xref: /openbmc/linux/net/socket.c (revision 3932b9ca)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 			 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 			  unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122 
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 			      struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 			      unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 			     int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 				struct pipe_inode_info *pipe, size_t len,
136 				unsigned int flags);
137 
138 /*
139  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140  *	in the operation structures but are done directly via the socketcall() multiplexor.
141  */
142 
143 static const struct file_operations socket_file_ops = {
144 	.owner =	THIS_MODULE,
145 	.llseek =	no_llseek,
146 	.aio_read =	sock_aio_read,
147 	.aio_write =	sock_aio_write,
148 	.poll =		sock_poll,
149 	.unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 	.compat_ioctl = compat_sock_ioctl,
152 #endif
153 	.mmap =		sock_mmap,
154 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
155 	.release =	sock_close,
156 	.fasync =	sock_fasync,
157 	.sendpage =	sock_sendpage,
158 	.splice_write = generic_splice_sendpage,
159 	.splice_read =	sock_splice_read,
160 };
161 
162 /*
163  *	The protocol list. Each protocol is registered in here.
164  */
165 
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168 
169 /*
170  *	Statistics counters of the socket lists
171  */
172 
173 static DEFINE_PER_CPU(int, sockets_in_use);
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 	struct socket_wq *wq;
253 
254 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 	if (!ei)
256 		return NULL;
257 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 	if (!wq) {
259 		kmem_cache_free(sock_inode_cachep, ei);
260 		return NULL;
261 	}
262 	init_waitqueue_head(&wq->wait);
263 	wq->fasync_list = NULL;
264 	RCU_INIT_POINTER(ei->socket.wq, wq);
265 
266 	ei->socket.state = SS_UNCONNECTED;
267 	ei->socket.flags = 0;
268 	ei->socket.ops = NULL;
269 	ei->socket.sk = NULL;
270 	ei->socket.file = NULL;
271 
272 	return &ei->vfs_inode;
273 }
274 
275 static void sock_destroy_inode(struct inode *inode)
276 {
277 	struct socket_alloc *ei;
278 	struct socket_wq *wq;
279 
280 	ei = container_of(inode, struct socket_alloc, vfs_inode);
281 	wq = rcu_dereference_protected(ei->socket.wq, 1);
282 	kfree_rcu(wq, rcu);
283 	kmem_cache_free(sock_inode_cachep, ei);
284 }
285 
286 static void init_once(void *foo)
287 {
288 	struct socket_alloc *ei = (struct socket_alloc *)foo;
289 
290 	inode_init_once(&ei->vfs_inode);
291 }
292 
293 static int init_inodecache(void)
294 {
295 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 					      sizeof(struct socket_alloc),
297 					      0,
298 					      (SLAB_HWCACHE_ALIGN |
299 					       SLAB_RECLAIM_ACCOUNT |
300 					       SLAB_MEM_SPREAD),
301 					      init_once);
302 	if (sock_inode_cachep == NULL)
303 		return -ENOMEM;
304 	return 0;
305 }
306 
307 static const struct super_operations sockfs_ops = {
308 	.alloc_inode	= sock_alloc_inode,
309 	.destroy_inode	= sock_destroy_inode,
310 	.statfs		= simple_statfs,
311 };
312 
313 /*
314  * sockfs_dname() is called from d_path().
315  */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 				dentry->d_inode->i_ino);
320 }
321 
322 static const struct dentry_operations sockfs_dentry_operations = {
323 	.d_dname  = sockfs_dname,
324 };
325 
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 			 int flags, const char *dev_name, void *data)
328 {
329 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 		&sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332 
333 static struct vfsmount *sock_mnt __read_mostly;
334 
335 static struct file_system_type sock_fs_type = {
336 	.name =		"sockfs",
337 	.mount =	sockfs_mount,
338 	.kill_sb =	kill_anon_super,
339 };
340 
341 /*
342  *	Obtains the first available file descriptor and sets it up for use.
343  *
344  *	These functions create file structures and maps them to fd space
345  *	of the current process. On success it returns file descriptor
346  *	and file struct implicitly stored in sock->file.
347  *	Note that another thread may close file descriptor before we return
348  *	from this function. We use the fact that now we do not refer
349  *	to socket after mapping. If one day we will need it, this
350  *	function will increment ref. count on file by 1.
351  *
352  *	In any case returned fd MAY BE not valid!
353  *	This race condition is unavoidable
354  *	with shared fd spaces, we cannot solve it inside kernel,
355  *	but we take care of internal coherence yet.
356  */
357 
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360 	struct qstr name = { .name = "" };
361 	struct path path;
362 	struct file *file;
363 
364 	if (dname) {
365 		name.name = dname;
366 		name.len = strlen(name.name);
367 	} else if (sock->sk) {
368 		name.name = sock->sk->sk_prot_creator->name;
369 		name.len = strlen(name.name);
370 	}
371 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 	if (unlikely(!path.dentry))
373 		return ERR_PTR(-ENOMEM);
374 	path.mnt = mntget(sock_mnt);
375 
376 	d_instantiate(path.dentry, SOCK_INODE(sock));
377 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
378 
379 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 		  &socket_file_ops);
381 	if (unlikely(IS_ERR(file))) {
382 		/* drop dentry, keep inode */
383 		ihold(path.dentry->d_inode);
384 		path_put(&path);
385 		return file;
386 	}
387 
388 	sock->file = file;
389 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 	file->private_data = sock;
391 	return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394 
395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397 	struct file *newfile;
398 	int fd = get_unused_fd_flags(flags);
399 	if (unlikely(fd < 0))
400 		return fd;
401 
402 	newfile = sock_alloc_file(sock, flags, NULL);
403 	if (likely(!IS_ERR(newfile))) {
404 		fd_install(fd, newfile);
405 		return fd;
406 	}
407 
408 	put_unused_fd(fd);
409 	return PTR_ERR(newfile);
410 }
411 
412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414 	if (file->f_op == &socket_file_ops)
415 		return file->private_data;	/* set in sock_map_fd */
416 
417 	*err = -ENOTSOCK;
418 	return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421 
422 /**
423  *	sockfd_lookup - Go from a file number to its socket slot
424  *	@fd: file handle
425  *	@err: pointer to an error code return
426  *
427  *	The file handle passed in is locked and the socket it is bound
428  *	too is returned. If an error occurs the err pointer is overwritten
429  *	with a negative errno code and NULL is returned. The function checks
430  *	for both invalid handles and passing a handle which is not a socket.
431  *
432  *	On a success the socket object pointer is returned.
433  */
434 
435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437 	struct file *file;
438 	struct socket *sock;
439 
440 	file = fget(fd);
441 	if (!file) {
442 		*err = -EBADF;
443 		return NULL;
444 	}
445 
446 	sock = sock_from_file(file, err);
447 	if (!sock)
448 		fput(file);
449 	return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452 
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 	struct fd f = fdget(fd);
456 	struct socket *sock;
457 
458 	*err = -EBADF;
459 	if (f.file) {
460 		sock = sock_from_file(f.file, err);
461 		if (likely(sock)) {
462 			*fput_needed = f.flags;
463 			return sock;
464 		}
465 		fdput(f);
466 	}
467 	return NULL;
468 }
469 
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 			       const char *name, void *value, size_t size)
475 {
476 	const char *proto_name;
477 	size_t proto_size;
478 	int error;
479 
480 	error = -ENODATA;
481 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 		proto_name = dentry->d_name.name;
483 		proto_size = strlen(proto_name);
484 
485 		if (value) {
486 			error = -ERANGE;
487 			if (proto_size + 1 > size)
488 				goto out;
489 
490 			strncpy(value, proto_name, proto_size + 1);
491 		}
492 		error = proto_size + 1;
493 	}
494 
495 out:
496 	return error;
497 }
498 
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 				size_t size)
501 {
502 	ssize_t len;
503 	ssize_t used = 0;
504 
505 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 	if (len < 0)
507 		return len;
508 	used += len;
509 	if (buffer) {
510 		if (size < used)
511 			return -ERANGE;
512 		buffer += len;
513 	}
514 
515 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 	used += len;
517 	if (buffer) {
518 		if (size < used)
519 			return -ERANGE;
520 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 		buffer += len;
522 	}
523 
524 	return used;
525 }
526 
527 static const struct inode_operations sockfs_inode_ops = {
528 	.getxattr = sockfs_getxattr,
529 	.listxattr = sockfs_listxattr,
530 };
531 
532 /**
533  *	sock_alloc	-	allocate a socket
534  *
535  *	Allocate a new inode and socket object. The two are bound together
536  *	and initialised. The socket is then returned. If we are out of inodes
537  *	NULL is returned.
538  */
539 
540 static struct socket *sock_alloc(void)
541 {
542 	struct inode *inode;
543 	struct socket *sock;
544 
545 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 	if (!inode)
547 		return NULL;
548 
549 	sock = SOCKET_I(inode);
550 
551 	kmemcheck_annotate_bitfield(sock, type);
552 	inode->i_ino = get_next_ino();
553 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 	inode->i_uid = current_fsuid();
555 	inode->i_gid = current_fsgid();
556 	inode->i_op = &sockfs_inode_ops;
557 
558 	this_cpu_add(sockets_in_use, 1);
559 	return sock;
560 }
561 
562 /*
563  *	In theory you can't get an open on this inode, but /proc provides
564  *	a back door. Remember to keep it shut otherwise you'll let the
565  *	creepy crawlies in.
566  */
567 
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569 {
570 	return -ENXIO;
571 }
572 
573 const struct file_operations bad_sock_fops = {
574 	.owner = THIS_MODULE,
575 	.open = sock_no_open,
576 	.llseek = noop_llseek,
577 };
578 
579 /**
580  *	sock_release	-	close a socket
581  *	@sock: socket to close
582  *
583  *	The socket is released from the protocol stack if it has a release
584  *	callback, and the inode is then released if the socket is bound to
585  *	an inode not a file.
