1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/net.h> 61 #include <linux/interrupt.h> 62 #include <linux/thread_info.h> 63 #include <linux/rcupdate.h> 64 #include <linux/netdevice.h> 65 #include <linux/proc_fs.h> 66 #include <linux/seq_file.h> 67 #include <linux/mutex.h> 68 #include <linux/if_bridge.h> 69 #include <linux/if_vlan.h> 70 #include <linux/ptp_classify.h> 71 #include <linux/init.h> 72 #include <linux/poll.h> 73 #include <linux/cache.h> 74 #include <linux/module.h> 75 #include <linux/highmem.h> 76 #include <linux/mount.h> 77 #include <linux/pseudo_fs.h> 78 #include <linux/security.h> 79 #include <linux/syscalls.h> 80 #include <linux/compat.h> 81 #include <linux/kmod.h> 82 #include <linux/audit.h> 83 #include <linux/wireless.h> 84 #include <linux/nsproxy.h> 85 #include <linux/magic.h> 86 #include <linux/slab.h> 87 #include <linux/xattr.h> 88 #include <linux/nospec.h> 89 #include <linux/indirect_call_wrapper.h> 90 91 #include <linux/uaccess.h> 92 #include <asm/unistd.h> 93 94 #include <net/compat.h> 95 #include <net/wext.h> 96 #include <net/cls_cgroup.h> 97 98 #include <net/sock.h> 99 #include <linux/netfilter.h> 100 101 #include <linux/if_tun.h> 102 #include <linux/ipv6_route.h> 103 #include <linux/route.h> 104 #include <linux/termios.h> 105 #include <linux/sockios.h> 106 #include <net/busy_poll.h> 107 #include <linux/errqueue.h> 108 #include <linux/ptp_clock_kernel.h> 109 110 #ifdef CONFIG_NET_RX_BUSY_POLL 111 unsigned int sysctl_net_busy_read __read_mostly; 112 unsigned int sysctl_net_busy_poll __read_mostly; 113 #endif 114 115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 117 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 118 119 static int sock_close(struct inode *inode, struct file *file); 120 static __poll_t sock_poll(struct file *file, 121 struct poll_table_struct *wait); 122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 123 #ifdef CONFIG_COMPAT 124 static long compat_sock_ioctl(struct file *file, 125 unsigned int cmd, unsigned long arg); 126 #endif 127 static int sock_fasync(int fd, struct file *filp, int on); 128 static ssize_t sock_sendpage(struct file *file, struct page *page, 129 int offset, size_t size, loff_t *ppos, int more); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 134 #ifdef CONFIG_PROC_FS 135 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 136 { 137 struct socket *sock = f->private_data; 138 139 if (sock->ops->show_fdinfo) 140 sock->ops->show_fdinfo(m, sock); 141 } 142 #else 143 #define sock_show_fdinfo NULL 144 #endif 145 146 /* 147 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 148 * in the operation structures but are done directly via the socketcall() multiplexor. 149 */ 150 151 static const struct file_operations socket_file_ops = { 152 .owner = THIS_MODULE, 153 .llseek = no_llseek, 154 .read_iter = sock_read_iter, 155 .write_iter = sock_write_iter, 156 .poll = sock_poll, 157 .unlocked_ioctl = sock_ioctl, 158 #ifdef CONFIG_COMPAT 159 .compat_ioctl = compat_sock_ioctl, 160 #endif 161 .mmap = sock_mmap, 162 .release = sock_close, 163 .fasync = sock_fasync, 164 .sendpage = sock_sendpage, 165 .splice_write = generic_splice_sendpage, 166 .splice_read = sock_splice_read, 167 .show_fdinfo = sock_show_fdinfo, 168 }; 169 170 static const char * const pf_family_names[] = { 171 [PF_UNSPEC] = "PF_UNSPEC", 172 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 173 [PF_INET] = "PF_INET", 174 [PF_AX25] = "PF_AX25", 175 [PF_IPX] = "PF_IPX", 176 [PF_APPLETALK] = "PF_APPLETALK", 177 [PF_NETROM] = "PF_NETROM", 178 [PF_BRIDGE] = "PF_BRIDGE", 179 [PF_ATMPVC] = "PF_ATMPVC", 180 [PF_X25] = "PF_X25", 181 [PF_INET6] = "PF_INET6", 182 [PF_ROSE] = "PF_ROSE", 183 [PF_DECnet] = "PF_DECnet", 184 [PF_NETBEUI] = "PF_NETBEUI", 185 [PF_SECURITY] = "PF_SECURITY", 186 [PF_KEY] = "PF_KEY", 187 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 188 [PF_PACKET] = "PF_PACKET", 189 [PF_ASH] = "PF_ASH", 190 [PF_ECONET] = "PF_ECONET", 191 [PF_ATMSVC] = "PF_ATMSVC", 192 [PF_RDS] = "PF_RDS", 193 [PF_SNA] = "PF_SNA", 194 [PF_IRDA] = "PF_IRDA", 195 [PF_PPPOX] = "PF_PPPOX", 196 [PF_WANPIPE] = "PF_WANPIPE", 197 [PF_LLC] = "PF_LLC", 198 [PF_IB] = "PF_IB", 199 [PF_MPLS] = "PF_MPLS", 200 [PF_CAN] = "PF_CAN", 201 [PF_TIPC] = "PF_TIPC", 202 [PF_BLUETOOTH] = "PF_BLUETOOTH", 203 [PF_IUCV] = "PF_IUCV", 204 [PF_RXRPC] = "PF_RXRPC", 205 [PF_ISDN] = "PF_ISDN", 206 [PF_PHONET] = "PF_PHONET", 207 [PF_IEEE802154] = "PF_IEEE802154", 208 [PF_CAIF] = "PF_CAIF", 209 [PF_ALG] = "PF_ALG", 210 [PF_NFC] = "PF_NFC", 211 [PF_VSOCK] = "PF_VSOCK", 212 [PF_KCM] = "PF_KCM", 213 [PF_QIPCRTR] = "PF_QIPCRTR", 214 [PF_SMC] = "PF_SMC", 215 [PF_XDP] = "PF_XDP", 216 [PF_MCTP] = "PF_MCTP", 217 }; 218 219 /* 220 * The protocol list. Each protocol is registered in here. 221 */ 222 223 static DEFINE_SPINLOCK(net_family_lock); 224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 225 226 /* 227 * Support routines. 228 * Move socket addresses back and forth across the kernel/user 229 * divide and look after the messy bits. 230 */ 231 232 /** 233 * move_addr_to_kernel - copy a socket address into kernel space 234 * @uaddr: Address in user space 235 * @kaddr: Address in kernel space 236 * @ulen: Length in user space 237 * 238 * The address is copied into kernel space. If the provided address is 239 * too long an error code of -EINVAL is returned. If the copy gives 240 * invalid addresses -EFAULT is returned. On a success 0 is returned. 241 */ 242 243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 244 { 245 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 246 return -EINVAL; 247 if (ulen == 0) 248 return 0; 249 if (copy_from_user(kaddr, uaddr, ulen)) 250 return -EFAULT; 251 return audit_sockaddr(ulen, kaddr); 252 } 253 254 /** 255 * move_addr_to_user - copy an address to user space 256 * @kaddr: kernel space address 257 * @klen: length of address in kernel 258 * @uaddr: user space address 259 * @ulen: pointer to user length field 260 * 261 * The value pointed to by ulen on entry is the buffer length available. 262 * This is overwritten with the buffer space used. -EINVAL is returned 263 * if an overlong buffer is specified or a negative buffer size. -EFAULT 264 * is returned if either the buffer or the length field are not 265 * accessible. 266 * After copying the data up to the limit the user specifies, the true 267 * length of the data is written over the length limit the user 268 * specified. Zero is returned for a success. 269 */ 270 271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 272 void __user *uaddr, int __user *ulen) 273 { 274 int err; 275 int len; 276 277 BUG_ON(klen > sizeof(struct sockaddr_storage)); 278 err = get_user(len, ulen); 279 if (err) 280 return err; 281 if (len > klen) 282 len = klen; 283 if (len < 0) 284 return -EINVAL; 285 if (len) { 286 if (audit_sockaddr(klen, kaddr)) 287 return -ENOMEM; 288 if (copy_to_user(uaddr, kaddr, len)) 289 return -EFAULT; 290 } 291 /* 292 * "fromlen shall refer to the value before truncation.." 293 * 1003.1g 294 */ 295 return __put_user(klen, ulen); 296 } 297 298 static struct kmem_cache *sock_inode_cachep __ro_after_init; 299 300 static struct inode *sock_alloc_inode(struct super_block *sb) 301 { 302 struct socket_alloc *ei; 303 304 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 305 if (!ei) 306 return NULL; 307 init_waitqueue_head(&ei->socket.wq.wait); 308 ei->socket.wq.fasync_list = NULL; 309 ei->socket.wq.flags = 0; 310 311 ei->socket.state = SS_UNCONNECTED; 312 ei->socket.flags = 0; 313 ei->socket.ops = NULL; 314 ei->socket.sk = NULL; 315 ei->socket.file = NULL; 316 317 return &ei->vfs_inode; 318 } 319 320 static void sock_free_inode(struct inode *inode) 321 { 322 struct socket_alloc *ei; 323 324 ei = container_of(inode, struct socket_alloc, vfs_inode); 325 kmem_cache_free(sock_inode_cachep, ei); 326 } 327 328 static void init_once(void *foo) 329 { 330 struct socket_alloc *ei = (struct socket_alloc *)foo; 331 332 inode_init_once(&ei->vfs_inode); 333 } 334 335 static void init_inodecache(void) 336 { 337 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 338 sizeof(struct socket_alloc), 339 0, 340 (SLAB_HWCACHE_ALIGN | 341 SLAB_RECLAIM_ACCOUNT | 342 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 343 init_once); 344 BUG_ON(sock_inode_cachep == NULL); 345 } 346 347 static const struct super_operations sockfs_ops = { 348 .alloc_inode = sock_alloc_inode, 349 .free_inode = sock_free_inode, 350 .statfs = simple_statfs, 351 }; 352 353 /* 354 * sockfs_dname() is called from d_path(). 355 */ 356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 357 { 358 return dynamic_dname(buffer, buflen, "socket:[%lu]", 359 d_inode(dentry)->i_ino); 360 } 361 362 static const struct dentry_operations sockfs_dentry_operations = { 363 .d_dname = sockfs_dname, 364 }; 365 366 static int sockfs_xattr_get(const struct xattr_handler *handler, 367 struct dentry *dentry, struct inode *inode, 368 const char *suffix, void *value, size_t size) 369 { 370 if (value) { 371 if (dentry->d_name.len + 1 > size) 372 return -ERANGE; 373 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 374 } 375 return dentry->d_name.len + 1; 376 } 377 378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 381 382 static const struct xattr_handler sockfs_xattr_handler = { 383 .name = XATTR_NAME_SOCKPROTONAME, 384 .get = sockfs_xattr_get, 385 }; 386 387 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 388 struct user_namespace *mnt_userns, 389 struct dentry *dentry, struct inode *inode, 390 const char *suffix, const void *value, 391 size_t size, int flags) 392 { 393 /* Handled by LSM. */ 394 return -EAGAIN; 395 } 396 397 static const struct xattr_handler sockfs_security_xattr_handler = { 398 .prefix = XATTR_SECURITY_PREFIX, 399 .set = sockfs_security_xattr_set, 400 }; 401 402 static const struct xattr_handler *sockfs_xattr_handlers[] = { 403 &sockfs_xattr_handler, 404 &sockfs_security_xattr_handler, 405 NULL 406 }; 407 408 static int sockfs_init_fs_context(struct fs_context *fc) 409 { 410 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 411 if (!ctx) 412 return -ENOMEM; 413 ctx->ops = &sockfs_ops; 414 ctx->dops = &sockfs_dentry_operations; 415 ctx->xattr = sockfs_xattr_handlers; 416 return 0; 417 } 418 419 static struct vfsmount *sock_mnt __read_mostly; 420 421 static struct file_system_type sock_fs_type = { 422 .name = "sockfs", 423 .init_fs_context = sockfs_init_fs_context, 424 .kill_sb = kill_anon_super, 425 }; 426 427 /* 428 * Obtains the first available file descriptor and sets it up for use. 429 * 430 * These functions create file structures and maps them to fd space 431 * of the current process. On success it returns file descriptor 432 * and file struct implicitly stored in sock->file. 433 * Note that another thread may close file descriptor before we return 434 * from this function. We use the fact that now we do not refer 435 * to socket after mapping. If one day we will need it, this 436 * function will increment ref. count on file by 1. 437 * 438 * In any case returned fd MAY BE not valid! 439 * This race condition is unavoidable 440 * with shared fd spaces, we cannot solve it inside kernel, 441 * but we take care of internal coherence yet. 442 */ 443 444 /** 445 * sock_alloc_file - Bind a &socket to a &file 446 * @sock: socket 447 * @flags: file status flags 448 * @dname: protocol name 449 * 450 * Returns the &file bound with @sock, implicitly storing it 451 * in sock->file. If dname is %NULL, sets to "". 452 * On failure the return is a ERR pointer (see linux/err.h). 453 * This function uses GFP_KERNEL internally. 