xref: /openbmc/linux/net/socket.c (revision 3098cb65)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90 
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93 
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97 
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100 
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 			      struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 #ifdef CONFIG_COMPAT
124 static long compat_sock_ioctl(struct file *file,
125 			      unsigned int cmd, unsigned long arg);
126 #endif
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 			     int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 				struct pipe_inode_info *pipe, size_t len,
132 				unsigned int flags);
133 
134 #ifdef CONFIG_PROC_FS
135 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136 {
137 	struct socket *sock = f->private_data;
138 
139 	if (sock->ops->show_fdinfo)
140 		sock->ops->show_fdinfo(m, sock);
141 }
142 #else
143 #define sock_show_fdinfo NULL
144 #endif
145 
146 /*
147  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148  *	in the operation structures but are done directly via the socketcall() multiplexor.
149  */
150 
151 static const struct file_operations socket_file_ops = {
152 	.owner =	THIS_MODULE,
153 	.llseek =	no_llseek,
154 	.read_iter =	sock_read_iter,
155 	.write_iter =	sock_write_iter,
156 	.poll =		sock_poll,
157 	.unlocked_ioctl = sock_ioctl,
158 #ifdef CONFIG_COMPAT
159 	.compat_ioctl = compat_sock_ioctl,
160 #endif
161 	.mmap =		sock_mmap,
162 	.release =	sock_close,
163 	.fasync =	sock_fasync,
164 	.sendpage =	sock_sendpage,
165 	.splice_write = generic_splice_sendpage,
166 	.splice_read =	sock_splice_read,
167 	.show_fdinfo =	sock_show_fdinfo,
168 };
169 
170 static const char * const pf_family_names[] = {
171 	[PF_UNSPEC]	= "PF_UNSPEC",
172 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
173 	[PF_INET]	= "PF_INET",
174 	[PF_AX25]	= "PF_AX25",
175 	[PF_IPX]	= "PF_IPX",
176 	[PF_APPLETALK]	= "PF_APPLETALK",
177 	[PF_NETROM]	= "PF_NETROM",
178 	[PF_BRIDGE]	= "PF_BRIDGE",
179 	[PF_ATMPVC]	= "PF_ATMPVC",
180 	[PF_X25]	= "PF_X25",
181 	[PF_INET6]	= "PF_INET6",
182 	[PF_ROSE]	= "PF_ROSE",
183 	[PF_DECnet]	= "PF_DECnet",
184 	[PF_NETBEUI]	= "PF_NETBEUI",
185 	[PF_SECURITY]	= "PF_SECURITY",
186 	[PF_KEY]	= "PF_KEY",
187 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
188 	[PF_PACKET]	= "PF_PACKET",
189 	[PF_ASH]	= "PF_ASH",
190 	[PF_ECONET]	= "PF_ECONET",
191 	[PF_ATMSVC]	= "PF_ATMSVC",
192 	[PF_RDS]	= "PF_RDS",
193 	[PF_SNA]	= "PF_SNA",
194 	[PF_IRDA]	= "PF_IRDA",
195 	[PF_PPPOX]	= "PF_PPPOX",
196 	[PF_WANPIPE]	= "PF_WANPIPE",
197 	[PF_LLC]	= "PF_LLC",
198 	[PF_IB]		= "PF_IB",
199 	[PF_MPLS]	= "PF_MPLS",
200 	[PF_CAN]	= "PF_CAN",
201 	[PF_TIPC]	= "PF_TIPC",
202 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
203 	[PF_IUCV]	= "PF_IUCV",
204 	[PF_RXRPC]	= "PF_RXRPC",
205 	[PF_ISDN]	= "PF_ISDN",
206 	[PF_PHONET]	= "PF_PHONET",
207 	[PF_IEEE802154]	= "PF_IEEE802154",
208 	[PF_CAIF]	= "PF_CAIF",
209 	[PF_ALG]	= "PF_ALG",
210 	[PF_NFC]	= "PF_NFC",
211 	[PF_VSOCK]	= "PF_VSOCK",
212 	[PF_KCM]	= "PF_KCM",
213 	[PF_QIPCRTR]	= "PF_QIPCRTR",
214 	[PF_SMC]	= "PF_SMC",
215 	[PF_XDP]	= "PF_XDP",
216 	[PF_MCTP]	= "PF_MCTP",
217 };
218 
219 /*
220  *	The protocol list. Each protocol is registered in here.
221  */
222 
223 static DEFINE_SPINLOCK(net_family_lock);
224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
225 
226 /*
227  * Support routines.
228  * Move socket addresses back and forth across the kernel/user
229  * divide and look after the messy bits.
230  */
231 
232 /**
233  *	move_addr_to_kernel	-	copy a socket address into kernel space
234  *	@uaddr: Address in user space
235  *	@kaddr: Address in kernel space
236  *	@ulen: Length in user space
237  *
238  *	The address is copied into kernel space. If the provided address is
239  *	too long an error code of -EINVAL is returned. If the copy gives
240  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
241  */
242 
243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244 {
245 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
246 		return -EINVAL;
247 	if (ulen == 0)
248 		return 0;
249 	if (copy_from_user(kaddr, uaddr, ulen))
250 		return -EFAULT;
251 	return audit_sockaddr(ulen, kaddr);
252 }
253 
254 /**
255  *	move_addr_to_user	-	copy an address to user space
256  *	@kaddr: kernel space address
257  *	@klen: length of address in kernel
258  *	@uaddr: user space address
259  *	@ulen: pointer to user length field
260  *
261  *	The value pointed to by ulen on entry is the buffer length available.
262  *	This is overwritten with the buffer space used. -EINVAL is returned
263  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
264  *	is returned if either the buffer or the length field are not
265  *	accessible.
266  *	After copying the data up to the limit the user specifies, the true
267  *	length of the data is written over the length limit the user
268  *	specified. Zero is returned for a success.
269  */
270 
271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272 			     void __user *uaddr, int __user *ulen)
273 {
274 	int err;
275 	int len;
276 
277 	BUG_ON(klen > sizeof(struct sockaddr_storage));
278 	err = get_user(len, ulen);
279 	if (err)
280 		return err;
281 	if (len > klen)
282 		len = klen;
283 	if (len < 0)
284 		return -EINVAL;
285 	if (len) {
286 		if (audit_sockaddr(klen, kaddr))
287 			return -ENOMEM;
288 		if (copy_to_user(uaddr, kaddr, len))
289 			return -EFAULT;
290 	}
291 	/*
292 	 *      "fromlen shall refer to the value before truncation.."
293 	 *                      1003.1g
294 	 */
295 	return __put_user(klen, ulen);
296 }
297 
298 static struct kmem_cache *sock_inode_cachep __ro_after_init;
299 
300 static struct inode *sock_alloc_inode(struct super_block *sb)
301 {
302 	struct socket_alloc *ei;
303 
304 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
305 	if (!ei)
306 		return NULL;
307 	init_waitqueue_head(&ei->socket.wq.wait);
308 	ei->socket.wq.fasync_list = NULL;
309 	ei->socket.wq.flags = 0;
310 
311 	ei->socket.state = SS_UNCONNECTED;
312 	ei->socket.flags = 0;
313 	ei->socket.ops = NULL;
314 	ei->socket.sk = NULL;
315 	ei->socket.file = NULL;
316 
317 	return &ei->vfs_inode;
318 }
319 
320 static void sock_free_inode(struct inode *inode)
321 {
322 	struct socket_alloc *ei;
323 
324 	ei = container_of(inode, struct socket_alloc, vfs_inode);
325 	kmem_cache_free(sock_inode_cachep, ei);
326 }
327 
328 static void init_once(void *foo)
329 {
330 	struct socket_alloc *ei = (struct socket_alloc *)foo;
331 
332 	inode_init_once(&ei->vfs_inode);
333 }
334 
335 static void init_inodecache(void)
336 {
337 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338 					      sizeof(struct socket_alloc),
339 					      0,
340 					      (SLAB_HWCACHE_ALIGN |
341 					       SLAB_RECLAIM_ACCOUNT |
342 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343 					      init_once);
344 	BUG_ON(sock_inode_cachep == NULL);
345 }
346 
347 static const struct super_operations sockfs_ops = {
348 	.alloc_inode	= sock_alloc_inode,
349 	.free_inode	= sock_free_inode,
350 	.statfs		= simple_statfs,
351 };
352 
353 /*
354  * sockfs_dname() is called from d_path().
355  */
356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357 {
358 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
359 				d_inode(dentry)->i_ino);
360 }
361 
362 static const struct dentry_operations sockfs_dentry_operations = {
363 	.d_dname  = sockfs_dname,
364 };
365 
366 static int sockfs_xattr_get(const struct xattr_handler *handler,
367 			    struct dentry *dentry, struct inode *inode,
368 			    const char *suffix, void *value, size_t size)
369 {
370 	if (value) {
371 		if (dentry->d_name.len + 1 > size)
372 			return -ERANGE;
373 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374 	}
375 	return dentry->d_name.len + 1;
376 }
377 
378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381 
382 static const struct xattr_handler sockfs_xattr_handler = {
383 	.name = XATTR_NAME_SOCKPROTONAME,
384 	.get = sockfs_xattr_get,
385 };
386 
387 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388 				     struct user_namespace *mnt_userns,
389 				     struct dentry *dentry, struct inode *inode,
390 				     const char *suffix, const void *value,
391 				     size_t size, int flags)
392 {
393 	/* Handled by LSM. */
394 	return -EAGAIN;
395 }
396 
397 static const struct xattr_handler sockfs_security_xattr_handler = {
398 	.prefix = XATTR_SECURITY_PREFIX,
399 	.set = sockfs_security_xattr_set,
400 };
401 
402 static const struct xattr_handler *sockfs_xattr_handlers[] = {
403 	&sockfs_xattr_handler,
404 	&sockfs_security_xattr_handler,
405 	NULL
406 };
407 
408 static int sockfs_init_fs_context(struct fs_context *fc)
409 {
410 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
411 	if (!ctx)
412 		return -ENOMEM;
413 	ctx->ops = &sockfs_ops;
414 	ctx->dops = &sockfs_dentry_operations;
415 	ctx->xattr = sockfs_xattr_handlers;
416 	return 0;
417 }
418 
419 static struct vfsmount *sock_mnt __read_mostly;
420 
421 static struct file_system_type sock_fs_type = {
422 	.name =		"sockfs",
423 	.init_fs_context = sockfs_init_fs_context,
424 	.kill_sb =	kill_anon_super,
425 };
426 
427 /*
428  *	Obtains the first available file descriptor and sets it up for use.
429  *
430  *	These functions create file structures and maps them to fd space
431  *	of the current process. On success it returns file descriptor
432  *	and file struct implicitly stored in sock->file.
433  *	Note that another thread may close file descriptor before we return
434  *	from this function. We use the fact that now we do not refer
435  *	to socket after mapping. If one day we will need it, this
436  *	function will increment ref. count on file by 1.
437  *
438  *	In any case returned fd MAY BE not valid!
439  *	This race condition is unavoidable
440  *	with shared fd spaces, we cannot solve it inside kernel,
441  *	but we take care of internal coherence yet.
442  */
443 
444 /**
445  *	sock_alloc_file - Bind a &socket to a &file
446  *	@sock: socket
447  *	@flags: file status flags
448  *	@dname: protocol name
449  *
450  *	Returns the &file bound with @sock, implicitly storing it
451  *	in sock->file. If dname is %NULL, sets to "".
452  *	On failure the return is a ERR pointer (see linux/err.h).
453  *	This function uses GFP_KERNEL internally.
454  */
455 
456 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
457 {
458 	struct file *file;
459 
460 	if (!dname)
461 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
462 
463 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
464 				O_RDWR | (flags & O_NONBLOCK),
465 				&socket_file_ops);
466 	if (IS_ERR(file)) {
467 		sock_release(sock);
468 		return file;
469 	}
470 
471 	sock->file = file;
472 	file->private_data = sock;
473 	stream_open(SOCK_INODE(sock), file);
474 	return file;
475 }
476 EXPORT_SYMBOL(sock_alloc_file);
477 
478 static int sock_map_fd(struct socket *sock, int flags)
479 {
480 	struct file *newfile;
481 	int fd = get_unused_fd_flags(flags);
482 	if (unlikely(fd < 0)) {
483 		sock_release(sock);
484 		return fd;
485 	}
486 
487 	newfile = sock_alloc_file(sock, flags, NULL);
488 	if (!IS_ERR(newfile)) {
489 		fd_install(fd, newfile);
490 		return fd;
491 	}
492 
493 	put_unused_fd(fd);
494 	return PTR_ERR(newfile);
495 }
496 
497 /**
498  *	sock_from_file - Return the &socket bounded to @file.
499  *	@file: file
500  *
501  *	On failure returns %NULL.