586  */
587 
588 void sock_release(struct socket *sock)
589 {
590 	if (sock->ops) {
591 		struct module *owner = sock->ops->owner;
592 
593 		sock->ops->release(sock);
594 		sock->ops = NULL;
595 		module_put(owner);
596 	}
597 
598 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 		pr_err("%s: fasync list not empty!\n", __func__);
600 
601 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 		return;
603 
604 	this_cpu_sub(sockets_in_use, 1);
605 	if (!sock->file) {
606 		iput(SOCK_INODE(sock));
607 		return;
608 	}
609 	sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612 
613 void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
614 {
615 	u8 flags = *tx_flags;
616 
617 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 		flags |= SKBTX_HW_TSTAMP;
619 
620 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 		flags |= SKBTX_SW_TSTAMP;
622 
623 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 		flags |= SKBTX_SCHED_TSTAMP;
625 
626 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627 		flags |= SKBTX_ACK_TSTAMP;
628 
629 	if (sock_flag(sk, SOCK_WIFI_STATUS))
630 		flags |= SKBTX_WIFI_STATUS;
631 
632 	*tx_flags = flags;
633 }
634 EXPORT_SYMBOL(sock_tx_timestamp);
635 
636 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
637 				       struct msghdr *msg, size_t size)
638 {
639 	struct sock_iocb *si = kiocb_to_siocb(iocb);
640 
641 	si->sock = sock;
642 	si->scm = NULL;
643 	si->msg = msg;
644 	si->size = size;
645 
646 	return sock->ops->sendmsg(iocb, sock, msg, size);
647 }
648 
649 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
650 				 struct msghdr *msg, size_t size)
651 {
652 	int err = security_socket_sendmsg(sock, msg, size);
653 
654 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
655 }
656 
657 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
658 {
659 	struct kiocb iocb;
660 	struct sock_iocb siocb;
661 	int ret;
662 
663 	init_sync_kiocb(&iocb, NULL);
664 	iocb.private = &siocb;
665 	ret = __sock_sendmsg(&iocb, sock, msg, size);
666 	if (-EIOCBQUEUED == ret)
667 		ret = wait_on_sync_kiocb(&iocb);
668 	return ret;
669 }
670 EXPORT_SYMBOL(sock_sendmsg);
671 
672 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
673 {
674 	struct kiocb iocb;
675 	struct sock_iocb siocb;
676 	int ret;
677 
678 	init_sync_kiocb(&iocb, NULL);
679 	iocb.private = &siocb;
680 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
681 	if (-EIOCBQUEUED == ret)
682 		ret = wait_on_sync_kiocb(&iocb);
683 	return ret;
684 }
685 
686 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
687 		   struct kvec *vec, size_t num, size_t size)
688 {
689 	mm_segment_t oldfs = get_fs();
690 	int result;
691 
692 	set_fs(KERNEL_DS);
693 	/*
694 	 * the following is safe, since for compiler definitions of kvec and
695 	 * iovec are identical, yielding the same in-core layout and alignment
696 	 */
697 	msg->msg_iov = (struct iovec *)vec;
698 	msg->msg_iovlen = num;
699 	result = sock_sendmsg(sock, msg, size);
700 	set_fs(oldfs);
701 	return result;
702 }
703 EXPORT_SYMBOL(kernel_sendmsg);
704 
705 /*
706  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
707  */
708 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
709 	struct sk_buff *skb)
710 {
711 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
712 	struct scm_timestamping tss;
713 	int empty = 1;
714 	struct skb_shared_hwtstamps *shhwtstamps =
715 		skb_hwtstamps(skb);
716 
717 	/* Race occurred between timestamp enabling and packet
718 	   receiving.  Fill in the current time for now. */
719 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
720 		__net_timestamp(skb);
721 
722 	if (need_software_tstamp) {
723 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
724 			struct timeval tv;
725 			skb_get_timestamp(skb, &tv);
726 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
727 				 sizeof(tv), &tv);
728 		} else {
729 			struct timespec ts;
730 			skb_get_timestampns(skb, &ts);
731 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
732 				 sizeof(ts), &ts);
733 		}
734 	}
735 
736 	memset(&tss, 0, sizeof(tss));
737 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
738 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
739 		empty = 0;
740 	if (shhwtstamps &&
741 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
742 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
743 		empty = 0;
744 	if (!empty)
745 		put_cmsg(msg, SOL_SOCKET,
746 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
747 }
748 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
749 
750 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
751 	struct sk_buff *skb)
752 {
753 	int ack;
754 
755 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
756 		return;
757 	if (!skb->wifi_acked_valid)
758 		return;
759 
760 	ack = skb->wifi_acked;
761 
762 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
763 }
764 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
765 
766 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
767 				   struct sk_buff *skb)
768 {
769 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
770 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
771 			sizeof(__u32), &skb->dropcount);
772 }
773 
774 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
775 	struct sk_buff *skb)
776 {
777 	sock_recv_timestamp(msg, sk, skb);
778 	sock_recv_drops(msg, sk, skb);
779 }
780 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
781 
782 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
783 				       struct msghdr *msg, size_t size, int flags)
784 {
785 	struct sock_iocb *si = kiocb_to_siocb(iocb);
786 
787 	si->sock = sock;
788 	si->scm = NULL;
789 	si->msg = msg;
790 	si->size = size;
791 	si->flags = flags;
792 
793 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
794 }
795 
796 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
797 				 struct msghdr *msg, size_t size, int flags)
798 {
799 	int err = security_socket_recvmsg(sock, msg, size, flags);
800 
801 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
802 }
803 
804 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
805 		 size_t size, int flags)
806 {
807 	struct kiocb iocb;
808 	struct sock_iocb siocb;
809 	int ret;
810 
811 	init_sync_kiocb(&iocb, NULL);
812 	iocb.private = &siocb;
813 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
814 	if (-EIOCBQUEUED == ret)
815 		ret = wait_on_sync_kiocb(&iocb);
816 	return ret;
817 }
818 EXPORT_SYMBOL(sock_recvmsg);
819 
820 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
821 			      size_t size, int flags)
822 {
823 	struct kiocb iocb;
824 	struct sock_iocb siocb;
825 	int ret;
826 
827 	init_sync_kiocb(&iocb, NULL);
828 	iocb.private = &siocb;
829 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
830 	if (-EIOCBQUEUED == ret)
831 		ret = wait_on_sync_kiocb(&iocb);
832 	return ret;
833 }
834 
835 /**
836  * kernel_recvmsg - Receive a message from a socket (kernel space)
837  * @sock:       The socket to receive the message from
838  * @msg:        Received message
839  * @vec:        Input s/g array for message data
840  * @num:        Size of input s/g array
841  * @size:       Number of bytes to read
842  * @flags:      Message flags (MSG_DONTWAIT, etc...)
843  *
844  * On return the msg structure contains the scatter/gather array passed in the
845  * vec argument. The array is modified so that it consists of the unfilled
846  * portion of the original array.
847  *
848  * The returned value is the total number of bytes received, or an error.
849  */
850 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
851 		   struct kvec *vec, size_t num, size_t size, int flags)
852 {
853 	mm_segment_t oldfs = get_fs();
854 	int result;
855 
856 	set_fs(KERNEL_DS);
857 	/*
858 	 * the following is safe, since for compiler definitions of kvec and
859 	 * iovec are identical, yielding the same in-core layout and alignment
860 	 */
861 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
862 	result = sock_recvmsg(sock, msg, size, flags);
863 	set_fs(oldfs);
864 	return result;
865 }
866 EXPORT_SYMBOL(kernel_recvmsg);
867 
868 static ssize_t sock_sendpage(struct file *file, struct page *page,
869 			     int offset, size_t size, loff_t *ppos, int more)
870 {
871 	struct socket *sock;
872 	int flags;
873 
874 	sock = file->private_data;
875 
876 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
877 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
878 	flags |= more;
879 
880 	return kernel_sendpage(sock, page, offset, size, flags);
881 }
882 
883 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
884 				struct pipe_inode_info *pipe, size_t len,
885 				unsigned int flags)
886 {
887 	struct socket *sock = file->private_data;
888 
889 	if (unlikely(!sock->ops->splice_read))
890 		return -EINVAL;
891 
892 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
893 }
894 
895 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
896 					 struct sock_iocb *siocb)
897 {
898 	if (!is_sync_kiocb(iocb))
899 		BUG();
900 
901 	siocb->kiocb = iocb;
902 	iocb->private = siocb;
903 	return siocb;
904 }
905 
906 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
907 		struct file *file, const struct iovec *iov,
908 		unsigned long nr_segs)
909 {
910 	struct socket *sock = file->private_data;
911 	size_t size = 0;
912 	int i;
913 
914 	for (i = 0; i < nr_segs; i++)
915 		size += iov[i].iov_len;
916 
917 	msg->msg_name = NULL;
918 	msg->msg_namelen = 0;
919 	msg->msg_control = NULL;
920 	msg->msg_controllen = 0;
921 	msg->msg_iov = (struct iovec *)iov;
922 	msg->msg_iovlen = nr_segs;
923 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
924 
925 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
926 }
927 
928 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
929 				unsigned long nr_segs, loff_t pos)
930 {
931 	struct sock_iocb siocb, *x;
932 
933 	if (pos != 0)
934 		return -ESPIPE;
935 
936 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
937 		return 0;
938 
939 
940 	x = alloc_sock_iocb(iocb, &siocb);
941 	if (!x)
942 		return -ENOMEM;
943 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
944 }
945 
946 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
947 			struct file *file, const struct iovec *iov,
948 			unsigned long nr_segs)
949 {
950 	struct socket *sock = file->private_data;
951 	size_t size = 0;
952 	int i;
953 
954 	for (i = 0; i < nr_segs; i++)
955 		size += iov[i].iov_len;
956 
957 	msg->msg_name = NULL;
958 	msg->msg_namelen = 0;
959 	msg->msg_control = NULL;
960 	msg->msg_controllen = 0;
961 	msg->msg_iov = (struct iovec *)iov;
962 	msg->msg_iovlen = nr_segs;
963 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
964 	if (sock->type == SOCK_SEQPACKET)
965 		msg->msg_flags |= MSG_EOR;
966 
967 	return __sock_sendmsg(iocb, sock, msg, size);
968 }
969 
970 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
971 			  unsigned long nr_segs, loff_t pos)
972 {
973 	struct sock_iocb siocb, *x;
974 
975 	if (pos != 0)
976 		return -ESPIPE;
977 
978 	x = alloc_sock_iocb(iocb, &siocb);
979 	if (!x)
980 		return -ENOMEM;
981 
982 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
983 }
984 
985 /*
986  * Atomic setting of ioctl hooks to avoid race
987  * with module unload.
988  */
989 
990 static DEFINE_MUTEX(br_ioctl_mutex);
991 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
992 
993 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
994 {
995 	mutex_lock(&br_ioctl_mutex);
996 	br_ioctl_hook = hook;
997 	mutex_unlock(&br_ioctl_mutex);
998 }
999 EXPORT_SYMBOL(brioctl_set);
1000 
1001 static DEFINE_MUTEX(vlan_ioctl_mutex);
1002 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1003 
1004 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1005 {
1006 	mutex_lock(&vlan_ioctl_mutex);
1007 	vlan_ioctl_hook = hook;
1008 	mutex_unlock(&vlan_ioctl_mutex);
1009 }
1010 EXPORT_SYMBOL(vlan_ioctl_set);
1011 
1012 static DEFINE_MUTEX(dlci_ioctl_mutex);
1013 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1014 
1015 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1016 {
1017 	mutex_lock(&dlci_ioctl_mutex);
1018 	dlci_ioctl_hook = hook;
1019 	mutex_unlock(&dlci_ioctl_mutex);
1020 }
1021 EXPORT_SYMBOL(dlci_ioctl_set);
1022 
1023 static long sock_do_ioctl(struct net *net, struct socket *sock,
1024 				 unsigned int cmd, unsigned long arg)
1025 {
1026 	int err;
1027 	void __user *argp = (void __user *)arg;
1028 
1029 	err = sock->ops->ioctl(sock, cmd, arg);
1030 
1031 	/*
1032 	 * If this ioctl is unknown try to hand it down
1033 	 * to the NIC driver.
1034 	 */
1035 	if (err == -ENOIOCTLCMD)
1036 		err = dev_ioctl(net, cmd, argp);
1037 
1038 	return err;
1039 }
1040 
1041 /*
1042  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1043  *	what to do with it - that's up to the protocol still.
