, struct sockaddr __user *, addr, 1798 int, addr_len) 1799 { 1800 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1801 } 1802 1803 /* 1804 * Send a datagram down a socket. 1805 */ 1806 1807 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1808 unsigned int, flags) 1809 { 1810 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1811 } 1812 1813 /* 1814 * Receive a frame from the socket and optionally record the address of the 1815 * sender. We verify the buffers are writable and if needed move the 1816 * sender address from kernel to user space. 1817 */ 1818 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1819 struct sockaddr __user *addr, int __user *addr_len) 1820 { 1821 struct socket *sock; 1822 struct iovec iov; 1823 struct msghdr msg; 1824 struct sockaddr_storage address; 1825 int err, err2; 1826 int fput_needed; 1827 1828 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1829 if (unlikely(err)) 1830 return err; 1831 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1832 if (!sock) 1833 goto out; 1834 1835 msg.msg_control = NULL; 1836 msg.msg_controllen = 0; 1837 /* Save some cycles and don't copy the address if not needed */ 1838 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1839 /* We assume all kernel code knows the size of sockaddr_storage */ 1840 msg.msg_namelen = 0; 1841 msg.msg_iocb = NULL; 1842 msg.msg_flags = 0; 1843 if (sock->file->f_flags & O_NONBLOCK) 1844 flags |= MSG_DONTWAIT; 1845 err = sock_recvmsg(sock, &msg, flags); 1846 1847 if (err >= 0 && addr != NULL) { 1848 err2 = move_addr_to_user(&address, 1849 msg.msg_namelen, addr, addr_len); 1850 if (err2 < 0) 1851 err = err2; 1852 } 1853 1854 fput_light(sock->file, fput_needed); 1855 out: 1856 return err; 1857 } 1858 1859 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1860 unsigned int, flags, struct sockaddr __user *, addr, 1861 int __user *, addr_len) 1862 { 1863 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1864 } 1865 1866 /* 1867 * Receive a datagram from a socket. 1868 */ 1869 1870 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1871 unsigned int, flags) 1872 { 1873 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1874 } 1875 1876 /* 1877 * Set a socket option. Because we don't know the option lengths we have 1878 * to pass the user mode parameter for the protocols to sort out. 1879 */ 1880 1881 static int __sys_setsockopt(int fd, int level, int optname, 1882 char __user *optval, int optlen) 1883 { 1884 int err, fput_needed; 1885 struct socket *sock; 1886 1887 if (optlen < 0) 1888 return -EINVAL; 1889 1890 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1891 if (sock != NULL) { 1892 err = security_socket_setsockopt(sock, level, optname); 1893 if (err) 1894 goto out_put; 1895 1896 if (level == SOL_SOCKET) 1897 err = 1898 sock_setsockopt(sock, level, optname, optval, 1899 optlen); 1900 else 1901 err = 1902 sock->ops->setsockopt(sock, level, optname, optval, 1903 optlen); 1904 out_put: 1905 fput_light(sock->file, fput_needed); 1906 } 1907 return err; 1908 } 1909 1910 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1911 char __user *, optval, int, optlen) 1912 { 1913 return __sys_setsockopt(fd, level, optname, optval, optlen); 1914 } 1915 1916 /* 1917 * Get a socket option. Because we don't know the option lengths we have 1918 * to pass a user mode parameter for the protocols to sort out. 1919 */ 1920 1921 static int __sys_getsockopt(int fd, int level, int optname, 1922 char __user *optval, int __user *optlen) 1923 { 1924 int err, fput_needed; 1925 struct socket *sock; 1926 1927 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1928 if (sock != NULL) { 1929 err = security_socket_getsockopt(sock, level, optname); 1930 if (err) 1931 goto out_put; 1932 1933 if (level == SOL_SOCKET) 1934 err = 1935 sock_getsockopt(sock, level, optname, optval, 1936 optlen); 1937 else 1938 err = 1939 sock->ops->getsockopt(sock, level, optname, optval, 1940 optlen); 1941 out_put: 1942 fput_light(sock->file, fput_needed); 1943 } 1944 return err; 1945 } 1946 1947 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1948 char __user *, optval, int __user *, optlen) 1949 { 1950 return __sys_getsockopt(fd, level, optname, optval, optlen); 1951 } 1952 1953 /* 1954 * Shutdown a socket. 1955 */ 1956 1957 int __sys_shutdown(int fd, int how) 1958 { 1959 int err, fput_needed; 1960 struct socket *sock; 1961 1962 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1963 if (sock != NULL) { 1964 err = security_socket_shutdown(sock, how); 1965 if (!err) 1966 err = sock->ops->shutdown(sock, how); 1967 fput_light(sock->file, fput_needed); 1968 } 1969 return err; 1970 } 1971 1972 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1973 { 1974 return __sys_shutdown(fd, how); 1975 } 1976 1977 /* A couple of helpful macros for getting the address of the 32/64 bit 1978 * fields which are the same type (int / unsigned) on our platforms. 