1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/socket.h> 57 #include <linux/file.h> 58 #include <linux/net.h> 59 #include <linux/interrupt.h> 60 #include <linux/thread_info.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <linux/proc_fs.h> 64 #include <linux/seq_file.h> 65 #include <linux/mutex.h> 66 #include <linux/if_bridge.h> 67 #include <linux/if_frad.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 108 #ifdef CONFIG_NET_RX_BUSY_POLL 109 unsigned int sysctl_net_busy_read __read_mostly; 110 unsigned int sysctl_net_busy_poll __read_mostly; 111 #endif 112 113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 115 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 116 117 static int sock_close(struct inode *inode, struct file *file); 118 static __poll_t sock_poll(struct file *file, 119 struct poll_table_struct *wait); 120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 121 #ifdef CONFIG_COMPAT 122 static long compat_sock_ioctl(struct file *file, 123 unsigned int cmd, unsigned long arg); 124 #endif 125 static int sock_fasync(int fd, struct file *filp, int on); 126 static ssize_t sock_sendpage(struct file *file, struct page *page, 127 int offset, size_t size, loff_t *ppos, int more); 128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 129 struct pipe_inode_info *pipe, size_t len, 130 unsigned int flags); 131 132 /* 133 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 134 * in the operation structures but are done directly via the socketcall() multiplexor. 135 */ 136 137 static const struct file_operations socket_file_ops = { 138 .owner = THIS_MODULE, 139 .llseek = no_llseek, 140 .read_iter = sock_read_iter, 141 .write_iter = sock_write_iter, 142 .poll = sock_poll, 143 .unlocked_ioctl = sock_ioctl, 144 #ifdef CONFIG_COMPAT 145 .compat_ioctl = compat_sock_ioctl, 146 #endif 147 .mmap = sock_mmap, 148 .release = sock_close, 149 .fasync = sock_fasync, 150 .sendpage = sock_sendpage, 151 .splice_write = generic_splice_sendpage, 152 .splice_read = sock_splice_read, 153 }; 154 155 /* 156 * The protocol list. Each protocol is registered in here. 157 */ 158 159 static DEFINE_SPINLOCK(net_family_lock); 160 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 161 162 /* 163 * Support routines. 164 * Move socket addresses back and forth across the kernel/user 165 * divide and look after the messy bits. 166 */ 167 168 /** 169 * move_addr_to_kernel - copy a socket address into kernel space 170 * @uaddr: Address in user space 171 * @kaddr: Address in kernel space 172 * @ulen: Length in user space 173 * 174 * The address is copied into kernel space. If the provided address is 175 * too long an error code of -EINVAL is returned. If the copy gives 176 * invalid addresses -EFAULT is returned. On a success 0 is returned. 177 */ 178 179 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 180 { 181 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 182 return -EINVAL; 183 if (ulen == 0) 184 return 0; 185 if (copy_from_user(kaddr, uaddr, ulen)) 186 return -EFAULT; 187 return audit_sockaddr(ulen, kaddr); 188 } 189 190 /** 191 * move_addr_to_user - copy an address to user space 192 * @kaddr: kernel space address 193 * @klen: length of address in kernel 194 * @uaddr: user space address 195 * @ulen: pointer to user length field 196 * 197 * The value pointed to by ulen on entry is the buffer length available. 198 * This is overwritten with the buffer space used. -EINVAL is returned 199 * if an overlong buffer is specified or a negative buffer size. -EFAULT 200 * is returned if either the buffer or the length field are not 201 * accessible. 202 * After copying the data up to the limit the user specifies, the true 203 * length of the data is written over the length limit the user 204 * specified. Zero is returned for a success. 205 */ 206 207 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 208 void __user *uaddr, int __user *ulen) 209 { 210 int err; 211 int len; 212 213 BUG_ON(klen > sizeof(struct sockaddr_storage)); 214 err = get_user(len, ulen); 215 if (err) 216 return err; 217 if (len > klen) 218 len = klen; 219 if (len < 0) 220 return -EINVAL; 221 if (len) { 222 if (audit_sockaddr(klen, kaddr)) 223 return -ENOMEM; 224 if (copy_to_user(uaddr, kaddr, len)) 225 return -EFAULT; 226 } 227 /* 228 * "fromlen shall refer to the value before truncation.." 229 * 1003.1g 230 */ 231 return __put_user(klen, ulen); 232 } 233 234 static struct kmem_cache *sock_inode_cachep __ro_after_init; 235 236 static struct inode *sock_alloc_inode(struct super_block *sb) 237 { 238 struct socket_alloc *ei; 239 240 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 241 if (!ei) 242 return NULL; 243 init_waitqueue_head(&ei->socket.wq.wait); 244 ei->socket.wq.fasync_list = NULL; 245 ei->socket.wq.flags = 0; 246 247 ei->socket.state = SS_UNCONNECTED; 248 ei->socket.flags = 0; 249 ei->socket.ops = NULL; 250 ei->socket.sk = NULL; 251 ei->socket.file = NULL; 252 253 return &ei->vfs_inode; 254 } 255 256 static void sock_free_inode(struct inode *inode) 257 { 258 struct socket_alloc *ei; 259 260 ei = container_of(inode, struct socket_alloc, vfs_inode); 261 kmem_cache_free(sock_inode_cachep, ei); 262 } 263 264 static void init_once(void *foo) 265 { 266 struct socket_alloc *ei = (struct socket_alloc *)foo; 267 268 inode_init_once(&ei->vfs_inode); 269 } 270 271 static void init_inodecache(void) 272 { 273 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 274 sizeof(struct socket_alloc), 275 0, 276 (SLAB_HWCACHE_ALIGN | 277 SLAB_RECLAIM_ACCOUNT | 278 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 279 init_once); 280 BUG_ON(sock_inode_cachep == NULL); 281 } 282 283 static const struct super_operations sockfs_ops = { 284 .alloc_inode = sock_alloc_inode, 285 .free_inode = sock_free_inode, 286 .statfs = simple_statfs, 287 }; 288 289 /* 290 * sockfs_dname() is called from d_path(). 291 */ 292 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 293 { 294 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 295 d_inode(dentry)->i_ino); 296 } 297 298 static const struct dentry_operations sockfs_dentry_operations = { 299 .d_dname = sockfs_dname, 300 }; 301 302 static int sockfs_xattr_get(const struct xattr_handler *handler, 303 struct dentry *dentry, struct inode *inode, 304 const char *suffix, void *value, size_t size) 305 { 306 if (value) { 307 if (dentry->d_name.len + 1 > size) 308 return -ERANGE; 309 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 310 } 311 return dentry->d_name.len + 1; 312 } 313 314 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 315 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 316 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 317 318 static const struct xattr_handler sockfs_xattr_handler = { 319 .name = XATTR_NAME_SOCKPROTONAME, 320 .get = sockfs_xattr_get, 321 }; 322 323 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 324 struct dentry *dentry, struct inode *inode, 325 const char *suffix, const void *value, 326 size_t size, int flags) 327 { 328 /* Handled by LSM. */ 329 return -EAGAIN; 330 } 331 332 static const struct xattr_handler sockfs_security_xattr_handler = { 333 .prefix = XATTR_SECURITY_PREFIX, 334 .set = sockfs_security_xattr_set, 335 }; 336 337 static const struct xattr_handler *sockfs_xattr_handlers[] = { 338 &sockfs_xattr_handler, 339 &sockfs_security_xattr_handler, 340 NULL 341 }; 342 343 static int sockfs_init_fs_context(struct fs_context *fc) 344 { 345 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 346 if (!ctx) 347 return -ENOMEM; 348 ctx->ops = &sockfs_ops; 349 ctx->dops = &sockfs_dentry_operations; 350 ctx->xattr = sockfs_xattr_handlers; 351 return 0; 352 } 353 354 static struct vfsmount *sock_mnt __read_mostly; 355 356 static struct file_system_type sock_fs_type = { 357 .name = "sockfs", 358 .init_fs_context = sockfs_init_fs_context, 359 .kill_sb = kill_anon_super, 360 }; 361 362 /* 363 * Obtains the first available file descriptor and sets it up for use. 364 * 365 * These functions create file structures and maps them to fd space 366 * of the current process. On success it returns file descriptor 367 * and file struct implicitly stored in sock->file. 368 * Note that another thread may close file descriptor before we return 369 * from this function. We use the fact that now we do not refer 370 * to socket after mapping. If one day we will need it, this 371 * function will increment ref. count on file by 1. 372 * 373 * In any case returned fd MAY BE not valid! 374 * This race condition is unavoidable 375 * with shared fd spaces, we cannot solve it inside kernel, 376 * but we take care of internal coherence yet. 377 */ 378 379 /** 380 * sock_alloc_file - Bind a &socket to a &file 381 * @sock: socket 382 * @flags: file status flags 383 * @dname: protocol name 384 * 385 * Returns the &file bound with @sock, implicitly storing it 386 * in sock->file. If dname is %NULL, sets to "". 387 * On failure the return is a ERR pointer (see linux/err.h). 388 * This function uses GFP_KERNEL internally. 389 */ 390 391 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 392 { 393 struct file *file; 394 395 if (!dname) 396 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 397 398 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 399 O_RDWR | (flags & O_NONBLOCK), 400 &socket_file_ops); 401 if (IS_ERR(file)) { 402 sock_release(sock); 403 return file; 404 } 405 406 sock->file = file; 407 file->private_data = sock; 408 stream_open(SOCK_INODE(sock), file); 409 return file; 410 } 411 EXPORT_SYMBOL(sock_alloc_file); 412 413 static int sock_map_fd(struct socket *sock, int flags) 414 { 415 struct file *newfile; 416 int fd = get_unused_fd_flags(flags); 417 if (unlikely(fd < 0)) { 418 sock_release(sock); 419 return fd; 420 } 421 422 newfile = sock_alloc_file(sock, flags, NULL); 423 if (!IS_ERR(newfile)) { 424 fd_install(fd, newfile); 425 return fd; 426 } 427 428 put_unused_fd(fd); 429 return PTR_ERR(newfile); 430 } 431 432 /** 433 * sock_from_file - Return the &socket bounded to @file. 434 * @file: file 435 * @err: pointer to an error code return 436 * 437 * On failure returns %NULL and assigns -ENOTSOCK to @err. 438 */ 439 440 struct socket *sock_from_file(struct file *file, int *err) 441 { 442 if (file->f_op == &socket_file_ops) 443 return file->private_data; /* set in sock_map_fd */ 444 445 *err = -ENOTSOCK; 446 return NULL; 447 } 448 EXPORT_SYMBOL(sock_from_file); 449 450 /** 451 * sockfd_lookup - Go from a file number to its socket slot 452 * @fd: file handle 453 * @err: pointer to an error code return 454 * 455 * The file handle passed in is locked and the socket it is bound 456 * to is returned. If an error occurs the err pointer is overwritten 457 * with a negative errno code and NULL is returned. The function checks 458 * for both invalid handles and passing a handle which is not a socket. 459 * 460 * On a success the socket object pointer is returned. 461 */ 462 463 struct socket *sockfd_lookup(int fd, int *err) 464 { 465 struct file *file; 466 struct socket *sock; 467 468 file = fget(fd); 469 if (!file) { 470 *err = -EBADF; 471 return NULL; 472 } 473 474 sock = sock_from_file(file, err); 475 if (!sock) 476 fput(file); 477 return sock; 478 } 479 EXPORT_SYMBOL(sockfd_lookup); 480 481 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 482 { 483 struct fd f = fdget(fd); 484 struct socket *sock; 485 486 *err = -EBADF; 487 if (f.file) { 488 sock = sock_from_file(f.file, err); 489 if (likely(sock)) { 490 *fput_needed = f.flags; 491 return sock; 492 } 493 fdput(f); 494 } 495 return NULL; 496 } 497 498 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 499 size_t size) 500 { 501 ssize_t len; 502 ssize_t used = 0; 503 504 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 505 if (len < 0) 506 return len; 507 used += len; 508 if (buffer) { 509 if (size < used) 510 return -ERANGE; 511 buffer += len; 512 } 513 514 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 520 buffer += len; 521 } 522 523 return used; 524 } 525 526 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 527 { 528 int err = simple_setattr(dentry, iattr); 529 530 if (!err && (iattr->ia_valid & ATTR_UID)) { 531 struct socket *sock = SOCKET_I(d_inode(dentry)); 532 533 if (sock->sk) 534 sock->sk->sk_uid = iattr->ia_uid; 535 else 536 err = -ENOENT; 537 } 538 539 return err; 540 } 541 542 static const struct inode_operations sockfs_inode_ops = { 543 .listxattr = sockfs_listxattr, 544 .setattr = sockfs_setattr, 545 }; 546 547 /** 548 * sock_alloc - allocate a socket 549 * 550 * Allocate a new inode and socket object. The two are bound together 551 * and initialised. The socket is then returned. If we are out of inodes 552 * NULL is returned. This functions uses GFP_KERNEL internally. 