1044  */
1045 
1046 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1047 {
1048 	struct socket *sock;
1049 	struct sock *sk;
1050 	void __user *argp = (void __user *)arg;
1051 	int pid, err;
1052 	struct net *net;
1053 
1054 	sock = file->private_data;
1055 	sk = sock->sk;
1056 	net = sock_net(sk);
1057 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1058 		err = dev_ioctl(net, cmd, argp);
1059 	} else
1060 #ifdef CONFIG_WEXT_CORE
1061 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1062 		err = dev_ioctl(net, cmd, argp);
1063 	} else
1064 #endif
1065 		switch (cmd) {
1066 		case FIOSETOWN:
1067 		case SIOCSPGRP:
1068 			err = -EFAULT;
1069 			if (get_user(pid, (int __user *)argp))
1070 				break;
1071 			err = f_setown(sock->file, pid, 1);
1072 			break;
1073 		case FIOGETOWN:
1074 		case SIOCGPGRP:
1075 			err = put_user(f_getown(sock->file),
1076 				       (int __user *)argp);
1077 			break;
1078 		case SIOCGIFBR:
1079 		case SIOCSIFBR:
1080 		case SIOCBRADDBR:
1081 		case SIOCBRDELBR:
1082 			err = -ENOPKG;
1083 			if (!br_ioctl_hook)
1084 				request_module("bridge");
1085 
1086 			mutex_lock(&br_ioctl_mutex);
1087 			if (br_ioctl_hook)
1088 				err = br_ioctl_hook(net, cmd, argp);
1089 			mutex_unlock(&br_ioctl_mutex);
1090 			break;
1091 		case SIOCGIFVLAN:
1092 		case SIOCSIFVLAN:
1093 			err = -ENOPKG;
1094 			if (!vlan_ioctl_hook)
1095 				request_module("8021q");
1096 
1097 			mutex_lock(&vlan_ioctl_mutex);
1098 			if (vlan_ioctl_hook)
1099 				err = vlan_ioctl_hook(net, argp);
1100 			mutex_unlock(&vlan_ioctl_mutex);
1101 			break;
1102 		case SIOCADDDLCI:
1103 		case SIOCDELDLCI:
1104 			err = -ENOPKG;
1105 			if (!dlci_ioctl_hook)
1106 				request_module("dlci");
1107 
1108 			mutex_lock(&dlci_ioctl_mutex);
1109 			if (dlci_ioctl_hook)
1110 				err = dlci_ioctl_hook(cmd, argp);
1111 			mutex_unlock(&dlci_ioctl_mutex);
1112 			break;
1113 		default:
1114 			err = sock_do_ioctl(net, sock, cmd, arg);
1115 			break;
1116 		}
1117 	return err;
1118 }
1119 
1120 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1121 {
1122 	int err;
1123 	struct socket *sock = NULL;
1124 
1125 	err = security_socket_create(family, type, protocol, 1);
1126 	if (err)
1127 		goto out;
1128 
1129 	sock = sock_alloc();
1130 	if (!sock) {
1131 		err = -ENOMEM;
1132 		goto out;
1133 	}
1134 
1135 	sock->type = type;
1136 	err = security_socket_post_create(sock, family, type, protocol, 1);
1137 	if (err)
1138 		goto out_release;
1139 
1140 out:
1141 	*res = sock;
1142 	return err;
1143 out_release:
1144 	sock_release(sock);
1145 	sock = NULL;
1146 	goto out;
1147 }
1148 EXPORT_SYMBOL(sock_create_lite);
1149 
1150 /* No kernel lock held - perfect */
1151 static unsigned int sock_poll(struct file *file, poll_table *wait)
1152 {
1153 	unsigned int busy_flag = 0;
1154 	struct socket *sock;
1155 
1156 	/*
1157 	 *      We can't return errors to poll, so it's either yes or no.
1158 	 */
1159 	sock = file->private_data;
1160 
1161 	if (sk_can_busy_loop(sock->sk)) {
1162 		/* this socket can poll_ll so tell the system call */
1163 		busy_flag = POLL_BUSY_LOOP;
1164 
1165 		/* once, only if requested by syscall */
1166 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1167 			sk_busy_loop(sock->sk, 1);
1168 	}
1169 
1170 	return busy_flag | sock->ops->poll(file, sock, wait);
1171 }
1172 
1173 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1174 {
1175 	struct socket *sock = file->private_data;
1176 
1177 	return sock->ops->mmap(file, sock, vma);
1178 }
1179 
1180 static int sock_close(struct inode *inode, struct file *filp)
1181 {
1182 	sock_release(SOCKET_I(inode));
1183 	return 0;
1184 }
1185 
1186 /*
1187  *	Update the socket async list
1188  *
1189  *	Fasync_list locking strategy.
1190  *
1191  *	1. fasync_list is modified only under process context socket lock
1192  *	   i.e. under semaphore.
1193  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1194  *	   or under socket lock
1195  */
1196 
1197 static int sock_fasync(int fd, struct file *filp, int on)
1198 {
1199 	struct socket *sock = filp->private_data;
1200 	struct sock *sk = sock->sk;
1201 	struct socket_wq *wq;
1202 
1203 	if (sk == NULL)
1204 		return -EINVAL;
1205 
1206 	lock_sock(sk);
1207 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1208 	fasync_helper(fd, filp, on, &wq->fasync_list);
1209 
1210 	if (!wq->fasync_list)
1211 		sock_reset_flag(sk, SOCK_FASYNC);
1212 	else
1213 		sock_set_flag(sk, SOCK_FASYNC);
1214 
1215 	release_sock(sk);
1216 	return 0;
1217 }
1218 
1219 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1220 
1221 int sock_wake_async(struct socket *sock, int how, int band)
1222 {
1223 	struct socket_wq *wq;
1224 
1225 	if (!sock)
1226 		return -1;
1227 	rcu_read_lock();
1228 	wq = rcu_dereference(sock->wq);
1229 	if (!wq || !wq->fasync_list) {
1230 		rcu_read_unlock();
1231 		return -1;
1232 	}
1233 	switch (how) {
1234 	case SOCK_WAKE_WAITD:
1235 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1236 			break;
1237 		goto call_kill;
1238 	case SOCK_WAKE_SPACE:
1239 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1240 			break;
1241 		/* fall through */
1242 	case SOCK_WAKE_IO:
1243 call_kill:
1244 		kill_fasync(&wq->fasync_list, SIGIO, band);
1245 		break;
1246 	case SOCK_WAKE_URG:
1247 		kill_fasync(&wq->fasync_list, SIGURG, band);
1248 	}
1249 	rcu_read_unlock();
1250 	return 0;
1251 }
1252 EXPORT_SYMBOL(sock_wake_async);
1253 
1254 int __sock_create(struct net *net, int family, int type, int protocol,
1255 			 struct socket **res, int kern)
1256 {
1257 	int err;
1258 	struct socket *sock;
1259 	const struct net_proto_family *pf;
1260 
1261 	/*
1262 	 *      Check protocol is in range
1263 	 */
1264 	if (family < 0 || family >= NPROTO)
1265 		return -EAFNOSUPPORT;
1266 	if (type < 0 || type >= SOCK_MAX)
1267 		return -EINVAL;
1268 
1269 	/* Compatibility.
1270 
1271 	   This uglymoron is moved from INET layer to here to avoid
1272 	   deadlock in module load.
1273 	 */
1274 	if (family == PF_INET && type == SOCK_PACKET) {
1275 		static int warned;
1276 		if (!warned) {
1277 			warned = 1;
1278 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1279 				current->comm);
1280 		}
1281 		family = PF_PACKET;
1282 	}
1283 
1284 	err = security_socket_create(family, type, protocol, kern);
1285 	if (err)
1286 		return err;
1287 
1288 	/*
1289 	 *	Allocate the socket and allow the family to set things up. if
1290 	 *	the protocol is 0, the family is instructed to select an appropriate
1291 	 *	default.
1292 	 */
1293 	sock = sock_alloc();
1294 	if (!sock) {
1295 		net_warn_ratelimited("socket: no more sockets\n");
1296 		return -ENFILE;	/* Not exactly a match, but its the
1297 				   closest posix thing */
1298 	}
1299 
1300 	sock->type = type;
1301 
1302 #ifdef CONFIG_MODULES
1303 	/* Attempt to load a protocol module if the find failed.
1304 	 *
1305 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1306 	 * requested real, full-featured networking support upon configuration.
1307 	 * Otherwise module support will break!
1308 	 */
1309 	if (rcu_access_pointer(net_families[family]) == NULL)
1310 		request_module("net-pf-%d", family);
1311 #endif
1312 
1313 	rcu_read_lock();
1314 	pf = rcu_dereference(net_families[family]);
1315 	err = -EAFNOSUPPORT;
1316 	if (!pf)
1317 		goto out_release;
1318 
1319 	/*
1320 	 * We will call the ->create function, that possibly is in a loadable
1321 	 * module, so we have to bump that loadable module refcnt first.
1322 	 */
1323 	if (!try_module_get(pf->owner))
1324 		goto out_release;
1325 
1326 	/* Now protected by module ref count */
1327 	rcu_read_unlock();
1328 
1329 	err = pf->create(net, sock, protocol, kern);
1330 	if (err < 0)
1331 		goto out_module_put;
1332 
1333 	/*
1334 	 * Now to bump the refcnt of the [loadable] module that owns this
1335 	 * socket at sock_release time we decrement its refcnt.
1336 	 */
1337 	if (!try_module_get(sock->ops->owner))
1338 		goto out_module_busy;
1339 
1340 	/*
1341 	 * Now that we're done with the ->create function, the [loadable]
1342 	 * module can have its refcnt decremented
1343 	 */
1344 	module_put(pf->owner);
1345 	err = security_socket_post_create(sock, family, type, protocol, kern);
1346 	if (err)
1347 		goto out_sock_release;
1348 	*res = sock;
1349 
1350 	return 0;
1351 
1352 out_module_busy:
1353 	err = -EAFNOSUPPORT;
1354 out_module_put:
1355 	sock->ops = NULL;
1356 	module_put(pf->owner);
1357 out_sock_release:
1358 	sock_release(sock);
1359 	return err;
1360 
1361 out_release:
1362 	rcu_read_unlock();
1363 	goto out_sock_release;
1364 }
1365 EXPORT_SYMBOL(__sock_create);
1366 
1367 int sock_create(int family, int type, int protocol, struct socket **res)
1368 {
1369 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1370 }
1371 EXPORT_SYMBOL(sock_create);
1372 
1373 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1374 {
1375 	return __sock_create(&init_net, family, type, protocol, res, 1);
1376 }
1377 EXPORT_SYMBOL(sock_create_kern);
1378 
1379 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1380 {
1381 	int retval;
1382 	struct socket *sock;
1383 	int flags;
1384 
1385 	/* Check the SOCK_* constants for consistency.  */
1386 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1387 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1388 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1389 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1390 
1391 	flags = type & ~SOCK_TYPE_MASK;
1392 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1393 		return -EINVAL;
1394 	type &= SOCK_TYPE_MASK;
1395 
1396 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1397 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1398 
1399 	retval = sock_create(family, type, protocol, &sock);
1400 	if (retval < 0)
1401 		goto out;
1402 
1403 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1404 	if (retval < 0)
1405 		goto out_release;
1406 
1407 out:
1408 	/* It may be already another descriptor 8) Not kernel problem. */
1409 	return retval;
1410 
1411 out_release:
1412 	sock_release(sock);
1413 	return retval;
1414 }
1415 
1416 /*
1417  *	Create a pair of connected sockets.
1418  */
1419 
1420 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1421 		int __user *, usockvec)
1422 {
1423 	struct socket *sock1, *sock2;
1424 	int fd1, fd2, err;
1425 	struct file *newfile1, *newfile2;
1426 	int flags;
1427 
1428 	flags = type & ~SOCK_TYPE_MASK;
1429 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1430 		return -EINVAL;
1431 	type &= SOCK_TYPE_MASK;
1432 
1433 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1434 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1435 
1436 	/*
1437 	 * Obtain the first socket and check if the underlying protocol
1438 	 * supports the socketpair call.
1439 	 */
1440 
1441 	err = sock_create(family, type, protocol, &sock1);
1442 	if (err < 0)
1443 		goto out;
1444 
1445 	err = sock_create(family, type, protocol, &sock2);
1446 	if (err < 0)
1447 		goto out_release_1;
1448 
1449 	err = sock1->ops->socketpair(sock1, sock2);
1450 	if (err < 0)
1451 		goto out_release_both;
1452 
1453 	fd1 = get_unused_fd_flags(flags);
1454 	if (unlikely(fd1 < 0)) {
1455 		err = fd1;
1456 		goto out_release_both;
1457 	}
1458 
1459 	fd2 = get_unused_fd_flags(flags);
1460 	if (unlikely(fd2 < 0)) {
1461 		err = fd2;
1462 		goto out_put_unused_1;
1463 	}
1464 
1465 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1466 	if (unlikely(IS_ERR(newfile1))) {
1467 		err = PTR_ERR(newfile1);
1468 		goto out_put_unused_both;
1469 	}
1470 
1471 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1472 	if (IS_ERR(newfile2)) {
1473 		err = PTR_ERR(newfile2);
1474 		goto out_fput_1;
1475 	}
1476 
1477 	err = put_user(fd1, &usockvec[0]);
1478 	if (err)
1479 		goto out_fput_both;
1480 
1481 	err = put_user(fd2, &usockvec[1]);
1482 	if (err)
1483 		goto out_fput_both;
1484 
1485 	audit_fd_pair(fd1, fd2);
1486 
1487 	fd_install(fd1, newfile1);
1488 	fd_install(fd2, newfile2);
1489 	/* fd1 and fd2 may be already another descriptors.
