1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read = new_sync_read, 144 .write = new_sync_write, 145 .read_iter = sock_read_iter, 146 .write_iter = sock_write_iter, 147 .poll = sock_poll, 148 .unlocked_ioctl = sock_ioctl, 149 #ifdef CONFIG_COMPAT 150 .compat_ioctl = compat_sock_ioctl, 151 #endif 152 .mmap = sock_mmap, 153 .release = sock_close, 154 .fasync = sock_fasync, 155 .sendpage = sock_sendpage, 156 .splice_write = generic_splice_sendpage, 157 .splice_read = sock_splice_read, 158 }; 159 160 /* 161 * The protocol list. Each protocol is registered in here. 162 */ 163 164 static DEFINE_SPINLOCK(net_family_lock); 165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 166 167 /* 168 * Statistics counters of the socket lists 169 */ 170 171 static DEFINE_PER_CPU(int, sockets_in_use); 172 173 /* 174 * Support routines. 175 * Move socket addresses back and forth across the kernel/user 176 * divide and look after the messy bits. 177 */ 178 179 /** 180 * move_addr_to_kernel - copy a socket address into kernel space 181 * @uaddr: Address in user space 182 * @kaddr: Address in kernel space 183 * @ulen: Length in user space 184 * 185 * The address is copied into kernel space. If the provided address is 186 * too long an error code of -EINVAL is returned. If the copy gives 187 * invalid addresses -EFAULT is returned. On a success 0 is returned. 188 */ 189 190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 191 { 192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 193 return -EINVAL; 194 if (ulen == 0) 195 return 0; 196 if (copy_from_user(kaddr, uaddr, ulen)) 197 return -EFAULT; 198 return audit_sockaddr(ulen, kaddr); 199 } 200 201 /** 202 * move_addr_to_user - copy an address to user space 203 * @kaddr: kernel space address 204 * @klen: length of address in kernel 205 * @uaddr: user space address 206 * @ulen: pointer to user length field 207 * 208 * The value pointed to by ulen on entry is the buffer length available. 209 * This is overwritten with the buffer space used. -EINVAL is returned 210 * if an overlong buffer is specified or a negative buffer size. -EFAULT 211 * is returned if either the buffer or the length field are not 212 * accessible. 213 * After copying the data up to the limit the user specifies, the true 214 * length of the data is written over the length limit the user 215 * specified. Zero is returned for a success. 216 */ 217 218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 219 void __user *uaddr, int __user *ulen) 220 { 221 int err; 222 int len; 223 224 BUG_ON(klen > sizeof(struct sockaddr_storage)); 225 err = get_user(len, ulen); 226 if (err) 227 return err; 228 if (len > klen) 229 len = klen; 230 if (len < 0) 231 return -EINVAL; 232 if (len) { 233 if (audit_sockaddr(klen, kaddr)) 234 return -ENOMEM; 235 if (copy_to_user(uaddr, kaddr, len)) 236 return -EFAULT; 237 } 238 /* 239 * "fromlen shall refer to the value before truncation.." 240 * 1003.1g 241 */ 242 return __put_user(klen, ulen); 243 } 244 245 static struct kmem_cache *sock_inode_cachep __read_mostly; 246 247 static struct inode *sock_alloc_inode(struct super_block *sb) 248 { 249 struct socket_alloc *ei; 250 struct socket_wq *wq; 251 252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 253 if (!ei) 254 return NULL; 255 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 256 if (!wq) { 257 kmem_cache_free(sock_inode_cachep, ei); 258 return NULL; 259 } 260 init_waitqueue_head(&wq->wait); 261 wq->fasync_list = NULL; 262 RCU_INIT_POINTER(ei->socket.wq, wq); 263 264 ei->socket.state = SS_UNCONNECTED; 265 ei->socket.flags = 0; 266 ei->socket.ops = NULL; 267 ei->socket.sk = NULL; 268 ei->socket.file = NULL; 269 270 return &ei->vfs_inode; 271 } 272 273 static void sock_destroy_inode(struct inode *inode) 274 { 275 struct socket_alloc *ei; 276 struct socket_wq *wq; 277 278 ei = container_of(inode, struct socket_alloc, vfs_inode); 279 wq = rcu_dereference_protected(ei->socket.wq, 1); 280 kfree_rcu(wq, rcu); 281 kmem_cache_free(sock_inode_cachep, ei); 282 } 283 284 static void init_once(void *foo) 285 { 286 struct socket_alloc *ei = (struct socket_alloc *)foo; 287 288 inode_init_once(&ei->vfs_inode); 289 } 290 291 static int init_inodecache(void) 292 { 293 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 294 sizeof(struct socket_alloc), 295 0, 296 (SLAB_HWCACHE_ALIGN | 297 SLAB_RECLAIM_ACCOUNT | 298 SLAB_MEM_SPREAD), 299 init_once); 300 if (sock_inode_cachep == NULL) 301 return -ENOMEM; 302 return 0; 303 } 304 305 static const struct super_operations sockfs_ops = { 306 .alloc_inode = sock_alloc_inode, 307 .destroy_inode = sock_destroy_inode, 308 .statfs = simple_statfs, 309 }; 310 311 /* 312 * sockfs_dname() is called from d_path(). 313 */ 314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 315 { 316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 317 dentry->d_inode->i_ino); 318 } 319 320 static const struct dentry_operations sockfs_dentry_operations = { 321 .d_dname = sockfs_dname, 322 }; 323 324 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 325 int flags, const char *dev_name, void *data) 326 { 327 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 328 &sockfs_dentry_operations, SOCKFS_MAGIC); 329 } 330 331 static struct vfsmount *sock_mnt __read_mostly; 332 333 static struct file_system_type sock_fs_type = { 334 .name = "sockfs", 335 .mount = sockfs_mount, 336 .kill_sb = kill_anon_super, 337 }; 338 339 /* 340 * Obtains the first available file descriptor and sets it up for use. 341 * 342 * These functions create file structures and maps them to fd space 343 * of the current process. On success it returns file descriptor 344 * and file struct implicitly stored in sock->file. 345 * Note that another thread may close file descriptor before we return 346 * from this function. We use the fact that now we do not refer 347 * to socket after mapping. If one day we will need it, this 348 * function will increment ref. count on file by 1. 349 * 350 * In any case returned fd MAY BE not valid! 351 * This race condition is unavoidable 352 * with shared fd spaces, we cannot solve it inside kernel, 353 * but we take care of internal coherence yet. 354 */ 355 356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 357 { 358 struct qstr name = { .name = "" }; 359 struct path path; 360 struct file *file; 361 362 if (dname) { 363 name.name = dname; 364 name.len = strlen(name.name); 365 } else if (sock->sk) { 366 name.name = sock->sk->sk_prot_creator->name; 367 name.len = strlen(name.name); 368 } 369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 370 if (unlikely(!path.dentry)) 371 return ERR_PTR(-ENOMEM); 372 path.mnt = mntget(sock_mnt); 373 374 d_instantiate(path.dentry, SOCK_INODE(sock)); 375 376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 377 &socket_file_ops); 378 if (unlikely(IS_ERR(file))) { 379 /* drop dentry, keep inode */ 380 ihold(path.dentry->d_inode); 381 path_put(&path); 382 return file; 383 } 384 385 sock->file = file; 386 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 387 file->private_data = sock; 388 return file; 389 } 390 EXPORT_SYMBOL(sock_alloc_file); 391 392 static int sock_map_fd(struct socket *sock, int flags) 393 { 394 struct file *newfile; 395 int fd = get_unused_fd_flags(flags); 396 if (unlikely(fd < 0)) 397 return fd; 398 399 newfile = sock_alloc_file(sock, flags, NULL); 400 if (likely(!IS_ERR(newfile))) { 401 fd_install(fd, newfile); 402 return fd; 403 } 404 405 put_unused_fd(fd); 406 return PTR_ERR(newfile); 407 } 408 409 struct socket *sock_from_file(struct file *file, int *err) 410 { 411 if (file->f_op == &socket_file_ops) 412 return file->private_data; /* set in sock_map_fd */ 413 414 *err = -ENOTSOCK; 415 return NULL; 416 } 417 EXPORT_SYMBOL(sock_from_file); 418 419 /** 420 * sockfd_lookup - Go from a file number to its socket slot 421 * @fd: file handle 422 * @err: pointer to an error code return 423 * 424 * The file handle passed in is locked and the socket it is bound 425 * too is returned. If an error occurs the err pointer is overwritten 426 * with a negative errno code and NULL is returned. The function checks 427 * for both invalid handles and passing a handle which is not a socket. 428 * 429 * On a success the socket object pointer is returned. 430 */ 431 432 struct socket *sockfd_lookup(int fd, int *err) 433 { 434 struct file *file; 435 struct socket *sock; 436 437 file = fget(fd); 438 if (!file) { 439 *err = -EBADF; 440 return NULL; 441 } 442 443 sock = sock_from_file(file, err); 444 if (!sock) 445 fput(file); 446 return sock; 447 } 448 EXPORT_SYMBOL(sockfd_lookup); 449 450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 451 { 452 struct fd f = fdget(fd); 453 struct socket *sock; 454 455 *err = -EBADF; 456 if (f.file) { 457 sock = sock_from_file(f.file, err); 458 if (likely(sock)) { 459 *fput_needed = f.flags; 460 return sock; 461 } 462 fdput(f); 463 } 464 return NULL; 465 } 466 467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 470 static ssize_t sockfs_getxattr(struct dentry *dentry, 471 const char *name, void *value, size_t size) 472 { 473 const char *proto_name; 474 size_t proto_size; 475 int error; 476 477 error = -ENODATA; 478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 479 proto_name = dentry->d_name.name; 480 proto_size = strlen(proto_name); 481 482 if (value) { 483 error = -ERANGE; 484 if (proto_size + 1 > size) 485 goto out; 486 487 strncpy(value, proto_name, proto_size + 1); 488 } 489 error = proto_size + 1; 490 } 491 492 out: 493 return error; 494 } 495 496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 497 size_t size) 498 { 499 ssize_t len; 500 ssize_t used = 0; 501 502 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 503 if (len < 0) 504 return len; 505 used += len; 506 if (buffer) { 507 if (size < used) 508 return -ERANGE; 509 buffer += len; 510 } 511 512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 513 used += len; 514 if (buffer) { 515 if (size < used) 516 return -ERANGE; 517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 518 buffer += len; 519 } 520 521 return used; 522 } 523 524 static const struct inode_operations sockfs_inode_ops = { 525 .getxattr = sockfs_getxattr, 526 .listxattr = sockfs_listxattr, 527 }; 528 529 /** 530 * sock_alloc - allocate a socket 531 * 532 * Allocate a new inode and socket object. The two are bound together 533 * and initialised. The socket is then returned. If we are out of inodes 534 * NULL is returned. 