xref: /openbmc/linux/net/socket.c (revision 2d33394e23d63b750dcba40e5feaeba425427b52)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read =		new_sync_read,
144 	.write =	new_sync_write,
145 	.read_iter =	sock_read_iter,
146 	.write_iter =	sock_write_iter,
147 	.poll =		sock_poll,
148 	.unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 	.compat_ioctl = compat_sock_ioctl,
151 #endif
152 	.mmap =		sock_mmap,
153 	.release =	sock_close,
154 	.fasync =	sock_fasync,
155 	.sendpage =	sock_sendpage,
156 	.splice_write = generic_splice_sendpage,
157 	.splice_read =	sock_splice_read,
158 };
159 
160 /*
161  *	The protocol list. Each protocol is registered in here.
162  */
163 
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 
167 /*
168  *	Statistics counters of the socket lists
169  */
170 
171 static DEFINE_PER_CPU(int, sockets_in_use);
172 
173 /*
174  * Support routines.
175  * Move socket addresses back and forth across the kernel/user
176  * divide and look after the messy bits.
177  */
178 
179 /**
180  *	move_addr_to_kernel	-	copy a socket address into kernel space
181  *	@uaddr: Address in user space
182  *	@kaddr: Address in kernel space
183  *	@ulen: Length in user space
184  *
185  *	The address is copied into kernel space. If the provided address is
186  *	too long an error code of -EINVAL is returned. If the copy gives
187  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
188  */
189 
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 		return -EINVAL;
194 	if (ulen == 0)
195 		return 0;
196 	if (copy_from_user(kaddr, uaddr, ulen))
197 		return -EFAULT;
198 	return audit_sockaddr(ulen, kaddr);
199 }
200 
201 /**
202  *	move_addr_to_user	-	copy an address to user space
203  *	@kaddr: kernel space address
204  *	@klen: length of address in kernel
205  *	@uaddr: user space address
206  *	@ulen: pointer to user length field
207  *
208  *	The value pointed to by ulen on entry is the buffer length available.
209  *	This is overwritten with the buffer space used. -EINVAL is returned
210  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
211  *	is returned if either the buffer or the length field are not
212  *	accessible.
213  *	After copying the data up to the limit the user specifies, the true
214  *	length of the data is written over the length limit the user
215  *	specified. Zero is returned for a success.
216  */
217 
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 			     void __user *uaddr, int __user *ulen)
220 {
221 	int err;
222 	int len;
223 
224 	BUG_ON(klen > sizeof(struct sockaddr_storage));
225 	err = get_user(len, ulen);
226 	if (err)
227 		return err;
228 	if (len > klen)
229 		len = klen;
230 	if (len < 0)
231 		return -EINVAL;
232 	if (len) {
233 		if (audit_sockaddr(klen, kaddr))
234 			return -ENOMEM;
235 		if (copy_to_user(uaddr, kaddr, len))
236 			return -EFAULT;
237 	}
238 	/*
239 	 *      "fromlen shall refer to the value before truncation.."
240 	 *                      1003.1g
241 	 */
242 	return __put_user(klen, ulen);
243 }
244 
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 	struct socket_alloc *ei;
250 	struct socket_wq *wq;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 	if (!wq) {
257 		kmem_cache_free(sock_inode_cachep, ei);
258 		return NULL;
259 	}
260 	init_waitqueue_head(&wq->wait);
261 	wq->fasync_list = NULL;
262 	RCU_INIT_POINTER(ei->socket.wq, wq);
263 
264 	ei->socket.state = SS_UNCONNECTED;
265 	ei->socket.flags = 0;
266 	ei->socket.ops = NULL;
267 	ei->socket.sk = NULL;
268 	ei->socket.file = NULL;
269 
270 	return &ei->vfs_inode;
271 }
272 
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 	struct socket_alloc *ei;
276 	struct socket_wq *wq;
277 
278 	ei = container_of(inode, struct socket_alloc, vfs_inode);
279 	wq = rcu_dereference_protected(ei->socket.wq, 1);
280 	kfree_rcu(wq, rcu);
281 	kmem_cache_free(sock_inode_cachep, ei);
282 }
283 
284 static void init_once(void *foo)
285 {
286 	struct socket_alloc *ei = (struct socket_alloc *)foo;
287 
288 	inode_init_once(&ei->vfs_inode);
289 }
290 
291 static int init_inodecache(void)
292 {
293 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 					      sizeof(struct socket_alloc),
295 					      0,
296 					      (SLAB_HWCACHE_ALIGN |
297 					       SLAB_RECLAIM_ACCOUNT |
298 					       SLAB_MEM_SPREAD),
299 					      init_once);
300 	if (sock_inode_cachep == NULL)
301 		return -ENOMEM;
302 	return 0;
303 }
304 
305 static const struct super_operations sockfs_ops = {
306 	.alloc_inode	= sock_alloc_inode,
307 	.destroy_inode	= sock_destroy_inode,
308 	.statfs		= simple_statfs,
309 };
310 
311 /*
312  * sockfs_dname() is called from d_path().
313  */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 				dentry->d_inode->i_ino);
318 }
319 
320 static const struct dentry_operations sockfs_dentry_operations = {
321 	.d_dname  = sockfs_dname,
322 };
323 
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 			 int flags, const char *dev_name, void *data)
326 {
327 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 		&sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330 
331 static struct vfsmount *sock_mnt __read_mostly;
332 
333 static struct file_system_type sock_fs_type = {
334 	.name =		"sockfs",
335 	.mount =	sockfs_mount,
336 	.kill_sb =	kill_anon_super,
337 };
338 
339 /*
340  *	Obtains the first available file descriptor and sets it up for use.
341  *
342  *	These functions create file structures and maps them to fd space
343  *	of the current process. On success it returns file descriptor
344  *	and file struct implicitly stored in sock->file.
345  *	Note that another thread may close file descriptor before we return
346  *	from this function. We use the fact that now we do not refer
347  *	to socket after mapping. If one day we will need it, this
348  *	function will increment ref. count on file by 1.
349  *
350  *	In any case returned fd MAY BE not valid!
351  *	This race condition is unavoidable
352  *	with shared fd spaces, we cannot solve it inside kernel,
353  *	but we take care of internal coherence yet.
354  */
355 
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 	struct qstr name = { .name = "" };
359 	struct path path;
360 	struct file *file;
361 
362 	if (dname) {
363 		name.name = dname;
364 		name.len = strlen(name.name);
365 	} else if (sock->sk) {
366 		name.name = sock->sk->sk_prot_creator->name;
367 		name.len = strlen(name.name);
368 	}
369 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 	if (unlikely(!path.dentry))
371 		return ERR_PTR(-ENOMEM);
372 	path.mnt = mntget(sock_mnt);
373 
374 	d_instantiate(path.dentry, SOCK_INODE(sock));
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (unlikely(IS_ERR(file))) {
379 		/* drop dentry, keep inode */
380 		ihold(path.dentry->d_inode);
381 		path_put(&path);
382 		return file;
383 	}
384 
385 	sock->file = file;
386 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 	file->private_data = sock;
388 	return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391 
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 	struct file *newfile;
395 	int fd = get_unused_fd_flags(flags);
396 	if (unlikely(fd < 0))
397 		return fd;
398 
399 	newfile = sock_alloc_file(sock, flags, NULL);
400 	if (likely(!IS_ERR(newfile))) {
401 		fd_install(fd, newfile);
402 		return fd;
403 	}
404 
405 	put_unused_fd(fd);
406 	return PTR_ERR(newfile);
407 }
408 
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 	if (file->f_op == &socket_file_ops)
412 		return file->private_data;	/* set in sock_map_fd */
413 
414 	*err = -ENOTSOCK;
415 	return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418 
419 /**
420  *	sockfd_lookup - Go from a file number to its socket slot
421  *	@fd: file handle
422  *	@err: pointer to an error code return
423  *
424  *	The file handle passed in is locked and the socket it is bound
425  *	too is returned. If an error occurs the err pointer is overwritten
426  *	with a negative errno code and NULL is returned. The function checks
427  *	for both invalid handles and passing a handle which is not a socket.
428  *
429  *	On a success the socket object pointer is returned.
430  */
431 
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 	struct file *file;
435 	struct socket *sock;
436 
437 	file = fget(fd);
438 	if (!file) {
439 		*err = -EBADF;
440 		return NULL;
441 	}
442 
443 	sock = sock_from_file(file, err);
444 	if (!sock)
445 		fput(file);
446 	return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449 
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 	struct fd f = fdget(fd);
453 	struct socket *sock;
454 
455 	*err = -EBADF;
456 	if (f.file) {
457 		sock = sock_from_file(f.file, err);
458 		if (likely(sock)) {
459 			*fput_needed = f.flags;
460 			return sock;
461 		}
462 		fdput(f);
463 	}
464 	return NULL;
465 }
466 
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 			       const char *name, void *value, size_t size)
472 {
473 	const char *proto_name;
474 	size_t proto_size;
475 	int error;
476 
477 	error = -ENODATA;
478 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 		proto_name = dentry->d_name.name;
480 		proto_size = strlen(proto_name);
481 
482 		if (value) {
483 			error = -ERANGE;
484 			if (proto_size + 1 > size)
485 				goto out;
486 
487 			strncpy(value, proto_name, proto_size + 1);
488 		}
489 		error = proto_size + 1;
490 	}
491 
492 out:
493 	return error;
494 }
495 
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 				size_t size)
498 {
499 	ssize_t len;
500 	ssize_t used = 0;
501 
502 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 	if (len < 0)
504 		return len;
505 	used += len;
506 	if (buffer) {
507 		if (size < used)
508 			return -ERANGE;
509 		buffer += len;
510 	}
511 
512 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 	used += len;
514 	if (buffer) {
515 		if (size < used)
516 			return -ERANGE;
517 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 		buffer += len;
519 	}
520 
521 	return used;
522 }
523 
524 static const struct inode_operations sockfs_inode_ops = {
525 	.getxattr = sockfs_getxattr,
526 	.listxattr = sockfs_listxattr,
527 };
528 
529 /**
530  *	sock_alloc	-	allocate a socket
531  *
532  *	Allocate a new inode and socket object. The two are bound together
533  *	and initialised. The socket is then returned. If we are out of inodes
534  *	NULL is returned.
535  */
536 
537 static struct socket *sock_alloc(void)
538 {
539 	struct inode *inode;
540 	struct socket *sock;
541 
542 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 	if (!inode)
544 		return NULL;
545 
546 	sock = SOCKET_I(inode);
547 
548 	kmemcheck_annotate_bitfield(sock, type);
549 	inode->i_ino = get_next_ino();
550 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 	inode->i_uid = current_fsuid();
552 	inode->i_gid = current_fsgid();
553 	inode->i_op = &sockfs_inode_ops;
554 
555 	this_cpu_add(sockets_in_use, 1);
556 	return sock;
557 }
558 
559 /**
560  *	sock_release	-	close a socket
561  *	@sock: socket to close
562  *
563  *	The socket is released from the protocol stack if it has a release
564  *	callback, and the inode is then released if the socket is bound to
565  *	an inode not a file.