1490 	 * Not kernel problem.
1491 	 */
1492 
1493 	return 0;
1494 
1495 out_fput_both:
1496 	fput(newfile2);
1497 	fput(newfile1);
1498 	put_unused_fd(fd2);
1499 	put_unused_fd(fd1);
1500 	goto out;
1501 
1502 out_fput_1:
1503 	fput(newfile1);
1504 	put_unused_fd(fd2);
1505 	put_unused_fd(fd1);
1506 	sock_release(sock2);
1507 	goto out;
1508 
1509 out_put_unused_both:
1510 	put_unused_fd(fd2);
1511 out_put_unused_1:
1512 	put_unused_fd(fd1);
1513 out_release_both:
1514 	sock_release(sock2);
1515 out_release_1:
1516 	sock_release(sock1);
1517 out:
1518 	return err;
1519 }
1520 
1521 /*
1522  *	Bind a name to a socket. Nothing much to do here since it's
1523  *	the protocol's responsibility to handle the local address.
1524  *
1525  *	We move the socket address to kernel space before we call
1526  *	the protocol layer (having also checked the address is ok).
1527  */
1528 
1529 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1530 {
1531 	struct socket *sock;
1532 	struct sockaddr_storage address;
1533 	int err, fput_needed;
1534 
1535 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1536 	if (sock) {
1537 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1538 		if (err >= 0) {
1539 			err = security_socket_bind(sock,
1540 						   (struct sockaddr *)&address,
1541 						   addrlen);
1542 			if (!err)
1543 				err = sock->ops->bind(sock,
1544 						      (struct sockaddr *)
1545 						      &address, addrlen);
1546 		}
1547 		fput_light(sock->file, fput_needed);
1548 	}
1549 	return err;
1550 }
1551 
1552 /*
1553  *	Perform a listen. Basically, we allow the protocol to do anything
1554  *	necessary for a listen, and if that works, we mark the socket as
1555  *	ready for listening.
1556  */
1557 
1558 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1559 {
1560 	struct socket *sock;
1561 	int err, fput_needed;
1562 	int somaxconn;
1563 
1564 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1565 	if (sock) {
1566 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1567 		if ((unsigned int)backlog > somaxconn)
1568 			backlog = somaxconn;
1569 
1570 		err = security_socket_listen(sock, backlog);
1571 		if (!err)
1572 			err = sock->ops->listen(sock, backlog);
1573 
1574 		fput_light(sock->file, fput_needed);
1575 	}
1576 	return err;
1577 }
1578 
1579 /*
1580  *	For accept, we attempt to create a new socket, set up the link
1581  *	with the client, wake up the client, then return the new
1582  *	connected fd. We collect the address of the connector in kernel
1583  *	space and move it to user at the very end. This is unclean because
1584  *	we open the socket then return an error.
1585  *
1586  *	1003.1g adds the ability to recvmsg() to query connection pending
1587  *	status to recvmsg. We need to add that support in a way thats
1588  *	clean when we restucture accept also.
1589  */
1590 
1591 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1592 		int __user *, upeer_addrlen, int, flags)
1593 {
1594 	struct socket *sock, *newsock;
1595 	struct file *newfile;
1596 	int err, len, newfd, fput_needed;
1597 	struct sockaddr_storage address;
1598 
1599 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1600 		return -EINVAL;
1601 
1602 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1603 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1604 
1605 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1606 	if (!sock)
1607 		goto out;
1608 
1609 	err = -ENFILE;
1610 	newsock = sock_alloc();
1611 	if (!newsock)
1612 		goto out_put;
1613 
1614 	newsock->type = sock->type;
1615 	newsock->ops = sock->ops;
1616 
1617 	/*
1618 	 * We don't need try_module_get here, as the listening socket (sock)
1619 	 * has the protocol module (sock->ops->owner) held.
1620 	 */
1621 	__module_get(newsock->ops->owner);
1622 
1623 	newfd = get_unused_fd_flags(flags);
1624 	if (unlikely(newfd < 0)) {
1625 		err = newfd;
1626 		sock_release(newsock);
1627 		goto out_put;
1628 	}
1629 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1630 	if (unlikely(IS_ERR(newfile))) {
1631 		err = PTR_ERR(newfile);
1632 		put_unused_fd(newfd);
1633 		sock_release(newsock);
1634 		goto out_put;
1635 	}
1636 
1637 	err = security_socket_accept(sock, newsock);
1638 	if (err)
1639 		goto out_fd;
1640 
1641 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1642 	if (err < 0)
1643 		goto out_fd;
1644 
1645 	if (upeer_sockaddr) {
1646 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1647 					  &len, 2) < 0) {
1648 			err = -ECONNABORTED;
1649 			goto out_fd;
1650 		}
1651 		err = move_addr_to_user(&address,
1652 					len, upeer_sockaddr, upeer_addrlen);
1653 		if (err < 0)
1654 			goto out_fd;
1655 	}
1656 
1657 	/* File flags are not inherited via accept() unlike another OSes. */
1658 
1659 	fd_install(newfd, newfile);
1660 	err = newfd;
1661 
1662 out_put:
1663 	fput_light(sock->file, fput_needed);
1664 out:
1665 	return err;
1666 out_fd:
1667 	fput(newfile);
1668 	put_unused_fd(newfd);
1669 	goto out_put;
1670 }
1671 
1672 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1673 		int __user *, upeer_addrlen)
1674 {
1675 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1676 }
1677 
1678 /*
1679  *	Attempt to connect to a socket with the server address.  The address
1680  *	is in user space so we verify it is OK and move it to kernel space.
1681  *
1682  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1683  *	break bindings
1684  *
1685  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1686  *	other SEQPACKET protocols that take time to connect() as it doesn't
1687  *	include the -EINPROGRESS status for such sockets.
1688  */
1689 
1690 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1691 		int, addrlen)
1692 {
1693 	struct socket *sock;
1694 	struct sockaddr_storage address;
1695 	int err, fput_needed;
1696 
1697 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1698 	if (!sock)
1699 		goto out;
1700 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1701 	if (err < 0)
1702 		goto out_put;
1703 
1704 	err =
1705 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1706 	if (err)
1707 		goto out_put;
1708 
1709 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1710 				 sock->file->f_flags);
1711 out_put:
1712 	fput_light(sock->file, fput_needed);
1713 out:
1714 	return err;
1715 }
1716 
1717 /*
1718  *	Get the local address ('name') of a socket object. Move the obtained
1719  *	name to user space.
1720  */
1721 
1722 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1723 		int __user *, usockaddr_len)
1724 {
1725 	struct socket *sock;
1726 	struct sockaddr_storage address;
1727 	int len, err, fput_needed;
1728 
1729 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730 	if (!sock)
1731 		goto out;
1732 
1733 	err = security_socket_getsockname(sock);
1734 	if (err)
1735 		goto out_put;
1736 
1737 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1738 	if (err)
1739 		goto out_put;
1740 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1741 
1742 out_put:
1743 	fput_light(sock->file, fput_needed);
1744 out:
1745 	return err;
1746 }
1747 
1748 /*
1749  *	Get the remote address ('name') of a socket object. Move the obtained
1750  *	name to user space.
1751  */
1752 
1753 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1754 		int __user *, usockaddr_len)
1755 {
1756 	struct socket *sock;
1757 	struct sockaddr_storage address;
1758 	int len, err, fput_needed;
1759 
1760 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1761 	if (sock != NULL) {
1762 		err = security_socket_getpeername(sock);
1763 		if (err) {
1764 			fput_light(sock->file, fput_needed);
1765 			return err;
1766 		}
1767 
1768 		err =
1769 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1770 				       1);
1771 		if (!err)
1772 			err = move_addr_to_user(&address, len, usockaddr,
1773 						usockaddr_len);
1774 		fput_light(sock->file, fput_needed);
1775 	}
1776 	return err;
1777 }
1778 
1779 /*
1780  *	Send a datagram to a given address. We move the address into kernel
1781  *	space and check the user space data area is readable before invoking
1782  *	the protocol.
1783  */
1784 
1785 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1786 		unsigned int, flags, struct sockaddr __user *, addr,
1787 		int, addr_len)
1788 {
1789 	struct socket *sock;
1790 	struct sockaddr_storage address;
1791 	int err;
1792 	struct msghdr msg;
1793 	struct iovec iov;
1794 	int fput_needed;
1795 
1796 	if (len > INT_MAX)
1797 		len = INT_MAX;
1798 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1799 	if (!sock)
1800 		goto out;
1801 
1802 	iov.iov_base = buff;
1803 	iov.iov_len = len;
1804 	msg.msg_name = NULL;
1805 	msg.msg_iov = &iov;
1806 	msg.msg_iovlen = 1;
1807 	msg.msg_control = NULL;
1808 	msg.msg_controllen = 0;
1809 	msg.msg_namelen = 0;
1810 	if (addr) {
1811 		err = move_addr_to_kernel(addr, addr_len, &address);
1812 		if (err < 0)
1813 			goto out_put;
1814 		msg.msg_name = (struct sockaddr *)&address;
1815 		msg.msg_namelen = addr_len;
1816 	}
1817 	if (sock->file->f_flags & O_NONBLOCK)
1818 		flags |= MSG_DONTWAIT;
1819 	msg.msg_flags = flags;
1820 	err = sock_sendmsg(sock, &msg, len);
1821 
1822 out_put:
1823 	fput_light(sock->file, fput_needed);
1824 out:
1825 	return err;
1826 }
1827 
1828 /*
1829  *	Send a datagram down a socket.
1830  */
1831 
1832 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1833 		unsigned int, flags)
1834 {
1835 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1836 }
1837 
1838 /*
1839  *	Receive a frame from the socket and optionally record the address of the
1840  *	sender. We verify the buffers are writable and if needed move the
1841  *	sender address from kernel to user space.
1842  */
1843 
1844 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1845 		unsigned int, flags, struct sockaddr __user *, addr,
1846 		int __user *, addr_len)
1847 {
1848 	struct socket *sock;
1849 	struct iovec iov;
1850 	struct msghdr msg;
1851 	struct sockaddr_storage address;
1852 	int err, err2;
1853 	int fput_needed;
1854 
1855 	if (size > INT_MAX)
1856 		size = INT_MAX;
1857 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858 	if (!sock)
1859 		goto out;
1860 
1861 	msg.msg_control = NULL;
1862 	msg.msg_controllen = 0;
1863 	msg.msg_iovlen = 1;
1864 	msg.msg_iov = &iov;
1865 	iov.iov_len = size;
1866 	iov.iov_base = ubuf;
1867 	/* Save some cycles and don't copy the address if not needed */
1868 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1869 	/* We assume all kernel code knows the size of sockaddr_storage */
1870 	msg.msg_namelen = 0;
1871 	if (sock->file->f_flags & O_NONBLOCK)
1872 		flags |= MSG_DONTWAIT;
1873 	err = sock_recvmsg(sock, &msg, size, flags);
1874 
1875 	if (err >= 0 && addr != NULL) {
1876 		err2 = move_addr_to_user(&address,
1877 					 msg.msg_namelen, addr, addr_len);
1878 		if (err2 < 0)
1879 			err = err2;
1880 	}
1881 
1882 	fput_light(sock->file, fput_needed);
1883 out:
1884 	return err;
1885 }
1886 
1887 /*
1888  *	Receive a datagram from a socket.
