1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <net/busy_poll.h> 108 #include <linux/errqueue.h> 109 110 #ifdef CONFIG_NET_RX_BUSY_POLL 111 unsigned int sysctl_net_busy_read __read_mostly; 112 unsigned int sysctl_net_busy_poll __read_mostly; 113 #endif 114 115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 117 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 118 119 static int sock_close(struct inode *inode, struct file *file); 120 static __poll_t sock_poll(struct file *file, 121 struct poll_table_struct *wait); 122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 123 #ifdef CONFIG_COMPAT 124 static long compat_sock_ioctl(struct file *file, 125 unsigned int cmd, unsigned long arg); 126 #endif 127 static int sock_fasync(int fd, struct file *filp, int on); 128 static ssize_t sock_sendpage(struct file *file, struct page *page, 129 int offset, size_t size, loff_t *ppos, int more); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 134 /* 135 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 136 * in the operation structures but are done directly via the socketcall() multiplexor. 137 */ 138 139 static const struct file_operations socket_file_ops = { 140 .owner = THIS_MODULE, 141 .llseek = no_llseek, 142 .read_iter = sock_read_iter, 143 .write_iter = sock_write_iter, 144 .poll = sock_poll, 145 .unlocked_ioctl = sock_ioctl, 146 #ifdef CONFIG_COMPAT 147 .compat_ioctl = compat_sock_ioctl, 148 #endif 149 .mmap = sock_mmap, 150 .release = sock_close, 151 .fasync = sock_fasync, 152 .sendpage = sock_sendpage, 153 .splice_write = generic_splice_sendpage, 154 .splice_read = sock_splice_read, 155 }; 156 157 /* 158 * The protocol list. Each protocol is registered in here. 159 */ 160 161 static DEFINE_SPINLOCK(net_family_lock); 162 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 163 164 /* 165 * Support routines. 166 * Move socket addresses back and forth across the kernel/user 167 * divide and look after the messy bits. 168 */ 169 170 /** 171 * move_addr_to_kernel - copy a socket address into kernel space 172 * @uaddr: Address in user space 173 * @kaddr: Address in kernel space 174 * @ulen: Length in user space 175 * 176 * The address is copied into kernel space. If the provided address is 177 * too long an error code of -EINVAL is returned. If the copy gives 178 * invalid addresses -EFAULT is returned. On a success 0 is returned. 179 */ 180 181 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 182 { 183 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 184 return -EINVAL; 185 if (ulen == 0) 186 return 0; 187 if (copy_from_user(kaddr, uaddr, ulen)) 188 return -EFAULT; 189 return audit_sockaddr(ulen, kaddr); 190 } 191 192 /** 193 * move_addr_to_user - copy an address to user space 194 * @kaddr: kernel space address 195 * @klen: length of address in kernel 196 * @uaddr: user space address 197 * @ulen: pointer to user length field 198 * 199 * The value pointed to by ulen on entry is the buffer length available. 200 * This is overwritten with the buffer space used. -EINVAL is returned 201 * if an overlong buffer is specified or a negative buffer size. -EFAULT 202 * is returned if either the buffer or the length field are not 203 * accessible. 204 * After copying the data up to the limit the user specifies, the true 205 * length of the data is written over the length limit the user 206 * specified. Zero is returned for a success. 207 */ 208 209 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 210 void __user *uaddr, int __user *ulen) 211 { 212 int err; 213 int len; 214 215 BUG_ON(klen > sizeof(struct sockaddr_storage)); 216 err = get_user(len, ulen); 217 if (err) 218 return err; 219 if (len > klen) 220 len = klen; 221 if (len < 0) 222 return -EINVAL; 223 if (len) { 224 if (audit_sockaddr(klen, kaddr)) 225 return -ENOMEM; 226 if (copy_to_user(uaddr, kaddr, len)) 227 return -EFAULT; 228 } 229 /* 230 * "fromlen shall refer to the value before truncation.." 231 * 1003.1g 232 */ 233 return __put_user(klen, ulen); 234 } 235 236 static struct kmem_cache *sock_inode_cachep __ro_after_init; 237 238 static struct inode *sock_alloc_inode(struct super_block *sb) 239 { 240 struct socket_alloc *ei; 241 struct socket_wq *wq; 242 243 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 244 if (!ei) 245 return NULL; 246 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 247 if (!wq) { 248 kmem_cache_free(sock_inode_cachep, ei); 249 return NULL; 250 } 251 init_waitqueue_head(&wq->wait); 252 wq->fasync_list = NULL; 253 wq->flags = 0; 254 RCU_INIT_POINTER(ei->socket.wq, wq); 255 256 ei->socket.state = SS_UNCONNECTED; 257 ei->socket.flags = 0; 258 ei->socket.ops = NULL; 259 ei->socket.sk = NULL; 260 ei->socket.file = NULL; 261 262 return &ei->vfs_inode; 263 } 264 265 static void sock_destroy_inode(struct inode *inode) 266 { 267 struct socket_alloc *ei; 268 struct socket_wq *wq; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 wq = rcu_dereference_protected(ei->socket.wq, 1); 272 kfree_rcu(wq, rcu); 273 kmem_cache_free(sock_inode_cachep, ei); 274 } 275 276 static void init_once(void *foo) 277 { 278 struct socket_alloc *ei = (struct socket_alloc *)foo; 279 280 inode_init_once(&ei->vfs_inode); 281 } 282 283 static void init_inodecache(void) 284 { 285 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 286 sizeof(struct socket_alloc), 287 0, 288 (SLAB_HWCACHE_ALIGN | 289 SLAB_RECLAIM_ACCOUNT | 290 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 291 init_once); 292 BUG_ON(sock_inode_cachep == NULL); 293 } 294 295 static const struct super_operations sockfs_ops = { 296 .alloc_inode = sock_alloc_inode, 297 .destroy_inode = sock_destroy_inode, 298 .statfs = simple_statfs, 299 }; 300 301 /* 302 * sockfs_dname() is called from d_path(). 303 */ 304 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 305 { 306 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 307 d_inode(dentry)->i_ino); 308 } 309 310 static const struct dentry_operations sockfs_dentry_operations = { 311 .d_dname = sockfs_dname, 312 }; 313 314 static int sockfs_xattr_get(const struct xattr_handler *handler, 315 struct dentry *dentry, struct inode *inode, 316 const char *suffix, void *value, size_t size) 317 { 318 if (value) { 319 if (dentry->d_name.len + 1 > size) 320 return -ERANGE; 321 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 322 } 323 return dentry->d_name.len + 1; 324 } 325 326 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 327 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 328 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 329 330 static const struct xattr_handler sockfs_xattr_handler = { 331 .name = XATTR_NAME_SOCKPROTONAME, 332 .get = sockfs_xattr_get, 333 }; 334 335 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 336 struct dentry *dentry, struct inode *inode, 337 const char *suffix, const void *value, 338 size_t size, int flags) 339 { 340 /* Handled by LSM. */ 341 return -EAGAIN; 342 } 343 344 static const struct xattr_handler sockfs_security_xattr_handler = { 345 .prefix = XATTR_SECURITY_PREFIX, 346 .set = sockfs_security_xattr_set, 347 }; 348 349 static const struct xattr_handler *sockfs_xattr_handlers[] = { 350 &sockfs_xattr_handler, 351 &sockfs_security_xattr_handler, 352 NULL 353 }; 354 355 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 356 int flags, const char *dev_name, void *data) 357 { 358 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 359 sockfs_xattr_handlers, 360 &sockfs_dentry_operations, SOCKFS_MAGIC); 361 } 362 363 static struct vfsmount *sock_mnt __read_mostly; 364 365 static struct file_system_type sock_fs_type = { 366 .name = "sockfs", 367 .mount = sockfs_mount, 368 .kill_sb = kill_anon_super, 369 }; 370 371 /* 372 * Obtains the first available file descriptor and sets it up for use. 373 * 374 * These functions create file structures and maps them to fd space 375 * of the current process. On success it returns file descriptor 376 * and file struct implicitly stored in sock->file. 377 * Note that another thread may close file descriptor before we return 378 * from this function. We use the fact that now we do not refer 379 * to socket after mapping. If one day we will need it, this 380 * function will increment ref. count on file by 1. 381 * 382 * In any case returned fd MAY BE not valid! 383 * This race condition is unavoidable 384 * with shared fd spaces, we cannot solve it inside kernel, 385 * but we take care of internal coherence yet. 386 */ 387 388 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 389 { 390 struct qstr name = { .name = "" }; 391 struct path path; 392 struct file *file; 393 394 if (dname) { 395 name.name = dname; 396 name.len = strlen(name.name); 397 } else if (sock->sk) { 398 name.name = sock->sk->sk_prot_creator->name; 399 name.len = strlen(name.name); 400 } 401 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 402 if (unlikely(!path.dentry)) { 403 sock_release(sock); 404 return ERR_PTR(-ENOMEM); 405 } 406 path.mnt = mntget(sock_mnt); 407 408 d_instantiate(path.dentry, SOCK_INODE(sock)); 409 410 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 411 &socket_file_ops); 412 if (IS_ERR(file)) { 413 /* drop dentry, keep inode for a bit */ 414 ihold(d_inode(path.dentry)); 415 path_put(&path); 416 /* ... and now kill it properly */ 417 sock_release(sock); 418 return file; 419 } 420 421 sock->file = file; 422 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 423 file->private_data = sock; 424 return file; 425 } 426 EXPORT_SYMBOL(sock_alloc_file); 427 428 static int sock_map_fd(struct socket *sock, int flags) 429 { 430 struct file *newfile; 431 int fd = get_unused_fd_flags(flags); 432 if (unlikely(fd < 0)) { 433 sock_release(sock); 434 return fd; 435 } 436 437 newfile = sock_alloc_file(sock, flags, NULL); 438 if (likely(!IS_ERR(newfile))) { 439 fd_install(fd, newfile); 440 return fd; 441 } 442 443 put_unused_fd(fd); 444 return PTR_ERR(newfile); 445 } 446 447 struct socket *sock_from_file(struct file *file, int *err) 448 { 449 if (file->f_op == &socket_file_ops) 450 return file->private_data; /* set in sock_map_fd */ 451 452 *err = -ENOTSOCK; 453 return NULL; 454 } 455 EXPORT_SYMBOL(sock_from_file); 456 457 /** 458 * sockfd_lookup - Go from a file number to its socket slot 459 * @fd: file handle 460 * @err: pointer to an error code return 461 * 462 * The file handle passed in is locked and the socket it is bound 463 * to is returned. If an error occurs the err pointer is overwritten 464 * with a negative errno code and NULL is returned. The function checks 465 * for both invalid handles and passing a handle which is not a socket. 466 * 467 * On a success the socket object pointer is returned. 