1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 #include <linux/nospec.h> 93 94 #include <linux/uaccess.h> 95 #include <asm/unistd.h> 96 97 #include <net/compat.h> 98 #include <net/wext.h> 99 #include <net/cls_cgroup.h> 100 101 #include <net/sock.h> 102 #include <linux/netfilter.h> 103 104 #include <linux/if_tun.h> 105 #include <linux/ipv6_route.h> 106 #include <linux/route.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183 { 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212 { 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 static struct kmem_cache *sock_inode_cachep __ro_after_init; 238 239 static struct inode *sock_alloc_inode(struct super_block *sb) 240 { 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 ei->socket.wq = wq; 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 kfree_rcu(ei->socket.wq, rcu); 272 kmem_cache_free(sock_inode_cachep, ei); 273 } 274 275 static void init_once(void *foo) 276 { 277 struct socket_alloc *ei = (struct socket_alloc *)foo; 278 279 inode_init_once(&ei->vfs_inode); 280 } 281 282 static void init_inodecache(void) 283 { 284 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 285 sizeof(struct socket_alloc), 286 0, 287 (SLAB_HWCACHE_ALIGN | 288 SLAB_RECLAIM_ACCOUNT | 289 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 290 init_once); 291 BUG_ON(sock_inode_cachep == NULL); 292 } 293 294 static const struct super_operations sockfs_ops = { 295 .alloc_inode = sock_alloc_inode, 296 .destroy_inode = sock_destroy_inode, 297 .statfs = simple_statfs, 298 }; 299 300 /* 301 * sockfs_dname() is called from d_path(). 302 */ 303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 304 { 305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 306 d_inode(dentry)->i_ino); 307 } 308 309 static const struct dentry_operations sockfs_dentry_operations = { 310 .d_dname = sockfs_dname, 311 }; 312 313 static int sockfs_xattr_get(const struct xattr_handler *handler, 314 struct dentry *dentry, struct inode *inode, 315 const char *suffix, void *value, size_t size) 316 { 317 if (value) { 318 if (dentry->d_name.len + 1 > size) 319 return -ERANGE; 320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 321 } 322 return dentry->d_name.len + 1; 323 } 324 325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 328 329 static const struct xattr_handler sockfs_xattr_handler = { 330 .name = XATTR_NAME_SOCKPROTONAME, 331 .get = sockfs_xattr_get, 332 }; 333 334 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 335 struct dentry *dentry, struct inode *inode, 336 const char *suffix, const void *value, 337 size_t size, int flags) 338 { 339 /* Handled by LSM. */ 340 return -EAGAIN; 341 } 342 343 static const struct xattr_handler sockfs_security_xattr_handler = { 344 .prefix = XATTR_SECURITY_PREFIX, 345 .set = sockfs_security_xattr_set, 346 }; 347 348 static const struct xattr_handler *sockfs_xattr_handlers[] = { 349 &sockfs_xattr_handler, 350 &sockfs_security_xattr_handler, 351 NULL 352 }; 353 354 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 355 int flags, const char *dev_name, void *data) 356 { 357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 358 sockfs_xattr_handlers, 359 &sockfs_dentry_operations, SOCKFS_MAGIC); 360 } 361 362 static struct vfsmount *sock_mnt __read_mostly; 363 364 static struct file_system_type sock_fs_type = { 365 .name = "sockfs", 366 .mount = sockfs_mount, 367 .kill_sb = kill_anon_super, 368 }; 369 370 /* 371 * Obtains the first available file descriptor and sets it up for use. 372 * 373 * These functions create file structures and maps them to fd space 374 * of the current process. On success it returns file descriptor 375 * and file struct implicitly stored in sock->file. 376 * Note that another thread may close file descriptor before we return 377 * from this function. We use the fact that now we do not refer 378 * to socket after mapping. If one day we will need it, this 379 * function will increment ref. count on file by 1. 380 * 381 * In any case returned fd MAY BE not valid! 382 * This race condition is unavoidable 383 * with shared fd spaces, we cannot solve it inside kernel, 384 * but we take care of internal coherence yet. 385 */ 386 387 /** 388 * sock_alloc_file - Bind a &socket to a &file 389 * @sock: socket 390 * @flags: file status flags 391 * @dname: protocol name 392 * 393 * Returns the &file bound with @sock, implicitly storing it 394 * in sock->file. If dname is %NULL, sets to "". 395 * On failure the return is a ERR pointer (see linux/err.h). 396 * This function uses GFP_KERNEL internally. 397 */ 398 399 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 400 { 401 struct file *file; 402 403 if (!dname) 404 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 405 406 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 407 O_RDWR | (flags & O_NONBLOCK), 408 &socket_file_ops); 409 if (IS_ERR(file)) { 410 sock_release(sock); 411 return file; 412 } 413 414 sock->file = file; 415 file->private_data = sock; 416 return file; 417 } 418 EXPORT_SYMBOL(sock_alloc_file); 419 420 static int sock_map_fd(struct socket *sock, int flags) 421 { 422 struct file *newfile; 423 int fd = get_unused_fd_flags(flags); 424 if (unlikely(fd < 0)) { 425 sock_release(sock); 426 return fd; 427 } 428 429 newfile = sock_alloc_file(sock, flags, NULL); 430 if (likely(!IS_ERR(newfile))) { 431 fd_install(fd, newfile); 432 return fd; 433 } 434 435 put_unused_fd(fd); 436 return PTR_ERR(newfile); 437 } 438 439 /** 440 * sock_from_file - Return the &socket bounded to @file. 441 * @file: file 442 * @err: pointer to an error code return 443 * 444 * On failure returns %NULL and assigns -ENOTSOCK to @err. 445 */ 446 447 struct socket *sock_from_file(struct file *file, int *err) 448 { 449 if (file->f_op == &socket_file_ops) 450 return file->private_data; /* set in sock_map_fd */ 451 452 *err = -ENOTSOCK; 453 return NULL; 454 } 455 EXPORT_SYMBOL(sock_from_file); 456 457 /** 458 * sockfd_lookup - Go from a file number to its socket slot 459 * @fd: file handle 460 * @err: pointer to an error code return 461 * 462 * The file handle passed in is locked and the socket it is bound 463 * to is returned. If an error occurs the err pointer is overwritten 464 * with a negative errno code and NULL is returned. The function checks 465 * for both invalid handles and passing a handle which is not a socket. 466 * 467 * On a success the socket object pointer is returned. 468 */ 469 470 struct socket *sockfd_lookup(int fd, int *err) 471 { 472 struct file *file; 473 struct socket *sock; 474 475 file = fget(fd); 476 if (!file) { 477 *err = -EBADF; 478 return NULL; 479 } 480 481 sock = sock_from_file(file, err); 482 if (!sock) 483 fput(file); 484 return sock; 485 } 486 EXPORT_SYMBOL(sockfd_lookup); 487 488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 489 { 490 struct fd f = fdget(fd); 491 struct socket *sock; 492 493 *err = -EBADF; 494 if (f.file) { 495 sock = sock_from_file(f.file, err); 496 if (likely(sock)) { 497 *fput_needed = f.flags; 498 return sock; 499 } 500 fdput(f); 501 } 502 return NULL; 503 } 504 505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 506 size_t size) 507 { 508 ssize_t len; 509 ssize_t used = 0; 510 511 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 512 if (len < 0) 513 return len; 514 used += len; 515 if (buffer) { 516 if (size < used) 517 return -ERANGE; 518 buffer += len; 519 } 520 521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 522 used += len; 523 if (buffer) { 524 if (size < used) 525 return -ERANGE; 526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 527 buffer += len; 528 } 529 530 return used; 531 } 532 533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 534 { 535 int err = simple_setattr(dentry, iattr); 536 537 if (!err && (iattr->ia_valid & ATTR_UID)) { 538 struct socket *sock = SOCKET_I(d_inode(dentry)); 539 540 if (sock->sk) 541 sock->sk->sk_uid = iattr->ia_uid; 542 else 543 err = -ENOENT; 544 } 545 546 return err; 547 } 548 549 static const struct inode_operations sockfs_inode_ops = { 550 .listxattr = sockfs_listxattr, 551 .setattr = sockfs_setattr, 552 }; 553 554 /** 555 * sock_alloc - allocate a socket 556 * 557 * Allocate a new inode and socket object. The two are bound together 558 * and initialised. The socket is then returned. If we are out of inodes 559 * NULL is returned. This functions uses GFP_KERNEL internally. 560 */ 561 562 struct socket *sock_alloc(void) 563 { 564 struct inode *inode; 565 struct socket *sock; 566 567 inode = new_inode_pseudo(sock_mnt->mnt_sb); 568 if (!inode) 569 return NULL; 570 571 sock = SOCKET_I(inode); 572 573 inode->i_ino = get_next_ino(); 574 inode->i_mode = S_IFSOCK | S_IRWXUGO; 575 inode->i_uid = current_fsuid(); 576 inode->i_gid = current_fsgid(); 577 inode->i_op = &sockfs_inode_ops; 578 579 return sock; 580 } 581 EXPORT_SYMBOL(sock_alloc); 582 583 /** 584 * sock_release - close a socket 585 * @sock: socket to close 586 * 587 * The socket is released from the protocol stack if it has a release 588 * callback, and the inode is then released if the socket is bound to 589 * an inode not a file. 590 */ 591 592 static void __sock_release(struct socket *sock, struct inode *inode) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 if (inode) 598 inode_lock(inode); 599 sock->ops->release(sock); 600 sock->sk = NULL; 601 if (inode) 602 inode_unlock(inode); 603 sock->ops = NULL; 604 module_put(owner); 605 } 606 607 if (sock->wq->fasync_list) 608 pr_err("%s: fasync list not empty!\n", __func__); 609 610 if (!sock->file) { 611 iput(SOCK_INODE(sock)); 612 return; 613 } 614 sock->file = NULL; 615 } 616 617 void sock_release(struct socket *sock) 618 { 619 __sock_release(sock, NULL); 620 } 621 EXPORT_SYMBOL(sock_release); 622 623 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 624 { 625 u8 flags = *tx_flags; 626 627 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 628 flags |= SKBTX_HW_TSTAMP; 629 630 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 631 flags |= SKBTX_SW_TSTAMP; 632 633 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 634 flags |= SKBTX_SCHED_TSTAMP; 635 636 *tx_flags = flags; 637 } 638 EXPORT_SYMBOL(__sock_tx_timestamp); 639 640 /** 641 * sock_sendmsg - send a message through @sock 642 * @sock: socket 643 * @msg: message to send 644 * 645 * Sends @msg through @sock, passing through LSM. 646 * Returns the number of bytes sent, or an error code. 647 */ 648 649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 650 { 651 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 652 BUG_ON(ret == -EIOCBQUEUED); 653 return ret; 654 } 655 656 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 657 { 658 int err = security_socket_sendmsg(sock, msg, 659 msg_data_left(msg)); 660 661 return err ?: sock_sendmsg_nosec(sock, msg); 662 } 663 EXPORT_SYMBOL(sock_sendmsg); 664 665 /** 666 * kernel_sendmsg - send a message through @sock (kernel-space) 667 * @sock: socket 668 * @msg: message header 669 * @vec: kernel vec 670 * @num: vec array length 671 * @size: total message data size 672 * 673 * Builds the message data with @vec and sends it through @sock. 674 * Returns the number of bytes sent, or an error code. 675 */ 676 677 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 678 struct kvec *vec, size_t num, size_t size) 679 { 680 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 681 return sock_sendmsg(sock, msg); 682 } 683 EXPORT_SYMBOL(kernel_sendmsg); 684 685 /** 686 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 687 * @sk: sock 688 * @msg: message header 689 * @vec: output s/g array 690 * @num: output s/g array length 691 * @size: total message data size 692 * 693 * Builds the message data with @vec and sends it through @sock. 694 * Returns the number of bytes sent, or an error code. 695 * Caller must hold @sk. 696 */ 697 698 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 699 struct kvec *vec, size_t num, size_t size) 700 { 701 struct socket *sock = sk->sk_socket; 702 703 if (!sock->ops->sendmsg_locked) 704 return sock_no_sendmsg_locked(sk, msg, size); 705 706 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 707 708 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 709 } 710 EXPORT_SYMBOL(kernel_sendmsg_locked); 711 712 static bool skb_is_err_queue(const struct sk_buff *skb) 713 { 714 /* pkt_type of skbs enqueued on the error queue are set to 715 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 716 * in recvmsg, since skbs received on a local socket will never 717 * have a pkt_type of PACKET_OUTGOING. 