1979 */ 1980 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1981 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1982 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1983 1984 struct used_address { 1985 struct sockaddr_storage name; 1986 unsigned int name_len; 1987 }; 1988 1989 static int copy_msghdr_from_user(struct msghdr *kmsg, 1990 struct user_msghdr __user *umsg, 1991 struct sockaddr __user **save_addr, 1992 struct iovec **iov) 1993 { 1994 struct user_msghdr msg; 1995 ssize_t err; 1996 1997 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1998 return -EFAULT; 1999 2000 kmsg->msg_control = (void __force *)msg.msg_control; 2001 kmsg->msg_controllen = msg.msg_controllen; 2002 kmsg->msg_flags = msg.msg_flags; 2003 2004 kmsg->msg_namelen = msg.msg_namelen; 2005 if (!msg.msg_name) 2006 kmsg->msg_namelen = 0; 2007 2008 if (kmsg->msg_namelen < 0) 2009 return -EINVAL; 2010 2011 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2012 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2013 2014 if (save_addr) 2015 *save_addr = msg.msg_name; 2016 2017 if (msg.msg_name && kmsg->msg_namelen) { 2018 if (!save_addr) { 2019 err = move_addr_to_kernel(msg.msg_name, 2020 kmsg->msg_namelen, 2021 kmsg->msg_name); 2022 if (err < 0) 2023 return err; 2024 } 2025 } else { 2026 kmsg->msg_name = NULL; 2027 kmsg->msg_namelen = 0; 2028 } 2029 2030 if (msg.msg_iovlen > UIO_MAXIOV) 2031 return -EMSGSIZE; 2032 2033 kmsg->msg_iocb = NULL; 2034 2035 return import_iovec(save_addr ? READ : WRITE, 2036 msg.msg_iov, msg.msg_iovlen, 2037 UIO_FASTIOV, iov, &kmsg->msg_iter); 2038 } 2039 2040 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2041 struct msghdr *msg_sys, unsigned int flags, 2042 struct used_address *used_address, 2043 unsigned int allowed_msghdr_flags) 2044 { 2045 struct compat_msghdr __user *msg_compat = 2046 (struct compat_msghdr __user *)msg; 2047 struct sockaddr_storage address; 2048 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2049 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2050 __aligned(sizeof(__kernel_size_t)); 2051 /* 20 is size of ipv6_pktinfo */ 2052 unsigned char *ctl_buf = ctl; 2053 int ctl_len; 2054 ssize_t err; 2055 2056 msg_sys->msg_name = &address; 2057 2058 if (MSG_CMSG_COMPAT & flags) 2059 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2060 else 2061 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2062 if (err < 0) 2063 return err; 2064 2065 err = -ENOBUFS; 2066 2067 if (msg_sys->msg_controllen > INT_MAX) 2068 goto out_freeiov; 2069 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2070 ctl_len = msg_sys->msg_controllen; 2071 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2072 err = 2073 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2074 sizeof(ctl)); 2075 if (err) 2076 goto out_freeiov; 2077 ctl_buf = msg_sys->msg_control; 2078 ctl_len = msg_sys->msg_controllen; 2079 } else if (ctl_len) { 2080 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2081 CMSG_ALIGN(sizeof(struct cmsghdr))); 2082 if (ctl_len > sizeof(ctl)) { 2083 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2084 if (ctl_buf == NULL) 2085 goto out_freeiov; 2086 } 2087 err = -EFAULT; 2088 /* 2089 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2090 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2091 * checking falls down on this. 2092 */ 2093 if (copy_from_user(ctl_buf, 2094 (void __user __force *)msg_sys->msg_control, 2095 ctl_len)) 2096 goto out_freectl; 2097 msg_sys->msg_control = ctl_buf; 2098 } 2099 msg_sys->msg_flags = flags; 2100 2101 if (sock->file->f_flags & O_NONBLOCK) 2102 msg_sys->msg_flags |= MSG_DONTWAIT; 2103 /* 2104 * If this is sendmmsg() and current destination address is same as 2105 * previously succeeded address, omit asking LSM's decision. 2106 * used_address->name_len is initialized to UINT_MAX so that the first 2107 * destination address never matches. 2108 */ 2109 if (used_address && msg_sys->msg_name && 2110 used_address->name_len == msg_sys->msg_namelen && 2111 !memcmp(&used_address->name, msg_sys->msg_name, 2112 used_address->name_len)) { 2113 err = sock_sendmsg_nosec(sock, msg_sys); 2114 goto out_freectl; 2115 } 2116 err = sock_sendmsg(sock, msg_sys); 2117 /* 2118 * If this is sendmmsg() and sending to current destination address was 2119 * successful, remember it. 2120 */ 2121 if (used_address && err >= 0) { 2122 used_address->name_len = msg_sys->msg_namelen; 2123 if (msg_sys->msg_name) 2124 memcpy(&used_address->name, msg_sys->msg_name, 2125 used_address->name_len); 2126 } 2127 2128 out_freectl: 2129 if (ctl_buf != ctl) 2130 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2131 out_freeiov: 2132 kfree(iov); 2133 return err; 2134 } 2135 2136 /* 2137 * BSD sendmsg interface 2138 */ 2139 2140 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2141 bool forbid_cmsg_compat) 2142 { 2143 int fput_needed, err; 2144 struct msghdr msg_sys; 2145 struct socket *sock; 2146 2147 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2148 return -EINVAL; 2149 2150 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2151 if (!sock) 2152 goto out; 2153 2154 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2155 2156 fput_light(sock->file, fput_needed); 2157 out: 2158 return err; 2159 } 2160 2161 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2162 { 2163 return __sys_sendmsg(fd, msg, flags, true); 2164 } 2165 2166 /* 2167 * Linux sendmmsg interface 2168 */ 2169 2170 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2171 unsigned int flags, bool forbid_cmsg_compat) 2172 { 2173 int fput_needed, err, datagrams; 2174 struct socket *sock; 2175 struct mmsghdr __user *entry; 2176 struct compat_mmsghdr __user *compat_entry; 2177 struct msghdr msg_sys; 2178 struct used_address used_address; 2179 unsigned int oflags = flags; 2180 2181 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2182 return -EINVAL; 2183 2184 if (vlen > UIO_MAXIOV) 2185 vlen = UIO_MAXIOV; 2186 2187 datagrams = 0; 2188 2189 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2190 if (!sock) 2191 return err; 2192 2193 used_address.name_len = UINT_MAX; 2194 entry = mmsg; 2195 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2196 