1889  */
1890 
1891 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1892 		unsigned int, flags)
1893 {
1894 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1895 }
1896 
1897 /*
1898  *	Set a socket option. Because we don't know the option lengths we have
1899  *	to pass the user mode parameter for the protocols to sort out.
1900  */
1901 
1902 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1903 		char __user *, optval, int, optlen)
1904 {
1905 	int err, fput_needed;
1906 	struct socket *sock;
1907 
1908 	if (optlen < 0)
1909 		return -EINVAL;
1910 
1911 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1912 	if (sock != NULL) {
1913 		err = security_socket_setsockopt(sock, level, optname);
1914 		if (err)
1915 			goto out_put;
1916 
1917 		if (level == SOL_SOCKET)
1918 			err =
1919 			    sock_setsockopt(sock, level, optname, optval,
1920 					    optlen);
1921 		else
1922 			err =
1923 			    sock->ops->setsockopt(sock, level, optname, optval,
1924 						  optlen);
1925 out_put:
1926 		fput_light(sock->file, fput_needed);
1927 	}
1928 	return err;
1929 }
1930 
1931 /*
1932  *	Get a socket option. Because we don't know the option lengths we have
1933  *	to pass a user mode parameter for the protocols to sort out.
1934  */
1935 
1936 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1937 		char __user *, optval, int __user *, optlen)
1938 {
1939 	int err, fput_needed;
1940 	struct socket *sock;
1941 
1942 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1943 	if (sock != NULL) {
1944 		err = security_socket_getsockopt(sock, level, optname);
1945 		if (err)
1946 			goto out_put;
1947 
1948 		if (level == SOL_SOCKET)
1949 			err =
1950 			    sock_getsockopt(sock, level, optname, optval,
1951 					    optlen);
1952 		else
1953 			err =
1954 			    sock->ops->getsockopt(sock, level, optname, optval,
1955 						  optlen);
1956 out_put:
1957 		fput_light(sock->file, fput_needed);
1958 	}
1959 	return err;
1960 }
1961 
1962 /*
1963  *	Shutdown a socket.
1964  */
1965 
1966 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1967 {
1968 	int err, fput_needed;
1969 	struct socket *sock;
1970 
1971 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1972 	if (sock != NULL) {
1973 		err = security_socket_shutdown(sock, how);
1974 		if (!err)
1975 			err = sock->ops->shutdown(sock, how);
1976 		fput_light(sock->file, fput_needed);
1977 	}
1978 	return err;
1979 }
1980 
1981 /* A couple of helpful macros for getting the address of the 32/64 bit
1982  * fields which are the same type (int / unsigned) on our platforms.
1983  */
1984 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1985 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1986 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1987 
1988 struct used_address {
1989 	struct sockaddr_storage name;
1990 	unsigned int name_len;
1991 };
1992 
1993 static int copy_msghdr_from_user(struct msghdr *kmsg,
1994 				 struct msghdr __user *umsg)
1995 {
1996 	if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1997 		return -EFAULT;
1998 
1999 	if (kmsg->msg_name == NULL)
2000 		kmsg->msg_namelen = 0;
2001 
2002 	if (kmsg->msg_namelen < 0)
2003 		return -EINVAL;
2004 
2005 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2006 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2007 	return 0;
2008 }
2009 
2010 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2011 			 struct msghdr *msg_sys, unsigned int flags,
2012 			 struct used_address *used_address)
2013 {
2014 	struct compat_msghdr __user *msg_compat =
2015 	    (struct compat_msghdr __user *)msg;
2016 	struct sockaddr_storage address;
2017 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2018 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2019 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2020 	/* 20 is size of ipv6_pktinfo */
2021 	unsigned char *ctl_buf = ctl;
2022 	int err, ctl_len, total_len;
2023 
2024 	err = -EFAULT;
2025 	if (MSG_CMSG_COMPAT & flags) {
2026 		if (get_compat_msghdr(msg_sys, msg_compat))
2027 			return -EFAULT;
2028 	} else {
2029 		err = copy_msghdr_from_user(msg_sys, msg);
2030 		if (err)
2031 			return err;
2032 	}
2033 
2034 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2035 		err = -EMSGSIZE;
2036 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2037 			goto out;
2038 		err = -ENOMEM;
2039 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2040 			      GFP_KERNEL);
2041 		if (!iov)
2042 			goto out;
2043 	}
2044 
2045 	/* This will also move the address data into kernel space */
2046 	if (MSG_CMSG_COMPAT & flags) {
2047 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2048 	} else
2049 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2050 	if (err < 0)
2051 		goto out_freeiov;
2052 	total_len = err;
2053 
2054 	err = -ENOBUFS;
2055 
2056 	if (msg_sys->msg_controllen > INT_MAX)
2057 		goto out_freeiov;
2058 	ctl_len = msg_sys->msg_controllen;
2059 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2060 		err =
2061 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2062 						     sizeof(ctl));
2063 		if (err)
2064 			goto out_freeiov;
2065 		ctl_buf = msg_sys->msg_control;
2066 		ctl_len = msg_sys->msg_controllen;
2067 	} else if (ctl_len) {
2068 		if (ctl_len > sizeof(ctl)) {
2069 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2070 			if (ctl_buf == NULL)
2071 				goto out_freeiov;
2072 		}
2073 		err = -EFAULT;
2074 		/*
2075 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2076 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2077 		 * checking falls down on this.
2078 		 */
2079 		if (copy_from_user(ctl_buf,
2080 				   (void __user __force *)msg_sys->msg_control,
2081 				   ctl_len))
2082 			goto out_freectl;
2083 		msg_sys->msg_control = ctl_buf;
2084 	}
2085 	msg_sys->msg_flags = flags;
2086 
2087 	if (sock->file->f_flags & O_NONBLOCK)
2088 		msg_sys->msg_flags |= MSG_DONTWAIT;
2089 	/*
2090 	 * If this is sendmmsg() and current destination address is same as
2091 	 * previously succeeded address, omit asking LSM's decision.
2092 	 * used_address->name_len is initialized to UINT_MAX so that the first
2093 	 * destination address never matches.
2094 	 */
2095 	if (used_address && msg_sys->msg_name &&
2096 	    used_address->name_len == msg_sys->msg_namelen &&
2097 	    !memcmp(&used_address->name, msg_sys->msg_name,
2098 		    used_address->name_len)) {
2099 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2100 		goto out_freectl;
2101 	}
2102 	err = sock_sendmsg(sock, msg_sys, total_len);
2103 	/*
2104 	 * If this is sendmmsg() and sending to current destination address was
2105 	 * successful, remember it.
2106 	 */
2107 	if (used_address && err >= 0) {
2108 		used_address->name_len = msg_sys->msg_namelen;
2109 		if (msg_sys->msg_name)
2110 			memcpy(&used_address->name, msg_sys->msg_name,
2111 			       used_address->name_len);
2112 	}
2113 
2114 out_freectl:
2115 	if (ctl_buf != ctl)
2116 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2117 out_freeiov:
2118 	if (iov != iovstack)
2119 		kfree(iov);
2120 out:
2121 	return err;
2122 }
2123 
2124 /*
2125  *	BSD sendmsg interface
2126  */
2127 
2128 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2129 {
2130 	int fput_needed, err;
2131 	struct msghdr msg_sys;
2132 	struct socket *sock;
2133 
2134 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2135 	if (!sock)
2136 		goto out;
2137 
2138 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2139 
2140 	fput_light(sock->file, fput_needed);
2141 out:
2142 	return err;
2143 }
2144 
2145 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2146 {
2147 	if (flags & MSG_CMSG_COMPAT)
2148 		return -EINVAL;
2149 	return __sys_sendmsg(fd, msg, flags);
2150 }
2151 
2152 /*
2153  *	Linux sendmmsg interface
2154  */
2155 
2156 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2157 		   unsigned int flags)
2158 {
2159 	int fput_needed, err, datagrams;
2160 	struct socket *sock;
2161 	struct mmsghdr __user *entry;
2162 	struct compat_mmsghdr __user *compat_entry;
2163 	struct msghdr msg_sys;
2164 	struct used_address used_address;
2165 
2166 	if (vlen > UIO_MAXIOV)
2167 		vlen = UIO_MAXIOV;
2168 
2169 	datagrams = 0;
2170 
2171 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2172 	if (!sock)
2173 		return err;
2174 
2175 	used_address.name_len = UINT_MAX;
2176 	entry = mmsg;
2177 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2178 	err = 0;
2179 
2180 	while (datagrams < vlen) {
2181 		if (MSG_CMSG_COMPAT & flags) {
2182 			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2183 					     &msg_sys, flags, &used_address);
2184 			if (err < 0)
2185 				break;
2186 			err = __put_user(err, &compat_entry->msg_len);
2187 			++compat_entry;
2188 		} else {
2189 			err = ___sys_sendmsg(sock,
2190 					     (struct msghdr __user *)entry,
2191 					     &msg_sys, flags, &used_address);
2192 			if (err < 0)
2193 				break;
2194 			err = put_user(err, &entry->msg_len);
2195 			++entry;
2196 		}
2197 
2198 		if (err)
2199 			break;
2200 		++datagrams;
2201 	}
2202 
2203 	fput_light(sock->file, fput_needed);
2204 
2205 	/* We only return an error if no datagrams were able to be sent */
2206 	if (datagrams != 0)
2207 		return datagrams;
2208 
2209 	return err;
2210 }
2211 
2212 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2213 		unsigned int, vlen, unsigned int, flags)
2214 {
2215 	if (flags & MSG_CMSG_COMPAT)
2216 		return -EINVAL;
2217 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2218 }
2219 
2220 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2221 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2222 {
2223 	struct compat_msghdr __user *msg_compat =
2224 	    (struct compat_msghdr __user *)msg;
2225 	struct iovec iovstack[UIO_FASTIOV];
2226 	struct iovec *iov = iovstack;
2227 	unsigned long cmsg_ptr;
2228 	int err, total_len, len;
2229 
2230 	/* kernel mode address */
2231 	struct sockaddr_storage addr;
2232 
2233 	/* user mode address pointers */
2234 	struct sockaddr __user *uaddr;
2235 	int __user *uaddr_len;
2236 
2237 	if (MSG_CMSG_COMPAT & flags) {
2238 		if (get_compat_msghdr(msg_sys, msg_compat))
2239 			return -EFAULT;
2240 	} else {
2241 		err = copy_msghdr_from_user(msg_sys, msg);
2242 		if (err)
2243 			return err;
2244 	}
2245 
2246 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2247 		err = -EMSGSIZE;
2248 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2249 			goto out;
2250 		err = -ENOMEM;
2251 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2252 			      GFP_KERNEL);
2253 		if (!iov)
2254 			goto out;
2255 	}
2256 
2257 	/* Save the user-mode address (verify_iovec will change the
2258 	 * kernel msghdr to use the kernel address space)
2259 	 */
2260 	uaddr = (__force void __user *)msg_sys->msg_name;
2261 	uaddr_len = COMPAT_NAMELEN(msg);
2262 	if (MSG_CMSG_COMPAT & flags)
2263 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2264 	else
2265 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2266 	if (err < 0)
2267 		goto out_freeiov;
2268 	total_len = err;
2269 
2270 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2271 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2272 
2273 	/* We assume all kernel code knows the size of sockaddr_storage */
2274 	msg_sys->msg_namelen = 0;
2275 
2276 	if (sock->file->f_flags & O_NONBLOCK)
2277 		flags |= MSG_DONTWAIT;
2278 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2279 							  total_len, flags);
2280 	if (err < 0)
2281 		goto out_freeiov;
2282 	len = err;
2283 
2284 	if (uaddr != NULL) {
2285 		err = move_addr_to_user(&addr,
2286 					msg_sys->msg_namelen, uaddr,
2287 					uaddr_len);
2288 		if (err < 0)
2289 			goto out_freeiov;
2290 	}
2291 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2292 			 COMPAT_FLAGS(msg));
2293 	if (err)
2294 		goto out_freeiov;
2295 	if (MSG_CMSG_COMPAT & flags)
2296 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2297 				 &msg_compat->msg_controllen);
2298 	else
2299 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2300 				 &msg->msg_controllen);
2301 	if (err)
2302 		goto out_freeiov;
2303 	err = len;
2304 
2305 out_freeiov:
2306 	if (iov != iovstack)
2307 		kfree(iov);
2308 out:
2309 	return err;
2310 }
2311 
2312 /*
2313  *	BSD recvmsg interface
2314  */
2315 
2316 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2317 {
2318 	int fput_needed, err;
2319 	struct msghdr msg_sys;
2320 	struct socket *sock;
2321 
2322 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2323 	if (!sock)
2324 		goto out;
2325 
2326 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2327 
2328 	fput_light(sock->file, fput_needed);
2329 out:
2330 	return err;
2331 }
2332 
2333 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2334 		unsigned int, flags)
2335 {
2336 	if (flags & MSG_CMSG_COMPAT)
2337 		return -EINVAL;
2338 	return __sys_recvmsg(fd, msg, flags);
2339 }
2340 
2341 /*
2342  *     Linux recvmmsg interface
2343  */
2344 
2345 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2346 		   unsigned int flags, struct timespec *timeout)
2347 {
2348 	int fput_needed, err, datagrams;
2349 	struct socket *sock;
2350 	struct mmsghdr __user *entry;
2351 	struct compat_mmsghdr __user *compat_entry;
2352 	struct msghdr msg_sys;
2353 	struct timespec end_time;
2354 
2355 	if (timeout &&
2356 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2357 				    timeout->tv_nsec))
2358 		return -EINVAL;
2359 
2360 	datagrams = 0;
2361 
2362 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2363 	if (!sock)
2364 		return err;
2365 
2366 	err = sock_error(sock->sk);
2367 	if (err)
2368 		goto out_put;
2369 
2370 	entry = mmsg;
2371 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2372 
2373 	while (datagrams < vlen) {
2374 		/*
2375 		 * No need to ask LSM for more than the first datagram.