454 */ 455 456 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 457 { 458 struct file *file; 459 460 if (!dname) 461 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 462 463 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 464 O_RDWR | (flags & O_NONBLOCK), 465 &socket_file_ops); 466 if (IS_ERR(file)) { 467 sock_release(sock); 468 return file; 469 } 470 471 sock->file = file; 472 file->private_data = sock; 473 stream_open(SOCK_INODE(sock), file); 474 return file; 475 } 476 EXPORT_SYMBOL(sock_alloc_file); 477 478 static int sock_map_fd(struct socket *sock, int flags) 479 { 480 struct file *newfile; 481 int fd = get_unused_fd_flags(flags); 482 if (unlikely(fd < 0)) { 483 sock_release(sock); 484 return fd; 485 } 486 487 newfile = sock_alloc_file(sock, flags, NULL); 488 if (!IS_ERR(newfile)) { 489 fd_install(fd, newfile); 490 return fd; 491 } 492 493 put_unused_fd(fd); 494 return PTR_ERR(newfile); 495 } 496 497 /** 498 * sock_from_file - Return the &socket bounded to @file. 499 * @file: file 500 * 501 * On failure returns %NULL. 502 */ 503 504 struct socket *sock_from_file(struct file *file) 505 { 506 if (file->f_op == &socket_file_ops) 507 return file->private_data; /* set in sock_alloc_file */ 508 509 return NULL; 510 } 511 EXPORT_SYMBOL(sock_from_file); 512 513 /** 514 * sockfd_lookup - Go from a file number to its socket slot 515 * @fd: file handle 516 * @err: pointer to an error code return 517 * 518 * The file handle passed in is locked and the socket it is bound 519 * to is returned. If an error occurs the err pointer is overwritten 520 * with a negative errno code and NULL is returned. The function checks 521 * for both invalid handles and passing a handle which is not a socket. 522 * 523 * On a success the socket object pointer is returned. 524 */ 525 526 struct socket *sockfd_lookup(int fd, int *err) 527 { 528 struct file *file; 529 struct socket *sock; 530 531 file = fget(fd); 532 if (!file) { 533 *err = -EBADF; 534 return NULL; 535 } 536 537 sock = sock_from_file(file); 538 if (!sock) { 539 *err = -ENOTSOCK; 540 fput(file); 541 } 542 return sock; 543 } 544 EXPORT_SYMBOL(sockfd_lookup); 545 546 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 547 { 548 struct fd f = fdget(fd); 549 struct socket *sock; 550 551 *err = -EBADF; 552 if (f.file) { 553 sock = sock_from_file(f.file); 554 if (likely(sock)) { 555 *fput_needed = f.flags & FDPUT_FPUT; 556 return sock; 557 } 558 *err = -ENOTSOCK; 559 fdput(f); 560 } 561 return NULL; 562 } 563 564 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 565 size_t size) 566 { 567 ssize_t len; 568 ssize_t used = 0; 569 570 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 571 if (len < 0) 572 return len; 573 used += len; 574 if (buffer) { 575 if (size < used) 576 return -ERANGE; 577 buffer += len; 578 } 579 580 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 581 used += len; 582 if (buffer) { 583 if (size < used) 584 return -ERANGE; 585 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 586 buffer += len; 587 } 588 589 return used; 590 } 591 592 static int sockfs_setattr(struct user_namespace *mnt_userns, 593 struct dentry *dentry, struct iattr *iattr) 594 { 595 int err = simple_setattr(&init_user_ns, dentry, iattr); 596 597 if (!err && (iattr->ia_valid & ATTR_UID)) { 598 struct socket *sock = SOCKET_I(d_inode(dentry)); 599 600 if (sock->sk) 601 sock->sk->sk_uid = iattr->ia_uid; 602 else 603 err = -ENOENT; 604 } 605 606 return err; 607 } 608 609 static const struct inode_operations sockfs_inode_ops = { 610 .listxattr = sockfs_listxattr, 611 .setattr = sockfs_setattr, 612 }; 613 614 /** 615 * sock_alloc - allocate a socket 616 * 617 * Allocate a new inode and socket object. The two are bound together 618 * and initialised. The socket is then returned. If we are out of inodes 619 * NULL is returned. This functions uses GFP_KERNEL internally. 620 */ 621 622 struct socket *sock_alloc(void) 623 { 624 struct inode *inode; 625 struct socket *sock; 626 627 inode = new_inode_pseudo(sock_mnt->mnt_sb); 628 if (!inode) 629 return NULL; 630 631 sock = SOCKET_I(inode); 632 633 inode->i_ino = get_next_ino(); 634 inode->i_mode = S_IFSOCK | S_IRWXUGO; 635 inode->i_uid = current_fsuid(); 636 inode->i_gid = current_fsgid(); 637 inode->i_op = &sockfs_inode_ops; 638 639 return sock; 640 } 641 EXPORT_SYMBOL(sock_alloc); 642 643 static void __sock_release(struct socket *sock, struct inode *inode) 644 { 645 if (sock->ops) { 646 struct module *owner = sock->ops->owner; 647 648 if (inode) 649 inode_lock(inode); 650 sock->ops->release(sock); 651 sock->sk = NULL; 652 if (inode) 653 inode_unlock(inode); 654 sock->ops = NULL; 655 module_put(owner); 656 } 657 658 if (sock->wq.fasync_list) 659 pr_err("%s: fasync list not empty!\n", __func__); 660 661 if (!sock->file) { 662 iput(SOCK_INODE(sock)); 663 return; 664 } 665 sock->file = NULL; 666 } 667 668 /** 669 * sock_release - close a socket 670 * @sock: socket to close 671 * 672 * The socket is released from the protocol stack if it has a release 673 * callback, and the inode is then released if the socket is bound to 674 * an inode not a file. 675 */ 676 void sock_release(struct socket *sock) 677 { 678 __sock_release(sock, NULL); 679 } 680 EXPORT_SYMBOL(sock_release); 681 682 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 683 { 684 u8 flags = *tx_flags; 685 686 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 687 flags |= SKBTX_HW_TSTAMP; 688 689 /* PTP hardware clocks can provide a free running cycle counter 690 * as a time base for virtual clocks. Tell driver to use the 691 * free running cycle counter for timestamp if socket is bound 692 * to virtual clock. 693 */ 694 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 695 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 696 } 697 698 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 699 flags |= SKBTX_SW_TSTAMP; 700 701 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 702 flags |= SKBTX_SCHED_TSTAMP; 703 704 *tx_flags = flags; 705 } 706 EXPORT_SYMBOL(__sock_tx_timestamp); 707 708 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 709 size_t)); 710 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 711 size_t)); 712 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 713 { 714 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 715 inet_sendmsg, sock, msg, 716 msg_data_left(msg)); 717 BUG_ON(ret == -EIOCBQUEUED); 718 return ret; 719 } 720 721 /** 722 * sock_sendmsg - send a message through @sock 723 * @sock: socket 724 * @msg: message to send 725 * 726 * Sends @msg through @sock, passing through LSM. 727 * Returns the number of bytes sent, or an error code. 728 */ 729 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 730 { 731 int err = security_socket_sendmsg(sock, msg, 732 msg_data_left(msg)); 733 734 return err ?: sock_sendmsg_nosec(sock, msg); 735 } 736 EXPORT_SYMBOL(sock_sendmsg); 737 738 /** 739 * kernel_sendmsg - send a message through @sock (kernel-space) 740 * @sock: socket 741 * @msg: message header 742 * @vec: kernel vec 743 * @num: vec array length 744 * @size: total message data size 745 * 746 * Builds the message data with @vec and sends it through @sock. 747 * Returns the number of bytes sent, or an error code. 748 */ 749 750 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 751 struct kvec *vec, size_t num, size_t size) 752 { 753 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 754 return sock_sendmsg(sock, msg); 755 } 756 EXPORT_SYMBOL(kernel_sendmsg); 757 758 /** 759 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 760 * @sk: sock 761 * @msg: message header 762 * @vec: output s/g array 763 * @num: output s/g array length 764 * @size: total message data size 765 * 766 * Builds the message data with @vec and sends it through @sock. 767 * Returns the number of bytes sent, or an error code. 768 * Caller must hold @sk. 769 */ 770 771 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 772 struct kvec *vec, size_t num, size_t size) 773 { 774 struct socket *sock = sk->sk_socket; 775 776 if (!sock->ops->sendmsg_locked) 777 return sock_no_sendmsg_locked(sk, msg, size); 778 779 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 780 781 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 782 } 783 EXPORT_SYMBOL(kernel_sendmsg_locked); 784 785 static bool skb_is_err_queue(const struct sk_buff *skb) 786 { 787 /* pkt_type of skbs enqueued on the error queue are set to 788 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 789 * in recvmsg, since skbs received on a local socket will never 790 * have a pkt_type of PACKET_OUTGOING. 791 */ 792 return skb->pkt_type == PACKET_OUTGOING; 793 } 794 795 /* On transmit, software and hardware timestamps are returned independently. 796 * As the two skb clones share the hardware timestamp, which may be updated 797 * before the software timestamp is received, a hardware TX timestamp may be 798 * returned only if there is no software TX timestamp. Ignore false software 799 * timestamps, which may be made in the __sock_recv_timestamp() call when the 800 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 801 * hardware timestamp. 802 */ 803 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 804 { 805 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 806 } 807 808 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 809 { 810 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC; 811 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 812 struct net_device *orig_dev; 813 ktime_t hwtstamp; 814 815 rcu_read_lock(); 816 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 817 if (orig_dev) { 818 *if_index = orig_dev->ifindex; 819 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 820 } else { 821 hwtstamp = shhwtstamps->hwtstamp; 822 } 823 rcu_read_unlock(); 824 825 return hwtstamp; 826 } 827 828 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 829 int if_index) 830 { 831 struct scm_ts_pktinfo ts_pktinfo; 832 struct net_device *orig_dev; 833 834 if (!skb_mac_header_was_set(skb)) 835 return; 836 837 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 838 839 if (!if_index) { 840 rcu_read_lock(); 841 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 842 if (orig_dev) 843 if_index = orig_dev->ifindex; 844 rcu_read_unlock(); 845 } 846 ts_pktinfo.if_index = if_index; 847 848 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 849 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 850 sizeof(ts_pktinfo), &ts_pktinfo); 851 } 852 853 /* 854 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 855 */ 856 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 857 struct sk_buff *skb) 858 { 859 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 860 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 861 struct scm_timestamping_internal tss; 862 863 int empty = 1, false_tstamp = 0; 864 struct skb_shared_hwtstamps *shhwtstamps = 865 skb_hwtstamps(skb); 866 int if_index; 867 ktime_t hwtstamp; 868 869 /* Race occurred between timestamp enabling and packet 870 receiving. Fill in the current time for now. */ 871 if (need_software_tstamp && skb->tstamp == 0) { 872 __net_timestamp(skb); 873 false_tstamp = 1; 874 } 875 876 if (need_software_tstamp) { 877 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 878 if (new_tstamp) { 879 struct __kernel_sock_timeval tv; 880 881 skb_get_new_timestamp(skb, &tv); 882 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 883 sizeof(tv), &tv); 884 } else { 885 struct __kernel_old_timeval tv; 886 887 skb_get_timestamp(skb, &tv); 888 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 889 sizeof(tv), &tv); 890 } 891 } else { 892 if (new_tstamp) { 893 struct __kernel_timespec ts; 894 895 skb_get_new_timestampns(skb, &ts); 896 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 897 sizeof(ts), &ts); 898 } else { 899 struct __kernel_old_timespec ts; 900 901 skb_get_timestampns(skb, &ts); 902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 903 sizeof(ts), &ts); 904 } 905 } 906 } 907 908 memset(&tss, 0, sizeof(tss)); 909 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 910 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 911 empty = 0; 912 if (shhwtstamps && 913 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 914 !skb_is_swtx_tstamp(skb, false_tstamp)) { 915 if_index = 0; 916 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 917 hwtstamp = get_timestamp(sk, skb, &if_index); 918 else 919 hwtstamp = shhwtstamps->hwtstamp; 920 921 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 922 hwtstamp = ptp_convert_timestamp(&hwtstamp, 923 sk->sk_bind_phc); 924 925 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 926 empty = 0; 927 928 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 929 !skb_is_err_queue(skb)) 930 put_ts_pktinfo(msg, skb, if_index); 