535 */ 536 537 static struct socket *sock_alloc(void) 538 { 539 struct inode *inode; 540 struct socket *sock; 541 542 inode = new_inode_pseudo(sock_mnt->mnt_sb); 543 if (!inode) 544 return NULL; 545 546 sock = SOCKET_I(inode); 547 548 kmemcheck_annotate_bitfield(sock, type); 549 inode->i_ino = get_next_ino(); 550 inode->i_mode = S_IFSOCK | S_IRWXUGO; 551 inode->i_uid = current_fsuid(); 552 inode->i_gid = current_fsgid(); 553 inode->i_op = &sockfs_inode_ops; 554 555 this_cpu_add(sockets_in_use, 1); 556 return sock; 557 } 558 559 /** 560 * sock_release - close a socket 561 * @sock: socket to close 562 * 563 * The socket is released from the protocol stack if it has a release 564 * callback, and the inode is then released if the socket is bound to 565 * an inode not a file. 566 */ 567 568 void sock_release(struct socket *sock) 569 { 570 if (sock->ops) { 571 struct module *owner = sock->ops->owner; 572 573 sock->ops->release(sock); 574 sock->ops = NULL; 575 module_put(owner); 576 } 577 578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 579 pr_err("%s: fasync list not empty!\n", __func__); 580 581 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 582 return; 583 584 this_cpu_sub(sockets_in_use, 1); 585 if (!sock->file) { 586 iput(SOCK_INODE(sock)); 587 return; 588 } 589 sock->file = NULL; 590 } 591 EXPORT_SYMBOL(sock_release); 592 593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 594 { 595 u8 flags = *tx_flags; 596 597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 598 flags |= SKBTX_HW_TSTAMP; 599 600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 601 flags |= SKBTX_SW_TSTAMP; 602 603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 604 flags |= SKBTX_SCHED_TSTAMP; 605 606 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 607 flags |= SKBTX_ACK_TSTAMP; 608 609 *tx_flags = flags; 610 } 611 EXPORT_SYMBOL(__sock_tx_timestamp); 612 613 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, 614 size_t size) 615 { 616 return sock->ops->sendmsg(sock, msg, size); 617 } 618 619 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 620 { 621 int err = security_socket_sendmsg(sock, msg, size); 622 623 return err ?: sock_sendmsg_nosec(sock, msg, size); 624 } 625 EXPORT_SYMBOL(sock_sendmsg); 626 627 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 628 struct kvec *vec, size_t num, size_t size) 629 { 630 mm_segment_t oldfs = get_fs(); 631 int result; 632 633 set_fs(KERNEL_DS); 634 /* 635 * the following is safe, since for compiler definitions of kvec and 636 * iovec are identical, yielding the same in-core layout and alignment 637 */ 638 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size); 639 result = sock_sendmsg(sock, msg, size); 640 set_fs(oldfs); 641 return result; 642 } 643 EXPORT_SYMBOL(kernel_sendmsg); 644 645 /* 646 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 647 */ 648 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 649 struct sk_buff *skb) 650 { 651 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 652 struct scm_timestamping tss; 653 int empty = 1; 654 struct skb_shared_hwtstamps *shhwtstamps = 655 skb_hwtstamps(skb); 656 657 /* Race occurred between timestamp enabling and packet 658 receiving. Fill in the current time for now. */ 659 if (need_software_tstamp && skb->tstamp.tv64 == 0) 660 __net_timestamp(skb); 661 662 if (need_software_tstamp) { 663 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 664 struct timeval tv; 665 skb_get_timestamp(skb, &tv); 666 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 667 sizeof(tv), &tv); 668 } else { 669 struct timespec ts; 670 skb_get_timestampns(skb, &ts); 671 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 672 sizeof(ts), &ts); 673 } 674 } 675 676 memset(&tss, 0, sizeof(tss)); 677 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 678 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 679 empty = 0; 680 if (shhwtstamps && 681 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 682 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 683 empty = 0; 684 if (!empty) 685 put_cmsg(msg, SOL_SOCKET, 686 SCM_TIMESTAMPING, sizeof(tss), &tss); 687 } 688 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 689 690 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 691 struct sk_buff *skb) 692 { 693 int ack; 694 695 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 696 return; 697 if (!skb->wifi_acked_valid) 698 return; 699 700 ack = skb->wifi_acked; 701 702 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 703 } 704 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 705 706 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 707 struct sk_buff *skb) 708 { 709 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 710 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 711 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 712 } 713 714 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 715 struct sk_buff *skb) 716 { 717 sock_recv_timestamp(msg, sk, skb); 718 sock_recv_drops(msg, sk, skb); 719 } 720 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 721 722 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 723 size_t size, int flags) 724 { 725 return sock->ops->recvmsg(sock, msg, size, flags); 726 } 727 728 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 729 int flags) 730 { 731 int err = security_socket_recvmsg(sock, msg, size, flags); 732 733 return err ?: sock_recvmsg_nosec(sock, msg, size, flags); 734 } 735 EXPORT_SYMBOL(sock_recvmsg); 736 737 /** 738 * kernel_recvmsg - Receive a message from a socket (kernel space) 739 * @sock: The socket to receive the message from 740 * @msg: Received message 741 * @vec: Input s/g array for message data 742 * @num: Size of input s/g array 743 * @size: Number of bytes to read 744 * @flags: Message flags (MSG_DONTWAIT, etc...) 745 * 746 * On return the msg structure contains the scatter/gather array passed in the 747 * vec argument. The array is modified so that it consists of the unfilled 748 * portion of the original array. 749 * 750 * The returned value is the total number of bytes received, or an error. 751 */ 752 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 753 struct kvec *vec, size_t num, size_t size, int flags) 754 { 755 mm_segment_t oldfs = get_fs(); 756 int result; 757 758 set_fs(KERNEL_DS); 759 /* 760 * the following is safe, since for compiler definitions of kvec and 761 * iovec are identical, yielding the same in-core layout and alignment 762 */ 763 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size); 764 result = sock_recvmsg(sock, msg, size, flags); 765 set_fs(oldfs); 766 return result; 767 } 768 EXPORT_SYMBOL(kernel_recvmsg); 769 770 static ssize_t sock_sendpage(struct file *file, struct page *page, 771 int offset, size_t size, loff_t *ppos, int more) 772 { 773 struct socket *sock; 774 int flags; 775 776 sock = file->private_data; 777 778 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 779 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 780 flags |= more; 781 782 return kernel_sendpage(sock, page, offset, size, flags); 783 } 784 785 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 786 struct pipe_inode_info *pipe, size_t len, 787 unsigned int flags) 788 { 789 struct socket *sock = file->private_data; 790 791 if (unlikely(!sock->ops->splice_read)) 792 return -EINVAL; 793 794 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 795 } 796 797 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 798 { 799 struct file *file = iocb->ki_filp; 800 struct socket *sock = file->private_data; 801 struct msghdr msg = {.msg_iter = *to}; 802 ssize_t res; 803 804 if (file->f_flags & O_NONBLOCK) 805 msg.msg_flags = MSG_DONTWAIT; 806 807 if (iocb->ki_pos != 0) 808 return -ESPIPE; 809 810 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 811 return 0; 812 813 res = sock_recvmsg(sock, &msg, iocb->ki_nbytes, msg.msg_flags); 814 *to = msg.msg_iter; 815 return res; 816 } 817 818 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 819 { 820 struct file *file = iocb->ki_filp; 821 struct socket *sock = file->private_data; 822 struct msghdr msg = {.msg_iter = *from}; 823 ssize_t res; 824 825 if (iocb->ki_pos != 0) 826 return -ESPIPE; 827 828 if (file->f_flags & O_NONBLOCK) 829 msg.msg_flags = MSG_DONTWAIT; 830 831 if (sock->type == SOCK_SEQPACKET) 832 msg.msg_flags |= MSG_EOR; 833 834 res = sock_sendmsg(sock, &msg, iocb->ki_nbytes); 835 *from = msg.msg_iter; 836 return res; 837 } 838 839 /* 840 * Atomic setting of ioctl hooks to avoid race 841 * with module unload. 842 */ 843 844 static DEFINE_MUTEX(br_ioctl_mutex); 845 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 846 847 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 848 { 849 mutex_lock(&br_ioctl_mutex); 850 br_ioctl_hook = hook; 851 mutex_unlock(&br_ioctl_mutex); 852 } 853 EXPORT_SYMBOL(brioctl_set); 854 855 static DEFINE_MUTEX(vlan_ioctl_mutex); 856 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 857 858 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 859 { 860 mutex_lock(&vlan_ioctl_mutex); 861 vlan_ioctl_hook = hook; 862 mutex_unlock(&vlan_ioctl_mutex); 863 } 864 EXPORT_SYMBOL(vlan_ioctl_set); 865 866 static DEFINE_MUTEX(dlci_ioctl_mutex); 867 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 868 869 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 870 { 871 mutex_lock(&dlci_ioctl_mutex); 872 dlci_ioctl_hook = hook; 873 mutex_unlock(&dlci_ioctl_mutex); 874 } 875 EXPORT_SYMBOL(dlci_ioctl_set); 876 877 static long sock_do_ioctl(struct net *net, struct socket *sock, 878 unsigned int cmd, unsigned long arg) 879 { 880 int err; 881 void __user *argp = (void __user *)arg; 882 883 err = sock->ops->ioctl(sock, cmd, arg); 884 885 /* 886 * If this ioctl is unknown try to hand it down 887 * to the NIC driver. 888 */ 889 if (err == -ENOIOCTLCMD) 890 err = dev_ioctl(net, cmd, argp); 891 892 return err; 893 } 894 895 /* 896 * With an ioctl, arg may well be a user mode pointer, but we don't know 897 * what to do with it - that's up to the protocol still. 