502  */
503 
504 struct socket *sock_from_file(struct file *file)
505 {
506 	if (file->f_op == &socket_file_ops)
507 		return file->private_data;	/* set in sock_alloc_file */
508 
509 	return NULL;
510 }
511 EXPORT_SYMBOL(sock_from_file);
512 
513 /**
514  *	sockfd_lookup - Go from a file number to its socket slot
515  *	@fd: file handle
516  *	@err: pointer to an error code return
517  *
518  *	The file handle passed in is locked and the socket it is bound
519  *	to is returned. If an error occurs the err pointer is overwritten
520  *	with a negative errno code and NULL is returned. The function checks
521  *	for both invalid handles and passing a handle which is not a socket.
522  *
523  *	On a success the socket object pointer is returned.
524  */
525 
526 struct socket *sockfd_lookup(int fd, int *err)
527 {
528 	struct file *file;
529 	struct socket *sock;
530 
531 	file = fget(fd);
532 	if (!file) {
533 		*err = -EBADF;
534 		return NULL;
535 	}
536 
537 	sock = sock_from_file(file);
538 	if (!sock) {
539 		*err = -ENOTSOCK;
540 		fput(file);
541 	}
542 	return sock;
543 }
544 EXPORT_SYMBOL(sockfd_lookup);
545 
546 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
547 {
548 	struct fd f = fdget(fd);
549 	struct socket *sock;
550 
551 	*err = -EBADF;
552 	if (f.file) {
553 		sock = sock_from_file(f.file);
554 		if (likely(sock)) {
555 			*fput_needed = f.flags & FDPUT_FPUT;
556 			return sock;
557 		}
558 		*err = -ENOTSOCK;
559 		fdput(f);
560 	}
561 	return NULL;
562 }
563 
564 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
565 				size_t size)
566 {
567 	ssize_t len;
568 	ssize_t used = 0;
569 
570 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
571 	if (len < 0)
572 		return len;
573 	used += len;
574 	if (buffer) {
575 		if (size < used)
576 			return -ERANGE;
577 		buffer += len;
578 	}
579 
580 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
581 	used += len;
582 	if (buffer) {
583 		if (size < used)
584 			return -ERANGE;
585 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
586 		buffer += len;
587 	}
588 
589 	return used;
590 }
591 
592 static int sockfs_setattr(struct user_namespace *mnt_userns,
593 			  struct dentry *dentry, struct iattr *iattr)
594 {
595 	int err = simple_setattr(&init_user_ns, dentry, iattr);
596 
597 	if (!err && (iattr->ia_valid & ATTR_UID)) {
598 		struct socket *sock = SOCKET_I(d_inode(dentry));
599 
600 		if (sock->sk)
601 			sock->sk->sk_uid = iattr->ia_uid;
602 		else
603 			err = -ENOENT;
604 	}
605 
606 	return err;
607 }
608 
609 static const struct inode_operations sockfs_inode_ops = {
610 	.listxattr = sockfs_listxattr,
611 	.setattr = sockfs_setattr,
612 };
613 
614 /**
615  *	sock_alloc - allocate a socket
616  *
617  *	Allocate a new inode and socket object. The two are bound together
618  *	and initialised. The socket is then returned. If we are out of inodes
619  *	NULL is returned. This functions uses GFP_KERNEL internally.
620  */
621 
622 struct socket *sock_alloc(void)
623 {
624 	struct inode *inode;
625 	struct socket *sock;
626 
627 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
628 	if (!inode)
629 		return NULL;
630 
631 	sock = SOCKET_I(inode);
632 
633 	inode->i_ino = get_next_ino();
634 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
635 	inode->i_uid = current_fsuid();
636 	inode->i_gid = current_fsgid();
637 	inode->i_op = &sockfs_inode_ops;
638 
639 	return sock;
640 }
641 EXPORT_SYMBOL(sock_alloc);
642 
643 static void __sock_release(struct socket *sock, struct inode *inode)
644 {
645 	if (sock->ops) {
646 		struct module *owner = sock->ops->owner;
647 
648 		if (inode)
649 			inode_lock(inode);
650 		sock->ops->release(sock);
651 		sock->sk = NULL;
652 		if (inode)
653 			inode_unlock(inode);
654 		sock->ops = NULL;
655 		module_put(owner);
656 	}
657 
658 	if (sock->wq.fasync_list)
659 		pr_err("%s: fasync list not empty!\n", __func__);
660 
661 	if (!sock->file) {
662 		iput(SOCK_INODE(sock));
663 		return;
664 	}
665 	sock->file = NULL;
666 }
667 
668 /**
669  *	sock_release - close a socket
670  *	@sock: socket to close
671  *
672  *	The socket is released from the protocol stack if it has a release
673  *	callback, and the inode is then released if the socket is bound to
674  *	an inode not a file.
675  */
676 void sock_release(struct socket *sock)
677 {
678 	__sock_release(sock, NULL);
679 }
680 EXPORT_SYMBOL(sock_release);
681 
682 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
683 {
684 	u8 flags = *tx_flags;
685 
686 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
687 		flags |= SKBTX_HW_TSTAMP;
688 
689 		/* PTP hardware clocks can provide a free running cycle counter
690 		 * as a time base for virtual clocks. Tell driver to use the
691 		 * free running cycle counter for timestamp if socket is bound
692 		 * to virtual clock.
693 		 */
694 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
695 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
696 	}
697 
698 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
699 		flags |= SKBTX_SW_TSTAMP;
700 
701 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
702 		flags |= SKBTX_SCHED_TSTAMP;
703 
704 	*tx_flags = flags;
705 }
706 EXPORT_SYMBOL(__sock_tx_timestamp);
707 
708 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
709 					   size_t));
710 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
711 					    size_t));
712 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
713 {
714 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
715 				     inet_sendmsg, sock, msg,
716 				     msg_data_left(msg));
717 	BUG_ON(ret == -EIOCBQUEUED);
718 	return ret;
719 }
720 
721 /**
722  *	sock_sendmsg - send a message through @sock
723  *	@sock: socket
724  *	@msg: message to send
725  *
726  *	Sends @msg through @sock, passing through LSM.
727  *	Returns the number of bytes sent, or an error code.
728  */
729 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
730 {
731 	int err = security_socket_sendmsg(sock, msg,
732 					  msg_data_left(msg));
733 
734 	return err ?: sock_sendmsg_nosec(sock, msg);
735 }
736 EXPORT_SYMBOL(sock_sendmsg);
737 
738 /**
739  *	kernel_sendmsg - send a message through @sock (kernel-space)
740  *	@sock: socket
741  *	@msg: message header
742  *	@vec: kernel vec
743  *	@num: vec array length
744  *	@size: total message data size
745  *
746  *	Builds the message data with @vec and sends it through @sock.
747  *	Returns the number of bytes sent, or an error code.
748  */
749 
750 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
751 		   struct kvec *vec, size_t num, size_t size)
752 {
753 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
754 	return sock_sendmsg(sock, msg);
755 }
756 EXPORT_SYMBOL(kernel_sendmsg);
757 
758 /**
759  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
760  *	@sk: sock
761  *	@msg: message header
762  *	@vec: output s/g array
763  *	@num: output s/g array length
764  *	@size: total message data size
765  *
766  *	Builds the message data with @vec and sends it through @sock.
767  *	Returns the number of bytes sent, or an error code.
768  *	Caller must hold @sk.
769  */
770 
771 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
772 			  struct kvec *vec, size_t num, size_t size)
773 {
774 	struct socket *sock = sk->sk_socket;
775 
776 	if (!sock->ops->sendmsg_locked)
777 		return sock_no_sendmsg_locked(sk, msg, size);
778 
779 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
780 
781 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
782 }
783 EXPORT_SYMBOL(kernel_sendmsg_locked);
784 
785 static bool skb_is_err_queue(const struct sk_buff *skb)
786 {
787 	/* pkt_type of skbs enqueued on the error queue are set to
788 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
789 	 * in recvmsg, since skbs received on a local socket will never
790 	 * have a pkt_type of PACKET_OUTGOING.
791 	 */
792 	return skb->pkt_type == PACKET_OUTGOING;
793 }
794 
795 /* On transmit, software and hardware timestamps are returned independently.
796  * As the two skb clones share the hardware timestamp, which may be updated
797  * before the software timestamp is received, a hardware TX timestamp may be
798  * returned only if there is no software TX timestamp. Ignore false software
799  * timestamps, which may be made in the __sock_recv_timestamp() call when the
800  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
801  * hardware timestamp.
802  */
803 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
804 {
805 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
806 }
807 
808 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
809 {
810 	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
811 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
812 	struct net_device *orig_dev;
813 	ktime_t hwtstamp;
814 
815 	rcu_read_lock();
816 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
817 	if (orig_dev) {
818 		*if_index = orig_dev->ifindex;
819 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
820 	} else {
821 		hwtstamp = shhwtstamps->hwtstamp;
822 	}
823 	rcu_read_unlock();
824 
825 	return hwtstamp;
826 }
827 
828 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
829 			   int if_index)
830 {
831 	struct scm_ts_pktinfo ts_pktinfo;
832 	struct net_device *orig_dev;
833 
834 	if (!skb_mac_header_was_set(skb))
835 		return;
836 
837 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
838 
839 	if (!if_index) {
840 		rcu_read_lock();
841 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
842 		if (orig_dev)
843 			if_index = orig_dev->ifindex;
844 		rcu_read_unlock();
845 	}
846 	ts_pktinfo.if_index = if_index;
847 
848 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
849 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
850 		 sizeof(ts_pktinfo), &ts_pktinfo);
851 }
852 
853 /*
854  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
855  */
856 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
857 	struct sk_buff *skb)
858 {
859 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
860 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
861 	struct scm_timestamping_internal tss;
862 
863 	int empty = 1, false_tstamp = 0;
864 	struct skb_shared_hwtstamps *shhwtstamps =
865 		skb_hwtstamps(skb);
866 	int if_index;
867 	ktime_t hwtstamp;
868 
869 	/* Race occurred between timestamp enabling and packet
870 	   receiving.  Fill in the current time for now. */
871 	if (need_software_tstamp && skb->tstamp == 0) {
872 		__net_timestamp(skb);
873 		false_tstamp = 1;
874 	}
875 
876 	if (need_software_tstamp) {
877 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
878 			if (new_tstamp) {
879 				struct __kernel_sock_timeval tv;
880 
881 				skb_get_new_timestamp(skb, &tv);
882 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
883 					 sizeof(tv), &tv);
884 			} else {
885 				struct __kernel_old_timeval tv;
886 
887 				skb_get_timestamp(skb, &tv);
888 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
889 					 sizeof(tv), &tv);
890 			}
891 		} else {
892 			if (new_tstamp) {
893 				struct __kernel_timespec ts;
894 
895 				skb_get_new_timestampns(skb, &ts);
896 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
897 					 sizeof(ts), &ts);
898 			} else {
899 				struct __kernel_old_timespec ts;
900 
901 				skb_get_timestampns(skb, &ts);
902 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
903 					 sizeof(ts), &ts);
904 			}
905 		}
906 	}
907 
908 	memset(&tss, 0, sizeof(tss));
909 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
910 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
911 		empty = 0;
912 	if (shhwtstamps &&
913 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
914 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
915 		if_index = 0;
916 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
917 			hwtstamp = get_timestamp(sk, skb, &if_index);
918 		else
919 			hwtstamp = shhwtstamps->hwtstamp;
920 
921 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
922 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
923 							 sk->sk_bind_phc);
924 
925 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
926 			empty = 0;
927 
928 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
929 			    !skb_is_err_queue(skb))
930 				put_ts_pktinfo(msg, skb, if_index);
931 		}
932 	}
933 	if (!empty) {
934 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
935 			put_cmsg_scm_timestamping64(msg, &tss);
936 		else
937 			put_cmsg_scm_timestamping(msg, &tss);
938 
939 		if (skb_is_err_queue(skb) && skb->len &&
940 		    SKB_EXT_ERR(skb)->opt_stats)
941 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
942 				 skb->len, skb->data);
943 	}
944 }
945 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
946 
947 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
948 	struct sk_buff *skb)
949 {
950 	int ack;
951 
952 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
953 		return;
954 	if (!skb->wifi_acked_valid)
955 		return;
956 
957 	ack = skb->wifi_acked;
958 
959 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
960 }
961 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
962 
963 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
964 				   struct sk_buff *skb)
965 {
966 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
967 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
968 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
969 }
970 
971 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
972 			   struct sk_buff *skb)
973 {
974 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
975 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
976 		__u32 mark = skb->mark;
977 
978 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
979 	}
980 }
981 
982 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
983 		       struct sk_buff *skb)
984 {
985 	sock_recv_timestamp(msg, sk, skb);
986 	sock_recv_drops(msg, sk, skb);
987 	sock_recv_mark(msg, sk, skb);
988 }
989 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
990 
991 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
992 					   size_t, int));
993 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
994 					    size_t, int));
995 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
996 				     int flags)
997 {
998 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
999 				  inet_recvmsg, sock, msg, msg_data_left(msg),
1000 				  flags);
1001 }
1002 
1003 /**
1004  *	sock_recvmsg - receive a message from @sock
1005  *	@sock: socket
1006  *	@msg: message to receive
1007  *	@flags: message flags
1008  *
1009  *	Receives @msg from @sock, passing through LSM. Returns the total number
1010  *	of bytes received, or an error.