931 } 932 } 933 if (!empty) { 934 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 935 put_cmsg_scm_timestamping64(msg, &tss); 936 else 937 put_cmsg_scm_timestamping(msg, &tss); 938 939 if (skb_is_err_queue(skb) && skb->len && 940 SKB_EXT_ERR(skb)->opt_stats) 941 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 942 skb->len, skb->data); 943 } 944 } 945 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 946 947 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 948 struct sk_buff *skb) 949 { 950 int ack; 951 952 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 953 return; 954 if (!skb->wifi_acked_valid) 955 return; 956 957 ack = skb->wifi_acked; 958 959 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 960 } 961 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 962 963 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 964 struct sk_buff *skb) 965 { 966 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 967 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 968 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 969 } 970 971 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 972 struct sk_buff *skb) 973 { 974 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 975 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 976 __u32 mark = skb->mark; 977 978 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 979 } 980 } 981 982 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 983 struct sk_buff *skb) 984 { 985 sock_recv_timestamp(msg, sk, skb); 986 sock_recv_drops(msg, sk, skb); 987 sock_recv_mark(msg, sk, skb); 988 } 989 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 990 991 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 992 size_t, int)); 993 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 994 size_t, int)); 995 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 996 int flags) 997 { 998 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 999 inet_recvmsg, sock, msg, msg_data_left(msg), 1000 flags); 1001 } 1002 1003 /** 1004 * sock_recvmsg - receive a message from @sock 1005 * @sock: socket 1006 * @msg: message to receive 1007 * @flags: message flags 1008 * 1009 * Receives @msg from @sock, passing through LSM. Returns the total number 1010 * of bytes received, or an error. 1011 */ 1012 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1013 { 1014 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1015 1016 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1017 } 1018 EXPORT_SYMBOL(sock_recvmsg); 1019 1020 /** 1021 * kernel_recvmsg - Receive a message from a socket (kernel space) 1022 * @sock: The socket to receive the message from 1023 * @msg: Received message 1024 * @vec: Input s/g array for message data 1025 * @num: Size of input s/g array 1026 * @size: Number of bytes to read 1027 * @flags: Message flags (MSG_DONTWAIT, etc...) 1028 * 1029 * On return the msg structure contains the scatter/gather array passed in the 1030 * vec argument. The array is modified so that it consists of the unfilled 1031 * portion of the original array. 1032 * 1033 * The returned value is the total number of bytes received, or an error. 1034 */ 1035 1036 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1037 struct kvec *vec, size_t num, size_t size, int flags) 1038 { 1039 msg->msg_control_is_user = false; 1040 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1041 return sock_recvmsg(sock, msg, flags); 1042 } 1043 EXPORT_SYMBOL(kernel_recvmsg); 1044 1045 static ssize_t sock_sendpage(struct file *file, struct page *page, 1046 int offset, size_t size, loff_t *ppos, int more) 1047 { 1048 struct socket *sock; 1049 int flags; 1050 1051 sock = file->private_data; 1052 1053 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 1054 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 1055 flags |= more; 1056 1057 return kernel_sendpage(sock, page, offset, size, flags); 1058 } 1059 1060 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1061 struct pipe_inode_info *pipe, size_t len, 1062 unsigned int flags) 1063 { 1064 struct socket *sock = file->private_data; 1065 1066 if (unlikely(!sock->ops->splice_read)) 1067 return generic_file_splice_read(file, ppos, pipe, len, flags); 1068 1069 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1070 } 1071 1072 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1073 { 1074 struct file *file = iocb->ki_filp; 1075 struct socket *sock = file->private_data; 1076 struct msghdr msg = {.msg_iter = *to, 1077 .msg_iocb = iocb}; 1078 ssize_t res; 1079 1080 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1081 msg.msg_flags = MSG_DONTWAIT; 1082 1083 if (iocb->ki_pos != 0) 1084 return -ESPIPE; 1085 1086 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1087 return 0; 1088 1089 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1090 *to = msg.msg_iter; 1091 return res; 1092 } 1093 1094 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1095 { 1096 struct file *file = iocb->ki_filp; 1097 struct socket *sock = file->private_data; 1098 struct msghdr msg = {.msg_iter = *from, 1099 .msg_iocb = iocb}; 1100 ssize_t res; 1101 1102 if (iocb->ki_pos != 0) 1103 return -ESPIPE; 1104 1105 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1106 msg.msg_flags = MSG_DONTWAIT; 1107 1108 if (sock->type == SOCK_SEQPACKET) 1109 msg.msg_flags |= MSG_EOR; 1110 1111 res = sock_sendmsg(sock, &msg); 1112 *from = msg.msg_iter; 1113 return res; 1114 } 1115 1116 /* 1117 * Atomic setting of ioctl hooks to avoid race 1118 * with module unload. 1119 */ 1120 1121 static DEFINE_MUTEX(br_ioctl_mutex); 1122 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1123 unsigned int cmd, struct ifreq *ifr, 1124 void __user *uarg); 1125 1126 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1127 unsigned int cmd, struct ifreq *ifr, 1128 void __user *uarg)) 1129 { 1130 mutex_lock(&br_ioctl_mutex); 1131 br_ioctl_hook = hook; 1132 mutex_unlock(&br_ioctl_mutex); 1133 } 1134 EXPORT_SYMBOL(brioctl_set); 1135 1136 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1137 struct ifreq *ifr, void __user *uarg) 1138 { 1139 int err = -ENOPKG; 1140 1141 if (!br_ioctl_hook) 1142 request_module("bridge"); 1143 1144 mutex_lock(&br_ioctl_mutex); 1145 if (br_ioctl_hook) 1146 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1147 mutex_unlock(&br_ioctl_mutex); 1148 1149 return err; 1150 } 1151 1152 static DEFINE_MUTEX(vlan_ioctl_mutex); 1153 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1154 1155 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1156 { 1157 mutex_lock(&vlan_ioctl_mutex); 1158 vlan_ioctl_hook = hook; 1159 mutex_unlock(&vlan_ioctl_mutex); 1160 } 1161 EXPORT_SYMBOL(vlan_ioctl_set); 1162 1163 static long sock_do_ioctl(struct net *net, struct socket *sock, 1164 unsigned int cmd, unsigned long arg) 1165 { 1166 struct ifreq ifr; 1167 bool need_copyout; 1168 int err; 1169 void __user *argp = (void __user *)arg; 1170 void __user *data; 1171 1172 err = sock->ops->ioctl(sock, cmd, arg); 1173 1174 /* 1175 * If this ioctl is unknown try to hand it down 1176 * to the NIC driver. 1177 */ 1178 if (err != -ENOIOCTLCMD) 1179 return err; 1180 1181 if (!is_socket_ioctl_cmd(cmd)) 1182 return -ENOTTY; 1183 1184 if (get_user_ifreq(&ifr, &data, argp)) 1185 return -EFAULT; 1186 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1187 if (!err && need_copyout) 1188 if (put_user_ifreq(&ifr, argp)) 1189 return -EFAULT; 1190 1191 return err; 1192 } 1193 1194 /* 1195 * With an ioctl, arg may well be a user mode pointer, but we don't know 1196 * what to do with it - that's up to the protocol still. 1197 */ 1198 1199 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1200 { 1201 struct socket *sock; 1202 struct sock *sk; 1203 void __user *argp = (void __user *)arg; 1204 int pid, err; 1205 struct net *net; 1206 1207 sock = file->private_data; 1208 sk = sock->sk; 1209 net = sock_net(sk); 1210 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1211 struct ifreq ifr; 1212 void __user *data; 1213 bool need_copyout; 1214 if (get_user_ifreq(&ifr, &data, argp)) 1215 return -EFAULT; 1216 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1217 if (!err && need_copyout) 1218 if (put_user_ifreq(&ifr, argp)) 1219 return -EFAULT; 1220 } else 1221 #ifdef CONFIG_WEXT_CORE 1222 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1223 err = wext_handle_ioctl(net, cmd, argp); 1224 } else 1225 #endif 1226 switch (cmd) { 1227 case FIOSETOWN: 1228 case SIOCSPGRP: 1229 err = -EFAULT; 1230 if (get_user(pid, (int __user *)argp)) 1231 break; 1232 err = f_setown(sock->file, pid, 1); 1233 break; 1234 case FIOGETOWN: 1235 case SIOCGPGRP: 1236 err = put_user(f_getown(sock->file), 1237 (int __user *)argp); 1238 break; 1239 case SIOCGIFBR: 1240 case SIOCSIFBR: 1241 case SIOCBRADDBR: 1242 case SIOCBRDELBR: 1243 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1244 break; 1245 case SIOCGIFVLAN: 1246 case SIOCSIFVLAN: 1247 err = -ENOPKG; 1248 if (!vlan_ioctl_hook) 1249 request_module("8021q"); 1250 1251 mutex_lock(&vlan_ioctl_mutex); 1252 if (vlan_ioctl_hook) 1253 err = vlan_ioctl_hook(net, argp); 1254 mutex_unlock(&vlan_ioctl_mutex); 1255 break; 1256 case SIOCGSKNS: 1257 err = -EPERM; 1258 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1259 break; 1260 1261 err = open_related_ns(&net->ns, get_net_ns); 1262 break; 1263 case SIOCGSTAMP_OLD: 1264 case SIOCGSTAMPNS_OLD: 1265 if (!sock->ops->gettstamp) { 1266 err = -ENOIOCTLCMD; 1267 break; 1268 } 1269 err = sock->ops->gettstamp(sock, argp, 1270 cmd == SIOCGSTAMP_OLD, 1271 !IS_ENABLED(CONFIG_64BIT)); 1272 break; 1273 case SIOCGSTAMP_NEW: 1274 case SIOCGSTAMPNS_NEW: 1275 if (!sock->ops->gettstamp) { 1276 err = -ENOIOCTLCMD; 1277 break; 1278 } 1279 err = sock->ops->gettstamp(sock, argp, 1280 cmd == SIOCGSTAMP_NEW, 1281 false); 1282 break; 1283 1284 case SIOCGIFCONF: 1285 err = dev_ifconf(net, argp); 1286 break; 1287 1288 default: 1289 err = sock_do_ioctl(net, sock, cmd, arg); 1290 break; 1291 } 1292 return err; 1293 } 1294 1295 /** 1296 * sock_create_lite - creates a socket 1297 * @family: protocol family (AF_INET, ...) 1298 * @type: communication type (SOCK_STREAM, ...) 1299 * @protocol: protocol (0, ...) 1300 * @res: new socket 1301 * 1302 * Creates a new socket and assigns it to @res, passing through LSM. 1303 * The new socket initialization is not complete, see kernel_accept(). 1304 * Returns 0 or an error. On failure @res is set to %NULL. 1305 * This function internally uses GFP_KERNEL. 1306 */ 1307 1308 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1309 { 1310 int err; 1311 struct socket *sock = NULL; 1312 1313 err = security_socket_create(family, type, protocol, 1); 1314 if (err) 1315 goto out; 1316 1317 sock = sock_alloc(); 1318 if (!sock) { 1319 err = -ENOMEM; 1320 goto out; 1321 } 1322 1323 sock->type = type; 1324 err = security_socket_post_create(sock, family, type, protocol, 1); 1325 if (err) 1326 goto out_release; 1327 1328 out: 1329 *res = sock; 1330 return err; 1331 out_release: 1332 sock_release(sock); 1333 sock = NULL; 1334 goto out; 1335 } 1336 EXPORT_SYMBOL(sock_create_lite); 1337 1338 /* No kernel lock held - perfect */ 1339 static __poll_t sock_poll(struct file *file, poll_table *wait) 1340 { 1341 struct socket *sock = file->private_data; 1342 __poll_t events = poll_requested_events(wait), flag = 0; 1343 1344 if (!sock->ops->poll) 1345 return 0; 1346 1347 if (sk_can_busy_loop(sock->sk)) { 1348 /* poll once if requested by the syscall */ 1349 if (events & POLL_BUSY_LOOP) 1350 sk_busy_loop(sock->sk, 1); 1351 1352 /* if this socket can poll_ll, tell the system call */ 1353 flag = POLL_BUSY_LOOP; 1354 } 1355 1356 return sock->ops->poll(file, sock, wait) | flag; 1357 } 1358 1359 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1360 { 1361 struct socket *sock = file->private_data; 1362 1363 return sock->ops->mmap(file, sock, vma); 1364 } 1365 1366 static int sock_close(struct inode *inode, struct file *filp) 1367 { 1368 __sock_release(SOCKET_I(inode), inode); 1369 return 0; 1370 } 1371 1372 /* 1373 * Update the socket async list 1374 * 1375 * Fasync_list locking strategy. 1376 * 1377 * 1. fasync_list is modified only under process context socket lock 1378 * i.e. under semaphore. 