898 */ 899 900 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 901 { 902 struct socket *sock; 903 struct sock *sk; 904 void __user *argp = (void __user *)arg; 905 int pid, err; 906 struct net *net; 907 908 sock = file->private_data; 909 sk = sock->sk; 910 net = sock_net(sk); 911 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 912 err = dev_ioctl(net, cmd, argp); 913 } else 914 #ifdef CONFIG_WEXT_CORE 915 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 916 err = dev_ioctl(net, cmd, argp); 917 } else 918 #endif 919 switch (cmd) { 920 case FIOSETOWN: 921 case SIOCSPGRP: 922 err = -EFAULT; 923 if (get_user(pid, (int __user *)argp)) 924 break; 925 f_setown(sock->file, pid, 1); 926 err = 0; 927 break; 928 case FIOGETOWN: 929 case SIOCGPGRP: 930 err = put_user(f_getown(sock->file), 931 (int __user *)argp); 932 break; 933 case SIOCGIFBR: 934 case SIOCSIFBR: 935 case SIOCBRADDBR: 936 case SIOCBRDELBR: 937 err = -ENOPKG; 938 if (!br_ioctl_hook) 939 request_module("bridge"); 940 941 mutex_lock(&br_ioctl_mutex); 942 if (br_ioctl_hook) 943 err = br_ioctl_hook(net, cmd, argp); 944 mutex_unlock(&br_ioctl_mutex); 945 break; 946 case SIOCGIFVLAN: 947 case SIOCSIFVLAN: 948 err = -ENOPKG; 949 if (!vlan_ioctl_hook) 950 request_module("8021q"); 951 952 mutex_lock(&vlan_ioctl_mutex); 953 if (vlan_ioctl_hook) 954 err = vlan_ioctl_hook(net, argp); 955 mutex_unlock(&vlan_ioctl_mutex); 956 break; 957 case SIOCADDDLCI: 958 case SIOCDELDLCI: 959 err = -ENOPKG; 960 if (!dlci_ioctl_hook) 961 request_module("dlci"); 962 963 mutex_lock(&dlci_ioctl_mutex); 964 if (dlci_ioctl_hook) 965 err = dlci_ioctl_hook(cmd, argp); 966 mutex_unlock(&dlci_ioctl_mutex); 967 break; 968 default: 969 err = sock_do_ioctl(net, sock, cmd, arg); 970 break; 971 } 972 return err; 973 } 974 975 int sock_create_lite(int family, int type, int protocol, struct socket **res) 976 { 977 int err; 978 struct socket *sock = NULL; 979 980 err = security_socket_create(family, type, protocol, 1); 981 if (err) 982 goto out; 983 984 sock = sock_alloc(); 985 if (!sock) { 986 err = -ENOMEM; 987 goto out; 988 } 989 990 sock->type = type; 991 err = security_socket_post_create(sock, family, type, protocol, 1); 992 if (err) 993 goto out_release; 994 995 out: 996 *res = sock; 997 return err; 998 out_release: 999 sock_release(sock); 1000 sock = NULL; 1001 goto out; 1002 } 1003 EXPORT_SYMBOL(sock_create_lite); 1004 1005 /* No kernel lock held - perfect */ 1006 static unsigned int sock_poll(struct file *file, poll_table *wait) 1007 { 1008 unsigned int busy_flag = 0; 1009 struct socket *sock; 1010 1011 /* 1012 * We can't return errors to poll, so it's either yes or no. 1013 */ 1014 sock = file->private_data; 1015 1016 if (sk_can_busy_loop(sock->sk)) { 1017 /* this socket can poll_ll so tell the system call */ 1018 busy_flag = POLL_BUSY_LOOP; 1019 1020 /* once, only if requested by syscall */ 1021 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1022 sk_busy_loop(sock->sk, 1); 1023 } 1024 1025 return busy_flag | sock->ops->poll(file, sock, wait); 1026 } 1027 1028 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1029 { 1030 struct socket *sock = file->private_data; 1031 1032 return sock->ops->mmap(file, sock, vma); 1033 } 1034 1035 static int sock_close(struct inode *inode, struct file *filp) 1036 { 1037 sock_release(SOCKET_I(inode)); 1038 return 0; 1039 } 1040 1041 /* 1042 * Update the socket async list 1043 * 1044 * Fasync_list locking strategy. 1045 * 1046 * 1. fasync_list is modified only under process context socket lock 1047 * i.e. under semaphore. 1048 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1049 * or under socket lock 1050 */ 1051 1052 static int sock_fasync(int fd, struct file *filp, int on) 1053 { 1054 struct socket *sock = filp->private_data; 1055 struct sock *sk = sock->sk; 1056 struct socket_wq *wq; 1057 1058 if (sk == NULL) 1059 return -EINVAL; 1060 1061 lock_sock(sk); 1062 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1063 fasync_helper(fd, filp, on, &wq->fasync_list); 1064 1065 if (!wq->fasync_list) 1066 sock_reset_flag(sk, SOCK_FASYNC); 1067 else 1068 sock_set_flag(sk, SOCK_FASYNC); 1069 1070 release_sock(sk); 1071 return 0; 1072 } 1073 1074 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1075 1076 int sock_wake_async(struct socket *sock, int how, int band) 1077 { 1078 struct socket_wq *wq; 1079 1080 if (!sock) 1081 return -1; 1082 rcu_read_lock(); 1083 wq = rcu_dereference(sock->wq); 1084 if (!wq || !wq->fasync_list) { 1085 rcu_read_unlock(); 1086 return -1; 1087 } 1088 switch (how) { 1089 case SOCK_WAKE_WAITD: 1090 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1091 break; 1092 goto call_kill; 1093 case SOCK_WAKE_SPACE: 1094 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1095 break; 1096 /* fall through */ 1097 case SOCK_WAKE_IO: 1098 call_kill: 1099 kill_fasync(&wq->fasync_list, SIGIO, band); 1100 break; 1101 case SOCK_WAKE_URG: 1102 kill_fasync(&wq->fasync_list, SIGURG, band); 1103 } 1104 rcu_read_unlock(); 1105 return 0; 1106 } 1107 EXPORT_SYMBOL(sock_wake_async); 1108 1109 int __sock_create(struct net *net, int family, int type, int protocol, 1110 struct socket **res, int kern) 1111 { 1112 int err; 1113 struct socket *sock; 1114 const struct net_proto_family *pf; 1115 1116 /* 1117 * Check protocol is in range 1118 */ 1119 if (family < 0 || family >= NPROTO) 1120 return -EAFNOSUPPORT; 1121 if (type < 0 || type >= SOCK_MAX) 1122 return -EINVAL; 1123 1124 /* Compatibility. 1125 1126 This uglymoron is moved from INET layer to here to avoid 1127 deadlock in module load. 1128 */ 1129 if (family == PF_INET && type == SOCK_PACKET) { 1130 static int warned; 1131 if (!warned) { 1132 warned = 1; 1133 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1134 current->comm); 1135 } 1136 family = PF_PACKET; 1137 } 1138 1139 err = security_socket_create(family, type, protocol, kern); 1140 if (err) 1141 return err; 1142 1143 /* 1144 * Allocate the socket and allow the family to set things up. if 1145 * the protocol is 0, the family is instructed to select an appropriate 1146 * default. 1147 */ 1148 sock = sock_alloc(); 1149 if (!sock) { 1150 net_warn_ratelimited("socket: no more sockets\n"); 1151 return -ENFILE; /* Not exactly a match, but its the 1152 closest posix thing */ 1153 } 1154 1155 sock->type = type; 1156 1157 #ifdef CONFIG_MODULES 1158 /* Attempt to load a protocol module if the find failed. 1159 * 1160 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1161 * requested real, full-featured networking support upon configuration. 1162 * Otherwise module support will break! 1163 */ 1164 if (rcu_access_pointer(net_families[family]) == NULL) 1165 request_module("net-pf-%d", family); 1166 #endif 1167 1168 rcu_read_lock(); 1169 pf = rcu_dereference(net_families[family]); 1170 err = -EAFNOSUPPORT; 1171 if (!pf) 1172 goto out_release; 1173 1174 /* 1175 * We will call the ->create function, that possibly is in a loadable 1176 * module, so we have to bump that loadable module refcnt first. 1177 */ 1178 if (!try_module_get(pf->owner)) 1179 goto out_release; 1180 1181 /* Now protected by module ref count */ 1182 rcu_read_unlock(); 1183 1184 err = pf->create(net, sock, protocol, kern); 1185 if (err < 0) 1186 goto out_module_put; 1187 1188 /* 1189 * Now to bump the refcnt of the [loadable] module that owns this 1190 * socket at sock_release time we decrement its refcnt. 1191 */ 1192 if (!try_module_get(sock->ops->owner)) 1193 goto out_module_busy; 1194 1195 /* 1196 * Now that we're done with the ->create function, the [loadable] 1197 * module can have its refcnt decremented 1198 */ 1199 module_put(pf->owner); 1200 err = security_socket_post_create(sock, family, type, protocol, kern); 1201 if (err) 1202 goto out_sock_release; 1203 *res = sock; 1204 1205 return 0; 1206 1207 out_module_busy: 1208 err = -EAFNOSUPPORT; 1209 out_module_put: 1210 sock->ops = NULL; 1211 module_put(pf->owner); 1212 out_sock_release: 1213 sock_release(sock); 1214 return err; 1215 1216 out_release: 1217 rcu_read_unlock(); 1218 goto out_sock_release; 1219 } 1220 EXPORT_SYMBOL(__sock_create); 1221 1222 int sock_create(int family, int type, int protocol, struct socket **res) 1223 { 1224 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1225 } 1226 EXPORT_SYMBOL(sock_create); 1227 1228 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1229 { 1230 return __sock_create(&init_net, family, type, protocol, res, 1); 1231 } 1232 EXPORT_SYMBOL(sock_create_kern); 1233 1234 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1235 { 1236 int retval; 1237 struct socket *sock; 1238 int flags; 1239 1240 /* Check the SOCK_* constants for consistency. */ 1241 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1242 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1243 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1244 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1245 1246 flags = type & ~SOCK_TYPE_MASK; 1247 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1248 return -EINVAL; 1249 type &= SOCK_TYPE_MASK; 1250 1251 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1252 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1253 1254 retval = sock_create(family, type, protocol, &sock); 1255 if (retval < 0) 1256 goto out; 1257 1258 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1259 if (retval < 0) 1260 goto out_release; 1261 1262 out: 1263 /* It may be already another descriptor 8) Not kernel problem. */ 1264 return retval; 1265 1266 out_release: 1267 sock_release(sock); 1268 return retval; 1269 } 1270 1271 /* 1272 * Create a pair of connected sockets. 1273 */ 1274 1275 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1276 int __user *, usockvec) 1277 { 1278 struct socket *sock1, *sock2; 1279 int fd1, fd2, err; 1280 struct file *newfile1, *newfile2; 1281 int flags; 1282 1283 flags = type & ~SOCK_TYPE_MASK; 1284 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1285 return -EINVAL; 1286 type &= SOCK_TYPE_MASK; 1287 1288 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1289 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1290 1291 /* 1292 * Obtain the first socket and check if the underlying protocol 1293 * supports the socketpair call. 1294 */ 1295 1296 err = sock_create(family, type, protocol, &sock1); 1297 if (err < 0) 1298 goto out; 1299 1300 err = sock_create(family, type, protocol, &sock2); 1301 if (err < 0) 1302 goto out_release_1; 1303 1304 err = sock1->ops->socketpair(sock1, sock2); 1305 if (err < 0) 1306 goto out_release_both; 1307 1308 fd1 = get_unused_fd_flags(flags); 1309 if (unlikely(fd1 < 0)) { 1310 err = fd1; 1311 goto out_release_both; 1312 } 1313 1314 fd2 = get_unused_fd_flags(flags); 1315 if (unlikely(fd2 < 0)) { 1316 err = fd2; 1317 goto out_put_unused_1; 1318 } 1319 1320 newfile1 = sock_alloc_file(sock1, flags, NULL); 1321 if (unlikely(IS_ERR(newfile1))) { 1322 err = PTR_ERR(newfile1); 1323 goto out_put_unused_both; 1324 } 1325 1326 newfile2 = sock_alloc_file(sock2, flags, NULL); 1327 if (IS_ERR(newfile2)) { 1328 err = PTR_ERR(newfile2); 1329 goto out_fput_1; 1330 } 1331 1332 err = put_user(fd1, &usockvec[0]); 1333 if (err) 1334 goto out_fput_both; 1335 1336 err = put_user(fd2, &usockvec[1]); 1337 if (err) 1338 goto out_fput_both; 1339 1340 audit_fd_pair(fd1, fd2); 1341 1342 fd_install(fd1, newfile1); 1343 fd_install(fd2, newfile2); 1344 /* fd1 and fd2 may be already another descriptors. 1345 * Not kernel problem. 