2376 		 */
2377 		if (MSG_CMSG_COMPAT & flags) {
2378 			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2379 					     &msg_sys, flags & ~MSG_WAITFORONE,
2380 					     datagrams);
2381 			if (err < 0)
2382 				break;
2383 			err = __put_user(err, &compat_entry->msg_len);
2384 			++compat_entry;
2385 		} else {
2386 			err = ___sys_recvmsg(sock,
2387 					     (struct msghdr __user *)entry,
2388 					     &msg_sys, flags & ~MSG_WAITFORONE,
2389 					     datagrams);
2390 			if (err < 0)
2391 				break;
2392 			err = put_user(err, &entry->msg_len);
2393 			++entry;
2394 		}
2395 
2396 		if (err)
2397 			break;
2398 		++datagrams;
2399 
2400 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2401 		if (flags & MSG_WAITFORONE)
2402 			flags |= MSG_DONTWAIT;
2403 
2404 		if (timeout) {
2405 			ktime_get_ts(timeout);
2406 			*timeout = timespec_sub(end_time, *timeout);
2407 			if (timeout->tv_sec < 0) {
2408 				timeout->tv_sec = timeout->tv_nsec = 0;
2409 				break;
2410 			}
2411 
2412 			/* Timeout, return less than vlen datagrams */
2413 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2414 				break;
2415 		}
2416 
2417 		/* Out of band data, return right away */
2418 		if (msg_sys.msg_flags & MSG_OOB)
2419 			break;
2420 	}
2421 
2422 out_put:
2423 	fput_light(sock->file, fput_needed);
2424 
2425 	if (err == 0)
2426 		return datagrams;
2427 
2428 	if (datagrams != 0) {
2429 		/*
2430 		 * We may return less entries than requested (vlen) if the
2431 		 * sock is non block and there aren't enough datagrams...
2432 		 */
2433 		if (err != -EAGAIN) {
2434 			/*
2435 			 * ... or  if recvmsg returns an error after we
2436 			 * received some datagrams, where we record the
2437 			 * error to return on the next call or if the
2438 			 * app asks about it using getsockopt(SO_ERROR).
2439 			 */
2440 			sock->sk->sk_err = -err;
2441 		}
2442 
2443 		return datagrams;
2444 	}
2445 
2446 	return err;
2447 }
2448 
2449 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2450 		unsigned int, vlen, unsigned int, flags,
2451 		struct timespec __user *, timeout)
2452 {
2453 	int datagrams;
2454 	struct timespec timeout_sys;
2455 
2456 	if (flags & MSG_CMSG_COMPAT)
2457 		return -EINVAL;
2458 
2459 	if (!timeout)
2460 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2461 
2462 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2463 		return -EFAULT;
2464 
2465 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2466 
2467 	if (datagrams > 0 &&
2468 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2469 		datagrams = -EFAULT;
2470 
2471 	return datagrams;
2472 }
2473 
2474 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2475 /* Argument list sizes for sys_socketcall */
2476 #define AL(x) ((x) * sizeof(unsigned long))
2477 static const unsigned char nargs[21] = {
2478 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2479 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2480 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2481 	AL(4), AL(5), AL(4)
2482 };
2483 
2484 #undef AL
2485 
2486 /*
2487  *	System call vectors.
2488  *
2489  *	Argument checking cleaned up. Saved 20% in size.
2490  *  This function doesn't need to set the kernel lock because
2491  *  it is set by the callees.
2492  */
2493 
2494 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2495 {
2496 	unsigned long a[AUDITSC_ARGS];
2497 	unsigned long a0, a1;
2498 	int err;
2499 	unsigned int len;
2500 
2501 	if (call < 1 || call > SYS_SENDMMSG)
2502 		return -EINVAL;
2503 
2504 	len = nargs[call];
2505 	if (len > sizeof(a))
2506 		return -EINVAL;
2507 
2508 	/* copy_from_user should be SMP safe. */
2509 	if (copy_from_user(a, args, len))
2510 		return -EFAULT;
2511 
2512 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2513 	if (err)
2514 		return err;
2515 
2516 	a0 = a[0];
2517 	a1 = a[1];
2518 
2519 	switch (call) {
2520 	case SYS_SOCKET:
2521 		err = sys_socket(a0, a1, a[2]);
2522 		break;
2523 	case SYS_BIND:
2524 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2525 		break;
2526 	case SYS_CONNECT:
2527 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2528 		break;
2529 	case SYS_LISTEN:
2530 		err = sys_listen(a0, a1);
2531 		break;
2532 	case SYS_ACCEPT:
2533 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2534 				  (int __user *)a[2], 0);
2535 		break;
2536 	case SYS_GETSOCKNAME:
2537 		err =
2538 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2539 				    (int __user *)a[2]);
2540 		break;
2541 	case SYS_GETPEERNAME:
2542 		err =
2543 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2544 				    (int __user *)a[2]);
2545 		break;
2546 	case SYS_SOCKETPAIR:
2547 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2548 		break;
2549 	case SYS_SEND:
2550 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2551 		break;
2552 	case SYS_SENDTO:
2553 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2554 				 (struct sockaddr __user *)a[4], a[5]);
2555 		break;
2556 	case SYS_RECV:
2557 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2558 		break;
2559 	case SYS_RECVFROM:
2560 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2561 				   (struct sockaddr __user *)a[4],
2562 				   (int __user *)a[5]);
2563 		break;
2564 	case SYS_SHUTDOWN:
2565 		err = sys_shutdown(a0, a1);
2566 		break;
2567 	case SYS_SETSOCKOPT:
2568 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2569 		break;
2570 	case SYS_GETSOCKOPT:
2571 		err =
2572 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2573 				   (int __user *)a[4]);
2574 		break;
2575 	case SYS_SENDMSG:
2576 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2577 		break;
2578 	case SYS_SENDMMSG:
2579 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2580 		break;
2581 	case SYS_RECVMSG:
2582 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2583 		break;
2584 	case SYS_RECVMMSG:
2585 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2586 				   (struct timespec __user *)a[4]);
2587 		break;
2588 	case SYS_ACCEPT4:
2589 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2590 				  (int __user *)a[2], a[3]);
2591 		break;
2592 	default:
2593 		err = -EINVAL;
2594 		break;
2595 	}
2596 	return err;
2597 }
2598 
2599 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2600 
2601 /**
2602  *	sock_register - add a socket protocol handler
2603  *	@ops: description of protocol
2604  *
2605  *	This function is called by a protocol handler that wants to
2606  *	advertise its address family, and have it linked into the
2607  *	socket interface. The value ops->family corresponds to the
2608  *	socket system call protocol family.
2609  */
2610 int sock_register(const struct net_proto_family *ops)
2611 {
2612 	int err;
2613 
2614 	if (ops->family >= NPROTO) {
2615 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2616 		return -ENOBUFS;
2617 	}
2618 
2619 	spin_lock(&net_family_lock);
2620 	if (rcu_dereference_protected(net_families[ops->family],
2621 				      lockdep_is_held(&net_family_lock)))
2622 		err = -EEXIST;
2623 	else {
2624 		rcu_assign_pointer(net_families[ops->family], ops);
2625 		err = 0;
2626 	}
2627 	spin_unlock(&net_family_lock);
2628 
2629 	pr_info("NET: Registered protocol family %d\n", ops->family);
2630 	return err;
2631 }
2632 EXPORT_SYMBOL(sock_register);
2633 
2634 /**
2635  *	sock_unregister - remove a protocol handler
2636  *	@family: protocol family to remove
2637  *
2638  *	This function is called by a protocol handler that wants to
2639  *	remove its address family, and have it unlinked from the
2640  *	new socket creation.
2641  *
2642  *	If protocol handler is a module, then it can use module reference
2643  *	counts to protect against new references. If protocol handler is not
2644  *	a module then it needs to provide its own protection in
2645  *	the ops->create routine.
2646  */
2647 void sock_unregister(int family)
2648 {
2649 	BUG_ON(family < 0 || family >= NPROTO);
2650 
2651 	spin_lock(&net_family_lock);
2652 	RCU_INIT_POINTER(net_families[family], NULL);
2653 	spin_unlock(&net_family_lock);
2654 
2655 	synchronize_rcu();
2656 
2657 	pr_info("NET: Unregistered protocol family %d\n", family);
2658 }
2659 EXPORT_SYMBOL(sock_unregister);
2660 
2661 static int __init sock_init(void)
2662 {
2663 	int err;
2664 	/*
2665 	 *      Initialize the network sysctl infrastructure.
2666 	 */
2667 	err = net_sysctl_init();
2668 	if (err)
2669 		goto out;
2670 
2671 	/*
2672 	 *      Initialize skbuff SLAB cache
2673 	 */
2674 	skb_init();
2675 
2676 	/*
2677 	 *      Initialize the protocols module.
2678 	 */
2679 
2680 	init_inodecache();
2681 
2682 	err = register_filesystem(&sock_fs_type);
2683 	if (err)
2684 		goto out_fs;
2685 	sock_mnt = kern_mount(&sock_fs_type);
2686 	if (IS_ERR(sock_mnt)) {
2687 		err = PTR_ERR(sock_mnt);
2688 		goto out_mount;
2689 	}
2690 
2691 	/* The real protocol initialization is performed in later initcalls.