553 */ 554 555 struct socket *sock_alloc(void) 556 { 557 struct inode *inode; 558 struct socket *sock; 559 560 inode = new_inode_pseudo(sock_mnt->mnt_sb); 561 if (!inode) 562 return NULL; 563 564 sock = SOCKET_I(inode); 565 566 inode->i_ino = get_next_ino(); 567 inode->i_mode = S_IFSOCK | S_IRWXUGO; 568 inode->i_uid = current_fsuid(); 569 inode->i_gid = current_fsgid(); 570 inode->i_op = &sockfs_inode_ops; 571 572 return sock; 573 } 574 EXPORT_SYMBOL(sock_alloc); 575 576 /** 577 * sock_release - close a socket 578 * @sock: socket to close 579 * 580 * The socket is released from the protocol stack if it has a release 581 * callback, and the inode is then released if the socket is bound to 582 * an inode not a file. 583 */ 584 585 static void __sock_release(struct socket *sock, struct inode *inode) 586 { 587 if (sock->ops) { 588 struct module *owner = sock->ops->owner; 589 590 if (inode) 591 inode_lock(inode); 592 sock->ops->release(sock); 593 sock->sk = NULL; 594 if (inode) 595 inode_unlock(inode); 596 sock->ops = NULL; 597 module_put(owner); 598 } 599 600 if (sock->wq.fasync_list) 601 pr_err("%s: fasync list not empty!\n", __func__); 602 603 if (!sock->file) { 604 iput(SOCK_INODE(sock)); 605 return; 606 } 607 sock->file = NULL; 608 } 609 610 void sock_release(struct socket *sock) 611 { 612 __sock_release(sock, NULL); 613 } 614 EXPORT_SYMBOL(sock_release); 615 616 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 617 { 618 u8 flags = *tx_flags; 619 620 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 621 flags |= SKBTX_HW_TSTAMP; 622 623 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 624 flags |= SKBTX_SW_TSTAMP; 625 626 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 627 flags |= SKBTX_SCHED_TSTAMP; 628 629 *tx_flags = flags; 630 } 631 EXPORT_SYMBOL(__sock_tx_timestamp); 632 633 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 634 size_t)); 635 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 636 size_t)); 637 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 638 { 639 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 640 inet_sendmsg, sock, msg, 641 msg_data_left(msg)); 642 BUG_ON(ret == -EIOCBQUEUED); 643 return ret; 644 } 645 646 /** 647 * sock_sendmsg - send a message through @sock 648 * @sock: socket 649 * @msg: message to send 650 * 651 * Sends @msg through @sock, passing through LSM. 652 * Returns the number of bytes sent, or an error code. 653 */ 654 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 655 { 656 int err = security_socket_sendmsg(sock, msg, 657 msg_data_left(msg)); 658 659 return err ?: sock_sendmsg_nosec(sock, msg); 660 } 661 EXPORT_SYMBOL(sock_sendmsg); 662 663 /** 664 * kernel_sendmsg - send a message through @sock (kernel-space) 665 * @sock: socket 666 * @msg: message header 667 * @vec: kernel vec 668 * @num: vec array length 669 * @size: total message data size 670 * 671 * Builds the message data with @vec and sends it through @sock. 672 * Returns the number of bytes sent, or an error code. 673 */ 674 675 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 676 struct kvec *vec, size_t num, size_t size) 677 { 678 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 679 return sock_sendmsg(sock, msg); 680 } 681 EXPORT_SYMBOL(kernel_sendmsg); 682 683 /** 684 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 685 * @sk: sock 686 * @msg: message header 687 * @vec: output s/g array 688 * @num: output s/g array length 689 * @size: total message data size 690 * 691 * Builds the message data with @vec and sends it through @sock. 692 * Returns the number of bytes sent, or an error code. 693 * Caller must hold @sk. 694 */ 695 696 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 697 struct kvec *vec, size_t num, size_t size) 698 { 699 struct socket *sock = sk->sk_socket; 700 701 if (!sock->ops->sendmsg_locked) 702 return sock_no_sendmsg_locked(sk, msg, size); 703 704 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 705 706 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 707 } 708 EXPORT_SYMBOL(kernel_sendmsg_locked); 709 710 static bool skb_is_err_queue(const struct sk_buff *skb) 711 { 712 /* pkt_type of skbs enqueued on the error queue are set to 713 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 714 * in recvmsg, since skbs received on a local socket will never 715 * have a pkt_type of PACKET_OUTGOING. 716 */ 717 return skb->pkt_type == PACKET_OUTGOING; 718 } 719 720 /* On transmit, software and hardware timestamps are returned independently. 721 * As the two skb clones share the hardware timestamp, which may be updated 722 * before the software timestamp is received, a hardware TX timestamp may be 723 * returned only if there is no software TX timestamp. Ignore false software 724 * timestamps, which may be made in the __sock_recv_timestamp() call when the 725 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 726 * hardware timestamp. 727 */ 728 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 729 { 730 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 731 } 732 733 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 734 { 735 struct scm_ts_pktinfo ts_pktinfo; 736 struct net_device *orig_dev; 737 738 if (!skb_mac_header_was_set(skb)) 739 return; 740 741 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 742 743 rcu_read_lock(); 744 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 745 if (orig_dev) 746 ts_pktinfo.if_index = orig_dev->ifindex; 747 rcu_read_unlock(); 748 749 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 750 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 751 sizeof(ts_pktinfo), &ts_pktinfo); 752 } 753 754 /* 755 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 756 */ 757 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 758 struct sk_buff *skb) 759 { 760 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 761 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 762 struct scm_timestamping_internal tss; 763 764 int empty = 1, false_tstamp = 0; 765 struct skb_shared_hwtstamps *shhwtstamps = 766 skb_hwtstamps(skb); 767 768 /* Race occurred between timestamp enabling and packet 769 receiving. Fill in the current time for now. */ 770 if (need_software_tstamp && skb->tstamp == 0) { 771 __net_timestamp(skb); 772 false_tstamp = 1; 773 } 774 775 if (need_software_tstamp) { 776 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 777 if (new_tstamp) { 778 struct __kernel_sock_timeval tv; 779 780 skb_get_new_timestamp(skb, &tv); 781 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 782 sizeof(tv), &tv); 783 } else { 784 struct __kernel_old_timeval tv; 785 786 skb_get_timestamp(skb, &tv); 787 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 788 sizeof(tv), &tv); 789 } 790 } else { 791 if (new_tstamp) { 792 struct __kernel_timespec ts; 793 794 skb_get_new_timestampns(skb, &ts); 795 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 796 sizeof(ts), &ts); 797 } else { 798 struct __kernel_old_timespec ts; 799 800 skb_get_timestampns(skb, &ts); 801 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 802 sizeof(ts), &ts); 803 } 804 } 805 } 806 807 memset(&tss, 0, sizeof(tss)); 808 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 809 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 810 empty = 0; 811 if (shhwtstamps && 812 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 813 !skb_is_swtx_tstamp(skb, false_tstamp) && 814 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 815 empty = 0; 816 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 817 !skb_is_err_queue(skb)) 818 put_ts_pktinfo(msg, skb); 819 } 820 if (!empty) { 821 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 822 put_cmsg_scm_timestamping64(msg, &tss); 823 else 824 put_cmsg_scm_timestamping(msg, &tss); 825 826 if (skb_is_err_queue(skb) && skb->len && 827 SKB_EXT_ERR(skb)->opt_stats) 828 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 829 skb->len, skb->data); 830 } 831 } 832 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 833 834 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 835 struct sk_buff *skb) 836 { 837 int ack; 838 839 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 840 return; 841 if (!skb->wifi_acked_valid) 842 return; 843 844 ack = skb->wifi_acked; 845 846 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 847 } 848 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 849 850 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 851 struct sk_buff *skb) 852 { 853 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 854 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 855 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 856 } 857 858 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 859 struct sk_buff *skb) 860 { 861 sock_recv_timestamp(msg, sk, skb); 862 sock_recv_drops(msg, sk, skb); 863 } 864 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 865 866 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 867 size_t, int)); 868 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 869 size_t, int)); 870 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 871 int flags) 872 { 873 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 874 inet_recvmsg, sock, msg, msg_data_left(msg), 875 flags); 876 } 877 878 /** 879 * sock_recvmsg - receive a message from @sock 880 * @sock: socket 881 * @msg: message to receive 882 * @flags: message flags 883 * 884 * Receives @msg from @sock, passing through LSM. Returns the total number 885 * of bytes received, or an error. 886 */ 887 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 888 { 889 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 890 891 return err ?: sock_recvmsg_nosec(sock, msg, flags); 892 } 893 EXPORT_SYMBOL(sock_recvmsg); 894 895 /** 896 * kernel_recvmsg - Receive a message from a socket (kernel space) 897 * @sock: The socket to receive the message from 898 * @msg: Received message 899 * @vec: Input s/g array for message data 900 * @num: Size of input s/g array 901 * @size: Number of bytes to read 902 * @flags: Message flags (MSG_DONTWAIT, etc...) 903 * 904 * On return the msg structure contains the scatter/gather array passed in the 905 * vec argument. The array is modified so that it consists of the unfilled 906 * portion of the original array. 907 * 908 * The returned value is the total number of bytes received, or an error. 909 */ 910 911 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 912 struct kvec *vec, size_t num, size_t size, int flags) 913 { 914 mm_segment_t oldfs = get_fs(); 915 int result; 916 917 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 918 set_fs(KERNEL_DS); 919 result = sock_recvmsg(sock, msg, flags); 920 set_fs(oldfs); 921 return result; 922 } 923 EXPORT_SYMBOL(kernel_recvmsg); 924 925 static ssize_t sock_sendpage(struct file *file, struct page *page, 926 int offset, size_t size, loff_t *ppos, int more) 927 { 928 struct socket *sock; 929 int flags; 930 931 sock = file->private_data; 932 933 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 934 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 935 flags |= more; 936 937 return kernel_sendpage(sock, page, offset, size, flags); 938 } 939 940 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 941 struct pipe_inode_info *pipe, size_t len, 942 unsigned int flags) 943 { 944 struct socket *sock = file->private_data; 945 946 if (unlikely(!sock->ops->splice_read)) 947 return generic_file_splice_read(file, ppos, pipe, len, flags); 948 949 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 950 } 951 952 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 953 { 954 struct file *file = iocb->ki_filp; 955 struct socket *sock = file->private_data; 956 struct msghdr msg = {.msg_iter = *to, 957 .msg_iocb = iocb}; 958 ssize_t res; 959 960 if (file->f_flags & O_NONBLOCK) 961 msg.msg_flags = MSG_DONTWAIT; 962 963 if (iocb->ki_pos != 0) 964 return -ESPIPE; 965 966 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 967 return 0; 968 969 res = sock_recvmsg(sock, &msg, msg.msg_flags); 970 *to = msg.msg_iter; 971 return res; 972 } 973 974 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 975 { 976 struct file *file = iocb->ki_filp; 977 struct socket *sock = file->private_data; 978 struct msghdr msg = {.msg_iter = *from, 979 .msg_iocb = iocb}; 980 ssize_t res; 981 982 if (iocb->ki_pos != 0) 983 return -ESPIPE; 984 985 if (file->f_flags & O_NONBLOCK) 986 msg.msg_flags = MSG_DONTWAIT; 987 988 if (sock->type == SOCK_SEQPACKET) 989 msg.msg_flags |= MSG_EOR; 990 991 res = sock_sendmsg(sock, &msg); 992 *from = msg.msg_iter; 993 return res; 994 } 995 996 /* 997 * Atomic setting of ioctl hooks to avoid race 998 * with module unload. 