566  */
567 
568 void sock_release(struct socket *sock)
569 {
570 	if (sock->ops) {
571 		struct module *owner = sock->ops->owner;
572 
573 		sock->ops->release(sock);
574 		sock->ops = NULL;
575 		module_put(owner);
576 	}
577 
578 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 		pr_err("%s: fasync list not empty!\n", __func__);
580 
581 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 		return;
583 
584 	this_cpu_sub(sockets_in_use, 1);
585 	if (!sock->file) {
586 		iput(SOCK_INODE(sock));
587 		return;
588 	}
589 	sock->file = NULL;
590 }
591 EXPORT_SYMBOL(sock_release);
592 
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
594 {
595 	u8 flags = *tx_flags;
596 
597 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 		flags |= SKBTX_HW_TSTAMP;
599 
600 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 		flags |= SKBTX_SW_TSTAMP;
602 
603 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 		flags |= SKBTX_SCHED_TSTAMP;
605 
606 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 		flags |= SKBTX_ACK_TSTAMP;
608 
609 	*tx_flags = flags;
610 }
611 EXPORT_SYMBOL(__sock_tx_timestamp);
612 
613 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg,
614 				     size_t size)
615 {
616 	return sock->ops->sendmsg(sock, msg, size);
617 }
618 
619 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
620 {
621 	int err = security_socket_sendmsg(sock, msg, size);
622 
623 	return err ?: sock_sendmsg_nosec(sock, msg, size);
624 }
625 EXPORT_SYMBOL(sock_sendmsg);
626 
627 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
628 		   struct kvec *vec, size_t num, size_t size)
629 {
630 	mm_segment_t oldfs = get_fs();
631 	int result;
632 
633 	set_fs(KERNEL_DS);
634 	/*
635 	 * the following is safe, since for compiler definitions of kvec and
636 	 * iovec are identical, yielding the same in-core layout and alignment
637 	 */
638 	iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
639 	result = sock_sendmsg(sock, msg, size);
640 	set_fs(oldfs);
641 	return result;
642 }
643 EXPORT_SYMBOL(kernel_sendmsg);
644 
645 /*
646  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
647  */
648 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
649 	struct sk_buff *skb)
650 {
651 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
652 	struct scm_timestamping tss;
653 	int empty = 1;
654 	struct skb_shared_hwtstamps *shhwtstamps =
655 		skb_hwtstamps(skb);
656 
657 	/* Race occurred between timestamp enabling and packet
658 	   receiving.  Fill in the current time for now. */
659 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
660 		__net_timestamp(skb);
661 
662 	if (need_software_tstamp) {
663 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
664 			struct timeval tv;
665 			skb_get_timestamp(skb, &tv);
666 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
667 				 sizeof(tv), &tv);
668 		} else {
669 			struct timespec ts;
670 			skb_get_timestampns(skb, &ts);
671 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
672 				 sizeof(ts), &ts);
673 		}
674 	}
675 
676 	memset(&tss, 0, sizeof(tss));
677 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
678 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
679 		empty = 0;
680 	if (shhwtstamps &&
681 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
682 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
683 		empty = 0;
684 	if (!empty)
685 		put_cmsg(msg, SOL_SOCKET,
686 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
687 }
688 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
689 
690 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
691 	struct sk_buff *skb)
692 {
693 	int ack;
694 
695 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
696 		return;
697 	if (!skb->wifi_acked_valid)
698 		return;
699 
700 	ack = skb->wifi_acked;
701 
702 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
703 }
704 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
705 
706 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
707 				   struct sk_buff *skb)
708 {
709 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
710 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
711 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
712 }
713 
714 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
715 	struct sk_buff *skb)
716 {
717 	sock_recv_timestamp(msg, sk, skb);
718 	sock_recv_drops(msg, sk, skb);
719 }
720 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
721 
722 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
723 				     size_t size, int flags)
724 {
725 	return sock->ops->recvmsg(sock, msg, size, flags);
726 }
727 
728 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
729 		 int flags)
730 {
731 	int err = security_socket_recvmsg(sock, msg, size, flags);
732 
733 	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
734 }
735 EXPORT_SYMBOL(sock_recvmsg);
736 
737 /**
738  * kernel_recvmsg - Receive a message from a socket (kernel space)
739  * @sock:       The socket to receive the message from
740  * @msg:        Received message
741  * @vec:        Input s/g array for message data
742  * @num:        Size of input s/g array
743  * @size:       Number of bytes to read
744  * @flags:      Message flags (MSG_DONTWAIT, etc...)
745  *
746  * On return the msg structure contains the scatter/gather array passed in the
747  * vec argument. The array is modified so that it consists of the unfilled
748  * portion of the original array.
749  *
750  * The returned value is the total number of bytes received, or an error.
751  */
752 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
753 		   struct kvec *vec, size_t num, size_t size, int flags)
754 {
755 	mm_segment_t oldfs = get_fs();
756 	int result;
757 
758 	set_fs(KERNEL_DS);
759 	/*
760 	 * the following is safe, since for compiler definitions of kvec and
761 	 * iovec are identical, yielding the same in-core layout and alignment
762 	 */
763 	iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
764 	result = sock_recvmsg(sock, msg, size, flags);
765 	set_fs(oldfs);
766 	return result;
767 }
768 EXPORT_SYMBOL(kernel_recvmsg);
769 
770 static ssize_t sock_sendpage(struct file *file, struct page *page,
771 			     int offset, size_t size, loff_t *ppos, int more)
772 {
773 	struct socket *sock;
774 	int flags;
775 
776 	sock = file->private_data;
777 
778 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
779 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
780 	flags |= more;
781 
782 	return kernel_sendpage(sock, page, offset, size, flags);
783 }
784 
785 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
786 				struct pipe_inode_info *pipe, size_t len,
787 				unsigned int flags)
788 {
789 	struct socket *sock = file->private_data;
790 
791 	if (unlikely(!sock->ops->splice_read))
792 		return -EINVAL;
793 
794 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
795 }
796 
797 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
798 {
799 	struct file *file = iocb->ki_filp;
800 	struct socket *sock = file->private_data;
801 	struct msghdr msg = {.msg_iter = *to};
802 	ssize_t res;
803 
804 	if (file->f_flags & O_NONBLOCK)
805 		msg.msg_flags = MSG_DONTWAIT;
806 
807 	if (iocb->ki_pos != 0)
808 		return -ESPIPE;
809 
810 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
811 		return 0;
812 
813 	res = sock_recvmsg(sock, &msg, iocb->ki_nbytes, msg.msg_flags);
814 	*to = msg.msg_iter;
815 	return res;
816 }
817 
818 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
819 {
820 	struct file *file = iocb->ki_filp;
821 	struct socket *sock = file->private_data;
822 	struct msghdr msg = {.msg_iter = *from};
823 	ssize_t res;
824 
825 	if (iocb->ki_pos != 0)
826 		return -ESPIPE;
827 
828 	if (file->f_flags & O_NONBLOCK)
829 		msg.msg_flags = MSG_DONTWAIT;
830 
831 	if (sock->type == SOCK_SEQPACKET)
832 		msg.msg_flags |= MSG_EOR;
833 
834 	res = sock_sendmsg(sock, &msg, iocb->ki_nbytes);
835 	*from = msg.msg_iter;
836 	return res;
837 }
838 
839 /*
840  * Atomic setting of ioctl hooks to avoid race
841  * with module unload.
842  */
843 
844 static DEFINE_MUTEX(br_ioctl_mutex);
845 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
846 
847 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
848 {
849 	mutex_lock(&br_ioctl_mutex);
850 	br_ioctl_hook = hook;
851 	mutex_unlock(&br_ioctl_mutex);
852 }
853 EXPORT_SYMBOL(brioctl_set);
854 
855 static DEFINE_MUTEX(vlan_ioctl_mutex);
856 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
857 
858 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
859 {
860 	mutex_lock(&vlan_ioctl_mutex);
861 	vlan_ioctl_hook = hook;
862 	mutex_unlock(&vlan_ioctl_mutex);
863 }
864 EXPORT_SYMBOL(vlan_ioctl_set);
865 
866 static DEFINE_MUTEX(dlci_ioctl_mutex);
867 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
868 
869 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
870 {
871 	mutex_lock(&dlci_ioctl_mutex);
872 	dlci_ioctl_hook = hook;
873 	mutex_unlock(&dlci_ioctl_mutex);
874 }
875 EXPORT_SYMBOL(dlci_ioctl_set);
876 
877 static long sock_do_ioctl(struct net *net, struct socket *sock,
878 				 unsigned int cmd, unsigned long arg)
879 {
880 	int err;
881 	void __user *argp = (void __user *)arg;
882 
883 	err = sock->ops->ioctl(sock, cmd, arg);
884 
885 	/*
886 	 * If this ioctl is unknown try to hand it down
887 	 * to the NIC driver.
888 	 */
889 	if (err == -ENOIOCTLCMD)
890 		err = dev_ioctl(net, cmd, argp);
891 
892 	return err;
893 }
894 
895 /*
896  *	With an ioctl, arg may well be a user mode pointer, but we don't know
897  *	what to do with it - that's up to the protocol still.