718 */ 719 return skb->pkt_type == PACKET_OUTGOING; 720 } 721 722 /* On transmit, software and hardware timestamps are returned independently. 723 * As the two skb clones share the hardware timestamp, which may be updated 724 * before the software timestamp is received, a hardware TX timestamp may be 725 * returned only if there is no software TX timestamp. Ignore false software 726 * timestamps, which may be made in the __sock_recv_timestamp() call when the 727 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 728 * hardware timestamp. 729 */ 730 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 731 { 732 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 733 } 734 735 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 736 { 737 struct scm_ts_pktinfo ts_pktinfo; 738 struct net_device *orig_dev; 739 740 if (!skb_mac_header_was_set(skb)) 741 return; 742 743 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 744 745 rcu_read_lock(); 746 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 747 if (orig_dev) 748 ts_pktinfo.if_index = orig_dev->ifindex; 749 rcu_read_unlock(); 750 751 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 752 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 753 sizeof(ts_pktinfo), &ts_pktinfo); 754 } 755 756 /* 757 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 758 */ 759 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 760 struct sk_buff *skb) 761 { 762 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 763 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 764 struct scm_timestamping_internal tss; 765 766 int empty = 1, false_tstamp = 0; 767 struct skb_shared_hwtstamps *shhwtstamps = 768 skb_hwtstamps(skb); 769 770 /* Race occurred between timestamp enabling and packet 771 receiving. Fill in the current time for now. */ 772 if (need_software_tstamp && skb->tstamp == 0) { 773 __net_timestamp(skb); 774 false_tstamp = 1; 775 } 776 777 if (need_software_tstamp) { 778 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 779 if (new_tstamp) { 780 struct __kernel_sock_timeval tv; 781 782 skb_get_new_timestamp(skb, &tv); 783 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 784 sizeof(tv), &tv); 785 } else { 786 struct __kernel_old_timeval tv; 787 788 skb_get_timestamp(skb, &tv); 789 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 790 sizeof(tv), &tv); 791 } 792 } else { 793 if (new_tstamp) { 794 struct __kernel_timespec ts; 795 796 skb_get_new_timestampns(skb, &ts); 797 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 798 sizeof(ts), &ts); 799 } else { 800 struct timespec ts; 801 802 skb_get_timestampns(skb, &ts); 803 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 804 sizeof(ts), &ts); 805 } 806 } 807 } 808 809 memset(&tss, 0, sizeof(tss)); 810 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 811 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 812 empty = 0; 813 if (shhwtstamps && 814 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 815 !skb_is_swtx_tstamp(skb, false_tstamp) && 816 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 817 empty = 0; 818 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 819 !skb_is_err_queue(skb)) 820 put_ts_pktinfo(msg, skb); 821 } 822 if (!empty) { 823 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 824 put_cmsg_scm_timestamping64(msg, &tss); 825 else 826 put_cmsg_scm_timestamping(msg, &tss); 827 828 if (skb_is_err_queue(skb) && skb->len && 829 SKB_EXT_ERR(skb)->opt_stats) 830 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 831 skb->len, skb->data); 832 } 833 } 834 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 835 836 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 837 struct sk_buff *skb) 838 { 839 int ack; 840 841 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 842 return; 843 if (!skb->wifi_acked_valid) 844 return; 845 846 ack = skb->wifi_acked; 847 848 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 849 } 850 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 851 852 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 853 struct sk_buff *skb) 854 { 855 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 856 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 857 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 858 } 859 860 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 861 struct sk_buff *skb) 862 { 863 sock_recv_timestamp(msg, sk, skb); 864 sock_recv_drops(msg, sk, skb); 865 } 866 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 867 868 /** 869 * sock_recvmsg - receive a message from @sock 870 * @sock: socket 871 * @msg: message to receive 872 * @flags: message flags 873 * 874 * Receives @msg from @sock, passing through LSM. Returns the total number 875 * of bytes received, or an error. 876 */ 877 878 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 879 int flags) 880 { 881 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 882 } 883 884 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 885 { 886 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 887 888 return err ?: sock_recvmsg_nosec(sock, msg, flags); 889 } 890 EXPORT_SYMBOL(sock_recvmsg); 891 892 /** 893 * kernel_recvmsg - Receive a message from a socket (kernel space) 894 * @sock: The socket to receive the message from 895 * @msg: Received message 896 * @vec: Input s/g array for message data 897 * @num: Size of input s/g array 898 * @size: Number of bytes to read 899 * @flags: Message flags (MSG_DONTWAIT, etc...) 900 * 901 * On return the msg structure contains the scatter/gather array passed in the 902 * vec argument. The array is modified so that it consists of the unfilled 903 * portion of the original array. 904 * 905 * The returned value is the total number of bytes received, or an error. 906 */ 907 908 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 909 struct kvec *vec, size_t num, size_t size, int flags) 910 { 911 mm_segment_t oldfs = get_fs(); 912 int result; 913 914 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 915 set_fs(KERNEL_DS); 916 result = sock_recvmsg(sock, msg, flags); 917 set_fs(oldfs); 918 return result; 919 } 920 EXPORT_SYMBOL(kernel_recvmsg); 921 922 static ssize_t sock_sendpage(struct file *file, struct page *page, 923 int offset, size_t size, loff_t *ppos, int more) 924 { 925 struct socket *sock; 926 int flags; 927 928 sock = file->private_data; 929 930 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 931 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 932 flags |= more; 933 934 return kernel_sendpage(sock, page, offset, size, flags); 935 } 936 937 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 938 struct pipe_inode_info *pipe, size_t len, 939 unsigned int flags) 940 { 941 struct socket *sock = file->private_data; 942 943 if (unlikely(!sock->ops->splice_read)) 944 return generic_file_splice_read(file, ppos, pipe, len, flags); 945 946 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 947 } 948 949 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 950 { 951 struct file *file = iocb->ki_filp; 952 struct socket *sock = file->private_data; 953 struct msghdr msg = {.msg_iter = *to, 954 .msg_iocb = iocb}; 955 ssize_t res; 956 957 if (file->f_flags & O_NONBLOCK) 958 msg.msg_flags = MSG_DONTWAIT; 959 960 if (iocb->ki_pos != 0) 961 return -ESPIPE; 962 963 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 964 return 0; 965 966 res = sock_recvmsg(sock, &msg, msg.msg_flags); 967 *to = msg.msg_iter; 968 return res; 969 } 970 971 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 972 { 973 struct file *file = iocb->ki_filp; 974 struct socket *sock = file->private_data; 975 struct msghdr msg = {.msg_iter = *from, 976 .msg_iocb = iocb}; 977 ssize_t res; 978 979 if (iocb->ki_pos != 0) 980 return -ESPIPE; 981 982 if (file->f_flags & O_NONBLOCK) 983 msg.msg_flags = MSG_DONTWAIT; 984 985 if (sock->type == SOCK_SEQPACKET) 986 msg.msg_flags |= MSG_EOR; 987 988 res = sock_sendmsg(sock, &msg); 989 *from = msg.msg_iter; 990 return res; 991 } 992 993 /* 994 * Atomic setting of ioctl hooks to avoid race 995 * with module unload. 996 */ 997 998 static DEFINE_MUTEX(br_ioctl_mutex); 999 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1000 1001 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1002 { 1003 mutex_lock(&br_ioctl_mutex); 1004 br_ioctl_hook = hook; 1005 mutex_unlock(&br_ioctl_mutex); 1006 } 1007 EXPORT_SYMBOL(brioctl_set); 1008 1009 static DEFINE_MUTEX(vlan_ioctl_mutex); 1010 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1011 1012 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1013 { 1014 mutex_lock(&vlan_ioctl_mutex); 1015 vlan_ioctl_hook = hook; 1016 mutex_unlock(&vlan_ioctl_mutex); 1017 } 1018 EXPORT_SYMBOL(vlan_ioctl_set); 1019 1020 static DEFINE_MUTEX(dlci_ioctl_mutex); 1021 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1022 1023 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1024 { 1025 mutex_lock(&dlci_ioctl_mutex); 1026 dlci_ioctl_hook = hook; 1027 mutex_unlock(&dlci_ioctl_mutex); 1028 } 1029 EXPORT_SYMBOL(dlci_ioctl_set); 1030 1031 static long sock_do_ioctl(struct net *net, struct socket *sock, 1032 unsigned int cmd, unsigned long arg) 1033 { 1034 int err; 1035 void __user *argp = (void __user *)arg; 1036 1037 err = sock->ops->ioctl(sock, cmd, arg); 1038 1039 /* 1040 * If this ioctl is unknown try to hand it down 1041 * to the NIC driver. 1042 */ 1043 if (err != -ENOIOCTLCMD) 1044 return err; 1045 1046 if (cmd == SIOCGIFCONF) { 1047 struct ifconf ifc; 1048 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1049 return -EFAULT; 1050 rtnl_lock(); 1051 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1052 rtnl_unlock(); 1053 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1054 err = -EFAULT; 1055 } else { 1056 struct ifreq ifr; 1057 bool need_copyout; 1058 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1059 return -EFAULT; 1060 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1061 if (!err && need_copyout) 1062 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1063 return -EFAULT; 1064 } 1065 return err; 1066 } 1067 1068 /* 1069 * With an ioctl, arg may well be a user mode pointer, but we don't know 1070 * what to do with it - that's up to the protocol still. 1071 */ 1072 1073 /** 1074 * get_net_ns - increment the refcount of the network namespace 1075 * @ns: common namespace (net) 1076 * 1077 * Returns the net's common namespace. 