999 */ 1000 1001 static DEFINE_MUTEX(br_ioctl_mutex); 1002 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1003 1004 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1005 { 1006 mutex_lock(&br_ioctl_mutex); 1007 br_ioctl_hook = hook; 1008 mutex_unlock(&br_ioctl_mutex); 1009 } 1010 EXPORT_SYMBOL(brioctl_set); 1011 1012 static DEFINE_MUTEX(vlan_ioctl_mutex); 1013 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1014 1015 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1016 { 1017 mutex_lock(&vlan_ioctl_mutex); 1018 vlan_ioctl_hook = hook; 1019 mutex_unlock(&vlan_ioctl_mutex); 1020 } 1021 EXPORT_SYMBOL(vlan_ioctl_set); 1022 1023 static DEFINE_MUTEX(dlci_ioctl_mutex); 1024 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1025 1026 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1027 { 1028 mutex_lock(&dlci_ioctl_mutex); 1029 dlci_ioctl_hook = hook; 1030 mutex_unlock(&dlci_ioctl_mutex); 1031 } 1032 EXPORT_SYMBOL(dlci_ioctl_set); 1033 1034 static long sock_do_ioctl(struct net *net, struct socket *sock, 1035 unsigned int cmd, unsigned long arg) 1036 { 1037 int err; 1038 void __user *argp = (void __user *)arg; 1039 1040 err = sock->ops->ioctl(sock, cmd, arg); 1041 1042 /* 1043 * If this ioctl is unknown try to hand it down 1044 * to the NIC driver. 1045 */ 1046 if (err != -ENOIOCTLCMD) 1047 return err; 1048 1049 if (cmd == SIOCGIFCONF) { 1050 struct ifconf ifc; 1051 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1052 return -EFAULT; 1053 rtnl_lock(); 1054 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1055 rtnl_unlock(); 1056 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1057 err = -EFAULT; 1058 } else { 1059 struct ifreq ifr; 1060 bool need_copyout; 1061 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1062 return -EFAULT; 1063 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1064 if (!err && need_copyout) 1065 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1066 return -EFAULT; 1067 } 1068 return err; 1069 } 1070 1071 /* 1072 * With an ioctl, arg may well be a user mode pointer, but we don't know 1073 * what to do with it - that's up to the protocol still. 1074 */ 1075 1076 /** 1077 * get_net_ns - increment the refcount of the network namespace 1078 * @ns: common namespace (net) 1079 * 1080 * Returns the net's common namespace. 1081 */ 1082 1083 struct ns_common *get_net_ns(struct ns_common *ns) 1084 { 1085 return &get_net(container_of(ns, struct net, ns))->ns; 1086 } 1087 EXPORT_SYMBOL_GPL(get_net_ns); 1088 1089 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1090 { 1091 struct socket *sock; 1092 struct sock *sk; 1093 void __user *argp = (void __user *)arg; 1094 int pid, err; 1095 struct net *net; 1096 1097 sock = file->private_data; 1098 sk = sock->sk; 1099 net = sock_net(sk); 1100 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1101 struct ifreq ifr; 1102 bool need_copyout; 1103 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1104 return -EFAULT; 1105 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1106 if (!err && need_copyout) 1107 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1108 return -EFAULT; 1109 } else 1110 #ifdef CONFIG_WEXT_CORE 1111 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1112 err = wext_handle_ioctl(net, cmd, argp); 1113 } else 1114 #endif 1115 switch (cmd) { 1116 case FIOSETOWN: 1117 case SIOCSPGRP: 1118 err = -EFAULT; 1119 if (get_user(pid, (int __user *)argp)) 1120 break; 1121 err = f_setown(sock->file, pid, 1); 1122 break; 1123 case FIOGETOWN: 1124 case SIOCGPGRP: 1125 err = put_user(f_getown(sock->file), 1126 (int __user *)argp); 1127 break; 1128 case SIOCGIFBR: 1129 case SIOCSIFBR: 1130 case SIOCBRADDBR: 1131 case SIOCBRDELBR: 1132 err = -ENOPKG; 1133 if (!br_ioctl_hook) 1134 request_module("bridge"); 1135 1136 mutex_lock(&br_ioctl_mutex); 1137 if (br_ioctl_hook) 1138 err = br_ioctl_hook(net, cmd, argp); 1139 mutex_unlock(&br_ioctl_mutex); 1140 break; 1141 case SIOCGIFVLAN: 1142 case SIOCSIFVLAN: 1143 err = -ENOPKG; 1144 if (!vlan_ioctl_hook) 1145 request_module("8021q"); 1146 1147 mutex_lock(&vlan_ioctl_mutex); 1148 if (vlan_ioctl_hook) 1149 err = vlan_ioctl_hook(net, argp); 1150 mutex_unlock(&vlan_ioctl_mutex); 1151 break; 1152 case SIOCADDDLCI: 1153 case SIOCDELDLCI: 1154 err = -ENOPKG; 1155 if (!dlci_ioctl_hook) 1156 request_module("dlci"); 1157 1158 mutex_lock(&dlci_ioctl_mutex); 1159 if (dlci_ioctl_hook) 1160 err = dlci_ioctl_hook(cmd, argp); 1161 mutex_unlock(&dlci_ioctl_mutex); 1162 break; 1163 case SIOCGSKNS: 1164 err = -EPERM; 1165 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1166 break; 1167 1168 err = open_related_ns(&net->ns, get_net_ns); 1169 break; 1170 case SIOCGSTAMP_OLD: 1171 case SIOCGSTAMPNS_OLD: 1172 if (!sock->ops->gettstamp) { 1173 err = -ENOIOCTLCMD; 1174 break; 1175 } 1176 err = sock->ops->gettstamp(sock, argp, 1177 cmd == SIOCGSTAMP_OLD, 1178 !IS_ENABLED(CONFIG_64BIT)); 1179 break; 1180 case SIOCGSTAMP_NEW: 1181 case SIOCGSTAMPNS_NEW: 1182 if (!sock->ops->gettstamp) { 1183 err = -ENOIOCTLCMD; 1184 break; 1185 } 1186 err = sock->ops->gettstamp(sock, argp, 1187 cmd == SIOCGSTAMP_NEW, 1188 false); 1189 break; 1190 default: 1191 err = sock_do_ioctl(net, sock, cmd, arg); 1192 break; 1193 } 1194 return err; 1195 } 1196 1197 /** 1198 * sock_create_lite - creates a socket 1199 * @family: protocol family (AF_INET, ...) 1200 * @type: communication type (SOCK_STREAM, ...) 1201 * @protocol: protocol (0, ...) 1202 * @res: new socket 1203 * 1204 * Creates a new socket and assigns it to @res, passing through LSM. 1205 * The new socket initialization is not complete, see kernel_accept(). 1206 * Returns 0 or an error. On failure @res is set to %NULL. 1207 * This function internally uses GFP_KERNEL. 1208 */ 1209 1210 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1211 { 1212 int err; 1213 struct socket *sock = NULL; 1214 1215 err = security_socket_create(family, type, protocol, 1); 1216 if (err) 1217 goto out; 1218 1219 sock = sock_alloc(); 1220 if (!sock) { 1221 err = -ENOMEM; 1222 goto out; 1223 } 1224 1225 sock->type = type; 1226 err = security_socket_post_create(sock, family, type, protocol, 1); 1227 if (err) 1228 goto out_release; 1229 1230 out: 1231 *res = sock; 1232 return err; 1233 out_release: 1234 sock_release(sock); 1235 sock = NULL; 1236 goto out; 1237 } 1238 EXPORT_SYMBOL(sock_create_lite); 1239 1240 /* No kernel lock held - perfect */ 1241 static __poll_t sock_poll(struct file *file, poll_table *wait) 1242 { 1243 struct socket *sock = file->private_data; 1244 __poll_t events = poll_requested_events(wait), flag = 0; 1245 1246 if (!sock->ops->poll) 1247 return 0; 1248 1249 if (sk_can_busy_loop(sock->sk)) { 1250 /* poll once if requested by the syscall */ 1251 if (events & POLL_BUSY_LOOP) 1252 sk_busy_loop(sock->sk, 1); 1253 1254 /* if this socket can poll_ll, tell the system call */ 1255 flag = POLL_BUSY_LOOP; 1256 } 1257 1258 return sock->ops->poll(file, sock, wait) | flag; 1259 } 1260 1261 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1262 { 1263 struct socket *sock = file->private_data; 1264 1265 return sock->ops->mmap(file, sock, vma); 1266 } 1267 1268 static int sock_close(struct inode *inode, struct file *filp) 1269 { 1270 __sock_release(SOCKET_I(inode), inode); 1271 return 0; 1272 } 1273 1274 /* 1275 * Update the socket async list 1276 * 1277 * Fasync_list locking strategy. 1278 * 1279 * 1. fasync_list is modified only under process context socket lock 1280 * i.e. under semaphore. 1281 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1282 * or under socket lock 1283 */ 1284 1285 static int sock_fasync(int fd, struct file *filp, int on) 1286 { 1287 struct socket *sock = filp->private_data; 1288 struct sock *sk = sock->sk; 1289 struct socket_wq *wq = &sock->wq; 1290 1291 if (sk == NULL) 1292 return -EINVAL; 1293 1294 lock_sock(sk); 1295 fasync_helper(fd, filp, on, &wq->fasync_list); 1296 1297 if (!wq->fasync_list) 1298 sock_reset_flag(sk, SOCK_FASYNC); 1299 else 1300 sock_set_flag(sk, SOCK_FASYNC); 1301 1302 release_sock(sk); 1303 return 0; 1304 } 1305 1306 /* This function may be called only under rcu_lock */ 1307 1308 int sock_wake_async(struct socket_wq *wq, int how, int band) 1309 { 1310 if (!wq || !wq->fasync_list) 1311 return -1; 1312 1313 switch (how) { 1314 case SOCK_WAKE_WAITD: 1315 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1316 break; 1317 goto call_kill; 1318 case SOCK_WAKE_SPACE: 1319 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1320 break; 1321 /* fall through */ 1322 case SOCK_WAKE_IO: 1323 call_kill: 1324 kill_fasync(&wq->fasync_list, SIGIO, band); 1325 break; 1326 case SOCK_WAKE_URG: 1327 kill_fasync(&wq->fasync_list, SIGURG, band); 1328 } 1329 1330 return 0; 1331 } 1332 EXPORT_SYMBOL(sock_wake_async); 1333 1334 /** 1335 * __sock_create - creates a socket 1336 * @net: net namespace 1337 * @family: protocol family (AF_INET, ...) 1338 * @type: communication type (SOCK_STREAM, ...) 1339 * @protocol: protocol (0, ...) 1340 * @res: new socket 1341 * @kern: boolean for kernel space sockets 1342 * 1343 * Creates a new socket and assigns it to @res, passing through LSM. 1344 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1345 * be set to true if the socket resides in kernel space. 1346 * This function internally uses GFP_KERNEL. 1347 */ 1348 1349 int __sock_create(struct net *net, int family, int type, int protocol, 1350 struct socket **res, int kern) 1351 { 1352 int err; 1353 struct socket *sock; 1354 const struct net_proto_family *pf; 1355 1356 /* 1357 * Check protocol is in range 1358 */ 1359 if (family < 0 || family >= NPROTO) 1360 return -EAFNOSUPPORT; 1361 if (type < 0 || type >= SOCK_MAX) 1362 return -EINVAL; 1363 1364 /* Compatibility. 1365 1366 This uglymoron is moved from INET layer to here to avoid 1367 deadlock in module load. 1368 */ 1369 if (family == PF_INET && type == SOCK_PACKET) { 1370 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1371 current->comm); 1372 family = PF_PACKET; 1373 } 1374 1375 err = security_socket_create(family, type, protocol, kern); 1376 if (err) 1377 return err; 1378 1379 /* 1380 * Allocate the socket and allow the family to set things up. if 1381 * the protocol is 0, the family is instructed to select an appropriate 1382 * default. 1383 */ 1384 sock = sock_alloc(); 1385 if (!sock) { 1386 net_warn_ratelimited("socket: no more sockets\n"); 1387 return -ENFILE; /* Not exactly a match, but its the 1388 closest posix thing */ 1389 } 1390 1391 sock->type = type; 1392 1393 #ifdef CONFIG_MODULES 1394 /* Attempt to load a protocol module if the find failed. 1395 * 1396 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1397 * requested real, full-featured networking support upon configuration. 1398 * Otherwise module support will break! 1399 */ 1400 if (rcu_access_pointer(net_families[family]) == NULL) 1401 request_module("net-pf-%d", family); 1402 #endif 1403 1404 rcu_read_lock(); 1405 pf = rcu_dereference(net_families[family]); 1406 err = -EAFNOSUPPORT; 1407 if (!pf) 1408 goto out_release; 1409 1410 /* 1411 * We will call the ->create function, that possibly is in a loadable 1412 * module, so we have to bump that loadable module refcnt first. 1413 */ 1414 if (!try_module_get(pf->owner)) 1415 goto out_release; 1416 1417 /* Now protected by module ref count */ 1418 rcu_read_unlock(); 1419 1420 err = pf->create(net, sock, protocol, kern); 1421 if (err < 0) 1422 goto out_module_put; 1423 1424 /* 1425 * Now to bump the refcnt of the [loadable] module that owns this 1426 * socket at sock_release time we decrement its refcnt. 1427 */ 1428 if (!try_module_get(sock->ops->owner)) 1429 goto out_module_busy; 1430 1431 /* 1432 * Now that we're done with the ->create function, the [loadable] 1433 * module can have its refcnt decremented 1434 */ 1435 module_put(pf->owner); 1436 err = security_socket_post_create(sock, family, type, protocol, kern); 1437 if (err) 1438 goto out_sock_release; 1439 *res = sock; 1440 1441 return 0; 1442 1443 out_module_busy: 1444 err = -EAFNOSUPPORT; 1445 out_module_put: 1446 sock->ops = NULL; 1447 module_put(pf->owner); 1448 out_sock_release: 1449 sock_release(sock); 1450 return err; 1451 1452 out_release: 1453 rcu_read_unlock(); 1454 goto out_sock_release; 1455 } 1456 EXPORT_SYMBOL(__sock_create); 1457 1458 /** 1459 * sock_create - creates a socket 1460 * @family: protocol family (AF_INET, ...) 1461 * @type: communication type (SOCK_STREAM, ...) 1462 * @protocol: protocol (0, ...) 1463 * @res: new socket 1464 * 1465 * A wrapper around __sock_create(). 1466 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1467 */ 1468 1469 int sock_create(int family, int type, int protocol, struct socket **res) 1470 { 1471 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1472 } 1473 EXPORT_SYMBOL(sock_create); 1474 1475 /** 1476 * sock_create_kern - creates a socket (kernel space) 1477 * @net: net namespace 1478 * @family: protocol family (AF_INET, ...) 1479 * @type: communication type (SOCK_STREAM, ...) 1480 * @protocol: protocol (0, ...) 1481 * @res: new socket 1482 * 1483 * A wrapper around __sock_create(). 