1011  */
1012 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1013 {
1014 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1015 
1016 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1017 }
1018 EXPORT_SYMBOL(sock_recvmsg);
1019 
1020 /**
1021  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1022  *	@sock: The socket to receive the message from
1023  *	@msg: Received message
1024  *	@vec: Input s/g array for message data
1025  *	@num: Size of input s/g array
1026  *	@size: Number of bytes to read
1027  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1028  *
1029  *	On return the msg structure contains the scatter/gather array passed in the
1030  *	vec argument. The array is modified so that it consists of the unfilled
1031  *	portion of the original array.
1032  *
1033  *	The returned value is the total number of bytes received, or an error.
1034  */
1035 
1036 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1037 		   struct kvec *vec, size_t num, size_t size, int flags)
1038 {
1039 	msg->msg_control_is_user = false;
1040 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1041 	return sock_recvmsg(sock, msg, flags);
1042 }
1043 EXPORT_SYMBOL(kernel_recvmsg);
1044 
1045 static ssize_t sock_sendpage(struct file *file, struct page *page,
1046 			     int offset, size_t size, loff_t *ppos, int more)
1047 {
1048 	struct socket *sock;
1049 	int flags;
1050 
1051 	sock = file->private_data;
1052 
1053 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1054 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1055 	flags |= more;
1056 
1057 	return kernel_sendpage(sock, page, offset, size, flags);
1058 }
1059 
1060 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1061 				struct pipe_inode_info *pipe, size_t len,
1062 				unsigned int flags)
1063 {
1064 	struct socket *sock = file->private_data;
1065 
1066 	if (unlikely(!sock->ops->splice_read))
1067 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1068 
1069 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1070 }
1071 
1072 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1073 {
1074 	struct file *file = iocb->ki_filp;
1075 	struct socket *sock = file->private_data;
1076 	struct msghdr msg = {.msg_iter = *to,
1077 			     .msg_iocb = iocb};
1078 	ssize_t res;
1079 
1080 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1081 		msg.msg_flags = MSG_DONTWAIT;
1082 
1083 	if (iocb->ki_pos != 0)
1084 		return -ESPIPE;
1085 
1086 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1087 		return 0;
1088 
1089 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1090 	*to = msg.msg_iter;
1091 	return res;
1092 }
1093 
1094 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1095 {
1096 	struct file *file = iocb->ki_filp;
1097 	struct socket *sock = file->private_data;
1098 	struct msghdr msg = {.msg_iter = *from,
1099 			     .msg_iocb = iocb};
1100 	ssize_t res;
1101 
1102 	if (iocb->ki_pos != 0)
1103 		return -ESPIPE;
1104 
1105 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1106 		msg.msg_flags = MSG_DONTWAIT;
1107 
1108 	if (sock->type == SOCK_SEQPACKET)
1109 		msg.msg_flags |= MSG_EOR;
1110 
1111 	res = sock_sendmsg(sock, &msg);
1112 	*from = msg.msg_iter;
1113 	return res;
1114 }
1115 
1116 /*
1117  * Atomic setting of ioctl hooks to avoid race
1118  * with module unload.
1119  */
1120 
1121 static DEFINE_MUTEX(br_ioctl_mutex);
1122 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1123 			    unsigned int cmd, struct ifreq *ifr,
1124 			    void __user *uarg);
1125 
1126 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1127 			     unsigned int cmd, struct ifreq *ifr,
1128 			     void __user *uarg))
1129 {
1130 	mutex_lock(&br_ioctl_mutex);
1131 	br_ioctl_hook = hook;
1132 	mutex_unlock(&br_ioctl_mutex);
1133 }
1134 EXPORT_SYMBOL(brioctl_set);
1135 
1136 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1137 		  struct ifreq *ifr, void __user *uarg)
1138 {
1139 	int err = -ENOPKG;
1140 
1141 	if (!br_ioctl_hook)
1142 		request_module("bridge");
1143 
1144 	mutex_lock(&br_ioctl_mutex);
1145 	if (br_ioctl_hook)
1146 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1147 	mutex_unlock(&br_ioctl_mutex);
1148 
1149 	return err;
1150 }
1151 
1152 static DEFINE_MUTEX(vlan_ioctl_mutex);
1153 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1154 
1155 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1156 {
1157 	mutex_lock(&vlan_ioctl_mutex);
1158 	vlan_ioctl_hook = hook;
1159 	mutex_unlock(&vlan_ioctl_mutex);
1160 }
1161 EXPORT_SYMBOL(vlan_ioctl_set);
1162 
1163 static long sock_do_ioctl(struct net *net, struct socket *sock,
1164 			  unsigned int cmd, unsigned long arg)
1165 {
1166 	struct ifreq ifr;
1167 	bool need_copyout;
1168 	int err;
1169 	void __user *argp = (void __user *)arg;
1170 	void __user *data;
1171 
1172 	err = sock->ops->ioctl(sock, cmd, arg);
1173 
1174 	/*
1175 	 * If this ioctl is unknown try to hand it down
1176 	 * to the NIC driver.
1177 	 */
1178 	if (err != -ENOIOCTLCMD)
1179 		return err;
1180 
1181 	if (!is_socket_ioctl_cmd(cmd))
1182 		return -ENOTTY;
1183 
1184 	if (get_user_ifreq(&ifr, &data, argp))
1185 		return -EFAULT;
1186 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1187 	if (!err && need_copyout)
1188 		if (put_user_ifreq(&ifr, argp))
1189 			return -EFAULT;
1190 
1191 	return err;
1192 }
1193 
1194 /*
1195  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1196  *	what to do with it - that's up to the protocol still.
1197  */
1198 
1199 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1200 {
1201 	struct socket *sock;
1202 	struct sock *sk;
1203 	void __user *argp = (void __user *)arg;
1204 	int pid, err;
1205 	struct net *net;
1206 
1207 	sock = file->private_data;
1208 	sk = sock->sk;
1209 	net = sock_net(sk);
1210 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1211 		struct ifreq ifr;
1212 		void __user *data;
1213 		bool need_copyout;
1214 		if (get_user_ifreq(&ifr, &data, argp))
1215 			return -EFAULT;
1216 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1217 		if (!err && need_copyout)
1218 			if (put_user_ifreq(&ifr, argp))
1219 				return -EFAULT;
1220 	} else
1221 #ifdef CONFIG_WEXT_CORE
1222 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1223 		err = wext_handle_ioctl(net, cmd, argp);
1224 	} else
1225 #endif
1226 		switch (cmd) {
1227 		case FIOSETOWN:
1228 		case SIOCSPGRP:
1229 			err = -EFAULT;
1230 			if (get_user(pid, (int __user *)argp))
1231 				break;
1232 			err = f_setown(sock->file, pid, 1);
1233 			break;
1234 		case FIOGETOWN:
1235 		case SIOCGPGRP:
1236 			err = put_user(f_getown(sock->file),
1237 				       (int __user *)argp);
1238 			break;
1239 		case SIOCGIFBR:
1240 		case SIOCSIFBR:
1241 		case SIOCBRADDBR:
1242 		case SIOCBRDELBR:
1243 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1244 			break;
1245 		case SIOCGIFVLAN:
1246 		case SIOCSIFVLAN:
1247 			err = -ENOPKG;
1248 			if (!vlan_ioctl_hook)
1249 				request_module("8021q");
1250 
1251 			mutex_lock(&vlan_ioctl_mutex);
1252 			if (vlan_ioctl_hook)
1253 				err = vlan_ioctl_hook(net, argp);
1254 			mutex_unlock(&vlan_ioctl_mutex);
1255 			break;
1256 		case SIOCGSKNS:
1257 			err = -EPERM;
1258 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1259 				break;
1260 
1261 			err = open_related_ns(&net->ns, get_net_ns);
1262 			break;
1263 		case SIOCGSTAMP_OLD:
1264 		case SIOCGSTAMPNS_OLD:
1265 			if (!sock->ops->gettstamp) {
1266 				err = -ENOIOCTLCMD;
1267 				break;
1268 			}
1269 			err = sock->ops->gettstamp(sock, argp,
1270 						   cmd == SIOCGSTAMP_OLD,
1271 						   !IS_ENABLED(CONFIG_64BIT));
1272 			break;
1273 		case SIOCGSTAMP_NEW:
1274 		case SIOCGSTAMPNS_NEW:
1275 			if (!sock->ops->gettstamp) {
1276 				err = -ENOIOCTLCMD;
1277 				break;
1278 			}
1279 			err = sock->ops->gettstamp(sock, argp,
1280 						   cmd == SIOCGSTAMP_NEW,
1281 						   false);
1282 			break;
1283 
1284 		case SIOCGIFCONF:
1285 			err = dev_ifconf(net, argp);
1286 			break;
1287 
1288 		default:
1289 			err = sock_do_ioctl(net, sock, cmd, arg);
1290 			break;
1291 		}
1292 	return err;
1293 }
1294 
1295 /**
1296  *	sock_create_lite - creates a socket
1297  *	@family: protocol family (AF_INET, ...)
1298  *	@type: communication type (SOCK_STREAM, ...)
1299  *	@protocol: protocol (0, ...)
1300  *	@res: new socket
1301  *
1302  *	Creates a new socket and assigns it to @res, passing through LSM.
1303  *	The new socket initialization is not complete, see kernel_accept().
1304  *	Returns 0 or an error. On failure @res is set to %NULL.
1305  *	This function internally uses GFP_KERNEL.
1306  */
1307 
1308 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1309 {
1310 	int err;
1311 	struct socket *sock = NULL;
1312 
1313 	err = security_socket_create(family, type, protocol, 1);
1314 	if (err)
1315 		goto out;
1316 
1317 	sock = sock_alloc();
1318 	if (!sock) {
1319 		err = -ENOMEM;
1320 		goto out;
1321 	}
1322 
1323 	sock->type = type;
1324 	err = security_socket_post_create(sock, family, type, protocol, 1);
1325 	if (err)
1326 		goto out_release;
1327 
1328 out:
1329 	*res = sock;
1330 	return err;
1331 out_release:
1332 	sock_release(sock);
1333 	sock = NULL;
1334 	goto out;
1335 }
1336 EXPORT_SYMBOL(sock_create_lite);
1337 
1338 /* No kernel lock held - perfect */
1339 static __poll_t sock_poll(struct file *file, poll_table *wait)
1340 {
1341 	struct socket *sock = file->private_data;
1342 	__poll_t events = poll_requested_events(wait), flag = 0;
1343 
1344 	if (!sock->ops->poll)
1345 		return 0;
1346 
1347 	if (sk_can_busy_loop(sock->sk)) {
1348 		/* poll once if requested by the syscall */
1349 		if (events & POLL_BUSY_LOOP)
1350 			sk_busy_loop(sock->sk, 1);
1351 
1352 		/* if this socket can poll_ll, tell the system call */
1353 		flag = POLL_BUSY_LOOP;
1354 	}
1355 
1356 	return sock->ops->poll(file, sock, wait) | flag;
1357 }
1358 
1359 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1360 {
1361 	struct socket *sock = file->private_data;
1362 
1363 	return sock->ops->mmap(file, sock, vma);
1364 }
1365 
1366 static int sock_close(struct inode *inode, struct file *filp)
1367 {
1368 	__sock_release(SOCKET_I(inode), inode);
1369 	return 0;
1370 }
1371 
1372 /*
1373  *	Update the socket async list
1374  *
1375  *	Fasync_list locking strategy.
1376  *
1377  *	1. fasync_list is modified only under process context socket lock
1378  *	   i.e. under semaphore.
1379  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1380  *	   or under socket lock
1381  */
1382 
1383 static int sock_fasync(int fd, struct file *filp, int on)
1384 {
1385 	struct socket *sock = filp->private_data;
1386 	struct sock *sk = sock->sk;
1387 	struct socket_wq *wq = &sock->wq;
1388 
1389 	if (sk == NULL)
1390 		return -EINVAL;
1391 
1392 	lock_sock(sk);
1393 	fasync_helper(fd, filp, on, &wq->fasync_list);
1394 
1395 	if (!wq->fasync_list)
1396 		sock_reset_flag(sk, SOCK_FASYNC);
1397 	else
1398 		sock_set_flag(sk, SOCK_FASYNC);
1399 
1400 	release_sock(sk);
1401 	return 0;
1402 }
1403 
1404 /* This function may be called only under rcu_lock */
1405 
1406 int sock_wake_async(struct socket_wq *wq, int how, int band)
1407 {
1408 	if (!wq || !wq->fasync_list)
1409 		return -1;
1410 
1411 	switch (how) {
1412 	case SOCK_WAKE_WAITD:
1413 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1414 			break;
1415 		goto call_kill;
1416 	case SOCK_WAKE_SPACE:
1417 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1418 			break;
1419 		fallthrough;
1420 	case SOCK_WAKE_IO:
1421 call_kill:
1422 		kill_fasync(&wq->fasync_list, SIGIO, band);
1423 		break;
1424 	case SOCK_WAKE_URG:
1425 		kill_fasync(&wq->fasync_list, SIGURG, band);
1426 	}
1427 
1428 	return 0;
1429 }
1430 EXPORT_SYMBOL(sock_wake_async);
1431 
1432 /**
1433  *	__sock_create - creates a socket
1434  *	@net: net namespace
1435  *	@family: protocol family (AF_INET, ...)