err = 0; 2197 flags |= MSG_BATCH; 2198 2199 while (datagrams < vlen) { 2200 if (datagrams == vlen - 1) 2201 flags = oflags; 2202 2203 if (MSG_CMSG_COMPAT & flags) { 2204 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2205 &msg_sys, flags, &used_address, MSG_EOR); 2206 if (err < 0) 2207 break; 2208 err = __put_user(err, &compat_entry->msg_len); 2209 ++compat_entry; 2210 } else { 2211 err = ___sys_sendmsg(sock, 2212 (struct user_msghdr __user *)entry, 2213 &msg_sys, flags, &used_address, MSG_EOR); 2214 if (err < 0) 2215 break; 2216 err = put_user(err, &entry->msg_len); 2217 ++entry; 2218 } 2219 2220 if (err) 2221 break; 2222 ++datagrams; 2223 if (msg_data_left(&msg_sys)) 2224 break; 2225 cond_resched(); 2226 } 2227 2228 fput_light(sock->file, fput_needed); 2229 2230 /* We only return an error if no datagrams were able to be sent */ 2231 if (datagrams != 0) 2232 return datagrams; 2233 2234 return err; 2235 } 2236 2237 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2238 unsigned int, vlen, unsigned int, flags) 2239 { 2240 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2241 } 2242 2243 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2244 struct msghdr *msg_sys, unsigned int flags, int nosec) 2245 { 2246 struct compat_msghdr __user *msg_compat = 2247 (struct compat_msghdr __user *)msg; 2248 struct iovec iovstack[UIO_FASTIOV]; 2249 struct iovec *iov = iovstack; 2250 unsigned long cmsg_ptr; 2251 int len; 2252 ssize_t err; 2253 2254 /* kernel mode address */ 2255 struct sockaddr_storage addr; 2256 2257 /* user mode address pointers */ 2258 struct sockaddr __user *uaddr; 2259 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2260 2261 msg_sys->msg_name = &addr; 2262 2263 if (MSG_CMSG_COMPAT & flags) 2264 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2265 else 2266 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2267 if (err < 0) 2268 return err; 2269 2270 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2271 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2272 2273 /* We assume all kernel code knows the size of sockaddr_storage */ 2274 msg_sys->msg_namelen = 0; 2275 2276 if (sock->file->f_flags & O_NONBLOCK) 2277 flags |= MSG_DONTWAIT; 2278 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2279 if (err < 0) 2280 goto out_freeiov; 2281 len = err; 2282 2283 if (uaddr != NULL) { 2284 err = move_addr_to_user(&addr, 2285 msg_sys->msg_namelen, uaddr, 2286 uaddr_len); 2287 if (err < 0) 2288 goto out_freeiov; 2289 } 2290 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2291 COMPAT_FLAGS(msg)); 2292 if (err) 2293 goto out_freeiov; 2294 if (MSG_CMSG_COMPAT & flags) 2295 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2296 &msg_compat->msg_controllen); 2297 else 2298 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2299 &msg->msg_controllen); 2300 if (err) 2301 goto out_freeiov; 2302 err = len; 2303 2304 out_freeiov: 2305 kfree(iov); 2306 return err; 2307 } 2308 2309 /* 2310 * BSD recvmsg interface 2311 */ 2312 2313 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2314 bool forbid_cmsg_compat) 2315 { 2316 int fput_needed, err; 2317 struct msghdr msg_sys; 2318 struct socket *sock; 2319 2320 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2321 return -EINVAL; 2322 2323 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2324 if (!sock) 2325 goto out; 2326 2327 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2328 2329 fput_light(sock->file, fput_needed); 2330 out: 2331 return err; 2332 } 2333 2334 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2335 unsigned int, flags) 2336 { 2337 return __sys_recvmsg(fd, msg, flags, true); 2338 } 2339 2340 /* 2341 * Linux recvmmsg interface 2342 */ 2343 2344 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2345 unsigned int flags, struct timespec64 *timeout) 2346 { 2347 int fput_needed, err, datagrams; 2348 struct socket *sock; 2349 struct mmsghdr __user *entry; 2350 struct compat_mmsghdr __user *compat_entry; 2351 struct msghdr msg_sys; 2352 struct timespec64 end_time; 2353 struct timespec64 timeout64; 2354 2355 if (timeout && 2356 poll_select_set_timeout(&end_time, timeout->tv_sec, 2357 timeout->tv_nsec)) 2358 return -EINVAL; 2359 2360 datagrams = 0; 2361 2362 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2363 if (!sock) 2364 return err; 2365 2366 if (likely(!(flags & MSG_ERRQUEUE))) { 2367 err = sock_error(sock->sk); 2368 if (err) { 2369 datagrams = err; 2370 goto out_put; 2371 } 2372 } 2373 2374 entry = mmsg; 2375 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2376 2377 while (datagrams < vlen) { 2378 /* 2379 * No need to ask LSM for more than the first datagram. 2380 */ 2381 if (MSG_CMSG_COMPAT & flags) { 2382 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2383 &msg_sys, flags & ~MSG_WAITFORONE, 2384 datagrams); 2385 if (err < 0) 2386 break; 2387 err = __put_user(err, &compat_entry->msg_len); 2388 ++compat_entry; 2389 } else { 2390 err = ___sys_recvmsg(sock, 2391 (struct user_msghdr __user *)entry, 2392 &msg_sys, flags & ~MSG_WAITFORONE, 2393 datagrams); 2394 if (err < 0) 2395 break; 2396 err = put_user(err, &entry->msg_len); 2397 ++entry; 2398 } 2399 2400 if (err) 2401 break; 2402 ++datagrams; 2403 2404 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2405 if (flags & MSG_WAITFORONE) 2406 flags |= MSG_DONTWAIT; 2407 2408 if (timeout) { 2409 ktime_get_ts64(&timeout64); 2410 *timeout = timespec64_sub(end_time, timeout64); 2411 if (timeout->tv_sec < 0) { 2412 timeout->tv_sec = timeout->tv_nsec = 0; 2413 break; 2414 } 2415 2416 /* Timeout, return less than vlen datagrams */ 2417 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2418 break; 2419 } 2420 2421 /* Out of band data, return right away */ 2422 if (msg_sys.msg_flags & MSG_OOB) 2423 break; 2424 cond_resched(); 2425 } 2426 2427 if (err == 0) 2428 goto out_put; 2429 2430 if (datagrams == 0) { 2431 datagrams = err; 2432 goto out_put; 2433 } 2434 2435 /* 2436 * We may return less entries than requested (vlen) if the 2437 * sock is non block and there aren't enough datagrams... 