898  */
899 
900 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
901 {
902 	struct socket *sock;
903 	struct sock *sk;
904 	void __user *argp = (void __user *)arg;
905 	int pid, err;
906 	struct net *net;
907 
908 	sock = file->private_data;
909 	sk = sock->sk;
910 	net = sock_net(sk);
911 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
912 		err = dev_ioctl(net, cmd, argp);
913 	} else
914 #ifdef CONFIG_WEXT_CORE
915 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
916 		err = dev_ioctl(net, cmd, argp);
917 	} else
918 #endif
919 		switch (cmd) {
920 		case FIOSETOWN:
921 		case SIOCSPGRP:
922 			err = -EFAULT;
923 			if (get_user(pid, (int __user *)argp))
924 				break;
925 			f_setown(sock->file, pid, 1);
926 			err = 0;
927 			break;
928 		case FIOGETOWN:
929 		case SIOCGPGRP:
930 			err = put_user(f_getown(sock->file),
931 				       (int __user *)argp);
932 			break;
933 		case SIOCGIFBR:
934 		case SIOCSIFBR:
935 		case SIOCBRADDBR:
936 		case SIOCBRDELBR:
937 			err = -ENOPKG;
938 			if (!br_ioctl_hook)
939 				request_module("bridge");
940 
941 			mutex_lock(&br_ioctl_mutex);
942 			if (br_ioctl_hook)
943 				err = br_ioctl_hook(net, cmd, argp);
944 			mutex_unlock(&br_ioctl_mutex);
945 			break;
946 		case SIOCGIFVLAN:
947 		case SIOCSIFVLAN:
948 			err = -ENOPKG;
949 			if (!vlan_ioctl_hook)
950 				request_module("8021q");
951 
952 			mutex_lock(&vlan_ioctl_mutex);
953 			if (vlan_ioctl_hook)
954 				err = vlan_ioctl_hook(net, argp);
955 			mutex_unlock(&vlan_ioctl_mutex);
956 			break;
957 		case SIOCADDDLCI:
958 		case SIOCDELDLCI:
959 			err = -ENOPKG;
960 			if (!dlci_ioctl_hook)
961 				request_module("dlci");
962 
963 			mutex_lock(&dlci_ioctl_mutex);
964 			if (dlci_ioctl_hook)
965 				err = dlci_ioctl_hook(cmd, argp);
966 			mutex_unlock(&dlci_ioctl_mutex);
967 			break;
968 		default:
969 			err = sock_do_ioctl(net, sock, cmd, arg);
970 			break;
971 		}
972 	return err;
973 }
974 
975 int sock_create_lite(int family, int type, int protocol, struct socket **res)
976 {
977 	int err;
978 	struct socket *sock = NULL;
979 
980 	err = security_socket_create(family, type, protocol, 1);
981 	if (err)
982 		goto out;
983 
984 	sock = sock_alloc();
985 	if (!sock) {
986 		err = -ENOMEM;
987 		goto out;
988 	}
989 
990 	sock->type = type;
991 	err = security_socket_post_create(sock, family, type, protocol, 1);
992 	if (err)
993 		goto out_release;
994 
995 out:
996 	*res = sock;
997 	return err;
998 out_release:
999 	sock_release(sock);
1000 	sock = NULL;
1001 	goto out;
1002 }
1003 EXPORT_SYMBOL(sock_create_lite);
1004 
1005 /* No kernel lock held - perfect */
1006 static unsigned int sock_poll(struct file *file, poll_table *wait)
1007 {
1008 	unsigned int busy_flag = 0;
1009 	struct socket *sock;
1010 
1011 	/*
1012 	 *      We can't return errors to poll, so it's either yes or no.
1013 	 */
1014 	sock = file->private_data;
1015 
1016 	if (sk_can_busy_loop(sock->sk)) {
1017 		/* this socket can poll_ll so tell the system call */
1018 		busy_flag = POLL_BUSY_LOOP;
1019 
1020 		/* once, only if requested by syscall */
1021 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1022 			sk_busy_loop(sock->sk, 1);
1023 	}
1024 
1025 	return busy_flag | sock->ops->poll(file, sock, wait);
1026 }
1027 
1028 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1029 {
1030 	struct socket *sock = file->private_data;
1031 
1032 	return sock->ops->mmap(file, sock, vma);
1033 }
1034 
1035 static int sock_close(struct inode *inode, struct file *filp)
1036 {
1037 	sock_release(SOCKET_I(inode));
1038 	return 0;
1039 }
1040 
1041 /*
1042  *	Update the socket async list
1043  *
1044  *	Fasync_list locking strategy.
1045  *
1046  *	1. fasync_list is modified only under process context socket lock
1047  *	   i.e. under semaphore.
1048  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1049  *	   or under socket lock
1050  */
1051 
1052 static int sock_fasync(int fd, struct file *filp, int on)
1053 {
1054 	struct socket *sock = filp->private_data;
1055 	struct sock *sk = sock->sk;
1056 	struct socket_wq *wq;
1057 
1058 	if (sk == NULL)
1059 		return -EINVAL;
1060 
1061 	lock_sock(sk);
1062 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1063 	fasync_helper(fd, filp, on, &wq->fasync_list);
1064 
1065 	if (!wq->fasync_list)
1066 		sock_reset_flag(sk, SOCK_FASYNC);
1067 	else
1068 		sock_set_flag(sk, SOCK_FASYNC);
1069 
1070 	release_sock(sk);
1071 	return 0;
1072 }
1073 
1074 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1075 
1076 int sock_wake_async(struct socket *sock, int how, int band)
1077 {
1078 	struct socket_wq *wq;
1079 
1080 	if (!sock)
1081 		return -1;
1082 	rcu_read_lock();
1083 	wq = rcu_dereference(sock->wq);
1084 	if (!wq || !wq->fasync_list) {
1085 		rcu_read_unlock();
1086 		return -1;
1087 	}
1088 	switch (how) {
1089 	case SOCK_WAKE_WAITD:
1090 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1091 			break;
1092 		goto call_kill;
1093 	case SOCK_WAKE_SPACE:
1094 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1095 			break;
1096 		/* fall through */
1097 	case SOCK_WAKE_IO:
1098 call_kill:
1099 		kill_fasync(&wq->fasync_list, SIGIO, band);
1100 		break;
1101 	case SOCK_WAKE_URG:
1102 		kill_fasync(&wq->fasync_list, SIGURG, band);
1103 	}
1104 	rcu_read_unlock();
1105 	return 0;
1106 }
1107 EXPORT_SYMBOL(sock_wake_async);
1108 
1109 int __sock_create(struct net *net, int family, int type, int protocol,
1110 			 struct socket **res, int kern)
1111 {
1112 	int err;
1113 	struct socket *sock;
1114 	const struct net_proto_family *pf;
1115 
1116 	/*
1117 	 *      Check protocol is in range
1118 	 */
1119 	if (family < 0 || family >= NPROTO)
1120 		return -EAFNOSUPPORT;
1121 	if (type < 0 || type >= SOCK_MAX)
1122 		return -EINVAL;
1123 
1124 	/* Compatibility.
1125 
1126 	   This uglymoron is moved from INET layer to here to avoid
1127 	   deadlock in module load.
1128 	 */
1129 	if (family == PF_INET && type == SOCK_PACKET) {
1130 		static int warned;
1131 		if (!warned) {
1132 			warned = 1;
1133 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1134 				current->comm);
1135 		}
1136 		family = PF_PACKET;
1137 	}
1138 
1139 	err = security_socket_create(family, type, protocol, kern);
1140 	if (err)
1141 		return err;
1142 
1143 	/*
1144 	 *	Allocate the socket and allow the family to set things up. if
1145 	 *	the protocol is 0, the family is instructed to select an appropriate
1146 	 *	default.
1147 	 */
1148 	sock = sock_alloc();
1149 	if (!sock) {
1150 		net_warn_ratelimited("socket: no more sockets\n");
1151 		return -ENFILE;	/* Not exactly a match, but its the
1152 				   closest posix thing */
1153 	}
1154 
1155 	sock->type = type;
1156 
1157 #ifdef CONFIG_MODULES
1158 	/* Attempt to load a protocol module if the find failed.
1159 	 *
1160 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1161 	 * requested real, full-featured networking support upon configuration.
1162 	 * Otherwise module support will break!
1163 	 */
1164 	if (rcu_access_pointer(net_families[family]) == NULL)
1165 		request_module("net-pf-%d", family);
1166 #endif
1167 
1168 	rcu_read_lock();
1169 	pf = rcu_dereference(net_families[family]);
1170 	err = -EAFNOSUPPORT;
1171 	if (!pf)
1172 		goto out_release;
1173 
1174 	/*
1175 	 * We will call the ->create function, that possibly is in a loadable
1176 	 * module, so we have to bump that loadable module refcnt first.
1177 	 */
1178 	if (!try_module_get(pf->owner))
1179 		goto out_release;
1180 
1181 	/* Now protected by module ref count */
1182 	rcu_read_unlock();
1183 
1184 	err = pf->create(net, sock, protocol, kern);
1185 	if (err < 0)
1186 		goto out_module_put;
1187 
1188 	/*
1189 	 * Now to bump the refcnt of the [loadable] module that owns this
1190 	 * socket at sock_release time we decrement its refcnt.
1191 	 */
1192 	if (!try_module_get(sock->ops->owner))
1193 		goto out_module_busy;
1194 
1195 	/*
1196 	 * Now that we're done with the ->create function, the [loadable]
1197 	 * module can have its refcnt decremented
1198 	 */
1199 	module_put(pf->owner);
1200 	err = security_socket_post_create(sock, family, type, protocol, kern);
1201 	if (err)
1202 		goto out_sock_release;
1203 	*res = sock;
1204 
1205 	return 0;
1206 
1207 out_module_busy:
1208 	err = -EAFNOSUPPORT;
1209 out_module_put:
1210 	sock->ops = NULL;
1211 	module_put(pf->owner);
1212 out_sock_release:
1213 	sock_release(sock);
1214 	return err;
1215 
1216 out_release:
1217 	rcu_read_unlock();
1218 	goto out_sock_release;
1219 }
1220 EXPORT_SYMBOL(__sock_create);
1221 
1222 int sock_create(int family, int type, int protocol, struct socket **res)
1223 {
1224 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1225 }
1226 EXPORT_SYMBOL(sock_create);
1227 
1228 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1229 {
1230 	return __sock_create(&init_net, family, type, protocol, res, 1);
1231 }
1232 EXPORT_SYMBOL(sock_create_kern);
1233 
1234 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1235 {
1236 	int retval;
1237 	struct socket *sock;
1238 	int flags;
1239 
1240 	/* Check the SOCK_* constants for consistency.  */
1241 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1242 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1243 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1244 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1245 
1246 	flags = type & ~SOCK_TYPE_MASK;
1247 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1248 		return -EINVAL;
1249 	type &= SOCK_TYPE_MASK;
1250 
1251 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1252 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1253 
1254 	retval = sock_create(family, type, protocol, &sock);
1255 	if (retval < 0)
1256 		goto out;
1257 
1258 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1259 	if (retval < 0)
1260 		goto out_release;
1261 
1262 out:
1263 	/* It may be already another descriptor 8) Not kernel problem. */
1264 	return retval;
1265 
1266 out_release:
1267 	sock_release(sock);
1268 	return retval;
1269 }
1270 
1271 /*
1272  *	Create a pair of connected sockets.
1273  */
1274 
1275 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1276 		int __user *, usockvec)
1277 {
1278 	struct socket *sock1, *sock2;
1279 	int fd1, fd2, err;
1280 	struct file *newfile1, *newfile2;
1281 	int flags;
1282 
1283 	flags = type & ~SOCK_TYPE_MASK;
1284 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1285 		return -EINVAL;
1286 	type &= SOCK_TYPE_MASK;
1287 
1288 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1289 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1290 
1291 	/*
1292 	 * Obtain the first socket and check if the underlying protocol
1293 	 * supports the socketpair call.