1436  *	@type: communication type (SOCK_STREAM, ...)
1437  *	@protocol: protocol (0, ...)
1438  *	@res: new socket
1439  *	@kern: boolean for kernel space sockets
1440  *
1441  *	Creates a new socket and assigns it to @res, passing through LSM.
1442  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1443  *	be set to true if the socket resides in kernel space.
1444  *	This function internally uses GFP_KERNEL.
1445  */
1446 
1447 int __sock_create(struct net *net, int family, int type, int protocol,
1448 			 struct socket **res, int kern)
1449 {
1450 	int err;
1451 	struct socket *sock;
1452 	const struct net_proto_family *pf;
1453 
1454 	/*
1455 	 *      Check protocol is in range
1456 	 */
1457 	if (family < 0 || family >= NPROTO)
1458 		return -EAFNOSUPPORT;
1459 	if (type < 0 || type >= SOCK_MAX)
1460 		return -EINVAL;
1461 
1462 	/* Compatibility.
1463 
1464 	   This uglymoron is moved from INET layer to here to avoid
1465 	   deadlock in module load.
1466 	 */
1467 	if (family == PF_INET && type == SOCK_PACKET) {
1468 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1469 			     current->comm);
1470 		family = PF_PACKET;
1471 	}
1472 
1473 	err = security_socket_create(family, type, protocol, kern);
1474 	if (err)
1475 		return err;
1476 
1477 	/*
1478 	 *	Allocate the socket and allow the family to set things up. if
1479 	 *	the protocol is 0, the family is instructed to select an appropriate
1480 	 *	default.
1481 	 */
1482 	sock = sock_alloc();
1483 	if (!sock) {
1484 		net_warn_ratelimited("socket: no more sockets\n");
1485 		return -ENFILE;	/* Not exactly a match, but its the
1486 				   closest posix thing */
1487 	}
1488 
1489 	sock->type = type;
1490 
1491 #ifdef CONFIG_MODULES
1492 	/* Attempt to load a protocol module if the find failed.
1493 	 *
1494 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1495 	 * requested real, full-featured networking support upon configuration.
1496 	 * Otherwise module support will break!
1497 	 */
1498 	if (rcu_access_pointer(net_families[family]) == NULL)
1499 		request_module("net-pf-%d", family);
1500 #endif
1501 
1502 	rcu_read_lock();
1503 	pf = rcu_dereference(net_families[family]);
1504 	err = -EAFNOSUPPORT;
1505 	if (!pf)
1506 		goto out_release;
1507 
1508 	/*
1509 	 * We will call the ->create function, that possibly is in a loadable
1510 	 * module, so we have to bump that loadable module refcnt first.
1511 	 */
1512 	if (!try_module_get(pf->owner))
1513 		goto out_release;
1514 
1515 	/* Now protected by module ref count */
1516 	rcu_read_unlock();
1517 
1518 	err = pf->create(net, sock, protocol, kern);
1519 	if (err < 0)
1520 		goto out_module_put;
1521 
1522 	/*
1523 	 * Now to bump the refcnt of the [loadable] module that owns this
1524 	 * socket at sock_release time we decrement its refcnt.
1525 	 */
1526 	if (!try_module_get(sock->ops->owner))
1527 		goto out_module_busy;
1528 
1529 	/*
1530 	 * Now that we're done with the ->create function, the [loadable]
1531 	 * module can have its refcnt decremented
1532 	 */
1533 	module_put(pf->owner);
1534 	err = security_socket_post_create(sock, family, type, protocol, kern);
1535 	if (err)
1536 		goto out_sock_release;
1537 	*res = sock;
1538 
1539 	return 0;
1540 
1541 out_module_busy:
1542 	err = -EAFNOSUPPORT;
1543 out_module_put:
1544 	sock->ops = NULL;
1545 	module_put(pf->owner);
1546 out_sock_release:
1547 	sock_release(sock);
1548 	return err;
1549 
1550 out_release:
1551 	rcu_read_unlock();
1552 	goto out_sock_release;
1553 }
1554 EXPORT_SYMBOL(__sock_create);
1555 
1556 /**
1557  *	sock_create - creates a socket
1558  *	@family: protocol family (AF_INET, ...)
1559  *	@type: communication type (SOCK_STREAM, ...)
1560  *	@protocol: protocol (0, ...)
1561  *	@res: new socket
1562  *
1563  *	A wrapper around __sock_create().
1564  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1565  */
1566 
1567 int sock_create(int family, int type, int protocol, struct socket **res)
1568 {
1569 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1570 }
1571 EXPORT_SYMBOL(sock_create);
1572 
1573 /**
1574  *	sock_create_kern - creates a socket (kernel space)
1575  *	@net: net namespace
1576  *	@family: protocol family (AF_INET, ...)
1577  *	@type: communication type (SOCK_STREAM, ...)
1578  *	@protocol: protocol (0, ...)
1579  *	@res: new socket
1580  *
1581  *	A wrapper around __sock_create().
1582  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1583  */
1584 
1585 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1586 {
1587 	return __sock_create(net, family, type, protocol, res, 1);
1588 }
1589 EXPORT_SYMBOL(sock_create_kern);
1590 
1591 static struct socket *__sys_socket_create(int family, int type, int protocol)
1592 {
1593 	struct socket *sock;
1594 	int retval;
1595 
1596 	/* Check the SOCK_* constants for consistency.  */
1597 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1598 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1599 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1600 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1601 
1602 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1603 		return ERR_PTR(-EINVAL);
1604 	type &= SOCK_TYPE_MASK;
1605 
1606 	retval = sock_create(family, type, protocol, &sock);
1607 	if (retval < 0)
1608 		return ERR_PTR(retval);
1609 
1610 	return sock;
1611 }
1612 
1613 struct file *__sys_socket_file(int family, int type, int protocol)
1614 {
1615 	struct socket *sock;
1616 	struct file *file;
1617 	int flags;
1618 
1619 	sock = __sys_socket_create(family, type, protocol);
1620 	if (IS_ERR(sock))
1621 		return ERR_CAST(sock);
1622 
1623 	flags = type & ~SOCK_TYPE_MASK;
1624 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1625 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1626 
1627 	file = sock_alloc_file(sock, flags, NULL);
1628 	if (IS_ERR(file))
1629 		sock_release(sock);
1630 
1631 	return file;
1632 }
1633 
1634 int __sys_socket(int family, int type, int protocol)
1635 {
1636 	struct socket *sock;
1637 	int flags;
1638 
1639 	sock = __sys_socket_create(family, type, protocol);
1640 	if (IS_ERR(sock))
1641 		return PTR_ERR(sock);
1642 
1643 	flags = type & ~SOCK_TYPE_MASK;
1644 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1645 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1646 
1647 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1648 }
1649 
1650 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1651 {
1652 	return __sys_socket(family, type, protocol);
1653 }
1654 
1655 /*
1656  *	Create a pair of connected sockets.
1657  */
1658 
1659 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1660 {
1661 	struct socket *sock1, *sock2;
1662 	int fd1, fd2, err;
1663 	struct file *newfile1, *newfile2;
1664 	int flags;
1665 
1666 	flags = type & ~SOCK_TYPE_MASK;
1667 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1668 		return -EINVAL;
1669 	type &= SOCK_TYPE_MASK;
1670 
1671 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1672 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1673 
1674 	/*
1675 	 * reserve descriptors and make sure we won't fail
1676 	 * to return them to userland.
1677 	 */
1678 	fd1 = get_unused_fd_flags(flags);
1679 	if (unlikely(fd1 < 0))
1680 		return fd1;
1681 
1682 	fd2 = get_unused_fd_flags(flags);
1683 	if (unlikely(fd2 < 0)) {
1684 		put_unused_fd(fd1);
1685 		return fd2;
1686 	}
1687 
1688 	err = put_user(fd1, &usockvec[0]);
1689 	if (err)
1690 		goto out;
1691 
1692 	err = put_user(fd2, &usockvec[1]);
1693 	if (err)
1694 		goto out;
1695 
1696 	/*
1697 	 * Obtain the first socket and check if the underlying protocol
1698 	 * supports the socketpair call.
1699 	 */
1700 
1701 	err = sock_create(family, type, protocol, &sock1);
1702 	if (unlikely(err < 0))
1703 		goto out;
1704 
1705 	err = sock_create(family, type, protocol, &sock2);
1706 	if (unlikely(err < 0)) {
1707 		sock_release(sock1);
1708 		goto out;
1709 	}
1710 
1711 	err = security_socket_socketpair(sock1, sock2);
1712 	if (unlikely(err)) {
1713 		sock_release(sock2);
1714 		sock_release(sock1);
1715 		goto out;
1716 	}
1717 
1718 	err = sock1->ops->socketpair(sock1, sock2);
1719 	if (unlikely(err < 0)) {
1720 		sock_release(sock2);
1721 		sock_release(sock1);
1722 		goto out;
1723 	}
1724 
1725 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1726 	if (IS_ERR(newfile1)) {
1727 		err = PTR_ERR(newfile1);
1728 		sock_release(sock2);
1729 		goto out;
1730 	}
1731 
1732 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1733 	if (IS_ERR(newfile2)) {
1734 		err = PTR_ERR(newfile2);
1735 		fput(newfile1);
1736 		goto out;
1737 	}
1738 
1739 	audit_fd_pair(fd1, fd2);
1740 
1741 	fd_install(fd1, newfile1);
1742 	fd_install(fd2, newfile2);
1743 	return 0;
1744 
1745 out:
1746 	put_unused_fd(fd2);
1747 	put_unused_fd(fd1);
1748 	return err;
1749 }
1750 
1751 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1752 		int __user *, usockvec)
1753 {
1754 	return __sys_socketpair(family, type, protocol, usockvec);
1755 }
1756 
1757 /*
1758  *	Bind a name to a socket. Nothing much to do here since it's
1759  *	the protocol's responsibility to handle the local address.
1760  *
1761  *	We move the socket address to kernel space before we call
1762  *	the protocol layer (having also checked the address is ok).
1763  */
1764 
1765 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1766 {
1767 	struct socket *sock;
1768 	struct sockaddr_storage address;
1769 	int err, fput_needed;
1770 
1771 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 	if (sock) {
1773 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1774 		if (!err) {
1775 			err = security_socket_bind(sock,
1776 						   (struct sockaddr *)&address,
1777 						   addrlen);
1778 			if (!err)
1779 				err = sock->ops->bind(sock,
1780 						      (struct sockaddr *)
1781 						      &address, addrlen);
1782 		}
1783 		fput_light(sock->file, fput_needed);
1784 	}
1785 	return err;
1786 }
1787 
1788 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1789 {
1790 	return __sys_bind(fd, umyaddr, addrlen);
1791 }
1792 
1793 /*
1794  *	Perform a listen. Basically, we allow the protocol to do anything
1795  *	necessary for a listen, and if that works, we mark the socket as
1796  *	ready for listening.
1797  */
1798 
1799 int __sys_listen(int fd, int backlog)
1800 {
1801 	struct socket *sock;
1802 	int err, fput_needed;
1803 	int somaxconn;
1804 
1805 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806 	if (sock) {
1807 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1808 		if ((unsigned int)backlog > somaxconn)
1809 			backlog = somaxconn;
1810 
1811 		err = security_socket_listen(sock, backlog);
1812 		if (!err)
1813 			err = sock->ops->listen(sock, backlog);
1814 
1815 		fput_light(sock->file, fput_needed);
1816 	}
1817 	return err;
1818 }
1819 
1820 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1821 {
1822 	return __sys_listen(fd, backlog);
1823 }
1824 
1825 struct file *do_accept(struct file *file, unsigned file_flags,
1826 		       struct sockaddr __user *upeer_sockaddr,
1827 		       int __user *upeer_addrlen, int flags)
1828 {
1829 	struct socket *sock, *newsock;
1830 	struct file *newfile;
1831 	int err, len;
1832 	struct sockaddr_storage address;
1833 
1834 	sock = sock_from_file(file);
1835 	if (!sock)
1836 		return ERR_PTR(-ENOTSOCK);
1837 
1838 	newsock = sock_alloc();
1839 	if (!newsock)
1840 		return ERR_PTR(-ENFILE);
1841 
1842 	newsock->type = sock->type;
1843 	newsock->ops = sock->ops;
1844 
1845 	/*
1846 	 * We don't need try_module_get here, as the listening socket (sock)
1847 	 * has the protocol module (sock->ops->owner) held.