2438 */ 2439 if (err != -EAGAIN) { 2440 /* 2441 * ... or if recvmsg returns an error after we 2442 * received some datagrams, where we record the 2443 * error to return on the next call or if the 2444 * app asks about it using getsockopt(SO_ERROR). 2445 */ 2446 sock->sk->sk_err = -err; 2447 } 2448 out_put: 2449 fput_light(sock->file, fput_needed); 2450 2451 return datagrams; 2452 } 2453 2454 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2455 unsigned int vlen, unsigned int flags, 2456 struct __kernel_timespec __user *timeout) 2457 { 2458 int datagrams; 2459 struct timespec64 timeout_sys; 2460 2461 if (flags & MSG_CMSG_COMPAT) 2462 return -EINVAL; 2463 2464 if (!timeout) 2465 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2466 2467 if (get_timespec64(&timeout_sys, timeout)) 2468 return -EFAULT; 2469 2470 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2471 2472 if (datagrams > 0 && put_timespec64(&timeout_sys, timeout)) 2473 datagrams = -EFAULT; 2474 2475 return datagrams; 2476 } 2477 2478 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2479 unsigned int, vlen, unsigned int, flags, 2480 struct __kernel_timespec __user *, timeout) 2481 { 2482 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout); 2483 } 2484 2485 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2486 /* Argument list sizes for sys_socketcall */ 2487 #define AL(x) ((x) * sizeof(unsigned long)) 2488 static const unsigned char nargs[21] = { 2489 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2490 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2491 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2492 AL(4), AL(5), AL(4) 2493 }; 2494 2495 #undef AL 2496 2497 /* 2498 * System call vectors. 2499 * 2500 * Argument checking cleaned up. Saved 20% in size. 2501 * This function doesn't need to set the kernel lock because 2502 * it is set by the callees. 2503 */ 2504 2505 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2506 { 2507 unsigned long a[AUDITSC_ARGS]; 2508 unsigned long a0, a1; 2509 int err; 2510 unsigned int len; 2511 2512 if (call < 1 || call > SYS_SENDMMSG) 2513 return -EINVAL; 2514 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2515 2516 len = nargs[call]; 2517 if (len > sizeof(a)) 2518 return -EINVAL; 2519 2520 /* copy_from_user should be SMP safe. */ 2521 if (copy_from_user(a, args, len)) 2522 return -EFAULT; 2523 2524 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2525 if (err) 2526 return err; 2527 2528 a0 = a[0]; 2529 a1 = a[1]; 2530 2531 switch (call) { 2532 case SYS_SOCKET: 2533 err = __sys_socket(a0, a1, a[2]); 2534 break; 2535 case SYS_BIND: 2536 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2537 break; 2538 case SYS_CONNECT: 2539 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2540 break; 2541 case SYS_LISTEN: 2542 err = __sys_listen(a0, a1); 2543 break; 2544 case SYS_ACCEPT: 2545 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2546 (int __user *)a[2], 0); 2547 break; 2548 case SYS_GETSOCKNAME: 2549 err = 2550 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2551 (int __user *)a[2]); 2552 break; 2553 case SYS_GETPEERNAME: 2554 err = 2555 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2556 (int __user *)a[2]); 2557 break; 2558 case SYS_SOCKETPAIR: 2559 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2560 break; 2561 case SYS_SEND: 2562 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2563 NULL, 0); 2564 break; 2565 case SYS_SENDTO: 2566 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2567 (struct sockaddr __user *)a[4], a[5]); 2568 break; 2569 case SYS_RECV: 2570 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2571 NULL, NULL); 2572 break; 2573 case SYS_RECVFROM: 2574 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2575 (struct sockaddr __user *)a[4], 2576 (int __user *)a[5]); 2577 break; 2578 case SYS_SHUTDOWN: 2579 err = __sys_shutdown(a0, a1); 2580 break; 2581 case SYS_SETSOCKOPT: 2582 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2583 a[4]); 2584 break; 2585 case SYS_GETSOCKOPT: 2586 err = 2587 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2588 (int __user *)a[4]); 2589 break; 2590 case SYS_SENDMSG: 2591 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2592 a[2], true); 2593 break; 2594 case SYS_SENDMMSG: 2595 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2596 a[3], true); 2597 break; 2598 case SYS_RECVMSG: 2599 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2600 a[2], true); 2601 break; 2602 case SYS_RECVMMSG: 2603 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2604 a[3], (struct __kernel_timespec __user *)a[4]); 2605 break; 2606 case SYS_ACCEPT4: 2607 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2608 (int __user *)a[2], a[3]); 2609 break; 2610 default: 2611 err = -EINVAL; 2612 break; 2613 } 2614 return err; 2615 } 2616 2617 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2618 2619 /** 2620 * sock_register - add a socket protocol handler 2621 * @ops: description of protocol 2622 * 2623 * This function is called by a protocol handler that wants to 2624 * advertise its address family, and have it linked into the 2625 * socket interface. The value ops->family corresponds to the 2626 * socket system call protocol family. 