1078 */ 1079 1080 struct ns_common *get_net_ns(struct ns_common *ns) 1081 { 1082 return &get_net(container_of(ns, struct net, ns))->ns; 1083 } 1084 EXPORT_SYMBOL_GPL(get_net_ns); 1085 1086 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1087 { 1088 struct socket *sock; 1089 struct sock *sk; 1090 void __user *argp = (void __user *)arg; 1091 int pid, err; 1092 struct net *net; 1093 1094 sock = file->private_data; 1095 sk = sock->sk; 1096 net = sock_net(sk); 1097 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1098 struct ifreq ifr; 1099 bool need_copyout; 1100 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1101 return -EFAULT; 1102 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1103 if (!err && need_copyout) 1104 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1105 return -EFAULT; 1106 } else 1107 #ifdef CONFIG_WEXT_CORE 1108 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1109 err = wext_handle_ioctl(net, cmd, argp); 1110 } else 1111 #endif 1112 switch (cmd) { 1113 case FIOSETOWN: 1114 case SIOCSPGRP: 1115 err = -EFAULT; 1116 if (get_user(pid, (int __user *)argp)) 1117 break; 1118 err = f_setown(sock->file, pid, 1); 1119 break; 1120 case FIOGETOWN: 1121 case SIOCGPGRP: 1122 err = put_user(f_getown(sock->file), 1123 (int __user *)argp); 1124 break; 1125 case SIOCGIFBR: 1126 case SIOCSIFBR: 1127 case SIOCBRADDBR: 1128 case SIOCBRDELBR: 1129 err = -ENOPKG; 1130 if (!br_ioctl_hook) 1131 request_module("bridge"); 1132 1133 mutex_lock(&br_ioctl_mutex); 1134 if (br_ioctl_hook) 1135 err = br_ioctl_hook(net, cmd, argp); 1136 mutex_unlock(&br_ioctl_mutex); 1137 break; 1138 case SIOCGIFVLAN: 1139 case SIOCSIFVLAN: 1140 err = -ENOPKG; 1141 if (!vlan_ioctl_hook) 1142 request_module("8021q"); 1143 1144 mutex_lock(&vlan_ioctl_mutex); 1145 if (vlan_ioctl_hook) 1146 err = vlan_ioctl_hook(net, argp); 1147 mutex_unlock(&vlan_ioctl_mutex); 1148 break; 1149 case SIOCADDDLCI: 1150 case SIOCDELDLCI: 1151 err = -ENOPKG; 1152 if (!dlci_ioctl_hook) 1153 request_module("dlci"); 1154 1155 mutex_lock(&dlci_ioctl_mutex); 1156 if (dlci_ioctl_hook) 1157 err = dlci_ioctl_hook(cmd, argp); 1158 mutex_unlock(&dlci_ioctl_mutex); 1159 break; 1160 case SIOCGSKNS: 1161 err = -EPERM; 1162 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1163 break; 1164 1165 err = open_related_ns(&net->ns, get_net_ns); 1166 break; 1167 case SIOCGSTAMP_OLD: 1168 case SIOCGSTAMPNS_OLD: 1169 if (!sock->ops->gettstamp) { 1170 err = -ENOIOCTLCMD; 1171 break; 1172 } 1173 err = sock->ops->gettstamp(sock, argp, 1174 cmd == SIOCGSTAMP_OLD, 1175 !IS_ENABLED(CONFIG_64BIT)); 1176 case SIOCGSTAMP_NEW: 1177 case SIOCGSTAMPNS_NEW: 1178 if (!sock->ops->gettstamp) { 1179 err = -ENOIOCTLCMD; 1180 break; 1181 } 1182 err = sock->ops->gettstamp(sock, argp, 1183 cmd == SIOCGSTAMP_NEW, 1184 false); 1185 break; 1186 default: 1187 err = sock_do_ioctl(net, sock, cmd, arg); 1188 break; 1189 } 1190 return err; 1191 } 1192 1193 /** 1194 * sock_create_lite - creates a socket 1195 * @family: protocol family (AF_INET, ...) 1196 * @type: communication type (SOCK_STREAM, ...) 1197 * @protocol: protocol (0, ...) 1198 * @res: new socket 1199 * 1200 * Creates a new socket and assigns it to @res, passing through LSM. 1201 * The new socket initialization is not complete, see kernel_accept(). 1202 * Returns 0 or an error. On failure @res is set to %NULL. 1203 * This function internally uses GFP_KERNEL. 1204 */ 1205 1206 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1207 { 1208 int err; 1209 struct socket *sock = NULL; 1210 1211 err = security_socket_create(family, type, protocol, 1); 1212 if (err) 1213 goto out; 1214 1215 sock = sock_alloc(); 1216 if (!sock) { 1217 err = -ENOMEM; 1218 goto out; 1219 } 1220 1221 sock->type = type; 1222 err = security_socket_post_create(sock, family, type, protocol, 1); 1223 if (err) 1224 goto out_release; 1225 1226 out: 1227 *res = sock; 1228 return err; 1229 out_release: 1230 sock_release(sock); 1231 sock = NULL; 1232 goto out; 1233 } 1234 EXPORT_SYMBOL(sock_create_lite); 1235 1236 /* No kernel lock held - perfect */ 1237 static __poll_t sock_poll(struct file *file, poll_table *wait) 1238 { 1239 struct socket *sock = file->private_data; 1240 __poll_t events = poll_requested_events(wait), flag = 0; 1241 1242 if (!sock->ops->poll) 1243 return 0; 1244 1245 if (sk_can_busy_loop(sock->sk)) { 1246 /* poll once if requested by the syscall */ 1247 if (events & POLL_BUSY_LOOP) 1248 sk_busy_loop(sock->sk, 1); 1249 1250 /* if this socket can poll_ll, tell the system call */ 1251 flag = POLL_BUSY_LOOP; 1252 } 1253 1254 return sock->ops->poll(file, sock, wait) | flag; 1255 } 1256 1257 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1258 { 1259 struct socket *sock = file->private_data; 1260 1261 return sock->ops->mmap(file, sock, vma); 1262 } 1263 1264 static int sock_close(struct inode *inode, struct file *filp) 1265 { 1266 __sock_release(SOCKET_I(inode), inode); 1267 return 0; 1268 } 1269 1270 /* 1271 * Update the socket async list 1272 * 1273 * Fasync_list locking strategy. 1274 * 1275 * 1. fasync_list is modified only under process context socket lock 1276 * i.e. under semaphore. 1277 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1278 * or under socket lock 1279 */ 1280 1281 static int sock_fasync(int fd, struct file *filp, int on) 1282 { 1283 struct socket *sock = filp->private_data; 1284 struct sock *sk = sock->sk; 1285 struct socket_wq *wq; 1286 1287 if (sk == NULL) 1288 return -EINVAL; 1289 1290 lock_sock(sk); 1291 wq = sock->wq; 1292 fasync_helper(fd, filp, on, &wq->fasync_list); 1293 1294 if (!wq->fasync_list) 1295 sock_reset_flag(sk, SOCK_FASYNC); 1296 else 1297 sock_set_flag(sk, SOCK_FASYNC); 1298 1299 release_sock(sk); 1300 return 0; 1301 } 1302 1303 /* This function may be called only under rcu_lock */ 1304 1305 int sock_wake_async(struct socket_wq *wq, int how, int band) 1306 { 1307 if (!wq || !wq->fasync_list) 1308 return -1; 1309 1310 switch (how) { 1311 case SOCK_WAKE_WAITD: 1312 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1313 break; 1314 goto call_kill; 1315 case SOCK_WAKE_SPACE: 1316 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1317 break; 1318 /* fall through */ 1319 case SOCK_WAKE_IO: 1320 call_kill: 1321 kill_fasync(&wq->fasync_list, SIGIO, band); 1322 break; 1323 case SOCK_WAKE_URG: 1324 kill_fasync(&wq->fasync_list, SIGURG, band); 1325 } 1326 1327 return 0; 1328 } 1329 EXPORT_SYMBOL(sock_wake_async); 1330 1331 /** 1332 * __sock_create - creates a socket 1333 * @net: net namespace 1334 * @family: protocol family (AF_INET, ...) 1335 * @type: communication type (SOCK_STREAM, ...) 1336 * @protocol: protocol (0, ...) 1337 * @res: new socket 1338 * @kern: boolean for kernel space sockets 1339 * 1340 * Creates a new socket and assigns it to @res, passing through LSM. 1341 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1342 * be set to true if the socket resides in kernel space. 1343 * This function internally uses GFP_KERNEL. 1344 */ 1345 1346 int __sock_create(struct net *net, int family, int type, int protocol, 1347 struct socket **res, int kern) 1348 { 1349 int err; 1350 struct socket *sock; 1351 const struct net_proto_family *pf; 1352 1353 /* 1354 * Check protocol is in range 1355 */ 1356 if (family < 0 || family >= NPROTO) 1357 return -EAFNOSUPPORT; 1358 if (type < 0 || type >= SOCK_MAX) 1359 return -EINVAL; 1360 1361 /* Compatibility. 1362 1363 This uglymoron is moved from INET layer to here to avoid 1364 deadlock in module load. 1365 */ 1366 if (family == PF_INET && type == SOCK_PACKET) { 1367 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1368 current->comm); 1369 family = PF_PACKET; 1370 } 1371 1372 err = security_socket_create(family, type, protocol, kern); 1373 if (err) 1374 return err; 1375 1376 /* 1377 * Allocate the socket and allow the family to set things up. if 1378 * the protocol is 0, the family is instructed to select an appropriate 1379 * default. 1380 */ 1381 sock = sock_alloc(); 1382 if (!sock) { 1383 net_warn_ratelimited("socket: no more sockets\n"); 1384 return -ENFILE; /* Not exactly a match, but its the 1385 closest posix thing */ 1386 } 1387 1388 sock->type = type; 1389 1390 #ifdef CONFIG_MODULES 1391 /* Attempt to load a protocol module if the find failed. 1392 * 1393 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1394 * requested real, full-featured networking support upon configuration. 1395 * Otherwise module support will break! 1396 */ 1397 if (rcu_access_pointer(net_families[family]) == NULL) 1398 request_module("net-pf-%d", family); 1399 #endif 1400 1401 rcu_read_lock(); 1402 pf = rcu_dereference(net_families[family]); 1403 err = -EAFNOSUPPORT; 1404 if (!pf) 1405 goto out_release; 1406 1407 /* 1408 * We will call the ->create function, that possibly is in a loadable 1409 * module, so we have to bump that loadable module refcnt first. 1410 */ 1411 if (!try_module_get(pf->owner)) 1412 goto out_release; 1413 1414 /* Now protected by module ref count */ 1415 rcu_read_unlock(); 1416 1417 err = pf->create(net, sock, protocol, kern); 1418 if (err < 0) 1419 goto out_module_put; 1420 1421 /* 1422 * Now to bump the refcnt of the [loadable] module that owns this 1423 * socket at sock_release time we decrement its refcnt. 1424 */ 1425 if (!try_module_get(sock->ops->owner)) 1426 goto out_module_busy; 1427 1428 /* 1429 * Now that we're done with the ->create function, the [loadable] 1430 * module can have its refcnt decremented 1431 */ 1432 module_put(pf->owner); 1433 err = security_socket_post_create(sock, family, type, protocol, kern); 1434 if (err) 1435 goto out_sock_release; 1436 *res = sock; 1437 1438 return 0; 1439 1440 out_module_busy: 1441 err = -EAFNOSUPPORT; 1442 out_module_put: 1443 sock->ops = NULL; 1444 module_put(pf->owner); 1445 out_sock_release: 1446 sock_release(sock); 1447 return err; 1448 1449 out_release: 1450 rcu_read_unlock(); 1451 goto out_sock_release; 1452 } 1453 EXPORT_SYMBOL(__sock_create); 1454 1455 /** 1456 * sock_create - creates a socket 1457 * @family: protocol family (AF_INET, ...) 1458 * @type: communication type (SOCK_STREAM, ...) 1459 * @protocol: protocol (0, ...) 1460 * @res: new socket 1461 * 1462 * A wrapper around __sock_create(). 1463 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1464 */ 1465 1466 int sock_create(int family, int type, int protocol, struct socket **res) 1467 { 1468 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1469 } 1470 EXPORT_SYMBOL(sock_create); 1471 1472 /** 1473 * sock_create_kern - creates a socket (kernel space) 1474 * @net: net namespace 1475 * @family: protocol family (AF_INET, ...) 1476 * @type: communication type (SOCK_STREAM, ...) 1477 * @protocol: protocol (0, ...) 1478 * @res: new socket 1479 * 1480 * A wrapper around __sock_create(). 1481 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1482 */ 1483 1484 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1485 { 1486 return __sock_create(net, family, type, protocol, res, 1); 1487 } 1488 EXPORT_SYMBOL(sock_create_kern); 1489 1490 int __sys_socket(int family, int type, int protocol) 1491 { 1492 int retval; 1493 struct socket *sock; 1494 int flags; 1495 1496 /* Check the SOCK_* constants for consistency. */ 1497 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1498 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1499 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1500 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1501 1502 flags = type & ~SOCK_TYPE_MASK; 1503 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1504 return -EINVAL; 1505 type &= SOCK_TYPE_MASK; 1506 1507 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1508 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1509 1510 retval = sock_create(family, type, protocol, &sock); 1511 if (retval < 0) 1512 return retval; 1513 1514 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1515 } 1516 1517 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1518 { 1519 return __sys_socket(family, type, protocol); 1520 } 1521 1522 /* 1523 * Create a pair of connected sockets. 1524 */ 1525 1526 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1527 { 1528 struct socket *sock1, *sock2; 1529 int fd1, fd2, err; 1530 struct file *newfile1, *newfile2; 1531 int flags; 1532 1533 flags = type & ~SOCK_TYPE_MASK; 1534 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1535 return -EINVAL; 1536 type &= SOCK_TYPE_MASK; 1537 1538 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1539 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1540 1541 /* 1542 * reserve descriptors and make sure we won't fail 1543 * to return them to userland. 