468 */ 469 470 struct socket *sockfd_lookup(int fd, int *err) 471 { 472 struct file *file; 473 struct socket *sock; 474 475 file = fget(fd); 476 if (!file) { 477 *err = -EBADF; 478 return NULL; 479 } 480 481 sock = sock_from_file(file, err); 482 if (!sock) 483 fput(file); 484 return sock; 485 } 486 EXPORT_SYMBOL(sockfd_lookup); 487 488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 489 { 490 struct fd f = fdget(fd); 491 struct socket *sock; 492 493 *err = -EBADF; 494 if (f.file) { 495 sock = sock_from_file(f.file, err); 496 if (likely(sock)) { 497 *fput_needed = f.flags; 498 return sock; 499 } 500 fdput(f); 501 } 502 return NULL; 503 } 504 505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 506 size_t size) 507 { 508 ssize_t len; 509 ssize_t used = 0; 510 511 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 512 if (len < 0) 513 return len; 514 used += len; 515 if (buffer) { 516 if (size < used) 517 return -ERANGE; 518 buffer += len; 519 } 520 521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 522 used += len; 523 if (buffer) { 524 if (size < used) 525 return -ERANGE; 526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 527 buffer += len; 528 } 529 530 return used; 531 } 532 533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 534 { 535 int err = simple_setattr(dentry, iattr); 536 537 if (!err && (iattr->ia_valid & ATTR_UID)) { 538 struct socket *sock = SOCKET_I(d_inode(dentry)); 539 540 sock->sk->sk_uid = iattr->ia_uid; 541 } 542 543 return err; 544 } 545 546 static const struct inode_operations sockfs_inode_ops = { 547 .listxattr = sockfs_listxattr, 548 .setattr = sockfs_setattr, 549 }; 550 551 /** 552 * sock_alloc - allocate a socket 553 * 554 * Allocate a new inode and socket object. The two are bound together 555 * and initialised. The socket is then returned. If we are out of inodes 556 * NULL is returned. 557 */ 558 559 struct socket *sock_alloc(void) 560 { 561 struct inode *inode; 562 struct socket *sock; 563 564 inode = new_inode_pseudo(sock_mnt->mnt_sb); 565 if (!inode) 566 return NULL; 567 568 sock = SOCKET_I(inode); 569 570 inode->i_ino = get_next_ino(); 571 inode->i_mode = S_IFSOCK | S_IRWXUGO; 572 inode->i_uid = current_fsuid(); 573 inode->i_gid = current_fsgid(); 574 inode->i_op = &sockfs_inode_ops; 575 576 return sock; 577 } 578 EXPORT_SYMBOL(sock_alloc); 579 580 /** 581 * sock_release - close a socket 582 * @sock: socket to close 583 * 584 * The socket is released from the protocol stack if it has a release 585 * callback, and the inode is then released if the socket is bound to 586 * an inode not a file. 587 */ 588 589 void sock_release(struct socket *sock) 590 { 591 if (sock->ops) { 592 struct module *owner = sock->ops->owner; 593 594 sock->ops->release(sock); 595 sock->ops = NULL; 596 module_put(owner); 597 } 598 599 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 600 pr_err("%s: fasync list not empty!\n", __func__); 601 602 if (!sock->file) { 603 iput(SOCK_INODE(sock)); 604 return; 605 } 606 sock->file = NULL; 607 } 608 EXPORT_SYMBOL(sock_release); 609 610 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 611 { 612 u8 flags = *tx_flags; 613 614 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 615 flags |= SKBTX_HW_TSTAMP; 616 617 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 618 flags |= SKBTX_SW_TSTAMP; 619 620 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 621 flags |= SKBTX_SCHED_TSTAMP; 622 623 *tx_flags = flags; 624 } 625 EXPORT_SYMBOL(__sock_tx_timestamp); 626 627 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 628 { 629 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 630 BUG_ON(ret == -EIOCBQUEUED); 631 return ret; 632 } 633 634 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 635 { 636 int err = security_socket_sendmsg(sock, msg, 637 msg_data_left(msg)); 638 639 return err ?: sock_sendmsg_nosec(sock, msg); 640 } 641 EXPORT_SYMBOL(sock_sendmsg); 642 643 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 644 struct kvec *vec, size_t num, size_t size) 645 { 646 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 647 return sock_sendmsg(sock, msg); 648 } 649 EXPORT_SYMBOL(kernel_sendmsg); 650 651 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 652 struct kvec *vec, size_t num, size_t size) 653 { 654 struct socket *sock = sk->sk_socket; 655 656 if (!sock->ops->sendmsg_locked) 657 return sock_no_sendmsg_locked(sk, msg, size); 658 659 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 660 661 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 662 } 663 EXPORT_SYMBOL(kernel_sendmsg_locked); 664 665 static bool skb_is_err_queue(const struct sk_buff *skb) 666 { 667 /* pkt_type of skbs enqueued on the error queue are set to 668 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 669 * in recvmsg, since skbs received on a local socket will never 670 * have a pkt_type of PACKET_OUTGOING. 671 */ 672 return skb->pkt_type == PACKET_OUTGOING; 673 } 674 675 /* On transmit, software and hardware timestamps are returned independently. 676 * As the two skb clones share the hardware timestamp, which may be updated 677 * before the software timestamp is received, a hardware TX timestamp may be 678 * returned only if there is no software TX timestamp. Ignore false software 679 * timestamps, which may be made in the __sock_recv_timestamp() call when the 680 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 681 * hardware timestamp. 682 */ 683 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 684 { 685 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 686 } 687 688 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 689 { 690 struct scm_ts_pktinfo ts_pktinfo; 691 struct net_device *orig_dev; 692 693 if (!skb_mac_header_was_set(skb)) 694 return; 695 696 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 697 698 rcu_read_lock(); 699 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 700 if (orig_dev) 701 ts_pktinfo.if_index = orig_dev->ifindex; 702 rcu_read_unlock(); 703 704 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 705 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 706 sizeof(ts_pktinfo), &ts_pktinfo); 707 } 708 709 /* 710 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 711 */ 712 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 713 struct sk_buff *skb) 714 { 715 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 716 struct scm_timestamping tss; 717 int empty = 1, false_tstamp = 0; 718 struct skb_shared_hwtstamps *shhwtstamps = 719 skb_hwtstamps(skb); 720 721 /* Race occurred between timestamp enabling and packet 722 receiving. Fill in the current time for now. */ 723 if (need_software_tstamp && skb->tstamp == 0) { 724 __net_timestamp(skb); 725 false_tstamp = 1; 726 } 727 728 if (need_software_tstamp) { 729 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 730 struct timeval tv; 731 skb_get_timestamp(skb, &tv); 732 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 733 sizeof(tv), &tv); 734 } else { 735 struct timespec ts; 736 skb_get_timestampns(skb, &ts); 737 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 738 sizeof(ts), &ts); 739 } 740 } 741 742 memset(&tss, 0, sizeof(tss)); 743 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 744 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 745 empty = 0; 746 if (shhwtstamps && 747 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 748 !skb_is_swtx_tstamp(skb, false_tstamp) && 749 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 750 empty = 0; 751 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 752 !skb_is_err_queue(skb)) 753 put_ts_pktinfo(msg, skb); 754 } 755 if (!empty) { 756 put_cmsg(msg, SOL_SOCKET, 757 SCM_TIMESTAMPING, sizeof(tss), &tss); 758 759 if (skb_is_err_queue(skb) && skb->len && 760 SKB_EXT_ERR(skb)->opt_stats) 761 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 762 skb->len, skb->data); 763 } 764 } 765 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 766 767 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 768 struct sk_buff *skb) 769 { 770 int ack; 771 772 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 773 return; 774 if (!skb->wifi_acked_valid) 775 return; 776 777 ack = skb->wifi_acked; 778 779 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 780 } 781 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 782 783 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 784 struct sk_buff *skb) 785 { 786 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 787 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 788 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 789 } 790 791 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 792 struct sk_buff *skb) 793 { 794 sock_recv_timestamp(msg, sk, skb); 795 sock_recv_drops(msg, sk, skb); 796 } 797 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 798 799 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 800 int flags) 801 { 802 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 803 } 804 805 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 806 { 807 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 808 809 return err ?: sock_recvmsg_nosec(sock, msg, flags); 810 } 811 EXPORT_SYMBOL(sock_recvmsg); 812 813 /** 814 * kernel_recvmsg - Receive a message from a socket (kernel space) 815 * @sock: The socket to receive the message from 816 * @msg: Received message 817 * @vec: Input s/g array for message data 818 * @num: Size of input s/g array 819 * @size: Number of bytes to read 820 * @flags: Message flags (MSG_DONTWAIT, etc...) 821 * 822 * On return the msg structure contains the scatter/gather array passed in the 823 * vec argument. The array is modified so that it consists of the unfilled 824 * portion of the original array. 825 * 826 * The returned value is the total number of bytes received, or an error. 827 */ 828 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 829 struct kvec *vec, size_t num, size_t size, int flags) 830 { 831 mm_segment_t oldfs = get_fs(); 832 int result; 833 834 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 835 set_fs(KERNEL_DS); 836 result = sock_recvmsg(sock, msg, flags); 837 set_fs(oldfs); 838 return result; 839 } 840 EXPORT_SYMBOL(kernel_recvmsg); 841 842 static ssize_t sock_sendpage(struct file *file, struct page *page, 843 int offset, size_t size, loff_t *ppos, int more) 844 { 845 struct socket *sock; 846 int flags; 847 848 sock = file->private_data; 849 850 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 851 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 852 flags |= more; 853 854 return kernel_sendpage(sock, page, offset, size, flags); 855 } 856 857 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 858 struct pipe_inode_info *pipe, size_t len, 859 unsigned int flags) 860 { 861 struct socket *sock = file->private_data; 862 863 if (unlikely(!sock->ops->splice_read)) 864 return -EINVAL; 865 866 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 867 } 868 869 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 870 { 871 struct file *file = iocb->ki_filp; 872 struct socket *sock = file->private_data; 873 struct msghdr msg = {.msg_iter = *to, 874 .msg_iocb = iocb}; 875 ssize_t res; 876 877 if (file->f_flags & O_NONBLOCK) 878 msg.msg_flags = MSG_DONTWAIT; 879 880 if (iocb->ki_pos != 0) 881 return -ESPIPE; 882 883 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 884 return 0; 885 886 res = sock_recvmsg(sock, &msg, msg.msg_flags); 887 *to = msg.msg_iter; 888 return res; 889 } 890 891 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 892 { 893 struct file *file = iocb->ki_filp; 894 struct socket *sock = file->private_data; 895 struct msghdr msg = {.msg_iter = *from, 896 .msg_iocb = iocb}; 897 ssize_t res; 898 899 if (iocb->ki_pos != 0) 900 return -ESPIPE; 901 902 if (file->f_flags & O_NONBLOCK) 903 msg.msg_flags = MSG_DONTWAIT; 904 905 if (sock->type == SOCK_SEQPACKET) 906 msg.msg_flags |= MSG_EOR; 907 908 res = sock_sendmsg(sock, &msg); 909 *from = msg.msg_iter; 910 return res; 911 } 912 913 /* 914 * Atomic setting of ioctl hooks to avoid race 915 * with module unload. 