2627 */ 2628 int sock_register(const struct net_proto_family *ops) 2629 { 2630 int err; 2631 2632 if (ops->family >= NPROTO) { 2633 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2634 return -ENOBUFS; 2635 } 2636 2637 spin_lock(&net_family_lock); 2638 if (rcu_dereference_protected(net_families[ops->family], 2639 lockdep_is_held(&net_family_lock))) 2640 err = -EEXIST; 2641 else { 2642 rcu_assign_pointer(net_families[ops->family], ops); 2643 err = 0; 2644 } 2645 spin_unlock(&net_family_lock); 2646 2647 pr_info("NET: Registered protocol family %d\n", ops->family); 2648 return err; 2649 } 2650 EXPORT_SYMBOL(sock_register); 2651 2652 /** 2653 * sock_unregister - remove a protocol handler 2654 * @family: protocol family to remove 2655 * 2656 * This function is called by a protocol handler that wants to 2657 * remove its address family, and have it unlinked from the 2658 * new socket creation. 2659 * 2660 * If protocol handler is a module, then it can use module reference 2661 * counts to protect against new references. If protocol handler is not 2662 * a module then it needs to provide its own protection in 2663 * the ops->create routine. 2664 */ 2665 void sock_unregister(int family) 2666 { 2667 BUG_ON(family < 0 || family >= NPROTO); 2668 2669 spin_lock(&net_family_lock); 2670 RCU_INIT_POINTER(net_families[family], NULL); 2671 spin_unlock(&net_family_lock); 2672 2673 synchronize_rcu(); 2674 2675 pr_info("NET: Unregistered protocol family %d\n", family); 2676 } 2677 EXPORT_SYMBOL(sock_unregister); 2678 2679 bool sock_is_registered(int family) 2680 { 2681 return family < NPROTO && rcu_access_pointer(net_families[family]); 2682 } 2683 2684 static int __init sock_init(void) 2685 { 2686 int err; 2687 /* 2688 * Initialize the network sysctl infrastructure. 2689 */ 2690 err = net_sysctl_init(); 2691 if (err) 2692 goto out; 2693 2694 /* 2695 * Initialize skbuff SLAB cache 2696 */ 2697 skb_init(); 2698 2699 /* 2700 * Initialize the protocols module. 2701 */ 2702 2703 init_inodecache(); 2704 2705 err = register_filesystem(&sock_fs_type); 2706 if (err) 2707 goto out_fs; 2708 sock_mnt = kern_mount(&sock_fs_type); 2709 if (IS_ERR(sock_mnt)) { 2710 err = PTR_ERR(sock_mnt); 2711 goto out_mount; 2712 } 2713 2714 /* The real protocol initialization is performed in later initcalls. 2715 */ 2716 2717 #ifdef CONFIG_NETFILTER 2718 err = netfilter_init(); 2719 if (err) 2720 goto out; 2721 #endif 2722 2723 ptp_classifier_init(); 2724 2725 out: 2726 return err; 2727 2728 out_mount: 2729 unregister_filesystem(&sock_fs_type); 2730 out_fs: 2731 goto out; 2732 } 2733 2734 core_initcall(sock_init); /* early initcall */ 2735 2736 #ifdef CONFIG_PROC_FS 2737 void socket_seq_show(struct seq_file *seq) 2738 { 2739 seq_printf(seq, "sockets: used %d\n", 2740 sock_inuse_get(seq->private)); 2741 } 2742 #endif /* CONFIG_PROC_FS */ 2743 2744 #ifdef CONFIG_COMPAT 2745 static int do_siocgstamp(struct net *net, struct socket *sock, 2746 unsigned int cmd, void __user *up) 2747 { 2748 mm_segment_t old_fs = get_fs(); 2749 struct timeval ktv; 2750 int err; 2751 2752 set_fs(KERNEL_DS); 2753 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv, 2754 sizeof(struct compat_ifreq)); 2755 set_fs(old_fs); 2756 if (!err) 2757 err = compat_put_timeval(&ktv, up); 2758 2759 return err; 2760 } 2761 2762 static int do_siocgstampns(struct net *net, struct socket *sock, 2763 unsigned int cmd, void __user *up) 2764 { 2765 mm_segment_t old_fs = get_fs(); 2766 struct timespec kts; 2767 int err; 2768 2769 set_fs(KERNEL_DS); 2770 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts, 2771 sizeof(struct compat_ifreq)); 2772 set_fs(old_fs); 2773 if (!err) 2774 err = compat_put_timespec(&kts, up); 2775 2776 return err; 2777 } 2778 2779 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2780 { 2781 struct compat_ifconf ifc32; 2782 struct ifconf ifc; 2783 int err; 2784 2785 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2786 return -EFAULT; 2787 2788 ifc.ifc_len = ifc32.ifc_len; 2789 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2790 2791 rtnl_lock(); 2792 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2793 rtnl_unlock(); 2794 if (err) 2795 return err; 2796 2797 ifc32.ifc_len = ifc.ifc_len; 2798 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2799 return -EFAULT; 2800 2801 return 0; 2802 } 2803 2804 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2805 { 2806 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2807 bool convert_in = false, convert_out = false; 2808 size_t buf_size = 0; 2809 struct ethtool_rxnfc __user *rxnfc = NULL; 2810 struct ifreq ifr; 2811 u32 rule_cnt = 0, actual_rule_cnt; 2812 u32 ethcmd; 2813 u32 data; 2814 int ret; 2815 2816 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2817 return -EFAULT; 2818 2819 compat_rxnfc = compat_ptr(data); 2820 2821 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2822 return -EFAULT; 2823 2824 /* Most ethtool structures are defined without padding. 2825 * Unfortunately struct ethtool_rxnfc is an exception. 