2692 	 */
2693 
2694 #ifdef CONFIG_NETFILTER
2695 	err = netfilter_init();
2696 	if (err)
2697 		goto out;
2698 #endif
2699 
2700 	ptp_classifier_init();
2701 
2702 out:
2703 	return err;
2704 
2705 out_mount:
2706 	unregister_filesystem(&sock_fs_type);
2707 out_fs:
2708 	goto out;
2709 }
2710 
2711 core_initcall(sock_init);	/* early initcall */
2712 
2713 #ifdef CONFIG_PROC_FS
2714 void socket_seq_show(struct seq_file *seq)
2715 {
2716 	int cpu;
2717 	int counter = 0;
2718 
2719 	for_each_possible_cpu(cpu)
2720 	    counter += per_cpu(sockets_in_use, cpu);
2721 
2722 	/* It can be negative, by the way. 8) */
2723 	if (counter < 0)
2724 		counter = 0;
2725 
2726 	seq_printf(seq, "sockets: used %d\n", counter);
2727 }
2728 #endif				/* CONFIG_PROC_FS */
2729 
2730 #ifdef CONFIG_COMPAT
2731 static int do_siocgstamp(struct net *net, struct socket *sock,
2732 			 unsigned int cmd, void __user *up)
2733 {
2734 	mm_segment_t old_fs = get_fs();
2735 	struct timeval ktv;
2736 	int err;
2737 
2738 	set_fs(KERNEL_DS);
2739 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2740 	set_fs(old_fs);
2741 	if (!err)
2742 		err = compat_put_timeval(&ktv, up);
2743 
2744 	return err;
2745 }
2746 
2747 static int do_siocgstampns(struct net *net, struct socket *sock,
2748 			   unsigned int cmd, void __user *up)
2749 {
2750 	mm_segment_t old_fs = get_fs();
2751 	struct timespec kts;
2752 	int err;
2753 
2754 	set_fs(KERNEL_DS);
2755 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2756 	set_fs(old_fs);
2757 	if (!err)
2758 		err = compat_put_timespec(&kts, up);
2759 
2760 	return err;
2761 }
2762 
2763 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2764 {
2765 	struct ifreq __user *uifr;
2766 	int err;
2767 
2768 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2769 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2770 		return -EFAULT;
2771 
2772 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2773 	if (err)
2774 		return err;
2775 
2776 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2777 		return -EFAULT;
2778 
2779 	return 0;
2780 }
2781 
2782 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2783 {
2784 	struct compat_ifconf ifc32;
2785 	struct ifconf ifc;
2786 	struct ifconf __user *uifc;
2787 	struct compat_ifreq __user *ifr32;
2788 	struct ifreq __user *ifr;
2789 	unsigned int i, j;
2790 	int err;
2791 
2792 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2793 		return -EFAULT;
2794 
2795 	memset(&ifc, 0, sizeof(ifc));
2796 	if (ifc32.ifcbuf == 0) {
2797 		ifc32.ifc_len = 0;
2798 		ifc.ifc_len = 0;
2799 		ifc.ifc_req = NULL;
2800 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2801 	} else {
2802 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2803 			sizeof(struct ifreq);
2804 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2805 		ifc.ifc_len = len;
2806 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2807 		ifr32 = compat_ptr(ifc32.ifcbuf);
2808 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2809 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2810 				return -EFAULT;
2811 			ifr++;
2812 			ifr32++;
2813 		}
2814 	}
2815 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2816 		return -EFAULT;
2817 
2818 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2819 	if (err)
2820 		return err;
2821 
2822 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2823 		return -EFAULT;
2824 
2825 	ifr = ifc.ifc_req;
2826 	ifr32 = compat_ptr(ifc32.ifcbuf);
2827 	for (i = 0, j = 0;
2828 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2829 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2830 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2831 			return -EFAULT;
2832 		ifr32++;
2833 		ifr++;
2834 	}
2835 
2836 	if (ifc32.ifcbuf == 0) {
2837 		/* Translate from 64-bit structure multiple to
2838 		 * a 32-bit one.
2839 		 */
2840 		i = ifc.ifc_len;
2841 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2842 		ifc32.ifc_len = i;
2843 	} else {
2844 		ifc32.ifc_len = i;
2845 	}
2846 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2847 		return -EFAULT;
2848 
2849 	return 0;
2850 }
2851 
2852 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2853 {
2854 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2855 	bool convert_in = false, convert_out = false;
2856 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2857 	struct ethtool_rxnfc __user *rxnfc;
2858 	struct ifreq __user *ifr;
2859 	u32 rule_cnt = 0, actual_rule_cnt;
2860 	u32 ethcmd;
2861 	u32 data;
2862 	int ret;
2863 
2864 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2865 		return -EFAULT;
2866 
2867 	compat_rxnfc = compat_ptr(data);
2868 
2869 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2870 		return -EFAULT;
2871 
2872 	/* Most ethtool structures are defined without padding.
2873 	 * Unfortunately struct ethtool_rxnfc is an exception.
2874 	 */
2875 	switch (ethcmd) {
2876 	default:
2877 		break;
2878 	case ETHTOOL_GRXCLSRLALL:
2879 		/* Buffer size is variable */
2880 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2881 			return -EFAULT;
2882 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2883 			return -ENOMEM;
2884 		buf_size += rule_cnt * sizeof(u32);
2885 		/* fall through */
2886 	case ETHTOOL_GRXRINGS:
2887 	case ETHTOOL_GRXCLSRLCNT:
2888 	case ETHTOOL_GRXCLSRULE:
2889 	case ETHTOOL_SRXCLSRLINS:
2890 		convert_out = true;
2891 		/* fall through */
2892 	case ETHTOOL_SRXCLSRLDEL:
2893 		buf_size += sizeof(struct ethtool_rxnfc);
2894 		convert_in = true;
2895 		break;
2896 	}
2897 
2898 	ifr = compat_alloc_user_space(buf_size);
2899 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2900 
2901 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2902 		return -EFAULT;
2903 
2904 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2905 		     &ifr->ifr_ifru.ifru_data))
2906 		return -EFAULT;
2907 
2908 	if (convert_in) {
2909 		/* We expect there to be holes between fs.m_ext and
2910 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2911 		 */
2912 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2913 			     sizeof(compat_rxnfc->fs.m_ext) !=
2914 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2915 			     sizeof(rxnfc->fs.m_ext));
2916 		BUILD_BUG_ON(
2917 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2918 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2919 			offsetof(struct ethtool_rxnfc, fs.location) -
2920 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2921 
2922 		if (copy_in_user(rxnfc, compat_rxnfc,
2923 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2924 				 (void __user *)rxnfc) ||
2925 		    copy_in_user(&rxnfc->fs.ring_cookie,
2926 				 &compat_rxnfc->fs.ring_cookie,
2927 				 (void __user *)(&rxnfc->fs.location + 1) -
2928 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2929 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2930 				 sizeof(rxnfc->rule_cnt)))
2931 			return -EFAULT;
2932 	}
2933 
2934 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2935 	if (ret)
2936 		return ret;
2937 
2938 	if (convert_out) {
2939 		if (copy_in_user(compat_rxnfc, rxnfc,
2940 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2941 				 (const void __user *)rxnfc) ||
2942 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2943 				 &rxnfc->fs.ring_cookie,
2944 				 (const void __user *)(&rxnfc->fs.location + 1) -
2945 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2946 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2947 				 sizeof(rxnfc->rule_cnt)))
2948 			return -EFAULT;
2949 
2950 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2951 			/* As an optimisation, we only copy the actual
2952 			 * number of rules that the underlying
2953 			 * function returned.  Since Mallory might
2954 			 * change the rule count in user memory, we
2955 			 * check that it is less than the rule count
2956 			 * originally given (as the user buffer size),
2957 			 * which has been range-checked.
2958 			 */
2959 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2960 				return -EFAULT;
2961 			if (actual_rule_cnt < rule_cnt)
2962 				rule_cnt = actual_rule_cnt;
2963 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2964 					 &rxnfc->rule_locs[0],
2965 					 rule_cnt * sizeof(u32)))
2966 				return -EFAULT;
2967 		}
2968 	}
2969 
2970 	return 0;
2971 }
2972 
2973 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2974 {
2975 	void __user *uptr;
2976 	compat_uptr_t uptr32;
2977 	struct ifreq __user *uifr;
2978 
2979 	uifr = compat_alloc_user_space(sizeof(*uifr));
2980 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2981 		return -EFAULT;
2982 
2983 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2984 		return -EFAULT;
2985 
2986 	uptr = compat_ptr(uptr32);
2987 
2988 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2989 		return -EFAULT;
2990 
2991 	return dev_ioctl(net, SIOCWANDEV, uifr);
2992 }
2993 
2994 static int bond_ioctl(struct net *net, unsigned int cmd,
2995 			 struct compat_ifreq __user *ifr32)
2996 {
2997 	struct ifreq kifr;
2998 	mm_segment_t old_fs;
2999 	int err;
3000 
3001 	switch (cmd) {
3002 	case SIOCBONDENSLAVE:
3003 	case SIOCBONDRELEASE:
3004 	case SIOCBONDSETHWADDR:
3005 	case SIOCBONDCHANGEACTIVE:
3006 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
3007 			return -EFAULT;
3008 
3009 		old_fs = get_fs();
3010 		set_fs(KERNEL_DS);
3011 		err = dev_ioctl(net, cmd,
3012 				(struct ifreq __user __force *) &kifr);
3013 		set_fs(old_fs);
3014 
3015 		return err;
3016 	default:
3017 		return -ENOIOCTLCMD;
3018 	}
3019 }
3020 
3021 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3022 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3023 				 struct compat_ifreq __user *u_ifreq32)
3024 {
3025 	struct ifreq __user *u_ifreq64;
3026 	char tmp_buf[IFNAMSIZ];
3027 	void __user *data64;
3028 	u32 data32;
3029 
3030 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3031 			   IFNAMSIZ))
3032 		return -EFAULT;
3033 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3034 		return -EFAULT;
3035 	data64 = compat_ptr(data32);
3036 
3037 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3038 
3039 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3040 			 IFNAMSIZ))
3041 		return -EFAULT;
3042 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3043 		return -EFAULT;
3044 
3045 	return dev_ioctl(net, cmd, u_ifreq64);
3046 }
3047 
3048 static int dev_ifsioc(struct net *net, struct socket *sock,
3049 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3050 {
3051 	struct ifreq __user *uifr;
3052 	int err;
3053 
3054 	uifr = compat_alloc_user_space(sizeof(*uifr));
3055 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3056 		return -EFAULT;
3057 
3058 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3059 
3060 	if (!err) {
3061 		switch (cmd) {
3062 		case SIOCGIFFLAGS:
3063 		case SIOCGIFMETRIC:
3064 		case SIOCGIFMTU:
3065 		case SIOCGIFMEM:
3066 		case SIOCGIFHWADDR:
3067 		case SIOCGIFINDEX:
3068 		case SIOCGIFADDR:
3069 		case SIOCGIFBRDADDR:
3070 		case SIOCGIFDSTADDR:
3071 		case SIOCGIFNETMASK:
3072 		case SIOCGIFPFLAGS:
3073 		case SIOCGIFTXQLEN:
3074 		case SIOCGMIIPHY:
3075 		case SIOCGMIIREG:
3076 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3077 				err = -EFAULT;
3078 			break;
3079 		}
3080 	}
3081 	return err;
3082 }
3083 
3084 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3085 			struct compat_ifreq __user *uifr32)
3086 {
3087 	struct ifreq ifr;