1544 */ 1545 fd1 = get_unused_fd_flags(flags); 1546 if (unlikely(fd1 < 0)) 1547 return fd1; 1548 1549 fd2 = get_unused_fd_flags(flags); 1550 if (unlikely(fd2 < 0)) { 1551 put_unused_fd(fd1); 1552 return fd2; 1553 } 1554 1555 err = put_user(fd1, &usockvec[0]); 1556 if (err) 1557 goto out; 1558 1559 err = put_user(fd2, &usockvec[1]); 1560 if (err) 1561 goto out; 1562 1563 /* 1564 * Obtain the first socket and check if the underlying protocol 1565 * supports the socketpair call. 1566 */ 1567 1568 err = sock_create(family, type, protocol, &sock1); 1569 if (unlikely(err < 0)) 1570 goto out; 1571 1572 err = sock_create(family, type, protocol, &sock2); 1573 if (unlikely(err < 0)) { 1574 sock_release(sock1); 1575 goto out; 1576 } 1577 1578 err = security_socket_socketpair(sock1, sock2); 1579 if (unlikely(err)) { 1580 sock_release(sock2); 1581 sock_release(sock1); 1582 goto out; 1583 } 1584 1585 err = sock1->ops->socketpair(sock1, sock2); 1586 if (unlikely(err < 0)) { 1587 sock_release(sock2); 1588 sock_release(sock1); 1589 goto out; 1590 } 1591 1592 newfile1 = sock_alloc_file(sock1, flags, NULL); 1593 if (IS_ERR(newfile1)) { 1594 err = PTR_ERR(newfile1); 1595 sock_release(sock2); 1596 goto out; 1597 } 1598 1599 newfile2 = sock_alloc_file(sock2, flags, NULL); 1600 if (IS_ERR(newfile2)) { 1601 err = PTR_ERR(newfile2); 1602 fput(newfile1); 1603 goto out; 1604 } 1605 1606 audit_fd_pair(fd1, fd2); 1607 1608 fd_install(fd1, newfile1); 1609 fd_install(fd2, newfile2); 1610 return 0; 1611 1612 out: 1613 put_unused_fd(fd2); 1614 put_unused_fd(fd1); 1615 return err; 1616 } 1617 1618 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1619 int __user *, usockvec) 1620 { 1621 return __sys_socketpair(family, type, protocol, usockvec); 1622 } 1623 1624 /* 1625 * Bind a name to a socket. Nothing much to do here since it's 1626 * the protocol's responsibility to handle the local address. 1627 * 1628 * We move the socket address to kernel space before we call 1629 * the protocol layer (having also checked the address is ok). 1630 */ 1631 1632 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1633 { 1634 struct socket *sock; 1635 struct sockaddr_storage address; 1636 int err, fput_needed; 1637 1638 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1639 if (sock) { 1640 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1641 if (!err) { 1642 err = security_socket_bind(sock, 1643 (struct sockaddr *)&address, 1644 addrlen); 1645 if (!err) 1646 err = sock->ops->bind(sock, 1647 (struct sockaddr *) 1648 &address, addrlen); 1649 } 1650 fput_light(sock->file, fput_needed); 1651 } 1652 return err; 1653 } 1654 1655 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1656 { 1657 return __sys_bind(fd, umyaddr, addrlen); 1658 } 1659 1660 /* 1661 * Perform a listen. Basically, we allow the protocol to do anything 1662 * necessary for a listen, and if that works, we mark the socket as 1663 * ready for listening. 1664 */ 1665 1666 int __sys_listen(int fd, int backlog) 1667 { 1668 struct socket *sock; 1669 int err, fput_needed; 1670 int somaxconn; 1671 1672 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1673 if (sock) { 1674 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1675 if ((unsigned int)backlog > somaxconn) 1676 backlog = somaxconn; 1677 1678 err = security_socket_listen(sock, backlog); 1679 if (!err) 1680 err = sock->ops->listen(sock, backlog); 1681 1682 fput_light(sock->file, fput_needed); 1683 } 1684 return err; 1685 } 1686 1687 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1688 { 1689 return __sys_listen(fd, backlog); 1690 } 1691 1692 /* 1693 * For accept, we attempt to create a new socket, set up the link 1694 * with the client, wake up the client, then return the new 1695 * connected fd. We collect the address of the connector in kernel 1696 * space and move it to user at the very end. This is unclean because 1697 * we open the socket then return an error. 1698 * 1699 * 1003.1g adds the ability to recvmsg() to query connection pending 1700 * status to recvmsg. We need to add that support in a way thats 1701 * clean when we restructure accept also. 1702 */ 1703 1704 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1705 int __user *upeer_addrlen, int flags) 1706 { 1707 struct socket *sock, *newsock; 1708 struct file *newfile; 1709 int err, len, newfd, fput_needed; 1710 struct sockaddr_storage address; 1711 1712 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1713 return -EINVAL; 1714 1715 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1716 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1717 1718 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1719 if (!sock) 1720 goto out; 1721 1722 err = -ENFILE; 1723 newsock = sock_alloc(); 1724 if (!newsock) 1725 goto out_put; 1726 1727 newsock->type = sock->type; 1728 newsock->ops = sock->ops; 1729 1730 /* 1731 * We don't need try_module_get here, as the listening socket (sock) 1732 * has the protocol module (sock->ops->owner) held. 1733 */ 1734 __module_get(newsock->ops->owner); 1735 1736 newfd = get_unused_fd_flags(flags); 1737 if (unlikely(newfd < 0)) { 1738 err = newfd; 1739 sock_release(newsock); 1740 goto out_put; 1741 } 1742 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1743 if (IS_ERR(newfile)) { 1744 err = PTR_ERR(newfile); 1745 put_unused_fd(newfd); 1746 goto out_put; 1747 } 1748 1749 err = security_socket_accept(sock, newsock); 1750 if (err) 1751 goto out_fd; 1752 1753 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1754 if (err < 0) 1755 goto out_fd; 1756 1757 if (upeer_sockaddr) { 1758 len = newsock->ops->getname(newsock, 1759 (struct sockaddr *)&address, 2); 1760 if (len < 0) { 1761 err = -ECONNABORTED; 1762 goto out_fd; 1763 } 1764 err = move_addr_to_user(&address, 1765 len, upeer_sockaddr, upeer_addrlen); 1766 if (err < 0) 1767 goto out_fd; 1768 } 1769 1770 /* File flags are not inherited via accept() unlike another OSes. */ 1771 1772 fd_install(newfd, newfile); 1773 err = newfd; 1774 1775 out_put: 1776 fput_light(sock->file, fput_needed); 1777 out: 1778 return err; 1779 out_fd: 1780 fput(newfile); 1781 put_unused_fd(newfd); 1782 goto out_put; 1783 } 1784 1785 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1786 int __user *, upeer_addrlen, int, flags) 1787 { 1788 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1789 } 1790 1791 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1792 int __user *, upeer_addrlen) 1793 { 1794 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1795 } 1796 1797 /* 1798 * Attempt to connect to a socket with the server address. The address 1799 * is in user space so we verify it is OK and move it to kernel space. 1800 * 1801 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1802 * break bindings 1803 * 1804 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1805 * other SEQPACKET protocols that take time to connect() as it doesn't 1806 * include the -EINPROGRESS status for such sockets. 1807 */ 1808 1809 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1810 { 1811 struct socket *sock; 1812 struct sockaddr_storage address; 1813 int err, fput_needed; 1814 1815 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1816 if (!sock) 1817 goto out; 1818 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1819 if (err < 0) 1820 goto out_put; 1821 1822 err = 1823 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1824 if (err) 1825 goto out_put; 1826 1827 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1828 sock->file->f_flags); 1829 out_put: 1830 fput_light(sock->file, fput_needed); 1831 out: 1832 return err; 1833 } 1834 1835 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1836 int, addrlen) 1837 { 1838 return __sys_connect(fd, uservaddr, addrlen); 1839 } 1840 1841 /* 1842 * Get the local address ('name') of a socket object. Move the obtained 1843 * name to user space. 1844 */ 1845 1846 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1847 int __user *usockaddr_len) 1848 { 1849 struct socket *sock; 1850 struct sockaddr_storage address; 1851 int err, fput_needed; 1852 1853 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1854 if (!sock) 1855 goto out; 1856 1857 err = security_socket_getsockname(sock); 1858 if (err) 1859 goto out_put; 1860 1861 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1862 if (err < 0) 1863 goto out_put; 1864 /* "err" is actually length in this case */ 1865 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1866 1867 out_put: 1868 fput_light(sock->file, fput_needed); 1869 out: 1870 return err; 1871 } 1872 1873 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1874 int __user *, usockaddr_len) 1875 { 1876 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1877 } 1878 1879 /* 1880 * Get the remote address ('name') of a socket object. Move the obtained 1881 * name to user space. 1882 */ 1883 1884 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1885 int __user *usockaddr_len) 1886 { 1887 struct socket *sock; 1888 struct sockaddr_storage address; 1889 int err, fput_needed; 1890 1891 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1892 if (sock != NULL) { 1893 err = security_socket_getpeername(sock); 1894 if (err) { 1895 fput_light(sock->file, fput_needed); 1896 return err; 1897 } 1898 1899 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1900 if (err >= 0) 1901 /* "err" is actually length in this case */ 1902 err = move_addr_to_user(&address, err, usockaddr, 1903 usockaddr_len); 1904 fput_light(sock->file, fput_needed); 1905 } 1906 return err; 1907 } 1908 1909 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1910 int __user *, usockaddr_len) 1911 { 1912 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1913 } 1914 1915 /* 1916 * Send a datagram to a given address. We move the address into kernel 1917 * space and check the user space data area is readable before invoking 1918 * the protocol. 1919 */ 1920 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1921 struct sockaddr __user *addr, int addr_len) 1922 { 1923 struct socket *sock; 1924 struct sockaddr_storage address; 1925 int err; 1926 struct msghdr msg; 1927 struct iovec iov; 1928 int fput_needed; 1929 1930 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1931 if (unlikely(err)) 1932 return err; 1933 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1934 if (!sock) 1935 goto out; 1936 1937 msg.msg_name = NULL; 1938 msg.msg_control = NULL; 1939 msg.msg_controllen = 0; 1940 msg.msg_namelen = 0; 1941 if (addr) { 1942 err = move_addr_to_kernel(addr, addr_len, &address); 1943 if (err < 0) 1944 goto out_put; 1945 msg.msg_name = (struct sockaddr *)&address; 1946 msg.msg_namelen = addr_len; 1947 } 1948 if (sock->file->f_flags & O_NONBLOCK) 1949 flags |= MSG_DONTWAIT; 1950 msg.msg_flags = flags; 1951 err = sock_sendmsg(sock, &msg); 1952 1953 out_put: 1954 fput_light(sock->file, fput_needed); 1955 out: 1956 return err; 1957 } 1958 1959 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1960 unsigned int, flags, struct sockaddr __user *, addr, 1961 int, addr_len) 1962 { 1963 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1964 } 1965 1966 /* 1967 * Send a datagram down a socket. 1968 */ 1969 1970 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1971 unsigned int, flags) 1972 { 1973 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1974 } 1975 1976 /* 1977 * Receive a frame from the socket and optionally record the address of the 1978 * sender. We verify the buffers are writable and if needed move the 1979 * sender address from kernel to user space. 