1379 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1380 * or under socket lock 1381 */ 1382 1383 static int sock_fasync(int fd, struct file *filp, int on) 1384 { 1385 struct socket *sock = filp->private_data; 1386 struct sock *sk = sock->sk; 1387 struct socket_wq *wq = &sock->wq; 1388 1389 if (sk == NULL) 1390 return -EINVAL; 1391 1392 lock_sock(sk); 1393 fasync_helper(fd, filp, on, &wq->fasync_list); 1394 1395 if (!wq->fasync_list) 1396 sock_reset_flag(sk, SOCK_FASYNC); 1397 else 1398 sock_set_flag(sk, SOCK_FASYNC); 1399 1400 release_sock(sk); 1401 return 0; 1402 } 1403 1404 /* This function may be called only under rcu_lock */ 1405 1406 int sock_wake_async(struct socket_wq *wq, int how, int band) 1407 { 1408 if (!wq || !wq->fasync_list) 1409 return -1; 1410 1411 switch (how) { 1412 case SOCK_WAKE_WAITD: 1413 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1414 break; 1415 goto call_kill; 1416 case SOCK_WAKE_SPACE: 1417 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1418 break; 1419 fallthrough; 1420 case SOCK_WAKE_IO: 1421 call_kill: 1422 kill_fasync(&wq->fasync_list, SIGIO, band); 1423 break; 1424 case SOCK_WAKE_URG: 1425 kill_fasync(&wq->fasync_list, SIGURG, band); 1426 } 1427 1428 return 0; 1429 } 1430 EXPORT_SYMBOL(sock_wake_async); 1431 1432 /** 1433 * __sock_create - creates a socket 1434 * @net: net namespace 1435 * @family: protocol family (AF_INET, ...) 1436 * @type: communication type (SOCK_STREAM, ...) 1437 * @protocol: protocol (0, ...) 1438 * @res: new socket 1439 * @kern: boolean for kernel space sockets 1440 * 1441 * Creates a new socket and assigns it to @res, passing through LSM. 1442 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1443 * be set to true if the socket resides in kernel space. 1444 * This function internally uses GFP_KERNEL. 1445 */ 1446 1447 int __sock_create(struct net *net, int family, int type, int protocol, 1448 struct socket **res, int kern) 1449 { 1450 int err; 1451 struct socket *sock; 1452 const struct net_proto_family *pf; 1453 1454 /* 1455 * Check protocol is in range 1456 */ 1457 if (family < 0 || family >= NPROTO) 1458 return -EAFNOSUPPORT; 1459 if (type < 0 || type >= SOCK_MAX) 1460 return -EINVAL; 1461 1462 /* Compatibility. 1463 1464 This uglymoron is moved from INET layer to here to avoid 1465 deadlock in module load. 1466 */ 1467 if (family == PF_INET && type == SOCK_PACKET) { 1468 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1469 current->comm); 1470 family = PF_PACKET; 1471 } 1472 1473 err = security_socket_create(family, type, protocol, kern); 1474 if (err) 1475 return err; 1476 1477 /* 1478 * Allocate the socket and allow the family to set things up. if 1479 * the protocol is 0, the family is instructed to select an appropriate 1480 * default. 1481 */ 1482 sock = sock_alloc(); 1483 if (!sock) { 1484 net_warn_ratelimited("socket: no more sockets\n"); 1485 return -ENFILE; /* Not exactly a match, but its the 1486 closest posix thing */ 1487 } 1488 1489 sock->type = type; 1490 1491 #ifdef CONFIG_MODULES 1492 /* Attempt to load a protocol module if the find failed. 1493 * 1494 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1495 * requested real, full-featured networking support upon configuration. 1496 * Otherwise module support will break! 1497 */ 1498 if (rcu_access_pointer(net_families[family]) == NULL) 1499 request_module("net-pf-%d", family); 1500 #endif 1501 1502 rcu_read_lock(); 1503 pf = rcu_dereference(net_families[family]); 1504 err = -EAFNOSUPPORT; 1505 if (!pf) 1506 goto out_release; 1507 1508 /* 1509 * We will call the ->create function, that possibly is in a loadable 1510 * module, so we have to bump that loadable module refcnt first. 1511 */ 1512 if (!try_module_get(pf->owner)) 1513 goto out_release; 1514 1515 /* Now protected by module ref count */ 1516 rcu_read_unlock(); 1517 1518 err = pf->create(net, sock, protocol, kern); 1519 if (err < 0) 1520 goto out_module_put; 1521 1522 /* 1523 * Now to bump the refcnt of the [loadable] module that owns this 1524 * socket at sock_release time we decrement its refcnt. 1525 */ 1526 if (!try_module_get(sock->ops->owner)) 1527 goto out_module_busy; 1528 1529 /* 1530 * Now that we're done with the ->create function, the [loadable] 1531 * module can have its refcnt decremented 1532 */ 1533 module_put(pf->owner); 1534 err = security_socket_post_create(sock, family, type, protocol, kern); 1535 if (err) 1536 goto out_sock_release; 1537 *res = sock; 1538 1539 return 0; 1540 1541 out_module_busy: 1542 err = -EAFNOSUPPORT; 1543 out_module_put: 1544 sock->ops = NULL; 1545 module_put(pf->owner); 1546 out_sock_release: 1547 sock_release(sock); 1548 return err; 1549 1550 out_release: 1551 rcu_read_unlock(); 1552 goto out_sock_release; 1553 } 1554 EXPORT_SYMBOL(__sock_create); 1555 1556 /** 1557 * sock_create - creates a socket 1558 * @family: protocol family (AF_INET, ...) 1559 * @type: communication type (SOCK_STREAM, ...) 1560 * @protocol: protocol (0, ...) 1561 * @res: new socket 1562 * 1563 * A wrapper around __sock_create(). 1564 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1565 */ 1566 1567 int sock_create(int family, int type, int protocol, struct socket **res) 1568 { 1569 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1570 } 1571 EXPORT_SYMBOL(sock_create); 1572 1573 /** 1574 * sock_create_kern - creates a socket (kernel space) 1575 * @net: net namespace 1576 * @family: protocol family (AF_INET, ...) 1577 * @type: communication type (SOCK_STREAM, ...) 1578 * @protocol: protocol (0, ...) 1579 * @res: new socket 1580 * 1581 * A wrapper around __sock_create(). 1582 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1583 */ 1584 1585 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1586 { 1587 return __sock_create(net, family, type, protocol, res, 1); 1588 } 1589 EXPORT_SYMBOL(sock_create_kern); 1590 1591 static struct socket *__sys_socket_create(int family, int type, int protocol) 1592 { 1593 struct socket *sock; 1594 int retval; 1595 1596 /* Check the SOCK_* constants for consistency. */ 1597 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1598 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1599 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1600 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1601 1602 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1603 return ERR_PTR(-EINVAL); 1604 type &= SOCK_TYPE_MASK; 1605 1606 retval = sock_create(family, type, protocol, &sock); 1607 if (retval < 0) 1608 return ERR_PTR(retval); 1609 1610 return sock; 1611 } 1612 1613 struct file *__sys_socket_file(int family, int type, int protocol) 1614 { 1615 struct socket *sock; 1616 struct file *file; 1617 int flags; 1618 1619 sock = __sys_socket_create(family, type, protocol); 1620 if (IS_ERR(sock)) 1621 return ERR_CAST(sock); 1622 1623 flags = type & ~SOCK_TYPE_MASK; 1624 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1625 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1626 1627 file = sock_alloc_file(sock, flags, NULL); 1628 if (IS_ERR(file)) 1629 sock_release(sock); 1630 1631 return file; 1632 } 1633 1634 int __sys_socket(int family, int type, int protocol) 1635 { 1636 struct socket *sock; 1637 int flags; 1638 1639 sock = __sys_socket_create(family, type, protocol); 1640 if (IS_ERR(sock)) 1641 return PTR_ERR(sock); 1642 1643 flags = type & ~SOCK_TYPE_MASK; 1644 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1645 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1646 1647 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1648 } 1649 1650 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1651 { 1652 return __sys_socket(family, type, protocol); 1653 } 1654 1655 /* 1656 * Create a pair of connected sockets. 1657 */ 1658 1659 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1660 { 1661 struct socket *sock1, *sock2; 1662 int fd1, fd2, err; 1663 struct file *newfile1, *newfile2; 1664 int flags; 1665 1666 flags = type & ~SOCK_TYPE_MASK; 1667 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1668 return -EINVAL; 1669 type &= SOCK_TYPE_MASK; 1670 1671 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1672 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1673 1674 /* 1675 * reserve descriptors and make sure we won't fail 1676 * to return them to userland. 1677 */ 1678 fd1 = get_unused_fd_flags(flags); 1679 if (unlikely(fd1 < 0)) 1680 return fd1; 1681 1682 fd2 = get_unused_fd_flags(flags); 1683 if (unlikely(fd2 < 0)) { 1684 put_unused_fd(fd1); 1685 return fd2; 1686 } 1687 1688 err = put_user(fd1, &usockvec[0]); 1689 if (err) 1690 goto out; 1691 1692 err = put_user(fd2, &usockvec[1]); 1693 if (err) 1694 goto out; 1695 1696 /* 1697 * Obtain the first socket and check if the underlying protocol 1698 * supports the socketpair call. 1699 */ 1700 1701 err = sock_create(family, type, protocol, &sock1); 1702 if (unlikely(err < 0)) 1703 goto out; 1704 1705 err = sock_create(family, type, protocol, &sock2); 1706 if (unlikely(err < 0)) { 1707 sock_release(sock1); 1708 goto out; 1709 } 1710 1711 err = security_socket_socketpair(sock1, sock2); 1712 if (unlikely(err)) { 1713 sock_release(sock2); 1714 sock_release(sock1); 1715 goto out; 1716 } 1717 1718 err = sock1->ops->socketpair(sock1, sock2); 1719 if (unlikely(err < 0)) { 1720 sock_release(sock2); 1721 sock_release(sock1); 1722 goto out; 1723 } 1724 1725 newfile1 = sock_alloc_file(sock1, flags, NULL); 1726 if (IS_ERR(newfile1)) { 1727 err = PTR_ERR(newfile1); 1728 sock_release(sock2); 1729 goto out; 1730 } 1731 1732 newfile2 = sock_alloc_file(sock2, flags, NULL); 1733 if (IS_ERR(newfile2)) { 1734 err = PTR_ERR(newfile2); 1735 fput(newfile1); 1736 goto out; 1737 } 1738 1739 audit_fd_pair(fd1, fd2); 1740 1741 fd_install(fd1, newfile1); 1742 fd_install(fd2, newfile2); 1743 return 0; 1744 1745 out: 1746 put_unused_fd(fd2); 1747 put_unused_fd(fd1); 1748 return err; 1749 } 1750 1751 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1752 int __user *, usockvec) 1753 { 1754 return __sys_socketpair(family, type, protocol, usockvec); 1755 } 1756 1757 /* 1758 * Bind a name to a socket. Nothing much to do here since it's 1759 * the protocol's responsibility to handle the local address. 1760 * 1761 * We move the socket address to kernel space before we call 1762 * the protocol layer (having also checked the address is ok). 1763 */ 1764 1765 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1766 { 1767 struct socket *sock; 1768 struct sockaddr_storage address; 1769 int err, fput_needed; 1770 1771 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1772 if (sock) { 1773 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1774 if (!err) { 1775 err = security_socket_bind(sock, 1776 (struct sockaddr *)&address, 1777 addrlen); 1778 if (!err) 1779 err = sock->ops->bind(sock, 1780 (struct sockaddr *) 1781 &address, addrlen); 1782 } 1783 fput_light(sock->file, fput_needed); 1784 } 1785 return err; 1786 } 1787 1788 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1789 { 1790 return __sys_bind(fd, umyaddr, addrlen); 1791 } 1792 1793 /* 1794 * Perform a listen. Basically, we allow the protocol to do anything 1795 * necessary for a listen, and if that works, we mark the socket as 1796 * ready for listening. 