1346 */ 1347 1348 return 0; 1349 1350 out_fput_both: 1351 fput(newfile2); 1352 fput(newfile1); 1353 put_unused_fd(fd2); 1354 put_unused_fd(fd1); 1355 goto out; 1356 1357 out_fput_1: 1358 fput(newfile1); 1359 put_unused_fd(fd2); 1360 put_unused_fd(fd1); 1361 sock_release(sock2); 1362 goto out; 1363 1364 out_put_unused_both: 1365 put_unused_fd(fd2); 1366 out_put_unused_1: 1367 put_unused_fd(fd1); 1368 out_release_both: 1369 sock_release(sock2); 1370 out_release_1: 1371 sock_release(sock1); 1372 out: 1373 return err; 1374 } 1375 1376 /* 1377 * Bind a name to a socket. Nothing much to do here since it's 1378 * the protocol's responsibility to handle the local address. 1379 * 1380 * We move the socket address to kernel space before we call 1381 * the protocol layer (having also checked the address is ok). 1382 */ 1383 1384 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1385 { 1386 struct socket *sock; 1387 struct sockaddr_storage address; 1388 int err, fput_needed; 1389 1390 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1391 if (sock) { 1392 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1393 if (err >= 0) { 1394 err = security_socket_bind(sock, 1395 (struct sockaddr *)&address, 1396 addrlen); 1397 if (!err) 1398 err = sock->ops->bind(sock, 1399 (struct sockaddr *) 1400 &address, addrlen); 1401 } 1402 fput_light(sock->file, fput_needed); 1403 } 1404 return err; 1405 } 1406 1407 /* 1408 * Perform a listen. Basically, we allow the protocol to do anything 1409 * necessary for a listen, and if that works, we mark the socket as 1410 * ready for listening. 1411 */ 1412 1413 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1414 { 1415 struct socket *sock; 1416 int err, fput_needed; 1417 int somaxconn; 1418 1419 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1420 if (sock) { 1421 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1422 if ((unsigned int)backlog > somaxconn) 1423 backlog = somaxconn; 1424 1425 err = security_socket_listen(sock, backlog); 1426 if (!err) 1427 err = sock->ops->listen(sock, backlog); 1428 1429 fput_light(sock->file, fput_needed); 1430 } 1431 return err; 1432 } 1433 1434 /* 1435 * For accept, we attempt to create a new socket, set up the link 1436 * with the client, wake up the client, then return the new 1437 * connected fd. We collect the address of the connector in kernel 1438 * space and move it to user at the very end. This is unclean because 1439 * we open the socket then return an error. 1440 * 1441 * 1003.1g adds the ability to recvmsg() to query connection pending 1442 * status to recvmsg. We need to add that support in a way thats 1443 * clean when we restucture accept also. 1444 */ 1445 1446 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1447 int __user *, upeer_addrlen, int, flags) 1448 { 1449 struct socket *sock, *newsock; 1450 struct file *newfile; 1451 int err, len, newfd, fput_needed; 1452 struct sockaddr_storage address; 1453 1454 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1455 return -EINVAL; 1456 1457 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1458 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1459 1460 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1461 if (!sock) 1462 goto out; 1463 1464 err = -ENFILE; 1465 newsock = sock_alloc(); 1466 if (!newsock) 1467 goto out_put; 1468 1469 newsock->type = sock->type; 1470 newsock->ops = sock->ops; 1471 1472 /* 1473 * We don't need try_module_get here, as the listening socket (sock) 1474 * has the protocol module (sock->ops->owner) held. 1475 */ 1476 __module_get(newsock->ops->owner); 1477 1478 newfd = get_unused_fd_flags(flags); 1479 if (unlikely(newfd < 0)) { 1480 err = newfd; 1481 sock_release(newsock); 1482 goto out_put; 1483 } 1484 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1485 if (unlikely(IS_ERR(newfile))) { 1486 err = PTR_ERR(newfile); 1487 put_unused_fd(newfd); 1488 sock_release(newsock); 1489 goto out_put; 1490 } 1491 1492 err = security_socket_accept(sock, newsock); 1493 if (err) 1494 goto out_fd; 1495 1496 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1497 if (err < 0) 1498 goto out_fd; 1499 1500 if (upeer_sockaddr) { 1501 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1502 &len, 2) < 0) { 1503 err = -ECONNABORTED; 1504 goto out_fd; 1505 } 1506 err = move_addr_to_user(&address, 1507 len, upeer_sockaddr, upeer_addrlen); 1508 if (err < 0) 1509 goto out_fd; 1510 } 1511 1512 /* File flags are not inherited via accept() unlike another OSes. */ 1513 1514 fd_install(newfd, newfile); 1515 err = newfd; 1516 1517 out_put: 1518 fput_light(sock->file, fput_needed); 1519 out: 1520 return err; 1521 out_fd: 1522 fput(newfile); 1523 put_unused_fd(newfd); 1524 goto out_put; 1525 } 1526 1527 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1528 int __user *, upeer_addrlen) 1529 { 1530 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1531 } 1532 1533 /* 1534 * Attempt to connect to a socket with the server address. The address 1535 * is in user space so we verify it is OK and move it to kernel space. 1536 * 1537 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1538 * break bindings 1539 * 1540 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1541 * other SEQPACKET protocols that take time to connect() as it doesn't 1542 * include the -EINPROGRESS status for such sockets. 1543 */ 1544 1545 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1546 int, addrlen) 1547 { 1548 struct socket *sock; 1549 struct sockaddr_storage address; 1550 int err, fput_needed; 1551 1552 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1553 if (!sock) 1554 goto out; 1555 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1556 if (err < 0) 1557 goto out_put; 1558 1559 err = 1560 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1561 if (err) 1562 goto out_put; 1563 1564 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1565 sock->file->f_flags); 1566 out_put: 1567 fput_light(sock->file, fput_needed); 1568 out: 1569 return err; 1570 } 1571 1572 /* 1573 * Get the local address ('name') of a socket object. Move the obtained 1574 * name to user space. 1575 */ 1576 1577 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1578 int __user *, usockaddr_len) 1579 { 1580 struct socket *sock; 1581 struct sockaddr_storage address; 1582 int len, err, fput_needed; 1583 1584 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1585 if (!sock) 1586 goto out; 1587 1588 err = security_socket_getsockname(sock); 1589 if (err) 1590 goto out_put; 1591 1592 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1593 if (err) 1594 goto out_put; 1595 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1596 1597 out_put: 1598 fput_light(sock->file, fput_needed); 1599 out: 1600 return err; 1601 } 1602 1603 /* 1604 * Get the remote address ('name') of a socket object. Move the obtained 1605 * name to user space. 1606 */ 1607 1608 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1609 int __user *, usockaddr_len) 1610 { 1611 struct socket *sock; 1612 struct sockaddr_storage address; 1613 int len, err, fput_needed; 1614 1615 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1616 if (sock != NULL) { 1617 err = security_socket_getpeername(sock); 1618 if (err) { 1619 fput_light(sock->file, fput_needed); 1620 return err; 1621 } 1622 1623 err = 1624 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1625 1); 1626 if (!err) 1627 err = move_addr_to_user(&address, len, usockaddr, 1628 usockaddr_len); 1629 fput_light(sock->file, fput_needed); 1630 } 1631 return err; 1632 } 1633 1634 /* 1635 * Send a datagram to a given address. We move the address into kernel 1636 * space and check the user space data area is readable before invoking 1637 * the protocol. 1638 */ 1639 1640 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1641 unsigned int, flags, struct sockaddr __user *, addr, 1642 int, addr_len) 1643 { 1644 struct socket *sock; 1645 struct sockaddr_storage address; 1646 int err; 1647 struct msghdr msg; 1648 struct iovec iov; 1649 int fput_needed; 1650 1651 if (len > INT_MAX) 1652 len = INT_MAX; 1653 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1654 if (!sock) 1655 goto out; 1656 1657 iov.iov_base = buff; 1658 iov.iov_len = len; 1659 msg.msg_name = NULL; 1660 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len); 1661 msg.msg_control = NULL; 1662 msg.msg_controllen = 0; 1663 msg.msg_namelen = 0; 1664 if (addr) { 1665 err = move_addr_to_kernel(addr, addr_len, &address); 1666 if (err < 0) 1667 goto out_put; 1668 msg.msg_name = (struct sockaddr *)&address; 1669 msg.msg_namelen = addr_len; 1670 } 1671 if (sock->file->f_flags & O_NONBLOCK) 1672 flags |= MSG_DONTWAIT; 1673 msg.msg_flags = flags; 1674 err = sock_sendmsg(sock, &msg, len); 1675 1676 out_put: 1677 fput_light(sock->file, fput_needed); 1678 out: 1679 return err; 1680 } 1681 1682 /* 1683 * Send a datagram down a socket. 1684 */ 1685 1686 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1687 unsigned int, flags) 1688 { 1689 return sys_sendto(fd, buff, len, flags, NULL, 0); 1690 } 1691 1692 /* 1693 * Receive a frame from the socket and optionally record the address of the 1694 * sender. We verify the buffers are writable and if needed move the 1695 * sender address from kernel to user space. 1696 */ 1697 1698 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1699 unsigned int, flags, struct sockaddr __user *, addr, 1700 int __user *, addr_len) 1701 { 1702 struct socket *sock; 1703 struct iovec iov; 1704 struct msghdr msg; 1705 struct sockaddr_storage address; 1706 int err, err2; 1707 int fput_needed; 1708 1709 if (size > INT_MAX) 1710 size = INT_MAX; 1711 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1712 if (!sock) 1713 goto out; 1714 1715 msg.msg_control = NULL; 1716 msg.msg_controllen = 0; 1717 iov.iov_len = size; 1718 iov.iov_base = ubuf; 1719 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size); 1720 /* Save some cycles and don't copy the address if not needed */ 1721 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1722 /* We assume all kernel code knows the size of sockaddr_storage */ 1723 msg.msg_namelen = 0; 1724 if (sock->file->f_flags & O_NONBLOCK) 1725 flags |= MSG_DONTWAIT; 1726 err = sock_recvmsg(sock, &msg, size, flags); 1727 1728 if (err >= 0 && addr != NULL) { 1729 err2 = move_addr_to_user(&address, 1730 msg.msg_namelen, addr, addr_len); 1731 if (err2 < 0) 1732 err = err2; 1733 } 1734 1735 fput_light(sock->file, fput_needed); 1736 out: 1737 return err; 1738 } 1739 1740 /* 1741 * Receive a datagram from a socket. 