916 */ 917 918 static DEFINE_MUTEX(br_ioctl_mutex); 919 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 920 921 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 922 { 923 mutex_lock(&br_ioctl_mutex); 924 br_ioctl_hook = hook; 925 mutex_unlock(&br_ioctl_mutex); 926 } 927 EXPORT_SYMBOL(brioctl_set); 928 929 static DEFINE_MUTEX(vlan_ioctl_mutex); 930 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 931 932 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 933 { 934 mutex_lock(&vlan_ioctl_mutex); 935 vlan_ioctl_hook = hook; 936 mutex_unlock(&vlan_ioctl_mutex); 937 } 938 EXPORT_SYMBOL(vlan_ioctl_set); 939 940 static DEFINE_MUTEX(dlci_ioctl_mutex); 941 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 942 943 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 944 { 945 mutex_lock(&dlci_ioctl_mutex); 946 dlci_ioctl_hook = hook; 947 mutex_unlock(&dlci_ioctl_mutex); 948 } 949 EXPORT_SYMBOL(dlci_ioctl_set); 950 951 static long sock_do_ioctl(struct net *net, struct socket *sock, 952 unsigned int cmd, unsigned long arg) 953 { 954 int err; 955 void __user *argp = (void __user *)arg; 956 957 err = sock->ops->ioctl(sock, cmd, arg); 958 959 /* 960 * If this ioctl is unknown try to hand it down 961 * to the NIC driver. 962 */ 963 if (err != -ENOIOCTLCMD) 964 return err; 965 966 if (cmd == SIOCGIFCONF) { 967 struct ifconf ifc; 968 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 969 return -EFAULT; 970 rtnl_lock(); 971 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 972 rtnl_unlock(); 973 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 974 err = -EFAULT; 975 } else { 976 struct ifreq ifr; 977 bool need_copyout; 978 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 979 return -EFAULT; 980 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 981 if (!err && need_copyout) 982 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 983 return -EFAULT; 984 } 985 return err; 986 } 987 988 /* 989 * With an ioctl, arg may well be a user mode pointer, but we don't know 990 * what to do with it - that's up to the protocol still. 991 */ 992 993 struct ns_common *get_net_ns(struct ns_common *ns) 994 { 995 return &get_net(container_of(ns, struct net, ns))->ns; 996 } 997 EXPORT_SYMBOL_GPL(get_net_ns); 998 999 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1000 { 1001 struct socket *sock; 1002 struct sock *sk; 1003 void __user *argp = (void __user *)arg; 1004 int pid, err; 1005 struct net *net; 1006 1007 sock = file->private_data; 1008 sk = sock->sk; 1009 net = sock_net(sk); 1010 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1011 struct ifreq ifr; 1012 bool need_copyout; 1013 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1014 return -EFAULT; 1015 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1016 if (!err && need_copyout) 1017 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1018 return -EFAULT; 1019 } else 1020 #ifdef CONFIG_WEXT_CORE 1021 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1022 err = wext_handle_ioctl(net, cmd, argp); 1023 } else 1024 #endif 1025 switch (cmd) { 1026 case FIOSETOWN: 1027 case SIOCSPGRP: 1028 err = -EFAULT; 1029 if (get_user(pid, (int __user *)argp)) 1030 break; 1031 err = f_setown(sock->file, pid, 1); 1032 break; 1033 case FIOGETOWN: 1034 case SIOCGPGRP: 1035 err = put_user(f_getown(sock->file), 1036 (int __user *)argp); 1037 break; 1038 case SIOCGIFBR: 1039 case SIOCSIFBR: 1040 case SIOCBRADDBR: 1041 case SIOCBRDELBR: 1042 err = -ENOPKG; 1043 if (!br_ioctl_hook) 1044 request_module("bridge"); 1045 1046 mutex_lock(&br_ioctl_mutex); 1047 if (br_ioctl_hook) 1048 err = br_ioctl_hook(net, cmd, argp); 1049 mutex_unlock(&br_ioctl_mutex); 1050 break; 1051 case SIOCGIFVLAN: 1052 case SIOCSIFVLAN: 1053 err = -ENOPKG; 1054 if (!vlan_ioctl_hook) 1055 request_module("8021q"); 1056 1057 mutex_lock(&vlan_ioctl_mutex); 1058 if (vlan_ioctl_hook) 1059 err = vlan_ioctl_hook(net, argp); 1060 mutex_unlock(&vlan_ioctl_mutex); 1061 break; 1062 case SIOCADDDLCI: 1063 case SIOCDELDLCI: 1064 err = -ENOPKG; 1065 if (!dlci_ioctl_hook) 1066 request_module("dlci"); 1067 1068 mutex_lock(&dlci_ioctl_mutex); 1069 if (dlci_ioctl_hook) 1070 err = dlci_ioctl_hook(cmd, argp); 1071 mutex_unlock(&dlci_ioctl_mutex); 1072 break; 1073 case SIOCGSKNS: 1074 err = -EPERM; 1075 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1076 break; 1077 1078 err = open_related_ns(&net->ns, get_net_ns); 1079 break; 1080 default: 1081 err = sock_do_ioctl(net, sock, cmd, arg); 1082 break; 1083 } 1084 return err; 1085 } 1086 1087 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1088 { 1089 int err; 1090 struct socket *sock = NULL; 1091 1092 err = security_socket_create(family, type, protocol, 1); 1093 if (err) 1094 goto out; 1095 1096 sock = sock_alloc(); 1097 if (!sock) { 1098 err = -ENOMEM; 1099 goto out; 1100 } 1101 1102 sock->type = type; 1103 err = security_socket_post_create(sock, family, type, protocol, 1); 1104 if (err) 1105 goto out_release; 1106 1107 out: 1108 *res = sock; 1109 return err; 1110 out_release: 1111 sock_release(sock); 1112 sock = NULL; 1113 goto out; 1114 } 1115 EXPORT_SYMBOL(sock_create_lite); 1116 1117 /* No kernel lock held - perfect */ 1118 static __poll_t sock_poll(struct file *file, poll_table *wait) 1119 { 1120 __poll_t busy_flag = 0; 1121 struct socket *sock; 1122 1123 /* 1124 * We can't return errors to poll, so it's either yes or no. 1125 */ 1126 sock = file->private_data; 1127 1128 if (sk_can_busy_loop(sock->sk)) { 1129 /* this socket can poll_ll so tell the system call */ 1130 busy_flag = POLL_BUSY_LOOP; 1131 1132 /* once, only if requested by syscall */ 1133 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1134 sk_busy_loop(sock->sk, 1); 1135 } 1136 1137 return busy_flag | sock->ops->poll(file, sock, wait); 1138 } 1139 1140 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1141 { 1142 struct socket *sock = file->private_data; 1143 1144 return sock->ops->mmap(file, sock, vma); 1145 } 1146 1147 static int sock_close(struct inode *inode, struct file *filp) 1148 { 1149 sock_release(SOCKET_I(inode)); 1150 return 0; 1151 } 1152 1153 /* 1154 * Update the socket async list 1155 * 1156 * Fasync_list locking strategy. 1157 * 1158 * 1. fasync_list is modified only under process context socket lock 1159 * i.e. under semaphore. 1160 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1161 * or under socket lock 1162 */ 1163 1164 static int sock_fasync(int fd, struct file *filp, int on) 1165 { 1166 struct socket *sock = filp->private_data; 1167 struct sock *sk = sock->sk; 1168 struct socket_wq *wq; 1169 1170 if (sk == NULL) 1171 return -EINVAL; 1172 1173 lock_sock(sk); 1174 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1175 fasync_helper(fd, filp, on, &wq->fasync_list); 1176 1177 if (!wq->fasync_list) 1178 sock_reset_flag(sk, SOCK_FASYNC); 1179 else 1180 sock_set_flag(sk, SOCK_FASYNC); 1181 1182 release_sock(sk); 1183 return 0; 1184 } 1185 1186 /* This function may be called only under rcu_lock */ 1187 1188 int sock_wake_async(struct socket_wq *wq, int how, int band) 1189 { 1190 if (!wq || !wq->fasync_list) 1191 return -1; 1192 1193 switch (how) { 1194 case SOCK_WAKE_WAITD: 1195 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1196 break; 1197 goto call_kill; 1198 case SOCK_WAKE_SPACE: 1199 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1200 break; 1201 /* fall through */ 1202 case SOCK_WAKE_IO: 1203 call_kill: 1204 kill_fasync(&wq->fasync_list, SIGIO, band); 1205 break; 1206 case SOCK_WAKE_URG: 1207 kill_fasync(&wq->fasync_list, SIGURG, band); 1208 } 1209 1210 return 0; 1211 } 1212 EXPORT_SYMBOL(sock_wake_async); 1213 1214 int __sock_create(struct net *net, int family, int type, int protocol, 1215 struct socket **res, int kern) 1216 { 1217 int err; 1218 struct socket *sock; 1219 const struct net_proto_family *pf; 1220 1221 /* 1222 * Check protocol is in range 1223 */ 1224 if (family < 0 || family >= NPROTO) 1225 return -EAFNOSUPPORT; 1226 if (type < 0 || type >= SOCK_MAX) 1227 return -EINVAL; 1228 1229 /* Compatibility. 1230 1231 This uglymoron is moved from INET layer to here to avoid 1232 deadlock in module load. 1233 */ 1234 if (family == PF_INET && type == SOCK_PACKET) { 1235 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1236 current->comm); 1237 family = PF_PACKET; 1238 } 1239 1240 err = security_socket_create(family, type, protocol, kern); 1241 if (err) 1242 return err; 1243 1244 /* 1245 * Allocate the socket and allow the family to set things up. if 1246 * the protocol is 0, the family is instructed to select an appropriate 1247 * default. 1248 */ 1249 sock = sock_alloc(); 1250 if (!sock) { 1251 net_warn_ratelimited("socket: no more sockets\n"); 1252 return -ENFILE; /* Not exactly a match, but its the 1253 closest posix thing */ 1254 } 1255 1256 sock->type = type; 1257 1258 #ifdef CONFIG_MODULES 1259 /* Attempt to load a protocol module if the find failed. 1260 * 1261 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1262 * requested real, full-featured networking support upon configuration. 1263 * Otherwise module support will break! 1264 */ 1265 if (rcu_access_pointer(net_families[family]) == NULL) 1266 request_module("net-pf-%d", family); 1267 #endif 1268 1269 rcu_read_lock(); 1270 pf = rcu_dereference(net_families[family]); 1271 err = -EAFNOSUPPORT; 1272 if (!pf) 1273 goto out_release; 1274 1275 /* 1276 * We will call the ->create function, that possibly is in a loadable 1277 * module, so we have to bump that loadable module refcnt first. 1278 */ 1279 if (!try_module_get(pf->owner)) 1280 goto out_release; 1281 1282 /* Now protected by module ref count */ 1283 rcu_read_unlock(); 1284 1285 err = pf->create(net, sock, protocol, kern); 1286 if (err < 0) 1287 goto out_module_put; 1288 1289 /* 1290 * Now to bump the refcnt of the [loadable] module that owns this 1291 * socket at sock_release time we decrement its refcnt. 1292 */ 1293 if (!try_module_get(sock->ops->owner)) 1294 goto out_module_busy; 1295 1296 /* 1297 * Now that we're done with the ->create function, the [loadable] 1298 * module can have its refcnt decremented 1299 */ 1300 module_put(pf->owner); 1301 err = security_socket_post_create(sock, family, type, protocol, kern); 1302 if (err) 1303 goto out_sock_release; 1304 *res = sock; 1305 1306 return 0; 1307 1308 out_module_busy: 1309 err = -EAFNOSUPPORT; 1310 out_module_put: 1311 sock->ops = NULL; 1312 module_put(pf->owner); 1313 out_sock_release: 1314 sock_release(sock); 1315 return err; 1316 1317 out_release: 1318 rcu_read_unlock(); 1319 goto out_sock_release; 1320 } 1321 EXPORT_SYMBOL(__sock_create); 1322 1323 int sock_create(int family, int type, int protocol, struct socket **res) 1324 { 1325 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1326 } 1327 EXPORT_SYMBOL(sock_create); 1328 1329 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1330 { 1331 return __sock_create(net, family, type, protocol, res, 1); 1332 } 1333 EXPORT_SYMBOL(sock_create_kern); 1334 1335 int __sys_socket(int family, int type, int protocol) 1336 { 1337 int retval; 1338 struct socket *sock; 1339 int flags; 1340 1341 /* Check the SOCK_* constants for consistency. */ 1342 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1343 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1344 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1345 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1346 1347 flags = type & ~SOCK_TYPE_MASK; 1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1349 return -EINVAL; 1350 type &= SOCK_TYPE_MASK; 1351 1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1354 1355 retval = sock_create(family, type, protocol, &sock); 1356 if (retval < 0) 1357 return retval; 1358 1359 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1360 } 1361 1362 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1363 { 1364 return __sys_socket(family, type, protocol); 1365 } 1366 1367 /* 1368 * Create a pair of connected sockets. 