1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 #include <linux/nospec.h> 93 94 #include <linux/uaccess.h> 95 #include <asm/unistd.h> 96 97 #include <net/compat.h> 98 #include <net/wext.h> 99 #include <net/cls_cgroup.h> 100 101 #include <net/sock.h> 102 #include <linux/netfilter.h> 103 104 #include <linux/if_tun.h> 105 #include <linux/ipv6_route.h> 106 #include <linux/route.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183 { 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212 { 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 static struct kmem_cache *sock_inode_cachep __ro_after_init; 238 239 static struct inode *sock_alloc_inode(struct super_block *sb) 240 { 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 ei->socket.wq = wq; 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 kfree_rcu(ei->socket.wq, rcu); 272 kmem_cache_free(sock_inode_cachep, ei); 273 } 274 275 static void init_once(void *foo) 276 { 277 struct socket_alloc *ei = (struct socket_alloc *)foo; 278 279 inode_init_once(&ei->vfs_inode); 280 } 281 282 static void init_inodecache(void) 283 { 284 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 285 sizeof(struct socket_alloc), 286 0, 287 (SLAB_HWCACHE_ALIGN | 288 SLAB_RECLAIM_ACCOUNT | 289 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 290 init_once); 291 BUG_ON(sock_inode_cachep == NULL); 292 } 293 294 static const struct super_operations sockfs_ops = { 295 .alloc_inode = sock_alloc_inode, 296 .destroy_inode = sock_destroy_inode, 297 .statfs = simple_statfs, 298 }; 299 300 /* 301 * sockfs_dname() is called from d_path(). 302 */ 303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 304 { 305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 306 d_inode(dentry)->i_ino); 307 } 308 309 static const struct dentry_operations sockfs_dentry_operations = { 310 .d_dname = sockfs_dname, 311 }; 312 313 static int sockfs_xattr_get(const struct xattr_handler *handler, 314 struct dentry *dentry, struct inode *inode, 315 const char *suffix, void *value, size_t size) 316 { 317 if (value) { 318 if (dentry->d_name.len + 1 > size) 319 return -ERANGE; 320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 321 } 322 return dentry->d_name.len + 1; 323 } 324 325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 328 329 static const struct xattr_handler sockfs_xattr_handler = { 330 .name = XATTR_NAME_SOCKPROTONAME, 331 .get = sockfs_xattr_get, 332 }; 333 334 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 335 struct dentry *dentry, struct inode *inode, 336 const char *suffix, const void *value, 337 size_t size, int flags) 338 { 339 /* Handled by LSM. */ 340 return -EAGAIN; 341 } 342 343 static const struct xattr_handler sockfs_security_xattr_handler = { 344 .prefix = XATTR_SECURITY_PREFIX, 345 .set = sockfs_security_xattr_set, 346 }; 347 348 static const struct xattr_handler *sockfs_xattr_handlers[] = { 349 &sockfs_xattr_handler, 350 &sockfs_security_xattr_handler, 351 NULL 352 }; 353 354 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 355 int flags, const char *dev_name, void *data) 356 { 357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 358 sockfs_xattr_handlers, 359 &sockfs_dentry_operations, SOCKFS_MAGIC); 360 } 361 362 static struct vfsmount *sock_mnt __read_mostly; 363 364 static struct file_system_type sock_fs_type = { 365 .name = "sockfs", 366 .mount = sockfs_mount, 367 .kill_sb = kill_anon_super, 368 }; 369 370 /* 371 * Obtains the first available file descriptor and sets it up for use. 372 * 373 * These functions create file structures and maps them to fd space 374 * of the current process. On success it returns file descriptor 375 * and file struct implicitly stored in sock->file. 376 * Note that another thread may close file descriptor before we return 377 * from this function. We use the fact that now we do not refer 378 * to socket after mapping. If one day we will need it, this 379 * function will increment ref. count on file by 1. 380 * 381 * In any case returned fd MAY BE not valid! 382 * This race condition is unavoidable 383 * with shared fd spaces, we cannot solve it inside kernel, 384 * but we take care of internal coherence yet. 385 */ 386 387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 388 { 389 struct file *file; 390 391 if (!dname) 392 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 393 394 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 395 O_RDWR | (flags & O_NONBLOCK), 396 &socket_file_ops); 397 if (IS_ERR(file)) { 398 sock_release(sock); 399 return file; 400 } 401 402 sock->file = file; 403 file->private_data = sock; 404 return file; 405 } 406 EXPORT_SYMBOL(sock_alloc_file); 407 408 static int sock_map_fd(struct socket *sock, int flags) 409 { 410 struct file *newfile; 411 int fd = get_unused_fd_flags(flags); 412 if (unlikely(fd < 0)) { 413 sock_release(sock); 414 return fd; 415 } 416 417 newfile = sock_alloc_file(sock, flags, NULL); 418 if (likely(!IS_ERR(newfile))) { 419 fd_install(fd, newfile); 420 return fd; 421 } 422 423 put_unused_fd(fd); 424 return PTR_ERR(newfile); 425 } 426 427 struct socket *sock_from_file(struct file *file, int *err) 428 { 429 if (file->f_op == &socket_file_ops) 430 return file->private_data; /* set in sock_map_fd */ 431 432 *err = -ENOTSOCK; 433 return NULL; 434 } 435 EXPORT_SYMBOL(sock_from_file); 436 437 /** 438 * sockfd_lookup - Go from a file number to its socket slot 439 * @fd: file handle 440 * @err: pointer to an error code return 441 * 442 * The file handle passed in is locked and the socket it is bound 443 * to is returned. If an error occurs the err pointer is overwritten 444 * with a negative errno code and NULL is returned. The function checks 445 * for both invalid handles and passing a handle which is not a socket. 446 * 447 * On a success the socket object pointer is returned. 448 */ 449 450 struct socket *sockfd_lookup(int fd, int *err) 451 { 452 struct file *file; 453 struct socket *sock; 454 455 file = fget(fd); 456 if (!file) { 457 *err = -EBADF; 458 return NULL; 459 } 460 461 sock = sock_from_file(file, err); 462 if (!sock) 463 fput(file); 464 return sock; 465 } 466 EXPORT_SYMBOL(sockfd_lookup); 467 468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 469 { 470 struct fd f = fdget(fd); 471 struct socket *sock; 472 473 *err = -EBADF; 474 if (f.file) { 475 sock = sock_from_file(f.file, err); 476 if (likely(sock)) { 477 *fput_needed = f.flags; 478 return sock; 479 } 480 fdput(f); 481 } 482 return NULL; 483 } 484 485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 486 size_t size) 487 { 488 ssize_t len; 489 ssize_t used = 0; 490 491 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 492 if (len < 0) 493 return len; 494 used += len; 495 if (buffer) { 496 if (size < used) 497 return -ERANGE; 498 buffer += len; 499 } 500 501 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 502 used += len; 503 if (buffer) { 504 if (size < used) 505 return -ERANGE; 506 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 507 buffer += len; 508 } 509 510 return used; 511 } 512 513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 514 { 515 int err = simple_setattr(dentry, iattr); 516 517 if (!err && (iattr->ia_valid & ATTR_UID)) { 518 struct socket *sock = SOCKET_I(d_inode(dentry)); 519 520 if (sock->sk) 521 sock->sk->sk_uid = iattr->ia_uid; 522 else 523 err = -ENOENT; 524 } 525 526 return err; 527 } 528 529 static const struct inode_operations sockfs_inode_ops = { 530 .listxattr = sockfs_listxattr, 531 .setattr = sockfs_setattr, 532 }; 533 534 /** 535 * sock_alloc - allocate a socket 536 * 537 * Allocate a new inode and socket object. The two are bound together 538 * and initialised. The socket is then returned. If we are out of inodes 539 * NULL is returned. 540 */ 541 542 struct socket *sock_alloc(void) 543 { 544 struct inode *inode; 545 struct socket *sock; 546 547 inode = new_inode_pseudo(sock_mnt->mnt_sb); 548 if (!inode) 549 return NULL; 550 551 sock = SOCKET_I(inode); 552 553 inode->i_ino = get_next_ino(); 554 inode->i_mode = S_IFSOCK | S_IRWXUGO; 555 inode->i_uid = current_fsuid(); 556 inode->i_gid = current_fsgid(); 557 inode->i_op = &sockfs_inode_ops; 558 559 return sock; 560 } 561 EXPORT_SYMBOL(sock_alloc); 562 563 /** 564 * sock_release - close a socket 565 * @sock: socket to close 566 * 567 * The socket is released from the protocol stack if it has a release 568 * callback, and the inode is then released if the socket is bound to 569 * an inode not a file. 570 */ 571 572 static void __sock_release(struct socket *sock, struct inode *inode) 573 { 574 if (sock->ops) { 575 struct module *owner = sock->ops->owner; 576 577 if (inode) 578 inode_lock(inode); 579 sock->ops->release(sock); 580 if (inode) 581 inode_unlock(inode); 582 sock->ops = NULL; 583 module_put(owner); 584 } 585 586 if (sock->wq->fasync_list) 587 pr_err("%s: fasync list not empty!\n", __func__); 588 589 if (!sock->file) { 590 iput(SOCK_INODE(sock)); 591 return; 592 } 593 sock->file = NULL; 594 } 595 596 void sock_release(struct socket *sock) 597 { 598 __sock_release(sock, NULL); 599 } 600 EXPORT_SYMBOL(sock_release); 601 602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 603 { 604 u8 flags = *tx_flags; 605 606 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 607 flags |= SKBTX_HW_TSTAMP; 608 609 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 610 flags |= SKBTX_SW_TSTAMP; 611 612 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 613 flags |= SKBTX_SCHED_TSTAMP; 614 615 *tx_flags = flags; 616 } 617 EXPORT_SYMBOL(__sock_tx_timestamp); 618 619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 620 { 621 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 622 BUG_ON(ret == -EIOCBQUEUED); 623 return ret; 624 } 625 626 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 627 { 628 int err = security_socket_sendmsg(sock, msg, 629 msg_data_left(msg)); 630 631 return err ?: sock_sendmsg_nosec(sock, msg); 632 } 633 EXPORT_SYMBOL(sock_sendmsg); 634 635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 636 struct kvec *vec, size_t num, size_t size) 637 { 638 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 639 return sock_sendmsg(sock, msg); 640 } 641 EXPORT_SYMBOL(kernel_sendmsg); 642 643 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 644 struct kvec *vec, size_t num, size_t size) 645 { 646 struct socket *sock = sk->sk_socket; 647 648 if (!sock->ops->sendmsg_locked) 649 return sock_no_sendmsg_locked(sk, msg, size); 650 651 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 652 653 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 654 } 655 EXPORT_SYMBOL(kernel_sendmsg_locked); 656 657 static bool skb_is_err_queue(const struct sk_buff *skb) 658 { 659 /* pkt_type of skbs enqueued on the error queue are set to 660 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 661 * in recvmsg, since skbs received on a local socket will never 662 * have a pkt_type of PACKET_OUTGOING. 