1848 	 */
1849 	__module_get(newsock->ops->owner);
1850 
1851 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1852 	if (IS_ERR(newfile))
1853 		return newfile;
1854 
1855 	err = security_socket_accept(sock, newsock);
1856 	if (err)
1857 		goto out_fd;
1858 
1859 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1860 					false);
1861 	if (err < 0)
1862 		goto out_fd;
1863 
1864 	if (upeer_sockaddr) {
1865 		len = newsock->ops->getname(newsock,
1866 					(struct sockaddr *)&address, 2);
1867 		if (len < 0) {
1868 			err = -ECONNABORTED;
1869 			goto out_fd;
1870 		}
1871 		err = move_addr_to_user(&address,
1872 					len, upeer_sockaddr, upeer_addrlen);
1873 		if (err < 0)
1874 			goto out_fd;
1875 	}
1876 
1877 	/* File flags are not inherited via accept() unlike another OSes. */
1878 	return newfile;
1879 out_fd:
1880 	fput(newfile);
1881 	return ERR_PTR(err);
1882 }
1883 
1884 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1885 			      int __user *upeer_addrlen, int flags)
1886 {
1887 	struct file *newfile;
1888 	int newfd;
1889 
1890 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1891 		return -EINVAL;
1892 
1893 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1894 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1895 
1896 	newfd = get_unused_fd_flags(flags);
1897 	if (unlikely(newfd < 0))
1898 		return newfd;
1899 
1900 	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1901 			    flags);
1902 	if (IS_ERR(newfile)) {
1903 		put_unused_fd(newfd);
1904 		return PTR_ERR(newfile);
1905 	}
1906 	fd_install(newfd, newfile);
1907 	return newfd;
1908 }
1909 
1910 /*
1911  *	For accept, we attempt to create a new socket, set up the link
1912  *	with the client, wake up the client, then return the new
1913  *	connected fd. We collect the address of the connector in kernel
1914  *	space and move it to user at the very end. This is unclean because
1915  *	we open the socket then return an error.
1916  *
1917  *	1003.1g adds the ability to recvmsg() to query connection pending
1918  *	status to recvmsg. We need to add that support in a way thats
1919  *	clean when we restructure accept also.
1920  */
1921 
1922 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1923 		  int __user *upeer_addrlen, int flags)
1924 {
1925 	int ret = -EBADF;
1926 	struct fd f;
1927 
1928 	f = fdget(fd);
1929 	if (f.file) {
1930 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1931 					 upeer_addrlen, flags);
1932 		fdput(f);
1933 	}
1934 
1935 	return ret;
1936 }
1937 
1938 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1939 		int __user *, upeer_addrlen, int, flags)
1940 {
1941 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1942 }
1943 
1944 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1945 		int __user *, upeer_addrlen)
1946 {
1947 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1948 }
1949 
1950 /*
1951  *	Attempt to connect to a socket with the server address.  The address
1952  *	is in user space so we verify it is OK and move it to kernel space.
1953  *
1954  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1955  *	break bindings
1956  *
1957  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1958  *	other SEQPACKET protocols that take time to connect() as it doesn't
1959  *	include the -EINPROGRESS status for such sockets.
1960  */
1961 
1962 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1963 		       int addrlen, int file_flags)
1964 {
1965 	struct socket *sock;
1966 	int err;
1967 
1968 	sock = sock_from_file(file);
1969 	if (!sock) {
1970 		err = -ENOTSOCK;
1971 		goto out;
1972 	}
1973 
1974 	err =
1975 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1976 	if (err)
1977 		goto out;
1978 
1979 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1980 				 sock->file->f_flags | file_flags);
1981 out:
1982 	return err;
1983 }
1984 
1985 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1986 {
1987 	int ret = -EBADF;
1988 	struct fd f;
1989 
1990 	f = fdget(fd);
1991 	if (f.file) {
1992 		struct sockaddr_storage address;
1993 
1994 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1995 		if (!ret)
1996 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1997 		fdput(f);
1998 	}
1999 
2000 	return ret;
2001 }
2002 
2003 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2004 		int, addrlen)
2005 {
2006 	return __sys_connect(fd, uservaddr, addrlen);
2007 }
2008 
2009 /*
2010  *	Get the local address ('name') of a socket object. Move the obtained
2011  *	name to user space.
2012  */
2013 
2014 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2015 		      int __user *usockaddr_len)
2016 {
2017 	struct socket *sock;
2018 	struct sockaddr_storage address;
2019 	int err, fput_needed;
2020 
2021 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2022 	if (!sock)
2023 		goto out;
2024 
2025 	err = security_socket_getsockname(sock);
2026 	if (err)
2027 		goto out_put;
2028 
2029 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2030 	if (err < 0)
2031 		goto out_put;
2032 	/* "err" is actually length in this case */
2033 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2034 
2035 out_put:
2036 	fput_light(sock->file, fput_needed);
2037 out:
2038 	return err;
2039 }
2040 
2041 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2042 		int __user *, usockaddr_len)
2043 {
2044 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2045 }
2046 
2047 /*
2048  *	Get the remote address ('name') of a socket object. Move the obtained
2049  *	name to user space.
2050  */
2051 
2052 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2053 		      int __user *usockaddr_len)
2054 {
2055 	struct socket *sock;
2056 	struct sockaddr_storage address;
2057 	int err, fput_needed;
2058 
2059 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2060 	if (sock != NULL) {
2061 		err = security_socket_getpeername(sock);
2062 		if (err) {
2063 			fput_light(sock->file, fput_needed);
2064 			return err;
2065 		}
2066 
2067 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2068 		if (err >= 0)
2069 			/* "err" is actually length in this case */
2070 			err = move_addr_to_user(&address, err, usockaddr,
2071 						usockaddr_len);
2072 		fput_light(sock->file, fput_needed);
2073 	}
2074 	return err;
2075 }
2076 
2077 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2078 		int __user *, usockaddr_len)
2079 {
2080 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2081 }
2082 
2083 /*
2084  *	Send a datagram to a given address. We move the address into kernel
2085  *	space and check the user space data area is readable before invoking
2086  *	the protocol.
2087  */
2088 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2089 		 struct sockaddr __user *addr,  int addr_len)
2090 {
2091 	struct socket *sock;
2092 	struct sockaddr_storage address;
2093 	int err;
2094 	struct msghdr msg;
2095 	struct iovec iov;
2096 	int fput_needed;
2097 
2098 	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2099 	if (unlikely(err))
2100 		return err;
2101 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102 	if (!sock)
2103 		goto out;
2104 
2105 	msg.msg_name = NULL;
2106 	msg.msg_control = NULL;
2107 	msg.msg_controllen = 0;
2108 	msg.msg_namelen = 0;
2109 	msg.msg_ubuf = NULL;
2110 	if (addr) {
2111 		err = move_addr_to_kernel(addr, addr_len, &address);
2112 		if (err < 0)
2113 			goto out_put;
2114 		msg.msg_name = (struct sockaddr *)&address;
2115 		msg.msg_namelen = addr_len;
2116 	}
2117 	if (sock->file->f_flags & O_NONBLOCK)
2118 		flags |= MSG_DONTWAIT;
2119 	msg.msg_flags = flags;
2120 	err = sock_sendmsg(sock, &msg);
2121 
2122 out_put:
2123 	fput_light(sock->file, fput_needed);
2124 out:
2125 	return err;
2126 }
2127 
2128 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2129 		unsigned int, flags, struct sockaddr __user *, addr,
2130 		int, addr_len)
2131 {
2132 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2133 }
2134 
2135 /*
2136  *	Send a datagram down a socket.
2137  */
2138 
2139 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2140 		unsigned int, flags)
2141 {
2142 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2143 }
2144 
2145 /*
2146  *	Receive a frame from the socket and optionally record the address of the
2147  *	sender. We verify the buffers are writable and if needed move the
2148  *	sender address from kernel to user space.
2149  */
2150 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2151 		   struct sockaddr __user *addr, int __user *addr_len)
2152 {
2153 	struct sockaddr_storage address;
2154 	struct msghdr msg = {
2155 		/* Save some cycles and don't copy the address if not needed */
2156 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2157 	};
2158 	struct socket *sock;
2159 	struct iovec iov;
2160 	int err, err2;
2161 	int fput_needed;
2162 
2163 	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2164 	if (unlikely(err))
2165 		return err;
2166 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2167 	if (!sock)
2168 		goto out;
2169 
2170 	if (sock->file->f_flags & O_NONBLOCK)
2171 		flags |= MSG_DONTWAIT;
2172 	err = sock_recvmsg(sock, &msg, flags);
2173 
2174 	if (err >= 0 && addr != NULL) {
2175 		err2 = move_addr_to_user(&address,
2176 					 msg.msg_namelen, addr, addr_len);
2177 		if (err2 < 0)
2178 			err = err2;
2179 	}
2180 
2181 	fput_light(sock->file, fput_needed);
2182 out:
2183 	return err;
2184 }
2185 
2186 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2187 		unsigned int, flags, struct sockaddr __user *, addr,
2188 		int __user *, addr_len)
2189 {
2190 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2191 }
2192 
2193 /*
2194  *	Receive a datagram from a socket.
2195  */
2196 
2197 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2198 		unsigned int, flags)
2199 {
2200 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2201 }
2202 
2203 static bool sock_use_custom_sol_socket(const struct socket *sock)
2204 {
2205 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2206 }
2207 
2208 /*
2209  *	Set a socket option. Because we don't know the option lengths we have
2210  *	to pass the user mode parameter for the protocols to sort out.
2211  */
2212 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2213 		int optlen)
2214 {
2215 	sockptr_t optval = USER_SOCKPTR(user_optval);
2216 	char *kernel_optval = NULL;
2217 	int err, fput_needed;
2218 	struct socket *sock;
2219 
2220 	if (optlen < 0)
2221 		return -EINVAL;
2222 
2223 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2224 	if (!sock)
2225 		return err;
2226 
2227 	err = security_socket_setsockopt(sock, level, optname);
2228 	if (err)
2229 		goto out_put;
2230 
2231 	if (!in_compat_syscall())
2232 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2233 						     user_optval, &optlen,
2234 						     &kernel_optval);
2235 	if (err < 0)
2236 		goto out_put;
2237 	if (err > 0) {
2238 		err = 0;
2239 		goto out_put;
2240 	}
2241 
2242 	if (kernel_optval)
2243 		optval = KERNEL_SOCKPTR(kernel_optval);
2244 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2245 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2246 	else if (unlikely(!sock->ops->setsockopt))
2247 		err = -EOPNOTSUPP;
2248 	else
2249 		err = sock->ops->setsockopt(sock, level, optname, optval,
2250 					    optlen);
2251 	kfree(kernel_optval);
2252 out_put:
2253 	fput_light(sock->file, fput_needed);
2254 	return err;
2255 }
2256 
2257 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2258 		char __user *, optval, int, optlen)
2259 {
2260 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2261 }
2262 
2263 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2264 							 int optname));
2265 
2266 /*
2267  *	Get a socket option. Because we don't know the option lengths we have
2268  *	to pass a user mode parameter for the protocols to sort out.
2269  */
2270 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2271 		int __user *optlen)
2272 {
2273 	int err, fput_needed;
2274 	struct socket *sock;
2275 	int max_optlen;
2276 
2277 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2278 	if (!sock)
2279 		return err;
2280 
2281 	err = security_socket_getsockopt(sock, level, optname);
2282 	if (err)
2283 		goto out_put;
2284 
2285 	if (!in_compat_syscall())
2286 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2287 
2288 	if (level == SOL_SOCKET)
2289 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2290 	else if (unlikely(!sock->ops->getsockopt))
2291 		err = -EOPNOTSUPP;
2292 	else
2293 		err = sock->ops->getsockopt(sock, level, optname, optval,
2294 					    optlen);
2295 
2296 	if (!in_compat_syscall())
2297 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2298 						     optval, optlen, max_optlen,
2299 						     err);
2300 out_put:
2301 	fput_light(sock->file, fput_needed);
2302 	return err;
2303 }
2304 
2305 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2306 		char __user *, optval, int __user *, optlen)
2307 {
2308 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2309 }
2310 
2311 /*
2312  *	Shutdown a socket.
2313  */
2314 
2315 int __sys_shutdown_sock(struct socket *sock, int how)
2316 {
2317 	int err;
2318 
2319 	err = security_socket_shutdown(sock, how);
2320 	if (!err)
2321 		err = sock->ops->shutdown(sock, how);
2322 
2323 	return err;
2324 }
2325 
2326 int __sys_shutdown(int fd, int how)
2327 {
2328 	int err, fput_needed;
2329 	struct socket *sock;
2330 
2331 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2332 	if (sock != NULL) {
2333 		err = __sys_shutdown_sock(sock, how);
2334 		fput_light(sock->file, fput_needed);
2335 	}
2336 	return err;
2337 }
2338 
2339 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2340 {
2341 	return __sys_shutdown(fd, how);
2342 }
2343 
2344 /* A couple of helpful macros for getting the address of the 32/64 bit
2345  * fields which are the same type (int / unsigned) on our platforms.