1742 */ 1743 1744 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1745 unsigned int, flags) 1746 { 1747 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1748 } 1749 1750 /* 1751 * Set a socket option. Because we don't know the option lengths we have 1752 * to pass the user mode parameter for the protocols to sort out. 1753 */ 1754 1755 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1756 char __user *, optval, int, optlen) 1757 { 1758 int err, fput_needed; 1759 struct socket *sock; 1760 1761 if (optlen < 0) 1762 return -EINVAL; 1763 1764 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1765 if (sock != NULL) { 1766 err = security_socket_setsockopt(sock, level, optname); 1767 if (err) 1768 goto out_put; 1769 1770 if (level == SOL_SOCKET) 1771 err = 1772 sock_setsockopt(sock, level, optname, optval, 1773 optlen); 1774 else 1775 err = 1776 sock->ops->setsockopt(sock, level, optname, optval, 1777 optlen); 1778 out_put: 1779 fput_light(sock->file, fput_needed); 1780 } 1781 return err; 1782 } 1783 1784 /* 1785 * Get a socket option. Because we don't know the option lengths we have 1786 * to pass a user mode parameter for the protocols to sort out. 1787 */ 1788 1789 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1790 char __user *, optval, int __user *, optlen) 1791 { 1792 int err, fput_needed; 1793 struct socket *sock; 1794 1795 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1796 if (sock != NULL) { 1797 err = security_socket_getsockopt(sock, level, optname); 1798 if (err) 1799 goto out_put; 1800 1801 if (level == SOL_SOCKET) 1802 err = 1803 sock_getsockopt(sock, level, optname, optval, 1804 optlen); 1805 else 1806 err = 1807 sock->ops->getsockopt(sock, level, optname, optval, 1808 optlen); 1809 out_put: 1810 fput_light(sock->file, fput_needed); 1811 } 1812 return err; 1813 } 1814 1815 /* 1816 * Shutdown a socket. 1817 */ 1818 1819 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1820 { 1821 int err, fput_needed; 1822 struct socket *sock; 1823 1824 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1825 if (sock != NULL) { 1826 err = security_socket_shutdown(sock, how); 1827 if (!err) 1828 err = sock->ops->shutdown(sock, how); 1829 fput_light(sock->file, fput_needed); 1830 } 1831 return err; 1832 } 1833 1834 /* A couple of helpful macros for getting the address of the 32/64 bit 1835 * fields which are the same type (int / unsigned) on our platforms. 1836 */ 1837 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1838 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1839 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1840 1841 struct used_address { 1842 struct sockaddr_storage name; 1843 unsigned int name_len; 1844 }; 1845 1846 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg, 1847 struct user_msghdr __user *umsg, 1848 struct sockaddr __user **save_addr, 1849 struct iovec **iov) 1850 { 1851 struct sockaddr __user *uaddr; 1852 struct iovec __user *uiov; 1853 size_t nr_segs; 1854 ssize_t err; 1855 1856 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1857 __get_user(uaddr, &umsg->msg_name) || 1858 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1859 __get_user(uiov, &umsg->msg_iov) || 1860 __get_user(nr_segs, &umsg->msg_iovlen) || 1861 __get_user(kmsg->msg_control, &umsg->msg_control) || 1862 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1863 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1864 return -EFAULT; 1865 1866 if (!uaddr) 1867 kmsg->msg_namelen = 0; 1868 1869 if (kmsg->msg_namelen < 0) 1870 return -EINVAL; 1871 1872 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1873 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1874 1875 if (save_addr) 1876 *save_addr = uaddr; 1877 1878 if (uaddr && kmsg->msg_namelen) { 1879 if (!save_addr) { 1880 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1881 kmsg->msg_name); 1882 if (err < 0) 1883 return err; 1884 } 1885 } else { 1886 kmsg->msg_name = NULL; 1887 kmsg->msg_namelen = 0; 1888 } 1889 1890 if (nr_segs > UIO_MAXIOV) 1891 return -EMSGSIZE; 1892 1893 err = rw_copy_check_uvector(save_addr ? READ : WRITE, 1894 uiov, nr_segs, 1895 UIO_FASTIOV, *iov, iov); 1896 if (err >= 0) 1897 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE, 1898 *iov, nr_segs, err); 1899 return err; 1900 } 1901 1902 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1903 struct msghdr *msg_sys, unsigned int flags, 1904 struct used_address *used_address) 1905 { 1906 struct compat_msghdr __user *msg_compat = 1907 (struct compat_msghdr __user *)msg; 1908 struct sockaddr_storage address; 1909 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1910 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1911 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1912 /* 20 is size of ipv6_pktinfo */ 1913 unsigned char *ctl_buf = ctl; 1914 int ctl_len, total_len; 1915 ssize_t err; 1916 1917 msg_sys->msg_name = &address; 1918 1919 if (MSG_CMSG_COMPAT & flags) 1920 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1921 else 1922 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1923 if (err < 0) 1924 goto out_freeiov; 1925 total_len = err; 1926 1927 err = -ENOBUFS; 1928 1929 if (msg_sys->msg_controllen > INT_MAX) 1930 goto out_freeiov; 1931 ctl_len = msg_sys->msg_controllen; 1932 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1933 err = 1934 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1935 sizeof(ctl)); 1936 if (err) 1937 goto out_freeiov; 1938 ctl_buf = msg_sys->msg_control; 1939 ctl_len = msg_sys->msg_controllen; 1940 } else if (ctl_len) { 1941 if (ctl_len > sizeof(ctl)) { 1942 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1943 if (ctl_buf == NULL) 1944 goto out_freeiov; 1945 } 1946 err = -EFAULT; 1947 /* 1948 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1949 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1950 * checking falls down on this. 1951 */ 1952 if (copy_from_user(ctl_buf, 1953 (void __user __force *)msg_sys->msg_control, 1954 ctl_len)) 1955 goto out_freectl; 1956 msg_sys->msg_control = ctl_buf; 1957 } 1958 msg_sys->msg_flags = flags; 1959 1960 if (sock->file->f_flags & O_NONBLOCK) 1961 msg_sys->msg_flags |= MSG_DONTWAIT; 1962 /* 1963 * If this is sendmmsg() and current destination address is same as 1964 * previously succeeded address, omit asking LSM's decision. 1965 * used_address->name_len is initialized to UINT_MAX so that the first 1966 * destination address never matches. 1967 */ 1968 if (used_address && msg_sys->msg_name && 1969 used_address->name_len == msg_sys->msg_namelen && 1970 !memcmp(&used_address->name, msg_sys->msg_name, 1971 used_address->name_len)) { 1972 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 1973 goto out_freectl; 1974 } 1975 err = sock_sendmsg(sock, msg_sys, total_len); 1976 /* 1977 * If this is sendmmsg() and sending to current destination address was 1978 * successful, remember it. 1979 */ 1980 if (used_address && err >= 0) { 1981 used_address->name_len = msg_sys->msg_namelen; 1982 if (msg_sys->msg_name) 1983 memcpy(&used_address->name, msg_sys->msg_name, 1984 used_address->name_len); 1985 } 1986 1987 out_freectl: 1988 if (ctl_buf != ctl) 1989 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1990 out_freeiov: 1991 if (iov != iovstack) 1992 kfree(iov); 1993 return err; 1994 } 1995 1996 /* 1997 * BSD sendmsg interface 1998 */ 1999 2000 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2001 { 2002 int fput_needed, err; 2003 struct msghdr msg_sys; 2004 struct socket *sock; 2005 2006 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2007 if (!sock) 2008 goto out; 2009 2010 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2011 2012 fput_light(sock->file, fput_needed); 2013 out: 2014 return err; 2015 } 2016 2017 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2018 { 2019 if (flags & MSG_CMSG_COMPAT) 2020 return -EINVAL; 2021 return __sys_sendmsg(fd, msg, flags); 2022 } 2023 2024 /* 2025 * Linux sendmmsg interface 2026 */ 2027 2028 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2029 unsigned int flags) 2030 { 2031 int fput_needed, err, datagrams; 2032 struct socket *sock; 2033 struct mmsghdr __user *entry; 2034 struct compat_mmsghdr __user *compat_entry; 2035 struct msghdr msg_sys; 2036 struct used_address used_address; 2037 2038 if (vlen > UIO_MAXIOV) 2039 vlen = UIO_MAXIOV; 2040 2041 datagrams = 0; 2042 2043 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2044 if (!sock) 2045 return err; 2046 2047 used_address.name_len = UINT_MAX; 2048 entry = mmsg; 2049 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2050 err = 0; 2051 2052 while (datagrams < vlen) { 2053 if (MSG_CMSG_COMPAT & flags) { 2054 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2055 &msg_sys, flags, &used_address); 2056 if (err < 0) 2057 break; 2058 err = __put_user(err, &compat_entry->msg_len); 2059 ++compat_entry; 2060 } else { 2061 err = ___sys_sendmsg(sock, 2062 (struct user_msghdr __user *)entry, 2063 &msg_sys, flags, &used_address); 2064 if (err < 0) 2065 break; 2066 err = put_user(err, &entry->msg_len); 2067 ++entry; 2068 } 2069 2070 if (err) 2071 break; 2072 ++datagrams; 2073 } 2074 2075 fput_light(sock->file, fput_needed); 2076 2077 /* We only return an error if no datagrams were able to be sent */ 2078 if (datagrams != 0) 2079 return datagrams; 2080 2081 return err; 2082 } 2083 2084 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2085 unsigned int, vlen, unsigned int, flags) 2086 { 2087 if (flags & MSG_CMSG_COMPAT) 2088 return -EINVAL; 2089 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2090 } 2091 2092 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2093 struct msghdr *msg_sys, unsigned int flags, int nosec) 2094 { 2095 struct compat_msghdr __user *msg_compat = 2096 (struct compat_msghdr __user *)msg; 2097 struct iovec iovstack[UIO_FASTIOV]; 2098 struct iovec *iov = iovstack; 2099 unsigned long cmsg_ptr; 2100 int total_len, len; 2101 ssize_t err; 2102 2103 /* kernel mode address */ 2104 struct sockaddr_storage addr; 2105 2106 /* user mode address pointers */ 2107 struct sockaddr __user *uaddr; 2108 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2109 2110 msg_sys->msg_name = &addr; 2111 2112 if (MSG_CMSG_COMPAT & flags) 2113 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2114 else 2115 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2116 if (err < 0) 2117 goto out_freeiov; 2118 total_len = err; 2119 2120 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2121 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2122 2123 /* We assume all kernel code knows the size of sockaddr_storage */ 2124 msg_sys->msg_namelen = 0; 2125 2126 if (sock->file->f_flags & O_NONBLOCK) 2127 flags |= MSG_DONTWAIT; 2128 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2129 total_len, flags); 2130 if (err < 0) 2131 goto out_freeiov; 2132 len = err; 2133 2134 if (uaddr != NULL) { 2135 err = move_addr_to_user(&addr, 2136 msg_sys->msg_namelen, uaddr, 2137 uaddr_len); 2138 if (err < 0) 2139 goto out_freeiov; 2140 } 2141 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2142 COMPAT_FLAGS(msg)); 2143 if (err) 2144 goto out_freeiov; 2145 