2826 */ 2827 switch (ethcmd) { 2828 default: 2829 break; 2830 case ETHTOOL_GRXCLSRLALL: 2831 /* Buffer size is variable */ 2832 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2833 return -EFAULT; 2834 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2835 return -ENOMEM; 2836 buf_size += rule_cnt * sizeof(u32); 2837 /* fall through */ 2838 case ETHTOOL_GRXRINGS: 2839 case ETHTOOL_GRXCLSRLCNT: 2840 case ETHTOOL_GRXCLSRULE: 2841 case ETHTOOL_SRXCLSRLINS: 2842 convert_out = true; 2843 /* fall through */ 2844 case ETHTOOL_SRXCLSRLDEL: 2845 buf_size += sizeof(struct ethtool_rxnfc); 2846 convert_in = true; 2847 rxnfc = compat_alloc_user_space(buf_size); 2848 break; 2849 } 2850 2851 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2852 return -EFAULT; 2853 2854 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2855 2856 if (convert_in) { 2857 /* We expect there to be holes between fs.m_ext and 2858 * fs.ring_cookie and at the end of fs, but nowhere else. 2859 */ 2860 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2861 sizeof(compat_rxnfc->fs.m_ext) != 2862 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2863 sizeof(rxnfc->fs.m_ext)); 2864 BUILD_BUG_ON( 2865 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2866 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2867 offsetof(struct ethtool_rxnfc, fs.location) - 2868 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2869 2870 if (copy_in_user(rxnfc, compat_rxnfc, 2871 (void __user *)(&rxnfc->fs.m_ext + 1) - 2872 (void __user *)rxnfc) || 2873 copy_in_user(&rxnfc->fs.ring_cookie, 2874 &compat_rxnfc->fs.ring_cookie, 2875 (void __user *)(&rxnfc->fs.location + 1) - 2876 (void __user *)&rxnfc->fs.ring_cookie)) 2877 return -EFAULT; 2878 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2879 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 2880 return -EFAULT; 2881 } else if (copy_in_user(&rxnfc->rule_cnt, 2882 &compat_rxnfc->rule_cnt, 2883 sizeof(rxnfc->rule_cnt))) 2884 return -EFAULT; 2885 } 2886 2887 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2888 if (ret) 2889 return ret; 2890 2891 if (convert_out) { 2892 if (copy_in_user(compat_rxnfc, rxnfc, 2893 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2894 (const void __user *)rxnfc) || 2895 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2896 &rxnfc->fs.ring_cookie, 2897 (const void __user *)(&rxnfc->fs.location + 1) - 2898 (const void __user *)&rxnfc->fs.ring_cookie) || 2899 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2900 sizeof(rxnfc->rule_cnt))) 2901 return -EFAULT; 2902 2903 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2904 /* As an optimisation, we only copy the actual 2905 * number of rules that the underlying 2906 * function returned. Since Mallory might 2907 * change the rule count in user memory, we 2908 * check that it is less than the rule count 2909 * originally given (as the user buffer size), 2910 * which has been range-checked. 2911 */ 2912 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2913 return -EFAULT; 2914 if (actual_rule_cnt < rule_cnt) 2915 rule_cnt = actual_rule_cnt; 2916 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2917 &rxnfc->rule_locs[0], 2918 rule_cnt * sizeof(u32))) 2919 return -EFAULT; 2920 } 2921 } 2922 2923 return 0; 2924 } 2925 2926 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2927 { 2928 compat_uptr_t uptr32; 2929 struct ifreq ifr; 2930 void __user *saved; 2931 int err; 2932 2933 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2934 return -EFAULT; 2935 2936 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2937 return -EFAULT; 2938 2939 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2940 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2941 2942 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2943 if (!err) { 2944 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2945 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2946 err = -EFAULT; 2947 } 2948 return err; 2949 } 2950 2951 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2952 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2953 struct compat_ifreq __user *u_ifreq32) 2954 { 2955 struct ifreq ifreq; 2956 u32 data32; 2957 2958 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2959 return -EFAULT; 2960 if (get_user(data32, &u_ifreq32->ifr_data)) 2961 return -EFAULT; 2962 ifreq.ifr_data = compat_ptr(data32); 2963 2964 return dev_ioctl(net, cmd, &ifreq, NULL); 2965 } 2966 2967 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2968 struct compat_ifreq __user *uifr32) 2969 { 2970 struct ifreq ifr; 2971 struct compat_ifmap __user *uifmap32; 2972 int err; 2973 2974 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2975 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2976 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2977 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2978 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2979 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2980 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2981 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2982 if (err) 2983 return -EFAULT; 2984 2985 err = dev_ioctl(net, cmd, &ifr, NULL); 2986 2987 if (cmd == SIOCGIFMAP && !err) { 2988 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2989 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2990 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2991 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2992 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2993 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2994 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2995 if (err) 2996 err = -EFAULT; 2997 } 2998 return err; 2999 } 3000 3001 struct rtentry32 { 3002 u32 rt_pad1; 3003 struct sockaddr rt_dst; /* target address */ 3004 