663 */ 664 return skb->pkt_type == PACKET_OUTGOING; 665 } 666 667 /* On transmit, software and hardware timestamps are returned independently. 668 * As the two skb clones share the hardware timestamp, which may be updated 669 * before the software timestamp is received, a hardware TX timestamp may be 670 * returned only if there is no software TX timestamp. Ignore false software 671 * timestamps, which may be made in the __sock_recv_timestamp() call when the 672 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 673 * hardware timestamp. 674 */ 675 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 676 { 677 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 678 } 679 680 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 681 { 682 struct scm_ts_pktinfo ts_pktinfo; 683 struct net_device *orig_dev; 684 685 if (!skb_mac_header_was_set(skb)) 686 return; 687 688 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 689 690 rcu_read_lock(); 691 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 692 if (orig_dev) 693 ts_pktinfo.if_index = orig_dev->ifindex; 694 rcu_read_unlock(); 695 696 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 697 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 698 sizeof(ts_pktinfo), &ts_pktinfo); 699 } 700 701 /* 702 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 703 */ 704 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 705 struct sk_buff *skb) 706 { 707 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 708 struct scm_timestamping tss; 709 int empty = 1, false_tstamp = 0; 710 struct skb_shared_hwtstamps *shhwtstamps = 711 skb_hwtstamps(skb); 712 713 /* Race occurred between timestamp enabling and packet 714 receiving. Fill in the current time for now. */ 715 if (need_software_tstamp && skb->tstamp == 0) { 716 __net_timestamp(skb); 717 false_tstamp = 1; 718 } 719 720 if (need_software_tstamp) { 721 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 722 struct timeval tv; 723 skb_get_timestamp(skb, &tv); 724 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 725 sizeof(tv), &tv); 726 } else { 727 struct timespec ts; 728 skb_get_timestampns(skb, &ts); 729 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 730 sizeof(ts), &ts); 731 } 732 } 733 734 memset(&tss, 0, sizeof(tss)); 735 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 736 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 737 empty = 0; 738 if (shhwtstamps && 739 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 740 !skb_is_swtx_tstamp(skb, false_tstamp) && 741 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 742 empty = 0; 743 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 744 !skb_is_err_queue(skb)) 745 put_ts_pktinfo(msg, skb); 746 } 747 if (!empty) { 748 put_cmsg(msg, SOL_SOCKET, 749 SCM_TIMESTAMPING, sizeof(tss), &tss); 750 751 if (skb_is_err_queue(skb) && skb->len && 752 SKB_EXT_ERR(skb)->opt_stats) 753 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 754 skb->len, skb->data); 755 } 756 } 757 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 758 759 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 760 struct sk_buff *skb) 761 { 762 int ack; 763 764 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 765 return; 766 if (!skb->wifi_acked_valid) 767 return; 768 769 ack = skb->wifi_acked; 770 771 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 772 } 773 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 774 775 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 776 struct sk_buff *skb) 777 { 778 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 779 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 780 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 781 } 782 783 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 784 struct sk_buff *skb) 785 { 786 sock_recv_timestamp(msg, sk, skb); 787 sock_recv_drops(msg, sk, skb); 788 } 789 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 790 791 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 792 int flags) 793 { 794 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 795 } 796 797 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 798 { 799 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 800 801 return err ?: sock_recvmsg_nosec(sock, msg, flags); 802 } 803 EXPORT_SYMBOL(sock_recvmsg); 804 805 /** 806 * kernel_recvmsg - Receive a message from a socket (kernel space) 807 * @sock: The socket to receive the message from 808 * @msg: Received message 809 * @vec: Input s/g array for message data 810 * @num: Size of input s/g array 811 * @size: Number of bytes to read 812 * @flags: Message flags (MSG_DONTWAIT, etc...) 813 * 814 * On return the msg structure contains the scatter/gather array passed in the 815 * vec argument. The array is modified so that it consists of the unfilled 816 * portion of the original array. 817 * 818 * The returned value is the total number of bytes received, or an error. 819 */ 820 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 821 struct kvec *vec, size_t num, size_t size, int flags) 822 { 823 mm_segment_t oldfs = get_fs(); 824 int result; 825 826 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 827 set_fs(KERNEL_DS); 828 result = sock_recvmsg(sock, msg, flags); 829 set_fs(oldfs); 830 return result; 831 } 832 EXPORT_SYMBOL(kernel_recvmsg); 833 834 static ssize_t sock_sendpage(struct file *file, struct page *page, 835 int offset, size_t size, loff_t *ppos, int more) 836 { 837 struct socket *sock; 838 int flags; 839 840 sock = file->private_data; 841 842 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 843 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 844 flags |= more; 845 846 return kernel_sendpage(sock, page, offset, size, flags); 847 } 848 849 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 850 struct pipe_inode_info *pipe, size_t len, 851 unsigned int flags) 852 { 853 struct socket *sock = file->private_data; 854 855 if (unlikely(!sock->ops->splice_read)) 856 return -EINVAL; 857 858 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 859 } 860 861 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 862 { 863 struct file *file = iocb->ki_filp; 864 struct socket *sock = file->private_data; 865 struct msghdr msg = {.msg_iter = *to, 866 .msg_iocb = iocb}; 867 ssize_t res; 868 869 if (file->f_flags & O_NONBLOCK) 870 msg.msg_flags = MSG_DONTWAIT; 871 872 if (iocb->ki_pos != 0) 873 return -ESPIPE; 874 875 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 876 return 0; 877 878 res = sock_recvmsg(sock, &msg, msg.msg_flags); 879 *to = msg.msg_iter; 880 return res; 881 } 882 883 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 884 { 885 struct file *file = iocb->ki_filp; 886 struct socket *sock = file->private_data; 887 struct msghdr msg = {.msg_iter = *from, 888 .msg_iocb = iocb}; 889 ssize_t res; 890 891 if (iocb->ki_pos != 0) 892 return -ESPIPE; 893 894 if (file->f_flags & O_NONBLOCK) 895 msg.msg_flags = MSG_DONTWAIT; 896 897 if (sock->type == SOCK_SEQPACKET) 898 msg.msg_flags |= MSG_EOR; 899 900 res = sock_sendmsg(sock, &msg); 901 *from = msg.msg_iter; 902 return res; 903 } 904 905 /* 906 * Atomic setting of ioctl hooks to avoid race 907 * with module unload. 908 */ 909 910 static DEFINE_MUTEX(br_ioctl_mutex); 911 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 912 913 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 914 { 915 mutex_lock(&br_ioctl_mutex); 916 br_ioctl_hook = hook; 917 mutex_unlock(&br_ioctl_mutex); 918 } 919 EXPORT_SYMBOL(brioctl_set); 920 921 static DEFINE_MUTEX(vlan_ioctl_mutex); 922 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 923 924 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 925 { 926 mutex_lock(&vlan_ioctl_mutex); 927 vlan_ioctl_hook = hook; 928 mutex_unlock(&vlan_ioctl_mutex); 929 } 930 EXPORT_SYMBOL(vlan_ioctl_set); 931 932 static DEFINE_MUTEX(dlci_ioctl_mutex); 933 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 934 935 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 936 { 937 mutex_lock(&dlci_ioctl_mutex); 938 dlci_ioctl_hook = hook; 939 mutex_unlock(&dlci_ioctl_mutex); 940 } 941 EXPORT_SYMBOL(dlci_ioctl_set); 942 943 static long sock_do_ioctl(struct net *net, struct socket *sock, 944 unsigned int cmd, unsigned long arg) 945 { 946 int err; 947 void __user *argp = (void __user *)arg; 948 949 err = sock->ops->ioctl(sock, cmd, arg); 950 951 /* 952 * If this ioctl is unknown try to hand it down 953 * to the NIC driver. 954 */ 955 if (err != -ENOIOCTLCMD) 956 return err; 957 958 if (cmd == SIOCGIFCONF) { 959 struct ifconf ifc; 960 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 961 return -EFAULT; 962 rtnl_lock(); 963 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 964 rtnl_unlock(); 965 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 966 err = -EFAULT; 967 } else { 968 struct ifreq ifr; 969 bool need_copyout; 970 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 971 return -EFAULT; 972 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 973 if (!err && need_copyout) 974 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 975 return -EFAULT; 976 } 977 return err; 978 } 979 980 /* 981 * With an ioctl, arg may well be a user mode pointer, but we don't know 982 * what to do with it - that's up to the protocol still. 