3088 	struct compat_ifmap __user *uifmap32;
3089 	mm_segment_t old_fs;
3090 	int err;
3091 
3092 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3093 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3094 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3095 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3096 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3097 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3098 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3099 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3100 	if (err)
3101 		return -EFAULT;
3102 
3103 	old_fs = get_fs();
3104 	set_fs(KERNEL_DS);
3105 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3106 	set_fs(old_fs);
3107 
3108 	if (cmd == SIOCGIFMAP && !err) {
3109 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3110 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3111 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3112 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3113 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3114 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3115 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3116 		if (err)
3117 			err = -EFAULT;
3118 	}
3119 	return err;
3120 }
3121 
3122 struct rtentry32 {
3123 	u32		rt_pad1;
3124 	struct sockaddr rt_dst;         /* target address               */
3125 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3126 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3127 	unsigned short	rt_flags;
3128 	short		rt_pad2;
3129 	u32		rt_pad3;
3130 	unsigned char	rt_tos;
3131 	unsigned char	rt_class;
3132 	short		rt_pad4;
3133 	short		rt_metric;      /* +1 for binary compatibility! */
3134 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3135 	u32		rt_mtu;         /* per route MTU/Window         */
3136 	u32		rt_window;      /* Window clamping              */
3137 	unsigned short  rt_irtt;        /* Initial RTT                  */
3138 };
3139 
3140 struct in6_rtmsg32 {
3141 	struct in6_addr		rtmsg_dst;
3142 	struct in6_addr		rtmsg_src;
3143 	struct in6_addr		rtmsg_gateway;
3144 	u32			rtmsg_type;
3145 	u16			rtmsg_dst_len;
3146 	u16			rtmsg_src_len;
3147 	u32			rtmsg_metric;
3148 	u32			rtmsg_info;
3149 	u32			rtmsg_flags;
3150 	s32			rtmsg_ifindex;
3151 };
3152 
3153 static int routing_ioctl(struct net *net, struct socket *sock,
3154 			 unsigned int cmd, void __user *argp)
3155 {
3156 	int ret;
3157 	void *r = NULL;
3158 	struct in6_rtmsg r6;
3159 	struct rtentry r4;
3160 	char devname[16];
3161 	u32 rtdev;
3162 	mm_segment_t old_fs = get_fs();
3163 
3164 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3165 		struct in6_rtmsg32 __user *ur6 = argp;
3166 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3167 			3 * sizeof(struct in6_addr));
3168 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3169 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3170 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3171 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3172 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3173 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3174 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3175 
3176 		r = (void *) &r6;
3177 	} else { /* ipv4 */
3178 		struct rtentry32 __user *ur4 = argp;
3179 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3180 					3 * sizeof(struct sockaddr));
3181 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3182 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3183 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3184 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3185 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3186 		ret |= get_user(rtdev, &(ur4->rt_dev));
3187 		if (rtdev) {
3188 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3189 			r4.rt_dev = (char __user __force *)devname;
3190 			devname[15] = 0;
3191 		} else
3192 			r4.rt_dev = NULL;
3193 
3194 		r = (void *) &r4;
3195 	}
3196 
3197 	if (ret) {
3198 		ret = -EFAULT;
3199 		goto out;
3200 	}
3201 
3202 	set_fs(KERNEL_DS);
3203 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3204 	set_fs(old_fs);
3205 
3206 out:
3207 	return ret;
3208 }
3209 
3210 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3211  * for some operations; this forces use of the newer bridge-utils that
3212  * use compatible ioctls
3213  */
3214 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3215 {
3216 	compat_ulong_t tmp;
3217 
3218 	if (get_user(tmp, argp))
3219 		return -EFAULT;
3220 	if (tmp == BRCTL_GET_VERSION)
3221 		return BRCTL_VERSION + 1;
3222 	return -EINVAL;
3223 }
3224 
3225 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3226 			 unsigned int cmd, unsigned long arg)
3227 {
3228 	void __user *argp = compat_ptr(arg);
3229 	struct sock *sk = sock->sk;
3230 	struct net *net = sock_net(sk);
3231 
3232 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3233 		return compat_ifr_data_ioctl(net, cmd, argp);
3234 
3235 	switch (cmd) {
3236 	case SIOCSIFBR:
3237 	case SIOCGIFBR:
3238 		return old_bridge_ioctl(argp);
3239 	case SIOCGIFNAME:
3240 		return dev_ifname32(net, argp);
3241 	case SIOCGIFCONF:
3242 		return dev_ifconf(net, argp);
3243 	case SIOCETHTOOL:
3244 		return ethtool_ioctl(net, argp);
3245 	case SIOCWANDEV:
3246 		return compat_siocwandev(net, argp);
3247 	case SIOCGIFMAP:
3248 	case SIOCSIFMAP:
3249 		return compat_sioc_ifmap(net, cmd, argp);
3250 	case SIOCBONDENSLAVE:
3251 	case SIOCBONDRELEASE:
3252 	case SIOCBONDSETHWADDR:
3253 	case SIOCBONDCHANGEACTIVE:
3254 		return bond_ioctl(net, cmd, argp);
3255 	case SIOCADDRT:
3256 	case SIOCDELRT:
3257 		return routing_ioctl(net, sock, cmd, argp);
3258 	case SIOCGSTAMP:
3259 		return do_siocgstamp(net, sock, cmd, argp);
3260 	case SIOCGSTAMPNS:
3261 		return do_siocgstampns(net, sock, cmd, argp);
3262 	case SIOCBONDSLAVEINFOQUERY:
3263 	case SIOCBONDINFOQUERY:
3264 	case SIOCSHWTSTAMP:
3265 	case SIOCGHWTSTAMP:
3266 		return compat_ifr_data_ioctl(net, cmd, argp);
3267 
3268 	case FIOSETOWN:
3269 	case SIOCSPGRP:
3270 	case FIOGETOWN:
3271 	case SIOCGPGRP:
3272 	case SIOCBRADDBR:
3273 	case SIOCBRDELBR:
3274 	case SIOCGIFVLAN:
3275 	case SIOCSIFVLAN:
3276 	case SIOCADDDLCI:
3277 	case SIOCDELDLCI:
3278 		return sock_ioctl(file, cmd, arg);
3279 
3280 	case SIOCGIFFLAGS:
3281 	case SIOCSIFFLAGS:
3282 	case SIOCGIFMETRIC:
3283 	case SIOCSIFMETRIC:
3284 	case SIOCGIFMTU:
3285 	case SIOCSIFMTU:
3286 	case SIOCGIFMEM:
3287 	case SIOCSIFMEM:
3288 	case SIOCGIFHWADDR:
3289 	case SIOCSIFHWADDR:
3290 	case SIOCADDMULTI:
3291 	case SIOCDELMULTI:
3292 	case SIOCGIFINDEX:
3293 	case SIOCGIFADDR:
3294 	case SIOCSIFADDR:
3295 	case SIOCSIFHWBROADCAST:
3296 	case SIOCDIFADDR:
3297 	case SIOCGIFBRDADDR:
3298 	case SIOCSIFBRDADDR:
3299 	case SIOCGIFDSTADDR:
3300 	case SIOCSIFDSTADDR:
3301 	case SIOCGIFNETMASK:
3302 	case SIOCSIFNETMASK:
3303 	case SIOCSIFPFLAGS:
3304 	case SIOCGIFPFLAGS:
3305 	case SIOCGIFTXQLEN:
3306 	case SIOCSIFTXQLEN:
3307 	case SIOCBRADDIF:
3308 	case SIOCBRDELIF:
3309 	case SIOCSIFNAME:
3310 	case SIOCGMIIPHY:
3311 	case SIOCGMIIREG:
3312 	case SIOCSMIIREG:
3313 		return dev_ifsioc(net, sock, cmd, argp);
3314 
3315 	case SIOCSARP:
3316 	case SIOCGARP:
3317 	case SIOCDARP:
3318 	case SIOCATMARK:
3319 		return sock_do_ioctl(net, sock, cmd, arg);
3320 	}
3321 
3322 	return -ENOIOCTLCMD;
3323 }
3324 
3325 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3326 			      unsigned long arg)
3327 {
3328 	struct socket *sock = file->private_data;
3329 	int ret = -ENOIOCTLCMD;
3330 	struct sock *sk;
3331 	struct net *net;
3332 
3333 	sk = sock->sk;
3334 	net = sock_net(sk);
3335 
3336 	if (sock->ops->compat_ioctl)
3337 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3338 
3339 	if (ret == -ENOIOCTLCMD &&
3340 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3341 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3342 
3343 	if (ret == -ENOIOCTLCMD)
3344 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3345 
3346 	return ret;
3347 }
3348 #endif
3349 
3350 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3351 {
3352 	return sock->ops->bind(sock, addr, addrlen);
3353 }
3354 EXPORT_SYMBOL(kernel_bind);
3355 
3356 int kernel_listen(struct socket *sock, int backlog)
3357 {
3358 	return sock->ops->listen(sock, backlog);
3359 }
3360 EXPORT_SYMBOL(kernel_listen);
3361 
3362 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3363 {
3364 	struct sock *sk = sock->sk;
3365 	int err;
3366 
3367 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3368 			       newsock);
3369 	if (err < 0)
3370 		goto done;
3371 
3372 	err = sock->ops->accept(sock, *newsock, flags);
3373 	if (err < 0) {
3374 		sock_release(*newsock);
3375 		*newsock = NULL;
3376 		goto done;
3377 	}
3378 
3379 	(*newsock)->ops = sock->ops;
3380 	__module_get((*newsock)->ops->owner);
3381 
3382 done:
3383 	return err;
3384 }
3385 EXPORT_SYMBOL(kernel_accept);
3386 
3387 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3388 		   int flags)
3389 {
3390 	return sock->ops->connect(sock, addr, addrlen, flags);
3391 }
3392 EXPORT_SYMBOL(kernel_connect);
3393 
3394 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3395 			 int *addrlen)
3396 {
3397 	return sock->ops->getname(sock, addr, addrlen, 0);
3398 }
3399 EXPORT_SYMBOL(kernel_getsockname);
3400 
3401 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3402 			 int *addrlen)
3403 {
3404 	return sock->ops->getname(sock, addr, addrlen, 1);
3405 }
3406 EXPORT_SYMBOL(kernel_getpeername);
3407 
3408 int kernel_getsockopt(struct socket *sock, int level, int optname,
3409 			char *optval, int *optlen)
3410 {
3411 	mm_segment_t oldfs = get_fs();
3412 	char __user *uoptval;
3413 	int __user *uoptlen;
3414 	int err;
3415 
3416 	uoptval = (char __user __force *) optval;
3417 	uoptlen = (int __user __force *) optlen;
3418 
3419 	set_fs(KERNEL_DS);
3420 	if (level == SOL_SOCKET)
3421 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3422 	else
3423 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3424 					    uoptlen);
3425 	set_fs(oldfs);
3426 	return err;
3427 }
3428 EXPORT_SYMBOL(kernel_getsockopt);
3429 
3430 int kernel_setsockopt(struct socket *sock, int level, int optname,
3431 			char *optval, unsigned int optlen)
3432 {
3433 	mm_segment_t oldfs = get_fs();
3434 	char __user *uoptval;
3435 	int err;
3436 
3437 	uoptval = (char __user __force *) optval;
3438 
3439 	set_fs(KERNEL_DS);
3440 	if (level == SOL_SOCKET)
3441 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3442 	else
3443 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3444 					    optlen);
3445 	set_fs(oldfs);
3446 	return err;
3447 }
3448 EXPORT_SYMBOL(kernel_setsockopt);
3449 
3450 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3451 		    size_t size, int flags)
3452 {
3453 	if (sock->ops->sendpage)
3454 		return sock->ops->sendpage(sock, page, offset, size, flags);
3455 
3456 	return sock_no_sendpage(sock, page, offset, size, flags);
3457 }
3458 EXPORT_SYMBOL(kernel_sendpage);
3459 
3460 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3461 {
3462 	mm_segment_t oldfs = get_fs();
3463 	int err;
3464 
3465 	set_fs(KERNEL_DS);
3466 	err = sock->ops->ioctl(sock, cmd, arg);
3467 	set_fs(oldfs);
3468 
3469 	return err;
3470 }
3471 EXPORT_SYMBOL(kernel_sock_ioctl);
3472 
3473 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3474 {
3475 	return sock->ops->shutdown(sock, how);
3476 }
3477 EXPORT_SYMBOL(kernel_sock_shutdown);
3478