2346  */
2347 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2348 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2349 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2350 
2351 struct used_address {
2352 	struct sockaddr_storage name;
2353 	unsigned int name_len;
2354 };
2355 
2356 int __copy_msghdr(struct msghdr *kmsg,
2357 		  struct user_msghdr *msg,
2358 		  struct sockaddr __user **save_addr)
2359 {
2360 	ssize_t err;
2361 
2362 	kmsg->msg_control_is_user = true;
2363 	kmsg->msg_get_inq = 0;
2364 	kmsg->msg_control_user = msg->msg_control;
2365 	kmsg->msg_controllen = msg->msg_controllen;
2366 	kmsg->msg_flags = msg->msg_flags;
2367 
2368 	kmsg->msg_namelen = msg->msg_namelen;
2369 	if (!msg->msg_name)
2370 		kmsg->msg_namelen = 0;
2371 
2372 	if (kmsg->msg_namelen < 0)
2373 		return -EINVAL;
2374 
2375 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2376 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2377 
2378 	if (save_addr)
2379 		*save_addr = msg->msg_name;
2380 
2381 	if (msg->msg_name && kmsg->msg_namelen) {
2382 		if (!save_addr) {
2383 			err = move_addr_to_kernel(msg->msg_name,
2384 						  kmsg->msg_namelen,
2385 						  kmsg->msg_name);
2386 			if (err < 0)
2387 				return err;
2388 		}
2389 	} else {
2390 		kmsg->msg_name = NULL;
2391 		kmsg->msg_namelen = 0;
2392 	}
2393 
2394 	if (msg->msg_iovlen > UIO_MAXIOV)
2395 		return -EMSGSIZE;
2396 
2397 	kmsg->msg_iocb = NULL;
2398 	kmsg->msg_ubuf = NULL;
2399 	return 0;
2400 }
2401 
2402 static int copy_msghdr_from_user(struct msghdr *kmsg,
2403 				 struct user_msghdr __user *umsg,
2404 				 struct sockaddr __user **save_addr,
2405 				 struct iovec **iov)
2406 {
2407 	struct user_msghdr msg;
2408 	ssize_t err;
2409 
2410 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2411 		return -EFAULT;
2412 
2413 	err = __copy_msghdr(kmsg, &msg, save_addr);
2414 	if (err)
2415 		return err;
2416 
2417 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2418 			    msg.msg_iov, msg.msg_iovlen,
2419 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2420 	return err < 0 ? err : 0;
2421 }
2422 
2423 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2424 			   unsigned int flags, struct used_address *used_address,
2425 			   unsigned int allowed_msghdr_flags)
2426 {
2427 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2428 				__aligned(sizeof(__kernel_size_t));
2429 	/* 20 is size of ipv6_pktinfo */
2430 	unsigned char *ctl_buf = ctl;
2431 	int ctl_len;
2432 	ssize_t err;
2433 
2434 	err = -ENOBUFS;
2435 
2436 	if (msg_sys->msg_controllen > INT_MAX)
2437 		goto out;
2438 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2439 	ctl_len = msg_sys->msg_controllen;
2440 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2441 		err =
2442 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2443 						     sizeof(ctl));
2444 		if (err)
2445 			goto out;
2446 		ctl_buf = msg_sys->msg_control;
2447 		ctl_len = msg_sys->msg_controllen;
2448 	} else if (ctl_len) {
2449 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2450 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2451 		if (ctl_len > sizeof(ctl)) {
2452 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2453 			if (ctl_buf == NULL)
2454 				goto out;
2455 		}
2456 		err = -EFAULT;
2457 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2458 			goto out_freectl;
2459 		msg_sys->msg_control = ctl_buf;
2460 		msg_sys->msg_control_is_user = false;
2461 	}
2462 	msg_sys->msg_flags = flags;
2463 
2464 	if (sock->file->f_flags & O_NONBLOCK)
2465 		msg_sys->msg_flags |= MSG_DONTWAIT;
2466 	/*
2467 	 * If this is sendmmsg() and current destination address is same as
2468 	 * previously succeeded address, omit asking LSM's decision.
2469 	 * used_address->name_len is initialized to UINT_MAX so that the first
2470 	 * destination address never matches.
2471 	 */
2472 	if (used_address && msg_sys->msg_name &&
2473 	    used_address->name_len == msg_sys->msg_namelen &&
2474 	    !memcmp(&used_address->name, msg_sys->msg_name,
2475 		    used_address->name_len)) {
2476 		err = sock_sendmsg_nosec(sock, msg_sys);
2477 		goto out_freectl;
2478 	}
2479 	err = sock_sendmsg(sock, msg_sys);
2480 	/*
2481 	 * If this is sendmmsg() and sending to current destination address was
2482 	 * successful, remember it.
2483 	 */
2484 	if (used_address && err >= 0) {
2485 		used_address->name_len = msg_sys->msg_namelen;
2486 		if (msg_sys->msg_name)
2487 			memcpy(&used_address->name, msg_sys->msg_name,
2488 			       used_address->name_len);
2489 	}
2490 
2491 out_freectl:
2492 	if (ctl_buf != ctl)
2493 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2494 out:
2495 	return err;
2496 }
2497 
2498 int sendmsg_copy_msghdr(struct msghdr *msg,
2499 			struct user_msghdr __user *umsg, unsigned flags,
2500 			struct iovec **iov)
2501 {
2502 	int err;
2503 
2504 	if (flags & MSG_CMSG_COMPAT) {
2505 		struct compat_msghdr __user *msg_compat;
2506 
2507 		msg_compat = (struct compat_msghdr __user *) umsg;
2508 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2509 	} else {
2510 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2511 	}
2512 	if (err < 0)
2513 		return err;
2514 
2515 	return 0;
2516 }
2517 
2518 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2519 			 struct msghdr *msg_sys, unsigned int flags,
2520 			 struct used_address *used_address,
2521 			 unsigned int allowed_msghdr_flags)
2522 {
2523 	struct sockaddr_storage address;
2524 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2525 	ssize_t err;
2526 
2527 	msg_sys->msg_name = &address;
2528 
2529 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2530 	if (err < 0)
2531 		return err;
2532 
2533 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2534 				allowed_msghdr_flags);
2535 	kfree(iov);
2536 	return err;
2537 }
2538 
2539 /*
2540  *	BSD sendmsg interface
2541  */
2542 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2543 			unsigned int flags)
2544 {
2545 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2546 }
2547 
2548 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2549 		   bool forbid_cmsg_compat)
2550 {
2551 	int fput_needed, err;
2552 	struct msghdr msg_sys;
2553 	struct socket *sock;
2554 
2555 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2556 		return -EINVAL;
2557 
2558 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2559 	if (!sock)
2560 		goto out;
2561 
2562 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2563 
2564 	fput_light(sock->file, fput_needed);
2565 out:
2566 	return err;
2567 }
2568 
2569 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2570 {
2571 	return __sys_sendmsg(fd, msg, flags, true);
2572 }
2573 
2574 /*
2575  *	Linux sendmmsg interface
2576  */
2577 
2578 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2579 		   unsigned int flags, bool forbid_cmsg_compat)
2580 {
2581 	int fput_needed, err, datagrams;
2582 	struct socket *sock;
2583 	struct mmsghdr __user *entry;
2584 	struct compat_mmsghdr __user *compat_entry;
2585 	struct msghdr msg_sys;
2586 	struct used_address used_address;
2587 	unsigned int oflags = flags;
2588 
2589 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2590 		return -EINVAL;
2591 
2592 	if (vlen > UIO_MAXIOV)
2593 		vlen = UIO_MAXIOV;
2594 
2595 	datagrams = 0;
2596 
2597 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2598 	if (!sock)
2599 		return err;
2600 
2601 	used_address.name_len = UINT_MAX;
2602 	entry = mmsg;
2603 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2604 	err = 0;
2605 	flags |= MSG_BATCH;
2606 
2607 	while (datagrams < vlen) {
2608 		if (datagrams == vlen - 1)
2609 			flags = oflags;
2610 
2611 		if (MSG_CMSG_COMPAT & flags) {
2612 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2613 					     &msg_sys, flags, &used_address, MSG_EOR);
2614 			if (err < 0)
2615 				break;
2616 			err = __put_user(err, &compat_entry->msg_len);
2617 			++compat_entry;
2618 		} else {
2619 			err = ___sys_sendmsg(sock,
2620 					     (struct user_msghdr __user *)entry,
2621 					     &msg_sys, flags, &used_address, MSG_EOR);
2622 			if (err < 0)
2623 				break;
2624 			err = put_user(err, &entry->msg_len);
2625 			++entry;
2626 		}
2627 
2628 		if (err)
2629 			break;
2630 		++datagrams;
2631 		if (msg_data_left(&msg_sys))
2632 			break;
2633 		cond_resched();
2634 	}
2635 
2636 	fput_light(sock->file, fput_needed);
2637 
2638 	/* We only return an error if no datagrams were able to be sent */
2639 	if (datagrams != 0)
2640 		return datagrams;
2641 
2642 	return err;
2643 }
2644 
2645 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2646 		unsigned int, vlen, unsigned int, flags)
2647 {
2648 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2649 }
2650 
2651 int recvmsg_copy_msghdr(struct msghdr *msg,
2652 			struct user_msghdr __user *umsg, unsigned flags,
2653 			struct sockaddr __user **uaddr,
2654 			struct iovec **iov)
2655 {
2656 	ssize_t err;
2657 
2658 	if (MSG_CMSG_COMPAT & flags) {
2659 		struct compat_msghdr __user *msg_compat;
2660 
2661 		msg_compat = (struct compat_msghdr __user *) umsg;
2662 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2663 	} else {
2664 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2665 	}
2666 	if (err < 0)
2667 		return err;
2668 
2669 	return 0;
2670 }
2671 
2672 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2673 			   struct user_msghdr __user *msg,
2674 			   struct sockaddr __user *uaddr,
2675 			   unsigned int flags, int nosec)
2676 {
2677 	struct compat_msghdr __user *msg_compat =
2678 					(struct compat_msghdr __user *) msg;
2679 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2680 	struct sockaddr_storage addr;
2681 	unsigned long cmsg_ptr;
2682 	int len;
2683 	ssize_t err;
2684 
2685 	msg_sys->msg_name = &addr;
2686 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2687 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2688 
2689 	/* We assume all kernel code knows the size of sockaddr_storage */
2690 	msg_sys->msg_namelen = 0;
2691 
2692 	if (sock->file->f_flags & O_NONBLOCK)
2693 		flags |= MSG_DONTWAIT;
2694 
2695 	if (unlikely(nosec))
2696 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2697 	else
2698 		err = sock_recvmsg(sock, msg_sys, flags);
2699 
2700 	if (err < 0)
2701 		goto out;
2702 	len = err;
2703 
2704 	if (uaddr != NULL) {
2705 		err = move_addr_to_user(&addr,
2706 					msg_sys->msg_namelen, uaddr,
2707 					uaddr_len);
2708 		if (err < 0)
2709 			goto out;
2710 	}
2711 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2712 			 COMPAT_FLAGS(msg));
2713 	if (err)
2714 		goto out;
2715 	if (MSG_CMSG_COMPAT & flags)
2716 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2717 				 &msg_compat->msg_controllen);
2718 	else
2719 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2720 				 &msg->msg_controllen);
2721 	if (err)
2722 		goto out;
2723 	err = len;
2724 out:
2725 	return err;
2726 }
2727 
2728 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2729 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2730 {
2731 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2732 	/* user mode address pointers */
2733 	struct sockaddr __user *uaddr;
2734 	ssize_t err;
2735 
2736 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2737 	if (err < 0)
2738 		return err;
2739 
2740 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2741 	kfree(iov);
2742 	return err;
2743 }
2744 
2745 /*
2746  *	BSD recvmsg interface
2747  */
2748 
2749 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2750 			struct user_msghdr __user *umsg,
2751 			struct sockaddr __user *uaddr, unsigned int flags)
2752 {
2753 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2754 }
2755 
2756 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2757 		   bool forbid_cmsg_compat)
2758 {
2759 	int fput_needed, err;
2760 	struct msghdr msg_sys;
2761 	struct socket *sock;
2762 
2763 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2764 		return -EINVAL;
2765 
2766 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2767 	if (!sock)
2768 		goto out;
2769 
2770 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2771 
2772 	fput_light(sock->file, fput_needed);
2773 out:
2774 	return err;
2775 }
2776 
2777 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2778 		unsigned int, flags)
2779 {
2780 	return __sys_recvmsg(fd, msg, flags, true);
2781 }
2782 
2783 /*
2784  *     Linux recvmmsg interface
2785  */
2786 
2787 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2788 			  unsigned int vlen, unsigned int flags,
2789 			  struct timespec64 *timeout)
2790 {
2791 	int fput_needed, err, datagrams;
2792 	struct socket *sock;
2793 	struct mmsghdr __user *entry;
2794 	struct compat_mmsghdr __user *compat_entry;
2795 	struct msghdr msg_sys;
2796 	struct timespec64 end_time;
2797 	struct timespec64 timeout64;
2798 
2799 	if (timeout &&
2800 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2801 				    timeout->tv_nsec))
2802 		return -EINVAL;
2803 
2804 	datagrams = 0;
2805 
2806 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2807 	if (!sock)
2808 		return err;
2809 
2810 	if (likely(!(flags & MSG_ERRQUEUE))) {
2811 		err = sock_error(sock->sk);
2812 		if (err) {
2813 			datagrams = err;
2814 			goto out_put;
2815 		}
2816 	}
2817 
2818 	entry = mmsg;
2819 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2820 
2821 	while (datagrams < vlen) {
2822 		/*
2823 		 * No need to ask LSM for more than the first datagram.