1797 */ 1798 1799 int __sys_listen(int fd, int backlog) 1800 { 1801 struct socket *sock; 1802 int err, fput_needed; 1803 int somaxconn; 1804 1805 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1806 if (sock) { 1807 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1808 if ((unsigned int)backlog > somaxconn) 1809 backlog = somaxconn; 1810 1811 err = security_socket_listen(sock, backlog); 1812 if (!err) 1813 err = sock->ops->listen(sock, backlog); 1814 1815 fput_light(sock->file, fput_needed); 1816 } 1817 return err; 1818 } 1819 1820 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1821 { 1822 return __sys_listen(fd, backlog); 1823 } 1824 1825 struct file *do_accept(struct file *file, unsigned file_flags, 1826 struct sockaddr __user *upeer_sockaddr, 1827 int __user *upeer_addrlen, int flags) 1828 { 1829 struct socket *sock, *newsock; 1830 struct file *newfile; 1831 int err, len; 1832 struct sockaddr_storage address; 1833 1834 sock = sock_from_file(file); 1835 if (!sock) 1836 return ERR_PTR(-ENOTSOCK); 1837 1838 newsock = sock_alloc(); 1839 if (!newsock) 1840 return ERR_PTR(-ENFILE); 1841 1842 newsock->type = sock->type; 1843 newsock->ops = sock->ops; 1844 1845 /* 1846 * We don't need try_module_get here, as the listening socket (sock) 1847 * has the protocol module (sock->ops->owner) held. 1848 */ 1849 __module_get(newsock->ops->owner); 1850 1851 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1852 if (IS_ERR(newfile)) 1853 return newfile; 1854 1855 err = security_socket_accept(sock, newsock); 1856 if (err) 1857 goto out_fd; 1858 1859 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1860 false); 1861 if (err < 0) 1862 goto out_fd; 1863 1864 if (upeer_sockaddr) { 1865 len = newsock->ops->getname(newsock, 1866 (struct sockaddr *)&address, 2); 1867 if (len < 0) { 1868 err = -ECONNABORTED; 1869 goto out_fd; 1870 } 1871 err = move_addr_to_user(&address, 1872 len, upeer_sockaddr, upeer_addrlen); 1873 if (err < 0) 1874 goto out_fd; 1875 } 1876 1877 /* File flags are not inherited via accept() unlike another OSes. */ 1878 return newfile; 1879 out_fd: 1880 fput(newfile); 1881 return ERR_PTR(err); 1882 } 1883 1884 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1885 int __user *upeer_addrlen, int flags) 1886 { 1887 struct file *newfile; 1888 int newfd; 1889 1890 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1891 return -EINVAL; 1892 1893 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1894 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1895 1896 newfd = get_unused_fd_flags(flags); 1897 if (unlikely(newfd < 0)) 1898 return newfd; 1899 1900 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1901 flags); 1902 if (IS_ERR(newfile)) { 1903 put_unused_fd(newfd); 1904 return PTR_ERR(newfile); 1905 } 1906 fd_install(newfd, newfile); 1907 return newfd; 1908 } 1909 1910 /* 1911 * For accept, we attempt to create a new socket, set up the link 1912 * with the client, wake up the client, then return the new 1913 * connected fd. We collect the address of the connector in kernel 1914 * space and move it to user at the very end. This is unclean because 1915 * we open the socket then return an error. 1916 * 1917 * 1003.1g adds the ability to recvmsg() to query connection pending 1918 * status to recvmsg. We need to add that support in a way thats 1919 * clean when we restructure accept also. 1920 */ 1921 1922 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1923 int __user *upeer_addrlen, int flags) 1924 { 1925 int ret = -EBADF; 1926 struct fd f; 1927 1928 f = fdget(fd); 1929 if (f.file) { 1930 ret = __sys_accept4_file(f.file, upeer_sockaddr, 1931 upeer_addrlen, flags); 1932 fdput(f); 1933 } 1934 1935 return ret; 1936 } 1937 1938 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1939 int __user *, upeer_addrlen, int, flags) 1940 { 1941 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1942 } 1943 1944 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1945 int __user *, upeer_addrlen) 1946 { 1947 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1948 } 1949 1950 /* 1951 * Attempt to connect to a socket with the server address. The address 1952 * is in user space so we verify it is OK and move it to kernel space. 1953 * 1954 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1955 * break bindings 1956 * 1957 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1958 * other SEQPACKET protocols that take time to connect() as it doesn't 1959 * include the -EINPROGRESS status for such sockets. 1960 */ 1961 1962 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1963 int addrlen, int file_flags) 1964 { 1965 struct socket *sock; 1966 int err; 1967 1968 sock = sock_from_file(file); 1969 if (!sock) { 1970 err = -ENOTSOCK; 1971 goto out; 1972 } 1973 1974 err = 1975 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1976 if (err) 1977 goto out; 1978 1979 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1980 sock->file->f_flags | file_flags); 1981 out: 1982 return err; 1983 } 1984 1985 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1986 { 1987 int ret = -EBADF; 1988 struct fd f; 1989 1990 f = fdget(fd); 1991 if (f.file) { 1992 struct sockaddr_storage address; 1993 1994 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1995 if (!ret) 1996 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1997 fdput(f); 1998 } 1999 2000 return ret; 2001 } 2002 2003 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2004 int, addrlen) 2005 { 2006 return __sys_connect(fd, uservaddr, addrlen); 2007 } 2008 2009 /* 2010 * Get the local address ('name') of a socket object. Move the obtained 2011 * name to user space. 2012 */ 2013 2014 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2015 int __user *usockaddr_len) 2016 { 2017 struct socket *sock; 2018 struct sockaddr_storage address; 2019 int err, fput_needed; 2020 2021 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2022 if (!sock) 2023 goto out; 2024 2025 err = security_socket_getsockname(sock); 2026 if (err) 2027 goto out_put; 2028 2029 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 2030 if (err < 0) 2031 goto out_put; 2032 /* "err" is actually length in this case */ 2033 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2034 2035 out_put: 2036 fput_light(sock->file, fput_needed); 2037 out: 2038 return err; 2039 } 2040 2041 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2042 int __user *, usockaddr_len) 2043 { 2044 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2045 } 2046 2047 /* 2048 * Get the remote address ('name') of a socket object. Move the obtained 2049 * name to user space. 2050 */ 2051 2052 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2053 int __user *usockaddr_len) 2054 { 2055 struct socket *sock; 2056 struct sockaddr_storage address; 2057 int err, fput_needed; 2058 2059 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2060 if (sock != NULL) { 2061 err = security_socket_getpeername(sock); 2062 if (err) { 2063 fput_light(sock->file, fput_needed); 2064 return err; 2065 } 2066 2067 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 2068 if (err >= 0) 2069 /* "err" is actually length in this case */ 2070 err = move_addr_to_user(&address, err, usockaddr, 2071 usockaddr_len); 2072 fput_light(sock->file, fput_needed); 2073 } 2074 return err; 2075 } 2076 2077 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2078 int __user *, usockaddr_len) 2079 { 2080 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2081 } 2082 2083 /* 2084 * Send a datagram to a given address. We move the address into kernel 2085 * space and check the user space data area is readable before invoking 2086 * the protocol. 2087 */ 2088 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2089 struct sockaddr __user *addr, int addr_len) 2090 { 2091 struct socket *sock; 2092 struct sockaddr_storage address; 2093 int err; 2094 struct msghdr msg; 2095 struct iovec iov; 2096 int fput_needed; 2097 2098 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2099 if (unlikely(err)) 2100 return err; 2101 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2102 if (!sock) 2103 goto out; 2104 2105 msg.msg_name = NULL; 2106 msg.msg_control = NULL; 2107 msg.msg_controllen = 0; 2108 msg.msg_namelen = 0; 2109 msg.msg_ubuf = NULL; 2110 if (addr) { 2111 err = move_addr_to_kernel(addr, addr_len, &address); 2112 if (err < 0) 2113 goto out_put; 2114 msg.msg_name = (struct sockaddr *)&address; 2115 msg.msg_namelen = addr_len; 2116 } 2117 if (sock->file->f_flags & O_NONBLOCK) 2118 flags |= MSG_DONTWAIT; 2119 msg.msg_flags = flags; 2120 err = sock_sendmsg(sock, &msg); 2121 2122 out_put: 2123 fput_light(sock->file, fput_needed); 2124 out: 2125 return err; 2126 } 2127 2128 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2129 unsigned int, flags, struct sockaddr __user *, addr, 2130 int, addr_len) 2131 { 2132 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2133 } 2134 2135 /* 2136 * Send a datagram down a socket. 2137 */ 2138 2139 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2140 unsigned int, flags) 2141 { 2142 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2143 } 2144 2145 /* 2146 * Receive a frame from the socket and optionally record the address of the 2147 * sender. We verify the buffers are writable and if needed move the 2148 * sender address from kernel to user space. 2149 */ 2150 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2151 struct sockaddr __user *addr, int __user *addr_len) 2152 { 2153 struct sockaddr_storage address; 2154 struct msghdr msg = { 2155 /* Save some cycles and don't copy the address if not needed */ 2156 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2157 }; 2158 struct socket *sock; 2159 struct iovec iov; 2160 int err, err2; 2161 int fput_needed; 2162 2163 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2164 if (unlikely(err)) 2165 return err; 2166 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2167 if (!sock) 2168 goto out; 2169 2170 if (sock->file->f_flags & O_NONBLOCK) 2171 flags |= MSG_DONTWAIT; 2172 err = sock_recvmsg(sock, &msg, flags); 2173 2174 if (err >= 0 && addr != NULL) { 2175 err2 = move_addr_to_user(&address, 2176 msg.msg_namelen, addr, addr_len); 2177 if (err2 < 0) 2178 err = err2; 2179 } 2180 2181 fput_light(sock->file, fput_needed); 2182 out: 2183 return err; 2184 } 2185 2186 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2187 unsigned int, flags, struct sockaddr __user *, addr, 2188 int __user *, addr_len) 2189 { 2190 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2191 } 2192 2193 /* 2194 * Receive a datagram from a socket. 2195 */ 2196 2197 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2198 unsigned int, flags) 2199 { 2200 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2201 } 2202 2203 static bool sock_use_custom_sol_socket(const struct socket *sock) 2204 { 2205 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2206 } 2207 2208 /* 2209 * Set a socket option. Because we don't know the option lengths we have 2210 * to pass the user mode parameter for the protocols to sort out. 2211 */ 2212 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2213 int optlen) 2214 { 2215 sockptr_t optval = USER_SOCKPTR(user_optval); 2216 char *kernel_optval = NULL; 2217 int err, fput_needed; 2218 struct socket *sock; 2219 2220 if (optlen < 0) 2221 return -EINVAL; 2222 2223 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2224 if (!sock) 2225 return err; 2226 2227 err = security_socket_setsockopt(sock, level, optname); 2228 if (err) 2229 goto out_put; 2230 2231 if (!in_compat_syscall()) 2232 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2233 user_optval, &optlen, 2234 &kernel_optval); 2235 if (err < 0) 2236 goto out_put; 2237 if (err > 0) { 2238 err = 0; 2239 goto out_put; 2240 } 2241 2242 if (kernel_optval) 2243 optval = KERNEL_SOCKPTR(kernel_optval); 2244 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2245 err = sock_setsockopt(sock, level, optname, optval, optlen); 2246 else if (unlikely(!sock->ops->setsockopt)) 2247 err = -EOPNOTSUPP; 2248 else 2249 err = sock->ops->setsockopt(sock, level, optname, optval, 2250 optlen); 2251 kfree(kernel_optval); 2252 out_put: 2253 fput_light(sock->file, fput_needed); 2254 return err; 2255 } 2256 2257 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2258 char __user *, optval, int, optlen) 2259 { 2260 return __sys_setsockopt(fd, level, optname, optval, optlen); 2261 } 2262 2263 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2264 int optname)); 2265 2266 /* 2267 * Get a socket option. Because we don't know the option lengths we have 2268 * to pass a user mode parameter for the protocols to sort out. 2269 */ 2270 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2271 int __user *optlen) 2272 { 2273 int err, fput_needed; 2274 struct socket *sock; 2275 int max_optlen; 2276 2277 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2278 if (!sock) 2279 return err; 2280 2281 err = security_socket_getsockopt(sock, level, optname); 2282 if (err) 2283 goto out_put; 2284 2285 if (!in_compat_syscall()) 2286 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2287 2288 if (level == SOL_SOCKET) 2289 err = sock_getsockopt(sock, level, optname, optval, optlen); 2290 else if (unlikely(!sock->ops->getsockopt)) 2291 err = -EOPNOTSUPP; 2292 else 2293 err = sock->ops->getsockopt(sock, level, optname, optval, 2294 optlen); 2295 2296 if (!in_compat_syscall()) 2297 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2298 optval, optlen, max_optlen, 2299 err); 2300 out_put: 2301 fput_light(sock->file, fput_needed); 2302 return err; 2303 } 2304 2305 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2306 char __user *, optval, int __user *, optlen) 2307 { 2308 return __sys_getsockopt(fd, level, optname, optval, optlen); 2309 } 2310 2311 /* 2312 * Shutdown a socket. 