if (MSG_CMSG_COMPAT & flags) 2146 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2147 &msg_compat->msg_controllen); 2148 else 2149 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2150 &msg->msg_controllen); 2151 if (err) 2152 goto out_freeiov; 2153 err = len; 2154 2155 out_freeiov: 2156 if (iov != iovstack) 2157 kfree(iov); 2158 return err; 2159 } 2160 2161 /* 2162 * BSD recvmsg interface 2163 */ 2164 2165 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2166 { 2167 int fput_needed, err; 2168 struct msghdr msg_sys; 2169 struct socket *sock; 2170 2171 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2172 if (!sock) 2173 goto out; 2174 2175 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2176 2177 fput_light(sock->file, fput_needed); 2178 out: 2179 return err; 2180 } 2181 2182 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2183 unsigned int, flags) 2184 { 2185 if (flags & MSG_CMSG_COMPAT) 2186 return -EINVAL; 2187 return __sys_recvmsg(fd, msg, flags); 2188 } 2189 2190 /* 2191 * Linux recvmmsg interface 2192 */ 2193 2194 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2195 unsigned int flags, struct timespec *timeout) 2196 { 2197 int fput_needed, err, datagrams; 2198 struct socket *sock; 2199 struct mmsghdr __user *entry; 2200 struct compat_mmsghdr __user *compat_entry; 2201 struct msghdr msg_sys; 2202 struct timespec end_time; 2203 2204 if (timeout && 2205 poll_select_set_timeout(&end_time, timeout->tv_sec, 2206 timeout->tv_nsec)) 2207 return -EINVAL; 2208 2209 datagrams = 0; 2210 2211 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2212 if (!sock) 2213 return err; 2214 2215 err = sock_error(sock->sk); 2216 if (err) 2217 goto out_put; 2218 2219 entry = mmsg; 2220 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2221 2222 while (datagrams < vlen) { 2223 /* 2224 * No need to ask LSM for more than the first datagram. 2225 */ 2226 if (MSG_CMSG_COMPAT & flags) { 2227 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2228 &msg_sys, flags & ~MSG_WAITFORONE, 2229 datagrams); 2230 if (err < 0) 2231 break; 2232 err = __put_user(err, &compat_entry->msg_len); 2233 ++compat_entry; 2234 } else { 2235 err = ___sys_recvmsg(sock, 2236 (struct user_msghdr __user *)entry, 2237 &msg_sys, flags & ~MSG_WAITFORONE, 2238 datagrams); 2239 if (err < 0) 2240 break; 2241 err = put_user(err, &entry->msg_len); 2242 ++entry; 2243 } 2244 2245 if (err) 2246 break; 2247 ++datagrams; 2248 2249 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2250 if (flags & MSG_WAITFORONE) 2251 flags |= MSG_DONTWAIT; 2252 2253 if (timeout) { 2254 ktime_get_ts(timeout); 2255 *timeout = timespec_sub(end_time, *timeout); 2256 if (timeout->tv_sec < 0) { 2257 timeout->tv_sec = timeout->tv_nsec = 0; 2258 break; 2259 } 2260 2261 /* Timeout, return less than vlen datagrams */ 2262 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2263 break; 2264 } 2265 2266 /* Out of band data, return right away */ 2267 if (msg_sys.msg_flags & MSG_OOB) 2268 break; 2269 } 2270 2271 out_put: 2272 fput_light(sock->file, fput_needed); 2273 2274 if (err == 0) 2275 return datagrams; 2276 2277 if (datagrams != 0) { 2278 /* 2279 * We may return less entries than requested (vlen) if the 2280 * sock is non block and there aren't enough datagrams... 2281 */ 2282 if (err != -EAGAIN) { 2283 /* 2284 * ... or if recvmsg returns an error after we 2285 * received some datagrams, where we record the 2286 * error to return on the next call or if the 2287 * app asks about it using getsockopt(SO_ERROR). 2288 */ 2289 sock->sk->sk_err = -err; 2290 } 2291 2292 return datagrams; 2293 } 2294 2295 return err; 2296 } 2297 2298 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2299 unsigned int, vlen, unsigned int, flags, 2300 struct timespec __user *, timeout) 2301 { 2302 int datagrams; 2303 struct timespec timeout_sys; 2304 2305 if (flags & MSG_CMSG_COMPAT) 2306 return -EINVAL; 2307 2308 if (!timeout) 2309 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2310 2311 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2312 return -EFAULT; 2313 2314 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2315 2316 if (datagrams > 0 && 2317 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2318 datagrams = -EFAULT; 2319 2320 return datagrams; 2321 } 2322 2323 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2324 /* Argument list sizes for sys_socketcall */ 2325 #define AL(x) ((x) * sizeof(unsigned long)) 2326 static const unsigned char nargs[21] = { 2327 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2328 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2329 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2330 AL(4), AL(5), AL(4) 2331 }; 2332 2333 #undef AL 2334 2335 /* 2336 * System call vectors. 2337 * 2338 * Argument checking cleaned up. Saved 20% in size. 2339 * This function doesn't need to set the kernel lock because 2340 * it is set by the callees. 2341 */ 2342 2343 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2344 { 2345 unsigned long a[AUDITSC_ARGS]; 2346 unsigned long a0, a1; 2347 int err; 2348 unsigned int len; 2349 2350 if (call < 1 || call > SYS_SENDMMSG) 2351 return -EINVAL; 2352 2353 len = nargs[call]; 2354 if (len > sizeof(a)) 2355 return -EINVAL; 2356 2357 /* copy_from_user should be SMP safe. */ 2358 if (copy_from_user(a, args, len)) 2359 return -EFAULT; 2360 2361 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2362 if (err) 2363 return err; 2364 2365 a0 = a[0]; 2366 a1 = a[1]; 2367 2368 switch (call) { 2369 case SYS_SOCKET: 2370 err = sys_socket(a0, a1, a[2]); 2371 break; 2372 case SYS_BIND: 2373 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2374 break; 2375 case SYS_CONNECT: 2376 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2377 break; 2378 case SYS_LISTEN: 2379 err = sys_listen(a0, a1); 2380 break; 2381 case SYS_ACCEPT: 2382 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2383 (int __user *)a[2], 0); 2384 break; 2385 case SYS_GETSOCKNAME: 2386 err = 2387 sys_getsockname(a0, (struct sockaddr __user *)a1, 2388 (int __user *)a[2]); 2389 break; 2390 case SYS_GETPEERNAME: 2391 err = 2392 sys_getpeername(a0, (struct sockaddr __user *)a1, 2393 (int __user *)a[2]); 2394 break; 2395 case SYS_SOCKETPAIR: 2396 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2397 break; 2398 case SYS_SEND: 2399 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2400 break; 2401 case SYS_SENDTO: 2402 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2403 (struct sockaddr __user *)a[4], a[5]); 2404 break; 2405 case SYS_RECV: 2406 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2407 break; 2408 case SYS_RECVFROM: 2409 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2410 (struct sockaddr __user *)a[4], 2411 (int __user *)a[5]); 2412 break; 2413 case SYS_SHUTDOWN: 2414 err = sys_shutdown(a0, a1); 2415 break; 2416 case SYS_SETSOCKOPT: 2417 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2418 break; 2419 case SYS_GETSOCKOPT: 2420 err = 2421 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2422 (int __user *)a[4]); 2423 break; 2424 case SYS_SENDMSG: 2425 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2426 break; 2427 case SYS_SENDMMSG: 2428 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2429 break; 2430 case SYS_RECVMSG: 2431 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2432 break; 2433 case SYS_RECVMMSG: 2434 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2435 (struct timespec __user *)a[4]); 2436 break; 2437 case SYS_ACCEPT4: 2438 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2439 (int __user *)a[2], a[3]); 2440 break; 2441 default: 2442 err = -EINVAL; 2443 break; 2444 } 2445 return err; 2446 } 2447 2448 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2449 2450 /** 2451 * sock_register - add a socket protocol handler 2452 * @ops: description of protocol 2453 * 2454 * This function is called by a protocol handler that wants to 2455 * advertise its address family, and have it linked into the 2456 * socket interface. The value ops->family corresponds to the 2457 * socket system call protocol family. 2458 */ 2459 int sock_register(const struct net_proto_family *ops) 2460 { 2461 int err; 2462 2463 if (ops->family >= NPROTO) { 2464 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2465 return -ENOBUFS; 2466 } 2467 2468 spin_lock(&net_family_lock); 2469 if (rcu_dereference_protected(net_families[ops->family], 2470 lockdep_is_held(&net_family_lock))) 2471 err = -EEXIST; 2472 else { 2473 rcu_assign_pointer(net_families[ops->family], ops); 2474 err = 0; 2475 } 2476 spin_unlock(&net_family_lock); 2477 2478 pr_info("NET: Registered protocol family %d\n", ops->family); 2479 return err; 2480 } 2481 EXPORT_SYMBOL(sock_register); 2482 2483 /** 2484 * sock_unregister - remove a protocol handler 2485 * @family: protocol family to remove 2486 * 2487 * This function is called by a protocol handler that wants to 2488 * remove its address family, and have it unlinked from the 2489 * new socket creation. 2490 * 2491 * If protocol handler is a module, then it can use module reference 2492 * counts to protect against new references. If protocol handler is not 2493 * a module then it needs to provide its own protection in 2494 * the ops->create routine. 2495 */ 2496 void sock_unregister(int family) 2497 { 2498 BUG_ON(family < 0 || family >= NPROTO); 2499 2500 spin_lock(&net_family_lock); 2501 RCU_INIT_POINTER(net_families[family], NULL); 2502 spin_unlock(&net_family_lock); 2503 2504 synchronize_rcu(); 2505 2506 pr_info("NET: Unregistered protocol family %d\n", family); 2507 } 2508 EXPORT_SYMBOL(sock_unregister); 2509 2510 static int __init sock_init(void) 2511 { 2512 int err; 2513 /* 2514 * Initialize the network sysctl infrastructure. 2515 */ 2516 err = net_sysctl_init(); 2517 if (err) 2518 goto out; 2519 2520 /* 2521 * Initialize skbuff SLAB cache 2522 */ 2523 skb_init(); 2524 2525 /* 2526 * Initialize the protocols module. 2527 */ 2528 2529 init_inodecache(); 2530 2531 err = register_filesystem(&sock_fs_type); 2532 if (err) 2533 goto out_fs; 2534 sock_mnt = kern_mount(&sock_fs_type); 2535 if (IS_ERR(sock_mnt)) { 2536 err = PTR_ERR(sock_mnt); 2537 goto out_mount; 2538 } 2539 2540 /* The real protocol initialization is performed in later initcalls. 