983 */ 984 985 struct ns_common *get_net_ns(struct ns_common *ns) 986 { 987 return &get_net(container_of(ns, struct net, ns))->ns; 988 } 989 EXPORT_SYMBOL_GPL(get_net_ns); 990 991 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 992 { 993 struct socket *sock; 994 struct sock *sk; 995 void __user *argp = (void __user *)arg; 996 int pid, err; 997 struct net *net; 998 999 sock = file->private_data; 1000 sk = sock->sk; 1001 net = sock_net(sk); 1002 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1003 struct ifreq ifr; 1004 bool need_copyout; 1005 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1006 return -EFAULT; 1007 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1008 if (!err && need_copyout) 1009 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1010 return -EFAULT; 1011 } else 1012 #ifdef CONFIG_WEXT_CORE 1013 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1014 err = wext_handle_ioctl(net, cmd, argp); 1015 } else 1016 #endif 1017 switch (cmd) { 1018 case FIOSETOWN: 1019 case SIOCSPGRP: 1020 err = -EFAULT; 1021 if (get_user(pid, (int __user *)argp)) 1022 break; 1023 err = f_setown(sock->file, pid, 1); 1024 break; 1025 case FIOGETOWN: 1026 case SIOCGPGRP: 1027 err = put_user(f_getown(sock->file), 1028 (int __user *)argp); 1029 break; 1030 case SIOCGIFBR: 1031 case SIOCSIFBR: 1032 case SIOCBRADDBR: 1033 case SIOCBRDELBR: 1034 err = -ENOPKG; 1035 if (!br_ioctl_hook) 1036 request_module("bridge"); 1037 1038 mutex_lock(&br_ioctl_mutex); 1039 if (br_ioctl_hook) 1040 err = br_ioctl_hook(net, cmd, argp); 1041 mutex_unlock(&br_ioctl_mutex); 1042 break; 1043 case SIOCGIFVLAN: 1044 case SIOCSIFVLAN: 1045 err = -ENOPKG; 1046 if (!vlan_ioctl_hook) 1047 request_module("8021q"); 1048 1049 mutex_lock(&vlan_ioctl_mutex); 1050 if (vlan_ioctl_hook) 1051 err = vlan_ioctl_hook(net, argp); 1052 mutex_unlock(&vlan_ioctl_mutex); 1053 break; 1054 case SIOCADDDLCI: 1055 case SIOCDELDLCI: 1056 err = -ENOPKG; 1057 if (!dlci_ioctl_hook) 1058 request_module("dlci"); 1059 1060 mutex_lock(&dlci_ioctl_mutex); 1061 if (dlci_ioctl_hook) 1062 err = dlci_ioctl_hook(cmd, argp); 1063 mutex_unlock(&dlci_ioctl_mutex); 1064 break; 1065 case SIOCGSKNS: 1066 err = -EPERM; 1067 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1068 break; 1069 1070 err = open_related_ns(&net->ns, get_net_ns); 1071 break; 1072 default: 1073 err = sock_do_ioctl(net, sock, cmd, arg); 1074 break; 1075 } 1076 return err; 1077 } 1078 1079 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1080 { 1081 int err; 1082 struct socket *sock = NULL; 1083 1084 err = security_socket_create(family, type, protocol, 1); 1085 if (err) 1086 goto out; 1087 1088 sock = sock_alloc(); 1089 if (!sock) { 1090 err = -ENOMEM; 1091 goto out; 1092 } 1093 1094 sock->type = type; 1095 err = security_socket_post_create(sock, family, type, protocol, 1); 1096 if (err) 1097 goto out_release; 1098 1099 out: 1100 *res = sock; 1101 return err; 1102 out_release: 1103 sock_release(sock); 1104 sock = NULL; 1105 goto out; 1106 } 1107 EXPORT_SYMBOL(sock_create_lite); 1108 1109 /* No kernel lock held - perfect */ 1110 static __poll_t sock_poll(struct file *file, poll_table *wait) 1111 { 1112 struct socket *sock = file->private_data; 1113 __poll_t events = poll_requested_events(wait), flag = 0; 1114 1115 if (!sock->ops->poll) 1116 return 0; 1117 1118 if (sk_can_busy_loop(sock->sk)) { 1119 /* poll once if requested by the syscall */ 1120 if (events & POLL_BUSY_LOOP) 1121 sk_busy_loop(sock->sk, 1); 1122 1123 /* if this socket can poll_ll, tell the system call */ 1124 flag = POLL_BUSY_LOOP; 1125 } 1126 1127 return sock->ops->poll(file, sock, wait) | flag; 1128 } 1129 1130 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1131 { 1132 struct socket *sock = file->private_data; 1133 1134 return sock->ops->mmap(file, sock, vma); 1135 } 1136 1137 static int sock_close(struct inode *inode, struct file *filp) 1138 { 1139 __sock_release(SOCKET_I(inode), inode); 1140 return 0; 1141 } 1142 1143 /* 1144 * Update the socket async list 1145 * 1146 * Fasync_list locking strategy. 1147 * 1148 * 1. fasync_list is modified only under process context socket lock 1149 * i.e. under semaphore. 1150 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1151 * or under socket lock 1152 */ 1153 1154 static int sock_fasync(int fd, struct file *filp, int on) 1155 { 1156 struct socket *sock = filp->private_data; 1157 struct sock *sk = sock->sk; 1158 struct socket_wq *wq; 1159 1160 if (sk == NULL) 1161 return -EINVAL; 1162 1163 lock_sock(sk); 1164 wq = sock->wq; 1165 fasync_helper(fd, filp, on, &wq->fasync_list); 1166 1167 if (!wq->fasync_list) 1168 sock_reset_flag(sk, SOCK_FASYNC); 1169 else 1170 sock_set_flag(sk, SOCK_FASYNC); 1171 1172 release_sock(sk); 1173 return 0; 1174 } 1175 1176 /* This function may be called only under rcu_lock */ 1177 1178 int sock_wake_async(struct socket_wq *wq, int how, int band) 1179 { 1180 if (!wq || !wq->fasync_list) 1181 return -1; 1182 1183 switch (how) { 1184 case SOCK_WAKE_WAITD: 1185 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1186 break; 1187 goto call_kill; 1188 case SOCK_WAKE_SPACE: 1189 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1190 break; 1191 /* fall through */ 1192 case SOCK_WAKE_IO: 1193 call_kill: 1194 kill_fasync(&wq->fasync_list, SIGIO, band); 1195 break; 1196 case SOCK_WAKE_URG: 1197 kill_fasync(&wq->fasync_list, SIGURG, band); 1198 } 1199 1200 return 0; 1201 } 1202 EXPORT_SYMBOL(sock_wake_async); 1203 1204 int __sock_create(struct net *net, int family, int type, int protocol, 1205 struct socket **res, int kern) 1206 { 1207 int err; 1208 struct socket *sock; 1209 const struct net_proto_family *pf; 1210 1211 /* 1212 * Check protocol is in range 1213 */ 1214 if (family < 0 || family >= NPROTO) 1215 return -EAFNOSUPPORT; 1216 if (type < 0 || type >= SOCK_MAX) 1217 return -EINVAL; 1218 1219 /* Compatibility. 1220 1221 This uglymoron is moved from INET layer to here to avoid 1222 deadlock in module load. 1223 */ 1224 if (family == PF_INET && type == SOCK_PACKET) { 1225 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1226 current->comm); 1227 family = PF_PACKET; 1228 } 1229 1230 err = security_socket_create(family, type, protocol, kern); 1231 if (err) 1232 return err; 1233 1234 /* 1235 * Allocate the socket and allow the family to set things up. if 1236 * the protocol is 0, the family is instructed to select an appropriate 1237 * default. 1238 */ 1239 sock = sock_alloc(); 1240 if (!sock) { 1241 net_warn_ratelimited("socket: no more sockets\n"); 1242 return -ENFILE; /* Not exactly a match, but its the 1243 closest posix thing */ 1244 } 1245 1246 sock->type = type; 1247 1248 #ifdef CONFIG_MODULES 1249 /* Attempt to load a protocol module if the find failed. 1250 * 1251 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1252 * requested real, full-featured networking support upon configuration. 1253 * Otherwise module support will break! 1254 */ 1255 if (rcu_access_pointer(net_families[family]) == NULL) 1256 request_module("net-pf-%d", family); 1257 #endif 1258 1259 rcu_read_lock(); 1260 pf = rcu_dereference(net_families[family]); 1261 err = -EAFNOSUPPORT; 1262 if (!pf) 1263 goto out_release; 1264 1265 /* 1266 * We will call the ->create function, that possibly is in a loadable 1267 * module, so we have to bump that loadable module refcnt first. 1268 */ 1269 if (!try_module_get(pf->owner)) 1270 goto out_release; 1271 1272 /* Now protected by module ref count */ 1273 rcu_read_unlock(); 1274 1275 err = pf->create(net, sock, protocol, kern); 1276 if (err < 0) 1277 goto out_module_put; 1278 1279 /* 1280 * Now to bump the refcnt of the [loadable] module that owns this 1281 * socket at sock_release time we decrement its refcnt. 1282 */ 1283 if (!try_module_get(sock->ops->owner)) 1284 goto out_module_busy; 1285 1286 /* 1287 * Now that we're done with the ->create function, the [loadable] 1288 * module can have its refcnt decremented 1289 */ 1290 module_put(pf->owner); 1291 err = security_socket_post_create(sock, family, type, protocol, kern); 1292 if (err) 1293 goto out_sock_release; 1294 *res = sock; 1295 1296 return 0; 1297 1298 out_module_busy: 1299 err = -EAFNOSUPPORT; 1300 out_module_put: 1301 sock->ops = NULL; 1302 module_put(pf->owner); 1303 out_sock_release: 1304 sock_release(sock); 1305 return err; 1306 1307 out_release: 1308 rcu_read_unlock(); 1309 goto out_sock_release; 1310 } 1311 EXPORT_SYMBOL(__sock_create); 1312 1313 int sock_create(int family, int type, int protocol, struct socket **res) 1314 { 1315 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1316 } 1317 EXPORT_SYMBOL(sock_create); 1318 1319 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1320 { 1321 return __sock_create(net, family, type, protocol, res, 1); 1322 } 1323 EXPORT_SYMBOL(sock_create_kern); 1324 1325 int __sys_socket(int family, int type, int protocol) 1326 { 1327 int retval; 1328 struct socket *sock; 1329 int flags; 1330 1331 /* Check the SOCK_* constants for consistency. */ 1332 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1333 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1334 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1335 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1336 1337 flags = type & ~SOCK_TYPE_MASK; 1338 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1339 return -EINVAL; 1340 type &= SOCK_TYPE_MASK; 1341 1342 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1343 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1344 1345 retval = sock_create(family, type, protocol, &sock); 1346 if (retval < 0) 1347 return retval; 1348 1349 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1350 } 1351 1352 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1353 { 1354 return __sys_socket(family, type, protocol); 1355 } 1356 1357 /* 1358 * Create a pair of connected sockets. 1359 */ 1360 1361 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1362 { 1363 struct socket *sock1, *sock2; 1364 int fd1, fd2, err; 1365 struct file *newfile1, *newfile2; 1366 int flags; 1367 1368 flags = type & ~SOCK_TYPE_MASK; 1369 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1370 return -EINVAL; 1371 type &= SOCK_TYPE_MASK; 1372 1373 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1374 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1375 1376 /* 1377 * reserve descriptors and make sure we won't fail 1378 * to return them to userland. 1379 */ 1380 fd1 = get_unused_fd_flags(flags); 1381 if (unlikely(fd1 < 0)) 1382 return fd1; 1383 1384 fd2 = get_unused_fd_flags(flags); 1385 if (unlikely(fd2 < 0)) { 1386 put_unused_fd(fd1); 1387 return fd2; 1388 } 1389 1390 err = put_user(fd1, &usockvec[0]); 1391 if (err) 1392 goto out; 1393 1394 err = put_user(fd2, &usockvec[1]); 1395 if (err) 1396 goto out; 1397 1398 /* 1399 * Obtain the first socket and check if the underlying protocol 1400 * supports the socketpair call. 1401 */ 1402 1403 err = sock_create(family, type, protocol, &sock1); 1404 if (unlikely(err < 0)) 1405 goto out; 1406 1407 err = sock_create(family, type, protocol, &sock2); 1408 if (unlikely(err < 0)) { 1409 sock_release(sock1); 1410 goto out; 1411 } 1412 1413 err = security_socket_socketpair(sock1, sock2); 1414 if (unlikely(err)) { 1415 sock_release(sock2); 1416 sock_release(sock1); 1417 goto out; 1418 } 1419 1420 err = sock1->ops->socketpair(sock1, sock2); 1421 if (unlikely(err < 0)) { 1422 sock_release(sock2); 1423 sock_release(sock1); 1424 goto out; 1425 } 1426 1427 newfile1 = sock_alloc_file(sock1, flags, NULL); 1428 if (IS_ERR(newfile1)) { 1429 err = PTR_ERR(newfile1); 1430 sock_release(sock2); 1431 goto out; 1432 } 1433 1434 newfile2 = sock_alloc_file(sock2, flags, NULL); 1435 if (IS_ERR(newfile2)) { 1436 err = PTR_ERR(newfile2); 1437 fput(newfile1); 1438 goto out; 1439 } 1440 1441 audit_fd_pair(fd1, fd2); 1442 1443 fd_install(fd1, newfile1); 1444 fd_install(fd2, newfile2); 1445 return 0; 1446 1447 out: 1448 put_unused_fd(fd2); 1449 put_unused_fd(fd1); 1450 return err; 1451 } 1452 1453 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1454 int __user *, usockvec) 1455 { 1456 return __sys_socketpair(family, type, protocol, usockvec); 1457 } 1458 1459 /* 1460 * Bind a name to a socket. Nothing much to do here since it's 1461 * the protocol's responsibility to handle the local address. 