1369 */ 1370 1371 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1372 { 1373 struct socket *sock1, *sock2; 1374 int fd1, fd2, err; 1375 struct file *newfile1, *newfile2; 1376 int flags; 1377 1378 flags = type & ~SOCK_TYPE_MASK; 1379 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1380 return -EINVAL; 1381 type &= SOCK_TYPE_MASK; 1382 1383 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1384 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1385 1386 /* 1387 * reserve descriptors and make sure we won't fail 1388 * to return them to userland. 1389 */ 1390 fd1 = get_unused_fd_flags(flags); 1391 if (unlikely(fd1 < 0)) 1392 return fd1; 1393 1394 fd2 = get_unused_fd_flags(flags); 1395 if (unlikely(fd2 < 0)) { 1396 put_unused_fd(fd1); 1397 return fd2; 1398 } 1399 1400 err = put_user(fd1, &usockvec[0]); 1401 if (err) 1402 goto out; 1403 1404 err = put_user(fd2, &usockvec[1]); 1405 if (err) 1406 goto out; 1407 1408 /* 1409 * Obtain the first socket and check if the underlying protocol 1410 * supports the socketpair call. 1411 */ 1412 1413 err = sock_create(family, type, protocol, &sock1); 1414 if (unlikely(err < 0)) 1415 goto out; 1416 1417 err = sock_create(family, type, protocol, &sock2); 1418 if (unlikely(err < 0)) { 1419 sock_release(sock1); 1420 goto out; 1421 } 1422 1423 err = sock1->ops->socketpair(sock1, sock2); 1424 if (unlikely(err < 0)) { 1425 sock_release(sock2); 1426 sock_release(sock1); 1427 goto out; 1428 } 1429 1430 newfile1 = sock_alloc_file(sock1, flags, NULL); 1431 if (IS_ERR(newfile1)) { 1432 err = PTR_ERR(newfile1); 1433 sock_release(sock2); 1434 goto out; 1435 } 1436 1437 newfile2 = sock_alloc_file(sock2, flags, NULL); 1438 if (IS_ERR(newfile2)) { 1439 err = PTR_ERR(newfile2); 1440 fput(newfile1); 1441 goto out; 1442 } 1443 1444 audit_fd_pair(fd1, fd2); 1445 1446 fd_install(fd1, newfile1); 1447 fd_install(fd2, newfile2); 1448 return 0; 1449 1450 out: 1451 put_unused_fd(fd2); 1452 put_unused_fd(fd1); 1453 return err; 1454 } 1455 1456 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1457 int __user *, usockvec) 1458 { 1459 return __sys_socketpair(family, type, protocol, usockvec); 1460 } 1461 1462 /* 1463 * Bind a name to a socket. Nothing much to do here since it's 1464 * the protocol's responsibility to handle the local address. 1465 * 1466 * We move the socket address to kernel space before we call 1467 * the protocol layer (having also checked the address is ok). 1468 */ 1469 1470 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1471 { 1472 struct socket *sock; 1473 struct sockaddr_storage address; 1474 int err, fput_needed; 1475 1476 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1477 if (sock) { 1478 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1479 if (err >= 0) { 1480 err = security_socket_bind(sock, 1481 (struct sockaddr *)&address, 1482 addrlen); 1483 if (!err) 1484 err = sock->ops->bind(sock, 1485 (struct sockaddr *) 1486 &address, addrlen); 1487 } 1488 fput_light(sock->file, fput_needed); 1489 } 1490 return err; 1491 } 1492 1493 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1494 { 1495 return __sys_bind(fd, umyaddr, addrlen); 1496 } 1497 1498 /* 1499 * Perform a listen. Basically, we allow the protocol to do anything 1500 * necessary for a listen, and if that works, we mark the socket as 1501 * ready for listening. 1502 */ 1503 1504 int __sys_listen(int fd, int backlog) 1505 { 1506 struct socket *sock; 1507 int err, fput_needed; 1508 int somaxconn; 1509 1510 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1511 if (sock) { 1512 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1513 if ((unsigned int)backlog > somaxconn) 1514 backlog = somaxconn; 1515 1516 err = security_socket_listen(sock, backlog); 1517 if (!err) 1518 err = sock->ops->listen(sock, backlog); 1519 1520 fput_light(sock->file, fput_needed); 1521 } 1522 return err; 1523 } 1524 1525 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1526 { 1527 return __sys_listen(fd, backlog); 1528 } 1529 1530 /* 1531 * For accept, we attempt to create a new socket, set up the link 1532 * with the client, wake up the client, then return the new 1533 * connected fd. We collect the address of the connector in kernel 1534 * space and move it to user at the very end. This is unclean because 1535 * we open the socket then return an error. 1536 * 1537 * 1003.1g adds the ability to recvmsg() to query connection pending 1538 * status to recvmsg. We need to add that support in a way thats 1539 * clean when we restructure accept also. 1540 */ 1541 1542 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1543 int __user *upeer_addrlen, int flags) 1544 { 1545 struct socket *sock, *newsock; 1546 struct file *newfile; 1547 int err, len, newfd, fput_needed; 1548 struct sockaddr_storage address; 1549 1550 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1551 return -EINVAL; 1552 1553 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1554 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1555 1556 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1557 if (!sock) 1558 goto out; 1559 1560 err = -ENFILE; 1561 newsock = sock_alloc(); 1562 if (!newsock) 1563 goto out_put; 1564 1565 newsock->type = sock->type; 1566 newsock->ops = sock->ops; 1567 1568 /* 1569 * We don't need try_module_get here, as the listening socket (sock) 1570 * has the protocol module (sock->ops->owner) held. 1571 */ 1572 __module_get(newsock->ops->owner); 1573 1574 newfd = get_unused_fd_flags(flags); 1575 if (unlikely(newfd < 0)) { 1576 err = newfd; 1577 sock_release(newsock); 1578 goto out_put; 1579 } 1580 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1581 if (IS_ERR(newfile)) { 1582 err = PTR_ERR(newfile); 1583 put_unused_fd(newfd); 1584 goto out_put; 1585 } 1586 1587 err = security_socket_accept(sock, newsock); 1588 if (err) 1589 goto out_fd; 1590 1591 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1592 if (err < 0) 1593 goto out_fd; 1594 1595 if (upeer_sockaddr) { 1596 len = newsock->ops->getname(newsock, 1597 (struct sockaddr *)&address, 2); 1598 if (len < 0) { 1599 err = -ECONNABORTED; 1600 goto out_fd; 1601 } 1602 err = move_addr_to_user(&address, 1603 len, upeer_sockaddr, upeer_addrlen); 1604 if (err < 0) 1605 goto out_fd; 1606 } 1607 1608 /* File flags are not inherited via accept() unlike another OSes. */ 1609 1610 fd_install(newfd, newfile); 1611 err = newfd; 1612 1613 out_put: 1614 fput_light(sock->file, fput_needed); 1615 out: 1616 return err; 1617 out_fd: 1618 fput(newfile); 1619 put_unused_fd(newfd); 1620 goto out_put; 1621 } 1622 1623 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1624 int __user *, upeer_addrlen, int, flags) 1625 { 1626 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1627 } 1628 1629 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1630 int __user *, upeer_addrlen) 1631 { 1632 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1633 } 1634 1635 /* 1636 * Attempt to connect to a socket with the server address. The address 1637 * is in user space so we verify it is OK and move it to kernel space. 1638 * 1639 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1640 * break bindings 1641 * 1642 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1643 * other SEQPACKET protocols that take time to connect() as it doesn't 1644 * include the -EINPROGRESS status for such sockets. 1645 */ 1646 1647 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1648 { 1649 struct socket *sock; 1650 struct sockaddr_storage address; 1651 int err, fput_needed; 1652 1653 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1654 if (!sock) 1655 goto out; 1656 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1657 if (err < 0) 1658 goto out_put; 1659 1660 err = 1661 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1662 if (err) 1663 goto out_put; 1664 1665 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1666 sock->file->f_flags); 1667 out_put: 1668 fput_light(sock->file, fput_needed); 1669 out: 1670 return err; 1671 } 1672 1673 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1674 int, addrlen) 1675 { 1676 return __sys_connect(fd, uservaddr, addrlen); 1677 } 1678 1679 /* 1680 * Get the local address ('name') of a socket object. Move the obtained 1681 * name to user space. 1682 */ 1683 1684 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1685 int __user *usockaddr_len) 1686 { 1687 struct socket *sock; 1688 struct sockaddr_storage address; 1689 int err, fput_needed; 1690 1691 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1692 if (!sock) 1693 goto out; 1694 1695 err = security_socket_getsockname(sock); 1696 if (err) 1697 goto out_put; 1698 1699 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1700 if (err < 0) 1701 goto out_put; 1702 /* "err" is actually length in this case */ 1703 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1704 1705 out_put: 1706 fput_light(sock->file, fput_needed); 1707 out: 1708 return err; 1709 } 1710 1711 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1712 int __user *, usockaddr_len) 1713 { 1714 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1715 } 1716 1717 /* 1718 * Get the remote address ('name') of a socket object. Move the obtained 1719 * name to user space. 1720 */ 1721 1722 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1723 int __user *usockaddr_len) 1724 { 1725 struct socket *sock; 1726 struct sockaddr_storage address; 1727 int err, fput_needed; 1728 1729 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1730 if (sock != NULL) { 1731 err = security_socket_getpeername(sock); 1732 if (err) { 1733 fput_light(sock->file, fput_needed); 1734 return err; 1735 } 1736 1737 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1738 if (err >= 0) 1739 /* "err" is actually length in this case */ 1740 err = move_addr_to_user(&address, err, usockaddr, 1741 usockaddr_len); 1742 fput_light(sock->file, fput_needed); 1743 } 1744 return err; 1745 } 1746 1747 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1748 int __user *, usockaddr_len) 1749 { 1750 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1751 } 1752 1753 /* 1754 * Send a datagram to a given address. We move the address into kernel 1755 * space and check the user space data area is readable before invoking 1756 * the protocol. 