2541 */ 2542 2543 #ifdef CONFIG_NETFILTER 2544 err = netfilter_init(); 2545 if (err) 2546 goto out; 2547 #endif 2548 2549 ptp_classifier_init(); 2550 2551 out: 2552 return err; 2553 2554 out_mount: 2555 unregister_filesystem(&sock_fs_type); 2556 out_fs: 2557 goto out; 2558 } 2559 2560 core_initcall(sock_init); /* early initcall */ 2561 2562 #ifdef CONFIG_PROC_FS 2563 void socket_seq_show(struct seq_file *seq) 2564 { 2565 int cpu; 2566 int counter = 0; 2567 2568 for_each_possible_cpu(cpu) 2569 counter += per_cpu(sockets_in_use, cpu); 2570 2571 /* It can be negative, by the way. 8) */ 2572 if (counter < 0) 2573 counter = 0; 2574 2575 seq_printf(seq, "sockets: used %d\n", counter); 2576 } 2577 #endif /* CONFIG_PROC_FS */ 2578 2579 #ifdef CONFIG_COMPAT 2580 static int do_siocgstamp(struct net *net, struct socket *sock, 2581 unsigned int cmd, void __user *up) 2582 { 2583 mm_segment_t old_fs = get_fs(); 2584 struct timeval ktv; 2585 int err; 2586 2587 set_fs(KERNEL_DS); 2588 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2589 set_fs(old_fs); 2590 if (!err) 2591 err = compat_put_timeval(&ktv, up); 2592 2593 return err; 2594 } 2595 2596 static int do_siocgstampns(struct net *net, struct socket *sock, 2597 unsigned int cmd, void __user *up) 2598 { 2599 mm_segment_t old_fs = get_fs(); 2600 struct timespec kts; 2601 int err; 2602 2603 set_fs(KERNEL_DS); 2604 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2605 set_fs(old_fs); 2606 if (!err) 2607 err = compat_put_timespec(&kts, up); 2608 2609 return err; 2610 } 2611 2612 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2613 { 2614 struct ifreq __user *uifr; 2615 int err; 2616 2617 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2618 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2619 return -EFAULT; 2620 2621 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2622 if (err) 2623 return err; 2624 2625 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2626 return -EFAULT; 2627 2628 return 0; 2629 } 2630 2631 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2632 { 2633 struct compat_ifconf ifc32; 2634 struct ifconf ifc; 2635 struct ifconf __user *uifc; 2636 struct compat_ifreq __user *ifr32; 2637 struct ifreq __user *ifr; 2638 unsigned int i, j; 2639 int err; 2640 2641 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2642 return -EFAULT; 2643 2644 memset(&ifc, 0, sizeof(ifc)); 2645 if (ifc32.ifcbuf == 0) { 2646 ifc32.ifc_len = 0; 2647 ifc.ifc_len = 0; 2648 ifc.ifc_req = NULL; 2649 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2650 } else { 2651 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2652 sizeof(struct ifreq); 2653 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2654 ifc.ifc_len = len; 2655 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2656 ifr32 = compat_ptr(ifc32.ifcbuf); 2657 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2658 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2659 return -EFAULT; 2660 ifr++; 2661 ifr32++; 2662 } 2663 } 2664 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2665 return -EFAULT; 2666 2667 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2668 if (err) 2669 return err; 2670 2671 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2672 return -EFAULT; 2673 2674 ifr = ifc.ifc_req; 2675 ifr32 = compat_ptr(ifc32.ifcbuf); 2676 for (i = 0, j = 0; 2677 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2678 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2679 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2680 return -EFAULT; 2681 ifr32++; 2682 ifr++; 2683 } 2684 2685 if (ifc32.ifcbuf == 0) { 2686 /* Translate from 64-bit structure multiple to 2687 * a 32-bit one. 2688 */ 2689 i = ifc.ifc_len; 2690 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2691 ifc32.ifc_len = i; 2692 } else { 2693 ifc32.ifc_len = i; 2694 } 2695 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2696 return -EFAULT; 2697 2698 return 0; 2699 } 2700 2701 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2702 { 2703 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2704 bool convert_in = false, convert_out = false; 2705 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2706 struct ethtool_rxnfc __user *rxnfc; 2707 struct ifreq __user *ifr; 2708 u32 rule_cnt = 0, actual_rule_cnt; 2709 u32 ethcmd; 2710 u32 data; 2711 int ret; 2712 2713 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2714 return -EFAULT; 2715 2716 compat_rxnfc = compat_ptr(data); 2717 2718 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2719 return -EFAULT; 2720 2721 /* Most ethtool structures are defined without padding. 2722 * Unfortunately struct ethtool_rxnfc is an exception. 2723 */ 2724 switch (ethcmd) { 2725 default: 2726 break; 2727 case ETHTOOL_GRXCLSRLALL: 2728 /* Buffer size is variable */ 2729 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2730 return -EFAULT; 2731 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2732 return -ENOMEM; 2733 buf_size += rule_cnt * sizeof(u32); 2734 /* fall through */ 2735 case ETHTOOL_GRXRINGS: 2736 case ETHTOOL_GRXCLSRLCNT: 2737 case ETHTOOL_GRXCLSRULE: 2738 case ETHTOOL_SRXCLSRLINS: 2739 convert_out = true; 2740 /* fall through */ 2741 case ETHTOOL_SRXCLSRLDEL: 2742 buf_size += sizeof(struct ethtool_rxnfc); 2743 convert_in = true; 2744 break; 2745 } 2746 2747 ifr = compat_alloc_user_space(buf_size); 2748 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2749 2750 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2751 return -EFAULT; 2752 2753 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2754 &ifr->ifr_ifru.ifru_data)) 2755 return -EFAULT; 2756 2757 if (convert_in) { 2758 /* We expect there to be holes between fs.m_ext and 2759 * fs.ring_cookie and at the end of fs, but nowhere else. 2760 */ 2761 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2762 sizeof(compat_rxnfc->fs.m_ext) != 2763 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2764 sizeof(rxnfc->fs.m_ext)); 2765 BUILD_BUG_ON( 2766 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2767 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2768 offsetof(struct ethtool_rxnfc, fs.location) - 2769 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2770 2771 if (copy_in_user(rxnfc, compat_rxnfc, 2772 (void __user *)(&rxnfc->fs.m_ext + 1) - 2773 (void __user *)rxnfc) || 2774 copy_in_user(&rxnfc->fs.ring_cookie, 2775 &compat_rxnfc->fs.ring_cookie, 2776 (void __user *)(&rxnfc->fs.location + 1) - 2777 (void __user *)&rxnfc->fs.ring_cookie) || 2778 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2779 sizeof(rxnfc->rule_cnt))) 2780 return -EFAULT; 2781 } 2782 2783 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2784 if (ret) 2785 return ret; 2786 2787 if (convert_out) { 2788 if (copy_in_user(compat_rxnfc, rxnfc, 2789 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2790 (const void __user *)rxnfc) || 2791 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2792 &rxnfc->fs.ring_cookie, 2793 (const void __user *)(&rxnfc->fs.location + 1) - 2794 (const void __user *)&rxnfc->fs.ring_cookie) || 2795 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2796 sizeof(rxnfc->rule_cnt))) 2797 return -EFAULT; 2798 2799 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2800 /* As an optimisation, we only copy the actual 2801 * number of rules that the underlying 2802 * function returned. Since Mallory might 2803 * change the rule count in user memory, we 2804 * check that it is less than the rule count 2805 * originally given (as the user buffer size), 2806 * which has been range-checked. 2807 */ 2808 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2809 return -EFAULT; 2810 if (actual_rule_cnt < rule_cnt) 2811 rule_cnt = actual_rule_cnt; 2812 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2813 &rxnfc->rule_locs[0], 2814 rule_cnt * sizeof(u32))) 2815 return -EFAULT; 2816 } 2817 } 2818 2819 return 0; 2820 } 2821 2822 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2823 { 2824 void __user *uptr; 2825 compat_uptr_t uptr32; 2826 struct ifreq __user *uifr; 2827 2828 uifr = compat_alloc_user_space(sizeof(*uifr)); 2829 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2830 return -EFAULT; 2831 2832 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2833 return -EFAULT; 2834 2835 uptr = compat_ptr(uptr32); 2836 2837 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2838 return -EFAULT; 2839 2840 return dev_ioctl(net, SIOCWANDEV, uifr); 2841 } 2842 2843 static int bond_ioctl(struct net *net, unsigned int cmd, 2844 struct compat_ifreq __user *ifr32) 2845 { 2846 struct ifreq kifr; 2847 mm_segment_t old_fs; 2848 int err; 2849 2850 switch (cmd) { 2851 case SIOCBONDENSLAVE: 2852 case SIOCBONDRELEASE: 2853 case SIOCBONDSETHWADDR: 2854 case SIOCBONDCHANGEACTIVE: 2855 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2856 return -EFAULT; 2857 2858 old_fs = get_fs(); 2859 set_fs(KERNEL_DS); 2860 err = dev_ioctl(net, cmd, 2861 (struct ifreq __user __force *) &kifr); 2862 set_fs(old_fs); 2863 2864 return err; 2865 default: 2866 return -ENOIOCTLCMD; 2867 } 2868 } 2869 2870 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2871 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2872 struct compat_ifreq __user *u_ifreq32) 2873 { 2874 struct ifreq __user *u_ifreq64; 2875 char tmp_buf[IFNAMSIZ]; 2876 void __user *data64; 2877 u32 data32; 2878 2879 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2880 IFNAMSIZ)) 2881 return -EFAULT; 2882 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2883 return -EFAULT; 2884 data64 = compat_ptr(data32); 2885 2886 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2887 2888 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2889 IFNAMSIZ)) 2890 return -EFAULT; 2891 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2892 return -EFAULT; 2893 2894 return dev_ioctl(net, cmd, u_ifreq64); 2895 } 2896 2897 static int dev_ifsioc(struct net *net, struct socket *sock, 2898 unsigned int cmd, struct compat_ifreq __user *uifr32) 2899 { 2900 struct ifreq __user *uifr; 2901 int err; 2902 2903 uifr = compat_alloc_user_space(sizeof(*uifr)); 2904 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2905 return -EFAULT; 2906 2907 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2908 2909 if (!err) { 2910 switch (cmd) { 2911 case SIOCGIFFLAGS: 2912 case SIOCGIFMETRIC: 2913 case SIOCGIFMTU: 2914 case SIOCGIFMEM: 2915 case SIOCGIFHWADDR: 2916 case SIOCGIFINDEX: 2917 case SIOCGIFADDR: 2918 case SIOCGIFBRDADDR: 2919 case SIOCGIFDSTADDR: 2920 case SIOCGIFNETMASK: 2921 case SIOCGIFPFLAGS: 2922 case SIOCGIFTXQLEN: 2923 case SIOCGMIIPHY: 2924 case SIOCGMIIREG: 2925 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2926 err = -EFAULT; 2927 break; 2928 } 2929 } 2930 return err; 2931 } 2932 2933 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2934 struct compat_ifreq __user *uifr32) 2935 { 2936 struct ifreq ifr; 2937 struct compat_ifmap __user *uifmap32; 2938 mm_segment_t old_fs; 2939 int err; 2940 2941 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2942 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2943 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2944 