2313 */ 2314 2315 int __sys_shutdown_sock(struct socket *sock, int how) 2316 { 2317 int err; 2318 2319 err = security_socket_shutdown(sock, how); 2320 if (!err) 2321 err = sock->ops->shutdown(sock, how); 2322 2323 return err; 2324 } 2325 2326 int __sys_shutdown(int fd, int how) 2327 { 2328 int err, fput_needed; 2329 struct socket *sock; 2330 2331 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2332 if (sock != NULL) { 2333 err = __sys_shutdown_sock(sock, how); 2334 fput_light(sock->file, fput_needed); 2335 } 2336 return err; 2337 } 2338 2339 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2340 { 2341 return __sys_shutdown(fd, how); 2342 } 2343 2344 /* A couple of helpful macros for getting the address of the 32/64 bit 2345 * fields which are the same type (int / unsigned) on our platforms. 2346 */ 2347 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2348 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2349 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2350 2351 struct used_address { 2352 struct sockaddr_storage name; 2353 unsigned int name_len; 2354 }; 2355 2356 int __copy_msghdr(struct msghdr *kmsg, 2357 struct user_msghdr *msg, 2358 struct sockaddr __user **save_addr) 2359 { 2360 ssize_t err; 2361 2362 kmsg->msg_control_is_user = true; 2363 kmsg->msg_get_inq = 0; 2364 kmsg->msg_control_user = msg->msg_control; 2365 kmsg->msg_controllen = msg->msg_controllen; 2366 kmsg->msg_flags = msg->msg_flags; 2367 2368 kmsg->msg_namelen = msg->msg_namelen; 2369 if (!msg->msg_name) 2370 kmsg->msg_namelen = 0; 2371 2372 if (kmsg->msg_namelen < 0) 2373 return -EINVAL; 2374 2375 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2376 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2377 2378 if (save_addr) 2379 *save_addr = msg->msg_name; 2380 2381 if (msg->msg_name && kmsg->msg_namelen) { 2382 if (!save_addr) { 2383 err = move_addr_to_kernel(msg->msg_name, 2384 kmsg->msg_namelen, 2385 kmsg->msg_name); 2386 if (err < 0) 2387 return err; 2388 } 2389 } else { 2390 kmsg->msg_name = NULL; 2391 kmsg->msg_namelen = 0; 2392 } 2393 2394 if (msg->msg_iovlen > UIO_MAXIOV) 2395 return -EMSGSIZE; 2396 2397 kmsg->msg_iocb = NULL; 2398 kmsg->msg_ubuf = NULL; 2399 return 0; 2400 } 2401 2402 static int copy_msghdr_from_user(struct msghdr *kmsg, 2403 struct user_msghdr __user *umsg, 2404 struct sockaddr __user **save_addr, 2405 struct iovec **iov) 2406 { 2407 struct user_msghdr msg; 2408 ssize_t err; 2409 2410 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2411 return -EFAULT; 2412 2413 err = __copy_msghdr(kmsg, &msg, save_addr); 2414 if (err) 2415 return err; 2416 2417 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2418 msg.msg_iov, msg.msg_iovlen, 2419 UIO_FASTIOV, iov, &kmsg->msg_iter); 2420 return err < 0 ? err : 0; 2421 } 2422 2423 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2424 unsigned int flags, struct used_address *used_address, 2425 unsigned int allowed_msghdr_flags) 2426 { 2427 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2428 __aligned(sizeof(__kernel_size_t)); 2429 /* 20 is size of ipv6_pktinfo */ 2430 unsigned char *ctl_buf = ctl; 2431 int ctl_len; 2432 ssize_t err; 2433 2434 err = -ENOBUFS; 2435 2436 if (msg_sys->msg_controllen > INT_MAX) 2437 goto out; 2438 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2439 ctl_len = msg_sys->msg_controllen; 2440 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2441 err = 2442 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2443 sizeof(ctl)); 2444 if (err) 2445 goto out; 2446 ctl_buf = msg_sys->msg_control; 2447 ctl_len = msg_sys->msg_controllen; 2448 } else if (ctl_len) { 2449 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2450 CMSG_ALIGN(sizeof(struct cmsghdr))); 2451 if (ctl_len > sizeof(ctl)) { 2452 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2453 if (ctl_buf == NULL) 2454 goto out; 2455 } 2456 err = -EFAULT; 2457 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2458 goto out_freectl; 2459 msg_sys->msg_control = ctl_buf; 2460 msg_sys->msg_control_is_user = false; 2461 } 2462 msg_sys->msg_flags = flags; 2463 2464 if (sock->file->f_flags & O_NONBLOCK) 2465 msg_sys->msg_flags |= MSG_DONTWAIT; 2466 /* 2467 * If this is sendmmsg() and current destination address is same as 2468 * previously succeeded address, omit asking LSM's decision. 2469 * used_address->name_len is initialized to UINT_MAX so that the first 2470 * destination address never matches. 2471 */ 2472 if (used_address && msg_sys->msg_name && 2473 used_address->name_len == msg_sys->msg_namelen && 2474 !memcmp(&used_address->name, msg_sys->msg_name, 2475 used_address->name_len)) { 2476 err = sock_sendmsg_nosec(sock, msg_sys); 2477 goto out_freectl; 2478 } 2479 err = sock_sendmsg(sock, msg_sys); 2480 /* 2481 * If this is sendmmsg() and sending to current destination address was 2482 * successful, remember it. 2483 */ 2484 if (used_address && err >= 0) { 2485 used_address->name_len = msg_sys->msg_namelen; 2486 if (msg_sys->msg_name) 2487 memcpy(&used_address->name, msg_sys->msg_name, 2488 used_address->name_len); 2489 } 2490 2491 out_freectl: 2492 if (ctl_buf != ctl) 2493 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2494 out: 2495 return err; 2496 } 2497 2498 int sendmsg_copy_msghdr(struct msghdr *msg, 2499 struct user_msghdr __user *umsg, unsigned flags, 2500 struct iovec **iov) 2501 { 2502 int err; 2503 2504 if (flags & MSG_CMSG_COMPAT) { 2505 struct compat_msghdr __user *msg_compat; 2506 2507 msg_compat = (struct compat_msghdr __user *) umsg; 2508 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2509 } else { 2510 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2511 } 2512 if (err < 0) 2513 return err; 2514 2515 return 0; 2516 } 2517 2518 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2519 struct msghdr *msg_sys, unsigned int flags, 2520 struct used_address *used_address, 2521 unsigned int allowed_msghdr_flags) 2522 { 2523 struct sockaddr_storage address; 2524 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2525 ssize_t err; 2526 2527 msg_sys->msg_name = &address; 2528 2529 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2530 if (err < 0) 2531 return err; 2532 2533 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2534 allowed_msghdr_flags); 2535 kfree(iov); 2536 return err; 2537 } 2538 2539 /* 2540 * BSD sendmsg interface 2541 */ 2542 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2543 unsigned int flags) 2544 { 2545 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2546 } 2547 2548 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2549 bool forbid_cmsg_compat) 2550 { 2551 int fput_needed, err; 2552 struct msghdr msg_sys; 2553 struct socket *sock; 2554 2555 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2556 return -EINVAL; 2557 2558 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2559 if (!sock) 2560 goto out; 2561 2562 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2563 2564 fput_light(sock->file, fput_needed); 2565 out: 2566 return err; 2567 } 2568 2569 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2570 { 2571 return __sys_sendmsg(fd, msg, flags, true); 2572 } 2573 2574 /* 2575 * Linux sendmmsg interface 2576 */ 2577 2578 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2579 unsigned int flags, bool forbid_cmsg_compat) 2580 { 2581 int fput_needed, err, datagrams; 2582 struct socket *sock; 2583 struct mmsghdr __user *entry; 2584 struct compat_mmsghdr __user *compat_entry; 2585 struct msghdr msg_sys; 2586 struct used_address used_address; 2587 unsigned int oflags = flags; 2588 2589 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2590 return -EINVAL; 2591 2592 if (vlen > UIO_MAXIOV) 2593 vlen = UIO_MAXIOV; 2594 2595 datagrams = 0; 2596 2597 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2598 if (!sock) 2599 return err; 2600 2601 used_address.name_len = UINT_MAX; 2602 entry = mmsg; 2603 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2604 err = 0; 2605 flags |= MSG_BATCH; 2606 2607 while (datagrams < vlen) { 2608 if (datagrams == vlen - 1) 2609 flags = oflags; 2610 2611 if (MSG_CMSG_COMPAT & flags) { 2612 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2613 &msg_sys, flags, &used_address, MSG_EOR); 2614 if (err < 0) 2615 break; 2616 err = __put_user(err, &compat_entry->msg_len); 2617 ++compat_entry; 2618 } else { 2619 err = ___sys_sendmsg(sock, 2620 (struct user_msghdr __user *)entry, 2621 &msg_sys, flags, &used_address, MSG_EOR); 2622 if (err < 0) 2623 break; 2624 err = put_user(err, &entry->msg_len); 2625 ++entry; 2626 } 2627 2628 if (err) 2629 break; 2630 ++datagrams; 2631 if (msg_data_left(&msg_sys)) 2632 break; 2633 cond_resched(); 2634 } 2635 2636 fput_light(sock->file, fput_needed); 2637 2638 /* We only return an error if no datagrams were able to be sent */ 2639 if (datagrams != 0) 2640 return datagrams; 2641 2642 return err; 2643 } 2644 2645 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2646 unsigned int, vlen, unsigned int, flags) 2647 { 2648 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2649 } 2650 2651 int recvmsg_copy_msghdr(struct msghdr *msg, 2652 struct user_msghdr __user *umsg, unsigned flags, 2653 struct sockaddr __user **uaddr, 2654 struct iovec **iov) 2655 { 2656 ssize_t err; 2657 2658 if (MSG_CMSG_COMPAT & flags) { 2659 struct compat_msghdr __user *msg_compat; 2660 2661 msg_compat = (struct compat_msghdr __user *) umsg; 2662 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2663 } else { 2664 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2665 } 2666 if (err < 0) 2667 return err; 2668 2669 return 0; 2670 } 2671 2672 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2673 struct user_msghdr __user *msg, 2674 struct sockaddr __user *uaddr, 2675 unsigned int flags, int nosec) 2676 { 2677 struct compat_msghdr __user *msg_compat = 2678 (struct compat_msghdr __user *) msg; 2679 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2680 struct sockaddr_storage addr; 2681 unsigned long cmsg_ptr; 2682 int len; 2683 ssize_t err; 2684 2685 msg_sys->msg_name = &addr; 2686 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2687 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2688 2689 /* We assume all kernel code knows the size of sockaddr_storage */ 2690 msg_sys->msg_namelen = 0; 2691 2692 if (sock->file->f_flags & O_NONBLOCK) 2693 flags |= MSG_DONTWAIT; 2694 2695 if (unlikely(nosec)) 2696 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2697 else 2698 err = sock_recvmsg(sock, msg_sys, flags); 2699 2700 if (err < 0) 2701 goto out; 2702 len = err; 2703 2704 if (uaddr != NULL) { 2705 err = move_addr_to_user(&addr, 2706 msg_sys->msg_namelen, uaddr, 2707 uaddr_len); 2708 if (err < 0) 2709 goto out; 2710 } 2711 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2712 COMPAT_FLAGS(msg)); 2713 if (err) 2714 goto out; 2715 if (MSG_CMSG_COMPAT & flags) 2716 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2717 &msg_compat->msg_controllen); 2718 else 2719 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2720 &msg->msg_controllen); 2721 if (err) 2722 goto out; 2723 err = len; 2724 out: 2725 return err; 2726 } 2727 2728 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2729 struct msghdr *msg_sys, unsigned int flags, int nosec) 2730 { 2731 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2732 /* user mode address pointers */ 2733 struct sockaddr __user *uaddr; 2734 ssize_t err; 2735 2736 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2737 if (err < 0) 2738 return err; 2739 2740 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2741 kfree(iov); 2742 return err; 2743 } 2744 2745 /* 2746 * BSD recvmsg interface 2747 */ 2748 2749 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2750 struct user_msghdr __user *umsg, 2751 struct sockaddr __user *uaddr, unsigned int flags) 2752 { 2753 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2754 } 2755 2756 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2757 bool forbid_cmsg_compat) 2758 { 2759 int fput_needed, err; 2760 struct msghdr msg_sys; 2761 struct socket *sock; 2762 2763 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2764 return -EINVAL; 2765 2766 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2767 if (!sock) 2768 goto out; 2769 2770 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2771 2772 fput_light(sock->file, fput_needed); 2773 out: 2774 return err; 2775 } 2776 2777 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2778 unsigned int, flags) 2779 { 2780 return __sys_recvmsg(fd, msg, flags, true); 2781 } 2782 2783 /* 2784 * Linux recvmmsg interface 2785 */ 2786 2787 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2788 unsigned int vlen, unsigned int flags, 2789 struct timespec64 *timeout) 2790 { 2791 int fput_needed, err, datagrams; 2792 struct socket *sock; 2793 struct mmsghdr __user *entry; 2794 struct compat_mmsghdr __user *compat_entry; 2795 struct msghdr msg_sys; 2796 struct timespec64 end_time; 2797 struct timespec64 timeout64; 2798 2799 if (timeout && 2800 poll_select_set_timeout(&end_time, timeout->tv_sec, 2801 timeout->tv_nsec)) 2802 return -EINVAL; 2803 2804 datagrams = 0; 2805 2806 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2807 if (!sock) 2808 return err; 2809 2810 if (likely(!