1462 * 1463 * We move the socket address to kernel space before we call 1464 * the protocol layer (having also checked the address is ok). 1465 */ 1466 1467 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1468 { 1469 struct socket *sock; 1470 struct sockaddr_storage address; 1471 int err, fput_needed; 1472 1473 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1474 if (sock) { 1475 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1476 if (err >= 0) { 1477 err = security_socket_bind(sock, 1478 (struct sockaddr *)&address, 1479 addrlen); 1480 if (!err) 1481 err = sock->ops->bind(sock, 1482 (struct sockaddr *) 1483 &address, addrlen); 1484 } 1485 fput_light(sock->file, fput_needed); 1486 } 1487 return err; 1488 } 1489 1490 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1491 { 1492 return __sys_bind(fd, umyaddr, addrlen); 1493 } 1494 1495 /* 1496 * Perform a listen. Basically, we allow the protocol to do anything 1497 * necessary for a listen, and if that works, we mark the socket as 1498 * ready for listening. 1499 */ 1500 1501 int __sys_listen(int fd, int backlog) 1502 { 1503 struct socket *sock; 1504 int err, fput_needed; 1505 int somaxconn; 1506 1507 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1508 if (sock) { 1509 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1510 if ((unsigned int)backlog > somaxconn) 1511 backlog = somaxconn; 1512 1513 err = security_socket_listen(sock, backlog); 1514 if (!err) 1515 err = sock->ops->listen(sock, backlog); 1516 1517 fput_light(sock->file, fput_needed); 1518 } 1519 return err; 1520 } 1521 1522 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1523 { 1524 return __sys_listen(fd, backlog); 1525 } 1526 1527 /* 1528 * For accept, we attempt to create a new socket, set up the link 1529 * with the client, wake up the client, then return the new 1530 * connected fd. We collect the address of the connector in kernel 1531 * space and move it to user at the very end. This is unclean because 1532 * we open the socket then return an error. 1533 * 1534 * 1003.1g adds the ability to recvmsg() to query connection pending 1535 * status to recvmsg. We need to add that support in a way thats 1536 * clean when we restructure accept also. 1537 */ 1538 1539 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1540 int __user *upeer_addrlen, int flags) 1541 { 1542 struct socket *sock, *newsock; 1543 struct file *newfile; 1544 int err, len, newfd, fput_needed; 1545 struct sockaddr_storage address; 1546 1547 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1548 return -EINVAL; 1549 1550 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1551 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1552 1553 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1554 if (!sock) 1555 goto out; 1556 1557 err = -ENFILE; 1558 newsock = sock_alloc(); 1559 if (!newsock) 1560 goto out_put; 1561 1562 newsock->type = sock->type; 1563 newsock->ops = sock->ops; 1564 1565 /* 1566 * We don't need try_module_get here, as the listening socket (sock) 1567 * has the protocol module (sock->ops->owner) held. 1568 */ 1569 __module_get(newsock->ops->owner); 1570 1571 newfd = get_unused_fd_flags(flags); 1572 if (unlikely(newfd < 0)) { 1573 err = newfd; 1574 sock_release(newsock); 1575 goto out_put; 1576 } 1577 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1578 if (IS_ERR(newfile)) { 1579 err = PTR_ERR(newfile); 1580 put_unused_fd(newfd); 1581 goto out_put; 1582 } 1583 1584 err = security_socket_accept(sock, newsock); 1585 if (err) 1586 goto out_fd; 1587 1588 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1589 if (err < 0) 1590 goto out_fd; 1591 1592 if (upeer_sockaddr) { 1593 len = newsock->ops->getname(newsock, 1594 (struct sockaddr *)&address, 2); 1595 if (len < 0) { 1596 err = -ECONNABORTED; 1597 goto out_fd; 1598 } 1599 err = move_addr_to_user(&address, 1600 len, upeer_sockaddr, upeer_addrlen); 1601 if (err < 0) 1602 goto out_fd; 1603 } 1604 1605 /* File flags are not inherited via accept() unlike another OSes. */ 1606 1607 fd_install(newfd, newfile); 1608 err = newfd; 1609 1610 out_put: 1611 fput_light(sock->file, fput_needed); 1612 out: 1613 return err; 1614 out_fd: 1615 fput(newfile); 1616 put_unused_fd(newfd); 1617 goto out_put; 1618 } 1619 1620 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1621 int __user *, upeer_addrlen, int, flags) 1622 { 1623 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1624 } 1625 1626 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1627 int __user *, upeer_addrlen) 1628 { 1629 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1630 } 1631 1632 /* 1633 * Attempt to connect to a socket with the server address. The address 1634 * is in user space so we verify it is OK and move it to kernel space. 1635 * 1636 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1637 * break bindings 1638 * 1639 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1640 * other SEQPACKET protocols that take time to connect() as it doesn't 1641 * include the -EINPROGRESS status for such sockets. 1642 */ 1643 1644 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1645 { 1646 struct socket *sock; 1647 struct sockaddr_storage address; 1648 int err, fput_needed; 1649 1650 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1651 if (!sock) 1652 goto out; 1653 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1654 if (err < 0) 1655 goto out_put; 1656 1657 err = 1658 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1659 if (err) 1660 goto out_put; 1661 1662 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1663 sock->file->f_flags); 1664 out_put: 1665 fput_light(sock->file, fput_needed); 1666 out: 1667 return err; 1668 } 1669 1670 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1671 int, addrlen) 1672 { 1673 return __sys_connect(fd, uservaddr, addrlen); 1674 } 1675 1676 /* 1677 * Get the local address ('name') of a socket object. Move the obtained 1678 * name to user space. 1679 */ 1680 1681 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1682 int __user *usockaddr_len) 1683 { 1684 struct socket *sock; 1685 struct sockaddr_storage address; 1686 int err, fput_needed; 1687 1688 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1689 if (!sock) 1690 goto out; 1691 1692 err = security_socket_getsockname(sock); 1693 if (err) 1694 goto out_put; 1695 1696 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1697 if (err < 0) 1698 goto out_put; 1699 /* "err" is actually length in this case */ 1700 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1701 1702 out_put: 1703 fput_light(sock->file, fput_needed); 1704 out: 1705 return err; 1706 } 1707 1708 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1709 int __user *, usockaddr_len) 1710 { 1711 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1712 } 1713 1714 /* 1715 * Get the remote address ('name') of a socket object. Move the obtained 1716 * name to user space. 1717 */ 1718 1719 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1720 int __user *usockaddr_len) 1721 { 1722 struct socket *sock; 1723 struct sockaddr_storage address; 1724 int err, fput_needed; 1725 1726 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1727 if (sock != NULL) { 1728 err = security_socket_getpeername(sock); 1729 if (err) { 1730 fput_light(sock->file, fput_needed); 1731 return err; 1732 } 1733 1734 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1735 if (err >= 0) 1736 /* "err" is actually length in this case */ 1737 err = move_addr_to_user(&address, err, usockaddr, 1738 usockaddr_len); 1739 fput_light(sock->file, fput_needed); 1740 } 1741 return err; 1742 } 1743 1744 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1745 int __user *, usockaddr_len) 1746 { 1747 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1748 } 1749 1750 /* 1751 * Send a datagram to a given address. We move the address into kernel 1752 * space and check the user space data area is readable before invoking 1753 * the protocol. 1754 */ 1755 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1756 struct sockaddr __user *addr, int addr_len) 1757 { 1758 struct socket *sock; 1759 struct sockaddr_storage address; 1760 int err; 1761 struct msghdr msg; 1762 struct iovec iov; 1763 int fput_needed; 1764 1765 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1766 if (unlikely(err)) 1767 return err; 1768 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1769 if (!sock) 1770 goto out; 1771 1772 msg.msg_name = NULL; 1773 msg.msg_control = NULL; 1774 msg.msg_controllen = 0; 1775 msg.msg_namelen = 0; 1776 if (addr) { 1777 err = move_addr_to_kernel(addr, addr_len, &address); 1778 if (err < 0) 1779 goto out_put; 1780 msg.msg_name = (struct sockaddr *)&address; 1781 msg.msg_namelen = addr_len; 1782 } 1783 if (sock->file->f_flags & O_NONBLOCK) 1784 flags |= MSG_DONTWAIT; 1785 msg.msg_flags = flags; 1786 err = sock_sendmsg(sock, &msg); 1787 1788 out_put: 1789 fput_light(sock->file, fput_needed); 1790 out: 1791 return err; 1792 } 1793 1794 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1795 unsigned int, flags, struct sockaddr __user *, addr, 1796 int, addr_len) 1797 { 1798 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1799 } 1800 1801 /* 1802 * Send a datagram down a socket. 1803 */ 1804 1805 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1806 unsigned int, flags) 1807 { 1808 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1809 } 1810 1811 /* 1812 * Receive a frame from the socket and optionally record the address of the 1813 * sender. We verify the buffers are writable and if needed move the 1814 * sender address from kernel to user space. 