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3005 struct sockaddr rt_genmask; /* target network mask (IP) */ 3006 unsigned short rt_flags; 3007 short rt_pad2; 3008 u32 rt_pad3; 3009 unsigned char rt_tos; 3010 unsigned char rt_class; 3011 short rt_pad4; 3012 short rt_metric; /* +1 for binary compatibility! */ 3013 /* char * */ u32 rt_dev; /* forcing the device at add */ 3014 u32 rt_mtu; /* per route MTU/Window */ 3015 u32 rt_window; /* Window clamping */ 3016 unsigned short rt_irtt; /* Initial RTT */ 3017 }; 3018 3019 struct in6_rtmsg32 { 3020 struct in6_addr rtmsg_dst; 3021 struct in6_addr rtmsg_src; 3022 struct in6_addr rtmsg_gateway; 3023 u32 rtmsg_type; 3024 u16 rtmsg_dst_len; 3025 u16 rtmsg_src_len; 3026 u32 rtmsg_metric; 3027 u32 rtmsg_info; 3028 u32 rtmsg_flags; 3029 s32 rtmsg_ifindex; 3030 }; 3031 3032 static int routing_ioctl(struct net *net, struct socket *sock, 3033 unsigned int cmd, void __user *argp) 3034 { 3035 int ret; 3036 void *r = NULL; 3037 struct in6_rtmsg r6; 3038 struct rtentry r4; 3039 char devname[16]; 3040 u32 rtdev; 3041 mm_segment_t old_fs = get_fs(); 3042 3043 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3044 struct in6_rtmsg32 __user *ur6 = argp; 3045 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3046 3 * sizeof(struct in6_addr)); 3047 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3048 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3049 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3050 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3051 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3052 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3053 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3054 3055 r = (void *) &r6; 3056 } else { /* ipv4 */ 3057 struct rtentry32 __user *ur4 = argp; 3058 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3059 3 * sizeof(struct sockaddr)); 3060 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3061 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3062 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3063 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3064 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3065 ret |= get_user(rtdev, &(ur4->rt_dev)); 3066 if (rtdev) { 3067 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3068 r4.rt_dev = (char __user __force *)devname; 3069 devname[15] = 0; 3070 } else 3071 r4.rt_dev = NULL; 3072 3073 r = (void *) &r4; 3074 } 3075 3076 if (ret) { 3077 ret = -EFAULT; 3078 goto out; 3079 } 3080 3081 set_fs(KERNEL_DS); 3082 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r, 3083 sizeof(struct compat_ifreq)); 3084 set_fs(old_fs); 3085 3086 out: 3087 return ret; 3088 } 3089 3090 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3091 * for some operations; this forces use of the newer bridge-utils that 3092 * use compatible ioctls 3093 */ 3094 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3095 { 3096 compat_ulong_t tmp; 3097 3098 if (get_user(tmp, argp)) 3099 return -EFAULT; 3100 if (tmp == BRCTL_GET_VERSION) 3101 return BRCTL_VERSION + 1; 3102 return -EINVAL; 3103 } 3104 3105 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3106 unsigned int cmd, unsigned long arg) 3107 { 3108 void __user *argp = compat_ptr(arg); 3109 struct sock *sk = sock->sk; 3110 struct net *net = sock_net(sk); 3111 3112 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3113 return compat_ifr_data_ioctl(net, cmd, argp); 3114 3115 switch (cmd) { 3116 case SIOCSIFBR: 3117 case SIOCGIFBR: 3118 return old_bridge_ioctl(argp); 3119 case SIOCGIFCONF: 3120 return compat_dev_ifconf(net, argp); 3121 case SIOCETHTOOL: 3122 return ethtool_ioctl(net, argp); 3123 case SIOCWANDEV: 3124 return compat_siocwandev(net, argp); 3125 case SIOCGIFMAP: 3126 case SIOCSIFMAP: 3127 return compat_sioc_ifmap(net, cmd, argp); 3128 case SIOCADDRT: 3129 case SIOCDELRT: 3130 return routing_ioctl(net, sock, cmd, argp); 3131 case SIOCGSTAMP: 3132 return do_siocgstamp(net, sock, cmd, argp); 3133 case SIOCGSTAMPNS: 3134 return do_siocgstampns(net, sock, cmd, argp); 3135 case SIOCBONDSLAVEINFOQUERY: 3136 case SIOCBONDINFOQUERY: 3137 case SIOCSHWTSTAMP: 3138 case SIOCGHWTSTAMP: 3139 return compat_ifr_data_ioctl(net, cmd, argp); 3140 3141 case FIOSETOWN: 3142 case SIOCSPGRP: 3143 case FIOGETOWN: 3144 case SIOCGPGRP: 3145 case SIOCBRADDBR: 3146 case SIOCBRDELBR: 3147 case SIOCGIFVLAN: 3148 case SIOCSIFVLAN: 3149 case SIOCADDDLCI: 3150 case SIOCDELDLCI: 3151 case SIOCGSKNS: 3152 return sock_ioctl(file, cmd, arg); 3153 3154 case SIOCGIFFLAGS: 3155 case SIOCSIFFLAGS: 3156 case SIOCGIFMETRIC: 3157 case SIOCSIFMETRIC: 3158 case SIOCGIFMTU: 3159 case SIOCSIFMTU: 3160 case SIOCGIFMEM: 3161 case SIOCSIFMEM: 3162 case SIOCGIFHWADDR: 3163 case SIOCSIFHWADDR: 3164 case SIOCADDMULTI: 3165 case SIOCDELMULTI: 3166 case SIOCGIFINDEX: 3167 case SIOCGIFADDR: 3168 case SIOCSIFADDR: 3169 case SIOCSIFHWBROADCAST: 3170 case SIOCDIFADDR: 3171 case SIOCGIFBRDADDR: 3172 case SIOCSIFBRDADDR: 3173 case SIOCGIFDSTADDR: 3174 case SIOCSIFDSTADDR: 3175 case SIOCGIFNETMASK: 3176 case SIOCSIFNETMASK: 3177 case SIOCSIFPFLAGS: 3178 case SIOCGIFPFLAGS: 3179 case SIOCGIFTXQLEN: 3180 case SIOCSIFTXQLEN: 3181 case SIOCBRADDIF: 3182 case SIOCBRDELIF: 3183 case SIOCSIFNAME: 3184 case SIOCGMIIPHY: 3185 case SIOCGMIIREG: 3186 case SIOCSMIIREG: 3187 case SIOCSARP: 3188 case SIOCGARP: 3189 case SIOCDARP: 3190 case SIOCATMARK: 3191 case SIOCBONDENSLAVE: 3192 case SIOCBONDRELEASE: 3193 case SIOCBONDSETHWADDR: 3194 case SIOCBONDCHANGEACTIVE: 3195 case SIOCGIFNAME: 3196 return