(flags & MSG_ERRQUEUE))) { 2811 err = sock_error(sock->sk); 2812 if (err) { 2813 datagrams = err; 2814 goto out_put; 2815 } 2816 } 2817 2818 entry = mmsg; 2819 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2820 2821 while (datagrams < vlen) { 2822 /* 2823 * No need to ask LSM for more than the first datagram. 2824 */ 2825 if (MSG_CMSG_COMPAT & flags) { 2826 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2827 &msg_sys, flags & ~MSG_WAITFORONE, 2828 datagrams); 2829 if (err < 0) 2830 break; 2831 err = __put_user(err, &compat_entry->msg_len); 2832 ++compat_entry; 2833 } else { 2834 err = ___sys_recvmsg(sock, 2835 (struct user_msghdr __user *)entry, 2836 &msg_sys, flags & ~MSG_WAITFORONE, 2837 datagrams); 2838 if (err < 0) 2839 break; 2840 err = put_user(err, &entry->msg_len); 2841 ++entry; 2842 } 2843 2844 if (err) 2845 break; 2846 ++datagrams; 2847 2848 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2849 if (flags & MSG_WAITFORONE) 2850 flags |= MSG_DONTWAIT; 2851 2852 if (timeout) { 2853 ktime_get_ts64(&timeout64); 2854 *timeout = timespec64_sub(end_time, timeout64); 2855 if (timeout->tv_sec < 0) { 2856 timeout->tv_sec = timeout->tv_nsec = 0; 2857 break; 2858 } 2859 2860 /* Timeout, return less than vlen datagrams */ 2861 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2862 break; 2863 } 2864 2865 /* Out of band data, return right away */ 2866 if (msg_sys.msg_flags & MSG_OOB) 2867 break; 2868 cond_resched(); 2869 } 2870 2871 if (err == 0) 2872 goto out_put; 2873 2874 if (datagrams == 0) { 2875 datagrams = err; 2876 goto out_put; 2877 } 2878 2879 /* 2880 * We may return less entries than requested (vlen) if the 2881 * sock is non block and there aren't enough datagrams... 2882 */ 2883 if (err != -EAGAIN) { 2884 /* 2885 * ... or if recvmsg returns an error after we 2886 * received some datagrams, where we record the 2887 * error to return on the next call or if the 2888 * app asks about it using getsockopt(SO_ERROR). 2889 */ 2890 sock->sk->sk_err = -err; 2891 } 2892 out_put: 2893 fput_light(sock->file, fput_needed); 2894 2895 return datagrams; 2896 } 2897 2898 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2899 unsigned int vlen, unsigned int flags, 2900 struct __kernel_timespec __user *timeout, 2901 struct old_timespec32 __user *timeout32) 2902 { 2903 int datagrams; 2904 struct timespec64 timeout_sys; 2905 2906 if (timeout && get_timespec64(&timeout_sys, timeout)) 2907 return -EFAULT; 2908 2909 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2910 return -EFAULT; 2911 2912 if (!timeout && !timeout32) 2913 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2914 2915 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2916 2917 if (datagrams <= 0) 2918 return datagrams; 2919 2920 if (timeout && put_timespec64(&timeout_sys, timeout)) 2921 datagrams = -EFAULT; 2922 2923 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2924 datagrams = -EFAULT; 2925 2926 return datagrams; 2927 } 2928 2929 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2930 unsigned int, vlen, unsigned int, flags, 2931 struct __kernel_timespec __user *, timeout) 2932 { 2933 if (flags & MSG_CMSG_COMPAT) 2934 return -EINVAL; 2935 2936 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2937 } 2938 2939 #ifdef CONFIG_COMPAT_32BIT_TIME 2940 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2941 unsigned int, vlen, unsigned int, flags, 2942 struct old_timespec32 __user *, timeout) 2943 { 2944 if (flags & MSG_CMSG_COMPAT) 2945 return -EINVAL; 2946 2947 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2948 } 2949 #endif 2950 2951 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2952 /* Argument list sizes for sys_socketcall */ 2953 #define AL(x) ((x) * sizeof(unsigned long)) 2954 static const unsigned char nargs[21] = { 2955 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2956 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2957 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2958 AL(4), AL(5), AL(4) 2959 }; 2960 2961 #undef AL 2962 2963 /* 2964 * System call vectors. 2965 * 2966 * Argument checking cleaned up. Saved 20% in size. 2967 * This function doesn't need to set the kernel lock because 2968 * it is set by the callees. 2969 */ 2970 2971 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2972 { 2973 unsigned long a[AUDITSC_ARGS]; 2974 unsigned long a0, a1; 2975 int err; 2976 unsigned int len; 2977 2978 if (call < 1 || call > SYS_SENDMMSG) 2979 return -EINVAL; 2980 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2981 2982 len = nargs[call]; 2983 if (len > sizeof(a)) 2984 return -EINVAL; 2985 2986 /* copy_from_user should be SMP safe. */ 2987 if (copy_from_user(a, args, len)) 2988 return -EFAULT; 2989 2990 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2991 if (err) 2992 return err; 2993 2994 a0 = a[0]; 2995 a1 = a[1]; 2996 2997 switch (call) { 2998 case SYS_SOCKET: 2999 err = __sys_socket(a0, a1, a[2]); 3000 break; 3001 case SYS_BIND: 3002 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3003 break; 3004 case SYS_CONNECT: 3005 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3006 break; 3007 case SYS_LISTEN: 3008 err = __sys_listen(a0, a1); 3009 break; 3010 case SYS_ACCEPT: 3011 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3012 (int __user *)a[2], 0); 3013 break; 3014 case SYS_GETSOCKNAME: 3015 err = 3016 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3017 (int __user *)a[2]); 3018 break; 3019 case SYS_GETPEERNAME: 3020 err = 3021 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3022 (int __user *)a[2]); 3023 break; 3024 case SYS_SOCKETPAIR: 3025 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3026 break; 3027 case SYS_SEND: 3028 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3029 NULL, 0); 3030 break; 3031 case SYS_SENDTO: 3032 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3033 (struct sockaddr __user *)a[4], a[5]); 3034 break; 3035 case SYS_RECV: 3036 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3037 NULL, NULL); 3038 break; 3039 case SYS_RECVFROM: 3040 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3041 (struct sockaddr __user *)a[4], 3042 (int __user *)a[5]); 3043 break; 3044 case SYS_SHUTDOWN: 3045 err = __sys_shutdown(a0, a1); 3046 break; 3047 case SYS_SETSOCKOPT: 3048 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3049 a[4]); 3050 break; 3051 case SYS_GETSOCKOPT: 3052 err = 3053 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3054 (int __user *)a[4]); 3055 break; 3056 case SYS_SENDMSG: 3057 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3058 a[2], true); 3059 break; 3060 case SYS_SENDMMSG: 3061 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3062 a[3], true); 3063 break; 3064 case SYS_RECVMSG: 3065 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3066 a[2], true); 3067 break; 3068 case SYS_RECVMMSG: 3069 if (IS_ENABLED(CONFIG_64BIT)) 3070 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3071 a[2], a[3], 3072 (struct __kernel_timespec __user *)a[4], 3073 NULL); 3074 else 3075 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3076 a[2], a[3], NULL, 3077 (struct old_timespec32 __user *)a[4]); 3078 break; 3079 case SYS_ACCEPT4: 3080 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3081 (int __user *)a[2], a[3]); 3082 break; 3083 default: 3084 err = -EINVAL; 3085 break; 3086 } 3087 return err; 3088 } 3089 3090 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3091 3092 /** 3093 * sock_register - add a socket protocol handler 3094 * @ops: description of protocol 3095 * 3096 * This function is called by a protocol handler that wants to 3097 * advertise its address family, and have it linked into the 3098 * socket interface. The value ops->family corresponds to the 3099 * socket system call protocol family. 3100 */ 3101 int sock_register(const struct net_proto_family *ops) 3102 { 3103 int err; 3104 3105 if (ops->family >= NPROTO) { 3106 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3107 return -ENOBUFS; 3108 } 3109 3110 spin_lock(&net_family_lock); 3111 if (rcu_dereference_protected(net_families[ops->family], 3112 lockdep_is_held(&net_family_lock))) 3113 err = -EEXIST; 3114 else { 3115 rcu_assign_pointer(net_families[ops->family], ops); 3116 err = 0; 3117 } 3118 spin_unlock(&net_family_lock); 3119 3120 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3121 return err; 3122 } 3123 EXPORT_SYMBOL(sock_register); 3124 3125 /** 3126 * sock_unregister - remove a protocol handler 3127 * @family: protocol family to remove 3128 * 3129 * This function is called by a protocol handler that wants to 3130 * remove its address family, and have it unlinked from the 3131 * new socket creation. 3132 * 3133 * If protocol handler is a module, then it can use module reference 3134 * counts to protect against new references. If protocol handler is not 3135 * a module then it needs to provide its own protection in 3136 * the ops->create routine. 3137 */ 3138 void sock_unregister(int family) 3139 { 3140 BUG_ON(family < 0 || family >= NPROTO); 3141 3142 spin_lock(&net_family_lock); 3143 RCU_INIT_POINTER(net_families[family], NULL); 3144 spin_unlock(&net_family_lock); 3145 3146 synchronize_rcu(); 3147 3148 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3149 } 3150 EXPORT_SYMBOL(sock_unregister); 3151 3152 bool sock_is_registered(int family) 3153 { 3154 return family < NPROTO && rcu_access_pointer(net_families[family]); 3155 } 3156 3157 static int __init sock_init(void) 3158 { 3159 int err; 3160 /* 3161 * Initialize the network sysctl infrastructure. 3162 */ 3163 err = net_sysctl_init(); 3164 if (err) 3165 goto out; 3166 3167 /* 3168 * Initialize skbuff SLAB cache 3169 */ 3170 skb_init(); 3171 3172 /* 3173 * Initialize the protocols module. 3174 */ 3175 3176 init_inodecache(); 3177 3178 err = register_filesystem(&sock_fs_type); 3179 if (err) 3180 goto out; 3181 sock_mnt = kern_mount(&sock_fs_type); 3182 if (IS_ERR(sock_mnt)) { 3183 err = PTR_ERR(sock_mnt); 3184 goto out_mount; 3185 } 3186 3187 /* The real protocol initialization is performed in later initcalls. 