1815 */ 1816 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1817 struct sockaddr __user *addr, int __user *addr_len) 1818 { 1819 struct socket *sock; 1820 struct iovec iov; 1821 struct msghdr msg; 1822 struct sockaddr_storage address; 1823 int err, err2; 1824 int fput_needed; 1825 1826 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1827 if (unlikely(err)) 1828 return err; 1829 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1830 if (!sock) 1831 goto out; 1832 1833 msg.msg_control = NULL; 1834 msg.msg_controllen = 0; 1835 /* Save some cycles and don't copy the address if not needed */ 1836 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1837 /* We assume all kernel code knows the size of sockaddr_storage */ 1838 msg.msg_namelen = 0; 1839 msg.msg_iocb = NULL; 1840 msg.msg_flags = 0; 1841 if (sock->file->f_flags & O_NONBLOCK) 1842 flags |= MSG_DONTWAIT; 1843 err = sock_recvmsg(sock, &msg, flags); 1844 1845 if (err >= 0 && addr != NULL) { 1846 err2 = move_addr_to_user(&address, 1847 msg.msg_namelen, addr, addr_len); 1848 if (err2 < 0) 1849 err = err2; 1850 } 1851 1852 fput_light(sock->file, fput_needed); 1853 out: 1854 return err; 1855 } 1856 1857 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1858 unsigned int, flags, struct sockaddr __user *, addr, 1859 int __user *, addr_len) 1860 { 1861 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1862 } 1863 1864 /* 1865 * Receive a datagram from a socket. 1866 */ 1867 1868 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1869 unsigned int, flags) 1870 { 1871 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1872 } 1873 1874 /* 1875 * Set a socket option. Because we don't know the option lengths we have 1876 * to pass the user mode parameter for the protocols to sort out. 1877 */ 1878 1879 static int __sys_setsockopt(int fd, int level, int optname, 1880 char __user *optval, int optlen) 1881 { 1882 int err, fput_needed; 1883 struct socket *sock; 1884 1885 if (optlen < 0) 1886 return -EINVAL; 1887 1888 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1889 if (sock != NULL) { 1890 err = security_socket_setsockopt(sock, level, optname); 1891 if (err) 1892 goto out_put; 1893 1894 if (level == SOL_SOCKET) 1895 err = 1896 sock_setsockopt(sock, level, optname, optval, 1897 optlen); 1898 else 1899 err = 1900 sock->ops->setsockopt(sock, level, optname, optval, 1901 optlen); 1902 out_put: 1903 fput_light(sock->file, fput_needed); 1904 } 1905 return err; 1906 } 1907 1908 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1909 char __user *, optval, int, optlen) 1910 { 1911 return __sys_setsockopt(fd, level, optname, optval, optlen); 1912 } 1913 1914 /* 1915 * Get a socket option. Because we don't know the option lengths we have 1916 * to pass a user mode parameter for the protocols to sort out. 1917 */ 1918 1919 static int __sys_getsockopt(int fd, int level, int optname, 1920 char __user *optval, int __user *optlen) 1921 { 1922 int err, fput_needed; 1923 struct socket *sock; 1924 1925 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1926 if (sock != NULL) { 1927 err = security_socket_getsockopt(sock, level, optname); 1928 if (err) 1929 goto out_put; 1930 1931 if (level == SOL_SOCKET) 1932 err = 1933 sock_getsockopt(sock, level, optname, optval, 1934 optlen); 1935 else 1936 err = 1937 sock->ops->getsockopt(sock, level, optname, optval, 1938 optlen); 1939 out_put: 1940 fput_light(sock->file, fput_needed); 1941 } 1942 return err; 1943 } 1944 1945 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1946 char __user *, optval, int __user *, optlen) 1947 { 1948 return __sys_getsockopt(fd, level, optname, optval, optlen); 1949 } 1950 1951 /* 1952 * Shutdown a socket. 1953 */ 1954 1955 int __sys_shutdown(int fd, int how) 1956 { 1957 int err, fput_needed; 1958 struct socket *sock; 1959 1960 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1961 if (sock != NULL) { 1962 err = security_socket_shutdown(sock, how); 1963 if (!err) 1964 err = sock->ops->shutdown(sock, how); 1965 fput_light(sock->file, fput_needed); 1966 } 1967 return err; 1968 } 1969 1970 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1971 { 1972 return __sys_shutdown(fd, how); 1973 } 1974 1975 /* A couple of helpful macros for getting the address of the 32/64 bit 1976 * fields which are the same type (int / unsigned) on our platforms. 1977 */ 1978 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1979 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1980 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1981 1982 struct used_address { 1983 struct sockaddr_storage name; 1984 unsigned int name_len; 1985 }; 1986 1987 static int copy_msghdr_from_user(struct msghdr *kmsg, 1988 struct user_msghdr __user *umsg, 1989 struct sockaddr __user **save_addr, 1990 struct iovec **iov) 1991 { 1992 struct user_msghdr msg; 1993 ssize_t err; 1994 1995 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1996 return -EFAULT; 1997 1998 kmsg->msg_control = (void __force *)msg.msg_control; 1999 kmsg->msg_controllen = msg.msg_controllen; 2000 kmsg->msg_flags = msg.msg_flags; 2001 2002 kmsg->msg_namelen = msg.msg_namelen; 2003 if (!msg.msg_name) 2004 kmsg->msg_namelen = 0; 2005 2006 if (kmsg->msg_namelen < 0) 2007 return -EINVAL; 2008 2009 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2010 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2011 2012 if (save_addr) 2013 *save_addr = msg.msg_name; 2014 2015 if (msg.msg_name && kmsg->msg_namelen) { 2016 if (!save_addr) { 2017 err = move_addr_to_kernel(msg.msg_name, 2018 kmsg->msg_namelen, 2019 kmsg->msg_name); 2020 if (err < 0) 2021 return err; 2022 } 2023 } else { 2024 kmsg->msg_name = NULL; 2025 kmsg->msg_namelen = 0; 2026 } 2027 2028 if (msg.msg_iovlen > UIO_MAXIOV) 2029 return -EMSGSIZE; 2030 2031 kmsg->msg_iocb = NULL; 2032 2033 return import_iovec(save_addr ? READ : WRITE, 2034 msg.msg_iov, msg.msg_iovlen, 2035 UIO_FASTIOV, iov, &kmsg->msg_iter); 2036 } 2037 2038 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2039 struct msghdr *msg_sys, unsigned int flags, 2040 struct used_address *used_address, 2041 unsigned int allowed_msghdr_flags) 2042 { 2043 struct compat_msghdr __user *msg_compat = 2044 (struct compat_msghdr __user *)msg; 2045 struct sockaddr_storage address; 2046 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2047 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2048 __aligned(sizeof(__kernel_size_t)); 2049 /* 20 is size of ipv6_pktinfo */ 2050 unsigned char *ctl_buf = ctl; 2051 int ctl_len; 2052 ssize_t err; 2053 2054 msg_sys->msg_name = &address; 2055 2056 if (MSG_CMSG_COMPAT & flags) 2057 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2058 else 2059 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2060 if (err < 0) 2061 return err; 2062 2063 err = -ENOBUFS; 2064 2065 if (msg_sys->msg_controllen > INT_MAX) 2066 goto out_freeiov; 2067 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2068 ctl_len = msg_sys->msg_controllen; 2069 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2070 err = 2071 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2072 sizeof(ctl)); 2073 if (err) 2074 goto out_freeiov; 2075 ctl_buf = msg_sys->msg_control; 2076 ctl_len = msg_sys->msg_controllen; 2077 } else if (ctl_len) { 2078 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2079 CMSG_ALIGN(sizeof(struct cmsghdr))); 2080 if (ctl_len > sizeof(ctl)) { 2081 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2082 if (ctl_buf == NULL) 2083 goto out_freeiov; 2084 } 2085 err = -EFAULT; 2086 /* 2087 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2088 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2089 * checking falls down on this. 2090 */ 2091 if (copy_from_user(ctl_buf, 2092 (void __user __force *)msg_sys->msg_control, 2093 ctl_len)) 2094 goto out_freectl; 2095 msg_sys->msg_control = ctl_buf; 2096 } 2097 msg_sys->msg_flags = flags; 2098 2099 if (sock->file->f_flags & O_NONBLOCK) 2100 msg_sys->msg_flags |= MSG_DONTWAIT; 2101 /* 2102 * If this is sendmmsg() and current destination address is same as 2103 * previously succeeded address, omit asking LSM's decision. 2104 * used_address->name_len is initialized to UINT_MAX so that the first 2105 * destination address never matches. 2106 */ 2107 if (used_address && msg_sys->msg_name && 2108 used_address->name_len == msg_sys->msg_namelen && 2109 !memcmp(&used_address->name, msg_sys->msg_name, 2110 used_address->name_len)) { 2111 err = sock_sendmsg_nosec(sock, msg_sys); 2112 goto out_freectl; 2113 } 2114 err = sock_sendmsg(sock, msg_sys); 2115 /* 2116 * If this is sendmmsg() and sending to current destination address was 2117 * successful, remember it. 2118 */ 2119 if (used_address && err >= 0) { 2120 used_address->name_len = msg_sys->msg_namelen; 2121 if (msg_sys->msg_name) 2122 memcpy(&used_address->name, msg_sys->msg_name, 2123 used_address->name_len); 2124 } 2125 2126 out_freectl: 2127 if (ctl_buf != ctl) 2128 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2129 out_freeiov: 2130 kfree(iov); 2131 return err; 2132 } 2133 2134 /* 2135 * BSD sendmsg interface 2136 */ 2137 2138 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2139 bool forbid_cmsg_compat) 2140 { 2141 int fput_needed, err; 2142 struct msghdr msg_sys; 2143 struct socket *sock; 2144 2145 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2146 return -EINVAL; 2147 2148 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2149 if (!sock) 2150 goto out; 2151 2152 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2153 2154 fput_light(sock->file, fput_needed); 2155 out: 2156 return err; 2157 } 2158 2159 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2160 { 2161 return __sys_sendmsg(fd, msg, flags, true); 2162 } 2163 2164 /* 2165 * Linux sendmmsg interface 2166 */ 2167 2168 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2169 unsigned int flags, bool forbid_cmsg_compat) 2170 { 2171 int fput_needed, err, datagrams; 2172 struct socket *sock; 2173 struct mmsghdr __user *entry; 2174 struct compat_mmsghdr __user *compat_entry; 2175 struct msghdr msg_sys; 2176 struct used_address used_address; 2177 unsigned int oflags = flags; 2178 2179 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2180 return -EINVAL; 2181 2182 if (vlen > UIO_MAXIOV) 2183 vlen = UIO_MAXIOV; 2184 2185 datagrams = 0; 2186 2187 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2188 if (!sock) 2189 return err; 2190 2191 used_address.name_len = UINT_MAX; 2192 entry = mmsg; 2193 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2194 err = 0; 2195 flags |= MSG_BATCH; 2196 2197 while (datagrams < vlen) { 2198 if (datagrams == vlen - 1) 2199 flags = oflags; 2200 2201 if (MSG_CMSG_COMPAT & flags) { 2202 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2203 &msg_sys, flags, &used_address, MSG_EOR); 2204 if (err < 0) 2205 break; 2206 err = __put_user(err, &compat_entry->msg_len); 2207 ++compat_entry; 2208 } else { 2209 err = ___sys_sendmsg(sock, 2210 (struct user_msghdr __user *)entry, 2211 &msg_sys, flags, &used_address, MSG_EOR); 2212 if (err < 0) 2213 break; 2214 err = put_user(err, &entry->msg_len); 2215 ++entry; 2216 } 2217 2218 if (err) 2219 break; 2220 ++datagrams; 2221 if (msg_data_left(&msg_sys)) 2222 break; 2223 cond_resched(); 2224 } 2225 2226 fput_light(sock->file, fput_needed); 2227 2228 /* We only return an error if no datagrams were able