1294 	 */
1295 
1296 	err = sock_create(family, type, protocol, &sock1);
1297 	if (err < 0)
1298 		goto out;
1299 
1300 	err = sock_create(family, type, protocol, &sock2);
1301 	if (err < 0)
1302 		goto out_release_1;
1303 
1304 	err = sock1->ops->socketpair(sock1, sock2);
1305 	if (err < 0)
1306 		goto out_release_both;
1307 
1308 	fd1 = get_unused_fd_flags(flags);
1309 	if (unlikely(fd1 < 0)) {
1310 		err = fd1;
1311 		goto out_release_both;
1312 	}
1313 
1314 	fd2 = get_unused_fd_flags(flags);
1315 	if (unlikely(fd2 < 0)) {
1316 		err = fd2;
1317 		goto out_put_unused_1;
1318 	}
1319 
1320 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1321 	if (unlikely(IS_ERR(newfile1))) {
1322 		err = PTR_ERR(newfile1);
1323 		goto out_put_unused_both;
1324 	}
1325 
1326 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1327 	if (IS_ERR(newfile2)) {
1328 		err = PTR_ERR(newfile2);
1329 		goto out_fput_1;
1330 	}
1331 
1332 	err = put_user(fd1, &usockvec[0]);
1333 	if (err)
1334 		goto out_fput_both;
1335 
1336 	err = put_user(fd2, &usockvec[1]);
1337 	if (err)
1338 		goto out_fput_both;
1339 
1340 	audit_fd_pair(fd1, fd2);
1341 
1342 	fd_install(fd1, newfile1);
1343 	fd_install(fd2, newfile2);
1344 	/* fd1 and fd2 may be already another descriptors.
1345 	 * Not kernel problem.
1346 	 */
1347 
1348 	return 0;
1349 
1350 out_fput_both:
1351 	fput(newfile2);
1352 	fput(newfile1);
1353 	put_unused_fd(fd2);
1354 	put_unused_fd(fd1);
1355 	goto out;
1356 
1357 out_fput_1:
1358 	fput(newfile1);
1359 	put_unused_fd(fd2);
1360 	put_unused_fd(fd1);
1361 	sock_release(sock2);
1362 	goto out;
1363 
1364 out_put_unused_both:
1365 	put_unused_fd(fd2);
1366 out_put_unused_1:
1367 	put_unused_fd(fd1);
1368 out_release_both:
1369 	sock_release(sock2);
1370 out_release_1:
1371 	sock_release(sock1);
1372 out:
1373 	return err;
1374 }
1375 
1376 /*
1377  *	Bind a name to a socket. Nothing much to do here since it's
1378  *	the protocol's responsibility to handle the local address.
1379  *
1380  *	We move the socket address to kernel space before we call
1381  *	the protocol layer (having also checked the address is ok).
1382  */
1383 
1384 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1385 {
1386 	struct socket *sock;
1387 	struct sockaddr_storage address;
1388 	int err, fput_needed;
1389 
1390 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1391 	if (sock) {
1392 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1393 		if (err >= 0) {
1394 			err = security_socket_bind(sock,
1395 						   (struct sockaddr *)&address,
1396 						   addrlen);
1397 			if (!err)
1398 				err = sock->ops->bind(sock,
1399 						      (struct sockaddr *)
1400 						      &address, addrlen);
1401 		}
1402 		fput_light(sock->file, fput_needed);
1403 	}
1404 	return err;
1405 }
1406 
1407 /*
1408  *	Perform a listen. Basically, we allow the protocol to do anything
1409  *	necessary for a listen, and if that works, we mark the socket as
1410  *	ready for listening.
1411  */
1412 
1413 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1414 {
1415 	struct socket *sock;
1416 	int err, fput_needed;
1417 	int somaxconn;
1418 
1419 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1420 	if (sock) {
1421 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1422 		if ((unsigned int)backlog > somaxconn)
1423 			backlog = somaxconn;
1424 
1425 		err = security_socket_listen(sock, backlog);
1426 		if (!err)
1427 			err = sock->ops->listen(sock, backlog);
1428 
1429 		fput_light(sock->file, fput_needed);
1430 	}
1431 	return err;
1432 }
1433 
1434 /*
1435  *	For accept, we attempt to create a new socket, set up the link
1436  *	with the client, wake up the client, then return the new
1437  *	connected fd. We collect the address of the connector in kernel
1438  *	space and move it to user at the very end. This is unclean because
1439  *	we open the socket then return an error.
1440  *
1441  *	1003.1g adds the ability to recvmsg() to query connection pending
1442  *	status to recvmsg. We need to add that support in a way thats
1443  *	clean when we restucture accept also.
1444  */
1445 
1446 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1447 		int __user *, upeer_addrlen, int, flags)
1448 {
1449 	struct socket *sock, *newsock;
1450 	struct file *newfile;
1451 	int err, len, newfd, fput_needed;
1452 	struct sockaddr_storage address;
1453 
1454 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1455 		return -EINVAL;
1456 
1457 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1458 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1459 
1460 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1461 	if (!sock)
1462 		goto out;
1463 
1464 	err = -ENFILE;
1465 	newsock = sock_alloc();
1466 	if (!newsock)
1467 		goto out_put;
1468 
1469 	newsock->type = sock->type;
1470 	newsock->ops = sock->ops;
1471 
1472 	/*
1473 	 * We don't need try_module_get here, as the listening socket (sock)
1474 	 * has the protocol module (sock->ops->owner) held.
1475 	 */
1476 	__module_get(newsock->ops->owner);
1477 
1478 	newfd = get_unused_fd_flags(flags);
1479 	if (unlikely(newfd < 0)) {
1480 		err = newfd;
1481 		sock_release(newsock);
1482 		goto out_put;
1483 	}
1484 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1485 	if (unlikely(IS_ERR(newfile))) {
1486 		err = PTR_ERR(newfile);
1487 		put_unused_fd(newfd);
1488 		sock_release(newsock);
1489 		goto out_put;
1490 	}
1491 
1492 	err = security_socket_accept(sock, newsock);
1493 	if (err)
1494 		goto out_fd;
1495 
1496 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1497 	if (err < 0)
1498 		goto out_fd;
1499 
1500 	if (upeer_sockaddr) {
1501 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1502 					  &len, 2) < 0) {
1503 			err = -ECONNABORTED;
1504 			goto out_fd;
1505 		}
1506 		err = move_addr_to_user(&address,
1507 					len, upeer_sockaddr, upeer_addrlen);
1508 		if (err < 0)
1509 			goto out_fd;
1510 	}
1511 
1512 	/* File flags are not inherited via accept() unlike another OSes. */
1513 
1514 	fd_install(newfd, newfile);
1515 	err = newfd;
1516 
1517 out_put:
1518 	fput_light(sock->file, fput_needed);
1519 out:
1520 	return err;
1521 out_fd:
1522 	fput(newfile);
1523 	put_unused_fd(newfd);
1524 	goto out_put;
1525 }
1526 
1527 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1528 		int __user *, upeer_addrlen)
1529 {
1530 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1531 }
1532 
1533 /*
1534  *	Attempt to connect to a socket with the server address.  The address
1535  *	is in user space so we verify it is OK and move it to kernel space.
1536  *
1537  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1538  *	break bindings
1539  *
1540  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1541  *	other SEQPACKET protocols that take time to connect() as it doesn't
1542  *	include the -EINPROGRESS status for such sockets.
1543  */
1544 
1545 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1546 		int, addrlen)
1547 {
1548 	struct socket *sock;
1549 	struct sockaddr_storage address;
1550 	int err, fput_needed;
1551 
1552 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1553 	if (!sock)
1554 		goto out;
1555 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1556 	if (err < 0)
1557 		goto out_put;
1558 
1559 	err =
1560 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1561 	if (err)
1562 		goto out_put;
1563 
1564 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1565 				 sock->file->f_flags);
1566 out_put:
1567 	fput_light(sock->file, fput_needed);
1568 out:
1569 	return err;
1570 }
1571 
1572 /*
1573  *	Get the local address ('name') of a socket object. Move the obtained
1574  *	name to user space.
1575  */
1576 
1577 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1578 		int __user *, usockaddr_len)
1579 {
1580 	struct socket *sock;
1581 	struct sockaddr_storage address;
1582 	int len, err, fput_needed;
1583 
1584 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1585 	if (!sock)
1586 		goto out;
1587 
1588 	err = security_socket_getsockname(sock);
1589 	if (err)
1590 		goto out_put;
1591 
1592 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1593 	if (err)
1594 		goto out_put;
1595 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1596 
1597 out_put:
1598 	fput_light(sock->file, fput_needed);
1599 out:
1600 	return err;
1601 }
1602 
1603 /*
1604  *	Get the remote address ('name') of a socket object. Move the obtained
1605  *	name to user space.
1606  */
1607 
1608 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1609 		int __user *, usockaddr_len)
1610 {
1611 	struct socket *sock;
1612 	struct sockaddr_storage address;
1613 	int len, err, fput_needed;
1614 
1615 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1616 	if (sock != NULL) {
1617 		err = security_socket_getpeername(sock);
1618 		if (err) {
1619 			fput_light(sock->file, fput_needed);
1620 			return err;
1621 		}
1622 
1623 		err =
1624 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1625 				       1);
1626 		if (!err)
1627 			err = move_addr_to_user(&address, len, usockaddr,
1628 						usockaddr_len);
1629 		fput_light(sock->file, fput_needed);
1630 	}
1631 	return err;
1632 }
1633 
1634 /*
1635  *	Send a datagram to a given address. We move the address into kernel
1636  *	space and check the user space data area is readable before invoking
1637  *	the protocol.
1638  */
1639 
1640 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1641 		unsigned int, flags, struct sockaddr __user *, addr,
1642 		int, addr_len)
1643 {
1644 	struct socket *sock;
1645 	struct sockaddr_storage address;
1646 	int err;
1647 	struct msghdr msg;
1648 	struct iovec iov;
1649 	int fput_needed;
1650 
1651 	if (len > INT_MAX)
1652 		len = INT_MAX;
1653 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654 	if (!sock)
1655 		goto out;
1656 
1657 	iov.iov_base = buff;
1658 	iov.iov_len = len;
1659 	msg.msg_name = NULL;
1660 	iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1661 	msg.msg_control = NULL;
1662 	msg.msg_controllen = 0;
1663 	msg.msg_namelen = 0;
1664 	if (addr) {
1665 		err = move_addr_to_kernel(addr, addr_len, &address);
1666 		if (err < 0)
1667 			goto out_put;
1668 		msg.msg_name = (struct sockaddr *)&address;
1669 		msg.msg_namelen = addr_len;
1670 	}
1671 	if (sock->file->f_flags & O_NONBLOCK)
1672 		flags |= MSG_DONTWAIT;
1673 	msg.msg_flags = flags;
1674 	err = sock_sendmsg(sock, &msg, len);
1675 
1676 out_put:
1677 	fput_light(sock->file, fput_needed);
1678 out:
1679 	return err;
1680 }
1681 
1682 /*
1683  *	Send a datagram down a socket.