1757 */ 1758 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1759 struct sockaddr __user *addr, int addr_len) 1760 { 1761 struct socket *sock; 1762 struct sockaddr_storage address; 1763 int err; 1764 struct msghdr msg; 1765 struct iovec iov; 1766 int fput_needed; 1767 1768 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1769 if (unlikely(err)) 1770 return err; 1771 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1772 if (!sock) 1773 goto out; 1774 1775 msg.msg_name = NULL; 1776 msg.msg_control = NULL; 1777 msg.msg_controllen = 0; 1778 msg.msg_namelen = 0; 1779 if (addr) { 1780 err = move_addr_to_kernel(addr, addr_len, &address); 1781 if (err < 0) 1782 goto out_put; 1783 msg.msg_name = (struct sockaddr *)&address; 1784 msg.msg_namelen = addr_len; 1785 } 1786 if (sock->file->f_flags & O_NONBLOCK) 1787 flags |= MSG_DONTWAIT; 1788 msg.msg_flags = flags; 1789 err = sock_sendmsg(sock, &msg); 1790 1791 out_put: 1792 fput_light(sock->file, fput_needed); 1793 out: 1794 return err; 1795 } 1796 1797 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1798 unsigned int, flags, struct sockaddr __user *, addr, 1799 int, addr_len) 1800 { 1801 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1802 } 1803 1804 /* 1805 * Send a datagram down a socket. 1806 */ 1807 1808 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1809 unsigned int, flags) 1810 { 1811 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1812 } 1813 1814 /* 1815 * Receive a frame from the socket and optionally record the address of the 1816 * sender. We verify the buffers are writable and if needed move the 1817 * sender address from kernel to user space. 1818 */ 1819 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1820 struct sockaddr __user *addr, int __user *addr_len) 1821 { 1822 struct socket *sock; 1823 struct iovec iov; 1824 struct msghdr msg; 1825 struct sockaddr_storage address; 1826 int err, err2; 1827 int fput_needed; 1828 1829 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1830 if (unlikely(err)) 1831 return err; 1832 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1833 if (!sock) 1834 goto out; 1835 1836 msg.msg_control = NULL; 1837 msg.msg_controllen = 0; 1838 /* Save some cycles and don't copy the address if not needed */ 1839 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1840 /* We assume all kernel code knows the size of sockaddr_storage */ 1841 msg.msg_namelen = 0; 1842 msg.msg_iocb = NULL; 1843 msg.msg_flags = 0; 1844 if (sock->file->f_flags & O_NONBLOCK) 1845 flags |= MSG_DONTWAIT; 1846 err = sock_recvmsg(sock, &msg, flags); 1847 1848 if (err >= 0 && addr != NULL) { 1849 err2 = move_addr_to_user(&address, 1850 msg.msg_namelen, addr, addr_len); 1851 if (err2 < 0) 1852 err = err2; 1853 } 1854 1855 fput_light(sock->file, fput_needed); 1856 out: 1857 return err; 1858 } 1859 1860 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1861 unsigned int, flags, struct sockaddr __user *, addr, 1862 int __user *, addr_len) 1863 { 1864 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1865 } 1866 1867 /* 1868 * Receive a datagram from a socket. 1869 */ 1870 1871 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1872 unsigned int, flags) 1873 { 1874 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1875 } 1876 1877 /* 1878 * Set a socket option. Because we don't know the option lengths we have 1879 * to pass the user mode parameter for the protocols to sort out. 1880 */ 1881 1882 static int __sys_setsockopt(int fd, int level, int optname, 1883 char __user *optval, int optlen) 1884 { 1885 int err, fput_needed; 1886 struct socket *sock; 1887 1888 if (optlen < 0) 1889 return -EINVAL; 1890 1891 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1892 if (sock != NULL) { 1893 err = security_socket_setsockopt(sock, level, optname); 1894 if (err) 1895 goto out_put; 1896 1897 if (level == SOL_SOCKET) 1898 err = 1899 sock_setsockopt(sock, level, optname, optval, 1900 optlen); 1901 else 1902 err = 1903 sock->ops->setsockopt(sock, level, optname, optval, 1904 optlen); 1905 out_put: 1906 fput_light(sock->file, fput_needed); 1907 } 1908 return err; 1909 } 1910 1911 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1912 char __user *, optval, int, optlen) 1913 { 1914 return __sys_setsockopt(fd, level, optname, optval, optlen); 1915 } 1916 1917 /* 1918 * Get a socket option. Because we don't know the option lengths we have 1919 * to pass a user mode parameter for the protocols to sort out. 1920 */ 1921 1922 static int __sys_getsockopt(int fd, int level, int optname, 1923 char __user *optval, int __user *optlen) 1924 { 1925 int err, fput_needed; 1926 struct socket *sock; 1927 1928 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1929 if (sock != NULL) { 1930 err = security_socket_getsockopt(sock, level, optname); 1931 if (err) 1932 goto out_put; 1933 1934 if (level == SOL_SOCKET) 1935 err = 1936 sock_getsockopt(sock, level, optname, optval, 1937 optlen); 1938 else 1939 err = 1940 sock->ops->getsockopt(sock, level, optname, optval, 1941 optlen); 1942 out_put: 1943 fput_light(sock->file, fput_needed); 1944 } 1945 return err; 1946 } 1947 1948 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1949 char __user *, optval, int __user *, optlen) 1950 { 1951 return __sys_getsockopt(fd, level, optname, optval, optlen); 1952 } 1953 1954 /* 1955 * Shutdown a socket. 1956 */ 1957 1958 int __sys_shutdown(int fd, int how) 1959 { 1960 int err, fput_needed; 1961 struct socket *sock; 1962 1963 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1964 if (sock != NULL) { 1965 err = security_socket_shutdown(sock, how); 1966 if (!err) 1967 err = sock->ops->shutdown(sock, how); 1968 fput_light(sock->file, fput_needed); 1969 } 1970 return err; 1971 } 1972 1973 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1974 { 1975 return __sys_shutdown(fd, how); 1976 } 1977 1978 /* A couple of helpful macros for getting the address of the 32/64 bit 1979 * fields which are the same type (int / unsigned) on our platforms. 1980 */ 1981 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1982 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1983 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1984 1985 struct used_address { 1986 struct sockaddr_storage name; 1987 unsigned int name_len; 1988 }; 1989 1990 static int copy_msghdr_from_user(struct msghdr *kmsg, 1991 struct user_msghdr __user *umsg, 1992 struct sockaddr __user **save_addr, 1993 struct iovec **iov) 1994 { 1995 struct user_msghdr msg; 1996 ssize_t err; 1997 1998 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1999 return -EFAULT; 2000 2001 kmsg->msg_control = (void __force *)msg.msg_control; 2002 kmsg->msg_controllen = msg.msg_controllen; 2003 kmsg->msg_flags = msg.msg_flags; 2004 2005 kmsg->msg_namelen = msg.msg_namelen; 2006 if (!msg.msg_name) 2007 kmsg->msg_namelen = 0; 2008 2009 if (kmsg->msg_namelen < 0) 2010 return -EINVAL; 2011 2012 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2013 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2014 2015 if (save_addr) 2016 *save_addr = msg.msg_name; 2017 2018 if (msg.msg_name && kmsg->msg_namelen) { 2019 if (!save_addr) { 2020 err = move_addr_to_kernel(msg.msg_name, 2021 kmsg->msg_namelen, 2022 kmsg->msg_name); 2023 if (err < 0) 2024 return err; 2025 } 2026 } else { 2027 kmsg->msg_name = NULL; 2028 kmsg->msg_namelen = 0; 2029 } 2030 2031 if (msg.msg_iovlen > UIO_MAXIOV) 2032 return -EMSGSIZE; 2033 2034 kmsg->msg_iocb = NULL; 2035 2036 return import_iovec(save_addr ? READ : WRITE, 2037 msg.msg_iov, msg.msg_iovlen, 2038 UIO_FASTIOV, iov, &kmsg->msg_iter); 2039 } 2040 2041 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2042 struct msghdr *msg_sys, unsigned int flags, 2043 struct used_address *used_address, 2044 unsigned int allowed_msghdr_flags) 2045 { 2046 struct compat_msghdr __user *msg_compat = 2047 (struct compat_msghdr __user *)msg; 2048 struct sockaddr_storage address; 2049 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2050 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2051 __aligned(sizeof(__kernel_size_t)); 2052 /* 20 is size of ipv6_pktinfo */ 2053 unsigned char *ctl_buf = ctl; 2054 int ctl_len; 2055 ssize_t err; 2056 2057 msg_sys->msg_name = &address; 2058 2059 if (MSG_CMSG_COMPAT & flags) 2060 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2061 else 2062 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2063 if (err < 0) 2064 return err; 2065 2066 err = -ENOBUFS; 2067 2068 if (msg_sys->msg_controllen > INT_MAX) 2069 goto out_freeiov; 2070 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2071 ctl_len = msg_sys->msg_controllen; 2072 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2073 err = 2074 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2075 sizeof(ctl)); 2076 if (err) 2077 goto out_freeiov; 2078 ctl_buf = msg_sys->msg_control; 2079 ctl_len = msg_sys->msg_controllen; 2080 } else if (ctl_len) { 2081 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2082 CMSG_ALIGN(sizeof(struct cmsghdr))); 2083 if (ctl_len > sizeof(ctl)) { 2084 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2085 if (ctl_buf == NULL) 2086 goto out_freeiov; 2087 } 2088 err = -EFAULT; 2089 /* 2090 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2091 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2092 * checking falls down on this. 2093 */ 2094 if (copy_from_user(ctl_buf, 2095 (void __user __force *)msg_sys->msg_control, 2096 ctl_len)) 2097 goto out_freectl; 2098 msg_sys->msg_control = ctl_buf; 2099 } 2100 msg_sys->msg_flags = flags; 2101 2102 if (sock->file->f_flags & O_NONBLOCK) 2103 msg_sys->msg_flags |= MSG_DONTWAIT; 2104 /* 2105 * If this is sendmmsg() and current destination address is same as 2106 * previously succeeded address, omit asking LSM's decision. 2107 * used_address->name_len is initialized to UINT_MAX so that the first 2108 * destination address never matches. 