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2945 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2946 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2947 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2948 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2949 if (err) 2950 return -EFAULT; 2951 2952 old_fs = get_fs(); 2953 set_fs(KERNEL_DS); 2954 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2955 set_fs(old_fs); 2956 2957 if (cmd == SIOCGIFMAP && !err) { 2958 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2959 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2960 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2961 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2962 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2963 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2964 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2965 if (err) 2966 err = -EFAULT; 2967 } 2968 return err; 2969 } 2970 2971 struct rtentry32 { 2972 u32 rt_pad1; 2973 struct sockaddr rt_dst; /* target address */ 2974 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2975 struct sockaddr rt_genmask; /* target network mask (IP) */ 2976 unsigned short rt_flags; 2977 short rt_pad2; 2978 u32 rt_pad3; 2979 unsigned char rt_tos; 2980 unsigned char rt_class; 2981 short rt_pad4; 2982 short rt_metric; /* +1 for binary compatibility! */ 2983 /* char * */ u32 rt_dev; /* forcing the device at add */ 2984 u32 rt_mtu; /* per route MTU/Window */ 2985 u32 rt_window; /* Window clamping */ 2986 unsigned short rt_irtt; /* Initial RTT */ 2987 }; 2988 2989 struct in6_rtmsg32 { 2990 struct in6_addr rtmsg_dst; 2991 struct in6_addr rtmsg_src; 2992 struct in6_addr rtmsg_gateway; 2993 u32 rtmsg_type; 2994 u16 rtmsg_dst_len; 2995 u16 rtmsg_src_len; 2996 u32 rtmsg_metric; 2997 u32 rtmsg_info; 2998 u32 rtmsg_flags; 2999 s32 rtmsg_ifindex; 3000 }; 3001 3002 static int routing_ioctl(struct net *net, struct socket *sock, 3003 unsigned int cmd, void __user *argp) 3004 { 3005 int ret; 3006 void *r = NULL; 3007 struct in6_rtmsg r6; 3008 struct rtentry r4; 3009 char devname[16]; 3010 u32 rtdev; 3011 mm_segment_t old_fs = get_fs(); 3012 3013 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3014 struct in6_rtmsg32 __user *ur6 = argp; 3015 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3016 3 * sizeof(struct in6_addr)); 3017 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3018 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3019 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3020 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3021 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3022 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3023 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3024 3025 r = (void *) &r6; 3026 } else { /* ipv4 */ 3027 struct rtentry32 __user *ur4 = argp; 3028 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3029 3 * sizeof(struct sockaddr)); 3030 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3031 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3032 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3033 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3034 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3035 ret |= get_user(rtdev, &(ur4->rt_dev)); 3036 if (rtdev) { 3037 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3038 r4.rt_dev = (char __user __force *)devname; 3039 devname[15] = 0; 3040 } else 3041 r4.rt_dev = NULL; 3042 3043 r = (void *) &r4; 3044 } 3045 3046 if (ret) { 3047 ret = -EFAULT; 3048 goto out; 3049 } 3050 3051 set_fs(KERNEL_DS); 3052 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3053 set_fs(old_fs); 3054 3055 out: 3056 return ret; 3057 } 3058 3059 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3060 * for some operations; this forces use of the newer bridge-utils that 3061 * use compatible ioctls 3062 */ 3063 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3064 { 3065 compat_ulong_t tmp; 3066 3067 if (get_user(tmp, argp)) 3068 return -EFAULT; 3069 if (tmp == BRCTL_GET_VERSION) 3070 return BRCTL_VERSION + 1; 3071 return -EINVAL; 3072 } 3073 3074 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3075 unsigned int cmd, unsigned long arg) 3076 { 3077 void __user *argp = compat_ptr(arg); 3078 struct sock *sk = sock->sk; 3079 struct net *net = sock_net(sk); 3080 3081 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3082 return compat_ifr_data_ioctl(net, cmd, argp); 3083 3084 switch (cmd) { 3085 case SIOCSIFBR: 3086 case SIOCGIFBR: 3087 return old_bridge_ioctl(argp); 3088 case SIOCGIFNAME: 3089 return dev_ifname32(net, argp); 3090 case SIOCGIFCONF: 3091 return dev_ifconf(net, argp); 3092 case SIOCETHTOOL: 3093 return ethtool_ioctl(net, argp); 3094 case SIOCWANDEV: 3095 return compat_siocwandev(net, argp); 3096 case SIOCGIFMAP: 3097 case SIOCSIFMAP: 3098 return compat_sioc_ifmap(net, cmd, argp); 3099 case SIOCBONDENSLAVE: 3100 case SIOCBONDRELEASE: 3101 case SIOCBONDSETHWADDR: 3102 case SIOCBONDCHANGEACTIVE: 3103 return bond_ioctl(net, cmd, argp); 3104 case SIOCADDRT: 3105 case SIOCDELRT: 3106 return routing_ioctl(net, sock, cmd, argp); 3107 case SIOCGSTAMP: 3108 return do_siocgstamp(net, sock, cmd, argp); 3109 case SIOCGSTAMPNS: 3110 return do_siocgstampns(net, sock, cmd, argp); 3111 case SIOCBONDSLAVEINFOQUERY: 3112 case SIOCBONDINFOQUERY: 3113 case SIOCSHWTSTAMP: 3114 case SIOCGHWTSTAMP: 3115 return compat_ifr_data_ioctl(net, cmd, argp); 3116 3117 case FIOSETOWN: 3118 case SIOCSPGRP: 3119 case FIOGETOWN: 3120 case SIOCGPGRP: 3121 case SIOCBRADDBR: 3122 case SIOCBRDELBR: 3123 case SIOCGIFVLAN: 3124 case SIOCSIFVLAN: 3125 case SIOCADDDLCI: 3126 case SIOCDELDLCI: 3127 return sock_ioctl(file, cmd, arg); 3128 3129 case SIOCGIFFLAGS: 3130 case SIOCSIFFLAGS: 3131 case SIOCGIFMETRIC: 3132 case SIOCSIFMETRIC: 3133 case SIOCGIFMTU: 3134 case SIOCSIFMTU: 3135 case SIOCGIFMEM: 3136 case SIOCSIFMEM: 3137 case SIOCGIFHWADDR: 3138 case SIOCSIFHWADDR: 3139 case SIOCADDMULTI: 3140 case SIOCDELMULTI: 3141 case SIOCGIFINDEX: 3142 case SIOCGIFADDR: 3143 case SIOCSIFADDR: 3144 case SIOCSIFHWBROADCAST: 3145 case SIOCDIFADDR: 3146 case SIOCGIFBRDADDR: 3147 case SIOCSIFBRDADDR: 3148 case SIOCGIFDSTADDR: 3149 case SIOCSIFDSTADDR: 3150 case SIOCGIFNETMASK: 3151 case SIOCSIFNETMASK: 3152 case SIOCSIFPFLAGS: 3153 case SIOCGIFPFLAGS: 3154 case SIOCGIFTXQLEN: 3155 case SIOCSIFTXQLEN: 3156 case SIOCBRADDIF: 3157 case SIOCBRDELIF: 3158 case SIOCSIFNAME: 3159 case SIOCGMIIPHY: 3160 case SIOCGMIIREG: 3161 case SIOCSMIIREG: 3162 return dev_ifsioc(net, sock, cmd, argp); 3163 3164 case SIOCSARP: 3165 case SIOCGARP: 3166 case SIOCDARP: 3167 case SIOCATMARK: 3168 return sock_do_ioctl(net, sock, cmd, arg); 3169 } 3170 3171 return -ENOIOCTLCMD; 3172 } 3173 3174 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3175 unsigned long arg) 3176 { 3177 struct socket *sock = file->private_data; 3178 int ret = -ENOIOCTLCMD; 3179 struct sock *sk; 3180 struct net *net; 3181 3182 sk = sock->sk; 3183 net = sock_net(sk); 3184 3185 if (sock->ops->compat_ioctl) 3186 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3187 3188 if (ret == -ENOIOCTLCMD && 3189 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3190 ret = compat_wext_handle_ioctl(net, cmd, arg); 3191 3192 if (ret == -ENOIOCTLCMD) 3193 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3194 3195 return ret; 3196 } 3197 #endif 3198 3199 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3200 { 3201 return sock->ops->bind(sock, addr, addrlen); 3202 } 3203 EXPORT_SYMBOL(kernel_bind); 3204 3205 int kernel_listen(struct socket *sock, int backlog) 3206 { 3207 return sock->ops->listen(sock, backlog); 3208 } 3209 EXPORT_SYMBOL(kernel_listen); 3210 3211 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3212 { 3213 struct sock *sk = sock->sk; 3214 int err; 3215 3216 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3217 newsock); 3218 if (err < 0) 3219 goto done; 3220 3221 err = sock->ops->accept(sock, *newsock, flags); 3222 if (err < 0) { 3223 sock_release(*newsock); 3224 *newsock = NULL; 3225 goto done; 3226 } 3227 3228 (*newsock)->ops = sock->ops; 3229 __module_get((*newsock)->ops->owner); 3230 3231 done: 3232 return err; 3233 } 3234 EXPORT_SYMBOL(kernel_accept); 3235 3236 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3237 int flags) 3238 { 3239 return sock->ops->connect(sock, addr, addrlen, flags); 3240 } 3241 EXPORT_SYMBOL(kernel_connect); 3242 3243 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3244 int *addrlen) 3245 { 3246 return sock->ops->getname(sock, addr, addrlen, 0); 3247 } 3248 EXPORT_SYMBOL(kernel_getsockname); 3249 3250 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3251 int *addrlen) 3252 { 3253 return sock->ops->getname(sock, addr, addrlen, 1); 3254 } 3255 EXPORT_SYMBOL(kernel_getpeername); 3256 3257 int kernel_getsockopt(struct socket *sock, int level, int optname, 3258 char *optval, int *optlen) 3259 { 3260 mm_segment_t oldfs = get_fs(); 3261 char __user *uoptval; 3262 int __user *uoptlen; 3263 int err; 3264 3265 uoptval = (char __user __force *) optval; 3266 uoptlen = (int __user __force *) optlen; 3267 3268 set_fs(KERNEL_DS); 3269 if (level == SOL_SOCKET) 3270 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3271 else 3272 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3273 uoptlen); 3274 set_fs(oldfs); 3275 return err; 3276 } 3277 EXPORT_SYMBOL(kernel_getsockopt); 3278 3279 int kernel_setsockopt(struct socket *sock, int level, int optname, 3280 char *optval, unsigned int optlen) 3281 { 3282 mm_segment_t oldfs = get_fs(); 3283 char __user *uoptval; 3284 int err; 3285 3286 uoptval = (char __user __force *) optval; 3287 3288 set_fs(KERNEL_DS); 3289 if (level == SOL_SOCKET) 3290 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3291 else 3292 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3293 optlen); 3294 set_fs(oldfs); 3295 return err; 3296 } 3297 EXPORT_SYMBOL(kernel_setsockopt); 3298 3299 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3300 size_t size, int flags) 3301 { 3302 if (sock->ops->sendpage) 3303 return sock->ops->sendpage(sock, page, offset, size, flags); 3304 3305 return sock_no_sendpage(sock, page, offset, size, flags); 3306 } 3307 EXPORT_SYMBOL(kernel_sendpage); 3308 3309 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3310 { 3311 mm_segment_t oldfs = get_fs(); 3312 int err; 3313 3314 set_fs(KERNEL_DS); 3315 err = sock->ops->ioctl(sock, cmd, arg); 3316 set_fs(oldfs); 3317 3318 return err; 3319 } 3320 EXPORT_SYMBOL(kernel_sock_ioctl); 3321 3322 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3323 { 3324 return sock->ops->shutdown(sock, how); 3325 } 3326 EXPORT_SYMBOL(kernel_sock_shutdown); 3327