1484 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1485 */ 1486 1487 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1488 { 1489 return __sock_create(net, family, type, protocol, res, 1); 1490 } 1491 EXPORT_SYMBOL(sock_create_kern); 1492 1493 int __sys_socket(int family, int type, int protocol) 1494 { 1495 int retval; 1496 struct socket *sock; 1497 int flags; 1498 1499 /* Check the SOCK_* constants for consistency. */ 1500 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1501 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1502 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1503 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1504 1505 flags = type & ~SOCK_TYPE_MASK; 1506 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1507 return -EINVAL; 1508 type &= SOCK_TYPE_MASK; 1509 1510 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1511 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1512 1513 retval = sock_create(family, type, protocol, &sock); 1514 if (retval < 0) 1515 return retval; 1516 1517 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1518 } 1519 1520 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1521 { 1522 return __sys_socket(family, type, protocol); 1523 } 1524 1525 /* 1526 * Create a pair of connected sockets. 1527 */ 1528 1529 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1530 { 1531 struct socket *sock1, *sock2; 1532 int fd1, fd2, err; 1533 struct file *newfile1, *newfile2; 1534 int flags; 1535 1536 flags = type & ~SOCK_TYPE_MASK; 1537 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1538 return -EINVAL; 1539 type &= SOCK_TYPE_MASK; 1540 1541 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1542 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1543 1544 /* 1545 * reserve descriptors and make sure we won't fail 1546 * to return them to userland. 1547 */ 1548 fd1 = get_unused_fd_flags(flags); 1549 if (unlikely(fd1 < 0)) 1550 return fd1; 1551 1552 fd2 = get_unused_fd_flags(flags); 1553 if (unlikely(fd2 < 0)) { 1554 put_unused_fd(fd1); 1555 return fd2; 1556 } 1557 1558 err = put_user(fd1, &usockvec[0]); 1559 if (err) 1560 goto out; 1561 1562 err = put_user(fd2, &usockvec[1]); 1563 if (err) 1564 goto out; 1565 1566 /* 1567 * Obtain the first socket and check if the underlying protocol 1568 * supports the socketpair call. 1569 */ 1570 1571 err = sock_create(family, type, protocol, &sock1); 1572 if (unlikely(err < 0)) 1573 goto out; 1574 1575 err = sock_create(family, type, protocol, &sock2); 1576 if (unlikely(err < 0)) { 1577 sock_release(sock1); 1578 goto out; 1579 } 1580 1581 err = security_socket_socketpair(sock1, sock2); 1582 if (unlikely(err)) { 1583 sock_release(sock2); 1584 sock_release(sock1); 1585 goto out; 1586 } 1587 1588 err = sock1->ops->socketpair(sock1, sock2); 1589 if (unlikely(err < 0)) { 1590 sock_release(sock2); 1591 sock_release(sock1); 1592 goto out; 1593 } 1594 1595 newfile1 = sock_alloc_file(sock1, flags, NULL); 1596 if (IS_ERR(newfile1)) { 1597 err = PTR_ERR(newfile1); 1598 sock_release(sock2); 1599 goto out; 1600 } 1601 1602 newfile2 = sock_alloc_file(sock2, flags, NULL); 1603 if (IS_ERR(newfile2)) { 1604 err = PTR_ERR(newfile2); 1605 fput(newfile1); 1606 goto out; 1607 } 1608 1609 audit_fd_pair(fd1, fd2); 1610 1611 fd_install(fd1, newfile1); 1612 fd_install(fd2, newfile2); 1613 return 0; 1614 1615 out: 1616 put_unused_fd(fd2); 1617 put_unused_fd(fd1); 1618 return err; 1619 } 1620 1621 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1622 int __user *, usockvec) 1623 { 1624 return __sys_socketpair(family, type, protocol, usockvec); 1625 } 1626 1627 /* 1628 * Bind a name to a socket. Nothing much to do here since it's 1629 * the protocol's responsibility to handle the local address. 1630 * 1631 * We move the socket address to kernel space before we call 1632 * the protocol layer (having also checked the address is ok). 1633 */ 1634 1635 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1636 { 1637 struct socket *sock; 1638 struct sockaddr_storage address; 1639 int err, fput_needed; 1640 1641 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1642 if (sock) { 1643 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1644 if (!err) { 1645 err = security_socket_bind(sock, 1646 (struct sockaddr *)&address, 1647 addrlen); 1648 if (!err) 1649 err = sock->ops->bind(sock, 1650 (struct sockaddr *) 1651 &address, addrlen); 1652 } 1653 fput_light(sock->file, fput_needed); 1654 } 1655 return err; 1656 } 1657 1658 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1659 { 1660 return __sys_bind(fd, umyaddr, addrlen); 1661 } 1662 1663 /* 1664 * Perform a listen. Basically, we allow the protocol to do anything 1665 * necessary for a listen, and if that works, we mark the socket as 1666 * ready for listening. 1667 */ 1668 1669 int __sys_listen(int fd, int backlog) 1670 { 1671 struct socket *sock; 1672 int err, fput_needed; 1673 int somaxconn; 1674 1675 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1676 if (sock) { 1677 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1678 if ((unsigned int)backlog > somaxconn) 1679 backlog = somaxconn; 1680 1681 err = security_socket_listen(sock, backlog); 1682 if (!err) 1683 err = sock->ops->listen(sock, backlog); 1684 1685 fput_light(sock->file, fput_needed); 1686 } 1687 return err; 1688 } 1689 1690 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1691 { 1692 return __sys_listen(fd, backlog); 1693 } 1694 1695 int __sys_accept4_file(struct file *file, unsigned file_flags, 1696 struct sockaddr __user *upeer_sockaddr, 1697 int __user *upeer_addrlen, int flags) 1698 { 1699 struct socket *sock, *newsock; 1700 struct file *newfile; 1701 int err, len, newfd; 1702 struct sockaddr_storage address; 1703 1704 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1705 return -EINVAL; 1706 1707 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1708 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1709 1710 sock = sock_from_file(file, &err); 1711 if (!sock) 1712 goto out; 1713 1714 err = -ENFILE; 1715 newsock = sock_alloc(); 1716 if (!newsock) 1717 goto out; 1718 1719 newsock->type = sock->type; 1720 newsock->ops = sock->ops; 1721 1722 /* 1723 * We don't need try_module_get here, as the listening socket (sock) 1724 * has the protocol module (sock->ops->owner) held. 1725 */ 1726 __module_get(newsock->ops->owner); 1727 1728 newfd = get_unused_fd_flags(flags); 1729 if (unlikely(newfd < 0)) { 1730 err = newfd; 1731 sock_release(newsock); 1732 goto out; 1733 } 1734 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1735 if (IS_ERR(newfile)) { 1736 err = PTR_ERR(newfile); 1737 put_unused_fd(newfd); 1738 goto out; 1739 } 1740 1741 err = security_socket_accept(sock, newsock); 1742 if (err) 1743 goto out_fd; 1744 1745 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1746 false); 1747 if (err < 0) 1748 goto out_fd; 1749 1750 if (upeer_sockaddr) { 1751 len = newsock->ops->getname(newsock, 1752 (struct sockaddr *)&address, 2); 1753 if (len < 0) { 1754 err = -ECONNABORTED; 1755 goto out_fd; 1756 } 1757 err = move_addr_to_user(&address, 1758 len, upeer_sockaddr, upeer_addrlen); 1759 if (err < 0) 1760 goto out_fd; 1761 } 1762 1763 /* File flags are not inherited via accept() unlike another OSes. */ 1764 1765 fd_install(newfd, newfile); 1766 err = newfd; 1767 out: 1768 return err; 1769 out_fd: 1770 fput(newfile); 1771 put_unused_fd(newfd); 1772 goto out; 1773 1774 } 1775 1776 /* 1777 * For accept, we attempt to create a new socket, set up the link 1778 * with the client, wake up the client, then return the new 1779 * connected fd. We collect the address of the connector in kernel 1780 * space and move it to user at the very end. This is unclean because 1781 * we open the socket then return an error. 1782 * 1783 * 1003.1g adds the ability to recvmsg() to query connection pending 1784 * status to recvmsg. We need to add that support in a way thats 1785 * clean when we restructure accept also. 1786 */ 1787 1788 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1789 int __user *upeer_addrlen, int flags) 1790 { 1791 int ret = -EBADF; 1792 struct fd f; 1793 1794 f = fdget(fd); 1795 if (f.file) { 1796 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1797 upeer_addrlen, flags); 1798 if (f.flags) 1799 fput(f.file); 1800 } 1801 1802 return ret; 1803 } 1804 1805 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1806 int __user *, upeer_addrlen, int, flags) 1807 { 1808 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1809 } 1810 1811 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1812 int __user *, upeer_addrlen) 1813 { 1814 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1815 } 1816 1817 /* 1818 * Attempt to connect to a socket with the server address. The address 1819 * is in user space so we verify it is OK and move it to kernel space. 1820 * 1821 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1822 * break bindings 1823 * 1824 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1825 * other SEQPACKET protocols that take time to connect() as it doesn't 1826 * include the -EINPROGRESS status for such sockets. 1827 */ 1828 1829 int __sys_connect_file(struct file *file, struct sockaddr __user *uservaddr, 1830 int addrlen, int file_flags) 1831 { 1832 struct socket *sock; 1833 struct sockaddr_storage address; 1834 int err; 1835 1836 sock = sock_from_file(file, &err); 1837 if (!sock) 1838 goto out; 1839 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1840 if (err < 0) 1841 goto out; 1842 1843 err = 1844 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1845 if (err) 1846 goto out; 1847 1848 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1849 sock->file->f_flags | file_flags); 1850 out: 1851 return err; 1852 } 1853 1854 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1855 { 1856 int ret = -EBADF; 1857 struct fd f; 1858 1859 f = fdget(fd); 1860 if (f.file) { 1861 ret = __sys_connect_file(f.file, uservaddr, addrlen, 0); 1862 if (f.flags) 1863 fput(f.file); 1864 } 1865 1866 return ret; 1867 } 1868 1869 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1870 int, addrlen) 1871 { 1872 return __sys_connect(fd, uservaddr, addrlen); 1873 } 1874 1875 /* 1876 * Get the local address ('name') of a socket object. Move the obtained 1877 * name to user space. 1878 */ 1879 1880 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1881 int __user *usockaddr_len) 1882 { 1883 struct socket *sock; 1884 struct sockaddr_storage address; 1885 int err, fput_needed; 1886 1887 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1888 if (!sock) 1889 goto out; 1890 1891 err = security_socket_getsockname(sock); 1892 if (err) 1893 goto out_put; 1894 1895 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1896 if (err < 0) 1897 goto out_put; 1898 /* "err" is actually length in this case */ 1899 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1900 1901 out_put: 1902 fput_light(sock->file, fput_needed); 1903 out: 1904 return err; 1905 } 1906 1907 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1908 int __user *, usockaddr_len) 1909 { 1910 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1911 } 1912 1913 /* 1914 * Get the remote address ('name') of a socket object. Move the obtained 1915 * name to user space. 1916 */ 1917 1918 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1919 int __user *usockaddr_len) 1920 { 1921 struct socket *sock; 1922 struct sockaddr_storage address; 1923 int err, fput_needed; 1924 1925 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1926 if (sock != NULL) { 1927 err = security_socket_getpeername(sock); 1928 if (err) { 1929 fput_light(sock->file, fput_needed); 1930 return err; 1931 } 1932 1933 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1934 if (err >= 0) 1935 /* "err" is actually length in this case */ 1936 err = move_addr_to_user(&address, err, usockaddr, 1937 usockaddr_len); 1938 fput_light(sock->file, fput_needed); 1939 } 1940 return err; 1941 } 1942 1943 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1944 int __user *, usockaddr_len) 1945 { 1946 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1947 } 1948 1949 /* 1950 * Send a datagram to a given address. We move the address into kernel 1951 * space and check the user space data area is readable before invoking 1952 * the protocol. 1953 */ 1954 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1955 struct sockaddr __user *addr, int addr_len) 1956 { 1957 struct socket *sock; 1958 struct sockaddr_storage address; 1959 int err; 1960 struct msghdr msg; 1961 struct iovec iov; 1962 int fput_needed; 1963 1964 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1965 if (unlikely(err)) 1966 return err; 1967 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1968 if (!sock) 1969 goto out; 1970 1971 msg.msg_name = NULL; 1972 msg.msg_control = NULL; 1973 msg.msg_controllen = 0; 1974 msg.msg_namelen = 0; 1975 if (addr) { 1976 err = move_addr_to_kernel(addr, addr_len, &address); 1977 if (err < 0) 1978 goto out_put; 1979 msg.msg_name = (struct sockaddr *)&address; 1980 msg.msg_namelen = addr_len; 1981 } 1982 if (sock->file->f_flags & O_NONBLOCK) 1983 flags |= MSG_DONTWAIT; 1984 msg.msg_flags = flags; 1985 err = sock_sendmsg(sock, &msg); 1986 1987 out_put: 1988 fput_light(sock->file, fput_needed); 1989 out: 1990 return err; 1991 } 1992 1993 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1994 unsigned int, flags, struct sockaddr __user *, addr, 1995 int, addr_len) 1996 { 1997 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1998 } 1999 2000 /* 2001 * Send a datagram down a socket. 