1684  */
1685 
1686 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1687 		unsigned int, flags)
1688 {
1689 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1690 }
1691 
1692 /*
1693  *	Receive a frame from the socket and optionally record the address of the
1694  *	sender. We verify the buffers are writable and if needed move the
1695  *	sender address from kernel to user space.
1696  */
1697 
1698 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1699 		unsigned int, flags, struct sockaddr __user *, addr,
1700 		int __user *, addr_len)
1701 {
1702 	struct socket *sock;
1703 	struct iovec iov;
1704 	struct msghdr msg;
1705 	struct sockaddr_storage address;
1706 	int err, err2;
1707 	int fput_needed;
1708 
1709 	if (size > INT_MAX)
1710 		size = INT_MAX;
1711 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1712 	if (!sock)
1713 		goto out;
1714 
1715 	msg.msg_control = NULL;
1716 	msg.msg_controllen = 0;
1717 	iov.iov_len = size;
1718 	iov.iov_base = ubuf;
1719 	iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1720 	/* Save some cycles and don't copy the address if not needed */
1721 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1722 	/* We assume all kernel code knows the size of sockaddr_storage */
1723 	msg.msg_namelen = 0;
1724 	if (sock->file->f_flags & O_NONBLOCK)
1725 		flags |= MSG_DONTWAIT;
1726 	err = sock_recvmsg(sock, &msg, size, flags);
1727 
1728 	if (err >= 0 && addr != NULL) {
1729 		err2 = move_addr_to_user(&address,
1730 					 msg.msg_namelen, addr, addr_len);
1731 		if (err2 < 0)
1732 			err = err2;
1733 	}
1734 
1735 	fput_light(sock->file, fput_needed);
1736 out:
1737 	return err;
1738 }
1739 
1740 /*
1741  *	Receive a datagram from a socket.
1742  */
1743 
1744 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1745 		unsigned int, flags)
1746 {
1747 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1748 }
1749 
1750 /*
1751  *	Set a socket option. Because we don't know the option lengths we have
1752  *	to pass the user mode parameter for the protocols to sort out.
1753  */
1754 
1755 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1756 		char __user *, optval, int, optlen)
1757 {
1758 	int err, fput_needed;
1759 	struct socket *sock;
1760 
1761 	if (optlen < 0)
1762 		return -EINVAL;
1763 
1764 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1765 	if (sock != NULL) {
1766 		err = security_socket_setsockopt(sock, level, optname);
1767 		if (err)
1768 			goto out_put;
1769 
1770 		if (level == SOL_SOCKET)
1771 			err =
1772 			    sock_setsockopt(sock, level, optname, optval,
1773 					    optlen);
1774 		else
1775 			err =
1776 			    sock->ops->setsockopt(sock, level, optname, optval,
1777 						  optlen);
1778 out_put:
1779 		fput_light(sock->file, fput_needed);
1780 	}
1781 	return err;
1782 }
1783 
1784 /*
1785  *	Get a socket option. Because we don't know the option lengths we have
1786  *	to pass a user mode parameter for the protocols to sort out.
1787  */
1788 
1789 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1790 		char __user *, optval, int __user *, optlen)
1791 {
1792 	int err, fput_needed;
1793 	struct socket *sock;
1794 
1795 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1796 	if (sock != NULL) {
1797 		err = security_socket_getsockopt(sock, level, optname);
1798 		if (err)
1799 			goto out_put;
1800 
1801 		if (level == SOL_SOCKET)
1802 			err =
1803 			    sock_getsockopt(sock, level, optname, optval,
1804 					    optlen);
1805 		else
1806 			err =
1807 			    sock->ops->getsockopt(sock, level, optname, optval,
1808 						  optlen);
1809 out_put:
1810 		fput_light(sock->file, fput_needed);
1811 	}
1812 	return err;
1813 }
1814 
1815 /*
1816  *	Shutdown a socket.
1817  */
1818 
1819 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1820 {
1821 	int err, fput_needed;
1822 	struct socket *sock;
1823 
1824 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1825 	if (sock != NULL) {
1826 		err = security_socket_shutdown(sock, how);
1827 		if (!err)
1828 			err = sock->ops->shutdown(sock, how);
1829 		fput_light(sock->file, fput_needed);
1830 	}
1831 	return err;
1832 }
1833 
1834 /* A couple of helpful macros for getting the address of the 32/64 bit
1835  * fields which are the same type (int / unsigned) on our platforms.
1836  */
1837 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1838 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1839 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1840 
1841 struct used_address {
1842 	struct sockaddr_storage name;
1843 	unsigned int name_len;
1844 };
1845 
1846 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1847 				     struct user_msghdr __user *umsg,
1848 				     struct sockaddr __user **save_addr,
1849 				     struct iovec **iov)
1850 {
1851 	struct sockaddr __user *uaddr;
1852 	struct iovec __user *uiov;
1853 	size_t nr_segs;
1854 	ssize_t err;
1855 
1856 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1857 	    __get_user(uaddr, &umsg->msg_name) ||
1858 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1859 	    __get_user(uiov, &umsg->msg_iov) ||
1860 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1861 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1862 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1863 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1864 		return -EFAULT;
1865 
1866 	if (!uaddr)
1867 		kmsg->msg_namelen = 0;
1868 
1869 	if (kmsg->msg_namelen < 0)
1870 		return -EINVAL;
1871 
1872 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1873 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1874 
1875 	if (save_addr)
1876 		*save_addr = uaddr;
1877 
1878 	if (uaddr && kmsg->msg_namelen) {
1879 		if (!save_addr) {
1880 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1881 						  kmsg->msg_name);
1882 			if (err < 0)
1883 				return err;
1884 		}
1885 	} else {
1886 		kmsg->msg_name = NULL;
1887 		kmsg->msg_namelen = 0;
1888 	}
1889 
1890 	if (nr_segs > UIO_MAXIOV)
1891 		return -EMSGSIZE;
1892 
1893 	err = rw_copy_check_uvector(save_addr ? READ : WRITE,
1894 				    uiov, nr_segs,
1895 				    UIO_FASTIOV, *iov, iov);
1896 	if (err >= 0)
1897 		iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
1898 			      *iov, nr_segs, err);
1899 	return err;
1900 }
1901 
1902 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1903 			 struct msghdr *msg_sys, unsigned int flags,
1904 			 struct used_address *used_address)
1905 {
1906 	struct compat_msghdr __user *msg_compat =
1907 	    (struct compat_msghdr __user *)msg;
1908 	struct sockaddr_storage address;
1909 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1910 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1911 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1912 	/* 20 is size of ipv6_pktinfo */
1913 	unsigned char *ctl_buf = ctl;
1914 	int ctl_len, total_len;
1915 	ssize_t err;
1916 
1917 	msg_sys->msg_name = &address;
1918 
1919 	if (MSG_CMSG_COMPAT & flags)
1920 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1921 	else
1922 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1923 	if (err < 0)
1924 		goto out_freeiov;
1925 	total_len = err;
1926 
1927 	err = -ENOBUFS;
1928 
1929 	if (msg_sys->msg_controllen > INT_MAX)
1930 		goto out_freeiov;
1931 	ctl_len = msg_sys->msg_controllen;
1932 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1933 		err =
1934 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1935 						     sizeof(ctl));
1936 		if (err)
1937 			goto out_freeiov;
1938 		ctl_buf = msg_sys->msg_control;
1939 		ctl_len = msg_sys->msg_controllen;
1940 	} else if (ctl_len) {
1941 		if (ctl_len > sizeof(ctl)) {
1942 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1943 			if (ctl_buf == NULL)
1944 				goto out_freeiov;
1945 		}
1946 		err = -EFAULT;
1947 		/*
1948 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1949 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1950 		 * checking falls down on this.
1951 		 */
1952 		if (copy_from_user(ctl_buf,
1953 				   (void __user __force *)msg_sys->msg_control,
1954 				   ctl_len))
1955 			goto out_freectl;
1956 		msg_sys->msg_control = ctl_buf;
1957 	}
1958 	msg_sys->msg_flags = flags;
1959 
1960 	if (sock->file->f_flags & O_NONBLOCK)
1961 		msg_sys->msg_flags |= MSG_DONTWAIT;
1962 	/*
1963 	 * If this is sendmmsg() and current destination address is same as
1964 	 * previously succeeded address, omit asking LSM's decision.
1965 	 * used_address->name_len is initialized to UINT_MAX so that the first
1966 	 * destination address never matches.
1967 	 */
1968 	if (used_address && msg_sys->msg_name &&
1969 	    used_address->name_len == msg_sys->msg_namelen &&
1970 	    !memcmp(&used_address->name, msg_sys->msg_name,
1971 		    used_address->name_len)) {
1972 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1973 		goto out_freectl;
1974 	}
1975 	err = sock_sendmsg(sock, msg_sys, total_len);
1976 	/*
1977 	 * If this is sendmmsg() and sending to current destination address was
1978 	 * successful, remember it.