1980 */ 1981 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1982 struct sockaddr __user *addr, int __user *addr_len) 1983 { 1984 struct socket *sock; 1985 struct iovec iov; 1986 struct msghdr msg; 1987 struct sockaddr_storage address; 1988 int err, err2; 1989 int fput_needed; 1990 1991 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1992 if (unlikely(err)) 1993 return err; 1994 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1995 if (!sock) 1996 goto out; 1997 1998 msg.msg_control = NULL; 1999 msg.msg_controllen = 0; 2000 /* Save some cycles and don't copy the address if not needed */ 2001 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2002 /* We assume all kernel code knows the size of sockaddr_storage */ 2003 msg.msg_namelen = 0; 2004 msg.msg_iocb = NULL; 2005 msg.msg_flags = 0; 2006 if (sock->file->f_flags & O_NONBLOCK) 2007 flags |= MSG_DONTWAIT; 2008 err = sock_recvmsg(sock, &msg, flags); 2009 2010 if (err >= 0 && addr != NULL) { 2011 err2 = move_addr_to_user(&address, 2012 msg.msg_namelen, addr, addr_len); 2013 if (err2 < 0) 2014 err = err2; 2015 } 2016 2017 fput_light(sock->file, fput_needed); 2018 out: 2019 return err; 2020 } 2021 2022 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2023 unsigned int, flags, struct sockaddr __user *, addr, 2024 int __user *, addr_len) 2025 { 2026 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2027 } 2028 2029 /* 2030 * Receive a datagram from a socket. 2031 */ 2032 2033 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2034 unsigned int, flags) 2035 { 2036 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2037 } 2038 2039 /* 2040 * Set a socket option. Because we don't know the option lengths we have 2041 * to pass the user mode parameter for the protocols to sort out. 2042 */ 2043 2044 static int __sys_setsockopt(int fd, int level, int optname, 2045 char __user *optval, int optlen) 2046 { 2047 int err, fput_needed; 2048 struct socket *sock; 2049 2050 if (optlen < 0) 2051 return -EINVAL; 2052 2053 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2054 if (sock != NULL) { 2055 err = security_socket_setsockopt(sock, level, optname); 2056 if (err) 2057 goto out_put; 2058 2059 if (level == SOL_SOCKET) 2060 err = 2061 sock_setsockopt(sock, level, optname, optval, 2062 optlen); 2063 else 2064 err = 2065 sock->ops->setsockopt(sock, level, optname, optval, 2066 optlen); 2067 out_put: 2068 fput_light(sock->file, fput_needed); 2069 } 2070 return err; 2071 } 2072 2073 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2074 char __user *, optval, int, optlen) 2075 { 2076 return __sys_setsockopt(fd, level, optname, optval, optlen); 2077 } 2078 2079 /* 2080 * Get a socket option. Because we don't know the option lengths we have 2081 * to pass a user mode parameter for the protocols to sort out. 2082 */ 2083 2084 static int __sys_getsockopt(int fd, int level, int optname, 2085 char __user *optval, int __user *optlen) 2086 { 2087 int err, fput_needed; 2088 struct socket *sock; 2089 2090 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2091 if (sock != NULL) { 2092 err = security_socket_getsockopt(sock, level, optname); 2093 if (err) 2094 goto out_put; 2095 2096 if (level == SOL_SOCKET) 2097 err = 2098 sock_getsockopt(sock, level, optname, optval, 2099 optlen); 2100 else 2101 err = 2102 sock->ops->getsockopt(sock, level, optname, optval, 2103 optlen); 2104 out_put: 2105 fput_light(sock->file, fput_needed); 2106 } 2107 return err; 2108 } 2109 2110 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2111 char __user *, optval, int __user *, optlen) 2112 { 2113 return __sys_getsockopt(fd, level, optname, optval, optlen); 2114 } 2115 2116 /* 2117 * Shutdown a socket. 2118 */ 2119 2120 int __sys_shutdown(int fd, int how) 2121 { 2122 int err, fput_needed; 2123 struct socket *sock; 2124 2125 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2126 if (sock != NULL) { 2127 err = security_socket_shutdown(sock, how); 2128 if (!err) 2129 err = sock->ops->shutdown(sock, how); 2130 fput_light(sock->file, fput_needed); 2131 } 2132 return err; 2133 } 2134 2135 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2136 { 2137 return __sys_shutdown(fd, how); 2138 } 2139 2140 /* A couple of helpful macros for getting the address of the 32/64 bit 2141 * fields which are the same type (int / unsigned) on our platforms. 2142 */ 2143 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2144 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2145 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2146 2147 struct used_address { 2148 struct sockaddr_storage name; 2149 unsigned int name_len; 2150 }; 2151 2152 static int copy_msghdr_from_user(struct msghdr *kmsg, 2153 struct user_msghdr __user *umsg, 2154 struct sockaddr __user **save_addr, 2155 struct iovec **iov) 2156 { 2157 struct user_msghdr msg; 2158 ssize_t err; 2159 2160 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2161 return -EFAULT; 2162 2163 kmsg->msg_control = (void __force *)msg.msg_control; 2164 kmsg->msg_controllen = msg.msg_controllen; 2165 kmsg->msg_flags = msg.msg_flags; 2166 2167 kmsg->msg_namelen = msg.msg_namelen; 2168 if (!msg.msg_name) 2169 kmsg->msg_namelen = 0; 2170 2171 if (kmsg->msg_namelen < 0) 2172 return -EINVAL; 2173 2174 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2175 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2176 2177 if (save_addr) 2178 *save_addr = msg.msg_name; 2179 2180 if (msg.msg_name && kmsg->msg_namelen) { 2181 if (!save_addr) { 2182 err = move_addr_to_kernel(msg.msg_name, 2183 kmsg->msg_namelen, 2184 kmsg->msg_name); 2185 if (err < 0) 2186 return err; 2187 } 2188 } else { 2189 kmsg->msg_name = NULL; 2190 kmsg->msg_namelen = 0; 2191 } 2192 2193 if (msg.msg_iovlen > UIO_MAXIOV) 2194 return -EMSGSIZE; 2195 2196 kmsg->msg_iocb = NULL; 2197 2198 return import_iovec(save_addr ? READ : WRITE, 2199 msg.msg_iov, msg.msg_iovlen, 2200 UIO_FASTIOV, iov, &kmsg->msg_iter); 2201 } 2202 2203 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2204 struct msghdr *msg_sys, unsigned int flags, 2205 struct used_address *used_address, 2206 unsigned int allowed_msghdr_flags) 2207 { 2208 struct compat_msghdr __user *msg_compat = 2209 (struct compat_msghdr __user *)msg; 2210 struct sockaddr_storage address; 2211 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2212 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2213 __aligned(sizeof(__kernel_size_t)); 2214 /* 20 is size of ipv6_pktinfo */ 2215 unsigned char *ctl_buf = ctl; 2216 int ctl_len; 2217 ssize_t err; 2218 2219 msg_sys->msg_name = &address; 2220 2221 if (MSG_CMSG_COMPAT & flags) 2222 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2223 else 2224 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2225 if (err < 0) 2226 return err; 2227 2228 err = -ENOBUFS; 2229 2230 if (msg_sys->msg_controllen > INT_MAX) 2231 goto out_freeiov; 2232 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2233 ctl_len = msg_sys->msg_controllen; 2234 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2235 err = 2236 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2237 sizeof(ctl)); 2238 if (err) 2239 goto out_freeiov; 2240 ctl_buf = msg_sys->msg_control; 2241 ctl_len = msg_sys->msg_controllen; 2242 } else if (ctl_len) { 2243 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2244 CMSG_ALIGN(sizeof(struct cmsghdr))); 2245 if (ctl_len > sizeof(ctl)) { 2246 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2247 if (ctl_buf == NULL) 2248 goto out_freeiov; 2249 } 2250 err = -EFAULT; 2251 /* 2252 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2253 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2254 * checking falls down on this. 2255 */ 2256 if (copy_from_user(ctl_buf, 2257 (void __user __force *)msg_sys->msg_control, 2258 ctl_len)) 2259 goto out_freectl; 2260 msg_sys->msg_control = ctl_buf; 2261 } 2262 msg_sys->msg_flags = flags; 2263 2264 if (sock->file->f_flags & O_NONBLOCK) 2265 msg_sys->msg_flags |= MSG_DONTWAIT; 2266 /* 2267 * If this is sendmmsg() and current destination address is same as 2268 * previously succeeded address, omit asking LSM's decision. 2269 * used_address->name_len is initialized to UINT_MAX so that the first 2270 * destination address never matches. 2271 */ 2272 if (used_address && msg_sys->msg_name && 2273 used_address->name_len == msg_sys->msg_namelen && 2274 !memcmp(&used_address->name, msg_sys->msg_name, 2275 used_address->name_len)) { 2276 err = sock_sendmsg_nosec(sock, msg_sys); 2277 goto out_freectl; 2278 } 2279 err = sock_sendmsg(sock, msg_sys); 2280 /* 2281 * If this is sendmmsg() and sending to current destination address was 2282 * successful, remember it. 2283 */ 2284 if (used_address && err >= 0) { 2285 used_address->name_len = msg_sys->msg_namelen; 2286 if (msg_sys->msg_name) 2287 memcpy(&used_address->name, msg_sys->msg_name, 2288 used_address->name_len); 2289 } 2290 2291 out_freectl: 2292 if (ctl_buf != ctl) 2293 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2294 out_freeiov: 2295 kfree(iov); 2296 return err; 2297 } 2298 2299 /* 2300 * BSD sendmsg interface 2301 */ 2302 2303 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2304 bool forbid_cmsg_compat) 2305 { 2306 int fput_needed, err; 2307 struct msghdr msg_sys; 2308 struct socket *sock; 2309 2310 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2311 return -EINVAL; 2312 2313 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2314 if (!sock) 2315 goto out; 2316 2317 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2318 2319 fput_light(sock->file, fput_needed); 2320 out: 2321 return err; 2322 } 2323 2324 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2325 { 2326 return __sys_sendmsg(fd, msg, flags, true); 2327 } 2328 2329 /* 2330 * Linux sendmmsg interface 2331 */ 2332 2333 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2334 unsigned int flags, bool forbid_cmsg_compat) 2335 { 2336 int fput_needed, err, datagrams; 2337 struct socket *sock; 2338 struct mmsghdr __user *entry; 2339 struct compat_mmsghdr __user *compat_entry; 2340 struct msghdr msg_sys; 2341 struct used_address used_address; 2342 unsigned int oflags = flags; 2343 2344 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2345 return -EINVAL; 2346 2347 if (vlen > UIO_MAXIOV) 2348 vlen = UIO_MAXIOV; 2349 2350 datagrams = 0; 2351 2352 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2353 if (!sock) 2354 return err; 2355 2356 used_address.name_len = UINT_MAX; 2357 entry = mmsg; 2358 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2359 err = 0; 2360 flags |= MSG_BATCH; 2361 2362 while (datagrams < vlen) { 2363 if (datagrams == vlen - 1) 2364 flags = oflags; 2365 2366 if (MSG_CMSG_COMPAT & flags) { 2367 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2368 &msg_sys, flags, &used_address, MSG_EOR); 2369 if (err < 0) 2370 break; 2371 err = __put_user(err, &compat_entry->msg_len); 2372 ++compat_entry; 2373 } else { 2374 err = ___sys_sendmsg(sock, 2375 (struct user_msghdr __user *)entry, 2376 &msg_sys, flags, &used_address, MSG_EOR); 2377 if (err < 0) 2378 break; 2379 err = put_user(err, &entry->msg_len); 2380 ++entry; 2381 } 2382 2383 if (err) 2384 break; 2385 ++datagrams; 2386 if (msg_data_left(&msg_sys)) 2387 break; 2388 cond_resched(); 2389 } 2390 2391 fput_light(sock->file, fput_needed); 2392 2393 /* We only return an error if no datagrams were able to be sent */ 2394 if (datagrams != 0) 2395 return datagrams; 2396 2397 return err; 2398 } 2399 2400 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2401 unsigned int, vlen, unsigned int, flags) 2402 { 2403 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2404 } 2405 2406 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2407 struct msghdr *msg_sys, unsigned int flags, int nosec) 2408 { 2409 struct compat_msghdr __user *msg_compat = 2410 (struct compat_msghdr __user *)msg; 2411 struct iovec iovstack[UIO_FASTIOV]; 2412 struct iovec *iov = iovstack; 2413 unsigned long cmsg_ptr; 2414 int len; 2415 ssize_t err; 2416 2417 /* kernel mode address */ 2418 struct sockaddr_storage addr; 2419 2420 /* user mode address pointers */ 2421 struct sockaddr __user *uaddr; 2422 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2423 2424 msg_sys->msg_name = &addr; 2425 2426 if (MSG_CMSG_COMPAT & flags) 2427 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2428 else 2429 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2430 if (err < 0) 2431 return err; 2432 2433 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2434 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2435 2436 /* We assume all kernel code knows the size of sockaddr_storage */ 2437 msg_sys->msg_namelen = 0; 2438 2439 if (sock->file->f_flags & O_NONBLOCK) 2440 flags |= MSG_DONTWAIT; 2441 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2442 if (err < 0) 2443 goto out_freeiov; 2444 len = err; 2445 2446 if (uaddr != NULL) { 2447 err = move_addr_to_user(&addr, 2448 msg_sys->msg_namelen, uaddr, 2449 uaddr_len); 2450 if (err < 0) 2451 goto out_freeiov; 2452 } 2453 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2454 COMPAT_FLAGS(msg)); 2455 if (err) 2456 goto out_freeiov; 2457 if (MSG_CMSG_COMPAT & flags) 2458 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2459 &msg_compat->msg_controllen); 2460 else 2461 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2462 &msg->msg_controllen); 2463 if (err) 2464 goto out_freeiov; 2465 err = len; 2466 2467 out_freeiov: 2468 kfree(iov); 2469 return err; 2470 } 2471 2472 /* 2473 * BSD recvmsg interface 2474 */ 2475 2476 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2477 bool forbid_cmsg_compat) 2478 { 2479 int fput_needed, err; 2480 struct msghdr msg_sys; 2481 struct socket *sock; 2482 2483 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2484 return -EINVAL; 2485 2486 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2487 if (!sock) 2488 goto out; 2489 2490 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2491 2492 fput_light(sock->file, fput_needed); 2493 out: 2494 return err; 2495 } 2496 2497 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2498 unsigned int, flags) 2499 { 2500 return __sys_recvmsg(fd, msg, flags, true); 2501 } 2502 2503 /* 2504 * Linux recvmmsg interface 2505 */ 2506 2507 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2508 unsigned int vlen, unsigned int flags, 2509 struct timespec64 *timeout) 2510 { 2511 int fput_needed, err, datagrams; 2512 struct socket *sock; 2513 struct mmsghdr __user *entry; 2514 struct compat_mmsghdr __user *compat_entry; 2515 struct msghdr msg_sys; 2516 struct timespec64 end_time; 2517 struct timespec64 timeout64; 2518 2519 if (timeout && 2520 poll_select_set_timeout(&end_time, timeout->tv_sec, 2521 timeout->tv_nsec)) 2522 return -EINVAL; 2523 2524 datagrams = 0; 2525 2526 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2527 if (!sock) 2528 return err; 2529 2530 if (likely(!(flags & MSG_ERRQUEUE))) { 2531 err = sock_error(sock->sk); 2532 if (err) { 2533 datagrams = err; 2534 goto out_put; 2535 } 2536 } 2537 2538 entry = mmsg; 2539 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2540 2541 while (datagrams < vlen) { 2542 /* 2543 * No need to ask LSM for more than the first datagram. 2544 */ 2545 if (MSG_CMSG_COMPAT & flags) { 2546 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2547 &msg_sys, flags & ~MSG_WAITFORONE, 2548 datagrams); 2549 if (err < 0) 2550 break; 2551 err = __put_user(err, &compat_entry->msg_len); 2552 ++compat_entry; 2553 } else { 2554 err = ___sys_recvmsg(sock, 2555 (struct user_msghdr __user *)entry, 2556 &msg_sys, flags & ~MSG_WAITFORONE, 2557 datagrams); 2558 if (err < 0) 2559 break; 2560 err = put_user(err, &entry->msg_len); 2561 ++entry; 2562 } 2563 2564 if (err) 2565 break; 2566 ++datagrams; 2567 2568 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2569 if (flags & MSG_WAITFORONE) 2570 flags |= MSG_DONTWAIT; 2571 2572 if (timeout) { 2573 ktime_get_ts64(&timeout64); 2574 *timeout = timespec64_sub(end_time, timeout64); 2575 if (timeout->tv_sec < 0) { 2576 timeout->tv_sec = timeout->tv_nsec = 0; 2577 break; 2578 } 2579 2580 /* Timeout, return less than vlen datagrams */ 2581 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2582 break; 2583 } 2584 2585 /* Out of band data, return right away */ 2586 if (msg_sys.msg_flags & MSG_OOB) 2587 break; 2588 cond_resched(); 2589 } 2590 2591 if (err == 0) 2592 goto out_put; 2593 2594 if (datagrams == 0) { 2595 datagrams = err; 2596 goto out_put; 2597 } 2598 2599 /* 2600 * We may return less entries than requested (vlen) if the 2601 * sock is non block and there aren't enough datagrams... 2602 */ 2603 if (err != -EAGAIN) { 2604 /* 2605 * ... or if recvmsg returns an error after we 2606 * received some datagrams, where we record the 2607 * error to return on the next call or if the 2608 * app asks about it using getsockopt(SO_ERROR). 2609 */ 2610 sock->sk->sk_err = -err; 2611 } 2612 out_put: 2613 fput_light(sock->file, fput_needed); 2614 2615 return datagrams; 2616 } 2617 2618 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2619 unsigned int vlen, unsigned int flags, 2620 struct __kernel_timespec __user *timeout, 2621 struct old_timespec32 __user *timeout32) 2622 { 2623 int datagrams; 2624 struct timespec64 timeout_sys; 2625 2626 if (timeout && get_timespec64(&timeout_sys, timeout)) 2627 return -EFAULT; 2628 2629 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2630 return -EFAULT; 2631 2632 if (!timeout && !timeout32) 2633 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2634 2635 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2636 2637 if (datagrams <= 0) 2638 return datagrams; 2639 2640 if (timeout && put_timespec64(&timeout_sys, timeout)) 2641 datagrams = -EFAULT; 2642 2643 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2644 datagrams = -EFAULT; 2645 2646 return datagrams; 2647 } 2648 2649 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2650 unsigned int, vlen, unsigned int, flags, 2651 struct __kernel_timespec __user *, timeout) 2652 { 2653 if (flags & MSG_CMSG_COMPAT) 2654 return -EINVAL; 2655 2656 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2657 } 2658 2659 #ifdef CONFIG_COMPAT_32BIT_TIME 2660 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2661 unsigned int, vlen, unsigned int, flags, 2662 struct old_timespec32 __user *, timeout) 2663 { 2664 if (flags & MSG_CMSG_COMPAT) 2665 return -EINVAL; 2666 2667 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2668 } 2669 #endif 2670 2671 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2672 /* Argument list sizes for sys_socketcall */ 2673 #define AL(x) ((x) * sizeof(unsigned long)) 2674 static const unsigned char nargs[21] = { 2675 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2676 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2677 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2678 AL(4), AL(5), AL(4) 2679 }; 2680 2681 #undef AL 2682 2683 /* 2684 * System call vectors. 2685 * 2686 * Argument checking cleaned up. Saved 20% in size. 2687 * This function doesn't need to set the kernel lock because 2688 * it is set by the callees. 2689 */ 2690 2691 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2692 { 2693 unsigned long a[AUDITSC_ARGS]; 2694 unsigned long a0, a1; 2695 int err; 2696 unsigned int len; 2697 2698 if (call < 1 || call > SYS_SENDMMSG) 2699 return -EINVAL; 2700 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2701 2702 len = nargs[call]; 2703 if (len > sizeof(a)) 2704 return -EINVAL; 2705 2706 /* copy_from_user should be SMP safe. */ 2707 if (copy_from_user(a, args, len)) 2708 return -EFAULT; 2709 2710 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2711 if (err) 2712 return err; 2713 2714 a0 = a[0]; 2715 a1 = a[1]; 2716 2717 switch (call) { 2718 case SYS_SOCKET: 2719 err = __sys_socket(a0, a1, a[2]); 2720 break; 2721 case SYS_BIND: 2722 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2723 break; 2724 case SYS_CONNECT: 2725 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2726 break; 2727 case SYS_LISTEN: 2728 err = __sys_listen(a0, a1); 2729 break; 2730 case SYS_ACCEPT: 2731 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2732 (int __user *)a[2], 0); 2733 break; 2734 case SYS_GETSOCKNAME: 2735 err = 2736 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2737 (int __user *)a[2]); 2738 break; 2739 case SYS_GETPEERNAME: 2740 err = 2741 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2742 (int __user *)a[2]); 2743 break; 2744 case SYS_SOCKETPAIR: 2745 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2746 break; 2747 case SYS_SEND: 2748 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2749 NULL, 0); 2750 break; 2751 case SYS_SENDTO: 2752 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2753 (struct sockaddr __user *)a[4], a[5]); 2754 break; 2755 case SYS_RECV: 2756 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2757 NULL, NULL); 2758 break; 2759 case SYS_RECVFROM: 2760 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2761 (struct sockaddr __user *)a[4], 2762 (int __user *)a[5]); 2763 break; 2764 case SYS_SHUTDOWN: 2765 err = __sys_shutdown(a0, a1); 2766 break; 2767 case SYS_SETSOCKOPT: 2768 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2769 a[4]); 2770 break; 2771 case SYS_GETSOCKOPT: 2772 err = 2773 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2774 (int __user *)a[4]); 2775 break; 2776 case SYS_SENDMSG: 2777 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2778 a[2], true); 2779 break; 2780 case SYS_SENDMMSG: 2781 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2782 a[3], true); 2783 break; 2784 case SYS_RECVMSG: 2785 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2786 a[2], true); 2787 break; 2788 case SYS_RECVMMSG: 2789 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2790 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2791 a[2], a[3], 2792 (struct __kernel_timespec __user *)a[4], 2793 NULL); 2794 else 2795 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2796 a[2], a[3], NULL, 2797 (struct old_timespec32 __user *)a[4]); 2798 break; 2799 case SYS_ACCEPT4: 2800 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2801 (int __user *)a[2], a[3]); 2802 break; 2803 default: 2804 err = -EINVAL; 2805 break; 2806 } 2807 return err; 2808 } 2809 2810 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2811 2812 /** 2813 * sock_register - add a socket protocol handler 2814 * @ops: description of protocol 2815 * 2816 * This function is called by a protocol handler that wants to 2817 * advertise its address family, and have it linked into the 2818 * socket interface. The value ops->family corresponds to the 2819 * socket system call protocol family. 2820 */ 2821 int sock_register(const struct net_proto_family *ops) 2822 { 2823 int err; 2824 2825 if (ops->family >= NPROTO) { 2826 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2827 return -ENOBUFS; 2828 } 2829 2830 spin_lock(&net_family_lock); 2831 if (rcu_dereference_protected(net_families[ops->family], 2832 lockdep_is_held(&net_family_lock))) 2833 err = -EEXIST; 2834 else { 2835 rcu_assign_pointer(net_families[ops->family], ops); 2836 err = 0; 2837 } 2838 spin_unlock(&net_family_lock); 2839 2840 pr_info("NET: Registered protocol family %d\n", ops->family); 2841 return err; 2842 } 2843 EXPORT_SYMBOL(sock_register); 2844 2845 /** 2846 * sock_unregister - remove a protocol handler 2847 * @family: protocol family to remove 2848 * 2849 * This function is called by a protocol handler that wants to 2850 * remove its address family, and have it unlinked from the 2851 * new socket creation. 2852 * 2853 * If protocol handler is a module, then it can use module reference 2854 * counts to protect against new references. If protocol handler is not 2855 * a module then it needs to provide its own protection in 2856 * the ops->create routine. 2857 */ 2858 void sock_unregister(int family) 2859 { 2860 BUG_ON(family < 0 || family >= NPROTO); 2861 2862 spin_lock(&net_family_lock); 2863 RCU_INIT_POINTER(net_families[family], NULL); 2864 spin_unlock(&net_family_lock); 2865 2866 synchronize_rcu(); 2867 2868 pr_info("NET: Unregistered protocol family %d\n", family); 2869 } 2870 EXPORT_SYMBOL(sock_unregister); 2871 2872 bool sock_is_registered(int family) 2873 { 2874 return family < NPROTO && rcu_access_pointer(net_families[family]); 2875 } 2876 2877 static int __init sock_init(void) 2878 { 2879 int err; 2880 /* 2881 * Initialize the network sysctl infrastructure. 2882 */ 2883 err = net_sysctl_init(); 2884 if (err) 2885 goto out; 2886 2887 /* 2888 * Initialize skbuff SLAB cache 2889 */ 2890 skb_init(); 2891 2892 /* 2893 * Initialize the protocols module. 