to be sent */ 2229 if (datagrams != 0) 2230 return datagrams; 2231 2232 return err; 2233 } 2234 2235 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2236 unsigned int, vlen, unsigned int, flags) 2237 { 2238 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2239 } 2240 2241 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2242 struct msghdr *msg_sys, unsigned int flags, int nosec) 2243 { 2244 struct compat_msghdr __user *msg_compat = 2245 (struct compat_msghdr __user *)msg; 2246 struct iovec iovstack[UIO_FASTIOV]; 2247 struct iovec *iov = iovstack; 2248 unsigned long cmsg_ptr; 2249 int len; 2250 ssize_t err; 2251 2252 /* kernel mode address */ 2253 struct sockaddr_storage addr; 2254 2255 /* user mode address pointers */ 2256 struct sockaddr __user *uaddr; 2257 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2258 2259 msg_sys->msg_name = &addr; 2260 2261 if (MSG_CMSG_COMPAT & flags) 2262 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2263 else 2264 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2265 if (err < 0) 2266 return err; 2267 2268 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2269 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2270 2271 /* We assume all kernel code knows the size of sockaddr_storage */ 2272 msg_sys->msg_namelen = 0; 2273 2274 if (sock->file->f_flags & O_NONBLOCK) 2275 flags |= MSG_DONTWAIT; 2276 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2277 if (err < 0) 2278 goto out_freeiov; 2279 len = err; 2280 2281 if (uaddr != NULL) { 2282 err = move_addr_to_user(&addr, 2283 msg_sys->msg_namelen, uaddr, 2284 uaddr_len); 2285 if (err < 0) 2286 goto out_freeiov; 2287 } 2288 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2289 COMPAT_FLAGS(msg)); 2290 if (err) 2291 goto out_freeiov; 2292 if (MSG_CMSG_COMPAT & flags) 2293 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2294 &msg_compat->msg_controllen); 2295 else 2296 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2297 &msg->msg_controllen); 2298 if (err) 2299 goto out_freeiov; 2300 err = len; 2301 2302 out_freeiov: 2303 kfree(iov); 2304 return err; 2305 } 2306 2307 /* 2308 * BSD recvmsg interface 2309 */ 2310 2311 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2312 bool forbid_cmsg_compat) 2313 { 2314 int fput_needed, err; 2315 struct msghdr msg_sys; 2316 struct socket *sock; 2317 2318 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2319 return -EINVAL; 2320 2321 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2322 if (!sock) 2323 goto out; 2324 2325 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2326 2327 fput_light(sock->file, fput_needed); 2328 out: 2329 return err; 2330 } 2331 2332 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2333 unsigned int, flags) 2334 { 2335 return __sys_recvmsg(fd, msg, flags, true); 2336 } 2337 2338 /* 2339 * Linux recvmmsg interface 2340 */ 2341 2342 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2343 unsigned int flags, struct timespec *timeout) 2344 { 2345 int fput_needed, err, datagrams; 2346 struct socket *sock; 2347 struct mmsghdr __user *entry; 2348 struct compat_mmsghdr __user *compat_entry; 2349 struct msghdr msg_sys; 2350 struct timespec64 end_time; 2351 struct timespec64 timeout64; 2352 2353 if (timeout && 2354 poll_select_set_timeout(&end_time, timeout->tv_sec, 2355 timeout->tv_nsec)) 2356 return -EINVAL; 2357 2358 datagrams = 0; 2359 2360 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2361 if (!sock) 2362 return err; 2363 2364 if (likely(!(flags & MSG_ERRQUEUE))) { 2365 err = sock_error(sock->sk); 2366 if (err) { 2367 datagrams = err; 2368 goto out_put; 2369 } 2370 } 2371 2372 entry = mmsg; 2373 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2374 2375 while (datagrams < vlen) { 2376 /* 2377 * No need to ask LSM for more than the first datagram. 2378 */ 2379 if (MSG_CMSG_COMPAT & flags) { 2380 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2381 &msg_sys, flags & ~MSG_WAITFORONE, 2382 datagrams); 2383 if (err < 0) 2384 break; 2385 err = __put_user(err, &compat_entry->msg_len); 2386 ++compat_entry; 2387 } else { 2388 err = ___sys_recvmsg(sock, 2389 (struct user_msghdr __user *)entry, 2390 &msg_sys, flags & ~MSG_WAITFORONE, 2391 datagrams); 2392 if (err < 0) 2393 break; 2394 err = put_user(err, &entry->msg_len); 2395 ++entry; 2396 } 2397 2398 if (err) 2399 break; 2400 ++datagrams; 2401 2402 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2403 if (flags & MSG_WAITFORONE) 2404 flags |= MSG_DONTWAIT; 2405 2406 if (timeout) { 2407 ktime_get_ts64(&timeout64); 2408 *timeout = timespec64_to_timespec( 2409 timespec64_sub(end_time, timeout64)); 2410 if (timeout->tv_sec < 0) { 2411 timeout->tv_sec = timeout->tv_nsec = 0; 2412 break; 2413 } 2414 2415 /* Timeout, return less than vlen datagrams */ 2416 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2417 break; 2418 } 2419 2420 /* Out of band data, return right away */ 2421 if (msg_sys.msg_flags & MSG_OOB) 2422 break; 2423 cond_resched(); 2424 } 2425 2426 if (err == 0) 2427 goto out_put; 2428 2429 if (datagrams == 0) { 2430 datagrams = err; 2431 goto out_put; 2432 } 2433 2434 /* 2435 * We may return less entries than requested (vlen) if the 2436 * sock is non block and there aren't enough datagrams... 2437 */ 2438 if (err != -EAGAIN) { 2439 /* 2440 * ... or if recvmsg returns an error after we 2441 * received some datagrams, where we record the 2442 * error to return on the next call or if the 2443 * app asks about it using getsockopt(SO_ERROR). 2444 */ 2445 sock->sk->sk_err = -err; 2446 } 2447 out_put: 2448 fput_light(sock->file, fput_needed); 2449 2450 return datagrams; 2451 } 2452 2453 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2454 unsigned int vlen, unsigned int flags, 2455 struct timespec __user *timeout) 2456 { 2457 int datagrams; 2458 struct timespec timeout_sys; 2459 2460 if (flags & MSG_CMSG_COMPAT) 2461 return -EINVAL; 2462 2463 if (!timeout) 2464 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2465 2466 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2467 return -EFAULT; 2468 2469 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2470 2471 if (datagrams > 0 && 2472 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2473 datagrams = -EFAULT; 2474 2475 return datagrams; 2476 } 2477 2478 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2479 unsigned int, vlen, unsigned int, flags, 2480 struct timespec __user *, timeout) 2481 { 2482 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout); 2483 } 2484 2485 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2486 /* Argument list sizes for sys_socketcall */ 2487 #define AL(x) ((x) * sizeof(unsigned long)) 2488 static const unsigned char nargs[21] = { 2489 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2490 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2491 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2492 AL(4), AL(5), AL(4) 2493 }; 2494 2495 #undef AL 2496 2497 /* 2498 * System call vectors. 2499 * 2500 * Argument checking cleaned up. Saved 20% in size. 2501 * This function doesn't need to set the kernel lock because 2502 * it is set by the callees. 2503 */ 2504 2505 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2506 { 2507 unsigned long a[AUDITSC_ARGS]; 2508 unsigned long a0, a1; 2509 int err; 2510 unsigned int len; 2511 2512 if (call < 1 || call > SYS_SENDMMSG) 2513 return -EINVAL; 2514 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2515 2516 len = nargs[call]; 2517 if (len > sizeof(a)) 2518 return -EINVAL; 2519 2520 /* copy_from_user should be SMP safe. */ 2521 if (copy_from_user(a, args, len)) 2522 return -EFAULT; 2523 2524 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2525 if (err) 2526 return err; 2527 2528 a0 = a[0]; 2529 a1 = a[1]; 2530 2531 switch (call) { 2532 case SYS_SOCKET: 2533 err = __sys_socket(a0, a1, a[2]); 2534 break; 2535 case SYS_BIND: 2536 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2537 break; 2538 case SYS_CONNECT: 2539 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2540 break; 2541 case SYS_LISTEN: 2542 err = __sys_listen(a0, a1); 2543 break; 2544 case SYS_ACCEPT: 2545 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2546 (int __user *)a[2], 0); 2547 break; 2548 case SYS_GETSOCKNAME: 2549 err = 2550 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2551 (int __user *)a[2]); 2552 break; 2553 case SYS_GETPEERNAME: 2554 err = 2555 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2556 (int __user *)a[2]); 2557 break; 2558 case SYS_SOCKETPAIR: 2559 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2560 break; 2561 case SYS_SEND: 2562 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2563 NULL, 0); 2564 break; 2565 case SYS_SENDTO: 2566 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2567 (struct sockaddr __user *)a[4], a[5]); 2568 break; 2569 case SYS_RECV: 2570 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2571 NULL, NULL); 2572 break; 2573 case SYS_RECVFROM: 2574 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2575 (struct sockaddr __user *)a[4], 2576 (int __user *)a[5]); 2577 break; 2578 case SYS_SHUTDOWN: 2579 err = __sys_shutdown(a0, a1); 2580 break; 2581 case SYS_SETSOCKOPT: 2582 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2583 a[4]); 2584 break; 2585 case SYS_GETSOCKOPT: 2586 err = 2587 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2588 (int __user *)a[4]); 2589 break; 2590 case SYS_SENDMSG: 2591 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2592 a[2], true); 2593 break; 2594 case SYS_SENDMMSG: 2595 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2596 a[3], true); 2597 break; 2598 case SYS_RECVMSG: 2599 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2600 a[2], true); 2601 break; 2602 case SYS_RECVMMSG: 2603 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2604 a[3], (struct timespec __user *)a[4]); 2605 break; 2606 case SYS_ACCEPT4: 2607 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2608 (int __user *)a[2], a[3]); 2609 break; 2610 default: 2611 err = -EINVAL; 2612 break; 2613 } 2614 return err; 2615 } 2616 2617 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2618 2619 /** 2620 * sock_register - add a socket protocol handler 2621 * @ops: description of protocol 2622 * 2623 * This function is called by a protocol handler that wants to 2624 * advertise its address family, and have it linked into the 2625 * socket interface. The value ops->family corresponds to the 2626 * socket system call protocol family. 