2824 		 */
2825 		if (MSG_CMSG_COMPAT & flags) {
2826 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2827 					     &msg_sys, flags & ~MSG_WAITFORONE,
2828 					     datagrams);
2829 			if (err < 0)
2830 				break;
2831 			err = __put_user(err, &compat_entry->msg_len);
2832 			++compat_entry;
2833 		} else {
2834 			err = ___sys_recvmsg(sock,
2835 					     (struct user_msghdr __user *)entry,
2836 					     &msg_sys, flags & ~MSG_WAITFORONE,
2837 					     datagrams);
2838 			if (err < 0)
2839 				break;
2840 			err = put_user(err, &entry->msg_len);
2841 			++entry;
2842 		}
2843 
2844 		if (err)
2845 			break;
2846 		++datagrams;
2847 
2848 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2849 		if (flags & MSG_WAITFORONE)
2850 			flags |= MSG_DONTWAIT;
2851 
2852 		if (timeout) {
2853 			ktime_get_ts64(&timeout64);
2854 			*timeout = timespec64_sub(end_time, timeout64);
2855 			if (timeout->tv_sec < 0) {
2856 				timeout->tv_sec = timeout->tv_nsec = 0;
2857 				break;
2858 			}
2859 
2860 			/* Timeout, return less than vlen datagrams */
2861 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2862 				break;
2863 		}
2864 
2865 		/* Out of band data, return right away */
2866 		if (msg_sys.msg_flags & MSG_OOB)
2867 			break;
2868 		cond_resched();
2869 	}
2870 
2871 	if (err == 0)
2872 		goto out_put;
2873 
2874 	if (datagrams == 0) {
2875 		datagrams = err;
2876 		goto out_put;
2877 	}
2878 
2879 	/*
2880 	 * We may return less entries than requested (vlen) if the
2881 	 * sock is non block and there aren't enough datagrams...
2882 	 */
2883 	if (err != -EAGAIN) {
2884 		/*
2885 		 * ... or  if recvmsg returns an error after we
2886 		 * received some datagrams, where we record the
2887 		 * error to return on the next call or if the
2888 		 * app asks about it using getsockopt(SO_ERROR).
2889 		 */
2890 		sock->sk->sk_err = -err;
2891 	}
2892 out_put:
2893 	fput_light(sock->file, fput_needed);
2894 
2895 	return datagrams;
2896 }
2897 
2898 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2899 		   unsigned int vlen, unsigned int flags,
2900 		   struct __kernel_timespec __user *timeout,
2901 		   struct old_timespec32 __user *timeout32)
2902 {
2903 	int datagrams;
2904 	struct timespec64 timeout_sys;
2905 
2906 	if (timeout && get_timespec64(&timeout_sys, timeout))
2907 		return -EFAULT;
2908 
2909 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2910 		return -EFAULT;
2911 
2912 	if (!timeout && !timeout32)
2913 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2914 
2915 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2916 
2917 	if (datagrams <= 0)
2918 		return datagrams;
2919 
2920 	if (timeout && put_timespec64(&timeout_sys, timeout))
2921 		datagrams = -EFAULT;
2922 
2923 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2924 		datagrams = -EFAULT;
2925 
2926 	return datagrams;
2927 }
2928 
2929 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2930 		unsigned int, vlen, unsigned int, flags,
2931 		struct __kernel_timespec __user *, timeout)
2932 {
2933 	if (flags & MSG_CMSG_COMPAT)
2934 		return -EINVAL;
2935 
2936 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2937 }
2938 
2939 #ifdef CONFIG_COMPAT_32BIT_TIME
2940 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2941 		unsigned int, vlen, unsigned int, flags,
2942 		struct old_timespec32 __user *, timeout)
2943 {
2944 	if (flags & MSG_CMSG_COMPAT)
2945 		return -EINVAL;
2946 
2947 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2948 }
2949 #endif
2950 
2951 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2952 /* Argument list sizes for sys_socketcall */
2953 #define AL(x) ((x) * sizeof(unsigned long))
2954 static const unsigned char nargs[21] = {
2955 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2956 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2957 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2958 	AL(4), AL(5), AL(4)
2959 };
2960 
2961 #undef AL
2962 
2963 /*
2964  *	System call vectors.
2965  *
2966  *	Argument checking cleaned up. Saved 20% in size.
2967  *  This function doesn't need to set the kernel lock because
2968  *  it is set by the callees.
2969  */
2970 
2971 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2972 {
2973 	unsigned long a[AUDITSC_ARGS];
2974 	unsigned long a0, a1;
2975 	int err;
2976 	unsigned int len;
2977 
2978 	if (call < 1 || call > SYS_SENDMMSG)
2979 		return -EINVAL;
2980 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2981 
2982 	len = nargs[call];
2983 	if (len > sizeof(a))
2984 		return -EINVAL;
2985 
2986 	/* copy_from_user should be SMP safe. */
2987 	if (copy_from_user(a, args, len))
2988 		return -EFAULT;
2989 
2990 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2991 	if (err)
2992 		return err;
2993 
2994 	a0 = a[0];
2995 	a1 = a[1];
2996 
2997 	switch (call) {
2998 	case SYS_SOCKET:
2999 		err = __sys_socket(a0, a1, a[2]);
3000 		break;
3001 	case SYS_BIND:
3002 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3003 		break;
3004 	case SYS_CONNECT:
3005 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3006 		break;
3007 	case SYS_LISTEN:
3008 		err = __sys_listen(a0, a1);
3009 		break;
3010 	case SYS_ACCEPT:
3011 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3012 				    (int __user *)a[2], 0);
3013 		break;
3014 	case SYS_GETSOCKNAME:
3015 		err =
3016 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3017 				      (int __user *)a[2]);
3018 		break;
3019 	case SYS_GETPEERNAME:
3020 		err =
3021 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3022 				      (int __user *)a[2]);
3023 		break;
3024 	case SYS_SOCKETPAIR:
3025 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3026 		break;
3027 	case SYS_SEND:
3028 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3029 				   NULL, 0);
3030 		break;
3031 	case SYS_SENDTO:
3032 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3033 				   (struct sockaddr __user *)a[4], a[5]);
3034 		break;
3035 	case SYS_RECV:
3036 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3037 				     NULL, NULL);
3038 		break;
3039 	case SYS_RECVFROM:
3040 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3041 				     (struct sockaddr __user *)a[4],
3042 				     (int __user *)a[5]);
3043 		break;
3044 	case SYS_SHUTDOWN:
3045 		err = __sys_shutdown(a0, a1);
3046 		break;
3047 	case SYS_SETSOCKOPT:
3048 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3049 				       a[4]);
3050 		break;
3051 	case SYS_GETSOCKOPT:
3052 		err =
3053 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3054 				     (int __user *)a[4]);
3055 		break;
3056 	case SYS_SENDMSG:
3057 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3058 				    a[2], true);
3059 		break;
3060 	case SYS_SENDMMSG:
3061 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3062 				     a[3], true);
3063 		break;
3064 	case SYS_RECVMSG:
3065 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3066 				    a[2], true);
3067 		break;
3068 	case SYS_RECVMMSG:
3069 		if (IS_ENABLED(CONFIG_64BIT))
3070 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3071 					     a[2], a[3],
3072 					     (struct __kernel_timespec __user *)a[4],
3073 					     NULL);
3074 		else
3075 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3076 					     a[2], a[3], NULL,
3077 					     (struct old_timespec32 __user *)a[4]);
3078 		break;
3079 	case SYS_ACCEPT4:
3080 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3081 				    (int __user *)a[2], a[3]);
3082 		break;
3083 	default:
3084 		err = -EINVAL;
3085 		break;
3086 	}
3087 	return err;
3088 }
3089 
3090 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3091 
3092 /**
3093  *	sock_register - add a socket protocol handler
3094  *	@ops: description of protocol
3095  *
3096  *	This function is called by a protocol handler that wants to
3097  *	advertise its address family, and have it linked into the
3098  *	socket interface. The value ops->family corresponds to the
3099  *	socket system call protocol family.
3100  */
3101 int sock_register(const struct net_proto_family *ops)
3102 {
3103 	int err;
3104 
3105 	if (ops->family >= NPROTO) {
3106 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3107 		return -ENOBUFS;
3108 	}
3109 
3110 	spin_lock(&net_family_lock);
3111 	if (rcu_dereference_protected(net_families[ops->family],
3112 				      lockdep_is_held(&net_family_lock)))
3113 		err = -EEXIST;
3114 	else {
3115 		rcu_assign_pointer(net_families[ops->family], ops);
3116 		err = 0;
3117 	}
3118 	spin_unlock(&net_family_lock);
3119 
3120 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3121 	return err;
3122 }
3123 EXPORT_SYMBOL(sock_register);
3124 
3125 /**
3126  *	sock_unregister - remove a protocol handler
3127  *	@family: protocol family to remove
3128  *
3129  *	This function is called by a protocol handler that wants to
3130  *	remove its address family, and have it unlinked from the
3131  *	new socket creation.
3132  *
3133  *	If protocol handler is a module, then it can use module reference
3134  *	counts to protect against new references. If protocol handler is not
3135  *	a module then it needs to provide its own protection in
3136  *	the ops->create routine.
3137  */
3138 void sock_unregister(int family)
3139 {
3140 	BUG_ON(family < 0 || family >= NPROTO);
3141 
3142 	spin_lock(&net_family_lock);
3143 	RCU_INIT_POINTER(net_families[family], NULL);
3144 	spin_unlock(&net_family_lock);
3145 
3146 	synchronize_rcu();
3147 
3148 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3149 }
3150 EXPORT_SYMBOL(sock_unregister);
3151 
3152 bool sock_is_registered(int family)
3153 {
3154 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3155 }
3156 
3157 static int __init sock_init(void)
3158 {
3159 	int err;
3160 	/*
3161 	 *      Initialize the network sysctl infrastructure.
3162 	 */
3163 	err = net_sysctl_init();
3164 	if (err)
3165 		goto out;
3166 
3167 	/*
3168 	 *      Initialize skbuff SLAB cache
3169 	 */
3170 	skb_init();
3171 
3172 	/*
3173 	 *      Initialize the protocols module.
3174 	 */
3175 
3176 	init_inodecache();
3177 
3178 	err = register_filesystem(&sock_fs_type);
3179 	if (err)
3180 		goto out;
3181 	sock_mnt = kern_mount(&sock_fs_type);
3182 	if (IS_ERR(sock_mnt)) {
3183 		err = PTR_ERR(sock_mnt);
3184 		goto out_mount;
3185 	}
3186 
3187 	/* The real protocol initialization is performed in later initcalls.
3188 	 */
3189 
3190 #ifdef CONFIG_NETFILTER
3191 	err = netfilter_init();
3192 	if (err)
3193 		goto out;
3194 #endif
3195 
3196 	ptp_classifier_init();
3197 
3198 out:
3199 	return err;
3200 
3201 out_mount:
3202 	unregister_filesystem(&sock_fs_type);
3203 	goto out;
3204 }
3205 
3206 core_initcall(sock_init);	/* early initcall */
3207 
3208 #ifdef CONFIG_PROC_FS
3209 void socket_seq_show(struct seq_file *seq)
3210 {
3211 	seq_printf(seq, "sockets: used %d\n",
3212 		   sock_inuse_get(seq->private));
3213 }
3214 #endif				/* CONFIG_PROC_FS */
3215 
3216 /* Handle the fact that while struct ifreq has the same *layout* on
3217  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3218  * which are handled elsewhere, it still has different *size* due to
3219  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3220  * resulting in struct ifreq being 32 and 40 bytes respectively).
3221  * As a result, if the struct happens to be at the end of a page and
3222  * the next page isn't readable/writable, we get a fault. To prevent
3223  * that, copy back and forth to the full size.