2894 */ 2895 2896 init_inodecache(); 2897 2898 err = register_filesystem(&sock_fs_type); 2899 if (err) 2900 goto out_fs; 2901 sock_mnt = kern_mount(&sock_fs_type); 2902 if (IS_ERR(sock_mnt)) { 2903 err = PTR_ERR(sock_mnt); 2904 goto out_mount; 2905 } 2906 2907 /* The real protocol initialization is performed in later initcalls. 2908 */ 2909 2910 #ifdef CONFIG_NETFILTER 2911 err = netfilter_init(); 2912 if (err) 2913 goto out; 2914 #endif 2915 2916 ptp_classifier_init(); 2917 2918 out: 2919 return err; 2920 2921 out_mount: 2922 unregister_filesystem(&sock_fs_type); 2923 out_fs: 2924 goto out; 2925 } 2926 2927 core_initcall(sock_init); /* early initcall */ 2928 2929 #ifdef CONFIG_PROC_FS 2930 void socket_seq_show(struct seq_file *seq) 2931 { 2932 seq_printf(seq, "sockets: used %d\n", 2933 sock_inuse_get(seq->private)); 2934 } 2935 #endif /* CONFIG_PROC_FS */ 2936 2937 #ifdef CONFIG_COMPAT 2938 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2939 { 2940 struct compat_ifconf ifc32; 2941 struct ifconf ifc; 2942 int err; 2943 2944 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2945 return -EFAULT; 2946 2947 ifc.ifc_len = ifc32.ifc_len; 2948 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2949 2950 rtnl_lock(); 2951 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2952 rtnl_unlock(); 2953 if (err) 2954 return err; 2955 2956 ifc32.ifc_len = ifc.ifc_len; 2957 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2958 return -EFAULT; 2959 2960 return 0; 2961 } 2962 2963 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2964 { 2965 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2966 bool convert_in = false, convert_out = false; 2967 size_t buf_size = 0; 2968 struct ethtool_rxnfc __user *rxnfc = NULL; 2969 struct ifreq ifr; 2970 u32 rule_cnt = 0, actual_rule_cnt; 2971 u32 ethcmd; 2972 u32 data; 2973 int ret; 2974 2975 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2976 return -EFAULT; 2977 2978 compat_rxnfc = compat_ptr(data); 2979 2980 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2981 return -EFAULT; 2982 2983 /* Most ethtool structures are defined without padding. 2984 * Unfortunately struct ethtool_rxnfc is an exception. 2985 */ 2986 switch (ethcmd) { 2987 default: 2988 break; 2989 case ETHTOOL_GRXCLSRLALL: 2990 /* Buffer size is variable */ 2991 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2992 return -EFAULT; 2993 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2994 return -ENOMEM; 2995 buf_size += rule_cnt * sizeof(u32); 2996 /* fall through */ 2997 case ETHTOOL_GRXRINGS: 2998 case ETHTOOL_GRXCLSRLCNT: 2999 case ETHTOOL_GRXCLSRULE: 3000 case ETHTOOL_SRXCLSRLINS: 3001 convert_out = true; 3002 /* fall through */ 3003 case ETHTOOL_SRXCLSRLDEL: 3004 buf_size += sizeof(struct ethtool_rxnfc); 3005 convert_in = true; 3006 rxnfc = compat_alloc_user_space(buf_size); 3007 break; 3008 } 3009 3010 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3011 return -EFAULT; 3012 3013 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3014 3015 if (convert_in) { 3016 /* We expect there to be holes between fs.m_ext and 3017 * fs.ring_cookie and at the end of fs, but nowhere else. 3018 */ 3019 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3020 sizeof(compat_rxnfc->fs.m_ext) != 3021 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3022 sizeof(rxnfc->fs.m_ext)); 3023 BUILD_BUG_ON( 3024 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3025 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3026 offsetof(struct ethtool_rxnfc, fs.location) - 3027 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3028 3029 if (copy_in_user(rxnfc, compat_rxnfc, 3030 (void __user *)(&rxnfc->fs.m_ext + 1) - 3031 (void __user *)rxnfc) || 3032 copy_in_user(&rxnfc->fs.ring_cookie, 3033 &compat_rxnfc->fs.ring_cookie, 3034 (void __user *)(&rxnfc->fs.location + 1) - 3035 (void __user *)&rxnfc->fs.ring_cookie)) 3036 return -EFAULT; 3037 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3038 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3039 return -EFAULT; 3040 } else if (copy_in_user(&rxnfc->rule_cnt, 3041 &compat_rxnfc->rule_cnt, 3042 sizeof(rxnfc->rule_cnt))) 3043 return -EFAULT; 3044 } 3045 3046 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3047 if (ret) 3048 return ret; 3049 3050 if (convert_out) { 3051 if (copy_in_user(compat_rxnfc, rxnfc, 3052 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3053 (const void __user *)rxnfc) || 3054 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3055 &rxnfc->fs.ring_cookie, 3056 (const void __user *)(&rxnfc->fs.location + 1) - 3057 (const void __user *)&rxnfc->fs.ring_cookie) || 3058 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3059 sizeof(rxnfc->rule_cnt))) 3060 return -EFAULT; 3061 3062 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3063 /* As an optimisation, we only copy the actual 3064 * number of rules that the underlying 3065 * function returned. Since Mallory might 3066 * change the rule count in user memory, we 3067 * check that it is less than the rule count 3068 * originally given (as the user buffer size), 3069 * which has been range-checked. 3070 */ 3071 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3072 return -EFAULT; 3073 if (actual_rule_cnt < rule_cnt) 3074 rule_cnt = actual_rule_cnt; 3075 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3076 &rxnfc->rule_locs[0], 3077 rule_cnt * sizeof(u32))) 3078 return -EFAULT; 3079 } 3080 } 3081 3082 return 0; 3083 } 3084 3085 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3086 { 3087 compat_uptr_t uptr32; 3088 struct ifreq ifr; 3089 void __user *saved; 3090 int err; 3091 3092 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3093 return -EFAULT; 3094 3095 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3096 return -EFAULT; 3097 3098 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3099 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3100 3101 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3102 if (!err) { 3103 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3104 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3105 err = -EFAULT; 3106 } 3107 return err; 3108 } 3109 3110 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3111 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3112 struct compat_ifreq __user *u_ifreq32) 3113 { 3114 struct ifreq ifreq; 3115 u32 data32; 3116 3117 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3118 return -EFAULT; 3119 if (get_user(data32, &u_ifreq32->ifr_data)) 3120 return -EFAULT; 3121 ifreq.ifr_data = compat_ptr(data32); 3122 3123 return dev_ioctl(net, cmd, &ifreq, NULL); 3124 } 3125 3126 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3127 unsigned int cmd, 3128 struct compat_ifreq __user *uifr32) 3129 { 3130 struct ifreq __user *uifr; 3131 int err; 3132 3133 /* Handle the fact that while struct ifreq has the same *layout* on 3134 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3135 * which are handled elsewhere, it still has different *size* due to 3136 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3137 * resulting in struct ifreq being 32 and 40 bytes respectively). 3138 * As a result, if the struct happens to be at the end of a page and 3139 * the next page isn't readable/writable, we get a fault. To prevent 3140 * that, copy back and forth to the full size. 3141 */ 3142 3143 uifr = compat_alloc_user_space(sizeof(*uifr)); 3144 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3145 return -EFAULT; 3146 3147 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3148 3149 if (!err) { 3150 switch (cmd) { 3151 case SIOCGIFFLAGS: 3152 case SIOCGIFMETRIC: 3153 case SIOCGIFMTU: 3154 case SIOCGIFMEM: 3155 case SIOCGIFHWADDR: 3156 case SIOCGIFINDEX: 3157 case SIOCGIFADDR: 3158 case SIOCGIFBRDADDR: 3159 case SIOCGIFDSTADDR: 3160 case SIOCGIFNETMASK: 3161 case SIOCGIFPFLAGS: 3162 case SIOCGIFTXQLEN: 3163 case SIOCGMIIPHY: 3164 case SIOCGMIIREG: 3165 case SIOCGIFNAME: 3166 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3167 err = -EFAULT; 3168 break; 3169 } 3170 } 3171 return err; 3172 } 3173 3174 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3175 struct compat_ifreq __user *uifr32) 3176 { 3177 struct ifreq ifr; 3178 struct compat_ifmap __user *uifmap32; 3179 int err; 3180 3181 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3182 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3183 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3184 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3185 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3186 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3187 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3188 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3189 if (err) 3190 return -EFAULT; 3191 3192 err = dev_ioctl(net, cmd, &ifr, NULL); 3193 3194 if (cmd == SIOCGIFMAP && !err) { 3195 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3196 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3197 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3198 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3199 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3200 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3201 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3202 if (err) 3203 err = -EFAULT; 3204 } 3205 return err; 3206 } 3207 3208 struct rtentry32 { 3209 u32 rt_pad1; 3210 struct sockaddr rt_dst; /* target address */ 3211 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3212 struct sockaddr rt_genmask; /* target network mask (IP) */ 3213 unsigned short rt_flags; 3214 short rt_pad2; 3215 u32 rt_pad3; 3216 unsigned char rt_tos; 3217 unsigned char rt_class; 3218 short rt_pad4; 3219 short rt_metric; /* +1 for binary compatibility! */ 3220 /* char * */ u32 rt_dev; /* forcing the device at add */ 3221 u32 rt_mtu; /* per route MTU/Window */ 3222 u32 rt_window; /* Window clamping */ 3223 unsigned short rt_irtt; /* Initial RTT */ 3224 }; 3225 3226 struct in6_rtmsg32 { 3227 struct in6_addr rtmsg_dst; 3228 struct in6_addr rtmsg_src; 3229 struct in6_addr rtmsg_gateway; 3230 u32 rtmsg_type; 3231 u16 rtmsg_dst_len; 3232 u16 rtmsg_src_len; 3233 u32 rtmsg_metric; 3234 u32 rtmsg_info; 3235 u32 rtmsg_flags; 3236 s32 rtmsg_ifindex; 3237 }; 3238 3239 static int routing_ioctl(struct net *net, struct socket *sock, 3240 unsigned int cmd, void __user *argp) 3241 { 3242 int ret; 3243 void *r = NULL; 3244 struct in6_rtmsg r6; 3245 struct rtentry r4; 3246 char devname[16]; 3247 u32 rtdev; 3248 mm_segment_t old_fs = get_fs(); 3249 3250 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3251 struct in6_rtmsg32 __user *ur6 = argp; 3252 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3253 3 * sizeof(struct in6_addr)); 3254 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3255 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3256 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3257 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3258 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3259 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3260 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3261 3262 r = (void *) &r6; 3263 } else { /* ipv4 */ 3264 struct rtentry32 __user *ur4 = argp; 3265 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3266 3 * sizeof(struct sockaddr)); 3267 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3268 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3269 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3270 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3271 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3272 ret |= get_user(rtdev, &(ur4->rt_dev)); 3273 if (rtdev) { 3274 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3275 r4.rt_dev = (char __user __force *)devname; 3276 devname[15] = 0; 3277 } else 3278 r4.rt_dev = NULL; 3279 3280 r = (void *) &r4; 3281 } 3282 3283 if (ret) { 3284 ret = -EFAULT; 3285 goto out; 3286 } 3287 3288 set_fs(KERNEL_DS); 3289 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3290 set_fs(old_fs); 3291 3292 out: 3293 return ret; 3294 } 3295 3296 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3297 * for some operations; this forces use of the newer bridge-utils that 3298 * use compatible ioctls 3299 */ 3300 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3301 { 3302 compat_ulong_t tmp; 3303 3304 if (get_user(tmp, argp)) 3305 return -EFAULT; 3306 if (tmp == BRCTL_GET_VERSION) 3307 return BRCTL_VERSION + 1; 3308 return -EINVAL; 3309 } 3310 3311 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3312 unsigned int cmd, unsigned long arg) 3313 { 3314 void __user *argp = compat_ptr(arg); 3315 struct sock *sk = sock->sk; 3316 struct net *net = sock_net(sk); 3317 3318 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3319 return compat_ifr_data_ioctl(net, cmd, argp); 3320 3321 switch (cmd) { 3322 case SIOCSIFBR: 3323 case SIOCGIFBR: 3324 return old_bridge_ioctl(argp); 3325 case SIOCGIFCONF: 3326 return compat_dev_ifconf(net, argp); 3327 case SIOCETHTOOL: 3328 return ethtool_ioctl(net, argp); 3329 case SIOCWANDEV: 3330 return compat_siocwandev(net, argp); 3331 case SIOCGIFMAP: 3332 case SIOCSIFMAP: 3333 return compat_sioc_ifmap(net, cmd, argp); 3334 case SIOCADDRT: 3335 case SIOCDELRT: 3336 return routing_ioctl(net, sock, cmd, argp); 3337 case SIOCGSTAMP_OLD: 3338 case SIOCGSTAMPNS_OLD: 3339 if (!sock->ops->gettstamp) 3340 return -ENOIOCTLCMD; 3341 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3342 !COMPAT_USE_64BIT_TIME); 3343 3344 case SIOCBONDSLAVEINFOQUERY: 3345 case SIOCBONDINFOQUERY: 3346 case SIOCSHWTSTAMP: 3347 case SIOCGHWTSTAMP: 3348 return compat_ifr_data_ioctl(net, cmd, argp); 3349 3350 case FIOSETOWN: 3351 case SIOCSPGRP: 3352 case FIOGETOWN: 3353 case SIOCGPGRP: 3354 case SIOCBRADDBR: 3355 case SIOCBRDELBR: 3356 case SIOCGIFVLAN: 3357 case SIOCSIFVLAN: 3358 case SIOCADDDLCI: 3359 case SIOCDELDLCI: 3360 case SIOCGSKNS: 3361 case SIOCGSTAMP_NEW: 3362 case SIOCGSTAMPNS_NEW: 3363 return sock_ioctl(file, cmd, arg); 3364 3365 case SIOCGIFFLAGS: 3366 case SIOCSIFFLAGS: 3367 case SIOCGIFMETRIC: 3368 case SIOCSIFMETRIC: 3369 case SIOCGIFMTU: 3370 case SIOCSIFMTU: 3371 case SIOCGIFMEM: 3372 case SIOCSIFMEM: 3373 case SIOCGIFHWADDR: 3374 case SIOCSIFHWADDR: 3375 case SIOCADDMULTI: 3376 case SIOCDELMULTI: 3377 case SIOCGIFINDEX: 3378 case SIOCGIFADDR: 3379 case SIOCSIFADDR: 3380 case SIOCSIFHWBROADCAST: 3381 case SIOCDIFADDR: 3382 case SIOCGIFBRDADDR: 3383 case SIOCSIFBRDADDR: 3384 case SIOCGIFDSTADDR: 3385 case SIOCSIFDSTADDR: 3386 case SIOCGIFNETMASK: 3387 case SIOCSIFNETMASK: 3388 case SIOCSIFPFLAGS: 3389 case SIOCGIFPFLAGS: 3390 case SIOCGIFTXQLEN: 3391 case SIOCSIFTXQLEN: 3392 case SIOCBRADDIF: 3393 case SIOCBRDELIF: 3394 case SIOCGIFNAME: 3395 case SIOCSIFNAME: 3396 case SIOCGMIIPHY: 3397 case SIOCGMIIREG: 3398 case SIOCSMIIREG: 3399 case SIOCBONDENSLAVE: 3400 case SIOCBONDRELEASE: 3401 case SIOCBONDSETHWADDR: 3402 case SIOCBONDCHANGEACTIVE: 3403 return compat_ifreq_ioctl(net, sock, cmd, argp); 3404 3405 case SIOCSARP: 3406 case SIOCGARP: 3407 case SIOCDARP: 3408 case SIOCATMARK: 3409 return sock_do_ioctl(net, sock, cmd, arg); 3410 } 3411 3412 return -ENOIOCTLCMD; 3413 } 3414 3415 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3416 unsigned long arg) 3417 { 3418 struct socket *sock = file->private_data; 3419 int ret = -ENOIOCTLCMD; 3420 struct sock *sk; 3421 struct net *net; 3422 3423 sk = sock->sk; 3424 net = sock_net(sk); 3425 3426 if (sock->ops->compat_ioctl) 3427 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3428 3429 if (ret == -ENOIOCTLCMD && 3430 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3431 ret = compat_wext_handle_ioctl(net, cmd, arg); 3432 3433 if (ret == -ENOIOCTLCMD) 3434 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3435 3436 return ret; 3437 } 3438 #endif 3439 3440 /** 3441 * kernel_bind - bind an address to a socket (kernel space) 3442 * @sock: socket 3443 * @addr: address 3444 * @addrlen: length of address 3445 * 3446 * Returns 0 or an error. 3447 */ 3448 3449 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3450 { 3451 return sock->ops->bind(sock, addr, addrlen); 3452 } 3453 EXPORT_SYMBOL(kernel_bind); 3454 3455 /** 3456 * kernel_listen - move socket to listening state (kernel space) 3457 * @sock: socket 3458 * @backlog: pending connections queue size 3459 * 3460 * Returns 0 or an error. 3461 */ 3462 3463 int kernel_listen(struct socket *sock, int backlog) 3464 { 3465 return sock->ops->listen(sock, backlog); 3466 } 3467 EXPORT_SYMBOL(kernel_listen); 3468 3469 /** 3470 * kernel_accept - accept a connection (kernel space) 3471 * @sock: listening socket 3472 * @newsock: new connected socket 3473 * @flags: flags 3474 * 3475 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3476 * If it fails, @newsock is guaranteed to be %NULL. 3477 * Returns 0 or an error. 3478 */ 3479 3480 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3481 { 3482 struct sock *sk = sock->sk; 3483 int err; 3484 3485 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3486 newsock); 3487 if (err < 0) 3488 goto done; 3489 3490 err = sock->ops->accept(sock, *newsock, flags, true); 3491 if (err < 0) { 3492 sock_release(*newsock); 3493 *newsock = NULL; 3494 goto done; 3495 } 3496 3497 (*newsock)->ops = sock->ops; 3498 __module_get((*newsock)->ops->owner); 3499 3500 done: 3501 return err; 3502 } 3503 EXPORT_SYMBOL(kernel_accept); 3504 3505 /** 3506 * kernel_connect - connect a socket (kernel space) 3507 * @sock: socket 3508 * @addr: address 3509 * @addrlen: address length 3510 * @flags: flags (O_NONBLOCK, ...) 3511 * 3512 * For datagram sockets, @addr is the addres to which datagrams are sent 3513 * by default, and the only address from which datagrams are received. 3514 * For stream sockets, attempts to connect to @addr. 3515 * Returns 0 or an error code. 3516 */ 3517 3518 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3519 int flags) 3520 { 3521 return sock->ops->connect(sock, addr, addrlen, flags); 3522 } 3523 EXPORT_SYMBOL(kernel_connect); 3524 3525 /** 3526 * kernel_getsockname - get the address which the socket is bound (kernel space) 3527 * @sock: socket 3528 * @addr: address holder 3529 * 3530 * Fills the @addr pointer with the address which the socket is bound. 3531 * Returns 0 or an error code. 3532 */ 3533 3534 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3535 { 3536 return sock->ops->getname(sock, addr, 0); 3537 } 3538 EXPORT_SYMBOL(kernel_getsockname); 3539 3540 /** 3541 * kernel_peername - get the address which the socket is connected (kernel space) 3542 * @sock: socket 3543 * @addr: address holder 3544 * 3545 * Fills the @addr pointer with the address which the socket is connected. 3546 * Returns 0 or an error code. 3547 */ 3548 3549 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3550 { 3551 return sock->ops->getname(sock, addr, 1); 3552 } 3553 EXPORT_SYMBOL(kernel_getpeername); 3554 3555 /** 3556 * kernel_getsockopt - get a socket option (kernel space) 3557 * @sock: socket 3558 * @level: API level (SOL_SOCKET, ...) 3559 * @optname: option tag 3560 * @optval: option value 3561 * @optlen: option length 3562 * 3563 * Assigns the option length to @optlen. 3564 * Returns 0 or an error. 3565 */ 3566 3567 int kernel_getsockopt(struct socket *sock, int level, int optname, 3568 char *optval, int *optlen) 3569 { 3570 mm_segment_t oldfs = get_fs(); 3571 char __user *uoptval; 3572 int __user *uoptlen; 3573 int err; 3574 3575 uoptval = (char __user __force *) optval; 3576 uoptlen = (int __user __force *) optlen; 3577 3578 set_fs(KERNEL_DS); 3579 if (level == SOL_SOCKET) 3580 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3581 else 3582 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3583 uoptlen); 3584 set_fs(oldfs); 3585 return err; 3586 } 3587 EXPORT_SYMBOL(kernel_getsockopt); 3588 3589 /** 3590 * kernel_setsockopt - set a socket option (kernel space) 3591 * @sock: socket 3592 * @level: API level (SOL_SOCKET, ...) 3593 * @optname: option tag 3594 * @optval: option value 3595 * @optlen: option length 3596 * 3597 * Returns 0 or an error. 3598 */ 3599 3600 int kernel_setsockopt(struct socket *sock, int level, int optname, 3601 char *optval, unsigned int optlen) 3602 { 3603 mm_segment_t oldfs = get_fs(); 3604 char __user *uoptval; 3605 int err; 3606 3607 uoptval = (char __user __force *) optval; 3608 3609 set_fs(KERNEL_DS); 3610 if (level == SOL_SOCKET) 3611 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3612 else 3613 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3614 optlen); 3615 set_fs(oldfs); 3616 return err; 3617 } 3618 EXPORT_SYMBOL(kernel_setsockopt); 3619 3620 /** 3621 * kernel_sendpage - send a &page through a socket (kernel space) 3622 * @sock: socket 3623 * @page: page 3624 * @offset: page offset 3625 * @size: total size in bytes 3626 * @flags: flags (MSG_DONTWAIT, ...) 3627 * 3628 * Returns the total amount sent in bytes or an error. 3629 */ 3630 3631 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3632 size_t size, int flags) 3633 { 3634 if (sock->ops->sendpage) 3635 return sock->ops->sendpage(sock, page, offset, size, flags); 3636 3637 return sock_no_sendpage(sock, page, offset, size, flags); 3638 } 3639 EXPORT_SYMBOL(kernel_sendpage); 3640 3641 /** 3642 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3643 * @sk: sock 3644 * @page: page 3645 * @offset: page offset 3646 * @size: total size in bytes 3647 * @flags: flags (MSG_DONTWAIT, ...) 3648 * 3649 * Returns the total amount sent in bytes or an error. 3650 * Caller must hold @sk. 3651 */ 3652 3653 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3654 size_t size, int flags) 3655 { 3656 struct socket *sock = sk->sk_socket; 3657 3658 if (sock->ops->sendpage_locked) 3659 return sock->ops->sendpage_locked(sk, page, offset, size, 3660 flags); 3661 3662 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3663 } 3664 EXPORT_SYMBOL(kernel_sendpage_locked); 3665 3666 /** 3667 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3668 * @sock: socket 3669 * @how: connection part 3670 * 3671 * Returns 0 or an error. 3672 */ 3673 3674 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3675 { 3676 return sock->ops->shutdown(sock, how); 3677 } 3678 EXPORT_SYMBOL(kernel_sock_shutdown); 3679 3680 /** 3681 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3682 * @sk: socket 3683 * 3684 * This routine returns the IP overhead imposed by a socket i.e. 3685 * the length of the underlying IP header, depending on whether 3686 * this is an IPv4 or IPv6 socket and the length from IP options turned 3687 * on at the socket. Assumes that the caller has a lock on the socket. 3688 */ 3689 3690 u32 kernel_sock_ip_overhead(struct sock *sk) 3691 { 3692 struct inet_sock *inet; 3693 struct ip_options_rcu *opt; 3694 u32 overhead = 0; 3695 #if IS_ENABLED(CONFIG_IPV6) 3696 struct ipv6_pinfo *np; 3697 struct ipv6_txoptions *optv6 = NULL; 3698 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3699 3700 if (!sk) 3701 return overhead; 3702 3703 switch (sk->sk_family) { 3704 case AF_INET: 3705 inet = inet_sk(sk); 3706 overhead += sizeof(struct iphdr); 3707 opt = rcu_dereference_protected(inet->inet_opt, 3708 sock_owned_by_user(sk)); 3709 if (opt) 3710 overhead += opt->opt.optlen; 3711 return overhead; 3712 #if IS_ENABLED(CONFIG_IPV6) 3713 case AF_INET6: 3714 np = inet6_sk(sk); 3715 overhead += sizeof(struct ipv6hdr); 3716 if (np) 3717 optv6 = rcu_dereference_protected(np->opt, 3718 sock_owned_by_user(sk)); 3719 if (optv6) 3720 overhead += (optv6->opt_flen + optv6->opt_nflen); 3721 return overhead; 3722 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3723 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3724 return overhead; 3725 } 3726 } 3727 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3728