2627 */ 2628 int sock_register(const struct net_proto_family *ops) 2629 { 2630 int err; 2631 2632 if (ops->family >= NPROTO) { 2633 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2634 return -ENOBUFS; 2635 } 2636 2637 spin_lock(&net_family_lock); 2638 if (rcu_dereference_protected(net_families[ops->family], 2639 lockdep_is_held(&net_family_lock))) 2640 err = -EEXIST; 2641 else { 2642 rcu_assign_pointer(net_families[ops->family], ops); 2643 err = 0; 2644 } 2645 spin_unlock(&net_family_lock); 2646 2647 pr_info("NET: Registered protocol family %d\n", ops->family); 2648 return err; 2649 } 2650 EXPORT_SYMBOL(sock_register); 2651 2652 /** 2653 * sock_unregister - remove a protocol handler 2654 * @family: protocol family to remove 2655 * 2656 * This function is called by a protocol handler that wants to 2657 * remove its address family, and have it unlinked from the 2658 * new socket creation. 2659 * 2660 * If protocol handler is a module, then it can use module reference 2661 * counts to protect against new references. If protocol handler is not 2662 * a module then it needs to provide its own protection in 2663 * the ops->create routine. 2664 */ 2665 void sock_unregister(int family) 2666 { 2667 BUG_ON(family < 0 || family >= NPROTO); 2668 2669 spin_lock(&net_family_lock); 2670 RCU_INIT_POINTER(net_families[family], NULL); 2671 spin_unlock(&net_family_lock); 2672 2673 synchronize_rcu(); 2674 2675 pr_info("NET: Unregistered protocol family %d\n", family); 2676 } 2677 EXPORT_SYMBOL(sock_unregister); 2678 2679 bool sock_is_registered(int family) 2680 { 2681 return family < NPROTO && rcu_access_pointer(net_families[family]); 2682 } 2683 2684 static int __init sock_init(void) 2685 { 2686 int err; 2687 /* 2688 * Initialize the network sysctl infrastructure. 2689 */ 2690 err = net_sysctl_init(); 2691 if (err) 2692 goto out; 2693 2694 /* 2695 * Initialize skbuff SLAB cache 2696 */ 2697 skb_init(); 2698 2699 /* 2700 * Initialize the protocols module. 2701 */ 2702 2703 init_inodecache(); 2704 2705 err = register_filesystem(&sock_fs_type); 2706 if (err) 2707 goto out_fs; 2708 sock_mnt = kern_mount(&sock_fs_type); 2709 if (IS_ERR(sock_mnt)) { 2710 err = PTR_ERR(sock_mnt); 2711 goto out_mount; 2712 } 2713 2714 /* The real protocol initialization is performed in later initcalls. 2715 */ 2716 2717 #ifdef CONFIG_NETFILTER 2718 err = netfilter_init(); 2719 if (err) 2720 goto out; 2721 #endif 2722 2723 ptp_classifier_init(); 2724 2725 out: 2726 return err; 2727 2728 out_mount: 2729 unregister_filesystem(&sock_fs_type); 2730 out_fs: 2731 goto out; 2732 } 2733 2734 core_initcall(sock_init); /* early initcall */ 2735 2736 #ifdef CONFIG_PROC_FS 2737 void socket_seq_show(struct seq_file *seq) 2738 { 2739 seq_printf(seq, "sockets: used %d\n", 2740 sock_inuse_get(seq->private)); 2741 } 2742 #endif /* CONFIG_PROC_FS */ 2743 2744 #ifdef CONFIG_COMPAT 2745 static int do_siocgstamp(struct net *net, struct socket *sock, 2746 unsigned int cmd, void __user *up) 2747 { 2748 mm_segment_t old_fs = get_fs(); 2749 struct timeval ktv; 2750 int err; 2751 2752 set_fs(KERNEL_DS); 2753 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2754 set_fs(old_fs); 2755 if (!err) 2756 err = compat_put_timeval(&ktv, up); 2757 2758 return err; 2759 } 2760 2761 static int do_siocgstampns(struct net *net, struct socket *sock, 2762 unsigned int cmd, void __user *up) 2763 { 2764 mm_segment_t old_fs = get_fs(); 2765 struct timespec kts; 2766 int err; 2767 2768 set_fs(KERNEL_DS); 2769 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2770 set_fs(old_fs); 2771 if (!err) 2772 err = compat_put_timespec(&kts, up); 2773 2774 return err; 2775 } 2776 2777 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2778 { 2779 struct compat_ifconf ifc32; 2780 struct ifconf ifc; 2781 int err; 2782 2783 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2784 return -EFAULT; 2785 2786 ifc.ifc_len = ifc32.ifc_len; 2787 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2788 2789 rtnl_lock(); 2790 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2791 rtnl_unlock(); 2792 if (err) 2793 return err; 2794 2795 ifc32.ifc_len = ifc.ifc_len; 2796 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2797 return -EFAULT; 2798 2799 return 0; 2800 } 2801 2802 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2803 { 2804 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2805 bool convert_in = false, convert_out = false; 2806 size_t buf_size = 0; 2807 struct ethtool_rxnfc __user *rxnfc = NULL; 2808 struct ifreq ifr; 2809 u32 rule_cnt = 0, actual_rule_cnt; 2810 u32 ethcmd; 2811 u32 data; 2812 int ret; 2813 2814 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2815 return -EFAULT; 2816 2817 compat_rxnfc = compat_ptr(data); 2818 2819 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2820 return -EFAULT; 2821 2822 /* Most ethtool structures are defined without padding. 2823 * Unfortunately struct ethtool_rxnfc is an exception. 2824 */ 2825 switch (ethcmd) { 2826 default: 2827 break; 2828 case ETHTOOL_GRXCLSRLALL: 2829 /* Buffer size is variable */ 2830 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2831 return -EFAULT; 2832 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2833 return -ENOMEM; 2834 buf_size += rule_cnt * sizeof(u32); 2835 /* fall through */ 2836 case ETHTOOL_GRXRINGS: 2837 case ETHTOOL_GRXCLSRLCNT: 2838 case ETHTOOL_GRXCLSRULE: 2839 case ETHTOOL_SRXCLSRLINS: 2840 convert_out = true; 2841 /* fall through */ 2842 case ETHTOOL_SRXCLSRLDEL: 2843 buf_size += sizeof(struct ethtool_rxnfc); 2844 convert_in = true; 2845 rxnfc = compat_alloc_user_space(buf_size); 2846 break; 2847 } 2848 2849 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2850 return -EFAULT; 2851 2852 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2853 2854 if (convert_in) { 2855 /* We expect there to be holes between fs.m_ext and 2856 * fs.ring_cookie and at the end of fs, but nowhere else. 2857 */ 2858 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2859 sizeof(compat_rxnfc->fs.m_ext) != 2860 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2861 sizeof(rxnfc->fs.m_ext)); 2862 BUILD_BUG_ON( 2863 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2864 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2865 offsetof(struct ethtool_rxnfc, fs.location) - 2866 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2867 2868 if (copy_in_user(rxnfc, compat_rxnfc, 2869 (void __user *)(&rxnfc->fs.m_ext + 1) - 2870 (void __user *)rxnfc) || 2871 copy_in_user(&rxnfc->fs.ring_cookie, 2872 &compat_rxnfc->fs.ring_cookie, 2873 (void __user *)(&rxnfc->fs.location + 1) - 2874 (void __user *)&rxnfc->fs.ring_cookie) || 2875 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2876 sizeof(rxnfc->rule_cnt))) 2877 return -EFAULT; 2878 } 2879 2880 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2881 if (ret) 2882 return ret; 2883 2884 if (convert_out) { 2885 if (copy_in_user(compat_rxnfc, rxnfc, 2886 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2887 (const void __user *)rxnfc) || 2888 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2889 &rxnfc->fs.ring_cookie, 2890 (const void __user *)(&rxnfc->fs.location + 1) - 2891 (const void __user *)&rxnfc->fs.ring_cookie) || 2892 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2893 sizeof(rxnfc->rule_cnt))) 2894 return -EFAULT; 2895 2896 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2897 /* As an optimisation, we only copy the actual 2898 * number of rules that the underlying 2899 * function returned. Since Mallory might 2900 * change the rule count in user memory, we 2901 * check that it is less than the rule count 2902 * originally given (as the user buffer size), 2903 * which has been range-checked. 2904 */ 2905 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2906 return -EFAULT; 2907 if (actual_rule_cnt < rule_cnt) 2908 rule_cnt = actual_rule_cnt; 2909 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2910 &rxnfc->rule_locs[0], 2911 rule_cnt * sizeof(u32))) 2912 return -EFAULT; 2913 } 2914 } 2915 2916 return 0; 2917 } 2918 2919 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2920 { 2921 compat_uptr_t uptr32; 2922 struct ifreq ifr; 2923 void __user *saved; 2924 int err; 2925 2926 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2927 return -EFAULT; 2928 2929 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2930 return -EFAULT; 2931 2932 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2933 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2934 2935 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2936 if (!err) { 2937 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2938 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2939 err = -EFAULT; 2940 } 2941 return err; 2942 } 2943 2944 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2945 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2946 struct compat_ifreq __user *u_ifreq32) 2947 { 2948 struct ifreq ifreq; 2949 u32 data32; 2950 2951 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2952 return -EFAULT; 2953 if (get_user(data32, &u_ifreq32->ifr_data)) 2954 return -EFAULT; 2955 ifreq.ifr_data = compat_ptr(data32); 2956 2957 return dev_ioctl(net, cmd, &ifreq, NULL); 2958 } 2959 2960 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2961 struct compat_ifreq __user *uifr32) 2962 { 2963 struct ifreq ifr; 2964 struct compat_ifmap __user *uifmap32; 2965 int err; 2966 2967 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2968 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2969 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2970 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2971 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2972 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2973 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2974 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2975 if (err) 2976 return -EFAULT; 2977 2978 err = dev_ioctl(net, cmd, &ifr, NULL); 2979 2980 if (cmd == SIOCGIFMAP && !err) { 2981 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2982 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2983 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2984 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2985 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2986 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2987 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2988 if (err) 2989 err = -EFAULT; 2990 } 2991 return err; 2992 } 2993 2994 struct rtentry32 { 2995 u32 rt_pad1; 2996 struct sockaddr rt_dst; /* target address */ 2997 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2998 struct sockaddr rt_genmask; /* target network mask (IP) */ 2999 unsigned short rt_flags; 3000 short rt_pad2; 3001 u32 rt_pad3; 3002 unsigned char rt_tos; 3003 unsigned char rt_class; 3004 short rt_pad4; 3005 short rt_metric; /* +1 for binary compatibility! */ 