3224  */
3225 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3226 {
3227 	if (in_compat_syscall()) {
3228 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3229 
3230 		memset(ifr, 0, sizeof(*ifr));
3231 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3232 			return -EFAULT;
3233 
3234 		if (ifrdata)
3235 			*ifrdata = compat_ptr(ifr32->ifr_data);
3236 
3237 		return 0;
3238 	}
3239 
3240 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3241 		return -EFAULT;
3242 
3243 	if (ifrdata)
3244 		*ifrdata = ifr->ifr_data;
3245 
3246 	return 0;
3247 }
3248 EXPORT_SYMBOL(get_user_ifreq);
3249 
3250 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3251 {
3252 	size_t size = sizeof(*ifr);
3253 
3254 	if (in_compat_syscall())
3255 		size = sizeof(struct compat_ifreq);
3256 
3257 	if (copy_to_user(arg, ifr, size))
3258 		return -EFAULT;
3259 
3260 	return 0;
3261 }
3262 EXPORT_SYMBOL(put_user_ifreq);
3263 
3264 #ifdef CONFIG_COMPAT
3265 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3266 {
3267 	compat_uptr_t uptr32;
3268 	struct ifreq ifr;
3269 	void __user *saved;
3270 	int err;
3271 
3272 	if (get_user_ifreq(&ifr, NULL, uifr32))
3273 		return -EFAULT;
3274 
3275 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3276 		return -EFAULT;
3277 
3278 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3279 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3280 
3281 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3282 	if (!err) {
3283 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3284 		if (put_user_ifreq(&ifr, uifr32))
3285 			err = -EFAULT;
3286 	}
3287 	return err;
3288 }
3289 
3290 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3291 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3292 				 struct compat_ifreq __user *u_ifreq32)
3293 {
3294 	struct ifreq ifreq;
3295 	void __user *data;
3296 
3297 	if (!is_socket_ioctl_cmd(cmd))
3298 		return -ENOTTY;
3299 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3300 		return -EFAULT;
3301 	ifreq.ifr_data = data;
3302 
3303 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3304 }
3305 
3306 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3307 			 unsigned int cmd, unsigned long arg)
3308 {
3309 	void __user *argp = compat_ptr(arg);
3310 	struct sock *sk = sock->sk;
3311 	struct net *net = sock_net(sk);
3312 
3313 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3314 		return sock_ioctl(file, cmd, (unsigned long)argp);
3315 
3316 	switch (cmd) {
3317 	case SIOCWANDEV:
3318 		return compat_siocwandev(net, argp);
3319 	case SIOCGSTAMP_OLD:
3320 	case SIOCGSTAMPNS_OLD:
3321 		if (!sock->ops->gettstamp)
3322 			return -ENOIOCTLCMD;
3323 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3324 					    !COMPAT_USE_64BIT_TIME);
3325 
3326 	case SIOCETHTOOL:
3327 	case SIOCBONDSLAVEINFOQUERY:
3328 	case SIOCBONDINFOQUERY:
3329 	case SIOCSHWTSTAMP:
3330 	case SIOCGHWTSTAMP:
3331 		return compat_ifr_data_ioctl(net, cmd, argp);
3332 
3333 	case FIOSETOWN:
3334 	case SIOCSPGRP:
3335 	case FIOGETOWN:
3336 	case SIOCGPGRP:
3337 	case SIOCBRADDBR:
3338 	case SIOCBRDELBR:
3339 	case SIOCGIFVLAN:
3340 	case SIOCSIFVLAN:
3341 	case SIOCGSKNS:
3342 	case SIOCGSTAMP_NEW:
3343 	case SIOCGSTAMPNS_NEW:
3344 	case SIOCGIFCONF:
3345 	case SIOCSIFBR:
3346 	case SIOCGIFBR:
3347 		return sock_ioctl(file, cmd, arg);
3348 
3349 	case SIOCGIFFLAGS:
3350 	case SIOCSIFFLAGS:
3351 	case SIOCGIFMAP:
3352 	case SIOCSIFMAP:
3353 	case SIOCGIFMETRIC:
3354 	case SIOCSIFMETRIC:
3355 	case SIOCGIFMTU:
3356 	case SIOCSIFMTU:
3357 	case SIOCGIFMEM:
3358 	case SIOCSIFMEM:
3359 	case SIOCGIFHWADDR:
3360 	case SIOCSIFHWADDR:
3361 	case SIOCADDMULTI:
3362 	case SIOCDELMULTI:
3363 	case SIOCGIFINDEX:
3364 	case SIOCGIFADDR:
3365 	case SIOCSIFADDR:
3366 	case SIOCSIFHWBROADCAST:
3367 	case SIOCDIFADDR:
3368 	case SIOCGIFBRDADDR:
3369 	case SIOCSIFBRDADDR:
3370 	case SIOCGIFDSTADDR:
3371 	case SIOCSIFDSTADDR:
3372 	case SIOCGIFNETMASK:
3373 	case SIOCSIFNETMASK:
3374 	case SIOCSIFPFLAGS:
3375 	case SIOCGIFPFLAGS:
3376 	case SIOCGIFTXQLEN:
3377 	case SIOCSIFTXQLEN:
3378 	case SIOCBRADDIF:
3379 	case SIOCBRDELIF:
3380 	case SIOCGIFNAME:
3381 	case SIOCSIFNAME:
3382 	case SIOCGMIIPHY:
3383 	case SIOCGMIIREG:
3384 	case SIOCSMIIREG:
3385 	case SIOCBONDENSLAVE:
3386 	case SIOCBONDRELEASE:
3387 	case SIOCBONDSETHWADDR:
3388 	case SIOCBONDCHANGEACTIVE:
3389 	case SIOCSARP:
3390 	case SIOCGARP:
3391 	case SIOCDARP:
3392 	case SIOCOUTQ:
3393 	case SIOCOUTQNSD:
3394 	case SIOCATMARK:
3395 		return sock_do_ioctl(net, sock, cmd, arg);
3396 	}
3397 
3398 	return -ENOIOCTLCMD;
3399 }
3400 
3401 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3402 			      unsigned long arg)
3403 {
3404 	struct socket *sock = file->private_data;
3405 	int ret = -ENOIOCTLCMD;
3406 	struct sock *sk;
3407 	struct net *net;
3408 
3409 	sk = sock->sk;
3410 	net = sock_net(sk);
3411 
3412 	if (sock->ops->compat_ioctl)
3413 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3414 
3415 	if (ret == -ENOIOCTLCMD &&
3416 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3417 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3418 
3419 	if (ret == -ENOIOCTLCMD)
3420 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3421 
3422 	return ret;
3423 }
3424 #endif
3425 
3426 /**
3427  *	kernel_bind - bind an address to a socket (kernel space)
3428  *	@sock: socket
3429  *	@addr: address
3430  *	@addrlen: length of address
3431  *
3432  *	Returns 0 or an error.
3433  */
3434 
3435 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3436 {
3437 	return sock->ops->bind(sock, addr, addrlen);
3438 }
3439 EXPORT_SYMBOL(kernel_bind);
3440 
3441 /**
3442  *	kernel_listen - move socket to listening state (kernel space)
3443  *	@sock: socket
3444  *	@backlog: pending connections queue size
3445  *
3446  *	Returns 0 or an error.
3447  */
3448 
3449 int kernel_listen(struct socket *sock, int backlog)
3450 {
3451 	return sock->ops->listen(sock, backlog);
3452 }
3453 EXPORT_SYMBOL(kernel_listen);
3454 
3455 /**
3456  *	kernel_accept - accept a connection (kernel space)
3457  *	@sock: listening socket
3458  *	@newsock: new connected socket
3459  *	@flags: flags
3460  *
3461  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3462  *	If it fails, @newsock is guaranteed to be %NULL.
3463  *	Returns 0 or an error.
3464  */
3465 
3466 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3467 {
3468 	struct sock *sk = sock->sk;
3469 	int err;
3470 
3471 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3472 			       newsock);
3473 	if (err < 0)
3474 		goto done;
3475 
3476 	err = sock->ops->accept(sock, *newsock, flags, true);
3477 	if (err < 0) {
3478 		sock_release(*newsock);
3479 		*newsock = NULL;
3480 		goto done;
3481 	}
3482 
3483 	(*newsock)->ops = sock->ops;
3484 	__module_get((*newsock)->ops->owner);
3485 
3486 done:
3487 	return err;
3488 }
3489 EXPORT_SYMBOL(kernel_accept);
3490 
3491 /**
3492  *	kernel_connect - connect a socket (kernel space)
3493  *	@sock: socket
3494  *	@addr: address
3495  *	@addrlen: address length
3496  *	@flags: flags (O_NONBLOCK, ...)
3497  *
3498  *	For datagram sockets, @addr is the address to which datagrams are sent
3499  *	by default, and the only address from which datagrams are received.
3500  *	For stream sockets, attempts to connect to @addr.
3501  *	Returns 0 or an error code.
3502  */
3503 
3504 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3505 		   int flags)
3506 {
3507 	return sock->ops->connect(sock, addr, addrlen, flags);
3508 }
3509 EXPORT_SYMBOL(kernel_connect);
3510 
3511 /**
3512  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3513  *	@sock: socket
3514  *	@addr: address holder
3515  *
3516  * 	Fills the @addr pointer with the address which the socket is bound.
3517  *	Returns the length of the address in bytes or an error code.
3518  */
3519 
3520 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3521 {
3522 	return sock->ops->getname(sock, addr, 0);
3523 }
3524 EXPORT_SYMBOL(kernel_getsockname);
3525 
3526 /**
3527  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3528  *	@sock: socket
3529  *	@addr: address holder
3530  *
3531  * 	Fills the @addr pointer with the address which the socket is connected.
3532  *	Returns the length of the address in bytes or an error code.
3533  */
3534 
3535 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3536 {
3537 	return sock->ops->getname(sock, addr, 1);
3538 }
3539 EXPORT_SYMBOL(kernel_getpeername);
3540 
3541 /**
3542  *	kernel_sendpage - send a &page through a socket (kernel space)
3543  *	@sock: socket
3544  *	@page: page
3545  *	@offset: page offset
3546  *	@size: total size in bytes
3547  *	@flags: flags (MSG_DONTWAIT, ...)
3548  *
3549  *	Returns the total amount sent in bytes or an error.
3550  */
3551 
3552 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3553 		    size_t size, int flags)
3554 {
3555 	if (sock->ops->sendpage) {
3556 		/* Warn in case the improper page to zero-copy send */
3557 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3558 		return sock->ops->sendpage(sock, page, offset, size, flags);
3559 	}
3560 	return sock_no_sendpage(sock, page, offset, size, flags);
3561 }
3562 EXPORT_SYMBOL(kernel_sendpage);
3563 
3564 /**
3565  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3566  *	@sk: sock
3567  *	@page: page
3568  *	@offset: page offset
3569  *	@size: total size in bytes
3570  *	@flags: flags (MSG_DONTWAIT, ...)
3571  *
3572  *	Returns the total amount sent in bytes or an error.
3573  *	Caller must hold @sk.
3574  */
3575 
3576 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3577 			   size_t size, int flags)
3578 {
3579 	struct socket *sock = sk->sk_socket;
3580 
3581 	if (sock->ops->sendpage_locked)
3582 		return sock->ops->sendpage_locked(sk, page, offset, size,
3583 						  flags);
3584 
3585 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3586 }
3587 EXPORT_SYMBOL(kernel_sendpage_locked);
3588 
3589 /**
3590  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3591  *	@sock: socket
3592  *	@how: connection part
3593  *
3594  *	Returns 0 or an error.
3595  */
3596 
3597 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3598 {
3599 	return sock->ops->shutdown(sock, how);
3600 }
3601 EXPORT_SYMBOL(kernel_sock_shutdown);
3602 
3603 /**
3604  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3605  *	@sk: socket
3606  *
3607  *	This routine returns the IP overhead imposed by a socket i.e.
3608  *	the length of the underlying IP header, depending on whether
3609  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3610  *	on at the socket. Assumes that the caller has a lock on the socket.
3611  */
3612 
3613 u32 kernel_sock_ip_overhead(struct sock *sk)
3614 {
3615 	struct inet_sock *inet;
3616 	struct ip_options_rcu *opt;
3617 	u32 overhead = 0;
3618 #if IS_ENABLED(CONFIG_IPV6)
3619 	struct ipv6_pinfo *np;
3620 	struct ipv6_txoptions *optv6 = NULL;
3621 #endif /* IS_ENABLED(CONFIG_IPV6) */
3622 
3623 	if (!sk)
3624 		return overhead;
3625 
3626 	switch (sk->sk_family) {
3627 	case AF_INET:
3628 		inet = inet_sk(sk);
3629 		overhead += sizeof(struct iphdr);
3630 		opt = rcu_dereference_protected(inet->inet_opt,
3631 						sock_owned_by_user(sk));
3632 		if (opt)
3633 			overhead += opt->opt.optlen;
3634 		return overhead;
3635 #if IS_ENABLED(CONFIG_IPV6)
3636 	case AF_INET6:
3637 		np = inet6_sk(sk);
3638 		overhead += sizeof(struct ipv6hdr);
3639 		if (np)
3640 			optv6 = rcu_dereference_protected(np->opt,
3641 							  sock_owned_by_user(sk));
3642 		if (optv6)
3643 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3644 		return overhead;
3645 #endif /* IS_ENABLED(CONFIG_IPV6) */
3646 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3647 		return overhead;
3648 	}
3649 }
3650 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3651