1979 	 */
1980 	if (used_address && err >= 0) {
1981 		used_address->name_len = msg_sys->msg_namelen;
1982 		if (msg_sys->msg_name)
1983 			memcpy(&used_address->name, msg_sys->msg_name,
1984 			       used_address->name_len);
1985 	}
1986 
1987 out_freectl:
1988 	if (ctl_buf != ctl)
1989 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1990 out_freeiov:
1991 	if (iov != iovstack)
1992 		kfree(iov);
1993 	return err;
1994 }
1995 
1996 /*
1997  *	BSD sendmsg interface
1998  */
1999 
2000 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2001 {
2002 	int fput_needed, err;
2003 	struct msghdr msg_sys;
2004 	struct socket *sock;
2005 
2006 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2007 	if (!sock)
2008 		goto out;
2009 
2010 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2011 
2012 	fput_light(sock->file, fput_needed);
2013 out:
2014 	return err;
2015 }
2016 
2017 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2018 {
2019 	if (flags & MSG_CMSG_COMPAT)
2020 		return -EINVAL;
2021 	return __sys_sendmsg(fd, msg, flags);
2022 }
2023 
2024 /*
2025  *	Linux sendmmsg interface
2026  */
2027 
2028 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2029 		   unsigned int flags)
2030 {
2031 	int fput_needed, err, datagrams;
2032 	struct socket *sock;
2033 	struct mmsghdr __user *entry;
2034 	struct compat_mmsghdr __user *compat_entry;
2035 	struct msghdr msg_sys;
2036 	struct used_address used_address;
2037 
2038 	if (vlen > UIO_MAXIOV)
2039 		vlen = UIO_MAXIOV;
2040 
2041 	datagrams = 0;
2042 
2043 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2044 	if (!sock)
2045 		return err;
2046 
2047 	used_address.name_len = UINT_MAX;
2048 	entry = mmsg;
2049 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2050 	err = 0;
2051 
2052 	while (datagrams < vlen) {
2053 		if (MSG_CMSG_COMPAT & flags) {
2054 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2055 					     &msg_sys, flags, &used_address);
2056 			if (err < 0)
2057 				break;
2058 			err = __put_user(err, &compat_entry->msg_len);
2059 			++compat_entry;
2060 		} else {
2061 			err = ___sys_sendmsg(sock,
2062 					     (struct user_msghdr __user *)entry,
2063 					     &msg_sys, flags, &used_address);
2064 			if (err < 0)
2065 				break;
2066 			err = put_user(err, &entry->msg_len);
2067 			++entry;
2068 		}
2069 
2070 		if (err)
2071 			break;
2072 		++datagrams;
2073 	}
2074 
2075 	fput_light(sock->file, fput_needed);
2076 
2077 	/* We only return an error if no datagrams were able to be sent */
2078 	if (datagrams != 0)
2079 		return datagrams;
2080 
2081 	return err;
2082 }
2083 
2084 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2085 		unsigned int, vlen, unsigned int, flags)
2086 {
2087 	if (flags & MSG_CMSG_COMPAT)
2088 		return -EINVAL;
2089 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2090 }
2091 
2092 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2093 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2094 {
2095 	struct compat_msghdr __user *msg_compat =
2096 	    (struct compat_msghdr __user *)msg;
2097 	struct iovec iovstack[UIO_FASTIOV];
2098 	struct iovec *iov = iovstack;
2099 	unsigned long cmsg_ptr;
2100 	int total_len, len;
2101 	ssize_t err;
2102 
2103 	/* kernel mode address */
2104 	struct sockaddr_storage addr;
2105 
2106 	/* user mode address pointers */
2107 	struct sockaddr __user *uaddr;
2108 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2109 
2110 	msg_sys->msg_name = &addr;
2111 
2112 	if (MSG_CMSG_COMPAT & flags)
2113 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2114 	else
2115 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2116 	if (err < 0)
2117 		goto out_freeiov;
2118 	total_len = err;
2119 
2120 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2121 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2122 
2123 	/* We assume all kernel code knows the size of sockaddr_storage */
2124 	msg_sys->msg_namelen = 0;
2125 
2126 	if (sock->file->f_flags & O_NONBLOCK)
2127 		flags |= MSG_DONTWAIT;
2128 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2129 							  total_len, flags);
2130 	if (err < 0)
2131 		goto out_freeiov;
2132 	len = err;
2133 
2134 	if (uaddr != NULL) {
2135 		err = move_addr_to_user(&addr,
2136 					msg_sys->msg_namelen, uaddr,
2137 					uaddr_len);
2138 		if (err < 0)
2139 			goto out_freeiov;
2140 	}
2141 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2142 			 COMPAT_FLAGS(msg));
2143 	if (err)
2144 		goto out_freeiov;
2145 	if (MSG_CMSG_COMPAT & flags)
2146 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2147 				 &msg_compat->msg_controllen);
2148 	else
2149 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2150 				 &msg->msg_controllen);
2151 	if (err)
2152 		goto out_freeiov;
2153 	err = len;
2154 
2155 out_freeiov:
2156 	if (iov != iovstack)
2157 		kfree(iov);
2158 	return err;
2159 }
2160 
2161 /*
2162  *	BSD recvmsg interface
2163  */
2164 
2165 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2166 {
2167 	int fput_needed, err;
2168 	struct msghdr msg_sys;
2169 	struct socket *sock;
2170 
2171 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2172 	if (!sock)
2173 		goto out;
2174 
2175 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2176 
2177 	fput_light(sock->file, fput_needed);
2178 out:
2179 	return err;
2180 }
2181 
2182 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2183 		unsigned int, flags)
2184 {
2185 	if (flags & MSG_CMSG_COMPAT)
2186 		return -EINVAL;
2187 	return __sys_recvmsg(fd, msg, flags);
2188 }
2189 
2190 /*
2191  *     Linux recvmmsg interface
2192  */
2193 
2194 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2195 		   unsigned int flags, struct timespec *timeout)
2196 {
2197 	int fput_needed, err, datagrams;
2198 	struct socket *sock;
2199 	struct mmsghdr __user *entry;
2200 	struct compat_mmsghdr __user *compat_entry;
2201 	struct msghdr msg_sys;
2202 	struct timespec end_time;
2203 
2204 	if (timeout &&
2205 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2206 				    timeout->tv_nsec))
2207 		return -EINVAL;
2208 
2209 	datagrams = 0;
2210 
2211 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2212 	if (!sock)
2213 		return err;
2214 
2215 	err = sock_error(sock->sk);
2216 	if (err)
2217 		goto out_put;
2218 
2219 	entry = mmsg;
2220 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2221 
2222 	while (datagrams < vlen) {
2223 		/*
2224 		 * No need to ask LSM for more than the first datagram.
2225 		 */
2226 		if (MSG_CMSG_COMPAT & flags) {
2227 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2228 					     &msg_sys, flags & ~MSG_WAITFORONE,
2229 					     datagrams);
2230 			if (err < 0)
2231 				break;
2232 			err = __put_user(err, &compat_entry->msg_len);
2233 			++compat_entry;
2234 		} else {
2235 			err = ___sys_recvmsg(sock,
2236 					     (struct user_msghdr __user *)entry,
2237 					     &msg_sys, flags & ~MSG_WAITFORONE,
2238 					     datagrams);
2239 			if (err < 0)
2240 				break;
2241 			err = put_user(err, &entry->msg_len);
2242 			++entry;
2243 		}
2244 
2245 		if (err)
2246 			break;
2247 		++datagrams;
2248 
2249 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2250 		if (flags & MSG_WAITFORONE)
2251 			flags |= MSG_DONTWAIT;
2252 
2253 		if (timeout) {
2254 			ktime_get_ts(timeout);
2255 			*timeout = timespec_sub(end_time, *timeout);
2256 			if (timeout->tv_sec < 0) {
2257 				timeout->tv_sec = timeout->tv_nsec = 0;
2258 				break;
2259 			}
2260 
2261 			/* Timeout, return less than vlen datagrams */
2262 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2263 				break;
2264 		}
2265 
2266 		/* Out of band data, return right away */
2267 		if (msg_sys.msg_flags & MSG_OOB)
2268 			break;
2269 	}
2270 
2271 out_put:
2272 	fput_light(sock->file, fput_needed);
2273 
2274 	if (err == 0)
2275 		return datagrams;
2276 
2277 	if (datagrams != 0) {
2278 		/*
2279 		 * We may return less entries than requested (vlen) if the
2280 		 * sock is non block and there aren't enough datagrams...
2281 		 */
2282 		if (err != -EAGAIN) {
2283 			/*
2284 			 * ... or  if recvmsg returns an error after we
2285 			 * received some datagrams, where we record the
2286 			 * error to return on the next call or if the
2287 			 * app asks about it using getsockopt(SO_ERROR).
2288 			 */
2289 			sock->sk->sk_err = -err;
2290 		}
2291 
2292 		return datagrams;
2293 	}
2294 
2295 	return err;
2296 }
2297 
2298 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2299 		unsigned int, vlen, unsigned int, flags,
2300 		struct timespec __user *, timeout)
2301 {
2302 	int datagrams;
2303 	struct timespec timeout_sys;
2304 
2305 	if (flags & MSG_CMSG_COMPAT)
2306 		return -EINVAL;
2307 
2308 	if (!timeout)
2309 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2310 
2311 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2312 		return -EFAULT;
2313 
2314 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2315 
2316 	if (datagrams > 0 &&
2317 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2318 		datagrams = -EFAULT;
2319 
2320 	return datagrams;
2321 }
2322 
2323 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2324 /* Argument list sizes for sys_socketcall */
2325 #define AL(x) ((x) * sizeof(unsigned long))
2326 static const unsigned char nargs[21] = {
2327 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2328 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2329 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2330 	AL(4), AL(5), AL(4)
2331 };
2332 
2333 #undef AL
2334 
2335 /*
2336  *	System call vectors.
2337  *
2338  *	Argument checking cleaned up. Saved 20% in size.
2339  *  This function doesn't need to set the kernel lock because
2340  *  it is set by the callees.
2341  */
2342 
2343 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2344 {
2345 	unsigned long a[AUDITSC_ARGS];
2346 	unsigned long a0, a1;
2347 	int err;
2348 	unsigned int len;
2349 
2350 	if (call < 1 || call > SYS_SENDMMSG)
2351 		return -EINVAL;
2352 
2353 	len = nargs[call];
2354 	if (len > sizeof(a))
2355 		return -EINVAL;
2356 
2357 	/* copy_from_user should be SMP safe. */
2358 	if (copy_from_user(a, args, len))
2359 		return -EFAULT;
2360 
2361 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2362 	if (err)
2363 		return err;
2364 
2365 	a0 = a[0];
2366 	a1 = a[1];
2367 
2368 	switch (call) {
2369 	case SYS_SOCKET:
2370 		err = sys_socket(a0, a1, a[2]);
2371 		break;
2372 	case SYS_BIND:
2373 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2374 		break;
2375 	case SYS_CONNECT:
2376 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2377 		break;
2378 	case SYS_LISTEN:
2379 		err = sys_listen(a0, a1);
2380 		break;
2381 	case SYS_ACCEPT:
2382 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2383 				  (int __user *)a[2], 0);
2384 		break;
2385 	case SYS_GETSOCKNAME:
2386 		err =
2387 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2388 				    (int __user *)a[2]);
2389 		break;
2390 	case SYS_GETPEERNAME:
2391 		err =
2392 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2393 				    (int __user *)a[2]);
2394 		break;
2395 	case SYS_SOCKETPAIR:
2396 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2397 		break;
2398 	case SYS_SEND:
2399 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2400 		break;
2401 	case SYS_SENDTO:
2402 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2403 				 (struct sockaddr __user *)a[4], a[5]);
2404 		break;
2405 	case SYS_RECV:
2406 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2407 		break;
2408 	case SYS_RECVFROM:
2409 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2410 				   (struct sockaddr __user *)a[4],
2411 				   (int __user *)a[5]);
2412 		break;
2413 	case SYS_SHUTDOWN:
2414 		err = sys_shutdown(a0, a1);
2415 		break;
2416 	case SYS_SETSOCKOPT:
2417 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2418 		break;
2419 	case SYS_GETSOCKOPT:
2420 		err =
2421 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2422 				   (int __user *)a[4]);
2423 		break;
2424 	case SYS_SENDMSG:
2425 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2426 		break;
2427 	case SYS_SENDMMSG:
2428 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2429 		break;
2430 	case SYS_RECVMSG:
2431 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2432 		break;
2433 	case SYS_RECVMMSG:
2434 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2435 				   (struct timespec __user *)a[4]);
2436 		break;
2437 	case SYS_ACCEPT4:
2438 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2439 				  (int __user *)a[2], a[3]);
2440 		break;
2441 	default:
2442 		err = -EINVAL;
2443 		break;
2444 	}
2445 	return err;
2446 }
2447 
2448 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2449 
2450 /**
2451  *	sock_register - add a socket protocol handler
2452  *	@ops: description of protocol
2453  *
2454  *	This function is called by a protocol handler that wants to
2455  *	advertise its address family, and have it linked into the
2456  *	socket interface. The value ops->family corresponds to the
2457  *	socket system call protocol family.