2109 */ 2110 if (used_address && msg_sys->msg_name && 2111 used_address->name_len == msg_sys->msg_namelen && 2112 !memcmp(&used_address->name, msg_sys->msg_name, 2113 used_address->name_len)) { 2114 err = sock_sendmsg_nosec(sock, msg_sys); 2115 goto out_freectl; 2116 } 2117 err = sock_sendmsg(sock, msg_sys); 2118 /* 2119 * If this is sendmmsg() and sending to current destination address was 2120 * successful, remember it. 2121 */ 2122 if (used_address && err >= 0) { 2123 used_address->name_len = msg_sys->msg_namelen; 2124 if (msg_sys->msg_name) 2125 memcpy(&used_address->name, msg_sys->msg_name, 2126 used_address->name_len); 2127 } 2128 2129 out_freectl: 2130 if (ctl_buf != ctl) 2131 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2132 out_freeiov: 2133 kfree(iov); 2134 return err; 2135 } 2136 2137 /* 2138 * BSD sendmsg interface 2139 */ 2140 2141 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2142 bool forbid_cmsg_compat) 2143 { 2144 int fput_needed, err; 2145 struct msghdr msg_sys; 2146 struct socket *sock; 2147 2148 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2149 return -EINVAL; 2150 2151 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2152 if (!sock) 2153 goto out; 2154 2155 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2156 2157 fput_light(sock->file, fput_needed); 2158 out: 2159 return err; 2160 } 2161 2162 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2163 { 2164 return __sys_sendmsg(fd, msg, flags, true); 2165 } 2166 2167 /* 2168 * Linux sendmmsg interface 2169 */ 2170 2171 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2172 unsigned int flags, bool forbid_cmsg_compat) 2173 { 2174 int fput_needed, err, datagrams; 2175 struct socket *sock; 2176 struct mmsghdr __user *entry; 2177 struct compat_mmsghdr __user *compat_entry; 2178 struct msghdr msg_sys; 2179 struct used_address used_address; 2180 unsigned int oflags = flags; 2181 2182 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2183 return -EINVAL; 2184 2185 if (vlen > UIO_MAXIOV) 2186 vlen = UIO_MAXIOV; 2187 2188 datagrams = 0; 2189 2190 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2191 if (!sock) 2192 return err; 2193 2194 used_address.name_len = UINT_MAX; 2195 entry = mmsg; 2196 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2197 err = 0; 2198 flags |= MSG_BATCH; 2199 2200 while (datagrams < vlen) { 2201 if (datagrams == vlen - 1) 2202 flags = oflags; 2203 2204 if (MSG_CMSG_COMPAT & flags) { 2205 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2206 &msg_sys, flags, &used_address, MSG_EOR); 2207 if (err < 0) 2208 break; 2209 err = __put_user(err, &compat_entry->msg_len); 2210 ++compat_entry; 2211 } else { 2212 err = ___sys_sendmsg(sock, 2213 (struct user_msghdr __user *)entry, 2214 &msg_sys, flags, &used_address, MSG_EOR); 2215 if (err < 0) 2216 break; 2217 err = put_user(err, &entry->msg_len); 2218 ++entry; 2219 } 2220 2221 if (err) 2222 break; 2223 ++datagrams; 2224 if (msg_data_left(&msg_sys)) 2225 break; 2226 cond_resched(); 2227 } 2228 2229 fput_light(sock->file, fput_needed); 2230 2231 /* We only return an error if no datagrams were able to be sent */ 2232 if (datagrams != 0) 2233 return datagrams; 2234 2235 return err; 2236 } 2237 2238 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2239 unsigned int, vlen, unsigned int, flags) 2240 { 2241 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2242 } 2243 2244 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2245 struct msghdr *msg_sys, unsigned int flags, int nosec) 2246 { 2247 struct compat_msghdr __user *msg_compat = 2248 (struct compat_msghdr __user *)msg; 2249 struct iovec iovstack[UIO_FASTIOV]; 2250 struct iovec *iov = iovstack; 2251 unsigned long cmsg_ptr; 2252 int len; 2253 ssize_t err; 2254 2255 /* kernel mode address */ 2256 struct sockaddr_storage addr; 2257 2258 /* user mode address pointers */ 2259 struct sockaddr __user *uaddr; 2260 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2261 2262 msg_sys->msg_name = &addr; 2263 2264 if (MSG_CMSG_COMPAT & flags) 2265 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2266 else 2267 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2268 if (err < 0) 2269 return err; 2270 2271 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2272 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2273 2274 /* We assume all kernel code knows the size of sockaddr_storage */ 2275 msg_sys->msg_namelen = 0; 2276 2277 if (sock->file->f_flags & O_NONBLOCK) 2278 flags |= MSG_DONTWAIT; 2279 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2280 if (err < 0) 2281 goto out_freeiov; 2282 len = err; 2283 2284 if (uaddr != NULL) { 2285 err = move_addr_to_user(&addr, 2286 msg_sys->msg_namelen, uaddr, 2287 uaddr_len); 2288 if (err < 0) 2289 goto out_freeiov; 2290 } 2291 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2292 COMPAT_FLAGS(msg)); 2293 if (err) 2294 goto out_freeiov; 2295 if (MSG_CMSG_COMPAT & flags) 2296 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2297 &msg_compat->msg_controllen); 2298 else 2299 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2300 &msg->msg_controllen); 2301 if (err) 2302 goto out_freeiov; 2303 err = len; 2304 2305 out_freeiov: 2306 kfree(iov); 2307 return err; 2308 } 2309 2310 /* 2311 * BSD recvmsg interface 2312 */ 2313 2314 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2315 bool forbid_cmsg_compat) 2316 { 2317 int fput_needed, err; 2318 struct msghdr msg_sys; 2319 struct socket *sock; 2320 2321 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2322 return -EINVAL; 2323 2324 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2325 if (!sock) 2326 goto out; 2327 2328 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2329 2330 fput_light(sock->file, fput_needed); 2331 out: 2332 return err; 2333 } 2334 2335 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2336 unsigned int, flags) 2337 { 2338 return __sys_recvmsg(fd, msg, flags, true); 2339 } 2340 2341 /* 2342 * Linux recvmmsg interface 2343 */ 2344 2345 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2346 unsigned int flags, struct timespec *timeout) 2347 { 2348 int fput_needed, err, datagrams; 2349 struct socket *sock; 2350 struct mmsghdr __user *entry; 2351 struct compat_mmsghdr __user *compat_entry; 2352 struct msghdr msg_sys; 2353 struct timespec64 end_time; 2354 struct timespec64 timeout64; 2355 2356 if (timeout && 2357 poll_select_set_timeout(&end_time, timeout->tv_sec, 2358 timeout->tv_nsec)) 2359 return -EINVAL; 2360 2361 datagrams = 0; 2362 2363 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2364 if (!sock) 2365 return err; 2366 2367 if (likely(!(flags & MSG_ERRQUEUE))) { 2368 err = sock_error(sock->sk); 2369 if (err) { 2370 datagrams = err; 2371 goto out_put; 2372 } 2373 } 2374 2375 entry = mmsg; 2376 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2377 2378 while (datagrams < vlen) { 2379 /* 2380 * No need to ask LSM for more than the first datagram. 2381 */ 2382 if (MSG_CMSG_COMPAT & flags) { 2383 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2384 &msg_sys, flags & ~MSG_WAITFORONE, 2385 datagrams); 2386 if (err < 0) 2387 break; 2388 err = __put_user(err, &compat_entry->msg_len); 2389 ++compat_entry; 2390 } else { 2391 err = ___sys_recvmsg(sock, 2392 (struct user_msghdr __user *)entry, 2393 &msg_sys, flags & ~MSG_WAITFORONE, 2394 datagrams); 2395 if (err < 0) 2396 break; 2397 err = put_user(err, &entry->msg_len); 2398 ++entry; 2399 } 2400 2401 if (err) 2402 break; 2403 ++datagrams; 2404 2405 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2406 if (flags & MSG_WAITFORONE) 2407 flags |= MSG_DONTWAIT; 2408 2409 if (timeout) { 2410 ktime_get_ts64(&timeout64); 2411 *timeout = timespec64_to_timespec( 2412 timespec64_sub(end_time, timeout64)); 2413 if (timeout->tv_sec < 0) { 2414 timeout->tv_sec = timeout->tv_nsec = 0; 2415 break; 2416 } 2417 2418 /* Timeout, return less than vlen datagrams */ 2419 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2420 break; 2421 } 2422 2423 /* Out of band data, return right away */ 2424 if (msg_sys.msg_flags & MSG_OOB) 2425 break; 2426 cond_resched(); 2427 } 2428 2429 if (err == 0) 2430 goto out_put; 2431 2432 if (datagrams == 0) { 2433 datagrams = err; 2434 goto out_put; 2435 } 2436 2437 /* 2438 * We may return less entries than requested (vlen) if the 2439 * sock is non block and there aren't enough datagrams... 2440 */ 2441 if (err != -EAGAIN) { 2442 /* 2443 * ... or if recvmsg returns an error after we 2444 * received some datagrams, where we record the 2445 * error to return on the next call or if the 2446 * app asks about it using getsockopt(SO_ERROR). 2447 */ 2448 sock->sk->sk_err = -err; 2449 } 2450 out_put: 2451 fput_light(sock->file, fput_needed); 2452 2453 return datagrams; 2454 } 2455 2456 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2457 unsigned int vlen, unsigned int flags, 2458 struct timespec __user *timeout) 2459 { 2460 int datagrams; 2461 struct timespec timeout_sys; 2462 2463 if (flags & MSG_CMSG_COMPAT) 2464 return -EINVAL; 2465 2466 if (!timeout) 2467 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2468 2469 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2470 return -EFAULT; 2471 2472 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2473 2474 if (datagrams > 0 && 2475 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2476 datagrams = -EFAULT; 2477 2478 return datagrams; 2479 } 2480 2481 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2482 unsigned int, vlen, unsigned int, flags, 2483 struct timespec __user *, timeout) 2484 { 2485 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout); 2486 } 2487 2488 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2489 /* Argument list sizes for sys_socketcall */ 2490 #define AL(x) ((x) * sizeof(unsigned long)) 2491 static const unsigned char nargs[21] = { 2492 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2493 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2494 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2495 AL(4), AL(5), AL(4) 2496 }; 2497 2498 #undef AL 2499 2500 /* 2501 * System call vectors. 2502 * 2503 * Argument checking cleaned up. Saved 20% in size. 2504 * This function doesn't need to set the kernel lock because 2505 * it is set by the callees. 2506 */ 2507 2508 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2509 { 2510 unsigned long a[AUDITSC_ARGS]; 2511 unsigned long a0, a1; 2512 int err; 2513 unsigned int len; 2514 2515 if (call < 1 || call > SYS_SENDMMSG) 2516 return -EINVAL; 2517 2518 len = nargs[call]; 2519 if (len > sizeof(a)) 2520 return -EINVAL; 2521 2522 /* copy_from_user should be SMP safe. */ 2523 if (copy_from_user(a, args, len)) 2524 return -EFAULT; 2525 2526 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2527 if (err) 2528 return err; 2529 2530 a0 = a[0]; 2531 a1 = a[1]; 2532 2533 switch (call) { 2534 case SYS_SOCKET: 2535 err = __sys_socket(a0, a1, a[2]); 2536 break; 2537 case SYS_BIND: 2538 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2539 break; 2540 case SYS_CONNECT: 2541 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2542 break; 2543 case SYS_LISTEN: 2544 err = __sys_listen(a0, a1); 2545 break; 2546 case SYS_ACCEPT: 2547 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2548 (int __user *)a[2], 0); 2549 break; 2550 case SYS_GETSOCKNAME: 2551 err = 2552 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2553 (int __user *)a[2]); 2554 break; 2555 case SYS_GETPEERNAME: 2556 err = 2557 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2558 (int __user *)a[2]); 2559 break; 2560 case SYS_SOCKETPAIR: 2561 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2562 break; 2563 case SYS_SEND: 2564 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2565 NULL, 0); 2566 break; 2567 case SYS_SENDTO: 2568 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2569 (struct sockaddr __user *)a[4], a[5]); 2570 break; 2571 case SYS_RECV: 2572 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2573 NULL, NULL); 2574 break; 2575 case SYS_RECVFROM: 2576 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2577 (struct sockaddr __user *)a[4], 2578 (int __user *)a[5]); 2579 break; 2580 case SYS_SHUTDOWN: 2581 err = __sys_shutdown(a0, a1); 2582 break; 2583 case SYS_SETSOCKOPT: 2584 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2585 a[4]); 2586 break; 2587 case SYS_GETSOCKOPT: 2588 err = 2589 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2590 (int __user *)a[4]); 2591 break; 2592 case SYS_SENDMSG: 2593 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2594 a[2], true); 2595 break; 2596 case SYS_SENDMMSG: 2597 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2598 a[3], true); 2599 break; 2600 case SYS_RECVMSG: 2601 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2602 a[2], true); 2603 break; 2604 case SYS_RECVMMSG: 2605 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2606 a[3], (struct timespec __user *)a[4]); 2607 break; 2608 case SYS_ACCEPT4: 2609 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2610 (int __user *)a[2], a[3]); 2611 break; 2612 default: 2613 err = -EINVAL; 2614 break; 2615 } 2616 return err; 2617 } 2618 2619 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2620 2621 /** 2622 * sock_register - add a socket protocol handler 2623 * @ops: description of protocol 2624 * 2625 * This function is called by a protocol handler that wants to 2626 * advertise its address family, and have it linked into the 2627 * socket interface. The value ops->family corresponds to the 2628 * socket system call protocol family. 