2002 */ 2003 2004 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2005 unsigned int, flags) 2006 { 2007 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2008 } 2009 2010 /* 2011 * Receive a frame from the socket and optionally record the address of the 2012 * sender. We verify the buffers are writable and if needed move the 2013 * sender address from kernel to user space. 2014 */ 2015 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2016 struct sockaddr __user *addr, int __user *addr_len) 2017 { 2018 struct socket *sock; 2019 struct iovec iov; 2020 struct msghdr msg; 2021 struct sockaddr_storage address; 2022 int err, err2; 2023 int fput_needed; 2024 2025 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2026 if (unlikely(err)) 2027 return err; 2028 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2029 if (!sock) 2030 goto out; 2031 2032 msg.msg_control = NULL; 2033 msg.msg_controllen = 0; 2034 /* Save some cycles and don't copy the address if not needed */ 2035 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2036 /* We assume all kernel code knows the size of sockaddr_storage */ 2037 msg.msg_namelen = 0; 2038 msg.msg_iocb = NULL; 2039 msg.msg_flags = 0; 2040 if (sock->file->f_flags & O_NONBLOCK) 2041 flags |= MSG_DONTWAIT; 2042 err = sock_recvmsg(sock, &msg, flags); 2043 2044 if (err >= 0 && addr != NULL) { 2045 err2 = move_addr_to_user(&address, 2046 msg.msg_namelen, addr, addr_len); 2047 if (err2 < 0) 2048 err = err2; 2049 } 2050 2051 fput_light(sock->file, fput_needed); 2052 out: 2053 return err; 2054 } 2055 2056 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2057 unsigned int, flags, struct sockaddr __user *, addr, 2058 int __user *, addr_len) 2059 { 2060 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2061 } 2062 2063 /* 2064 * Receive a datagram from a socket. 2065 */ 2066 2067 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2068 unsigned int, flags) 2069 { 2070 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2071 } 2072 2073 /* 2074 * Set a socket option. Because we don't know the option lengths we have 2075 * to pass the user mode parameter for the protocols to sort out. 2076 */ 2077 2078 static int __sys_setsockopt(int fd, int level, int optname, 2079 char __user *optval, int optlen) 2080 { 2081 mm_segment_t oldfs = get_fs(); 2082 char *kernel_optval = NULL; 2083 int err, fput_needed; 2084 struct socket *sock; 2085 2086 if (optlen < 0) 2087 return -EINVAL; 2088 2089 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2090 if (sock != NULL) { 2091 err = security_socket_setsockopt(sock, level, optname); 2092 if (err) 2093 goto out_put; 2094 2095 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, 2096 &optname, optval, &optlen, 2097 &kernel_optval); 2098 2099 if (err < 0) { 2100 goto out_put; 2101 } else if (err > 0) { 2102 err = 0; 2103 goto out_put; 2104 } 2105 2106 if (kernel_optval) { 2107 set_fs(KERNEL_DS); 2108 optval = (char __user __force *)kernel_optval; 2109 } 2110 2111 if (level == SOL_SOCKET) 2112 err = 2113 sock_setsockopt(sock, level, optname, optval, 2114 optlen); 2115 else 2116 err = 2117 sock->ops->setsockopt(sock, level, optname, optval, 2118 optlen); 2119 2120 if (kernel_optval) { 2121 set_fs(oldfs); 2122 kfree(kernel_optval); 2123 } 2124 out_put: 2125 fput_light(sock->file, fput_needed); 2126 } 2127 return err; 2128 } 2129 2130 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2131 char __user *, optval, int, optlen) 2132 { 2133 return __sys_setsockopt(fd, level, optname, optval, optlen); 2134 } 2135 2136 /* 2137 * Get a socket option. Because we don't know the option lengths we have 2138 * to pass a user mode parameter for the protocols to sort out. 2139 */ 2140 2141 static int __sys_getsockopt(int fd, int level, int optname, 2142 char __user *optval, int __user *optlen) 2143 { 2144 int err, fput_needed; 2145 struct socket *sock; 2146 int max_optlen; 2147 2148 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2149 if (sock != NULL) { 2150 err = security_socket_getsockopt(sock, level, optname); 2151 if (err) 2152 goto out_put; 2153 2154 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2155 2156 if (level == SOL_SOCKET) 2157 err = 2158 sock_getsockopt(sock, level, optname, optval, 2159 optlen); 2160 else 2161 err = 2162 sock->ops->getsockopt(sock, level, optname, optval, 2163 optlen); 2164 2165 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2166 optval, optlen, 2167 max_optlen, err); 2168 out_put: 2169 fput_light(sock->file, fput_needed); 2170 } 2171 return err; 2172 } 2173 2174 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2175 char __user *, optval, int __user *, optlen) 2176 { 2177 return __sys_getsockopt(fd, level, optname, optval, optlen); 2178 } 2179 2180 /* 2181 * Shutdown a socket. 2182 */ 2183 2184 int __sys_shutdown(int fd, int how) 2185 { 2186 int err, fput_needed; 2187 struct socket *sock; 2188 2189 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2190 if (sock != NULL) { 2191 err = security_socket_shutdown(sock, how); 2192 if (!err) 2193 err = sock->ops->shutdown(sock, how); 2194 fput_light(sock->file, fput_needed); 2195 } 2196 return err; 2197 } 2198 2199 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2200 { 2201 return __sys_shutdown(fd, how); 2202 } 2203 2204 /* A couple of helpful macros for getting the address of the 32/64 bit 2205 * fields which are the same type (int / unsigned) on our platforms. 2206 */ 2207 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2208 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2209 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2210 2211 struct used_address { 2212 struct sockaddr_storage name; 2213 unsigned int name_len; 2214 }; 2215 2216 static int copy_msghdr_from_user(struct msghdr *kmsg, 2217 struct user_msghdr __user *umsg, 2218 struct sockaddr __user **save_addr, 2219 struct iovec **iov) 2220 { 2221 struct user_msghdr msg; 2222 ssize_t err; 2223 2224 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2225 return -EFAULT; 2226 2227 kmsg->msg_control = (void __force *)msg.msg_control; 2228 kmsg->msg_controllen = msg.msg_controllen; 2229 kmsg->msg_flags = msg.msg_flags; 2230 2231 kmsg->msg_namelen = msg.msg_namelen; 2232 if (!msg.msg_name) 2233 kmsg->msg_namelen = 0; 2234 2235 if (kmsg->msg_namelen < 0) 2236 return -EINVAL; 2237 2238 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2239 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2240 2241 if (save_addr) 2242 *save_addr = msg.msg_name; 2243 2244 if (msg.msg_name && kmsg->msg_namelen) { 2245 if (!save_addr) { 2246 err = move_addr_to_kernel(msg.msg_name, 2247 kmsg->msg_namelen, 2248 kmsg->msg_name); 2249 if (err < 0) 2250 return err; 2251 } 2252 } else { 2253 kmsg->msg_name = NULL; 2254 kmsg->msg_namelen = 0; 2255 } 2256 2257 if (msg.msg_iovlen > UIO_MAXIOV) 2258 return -EMSGSIZE; 2259 2260 kmsg->msg_iocb = NULL; 2261 2262 err = import_iovec(save_addr ? READ : WRITE, 2263 msg.msg_iov, msg.msg_iovlen, 2264 UIO_FASTIOV, iov, &kmsg->msg_iter); 2265 return err < 0 ? err : 0; 2266 } 2267 2268 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2269 unsigned int flags, struct used_address *used_address, 2270 unsigned int allowed_msghdr_flags) 2271 { 2272 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2273 __aligned(sizeof(__kernel_size_t)); 2274 /* 20 is size of ipv6_pktinfo */ 2275 unsigned char *ctl_buf = ctl; 2276 int ctl_len; 2277 ssize_t err; 2278 2279 err = -ENOBUFS; 2280 2281 if (msg_sys->msg_controllen > INT_MAX) 2282 goto out; 2283 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2284 ctl_len = msg_sys->msg_controllen; 2285 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2286 err = 2287 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2288 sizeof(ctl)); 2289 if (err) 2290 goto out; 2291 ctl_buf = msg_sys->msg_control; 2292 ctl_len = msg_sys->msg_controllen; 2293 } else if (ctl_len) { 2294 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2295 CMSG_ALIGN(sizeof(struct cmsghdr))); 2296 if (ctl_len > sizeof(ctl)) { 2297 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2298 if (ctl_buf == NULL) 2299 goto out; 2300 } 2301 err = -EFAULT; 2302 /* 2303 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2304 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2305 * checking falls down on this. 2306 */ 2307 if (copy_from_user(ctl_buf, 2308 (void __user __force *)msg_sys->msg_control, 2309 ctl_len)) 2310 goto out_freectl; 2311 msg_sys->msg_control = ctl_buf; 2312 } 2313 msg_sys->msg_flags = flags; 2314 2315 if (sock->file->f_flags & O_NONBLOCK) 2316 msg_sys->msg_flags |= MSG_DONTWAIT; 2317 /* 2318 * If this is sendmmsg() and current destination address is same as 2319 * previously succeeded address, omit asking LSM's decision. 2320 * used_address->name_len is initialized to UINT_MAX so that the first 2321 * destination address never matches. 2322 */ 2323 if (used_address && msg_sys->msg_name && 2324 used_address->name_len == msg_sys->msg_namelen && 2325 !memcmp(&used_address->name, msg_sys->msg_name, 2326 used_address->name_len)) { 2327 err = sock_sendmsg_nosec(sock, msg_sys); 2328 goto out_freectl; 2329 } 2330 err = sock_sendmsg(sock, msg_sys); 2331 /* 2332 * If this is sendmmsg() and sending to current destination address was 2333 * successful, remember it. 2334 */ 2335 if (used_address && err >= 0) { 2336 used_address->name_len = msg_sys->msg_namelen; 2337 if (msg_sys->msg_name) 2338 memcpy(&used_address->name, msg_sys->msg_name, 2339 used_address->name_len); 2340 } 2341 2342 out_freectl: 2343 if (ctl_buf != ctl) 2344 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2345 out: 2346 return err; 2347 } 2348 2349 static int sendmsg_copy_msghdr(struct msghdr *msg, 2350 struct user_msghdr __user *umsg, unsigned flags, 2351 struct iovec **iov) 2352 { 2353 int err; 2354 2355 if (flags & MSG_CMSG_COMPAT) { 2356 struct compat_msghdr __user *msg_compat; 2357 2358 msg_compat = (struct compat_msghdr __user *) umsg; 2359 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2360 } else { 2361 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2362 } 2363 if (err < 0) 2364 return err; 2365 2366 return 0; 2367 } 2368 2369 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2370 struct msghdr *msg_sys, unsigned int flags, 2371 struct used_address *used_address, 2372 unsigned int allowed_msghdr_flags) 2373 { 2374 struct sockaddr_storage address; 2375 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2376 ssize_t err; 2377 2378 msg_sys->msg_name = &address; 2379 2380 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2381 if (err < 0) 2382 return err; 2383 2384 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2385 allowed_msghdr_flags); 2386 kfree(iov); 2387 return err; 2388 } 2389 2390 /* 2391 * BSD sendmsg interface 2392 */ 2393 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *umsg, 2394 unsigned int flags) 2395 { 2396 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2397 struct sockaddr_storage address; 2398 struct msghdr msg = { .msg_name = &address }; 2399 ssize_t err; 2400 2401 err = sendmsg_copy_msghdr(&msg, umsg, flags, &iov); 2402 if (err) 2403 return err; 2404 /* disallow ancillary data requests from this path */ 2405 if (msg.msg_control || msg.msg_controllen) { 2406 err = -EINVAL; 2407 goto out; 2408 } 2409 2410 err = ____sys_sendmsg(sock, &msg, flags, NULL, 0); 2411 out: 2412 kfree(iov); 2413 return err; 2414 } 2415 2416 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2417 bool forbid_cmsg_compat) 2418 { 2419 int fput_needed, err; 2420 struct msghdr msg_sys; 2421 struct socket *sock; 2422 2423 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2424 return -EINVAL; 2425 2426 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2427 if (!sock) 2428 goto out; 2429 2430 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2431 2432 fput_light(sock->file, fput_needed); 2433 out: 2434 return err; 2435 } 2436 2437 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2438 { 2439 return __sys_sendmsg(fd, msg, flags, true); 2440 } 2441 2442 /* 2443 * Linux sendmmsg interface 2444 */ 2445 2446 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2447 unsigned int flags, bool forbid_cmsg_compat) 2448 { 2449 int fput_needed, err, datagrams; 2450 struct socket *sock; 2451 struct mmsghdr __user *entry; 2452 struct compat_mmsghdr __user *compat_entry; 2453 struct msghdr msg_sys; 2454 struct used_address used_address; 2455 unsigned int oflags = flags; 2456 2457 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2458 return -EINVAL; 2459 2460 if (vlen > UIO_MAXIOV) 2461 vlen = UIO_MAXIOV; 2462 2463 datagrams = 0; 2464 2465 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2466 if (!sock) 2467 return err; 2468 2469 used_address.name_len = UINT_MAX; 2470 entry = mmsg; 2471 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2472 err = 0; 2473 flags |= MSG_BATCH; 2474 2475 while (datagrams < vlen) { 2476 if (datagrams == vlen - 1) 2477 flags = oflags; 2478 2479 if (MSG_CMSG_COMPAT & flags) { 2480 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2481 &msg_sys, flags, &used_address, MSG_EOR); 2482 if (err < 0) 2483 break; 2484 err = __put_user(err, &compat_entry->msg_len); 2485 ++compat_entry; 2486 } else { 2487 err = ___sys_sendmsg(sock, 2488 (struct user_msghdr __user *)entry, 2489 &msg_sys, flags, &used_address, MSG_EOR); 2490 if (err < 0) 2491 break; 2492 err = put_user(err, &entry->msg_len); 2493 ++entry; 2494 } 2495 2496 if (err) 2497 break; 2498 ++datagrams; 2499 if (msg_data_left(&msg_sys)) 2500 break; 2501 cond_resched(); 2502 } 2503 2504 fput_light(sock->file, fput_needed); 2505 2506 /* We only return an error if no datagrams were able to be sent */ 2507 if (datagrams != 0) 2508 return datagrams; 2509 2510 return err; 2511 } 2512 2513 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2514 unsigned int, vlen, unsigned int, flags) 2515 { 2516 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2517 } 2518 2519 static int recvmsg_copy_msghdr(struct msghdr *msg, 2520 struct user_msghdr __user *umsg, unsigned flags, 2521 struct sockaddr __user **uaddr, 2522 struct iovec **iov) 2523 { 2524 ssize_t err; 2525 2526 if (MSG_CMSG_COMPAT & flags) { 2527 struct compat_msghdr __user *msg_compat; 2528 2529 msg_compat = (struct compat_msghdr __user *) umsg; 2530 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2531 } else { 2532 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2533 } 2534 if (err < 0) 2535 return err; 2536 2537 return 0; 2538 } 2539 2540 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2541 struct user_msghdr __user *msg, 2542 struct sockaddr __user *uaddr, 2543 unsigned int flags, int nosec) 2544 { 2545 struct compat_msghdr __user *msg_compat = 2546 (struct compat_msghdr __user *) msg; 2547 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2548 struct sockaddr_storage addr; 2549 unsigned long cmsg_ptr; 2550 int len; 2551 ssize_t err; 2552 2553 msg_sys->msg_name = &addr; 2554 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2555 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2556 2557 /* We assume all kernel code knows the size of sockaddr_storage */ 2558 msg_sys->msg_namelen = 0; 2559 2560 if (sock->file->f_flags & O_NONBLOCK) 2561 flags |= MSG_DONTWAIT; 2562 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2563 if (err < 0) 2564 goto out; 2565 len = err; 2566 2567 if (uaddr != NULL) { 2568 err = move_addr_to_user(&addr, 2569 msg_sys->msg_namelen, uaddr, 2570 uaddr_len); 2571 if (err < 0) 2572 goto out; 2573 } 2574 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2575 COMPAT_FLAGS(msg)); 2576 if (err) 2577 goto out; 2578 if (MSG_CMSG_COMPAT & flags) 2579 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2580 &msg_compat->msg_controllen); 2581 else 2582 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2583 &msg->msg_controllen); 2584 if (err) 2585 goto out; 2586 err = len; 2587 out: 2588 return err; 2589 } 2590 2591 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2592 struct msghdr *msg_sys, unsigned int flags, int nosec) 2593 { 2594 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2595 /* user mode address pointers */ 2596 struct sockaddr __user *uaddr; 2597 ssize_t err; 2598 2599 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2600 if (err < 0) 2601 return err; 2602 2603 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2604 kfree(iov); 2605 return err; 2606 } 2607 2608 /* 2609 * BSD recvmsg interface 2610 */ 2611 2612 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *umsg, 2613 unsigned int flags) 2614 { 2615 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2616 struct sockaddr_storage address; 2617 struct msghdr msg = { .msg_name = &address }; 2618 struct sockaddr __user *uaddr; 2619 ssize_t err; 2620 2621 err = recvmsg_copy_msghdr(&msg, umsg, flags, &uaddr, &iov); 2622 if (err) 2623 return err; 2624 /* disallow ancillary data requests from this path */ 2625 if (msg.msg_control || msg.msg_controllen) { 2626 err = -EINVAL; 2627 goto out; 2628 } 2629 2630 err = ____sys_recvmsg(sock, &msg, umsg, uaddr, flags, 0); 2631 out: 2632 kfree(iov); 2633 return err; 2634 } 2635 2636 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2637 bool forbid_cmsg_compat) 2638 { 2639 int fput_needed, err; 2640 struct msghdr msg_sys; 2641 struct socket *sock; 2642 2643 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2644 return -EINVAL; 2645 2646 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2647 if (!sock) 2648 goto out; 2649 2650 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2651 2652 fput_light(sock->file, fput_needed); 2653 out: 2654 return err; 2655 } 2656 2657 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2658 unsigned int, flags) 2659 { 2660 return __sys_recvmsg(fd, msg, flags, true); 2661 } 2662 2663 /* 2664 * Linux recvmmsg interface 2665 */ 2666 2667 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2668 unsigned int vlen, unsigned int flags, 2669 struct timespec64 *timeout) 2670 { 2671 int fput_needed, err, datagrams; 2672 struct socket *sock; 2673 struct mmsghdr __user *entry; 2674 struct compat_mmsghdr __user *compat_entry; 2675 struct msghdr msg_sys; 2676 struct timespec64 end_time; 2677 struct timespec64 timeout64; 2678 2679 if (timeout && 2680 poll_select_set_timeout(&end_time, timeout->tv_sec, 2681 timeout->tv_nsec)) 2682 return -EINVAL; 2683 2684 datagrams = 0; 2685 2686 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2687 if (!sock) 2688 return err; 2689 2690 if (likely(!(flags & MSG_ERRQUEUE))) { 2691 err = sock_error(sock->sk); 2692 if (err) { 2693 datagrams = err; 2694 goto out_put; 2695 } 2696 } 2697 2698 entry = mmsg; 2699 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2700 2701 while (datagrams < vlen) { 2702 /* 2703 * No need to ask LSM for more than the first datagram. 2704 */ 2705 if (MSG_CMSG_COMPAT & flags) { 2706 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2707 &msg_sys, flags & ~MSG_WAITFORONE, 2708 datagrams); 2709 if (err < 0) 2710 break; 2711 err = __put_user(err, &compat_entry->msg_len); 2712 ++compat_entry; 2713 } else { 2714 err = ___sys_recvmsg(sock, 2715 (struct user_msghdr __user *)entry, 2716 &msg_sys, flags & ~MSG_WAITFORONE, 2717 datagrams); 2718 if (err < 0) 2719 break; 2720 err = put_user(err, &entry->msg_len); 2721 ++entry; 2722 } 2723 2724 if (err) 2725 break; 2726 ++datagrams; 2727 2728 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2729 if (flags & MSG_WAITFORONE) 2730 flags |= MSG_DONTWAIT; 2731 2732 if (timeout) { 2733 ktime_get_ts64(&timeout64); 2734 *timeout = timespec64_sub(end_time, timeout64); 2735 if (timeout->tv_sec < 0) { 2736 timeout->tv_sec = timeout->tv_nsec = 0; 2737 break; 2738 } 2739 2740 /* Timeout, return less than vlen datagrams */ 2741 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2742 break; 2743 } 2744 2745 /* Out of band data, return right away */ 2746 if (msg_sys.msg_flags & MSG_OOB) 2747 break; 2748 cond_resched(); 2749 } 2750 2751 if (err == 0) 2752 goto out_put; 2753 2754 if (datagrams == 0) { 2755 datagrams = err; 2756 goto out_put; 2757 } 2758 2759 /* 2760 * We may return less entries than requested (vlen) if the 2761 * sock is non block and there aren't enough datagrams... 2762 */ 2763 if (err != -EAGAIN) { 2764 /* 2765 * ... or if recvmsg returns an error after we 2766 * received some datagrams, where we record the 2767 * error to return on the next call or if the 2768 * app asks about it using getsockopt(SO_ERROR). 2769 */ 2770 sock->sk->sk_err = -err; 2771 } 2772 out_put: 2773 fput_light(sock->file, fput_needed); 2774 2775 return datagrams; 2776 } 2777 2778 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2779 unsigned int vlen, unsigned int flags, 2780 struct __kernel_timespec __user *timeout, 2781 struct old_timespec32 __user *timeout32) 2782 { 2783 int datagrams; 2784 struct timespec64 timeout_sys; 2785 2786 if (timeout && get_timespec64(&timeout_sys, timeout)) 2787 return -EFAULT; 2788 2789 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2790 return -EFAULT; 2791 2792 if (!timeout && !timeout32) 2793 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2794 2795 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2796 2797 if (datagrams <= 0) 2798 return datagrams; 2799 2800 if (timeout && put_timespec64(&timeout_sys, timeout)) 2801 datagrams = -EFAULT; 2802 2803 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2804 datagrams = -EFAULT; 2805 2806 return datagrams; 2807 } 2808 2809 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2810 unsigned int, vlen, unsigned int, flags, 2811 struct __kernel_timespec __user *, timeout) 2812 { 2813 if (flags & MSG_CMSG_COMPAT) 2814 return -EINVAL; 2815 2816 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2817 } 2818 2819 #ifdef CONFIG_COMPAT_32BIT_TIME 2820 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2821 unsigned int, vlen, unsigned int, flags, 2822 struct old_timespec32 __user *, timeout) 2823 { 2824 if (flags & MSG_CMSG_COMPAT) 2825 return -EINVAL; 2826 2827 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2828 } 2829 #endif 2830 2831 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2832 /* Argument list sizes for sys_socketcall */ 2833 #define AL(x) ((x) * sizeof(unsigned long)) 2834 static const unsigned char nargs[21] = { 2835 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2836 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2837 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2838 AL(4), AL(5), AL(4) 2839 }; 2840 2841 #undef AL 2842 2843 /* 2844 * System call vectors. 2845 * 2846 * Argument checking cleaned up. Saved 20% in size. 2847 * This function doesn't need to set the kernel lock because 2848 * it is set by the callees. 2849 */ 2850 2851 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2852 { 2853 unsigned long a[AUDITSC_ARGS]; 2854 unsigned long a0, a1; 2855 int err; 2856 unsigned int len; 2857 2858 if (call < 1 || call > SYS_SENDMMSG) 2859 return -EINVAL; 2860 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2861 2862 len = nargs[call]; 2863 if (len > sizeof(a)) 2864 return -EINVAL; 2865 2866 /* copy_from_user should be SMP safe. */ 2867 if (copy_from_user(a, args, len)) 2868 return -EFAULT; 2869 2870 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2871 if (err) 2872 return err; 2873 2874 a0 = a[0]; 2875 a1 = a[1]; 2876 2877 switch (call) { 2878 case SYS_SOCKET: 2879 err = __sys_socket(a0, a1, a[2]); 2880 break; 2881 case SYS_BIND: 2882 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2883 break; 2884 case SYS_CONNECT: 2885 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2886 break; 2887 case SYS_LISTEN: 2888 err = __sys_listen(a0, a1); 2889 break; 2890 case SYS_ACCEPT: 2891 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2892 (int __user *)a[2], 0); 2893 break; 2894 case SYS_GETSOCKNAME: 2895 err = 2896 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2897 (int __user *)a[2]); 2898 break; 2899 case SYS_GETPEERNAME: 2900 err = 2901 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2902 (int __user *)a[2]); 2903 break; 2904 case SYS_SOCKETPAIR: 2905 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2906 break; 2907 case SYS_SEND: 2908 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2909 NULL, 0); 2910 break; 2911 case SYS_SENDTO: 2912 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2913 (struct sockaddr __user *)a[4], a[5]); 2914 break; 2915 case SYS_RECV: 2916 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2917 NULL, NULL); 2918 break; 2919 case SYS_RECVFROM: 2920 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2921 (struct sockaddr __user *)a[4], 2922 (int __user *)a[5]); 2923 break; 2924 case SYS_SHUTDOWN: 2925 err = __sys_shutdown(a0, a1); 2926 break; 2927 case SYS_SETSOCKOPT: 2928 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2929 a[4]); 2930 break; 2931 case SYS_GETSOCKOPT: 2932 err = 2933 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2934 (int __user *)a[4]); 2935 break; 2936 case SYS_SENDMSG: 2937 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2938 a[2], true); 2939 break; 2940 case SYS_SENDMMSG: 2941 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2942 a[3], true); 2943 break; 2944 case SYS_RECVMSG: 2945 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2946 a[2], true); 2947 break; 2948 case SYS_RECVMMSG: 2949 if (IS_ENABLED(CONFIG_64BIT)) 2950 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2951 a[2], a[3], 2952 (struct __kernel_timespec __user *)a[4], 2953 NULL); 2954 else 2955 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2956 a[2], a[3], NULL, 2957 (struct old_timespec32 __user *)a[4]); 2958 break; 2959 case SYS_ACCEPT4: 2960 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2961 (int __user *)a[2], a[3]); 2962 break; 2963 default: 2964 err = -EINVAL; 2965 break; 2966 } 2967 return err; 2968 } 2969 2970 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2971 2972 /** 2973 * sock_register - add a socket protocol handler 2974 * @ops: description of protocol 2975 * 2976 * This function is called by a protocol handler that wants to 2977 * advertise its address family, and have it linked into the 2978 * socket interface. The value ops->family corresponds to the 2979 * socket system call protocol family. 