3006 /* char * */ u32 rt_dev; /* forcing the device at add */ 3007 u32 rt_mtu; /* per route MTU/Window */ 3008 u32 rt_window; /* Window clamping */ 3009 unsigned short rt_irtt; /* Initial RTT */ 3010 }; 3011 3012 struct in6_rtmsg32 { 3013 struct in6_addr rtmsg_dst; 3014 struct in6_addr rtmsg_src; 3015 struct in6_addr rtmsg_gateway; 3016 u32 rtmsg_type; 3017 u16 rtmsg_dst_len; 3018 u16 rtmsg_src_len; 3019 u32 rtmsg_metric; 3020 u32 rtmsg_info; 3021 u32 rtmsg_flags; 3022 s32 rtmsg_ifindex; 3023 }; 3024 3025 static int routing_ioctl(struct net *net, struct socket *sock, 3026 unsigned int cmd, void __user *argp) 3027 { 3028 int ret; 3029 void *r = NULL; 3030 struct in6_rtmsg r6; 3031 struct rtentry r4; 3032 char devname[16]; 3033 u32 rtdev; 3034 mm_segment_t old_fs = get_fs(); 3035 3036 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3037 struct in6_rtmsg32 __user *ur6 = argp; 3038 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3039 3 * sizeof(struct in6_addr)); 3040 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3041 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3042 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3043 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3044 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3045 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3046 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3047 3048 r = (void *) &r6; 3049 } else { /* ipv4 */ 3050 struct rtentry32 __user *ur4 = argp; 3051 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3052 3 * sizeof(struct sockaddr)); 3053 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3054 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3055 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3056 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3057 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3058 ret |= get_user(rtdev, &(ur4->rt_dev)); 3059 if (rtdev) { 3060 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3061 r4.rt_dev = (char __user __force *)devname; 3062 devname[15] = 0; 3063 } else 3064 r4.rt_dev = NULL; 3065 3066 r = (void *) &r4; 3067 } 3068 3069 if (ret) { 3070 ret = -EFAULT; 3071 goto out; 3072 } 3073 3074 set_fs(KERNEL_DS); 3075 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3076 set_fs(old_fs); 3077 3078 out: 3079 return ret; 3080 } 3081 3082 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3083 * for some operations; this forces use of the newer bridge-utils that 3084 * use compatible ioctls 3085 */ 3086 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3087 { 3088 compat_ulong_t tmp; 3089 3090 if (get_user(tmp, argp)) 3091 return -EFAULT; 3092 if (tmp == BRCTL_GET_VERSION) 3093 return BRCTL_VERSION + 1; 3094 return -EINVAL; 3095 } 3096 3097 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3098 unsigned int cmd, unsigned long arg) 3099 { 3100 void __user *argp = compat_ptr(arg); 3101 struct sock *sk = sock->sk; 3102 struct net *net = sock_net(sk); 3103 3104 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3105 return compat_ifr_data_ioctl(net, cmd, argp); 3106 3107 switch (cmd) { 3108 case SIOCSIFBR: 3109 case SIOCGIFBR: 3110 return old_bridge_ioctl(argp); 3111 case SIOCGIFCONF: 3112 return compat_dev_ifconf(net, argp); 3113 case SIOCETHTOOL: 3114 return ethtool_ioctl(net, argp); 3115 case SIOCWANDEV: 3116 return compat_siocwandev(net, argp); 3117 case SIOCGIFMAP: 3118 case SIOCSIFMAP: 3119 return compat_sioc_ifmap(net, cmd, argp); 3120 case SIOCADDRT: 3121 case SIOCDELRT: 3122 return routing_ioctl(net, sock, cmd, argp); 3123 case SIOCGSTAMP: 3124 return do_siocgstamp(net, sock, cmd, argp); 3125 case SIOCGSTAMPNS: 3126 return do_siocgstampns(net, sock, cmd, argp); 3127 case SIOCBONDSLAVEINFOQUERY: 3128 case SIOCBONDINFOQUERY: 3129 case SIOCSHWTSTAMP: 3130 case SIOCGHWTSTAMP: 3131 return compat_ifr_data_ioctl(net, cmd, argp); 3132 3133 case FIOSETOWN: 3134 case SIOCSPGRP: 3135 case FIOGETOWN: 3136 case SIOCGPGRP: 3137 case SIOCBRADDBR: 3138 case SIOCBRDELBR: 3139 case SIOCGIFVLAN: 3140 case SIOCSIFVLAN: 3141 case SIOCADDDLCI: 3142 case SIOCDELDLCI: 3143 case SIOCGSKNS: 3144 return sock_ioctl(file, cmd, arg); 3145 3146 case SIOCGIFFLAGS: 3147 case SIOCSIFFLAGS: 3148 case SIOCGIFMETRIC: 3149 case SIOCSIFMETRIC: 3150 case SIOCGIFMTU: 3151 case SIOCSIFMTU: 3152 case SIOCGIFMEM: 3153 case SIOCSIFMEM: 3154 case SIOCGIFHWADDR: 3155 case SIOCSIFHWADDR: 3156 case SIOCADDMULTI: 3157 case SIOCDELMULTI: 3158 case SIOCGIFINDEX: 3159 case SIOCGIFADDR: 3160 case SIOCSIFADDR: 3161 case SIOCSIFHWBROADCAST: 3162 case SIOCDIFADDR: 3163 case SIOCGIFBRDADDR: 3164 case SIOCSIFBRDADDR: 3165 case SIOCGIFDSTADDR: 3166 case SIOCSIFDSTADDR: 3167 case SIOCGIFNETMASK: 3168 case SIOCSIFNETMASK: 3169 case SIOCSIFPFLAGS: 3170 case SIOCGIFPFLAGS: 3171 case SIOCGIFTXQLEN: 3172 case SIOCSIFTXQLEN: 3173 case SIOCBRADDIF: 3174 case SIOCBRDELIF: 3175 case SIOCSIFNAME: 3176 case SIOCGMIIPHY: 3177 case SIOCGMIIREG: 3178 case SIOCSMIIREG: 3179 case SIOCSARP: 3180 case SIOCGARP: 3181 case SIOCDARP: 3182 case SIOCATMARK: 3183 case SIOCBONDENSLAVE: 3184 case SIOCBONDRELEASE: 3185 case SIOCBONDSETHWADDR: 3186 case SIOCBONDCHANGEACTIVE: 3187 case SIOCGIFNAME: 3188 return sock_do_ioctl(net, sock, cmd, arg); 3189 } 3190 3191 return -ENOIOCTLCMD; 3192 } 3193 3194 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3195 unsigned long arg) 3196 { 3197 struct socket *sock = file->private_data; 3198 int ret = -ENOIOCTLCMD; 3199 struct sock *sk; 3200 struct net *net; 3201 3202 sk = sock->sk; 3203 net = sock_net(sk); 3204 3205 if (sock->ops->compat_ioctl) 3206 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3207 3208 if (ret == -ENOIOCTLCMD && 3209 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3210 ret = compat_wext_handle_ioctl(net, cmd, arg); 3211 3212 if (ret == -ENOIOCTLCMD) 3213 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3214 3215 return ret; 3216 } 3217 #endif 3218 3219 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3220 { 3221 return sock->ops->bind(sock, addr, addrlen); 3222 } 3223 EXPORT_SYMBOL(kernel_bind); 3224 3225 int kernel_listen(struct socket *sock, int backlog) 3226 { 3227 return sock->ops->listen(sock, backlog); 3228 } 3229 EXPORT_SYMBOL(kernel_listen); 3230 3231 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3232 { 3233 struct sock *sk = sock->sk; 3234 int err; 3235 3236 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3237 newsock); 3238 if (err < 0) 3239 goto done; 3240 3241 err = sock->ops->accept(sock, *newsock, flags, true); 3242 if (err < 0) { 3243 sock_release(*newsock); 3244 *newsock = NULL; 3245 goto done; 3246 } 3247 3248 (*newsock)->ops = sock->ops; 3249 __module_get((*newsock)->ops->owner); 3250 3251 done: 3252 return err; 3253 } 3254 EXPORT_SYMBOL(kernel_accept); 3255 3256 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3257 int flags) 3258 { 3259 return sock->ops->connect(sock, addr, addrlen, flags); 3260 } 3261 EXPORT_SYMBOL(kernel_connect); 3262 3263 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3264 { 3265 return sock->ops->getname(sock, addr, 0); 3266 } 3267 EXPORT_SYMBOL(kernel_getsockname); 3268 3269 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3270 { 3271 return sock->ops->getname(sock, addr, 1); 3272 } 3273 EXPORT_SYMBOL(kernel_getpeername); 3274 3275 int kernel_getsockopt(struct socket *sock, int level, int optname, 3276 char *optval, int *optlen) 3277 { 3278 mm_segment_t oldfs = get_fs(); 3279 char __user *uoptval; 3280 int __user *uoptlen; 3281 int err; 3282 3283 uoptval = (char __user __force *) optval; 3284 uoptlen = (int __user __force *) optlen; 3285 3286 set_fs(KERNEL_DS); 3287 if (level == SOL_SOCKET) 3288 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3289 else 3290 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3291 uoptlen); 3292 set_fs(oldfs); 3293 return err; 3294 } 3295 EXPORT_SYMBOL(kernel_getsockopt); 3296 3297 int kernel_setsockopt(struct socket *sock, int level, int optname, 3298 char *optval, unsigned int optlen) 3299 { 3300 mm_segment_t oldfs = get_fs(); 3301 char __user *uoptval; 3302 int err; 3303 3304 uoptval = (char __user __force *) optval; 3305 3306 set_fs(KERNEL_DS); 3307 if (level == SOL_SOCKET) 3308 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3309 else 3310 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3311 optlen); 3312 set_fs(oldfs); 3313 return err; 3314 } 3315 EXPORT_SYMBOL(kernel_setsockopt); 3316 3317 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3318 size_t size, int flags) 3319 { 3320 if (sock->ops->sendpage) 3321 return sock->ops->sendpage(sock, page, offset, size, flags); 3322 3323 return sock_no_sendpage(sock, page, offset, size, flags); 3324 } 3325 EXPORT_SYMBOL(kernel_sendpage); 3326 3327 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3328 size_t size, int flags) 3329 { 3330 struct socket *sock = sk->sk_socket; 3331 3332 if (sock->ops->sendpage_locked) 3333 return sock->ops->sendpage_locked(sk, page, offset, size, 3334 flags); 3335 3336 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3337 } 3338 EXPORT_SYMBOL(kernel_sendpage_locked); 3339 3340 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3341 { 3342 return sock->ops->shutdown(sock, how); 3343 } 3344 EXPORT_SYMBOL(kernel_sock_shutdown); 3345 3346 /* This routine returns the IP overhead imposed by a socket i.e. 3347 * the length of the underlying IP header, depending on whether 3348 * this is an IPv4 or IPv6 socket and the length from IP options turned 3349 * on at the socket. Assumes that the caller has a lock on the socket. 3350 */ 3351 u32 kernel_sock_ip_overhead(struct sock *sk) 3352 { 3353 struct inet_sock *inet; 3354 struct ip_options_rcu *opt; 3355 u32 overhead = 0; 3356 #if IS_ENABLED(CONFIG_IPV6) 3357 struct ipv6_pinfo *np; 3358 struct ipv6_txoptions *optv6 = NULL; 3359 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3360 3361 if (!sk) 3362 return overhead; 3363 3364 switch (sk->sk_family) { 3365 case AF_INET: 3366 inet = inet_sk(sk); 3367 overhead += sizeof(struct iphdr); 3368 opt = rcu_dereference_protected(inet->inet_opt, 3369 sock_owned_by_user(sk)); 3370 if (opt) 3371 overhead += opt->opt.optlen; 3372 return overhead; 3373 #if IS_ENABLED(CONFIG_IPV6) 3374 case AF_INET6: 3375 np = inet6_sk(sk); 3376 overhead += sizeof(struct ipv6hdr); 3377 if (np) 3378 optv6 = rcu_dereference_protected(np->opt, 3379 sock_owned_by_user(sk)); 3380 if (optv6) 3381 overhead += (optv6->opt_flen + optv6->opt_nflen); 3382 return overhead; 3383 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3384 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3385 return overhead; 3386 } 3387 } 3388 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3389