sock_do_ioctl(net, sock, cmd, arg, 3197 sizeof(struct compat_ifreq)); 3198 } 3199 3200 return -ENOIOCTLCMD; 3201 } 3202 3203 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3204 unsigned long arg) 3205 { 3206 struct socket *sock = file->private_data; 3207 int ret = -ENOIOCTLCMD; 3208 struct sock *sk; 3209 struct net *net; 3210 3211 sk = sock->sk; 3212 net = sock_net(sk); 3213 3214 if (sock->ops->compat_ioctl) 3215 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3216 3217 if (ret == -ENOIOCTLCMD && 3218 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3219 ret = compat_wext_handle_ioctl(net, cmd, arg); 3220 3221 if (ret == -ENOIOCTLCMD) 3222 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3223 3224 return ret; 3225 } 3226 #endif 3227 3228 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3229 { 3230 return sock->ops->bind(sock, addr, addrlen); 3231 } 3232 EXPORT_SYMBOL(kernel_bind); 3233 3234 int kernel_listen(struct socket *sock, int backlog) 3235 { 3236 return sock->ops->listen(sock, backlog); 3237 } 3238 EXPORT_SYMBOL(kernel_listen); 3239 3240 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3241 { 3242 struct sock *sk = sock->sk; 3243 int err; 3244 3245 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3246 newsock); 3247 if (err < 0) 3248 goto done; 3249 3250 err = sock->ops->accept(sock, *newsock, flags, true); 3251 if (err < 0) { 3252 sock_release(*newsock); 3253 *newsock = NULL; 3254 goto done; 3255 } 3256 3257 (*newsock)->ops = sock->ops; 3258 __module_get((*newsock)->ops->owner); 3259 3260 done: 3261 return err; 3262 } 3263 EXPORT_SYMBOL(kernel_accept); 3264 3265 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3266 int flags) 3267 { 3268 return sock->ops->connect(sock, addr, addrlen, flags); 3269 } 3270 EXPORT_SYMBOL(kernel_connect); 3271 3272 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3273 { 3274 return sock->ops->getname(sock, addr, 0); 3275 } 3276 EXPORT_SYMBOL(kernel_getsockname); 3277 3278 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3279 { 3280 return sock->ops->getname(sock, addr, 1); 3281 } 3282 EXPORT_SYMBOL(kernel_getpeername); 3283 3284 int kernel_getsockopt(struct socket *sock, int level, int optname, 3285 char *optval, int *optlen) 3286 { 3287 mm_segment_t oldfs = get_fs(); 3288 char __user *uoptval; 3289 int __user *uoptlen; 3290 int err; 3291 3292 uoptval = (char __user __force *) optval; 3293 uoptlen = (int __user __force *) optlen; 3294 3295 set_fs(KERNEL_DS); 3296 if (level == SOL_SOCKET) 3297 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3298 else 3299 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3300 uoptlen); 3301 set_fs(oldfs); 3302 return err; 3303 } 3304 EXPORT_SYMBOL(kernel_getsockopt); 3305 3306 int kernel_setsockopt(struct socket *sock, int level, int optname, 3307 char *optval, unsigned int optlen) 3308 { 3309 mm_segment_t oldfs = get_fs(); 3310 char __user *uoptval; 3311 int err; 3312 3313 uoptval = (char __user __force *) optval; 3314 3315 set_fs(KERNEL_DS); 3316 if (level == SOL_SOCKET) 3317 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3318 else 3319 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3320 optlen); 3321 set_fs(oldfs); 3322 return err; 3323 } 3324 EXPORT_SYMBOL(kernel_setsockopt); 3325 3326 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3327 size_t size, int flags) 3328 { 3329 if (sock->ops->sendpage) 3330 return sock->ops->sendpage(sock, page, offset, size, flags); 3331 3332 return sock_no_sendpage(sock, page, offset, size, flags); 3333 } 3334 EXPORT_SYMBOL(kernel_sendpage); 3335 3336 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3337 size_t size, int flags) 3338 { 3339 struct socket *sock = sk->sk_socket; 3340 3341 if (sock->ops->sendpage_locked) 3342 return sock->ops->sendpage_locked(sk, page, offset, size, 3343 flags); 3344 3345 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3346 } 3347 EXPORT_SYMBOL(kernel_sendpage_locked); 3348 3349 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3350 { 3351 return sock->ops->shutdown(sock, how); 3352 } 3353 EXPORT_SYMBOL(kernel_sock_shutdown); 3354 3355 /* This routine returns the IP overhead imposed by a socket i.e. 3356 * the length of the underlying IP header, depending on whether 3357 * this is an IPv4 or IPv6 socket and the length from IP options turned 3358 * on at the socket. Assumes that the caller has a lock on the socket. 3359 */ 3360 u32 kernel_sock_ip_overhead(struct sock *sk) 3361 { 3362 struct inet_sock *inet; 3363 struct ip_options_rcu *opt; 3364 u32 overhead = 0; 3365 #if IS_ENABLED(CONFIG_IPV6) 3366 struct ipv6_pinfo *np; 3367 struct ipv6_txoptions *optv6 = NULL; 3368 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3369 3370 if (!sk) 3371 return overhead; 3372 3373 switch (sk->sk_family) { 3374 case AF_INET: 3375 inet = inet_sk(sk); 3376 overhead += sizeof(struct iphdr); 3377 opt = rcu_dereference_protected(inet->inet_opt, 3378 sock_owned_by_user(sk)); 3379 if (opt) 3380 overhead += opt->opt.optlen; 3381 return overhead; 3382 #if IS_ENABLED(CONFIG_IPV6) 3383 case AF_INET6: 3384 np = inet6_sk(sk); 3385 overhead += sizeof(struct ipv6hdr); 3386 if (np) 3387 optv6 = rcu_dereference_protected(np->opt, 3388 sock_owned_by_user(sk)); 3389 if (optv6) 3390 overhead += (optv6->opt_flen + optv6->opt_nflen); 3391 return overhead; 3392 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3393 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3394 return overhead; 3395 } 3396 } 3397 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3398