2980 */ 2981 int sock_register(const struct net_proto_family *ops) 2982 { 2983 int err; 2984 2985 if (ops->family >= NPROTO) { 2986 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2987 return -ENOBUFS; 2988 } 2989 2990 spin_lock(&net_family_lock); 2991 if (rcu_dereference_protected(net_families[ops->family], 2992 lockdep_is_held(&net_family_lock))) 2993 err = -EEXIST; 2994 else { 2995 rcu_assign_pointer(net_families[ops->family], ops); 2996 err = 0; 2997 } 2998 spin_unlock(&net_family_lock); 2999 3000 pr_info("NET: Registered protocol family %d\n", ops->family); 3001 return err; 3002 } 3003 EXPORT_SYMBOL(sock_register); 3004 3005 /** 3006 * sock_unregister - remove a protocol handler 3007 * @family: protocol family to remove 3008 * 3009 * This function is called by a protocol handler that wants to 3010 * remove its address family, and have it unlinked from the 3011 * new socket creation. 3012 * 3013 * If protocol handler is a module, then it can use module reference 3014 * counts to protect against new references. If protocol handler is not 3015 * a module then it needs to provide its own protection in 3016 * the ops->create routine. 3017 */ 3018 void sock_unregister(int family) 3019 { 3020 BUG_ON(family < 0 || family >= NPROTO); 3021 3022 spin_lock(&net_family_lock); 3023 RCU_INIT_POINTER(net_families[family], NULL); 3024 spin_unlock(&net_family_lock); 3025 3026 synchronize_rcu(); 3027 3028 pr_info("NET: Unregistered protocol family %d\n", family); 3029 } 3030 EXPORT_SYMBOL(sock_unregister); 3031 3032 bool sock_is_registered(int family) 3033 { 3034 return family < NPROTO && rcu_access_pointer(net_families[family]); 3035 } 3036 3037 static int __init sock_init(void) 3038 { 3039 int err; 3040 /* 3041 * Initialize the network sysctl infrastructure. 3042 */ 3043 err = net_sysctl_init(); 3044 if (err) 3045 goto out; 3046 3047 /* 3048 * Initialize skbuff SLAB cache 3049 */ 3050 skb_init(); 3051 3052 /* 3053 * Initialize the protocols module. 3054 */ 3055 3056 init_inodecache(); 3057 3058 err = register_filesystem(&sock_fs_type); 3059 if (err) 3060 goto out_fs; 3061 sock_mnt = kern_mount(&sock_fs_type); 3062 if (IS_ERR(sock_mnt)) { 3063 err = PTR_ERR(sock_mnt); 3064 goto out_mount; 3065 } 3066 3067 /* The real protocol initialization is performed in later initcalls. 3068 */ 3069 3070 #ifdef CONFIG_NETFILTER 3071 err = netfilter_init(); 3072 if (err) 3073 goto out; 3074 #endif 3075 3076 ptp_classifier_init(); 3077 3078 out: 3079 return err; 3080 3081 out_mount: 3082 unregister_filesystem(&sock_fs_type); 3083 out_fs: 3084 goto out; 3085 } 3086 3087 core_initcall(sock_init); /* early initcall */ 3088 3089 #ifdef CONFIG_PROC_FS 3090 void socket_seq_show(struct seq_file *seq) 3091 { 3092 seq_printf(seq, "sockets: used %d\n", 3093 sock_inuse_get(seq->private)); 3094 } 3095 #endif /* CONFIG_PROC_FS */ 3096 3097 #ifdef CONFIG_COMPAT 3098 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 3099 { 3100 struct compat_ifconf ifc32; 3101 struct ifconf ifc; 3102 int err; 3103 3104 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 3105 return -EFAULT; 3106 3107 ifc.ifc_len = ifc32.ifc_len; 3108 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 3109 3110 rtnl_lock(); 3111 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 3112 rtnl_unlock(); 3113 if (err) 3114 return err; 3115 3116 ifc32.ifc_len = ifc.ifc_len; 3117 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 3118 return -EFAULT; 3119 3120 return 0; 3121 } 3122 3123 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3124 { 3125 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3126 bool convert_in = false, convert_out = false; 3127 size_t buf_size = 0; 3128 struct ethtool_rxnfc __user *rxnfc = NULL; 3129 struct ifreq ifr; 3130 u32 rule_cnt = 0, actual_rule_cnt; 3131 u32 ethcmd; 3132 u32 data; 3133 int ret; 3134 3135 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3136 return -EFAULT; 3137 3138 compat_rxnfc = compat_ptr(data); 3139 3140 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3141 return -EFAULT; 3142 3143 /* Most ethtool structures are defined without padding. 3144 * Unfortunately struct ethtool_rxnfc is an exception. 3145 */ 3146 switch (ethcmd) { 3147 default: 3148 break; 3149 case ETHTOOL_GRXCLSRLALL: 3150 /* Buffer size is variable */ 3151 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3152 return -EFAULT; 3153 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3154 return -ENOMEM; 3155 buf_size += rule_cnt * sizeof(u32); 3156 /* fall through */ 3157 case ETHTOOL_GRXRINGS: 3158 case ETHTOOL_GRXCLSRLCNT: 3159 case ETHTOOL_GRXCLSRULE: 3160 case ETHTOOL_SRXCLSRLINS: 3161 convert_out = true; 3162 /* fall through */ 3163 case ETHTOOL_SRXCLSRLDEL: 3164 buf_size += sizeof(struct ethtool_rxnfc); 3165 convert_in = true; 3166 rxnfc = compat_alloc_user_space(buf_size); 3167 break; 3168 } 3169 3170 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3171 return -EFAULT; 3172 3173 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3174 3175 if (convert_in) { 3176 /* We expect there to be holes between fs.m_ext and 3177 * fs.ring_cookie and at the end of fs, but nowhere else. 3178 */ 3179 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3180 sizeof(compat_rxnfc->fs.m_ext) != 3181 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3182 sizeof(rxnfc->fs.m_ext)); 3183 BUILD_BUG_ON( 3184 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3185 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3186 offsetof(struct ethtool_rxnfc, fs.location) - 3187 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3188 3189 if (copy_in_user(rxnfc, compat_rxnfc, 3190 (void __user *)(&rxnfc->fs.m_ext + 1) - 3191 (void __user *)rxnfc) || 3192 copy_in_user(&rxnfc->fs.ring_cookie, 3193 &compat_rxnfc->fs.ring_cookie, 3194 (void __user *)(&rxnfc->fs.location + 1) - 3195 (void __user *)&rxnfc->fs.ring_cookie)) 3196 return -EFAULT; 3197 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3198 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3199 return -EFAULT; 3200 } else if (copy_in_user(&rxnfc->rule_cnt, 3201 &compat_rxnfc->rule_cnt, 3202 sizeof(rxnfc->rule_cnt))) 3203 return -EFAULT; 3204 } 3205 3206 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3207 if (ret) 3208 return ret; 3209 3210 if (convert_out) { 3211 if (copy_in_user(compat_rxnfc, rxnfc, 3212 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3213 (const void __user *)rxnfc) || 3214 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3215 &rxnfc->fs.ring_cookie, 3216 (const void __user *)(&rxnfc->fs.location + 1) - 3217 (const void __user *)&rxnfc->fs.ring_cookie) || 3218 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3219 sizeof(rxnfc->rule_cnt))) 3220 return -EFAULT; 3221 3222 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3223 /* As an optimisation, we only copy the actual 3224 * number of rules that the underlying 3225 * function returned. Since Mallory might 3226 * change the rule count in user memory, we 3227 * check that it is less than the rule count 3228 * originally given (as the user buffer size), 3229 * which has been range-checked. 3230 */ 3231 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3232 return -EFAULT; 3233 if (actual_rule_cnt < rule_cnt) 3234 rule_cnt = actual_rule_cnt; 3235 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3236 &rxnfc->rule_locs[0], 3237 rule_cnt * sizeof(u32))) 3238 return -EFAULT; 3239 } 3240 } 3241 3242 return 0; 3243 } 3244 3245 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3246 { 3247 compat_uptr_t uptr32; 3248 struct ifreq ifr; 3249 void __user *saved; 3250 int err; 3251 3252 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3253 return -EFAULT; 3254 3255 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3256 return -EFAULT; 3257 3258 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3259 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3260 3261 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3262 if (!err) { 3263 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3264 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3265 err = -EFAULT; 3266 } 3267 return err; 3268 } 3269 3270 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3271 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3272 struct compat_ifreq __user *u_ifreq32) 3273 { 3274 struct ifreq ifreq; 3275 u32 data32; 3276 3277 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3278 return -EFAULT; 3279 if (get_user(data32, &u_ifreq32->ifr_data)) 3280 return -EFAULT; 3281 ifreq.ifr_data = compat_ptr(data32); 3282 3283 return dev_ioctl(net, cmd, &ifreq, NULL); 3284 } 3285 3286 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3287 unsigned int cmd, 3288 struct compat_ifreq __user *uifr32) 3289 { 3290 struct ifreq __user *uifr; 3291 int err; 3292 3293 /* Handle the fact that while struct ifreq has the same *layout* on 3294 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3295 * which are handled elsewhere, it still has different *size* due to 3296 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3297 * resulting in struct ifreq being 32 and 40 bytes respectively). 3298 * As a result, if the struct happens to be at the end of a page and 3299 * the next page isn't readable/writable, we get a fault. To prevent 3300 * that, copy back and forth to the full size. 3301 */ 3302 3303 uifr = compat_alloc_user_space(sizeof(*uifr)); 3304 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3305 return -EFAULT; 3306 3307 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3308 3309 if (!err) { 3310 switch (cmd) { 3311 case SIOCGIFFLAGS: 3312 case SIOCGIFMETRIC: 3313 case SIOCGIFMTU: 3314 case SIOCGIFMEM: 3315 case SIOCGIFHWADDR: 3316 case SIOCGIFINDEX: 3317 case SIOCGIFADDR: 3318 case SIOCGIFBRDADDR: 3319 case SIOCGIFDSTADDR: 3320 case SIOCGIFNETMASK: 3321 case SIOCGIFPFLAGS: 3322 case SIOCGIFTXQLEN: 3323 case SIOCGMIIPHY: 3324 case SIOCGMIIREG: 3325 case SIOCGIFNAME: 3326 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3327 err = -EFAULT; 3328 break; 3329 } 3330 } 3331 return err; 3332 } 3333 3334 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3335 struct compat_ifreq __user *uifr32) 3336 { 3337 struct ifreq ifr; 3338 struct compat_ifmap __user *uifmap32; 3339 int err; 3340 3341 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3342 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3343 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3344 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3345 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3346 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3347 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3348 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3349 if (err) 3350 return -EFAULT; 3351 3352 err = dev_ioctl(net, cmd, &ifr, NULL); 3353 3354 if (cmd == SIOCGIFMAP && !err) { 3355 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3356 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3357 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3358 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3359 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3360 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3361 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3362 if (err) 3363 err = -EFAULT; 3364 } 3365 return err; 3366 } 3367 3368 struct rtentry32 { 3369 u32 rt_pad1; 3370 struct sockaddr rt_dst; /* target address */ 3371 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3372 struct sockaddr rt_genmask; /* target network mask (IP) */ 3373 unsigned short rt_flags; 3374 short rt_pad2; 3375 u32 rt_pad3; 3376 unsigned char rt_tos; 3377 unsigned char rt_class; 3378 short rt_pad4; 3379 short rt_metric; /* +1 for binary compatibility! */ 3380 /* char * */ u32 rt_dev; /* forcing the device at add */ 3381 u32 rt_mtu; /* per route MTU/Window */ 3382 u32 rt_window; /* Window clamping */ 3383 unsigned short rt_irtt; /* Initial RTT */ 3384 }; 3385 3386 struct in6_rtmsg32 { 3387 struct in6_addr rtmsg_dst; 3388 struct in6_addr rtmsg_src; 3389 struct in6_addr rtmsg_gateway; 3390 u32 rtmsg_type; 3391 u16 rtmsg_dst_len; 3392 u16 rtmsg_src_len; 3393 u32 rtmsg_metric; 3394 u32 rtmsg_info; 3395 u32 rtmsg_flags; 3396 s32 rtmsg_ifindex; 3397 }; 3398 3399 static int routing_ioctl(struct net *net, struct socket *sock, 3400 unsigned int cmd, void __user *argp) 3401 { 3402 int ret; 3403 void *r = NULL; 3404 struct in6_rtmsg r6; 3405 struct rtentry r4; 3406 char devname[16]; 3407 u32 rtdev; 3408 mm_segment_t old_fs = get_fs(); 3409 3410 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3411 struct in6_rtmsg32 __user *ur6 = argp; 3412 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3413 3 * sizeof(struct in6_addr)); 3414 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3415 