2629 */ 2630 int sock_register(const struct net_proto_family *ops) 2631 { 2632 int err; 2633 2634 if (ops->family >= NPROTO) { 2635 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2636 return -ENOBUFS; 2637 } 2638 2639 spin_lock(&net_family_lock); 2640 if (rcu_dereference_protected(net_families[ops->family], 2641 lockdep_is_held(&net_family_lock))) 2642 err = -EEXIST; 2643 else { 2644 rcu_assign_pointer(net_families[ops->family], ops); 2645 err = 0; 2646 } 2647 spin_unlock(&net_family_lock); 2648 2649 pr_info("NET: Registered protocol family %d\n", ops->family); 2650 return err; 2651 } 2652 EXPORT_SYMBOL(sock_register); 2653 2654 /** 2655 * sock_unregister - remove a protocol handler 2656 * @family: protocol family to remove 2657 * 2658 * This function is called by a protocol handler that wants to 2659 * remove its address family, and have it unlinked from the 2660 * new socket creation. 2661 * 2662 * If protocol handler is a module, then it can use module reference 2663 * counts to protect against new references. If protocol handler is not 2664 * a module then it needs to provide its own protection in 2665 * the ops->create routine. 2666 */ 2667 void sock_unregister(int family) 2668 { 2669 BUG_ON(family < 0 || family >= NPROTO); 2670 2671 spin_lock(&net_family_lock); 2672 RCU_INIT_POINTER(net_families[family], NULL); 2673 spin_unlock(&net_family_lock); 2674 2675 synchronize_rcu(); 2676 2677 pr_info("NET: Unregistered protocol family %d\n", family); 2678 } 2679 EXPORT_SYMBOL(sock_unregister); 2680 2681 bool sock_is_registered(int family) 2682 { 2683 return family < NPROTO && rcu_access_pointer(net_families[family]); 2684 } 2685 2686 static int __init sock_init(void) 2687 { 2688 int err; 2689 /* 2690 * Initialize the network sysctl infrastructure. 2691 */ 2692 err = net_sysctl_init(); 2693 if (err) 2694 goto out; 2695 2696 /* 2697 * Initialize skbuff SLAB cache 2698 */ 2699 skb_init(); 2700 2701 /* 2702 * Initialize the protocols module. 2703 */ 2704 2705 init_inodecache(); 2706 2707 err = register_filesystem(&sock_fs_type); 2708 if (err) 2709 goto out_fs; 2710 sock_mnt = kern_mount(&sock_fs_type); 2711 if (IS_ERR(sock_mnt)) { 2712 err = PTR_ERR(sock_mnt); 2713 goto out_mount; 2714 } 2715 2716 /* The real protocol initialization is performed in later initcalls. 2717 */ 2718 2719 #ifdef CONFIG_NETFILTER 2720 err = netfilter_init(); 2721 if (err) 2722 goto out; 2723 #endif 2724 2725 ptp_classifier_init(); 2726 2727 out: 2728 return err; 2729 2730 out_mount: 2731 unregister_filesystem(&sock_fs_type); 2732 out_fs: 2733 goto out; 2734 } 2735 2736 core_initcall(sock_init); /* early initcall */ 2737 2738 #ifdef CONFIG_PROC_FS 2739 void socket_seq_show(struct seq_file *seq) 2740 { 2741 seq_printf(seq, "sockets: used %d\n", 2742 sock_inuse_get(seq->private)); 2743 } 2744 #endif /* CONFIG_PROC_FS */ 2745 2746 #ifdef CONFIG_COMPAT 2747 static int do_siocgstamp(struct net *net, struct socket *sock, 2748 unsigned int cmd, void __user *up) 2749 { 2750 mm_segment_t old_fs = get_fs(); 2751 struct timeval ktv; 2752 int err; 2753 2754 set_fs(KERNEL_DS); 2755 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2756 set_fs(old_fs); 2757 if (!err) 2758 err = compat_put_timeval(&ktv, up); 2759 2760 return err; 2761 } 2762 2763 static int do_siocgstampns(struct net *net, struct socket *sock, 2764 unsigned int cmd, void __user *up) 2765 { 2766 mm_segment_t old_fs = get_fs(); 2767 struct timespec kts; 2768 int err; 2769 2770 set_fs(KERNEL_DS); 2771 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2772 set_fs(old_fs); 2773 if (!err) 2774 err = compat_put_timespec(&kts, up); 2775 2776 return err; 2777 } 2778 2779 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2780 { 2781 struct compat_ifconf ifc32; 2782 struct ifconf ifc; 2783 int err; 2784 2785 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2786 return -EFAULT; 2787 2788 ifc.ifc_len = ifc32.ifc_len; 2789 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2790 2791 rtnl_lock(); 2792 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2793 rtnl_unlock(); 2794 if (err) 2795 return err; 2796 2797 ifc32.ifc_len = ifc.ifc_len; 2798 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2799 return -EFAULT; 2800 2801 return 0; 2802 } 2803 2804 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2805 { 2806 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2807 bool convert_in = false, convert_out = false; 2808 size_t buf_size = 0; 2809 struct ethtool_rxnfc __user *rxnfc = NULL; 2810 struct ifreq ifr; 2811 u32 rule_cnt = 0, actual_rule_cnt; 2812 u32 ethcmd; 2813 u32 data; 2814 int ret; 2815 2816 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2817 return -EFAULT; 2818 2819 compat_rxnfc = compat_ptr(data); 2820 2821 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2822 return -EFAULT; 2823 2824 /* Most ethtool structures are defined without padding. 2825 * Unfortunately struct ethtool_rxnfc is an exception. 2826 */ 2827 switch (ethcmd) { 2828 default: 2829 break; 2830 case ETHTOOL_GRXCLSRLALL: 2831 /* Buffer size is variable */ 2832 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2833 return -EFAULT; 2834 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2835 return -ENOMEM; 2836 buf_size += rule_cnt * sizeof(u32); 2837 /* fall through */ 2838 case ETHTOOL_GRXRINGS: 2839 case ETHTOOL_GRXCLSRLCNT: 2840 case ETHTOOL_GRXCLSRULE: 2841 case ETHTOOL_SRXCLSRLINS: 2842 convert_out = true; 2843 /* fall through */ 2844 case ETHTOOL_SRXCLSRLDEL: 2845 buf_size += sizeof(struct ethtool_rxnfc); 2846 convert_in = true; 2847 rxnfc = compat_alloc_user_space(buf_size); 2848 break; 2849 } 2850 2851 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2852 return -EFAULT; 2853 2854 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2855 2856 if (convert_in) { 2857 /* We expect there to be holes between fs.m_ext and 2858 * fs.ring_cookie and at the end of fs, but nowhere else. 2859 */ 2860 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2861 sizeof(compat_rxnfc->fs.m_ext) != 2862 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2863 sizeof(rxnfc->fs.m_ext)); 2864 BUILD_BUG_ON( 2865 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2866 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2867 offsetof(struct ethtool_rxnfc, fs.location) - 2868 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2869 2870 if (copy_in_user(rxnfc, compat_rxnfc, 2871 (void __user *)(&rxnfc->fs.m_ext + 1) - 2872 (void __user *)rxnfc) || 2873 copy_in_user(&rxnfc->fs.ring_cookie, 2874 &compat_rxnfc->fs.ring_cookie, 2875 (void __user *)(&rxnfc->fs.location + 1) - 2876 (void __user *)&rxnfc->fs.ring_cookie) || 2877 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2878 sizeof(rxnfc->rule_cnt))) 2879 return -EFAULT; 2880 } 2881 2882 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2883 if (ret) 2884 return ret; 2885 2886 if (convert_out) { 2887 if (copy_in_user(compat_rxnfc, rxnfc, 2888 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2889 (const void __user *)rxnfc) || 2890 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2891 &rxnfc->fs.ring_cookie, 2892 (const void __user *)(&rxnfc->fs.location + 1) - 2893 (const void __user *)&rxnfc->fs.ring_cookie) || 2894 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2895 sizeof(rxnfc->rule_cnt))) 2896 return -EFAULT; 2897 2898 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2899 /* As an optimisation, we only copy the actual 2900 * number of rules that the underlying 2901 * function returned. Since Mallory might 2902 * change the rule count in user memory, we 2903 * check that it is less than the rule count 2904 * originally given (as the user buffer size), 2905 * which has been range-checked. 2906 */ 2907 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2908 return -EFAULT; 2909 if (actual_rule_cnt < rule_cnt) 2910 rule_cnt = actual_rule_cnt; 2911 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2912 &rxnfc->rule_locs[0], 2913 rule_cnt * sizeof(u32))) 2914 return -EFAULT; 2915 } 2916 } 2917 2918 return 0; 2919 } 2920 2921 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2922 { 2923 compat_uptr_t uptr32; 2924 struct ifreq ifr; 2925 void __user *saved; 2926 int err; 2927 2928 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2929 return -EFAULT; 2930 2931 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2932 return -EFAULT; 2933 2934 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2935 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2936 2937 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2938 if (!err) { 2939 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2940 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2941 err = -EFAULT; 2942 } 2943 return err; 2944 } 2945 2946 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2947 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2948 struct compat_ifreq __user *u_ifreq32) 2949 { 2950 struct ifreq ifreq; 2951 u32 data32; 2952 2953 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2954 return -EFAULT; 2955 if (get_user(data32, &u_ifreq32->ifr_data)) 2956 return -EFAULT; 2957 ifreq.ifr_data = compat_ptr(data32); 2958 2959 return dev_ioctl(net, cmd, &ifreq, NULL); 2960 } 2961 2962 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2963 struct compat_ifreq __user *uifr32) 2964 { 2965 struct ifreq ifr; 2966 struct compat_ifmap __user *uifmap32; 2967 int err; 2968 2969 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2970 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2971 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2972 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2973 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2974 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2975 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2976 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2977 if (err) 2978 return -EFAULT; 2979 2980 err = dev_ioctl(net, cmd, &ifr, NULL); 2981 2982 if (cmd == SIOCGIFMAP && !err) { 2983 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2984 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2985 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2986 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2987 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2988 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2989 