3188 */ 3189 3190 #ifdef CONFIG_NETFILTER 3191 err = netfilter_init(); 3192 if (err) 3193 goto out; 3194 #endif 3195 3196 ptp_classifier_init(); 3197 3198 out: 3199 return err; 3200 3201 out_mount: 3202 unregister_filesystem(&sock_fs_type); 3203 goto out; 3204 } 3205 3206 core_initcall(sock_init); /* early initcall */ 3207 3208 #ifdef CONFIG_PROC_FS 3209 void socket_seq_show(struct seq_file *seq) 3210 { 3211 seq_printf(seq, "sockets: used %d\n", 3212 sock_inuse_get(seq->private)); 3213 } 3214 #endif /* CONFIG_PROC_FS */ 3215 3216 /* Handle the fact that while struct ifreq has the same *layout* on 3217 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3218 * which are handled elsewhere, it still has different *size* due to 3219 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3220 * resulting in struct ifreq being 32 and 40 bytes respectively). 3221 * As a result, if the struct happens to be at the end of a page and 3222 * the next page isn't readable/writable, we get a fault. To prevent 3223 * that, copy back and forth to the full size. 3224 */ 3225 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3226 { 3227 if (in_compat_syscall()) { 3228 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3229 3230 memset(ifr, 0, sizeof(*ifr)); 3231 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3232 return -EFAULT; 3233 3234 if (ifrdata) 3235 *ifrdata = compat_ptr(ifr32->ifr_data); 3236 3237 return 0; 3238 } 3239 3240 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3241 return -EFAULT; 3242 3243 if (ifrdata) 3244 *ifrdata = ifr->ifr_data; 3245 3246 return 0; 3247 } 3248 EXPORT_SYMBOL(get_user_ifreq); 3249 3250 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3251 { 3252 size_t size = sizeof(*ifr); 3253 3254 if (in_compat_syscall()) 3255 size = sizeof(struct compat_ifreq); 3256 3257 if (copy_to_user(arg, ifr, size)) 3258 return -EFAULT; 3259 3260 return 0; 3261 } 3262 EXPORT_SYMBOL(put_user_ifreq); 3263 3264 #ifdef CONFIG_COMPAT 3265 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3266 { 3267 compat_uptr_t uptr32; 3268 struct ifreq ifr; 3269 void __user *saved; 3270 int err; 3271 3272 if (get_user_ifreq(&ifr, NULL, uifr32)) 3273 return -EFAULT; 3274 3275 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3276 return -EFAULT; 3277 3278 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3279 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3280 3281 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3282 if (!err) { 3283 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3284 if (put_user_ifreq(&ifr, uifr32)) 3285 err = -EFAULT; 3286 } 3287 return err; 3288 } 3289 3290 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3291 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3292 struct compat_ifreq __user *u_ifreq32) 3293 { 3294 struct ifreq ifreq; 3295 void __user *data; 3296 3297 if (!is_socket_ioctl_cmd(cmd)) 3298 return -ENOTTY; 3299 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3300 return -EFAULT; 3301 ifreq.ifr_data = data; 3302 3303 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3304 } 3305 3306 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3307 unsigned int cmd, unsigned long arg) 3308 { 3309 void __user *argp = compat_ptr(arg); 3310 struct sock *sk = sock->sk; 3311 struct net *net = sock_net(sk); 3312 3313 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3314 return sock_ioctl(file, cmd, (unsigned long)argp); 3315 3316 switch (cmd) { 3317 case SIOCWANDEV: 3318 return compat_siocwandev(net, argp); 3319 case SIOCGSTAMP_OLD: 3320 case SIOCGSTAMPNS_OLD: 3321 if (!sock->ops->gettstamp) 3322 return -ENOIOCTLCMD; 3323 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3324 !COMPAT_USE_64BIT_TIME); 3325 3326 case SIOCETHTOOL: 3327 case SIOCBONDSLAVEINFOQUERY: 3328 case SIOCBONDINFOQUERY: 3329 case SIOCSHWTSTAMP: 3330 case SIOCGHWTSTAMP: 3331 return compat_ifr_data_ioctl(net, cmd, argp); 3332 3333 case FIOSETOWN: 3334 case SIOCSPGRP: 3335 case FIOGETOWN: 3336 case SIOCGPGRP: 3337 case SIOCBRADDBR: 3338 case SIOCBRDELBR: 3339 case SIOCGIFVLAN: 3340 case SIOCSIFVLAN: 3341 case SIOCGSKNS: 3342 case SIOCGSTAMP_NEW: 3343 case SIOCGSTAMPNS_NEW: 3344 case SIOCGIFCONF: 3345 case SIOCSIFBR: 3346 case SIOCGIFBR: 3347 return sock_ioctl(file, cmd, arg); 3348 3349 case SIOCGIFFLAGS: 3350 case SIOCSIFFLAGS: 3351 case SIOCGIFMAP: 3352 case SIOCSIFMAP: 3353 case SIOCGIFMETRIC: 3354 case SIOCSIFMETRIC: 3355 case SIOCGIFMTU: 3356 case SIOCSIFMTU: 3357 case SIOCGIFMEM: 3358 case SIOCSIFMEM: 3359 case SIOCGIFHWADDR: 3360 case SIOCSIFHWADDR: 3361 case SIOCADDMULTI: 3362 case SIOCDELMULTI: 3363 case SIOCGIFINDEX: 3364 case SIOCGIFADDR: 3365 case SIOCSIFADDR: 3366 case SIOCSIFHWBROADCAST: 3367 case SIOCDIFADDR: 3368 case SIOCGIFBRDADDR: 3369 case SIOCSIFBRDADDR: 3370 case SIOCGIFDSTADDR: 3371 case SIOCSIFDSTADDR: 3372 case SIOCGIFNETMASK: 3373 case SIOCSIFNETMASK: 3374 case SIOCSIFPFLAGS: 3375 case SIOCGIFPFLAGS: 3376 case SIOCGIFTXQLEN: 3377 case SIOCSIFTXQLEN: 3378 case SIOCBRADDIF: 3379 case SIOCBRDELIF: 3380 case SIOCGIFNAME: 3381 case SIOCSIFNAME: 3382 case SIOCGMIIPHY: 3383 case SIOCGMIIREG: 3384 case SIOCSMIIREG: 3385 case SIOCBONDENSLAVE: 3386 case SIOCBONDRELEASE: 3387 case SIOCBONDSETHWADDR: 3388 case SIOCBONDCHANGEACTIVE: 3389 case SIOCSARP: 3390 case SIOCGARP: 3391 case SIOCDARP: 3392 case SIOCOUTQ: 3393 case SIOCOUTQNSD: 3394 case SIOCATMARK: 3395 return sock_do_ioctl(net, sock, cmd, arg); 3396 } 3397 3398 return -ENOIOCTLCMD; 3399 } 3400 3401 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3402 unsigned long arg) 3403 { 3404 struct socket *sock = file->private_data; 3405 int ret = -ENOIOCTLCMD; 3406 struct sock *sk; 3407 struct net *net; 3408 3409 sk = sock->sk; 3410 net = sock_net(sk); 3411 3412 if (sock->ops->compat_ioctl) 3413 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3414 3415 if (ret == -ENOIOCTLCMD && 3416 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3417 ret = compat_wext_handle_ioctl(net, cmd, arg); 3418 3419 if (ret == -ENOIOCTLCMD) 3420 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3421 3422 return ret; 3423 } 3424 #endif 3425 3426 /** 3427 * kernel_bind - bind an address to a socket (kernel space) 3428 * @sock: socket 3429 * @addr: address 3430 * @addrlen: length of address 3431 * 3432 * Returns 0 or an error. 3433 */ 3434 3435 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3436 { 3437 return sock->ops->bind(sock, addr, addrlen); 3438 } 3439 EXPORT_SYMBOL(kernel_bind); 3440 3441 /** 3442 * kernel_listen - move socket to listening state (kernel space) 3443 * @sock: socket 3444 * @backlog: pending connections queue size 3445 * 3446 * Returns 0 or an error. 3447 */ 3448 3449 int kernel_listen(struct socket *sock, int backlog) 3450 { 3451 return sock->ops->listen(sock, backlog); 3452 } 3453 EXPORT_SYMBOL(kernel_listen); 3454 3455 /** 3456 * kernel_accept - accept a connection (kernel space) 3457 * @sock: listening socket 3458 * @newsock: new connected socket 3459 * @flags: flags 3460 * 3461 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3462 * If it fails, @newsock is guaranteed to be %NULL. 3463 * Returns 0 or an error. 3464 */ 3465 3466 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3467 { 3468 struct sock *sk = sock->sk; 3469 int err; 3470 3471 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3472 newsock); 3473 if (err < 0) 3474 goto done; 3475 3476 err = sock->ops->accept(sock, *newsock, flags, true); 3477 if (err < 0) { 3478 sock_release(*newsock); 3479 *newsock = NULL; 3480 goto done; 3481 } 3482 3483 (*newsock)->ops = sock->ops; 3484 __module_get((*newsock)->ops->owner); 3485 3486 done: 3487 return err; 3488 } 3489 EXPORT_SYMBOL(kernel_accept); 3490 3491 /** 3492 * kernel_connect - connect a socket (kernel space) 3493 * @sock: socket 3494 * @addr: address 3495 * @addrlen: address length 3496 * @flags: flags (O_NONBLOCK, ...) 3497 * 3498 * For datagram sockets, @addr is the address to which datagrams are sent 3499 * by default, and the only address from which datagrams are received. 3500 * For stream sockets, attempts to connect to @addr. 3501 * Returns 0 or an error code. 3502 */ 3503 3504 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3505 int flags) 3506 { 3507 return sock->ops->connect(sock, addr, addrlen, flags); 3508 } 3509 EXPORT_SYMBOL(kernel_connect); 3510 3511 /** 3512 * kernel_getsockname - get the address which the socket is bound (kernel space) 3513 * @sock: socket 3514 * @addr: address holder 3515 * 3516 * Fills the @addr pointer with the address which the socket is bound. 3517 * Returns the length of the address in bytes or an error code. 3518 */ 3519 3520 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3521 { 3522 return sock->ops->getname(sock, addr, 0); 3523 } 3524 EXPORT_SYMBOL(kernel_getsockname); 3525 3526 /** 3527 * kernel_getpeername - get the address which the socket is connected (kernel space) 3528 * @sock: socket 3529 * @addr: address holder 3530 * 3531 * Fills the @addr pointer with the address which the socket is connected. 3532 * Returns the length of the address in bytes or an error code. 3533 */ 3534 3535 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3536 { 3537 return sock->ops->getname(sock, addr, 1); 3538 } 3539 EXPORT_SYMBOL(kernel_getpeername); 3540 3541 /** 3542 * kernel_sendpage - send a &page through a socket (kernel space) 3543 * @sock: socket 3544 * @page: page 3545 * @offset: page offset 3546 * @size: total size in bytes 3547 * @flags: flags (MSG_DONTWAIT, ...) 3548 * 3549 * Returns the total amount sent in bytes or an error. 3550 */ 3551 3552 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3553 size_t size, int flags) 3554 { 3555 if (sock->ops->sendpage) { 3556 /* Warn in case the improper page to zero-copy send */ 3557 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3558 return sock->ops->sendpage(sock, page, offset, size, flags); 3559 } 3560 return sock_no_sendpage(sock, page, offset, size, flags); 3561 } 3562 EXPORT_SYMBOL(kernel_sendpage); 3563 3564 /** 3565 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3566 * @sk: sock 3567 * @page: page 3568 * @offset: page offset 3569 * @size: total size in bytes 3570 * @flags: flags (MSG_DONTWAIT, ...) 3571 * 3572 * Returns the total amount sent in bytes or an error. 3573 * Caller must hold @sk. 3574 */ 3575 3576 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3577 size_t size, int flags) 3578 { 3579 struct socket *sock = sk->sk_socket; 3580 3581 if (sock->ops->sendpage_locked) 3582 return sock->ops->sendpage_locked(sk, page, offset, size, 3583 flags); 3584 3585 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3586 } 3587 EXPORT_SYMBOL(kernel_sendpage_locked); 3588 3589 /** 3590 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3591 * @sock: socket 3592 * @how: connection part 3593 * 3594 * Returns 0 or an error. 3595 */ 3596 3597 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3598 { 3599 return sock->ops->shutdown(sock, how); 3600 } 3601 EXPORT_SYMBOL(kernel_sock_shutdown); 3602 3603 /** 3604 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3605 * @sk: socket 3606 * 3607 * This routine returns the IP overhead imposed by a socket i.e. 3608 * the length of the underlying IP header, depending on whether 3609 * this is an IPv4 or IPv6 socket and the length from IP options turned 3610 * on at the socket. Assumes that the caller has a lock on the socket. 3611 */ 3612 3613 u32 kernel_sock_ip_overhead(struct sock *sk) 3614 { 3615 struct inet_sock *inet; 3616 struct ip_options_rcu *opt; 3617 u32 overhead = 0; 3618 #if IS_ENABLED(CONFIG_IPV6) 3619 struct ipv6_pinfo *np; 3620 struct ipv6_txoptions *optv6 = NULL; 3621 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3622 3623 if (!sk) 3624 return overhead; 3625 3626 switch (sk->sk_family) { 3627 case AF_INET: 3628 inet = inet_sk(sk); 3629 overhead += sizeof(struct iphdr); 3630 opt = rcu_dereference_protected(inet->inet_opt, 3631 sock_owned_by_user(sk)); 3632 if (opt) 3633 overhead += opt->opt.optlen; 3634 return overhead; 3635 #if IS_ENABLED(CONFIG_IPV6) 3636 case AF_INET6: 3637 np = inet6_sk(sk); 3638 overhead += sizeof(struct ipv6hdr); 3639 if (np) 3640 optv6 = rcu_dereference_protected(np->opt, 3641 sock_owned_by_user(sk)); 3642 if (optv6) 3643 overhead += (optv6->opt_flen + optv6->opt_nflen); 3644 return overhead; 3645 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3646 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3647 return overhead; 3648 } 3649 } 3650 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3651