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3416 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3417 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3418 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3419 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3420 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3421 3422 r = (void *) &r6; 3423 } else { /* ipv4 */ 3424 struct rtentry32 __user *ur4 = argp; 3425 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3426 3 * sizeof(struct sockaddr)); 3427 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3428 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3429 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3430 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3431 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3432 ret |= get_user(rtdev, &(ur4->rt_dev)); 3433 if (rtdev) { 3434 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3435 r4.rt_dev = (char __user __force *)devname; 3436 devname[15] = 0; 3437 } else 3438 r4.rt_dev = NULL; 3439 3440 r = (void *) &r4; 3441 } 3442 3443 if (ret) { 3444 ret = -EFAULT; 3445 goto out; 3446 } 3447 3448 set_fs(KERNEL_DS); 3449 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3450 set_fs(old_fs); 3451 3452 out: 3453 return ret; 3454 } 3455 3456 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3457 * for some operations; this forces use of the newer bridge-utils that 3458 * use compatible ioctls 3459 */ 3460 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3461 { 3462 compat_ulong_t tmp; 3463 3464 if (get_user(tmp, argp)) 3465 return -EFAULT; 3466 if (tmp == BRCTL_GET_VERSION) 3467 return BRCTL_VERSION + 1; 3468 return -EINVAL; 3469 } 3470 3471 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3472 unsigned int cmd, unsigned long arg) 3473 { 3474 void __user *argp = compat_ptr(arg); 3475 struct sock *sk = sock->sk; 3476 struct net *net = sock_net(sk); 3477 3478 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3479 return compat_ifr_data_ioctl(net, cmd, argp); 3480 3481 switch (cmd) { 3482 case SIOCSIFBR: 3483 case SIOCGIFBR: 3484 return old_bridge_ioctl(argp); 3485 case SIOCGIFCONF: 3486 return compat_dev_ifconf(net, argp); 3487 case SIOCETHTOOL: 3488 return ethtool_ioctl(net, argp); 3489 case SIOCWANDEV: 3490 return compat_siocwandev(net, argp); 3491 case SIOCGIFMAP: 3492 case SIOCSIFMAP: 3493 return compat_sioc_ifmap(net, cmd, argp); 3494 case SIOCADDRT: 3495 case SIOCDELRT: 3496 return routing_ioctl(net, sock, cmd, argp); 3497 case SIOCGSTAMP_OLD: 3498 case SIOCGSTAMPNS_OLD: 3499 if (!sock->ops->gettstamp) 3500 return -ENOIOCTLCMD; 3501 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3502 !COMPAT_USE_64BIT_TIME); 3503 3504 case SIOCBONDSLAVEINFOQUERY: 3505 case SIOCBONDINFOQUERY: 3506 case SIOCSHWTSTAMP: 3507 case SIOCGHWTSTAMP: 3508 return compat_ifr_data_ioctl(net, cmd, argp); 3509 3510 case FIOSETOWN: 3511 case SIOCSPGRP: 3512 case FIOGETOWN: 3513 case SIOCGPGRP: 3514 case SIOCBRADDBR: 3515 case SIOCBRDELBR: 3516 case SIOCGIFVLAN: 3517 case SIOCSIFVLAN: 3518 case SIOCADDDLCI: 3519 case SIOCDELDLCI: 3520 case SIOCGSKNS: 3521 case SIOCGSTAMP_NEW: 3522 case SIOCGSTAMPNS_NEW: 3523 return sock_ioctl(file, cmd, arg); 3524 3525 case SIOCGIFFLAGS: 3526 case SIOCSIFFLAGS: 3527 case SIOCGIFMETRIC: 3528 case SIOCSIFMETRIC: 3529 case SIOCGIFMTU: 3530 case SIOCSIFMTU: 3531 case SIOCGIFMEM: 3532 case SIOCSIFMEM: 3533 case SIOCGIFHWADDR: 3534 case SIOCSIFHWADDR: 3535 case SIOCADDMULTI: 3536 case SIOCDELMULTI: 3537 case SIOCGIFINDEX: 3538 case SIOCGIFADDR: 3539 case SIOCSIFADDR: 3540 case SIOCSIFHWBROADCAST: 3541 case SIOCDIFADDR: 3542 case SIOCGIFBRDADDR: 3543 case SIOCSIFBRDADDR: 3544 case SIOCGIFDSTADDR: 3545 case SIOCSIFDSTADDR: 3546 case SIOCGIFNETMASK: 3547 case SIOCSIFNETMASK: 3548 case SIOCSIFPFLAGS: 3549 case SIOCGIFPFLAGS: 3550 case SIOCGIFTXQLEN: 3551 case SIOCSIFTXQLEN: 3552 case SIOCBRADDIF: 3553 case SIOCBRDELIF: 3554 case SIOCGIFNAME: 3555 case SIOCSIFNAME: 3556 case SIOCGMIIPHY: 3557 case SIOCGMIIREG: 3558 case SIOCSMIIREG: 3559 case SIOCBONDENSLAVE: 3560 case SIOCBONDRELEASE: 3561 case SIOCBONDSETHWADDR: 3562 case SIOCBONDCHANGEACTIVE: 3563 return compat_ifreq_ioctl(net, sock, cmd, argp); 3564 3565 case SIOCSARP: 3566 case SIOCGARP: 3567 case SIOCDARP: 3568 case SIOCOUTQ: 3569 case SIOCOUTQNSD: 3570 case SIOCATMARK: 3571 return sock_do_ioctl(net, sock, cmd, arg); 3572 } 3573 3574 return -ENOIOCTLCMD; 3575 } 3576 3577 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3578 unsigned long arg) 3579 { 3580 struct socket *sock = file->private_data; 3581 int ret = -ENOIOCTLCMD; 3582 struct sock *sk; 3583 struct net *net; 3584 3585 sk = sock->sk; 3586 net = sock_net(sk); 3587 3588 if (sock->ops->compat_ioctl) 3589 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3590 3591 if (ret == -ENOIOCTLCMD && 3592 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3593 ret = compat_wext_handle_ioctl(net, cmd, arg); 3594 3595 if (ret == -ENOIOCTLCMD) 3596 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3597 3598 return ret; 3599 } 3600 #endif 3601 3602 /** 3603 * kernel_bind - bind an address to a socket (kernel space) 3604 * @sock: socket 3605 * @addr: address 3606 * @addrlen: length of address 3607 * 3608 * Returns 0 or an error. 3609 */ 3610 3611 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3612 { 3613 return sock->ops->bind(sock, addr, addrlen); 3614 } 3615 EXPORT_SYMBOL(kernel_bind); 3616 3617 /** 3618 * kernel_listen - move socket to listening state (kernel space) 3619 * @sock: socket 3620 * @backlog: pending connections queue size 3621 * 3622 * Returns 0 or an error. 3623 */ 3624 3625 int kernel_listen(struct socket *sock, int backlog) 3626 { 3627 return sock->ops->listen(sock, backlog); 3628 } 3629 EXPORT_SYMBOL(kernel_listen); 3630 3631 /** 3632 * kernel_accept - accept a connection (kernel space) 3633 * @sock: listening socket 3634 * @newsock: new connected socket 3635 * @flags: flags 3636 * 3637 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3638 * If it fails, @newsock is guaranteed to be %NULL. 3639 * Returns 0 or an error. 3640 */ 3641 3642 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3643 { 3644 struct sock *sk = sock->sk; 3645 int err; 3646 3647 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3648 newsock); 3649 if (err < 0) 3650 goto done; 3651 3652 err = sock->ops->accept(sock, *newsock, flags, true); 3653 if (err < 0) { 3654 sock_release(*newsock); 3655 *newsock = NULL; 3656 goto done; 3657 } 3658 3659 (*newsock)->ops = sock->ops; 3660 __module_get((*newsock)->ops->owner); 3661 3662 done: 3663 return err; 3664 } 3665 EXPORT_SYMBOL(kernel_accept); 3666 3667 /** 3668 * kernel_connect - connect a socket (kernel space) 3669 * @sock: socket 3670 * @addr: address 3671 * @addrlen: address length 3672 * @flags: flags (O_NONBLOCK, ...) 3673 * 3674 * For datagram sockets, @addr is the addres to which datagrams are sent 3675 * by default, and the only address from which datagrams are received. 3676 * For stream sockets, attempts to connect to @addr. 3677 * Returns 0 or an error code. 3678 */ 3679 3680 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3681 int flags) 3682 { 3683 return sock->ops->connect(sock, addr, addrlen, flags); 3684 } 3685 EXPORT_SYMBOL(kernel_connect); 3686 3687 /** 3688 * kernel_getsockname - get the address which the socket is bound (kernel space) 3689 * @sock: socket 3690 * @addr: address holder 3691 * 3692 * Fills the @addr pointer with the address which the socket is bound. 3693 * Returns 0 or an error code. 3694 */ 3695 3696 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3697 { 3698 return sock->ops->getname(sock, addr, 0); 3699 } 3700 EXPORT_SYMBOL(kernel_getsockname); 3701 3702 /** 3703 * kernel_peername - get the address which the socket is connected (kernel space) 3704 * @sock: socket 3705 * @addr: address holder 3706 * 3707 * Fills the @addr pointer with the address which the socket is connected. 3708 * Returns 0 or an error code. 3709 */ 3710 3711 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3712 { 3713 return sock->ops->getname(sock, addr, 1); 3714 } 3715 EXPORT_SYMBOL(kernel_getpeername); 3716 3717 /** 3718 * kernel_getsockopt - get a socket option (kernel space) 3719 * @sock: socket 3720 * @level: API level (SOL_SOCKET, ...) 3721 * @optname: option tag 3722 * @optval: option value 3723 * @optlen: option length 3724 * 3725 * Assigns the option length to @optlen. 3726 * Returns 0 or an error. 3727 */ 3728 3729 int kernel_getsockopt(struct socket *sock, int level, int optname, 3730 char *optval, int *optlen) 3731 { 3732 mm_segment_t oldfs = get_fs(); 3733 char __user *uoptval; 3734 int __user *uoptlen; 3735 int err; 3736 3737 uoptval = (char __user __force *) optval; 3738 uoptlen = (int __user __force *) optlen; 3739 3740 set_fs(KERNEL_DS); 3741 if (level == SOL_SOCKET) 3742 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3743 else 3744 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3745 uoptlen); 3746 set_fs(oldfs); 3747 return err; 3748 } 3749 EXPORT_SYMBOL(kernel_getsockopt); 3750 3751 /** 3752 * kernel_setsockopt - set a socket option (kernel space) 3753 * @sock: socket 3754 * @level: API level (SOL_SOCKET, ...) 3755 * @optname: option tag 3756 * @optval: option value 3757 * @optlen: option length 3758 * 3759 * Returns 0 or an error. 3760 */ 3761 3762 int kernel_setsockopt(struct socket *sock, int level, int optname, 3763 char *optval, unsigned int optlen) 3764 { 3765 mm_segment_t oldfs = get_fs(); 3766 char __user *uoptval; 3767 int err; 3768 3769 uoptval = (char __user __force *) optval; 3770 3771 set_fs(KERNEL_DS); 3772 if (level == SOL_SOCKET) 3773 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3774 else 3775 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3776 optlen); 3777 set_fs(oldfs); 3778 return err; 3779 } 3780 EXPORT_SYMBOL(kernel_setsockopt); 3781 3782 /** 3783 * kernel_sendpage - send a &page through a socket (kernel space) 3784 * @sock: socket 3785 * @page: page 3786 * @offset: page offset 3787 * @size: total size in bytes 3788 * @flags: flags (MSG_DONTWAIT, ...) 3789 * 3790 * Returns the total amount sent in bytes or an error. 3791 */ 3792 3793 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3794 size_t size, int flags) 3795 { 3796 if (sock->ops->sendpage) 3797 return sock->ops->sendpage(sock, page, offset, size, flags); 3798 3799 return sock_no_sendpage(sock, page, offset, size, flags); 3800 } 3801 EXPORT_SYMBOL(kernel_sendpage); 3802 3803 /** 3804 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3805 * @sk: sock 3806 * @page: page 3807 * @offset: page offset 3808 * @size: total size in bytes 3809 * @flags: flags (MSG_DONTWAIT, ...) 3810 * 3811 * Returns the total amount sent in bytes or an error. 3812 * Caller must hold @sk. 3813 */ 3814 3815 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3816 size_t size, int flags) 3817 { 3818 struct socket *sock = sk->sk_socket; 3819 3820 if (sock->ops->sendpage_locked) 3821 return sock->ops->sendpage_locked(sk, page, offset, size, 3822 flags); 3823 3824 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3825 } 3826 EXPORT_SYMBOL(kernel_sendpage_locked); 3827 3828 /** 3829 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3830 * @sock: socket 3831 * @how: connection part 3832 * 3833 * Returns 0 or an error. 3834 */ 3835 3836 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3837 { 3838 return sock->ops->shutdown(sock, how); 3839 } 3840 EXPORT_SYMBOL(kernel_sock_shutdown); 3841 3842 /** 3843 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3844 * @sk: socket 3845 * 3846 * This routine returns the IP overhead imposed by a socket i.e. 3847 * the length of the underlying IP header, depending on whether 3848 * this is an IPv4 or IPv6 socket and the length from IP options turned 3849 * on at the socket. Assumes that the caller has a lock on the socket. 3850 */ 3851 3852 u32 kernel_sock_ip_overhead(struct sock *sk) 3853 { 3854 struct inet_sock *inet; 3855 struct ip_options_rcu *opt; 3856 u32 overhead = 0; 3857 #if IS_ENABLED(CONFIG_IPV6) 3858 struct ipv6_pinfo *np; 3859 struct ipv6_txoptions *optv6 = NULL; 3860 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3861 3862 if (!sk) 3863 return overhead; 3864 3865 switch (sk->sk_family) { 3866 case AF_INET: 3867 inet = inet_sk(sk); 3868 overhead += sizeof(struct iphdr); 3869 opt = rcu_dereference_protected(inet->inet_opt, 3870 sock_owned_by_user(sk)); 3871 if (opt) 3872 overhead += opt->opt.optlen; 3873 return overhead; 3874 #if IS_ENABLED(CONFIG_IPV6) 3875 case AF_INET6: 3876 np = inet6_sk(sk); 3877 overhead += sizeof(struct ipv6hdr); 3878 if (np) 3879 optv6 = rcu_dereference_protected(np->opt, 3880 sock_owned_by_user(sk)); 3881 if (optv6) 3882 overhead += (optv6->opt_flen + optv6->opt_nflen); 3883 return overhead; 3884 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3885 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3886 return overhead; 3887 } 3888 } 3889 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3890