2458  */
2459 int sock_register(const struct net_proto_family *ops)
2460 {
2461 	int err;
2462 
2463 	if (ops->family >= NPROTO) {
2464 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2465 		return -ENOBUFS;
2466 	}
2467 
2468 	spin_lock(&net_family_lock);
2469 	if (rcu_dereference_protected(net_families[ops->family],
2470 				      lockdep_is_held(&net_family_lock)))
2471 		err = -EEXIST;
2472 	else {
2473 		rcu_assign_pointer(net_families[ops->family], ops);
2474 		err = 0;
2475 	}
2476 	spin_unlock(&net_family_lock);
2477 
2478 	pr_info("NET: Registered protocol family %d\n", ops->family);
2479 	return err;
2480 }
2481 EXPORT_SYMBOL(sock_register);
2482 
2483 /**
2484  *	sock_unregister - remove a protocol handler
2485  *	@family: protocol family to remove
2486  *
2487  *	This function is called by a protocol handler that wants to
2488  *	remove its address family, and have it unlinked from the
2489  *	new socket creation.
2490  *
2491  *	If protocol handler is a module, then it can use module reference
2492  *	counts to protect against new references. If protocol handler is not
2493  *	a module then it needs to provide its own protection in
2494  *	the ops->create routine.
2495  */
2496 void sock_unregister(int family)
2497 {
2498 	BUG_ON(family < 0 || family >= NPROTO);
2499 
2500 	spin_lock(&net_family_lock);
2501 	RCU_INIT_POINTER(net_families[family], NULL);
2502 	spin_unlock(&net_family_lock);
2503 
2504 	synchronize_rcu();
2505 
2506 	pr_info("NET: Unregistered protocol family %d\n", family);
2507 }
2508 EXPORT_SYMBOL(sock_unregister);
2509 
2510 static int __init sock_init(void)
2511 {
2512 	int err;
2513 	/*
2514 	 *      Initialize the network sysctl infrastructure.
2515 	 */
2516 	err = net_sysctl_init();
2517 	if (err)
2518 		goto out;
2519 
2520 	/*
2521 	 *      Initialize skbuff SLAB cache
2522 	 */
2523 	skb_init();
2524 
2525 	/*
2526 	 *      Initialize the protocols module.
2527 	 */
2528 
2529 	init_inodecache();
2530 
2531 	err = register_filesystem(&sock_fs_type);
2532 	if (err)
2533 		goto out_fs;
2534 	sock_mnt = kern_mount(&sock_fs_type);
2535 	if (IS_ERR(sock_mnt)) {
2536 		err = PTR_ERR(sock_mnt);
2537 		goto out_mount;
2538 	}
2539 
2540 	/* The real protocol initialization is performed in later initcalls.
2541 	 */
2542 
2543 #ifdef CONFIG_NETFILTER
2544 	err = netfilter_init();
2545 	if (err)
2546 		goto out;
2547 #endif
2548 
2549 	ptp_classifier_init();
2550 
2551 out:
2552 	return err;
2553 
2554 out_mount:
2555 	unregister_filesystem(&sock_fs_type);
2556 out_fs:
2557 	goto out;
2558 }
2559 
2560 core_initcall(sock_init);	/* early initcall */
2561 
2562 #ifdef CONFIG_PROC_FS
2563 void socket_seq_show(struct seq_file *seq)
2564 {
2565 	int cpu;
2566 	int counter = 0;
2567 
2568 	for_each_possible_cpu(cpu)
2569 	    counter += per_cpu(sockets_in_use, cpu);
2570 
2571 	/* It can be negative, by the way. 8) */
2572 	if (counter < 0)
2573 		counter = 0;
2574 
2575 	seq_printf(seq, "sockets: used %d\n", counter);
2576 }
2577 #endif				/* CONFIG_PROC_FS */
2578 
2579 #ifdef CONFIG_COMPAT
2580 static int do_siocgstamp(struct net *net, struct socket *sock,
2581 			 unsigned int cmd, void __user *up)
2582 {
2583 	mm_segment_t old_fs = get_fs();
2584 	struct timeval ktv;
2585 	int err;
2586 
2587 	set_fs(KERNEL_DS);
2588 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2589 	set_fs(old_fs);
2590 	if (!err)
2591 		err = compat_put_timeval(&ktv, up);
2592 
2593 	return err;
2594 }
2595 
2596 static int do_siocgstampns(struct net *net, struct socket *sock,
2597 			   unsigned int cmd, void __user *up)
2598 {
2599 	mm_segment_t old_fs = get_fs();
2600 	struct timespec kts;
2601 	int err;
2602 
2603 	set_fs(KERNEL_DS);
2604 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2605 	set_fs(old_fs);
2606 	if (!err)
2607 		err = compat_put_timespec(&kts, up);
2608 
2609 	return err;
2610 }
2611 
2612 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2613 {
2614 	struct ifreq __user *uifr;
2615 	int err;
2616 
2617 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2618 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2619 		return -EFAULT;
2620 
2621 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2622 	if (err)
2623 		return err;
2624 
2625 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2626 		return -EFAULT;
2627 
2628 	return 0;
2629 }
2630 
2631 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2632 {
2633 	struct compat_ifconf ifc32;
2634 	struct ifconf ifc;
2635 	struct ifconf __user *uifc;
2636 	struct compat_ifreq __user *ifr32;
2637 	struct ifreq __user *ifr;
2638 	unsigned int i, j;
2639 	int err;
2640 
2641 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2642 		return -EFAULT;
2643 
2644 	memset(&ifc, 0, sizeof(ifc));
2645 	if (ifc32.ifcbuf == 0) {
2646 		ifc32.ifc_len = 0;
2647 		ifc.ifc_len = 0;
2648 		ifc.ifc_req = NULL;
2649 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2650 	} else {
2651 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2652 			sizeof(struct ifreq);
2653 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2654 		ifc.ifc_len = len;
2655 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2656 		ifr32 = compat_ptr(ifc32.ifcbuf);
2657 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2658 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2659 				return -EFAULT;
2660 			ifr++;
2661 			ifr32++;
2662 		}
2663 	}
2664 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2665 		return -EFAULT;
2666 
2667 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2668 	if (err)
2669 		return err;
2670 
2671 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2672 		return -EFAULT;
2673 
2674 	ifr = ifc.ifc_req;
2675 	ifr32 = compat_ptr(ifc32.ifcbuf);
2676 	for (i = 0, j = 0;
2677 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2678 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2679 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2680 			return -EFAULT;
2681 		ifr32++;
2682 		ifr++;
2683 	}
2684 
2685 	if (ifc32.ifcbuf == 0) {
2686 		/* Translate from 64-bit structure multiple to
2687 		 * a 32-bit one.
2688 		 */
2689 		i = ifc.ifc_len;
2690 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2691 		ifc32.ifc_len = i;
2692 	} else {
2693 		ifc32.ifc_len = i;
2694 	}
2695 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2696 		return -EFAULT;
2697 
2698 	return 0;
2699 }
2700 
2701 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2702 {
2703 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2704 	bool convert_in = false, convert_out = false;
2705 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2706 	struct ethtool_rxnfc __user *rxnfc;
2707 	struct ifreq __user *ifr;
2708 	u32 rule_cnt = 0, actual_rule_cnt;
2709 	u32 ethcmd;
2710 	u32 data;
2711 	int ret;
2712 
2713 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2714 		return -EFAULT;
2715 
2716 	compat_rxnfc = compat_ptr(data);
2717 
2718 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2719 		return -EFAULT;
2720 
2721 	/* Most ethtool structures are defined without padding.
2722 	 * Unfortunately struct ethtool_rxnfc is an exception.
2723 	 */
2724 	switch (ethcmd) {
2725 	default:
2726 		break;
2727 	case ETHTOOL_GRXCLSRLALL:
2728 		/* Buffer size is variable */
2729 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2730 			return -EFAULT;
2731 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2732 			return -ENOMEM;
2733 		buf_size += rule_cnt * sizeof(u32);
2734 		/* fall through */
2735 	case ETHTOOL_GRXRINGS:
2736 	case ETHTOOL_GRXCLSRLCNT:
2737 	case ETHTOOL_GRXCLSRULE:
2738 	case ETHTOOL_SRXCLSRLINS:
2739 		convert_out = true;
2740 		/* fall through */
2741 	case ETHTOOL_SRXCLSRLDEL:
2742 		buf_size += sizeof(struct ethtool_rxnfc);
2743 		convert_in = true;
2744 		break;
2745 	}
2746 
2747 	ifr = compat_alloc_user_space(buf_size);
2748 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2749 
2750 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2751 		return -EFAULT;
2752 
2753 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2754 		     &ifr->ifr_ifru.ifru_data))
2755 		return -EFAULT;
2756 
2757 	if (convert_in) {
2758 		/* We expect there to be holes between fs.m_ext and
2759 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2760 		 */
2761 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2762 			     sizeof(compat_rxnfc->fs.m_ext) !=
2763 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2764 			     sizeof(rxnfc->fs.m_ext));
2765 		BUILD_BUG_ON(
2766 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2767 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2768 			offsetof(struct ethtool_rxnfc, fs.location) -
2769 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2770 
2771 		if (copy_in_user(rxnfc, compat_rxnfc,
2772 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2773 				 (void __user *)rxnfc) ||
2774 		    copy_in_user(&rxnfc->fs.ring_cookie,
2775 				 &compat_rxnfc->fs.ring_cookie,
2776 				 (void __user *)(&rxnfc->fs.location + 1) -
2777 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2778 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2779 				 sizeof(rxnfc->rule_cnt)))
2780 			return -EFAULT;
2781 	}
2782 
2783 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2784 	if (ret)
2785 		return ret;
2786 
2787 	if (convert_out) {
2788 		if (copy_in_user(compat_rxnfc, rxnfc,
2789 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2790 				 (const void __user *)rxnfc) ||
2791 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2792 				 &rxnfc->fs.ring_cookie,
2793 				 (const void __user *)(&rxnfc->fs.location + 1) -
2794 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2795 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2796 				 sizeof(rxnfc->rule_cnt)))
2797 			return -EFAULT;
2798 
2799 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2800 			/* As an optimisation, we only copy the actual
2801 			 * number of rules that the underlying
2802 			 * function returned.  Since Mallory might
2803 			 * change the rule count in user memory, we
2804 			 * check that it is less than the rule count
2805 			 * originally given (as the user buffer size),
2806 			 * which has been range-checked.