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2990 if (err) 2991 err = -EFAULT; 2992 } 2993 return err; 2994 } 2995 2996 struct rtentry32 { 2997 u32 rt_pad1; 2998 struct sockaddr rt_dst; /* target address */ 2999 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3000 struct sockaddr rt_genmask; /* target network mask (IP) */ 3001 unsigned short rt_flags; 3002 short rt_pad2; 3003 u32 rt_pad3; 3004 unsigned char rt_tos; 3005 unsigned char rt_class; 3006 short rt_pad4; 3007 short rt_metric; /* +1 for binary compatibility! */ 3008 /* char * */ u32 rt_dev; /* forcing the device at add */ 3009 u32 rt_mtu; /* per route MTU/Window */ 3010 u32 rt_window; /* Window clamping */ 3011 unsigned short rt_irtt; /* Initial RTT */ 3012 }; 3013 3014 struct in6_rtmsg32 { 3015 struct in6_addr rtmsg_dst; 3016 struct in6_addr rtmsg_src; 3017 struct in6_addr rtmsg_gateway; 3018 u32 rtmsg_type; 3019 u16 rtmsg_dst_len; 3020 u16 rtmsg_src_len; 3021 u32 rtmsg_metric; 3022 u32 rtmsg_info; 3023 u32 rtmsg_flags; 3024 s32 rtmsg_ifindex; 3025 }; 3026 3027 static int routing_ioctl(struct net *net, struct socket *sock, 3028 unsigned int cmd, void __user *argp) 3029 { 3030 int ret; 3031 void *r = NULL; 3032 struct in6_rtmsg r6; 3033 struct rtentry r4; 3034 char devname[16]; 3035 u32 rtdev; 3036 mm_segment_t old_fs = get_fs(); 3037 3038 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3039 struct in6_rtmsg32 __user *ur6 = argp; 3040 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3041 3 * sizeof(struct in6_addr)); 3042 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3043 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3044 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3045 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3046 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3047 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3048 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3049 3050 r = (void *) &r6; 3051 } else { /* ipv4 */ 3052 struct rtentry32 __user *ur4 = argp; 3053 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3054 3 * sizeof(struct sockaddr)); 3055 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3056 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3057 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3058 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3059 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3060 ret |= get_user(rtdev, &(ur4->rt_dev)); 3061 if (rtdev) { 3062 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3063 r4.rt_dev = (char __user __force *)devname; 3064 devname[15] = 0; 3065 } else 3066 r4.rt_dev = NULL; 3067 3068 r = (void *) &r4; 3069 } 3070 3071 if (ret) { 3072 ret = -EFAULT; 3073 goto out; 3074 } 3075 3076 set_fs(KERNEL_DS); 3077 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3078 set_fs(old_fs); 3079 3080 out: 3081 return ret; 3082 } 3083 3084 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3085 * for some operations; this forces use of the newer bridge-utils that 3086 * use compatible ioctls 3087 */ 3088 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3089 { 3090 compat_ulong_t tmp; 3091 3092 if (get_user(tmp, argp)) 3093 return -EFAULT; 3094 if (tmp == BRCTL_GET_VERSION) 3095 return BRCTL_VERSION + 1; 3096 return -EINVAL; 3097 } 3098 3099 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3100 unsigned int cmd, unsigned long arg) 3101 { 3102 void __user *argp = compat_ptr(arg); 3103 struct sock *sk = sock->sk; 3104 struct net *net = sock_net(sk); 3105 3106 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3107 return compat_ifr_data_ioctl(net, cmd, argp); 3108 3109 switch (cmd) { 3110 case SIOCSIFBR: 3111 case SIOCGIFBR: 3112 return old_bridge_ioctl(argp); 3113 case SIOCGIFCONF: 3114 return compat_dev_ifconf(net, argp); 3115 case SIOCETHTOOL: 3116 return ethtool_ioctl(net, argp); 3117 case SIOCWANDEV: 3118 return compat_siocwandev(net, argp); 3119 case SIOCGIFMAP: 3120 case SIOCSIFMAP: 3121 return compat_sioc_ifmap(net, cmd, argp); 3122 case SIOCADDRT: 3123 case SIOCDELRT: 3124 return routing_ioctl(net, sock, cmd, argp); 3125 case SIOCGSTAMP: 3126 return do_siocgstamp(net, sock, cmd, argp); 3127 case SIOCGSTAMPNS: 3128 return do_siocgstampns(net, sock, cmd, argp); 3129 case SIOCBONDSLAVEINFOQUERY: 3130 case SIOCBONDINFOQUERY: 3131 case SIOCSHWTSTAMP: 3132 case SIOCGHWTSTAMP: 3133 return compat_ifr_data_ioctl(net, cmd, argp); 3134 3135 case FIOSETOWN: 3136 case SIOCSPGRP: 3137 case FIOGETOWN: 3138 case SIOCGPGRP: 3139 case SIOCBRADDBR: 3140 case SIOCBRDELBR: 3141 case SIOCGIFVLAN: 3142 case SIOCSIFVLAN: 3143 case SIOCADDDLCI: 3144 case SIOCDELDLCI: 3145 case SIOCGSKNS: 3146 return sock_ioctl(file, cmd, arg); 3147 3148 case SIOCGIFFLAGS: 3149 case SIOCSIFFLAGS: 3150 case SIOCGIFMETRIC: 3151 case SIOCSIFMETRIC: 3152 case SIOCGIFMTU: 3153 case SIOCSIFMTU: 3154 case SIOCGIFMEM: 3155 case SIOCSIFMEM: 3156 case SIOCGIFHWADDR: 3157 case SIOCSIFHWADDR: 3158 case SIOCADDMULTI: 3159 case SIOCDELMULTI: 3160 case SIOCGIFINDEX: 3161 case SIOCGIFADDR: 3162 case SIOCSIFADDR: 3163 case SIOCSIFHWBROADCAST: 3164 case SIOCDIFADDR: 3165 case SIOCGIFBRDADDR: 3166 case SIOCSIFBRDADDR: 3167 case SIOCGIFDSTADDR: 3168 case SIOCSIFDSTADDR: 3169 case SIOCGIFNETMASK: 3170 case SIOCSIFNETMASK: 3171 case SIOCSIFPFLAGS: 3172 case SIOCGIFPFLAGS: 3173 case SIOCGIFTXQLEN: 3174 case SIOCSIFTXQLEN: 3175 case SIOCBRADDIF: 3176 case SIOCBRDELIF: 3177 case SIOCSIFNAME: 3178 case SIOCGMIIPHY: 3179 case SIOCGMIIREG: 3180 case SIOCSMIIREG: 3181 case SIOCSARP: 3182 case SIOCGARP: 3183 case SIOCDARP: 3184 case SIOCATMARK: 3185 case SIOCBONDENSLAVE: 3186 case SIOCBONDRELEASE: 3187 case SIOCBONDSETHWADDR: 3188 case SIOCBONDCHANGEACTIVE: 3189 case SIOCGIFNAME: 3190 return sock_do_ioctl(net, sock, cmd, arg); 3191 } 3192 3193 return -ENOIOCTLCMD; 3194 } 3195 3196 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3197 unsigned long arg) 3198 { 3199 struct socket *sock = file->private_data; 3200 int ret = -ENOIOCTLCMD; 3201 struct sock *sk; 3202 struct net *net; 3203 3204 sk = sock->sk; 3205 net = sock_net(sk); 3206 3207 if (sock->ops->compat_ioctl) 3208 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3209 3210 if (ret == -ENOIOCTLCMD && 3211 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3212 ret = compat_wext_handle_ioctl(net, cmd, arg); 3213 3214 if (ret == -ENOIOCTLCMD) 3215 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3216 3217 return ret; 3218 } 3219 #endif 3220 3221 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3222 { 3223 return sock->ops->bind(sock, addr, addrlen); 3224 } 3225 EXPORT_SYMBOL(kernel_bind); 3226 3227 int kernel_listen(struct socket *sock, int backlog) 3228 { 3229 return sock->ops->listen(sock, backlog); 3230 } 3231 EXPORT_SYMBOL(kernel_listen); 3232 3233 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3234 { 3235 struct sock *sk = sock->sk; 3236 int err; 3237 3238 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3239 newsock); 3240 if (err < 0) 3241 goto done; 3242 3243 err = sock->ops->accept(sock, *newsock, flags, true); 3244 if (err < 0) { 3245 sock_release(*newsock); 3246 *newsock = NULL; 3247 goto done; 3248 } 3249 3250 (*newsock)->ops = sock->ops; 3251 __module_get((*newsock)->ops->owner); 3252 3253 done: 3254 return err; 3255 } 3256 EXPORT_SYMBOL(kernel_accept); 3257 3258 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3259 int flags) 3260 { 3261 return sock->ops->connect(sock, addr, addrlen, flags); 3262 } 3263 EXPORT_SYMBOL(kernel_connect); 3264 3265 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3266 { 3267 return sock->ops->getname(sock, addr, 0); 3268 } 3269 EXPORT_SYMBOL(kernel_getsockname); 3270 3271 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3272 { 3273 return sock->ops->getname(sock, addr, 1); 3274 } 3275 EXPORT_SYMBOL(kernel_getpeername); 3276 3277 int kernel_getsockopt(struct socket *sock, int level, int optname, 3278 char *optval, int *optlen) 3279 { 3280 mm_segment_t oldfs = get_fs(); 3281 char __user *uoptval; 3282 int __user *uoptlen; 3283 int err; 3284 3285 uoptval = (char __user __force *) optval; 3286 uoptlen = (int __user __force *) optlen; 3287 3288 set_fs(KERNEL_DS); 3289 if (level == SOL_SOCKET) 3290 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3291 else 3292 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3293 uoptlen); 3294 set_fs(oldfs); 3295 return err; 3296 } 3297 EXPORT_SYMBOL(kernel_getsockopt); 3298 3299 int kernel_setsockopt(struct socket *sock, int level, int optname, 3300 char *optval, unsigned int optlen) 3301 { 3302 mm_segment_t oldfs = get_fs(); 3303 char __user *uoptval; 3304 int err; 3305 3306 uoptval = (char __user __force *) optval; 3307 3308 set_fs(KERNEL_DS); 3309 if (level == SOL_SOCKET) 3310 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3311 else 3312 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3313 optlen); 3314 set_fs(oldfs); 3315 return err; 3316 } 3317 EXPORT_SYMBOL(kernel_setsockopt); 3318 3319 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3320 size_t size, int flags) 3321 { 3322 if (sock->ops->sendpage) 3323 return sock->ops->sendpage(sock, page, offset, size, flags); 3324 3325 return sock_no_sendpage(sock, page, offset, size, flags); 3326 } 3327 EXPORT_SYMBOL(kernel_sendpage); 3328 3329 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3330 size_t size, int flags) 3331 { 3332 struct socket *sock = sk->sk_socket; 3333 3334 if (sock->ops->sendpage_locked) 3335 return sock->ops->sendpage_locked(sk, page, offset, size, 3336 flags); 3337 3338 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3339 } 3340 EXPORT_SYMBOL(kernel_sendpage_locked); 3341 3342 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3343 { 3344 return sock->ops->shutdown(sock, how); 3345 } 3346 EXPORT_SYMBOL(kernel_sock_shutdown); 3347 3348 /* This routine returns the IP overhead imposed by a socket i.e. 3349 * the length of the underlying IP header, depending on whether 3350 * this is an IPv4 or IPv6 socket and the length from IP options turned 3351 * on at the socket. Assumes that the caller has a lock on the socket. 3352 */ 3353 u32 kernel_sock_ip_overhead(struct sock *sk) 3354 { 3355 struct inet_sock *inet; 3356 struct ip_options_rcu *opt; 3357 u32 overhead = 0; 3358 #if IS_ENABLED(CONFIG_IPV6) 3359 struct ipv6_pinfo *np; 3360 struct ipv6_txoptions *optv6 = NULL; 3361 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3362 3363 if (!sk) 3364 return overhead; 3365 3366 switch (sk->sk_family) { 3367 case AF_INET: 3368 inet = inet_sk(sk); 3369 overhead += sizeof(struct iphdr); 3370 opt = rcu_dereference_protected(inet->inet_opt, 3371 sock_owned_by_user(sk)); 3372 if (opt) 3373 overhead += opt->opt.optlen; 3374 return overhead; 3375 #if IS_ENABLED(CONFIG_IPV6) 3376 case AF_INET6: 3377 np = inet6_sk(sk); 3378 overhead += sizeof(struct ipv6hdr); 3379 if (np) 3380 optv6 = rcu_dereference_protected(np->opt, 3381 sock_owned_by_user(sk)); 3382 if (optv6) 3383 overhead += (optv6->opt_flen + optv6->opt_nflen); 3384 return overhead; 3385 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3386 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3387 return overhead; 3388 } 3389 } 3390 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3391