2807 			 */
2808 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2809 				return -EFAULT;
2810 			if (actual_rule_cnt < rule_cnt)
2811 				rule_cnt = actual_rule_cnt;
2812 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2813 					 &rxnfc->rule_locs[0],
2814 					 rule_cnt * sizeof(u32)))
2815 				return -EFAULT;
2816 		}
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2823 {
2824 	void __user *uptr;
2825 	compat_uptr_t uptr32;
2826 	struct ifreq __user *uifr;
2827 
2828 	uifr = compat_alloc_user_space(sizeof(*uifr));
2829 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2830 		return -EFAULT;
2831 
2832 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2833 		return -EFAULT;
2834 
2835 	uptr = compat_ptr(uptr32);
2836 
2837 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2838 		return -EFAULT;
2839 
2840 	return dev_ioctl(net, SIOCWANDEV, uifr);
2841 }
2842 
2843 static int bond_ioctl(struct net *net, unsigned int cmd,
2844 			 struct compat_ifreq __user *ifr32)
2845 {
2846 	struct ifreq kifr;
2847 	mm_segment_t old_fs;
2848 	int err;
2849 
2850 	switch (cmd) {
2851 	case SIOCBONDENSLAVE:
2852 	case SIOCBONDRELEASE:
2853 	case SIOCBONDSETHWADDR:
2854 	case SIOCBONDCHANGEACTIVE:
2855 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2856 			return -EFAULT;
2857 
2858 		old_fs = get_fs();
2859 		set_fs(KERNEL_DS);
2860 		err = dev_ioctl(net, cmd,
2861 				(struct ifreq __user __force *) &kifr);
2862 		set_fs(old_fs);
2863 
2864 		return err;
2865 	default:
2866 		return -ENOIOCTLCMD;
2867 	}
2868 }
2869 
2870 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2871 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2872 				 struct compat_ifreq __user *u_ifreq32)
2873 {
2874 	struct ifreq __user *u_ifreq64;
2875 	char tmp_buf[IFNAMSIZ];
2876 	void __user *data64;
2877 	u32 data32;
2878 
2879 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2880 			   IFNAMSIZ))
2881 		return -EFAULT;
2882 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2883 		return -EFAULT;
2884 	data64 = compat_ptr(data32);
2885 
2886 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2887 
2888 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2889 			 IFNAMSIZ))
2890 		return -EFAULT;
2891 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2892 		return -EFAULT;
2893 
2894 	return dev_ioctl(net, cmd, u_ifreq64);
2895 }
2896 
2897 static int dev_ifsioc(struct net *net, struct socket *sock,
2898 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2899 {
2900 	struct ifreq __user *uifr;
2901 	int err;
2902 
2903 	uifr = compat_alloc_user_space(sizeof(*uifr));
2904 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2905 		return -EFAULT;
2906 
2907 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2908 
2909 	if (!err) {
2910 		switch (cmd) {
2911 		case SIOCGIFFLAGS:
2912 		case SIOCGIFMETRIC:
2913 		case SIOCGIFMTU:
2914 		case SIOCGIFMEM:
2915 		case SIOCGIFHWADDR:
2916 		case SIOCGIFINDEX:
2917 		case SIOCGIFADDR:
2918 		case SIOCGIFBRDADDR:
2919 		case SIOCGIFDSTADDR:
2920 		case SIOCGIFNETMASK:
2921 		case SIOCGIFPFLAGS:
2922 		case SIOCGIFTXQLEN:
2923 		case SIOCGMIIPHY:
2924 		case SIOCGMIIREG:
2925 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2926 				err = -EFAULT;
2927 			break;
2928 		}
2929 	}
2930 	return err;
2931 }
2932 
2933 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2934 			struct compat_ifreq __user *uifr32)
2935 {
2936 	struct ifreq ifr;
2937 	struct compat_ifmap __user *uifmap32;
2938 	mm_segment_t old_fs;
2939 	int err;
2940 
2941 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2942 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2943 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2944 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2945 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2946 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2947 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2948 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2949 	if (err)
2950 		return -EFAULT;
2951 
2952 	old_fs = get_fs();
2953 	set_fs(KERNEL_DS);
2954 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2955 	set_fs(old_fs);
2956 
2957 	if (cmd == SIOCGIFMAP && !err) {
2958 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2959 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2960 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2961 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2962 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2963 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2964 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2965 		if (err)
2966 			err = -EFAULT;
2967 	}
2968 	return err;
2969 }
2970 
2971 struct rtentry32 {
2972 	u32		rt_pad1;
2973 	struct sockaddr rt_dst;         /* target address               */
2974 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2975 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2976 	unsigned short	rt_flags;
2977 	short		rt_pad2;
2978 	u32		rt_pad3;
2979 	unsigned char	rt_tos;
2980 	unsigned char	rt_class;
2981 	short		rt_pad4;
2982 	short		rt_metric;      /* +1 for binary compatibility! */
2983 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2984 	u32		rt_mtu;         /* per route MTU/Window         */
2985 	u32		rt_window;      /* Window clamping              */
2986 	unsigned short  rt_irtt;        /* Initial RTT                  */
2987 };
2988 
2989 struct in6_rtmsg32 {
2990 	struct in6_addr		rtmsg_dst;
2991 	struct in6_addr		rtmsg_src;
2992 	struct in6_addr		rtmsg_gateway;
2993 	u32			rtmsg_type;
2994 	u16			rtmsg_dst_len;
2995 	u16			rtmsg_src_len;
2996 	u32			rtmsg_metric;
2997 	u32			rtmsg_info;
2998 	u32			rtmsg_flags;
2999 	s32			rtmsg_ifindex;
3000 };
3001 
3002 static int routing_ioctl(struct net *net, struct socket *sock,
3003 			 unsigned int cmd, void __user *argp)
3004 {
3005 	int ret;
3006 	void *r = NULL;
3007 	struct in6_rtmsg r6;
3008 	struct rtentry r4;
3009 	char devname[16];
3010 	u32 rtdev;
3011 	mm_segment_t old_fs = get_fs();
3012 
3013 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3014 		struct in6_rtmsg32 __user *ur6 = argp;
3015 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3016 			3 * sizeof(struct in6_addr));
3017 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3018 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3019 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3020 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3021 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3022 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3023 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3024 
3025 		r = (void *) &r6;
3026 	} else { /* ipv4 */
3027 		struct rtentry32 __user *ur4 = argp;
3028 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3029 					3 * sizeof(struct sockaddr));
3030 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3031 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3032 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3033 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3034 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3035 		ret |= get_user(rtdev, &(ur4->rt_dev));
3036 		if (rtdev) {
3037 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3038 			r4.rt_dev = (char __user __force *)devname;
3039 			devname[15] = 0;
3040 		} else
3041 			r4.rt_dev = NULL;
3042 
3043 		r = (void *) &r4;
3044 	}
3045 
3046 	if (ret) {
3047 		ret = -EFAULT;
3048 		goto out;
3049 	}
3050 
3051 	set_fs(KERNEL_DS);
3052 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3053 	set_fs(old_fs);
3054 
3055 out:
3056 	return ret;
3057 }
3058 
3059 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3060  * for some operations; this forces use of the newer bridge-utils that
3061  * use compatible ioctls
3062  */
3063 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3064 {
3065 	compat_ulong_t tmp;
3066 
3067 	if (get_user(tmp, argp))
3068 		return -EFAULT;
3069 	if (tmp == BRCTL_GET_VERSION)
3070 		return BRCTL_VERSION + 1;
3071 	return -EINVAL;
3072 }
3073 
3074 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3075 			 unsigned int cmd, unsigned long arg)
3076 {
3077 	void __user *argp = compat_ptr(arg);
3078 	struct sock *sk = sock->sk;
3079 	struct net *net = sock_net(sk);
3080 
3081 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3082 		return compat_ifr_data_ioctl(net, cmd, argp);
3083 
3084 	switch (cmd) {
3085 	case SIOCSIFBR:
3086 	case SIOCGIFBR:
3087 		return old_bridge_ioctl(argp);
3088 	case SIOCGIFNAME:
3089 		return dev_ifname32(net, argp);
3090 	case SIOCGIFCONF:
3091 		return dev_ifconf(net, argp);
3092 	case SIOCETHTOOL:
3093 		return ethtool_ioctl(net, argp);
3094 	case SIOCWANDEV:
3095 		return compat_siocwandev(net, argp);
3096 	case SIOCGIFMAP:
3097 	case SIOCSIFMAP:
3098 		return compat_sioc_ifmap(net, cmd, argp);
3099 	case SIOCBONDENSLAVE:
3100 	case SIOCBONDRELEASE:
3101 	case SIOCBONDSETHWADDR:
3102 	case SIOCBONDCHANGEACTIVE:
3103 		return bond_ioctl(net, cmd, argp);
3104 	case SIOCADDRT:
3105 	case SIOCDELRT:
3106 		return routing_ioctl(net, sock, cmd, argp);
3107 	case SIOCGSTAMP:
3108 		return do_siocgstamp(net, sock, cmd, argp);
3109 	case SIOCGSTAMPNS:
3110 		return do_siocgstampns(net, sock, cmd, argp);
3111 	case SIOCBONDSLAVEINFOQUERY:
3112 	case SIOCBONDINFOQUERY:
3113 	case SIOCSHWTSTAMP:
3114 	case SIOCGHWTSTAMP:
3115 		return compat_ifr_data_ioctl(net, cmd, argp);
3116 
3117 	case FIOSETOWN:
3118 	case SIOCSPGRP:
3119 	case FIOGETOWN:
3120 	case SIOCGPGRP:
3121 	case SIOCBRADDBR:
3122 	case SIOCBRDELBR:
3123 	case SIOCGIFVLAN:
3124 	case SIOCSIFVLAN:
3125 	case SIOCADDDLCI:
3126 	case SIOCDELDLCI:
3127 		return sock_ioctl(file, cmd, arg);
3128 
3129 	case SIOCGIFFLAGS:
3130 	case SIOCSIFFLAGS:
3131 	case SIOCGIFMETRIC:
3132 	case SIOCSIFMETRIC:
3133 	case SIOCGIFMTU:
3134 	case SIOCSIFMTU:
3135 	case SIOCGIFMEM:
3136 	case SIOCSIFMEM:
3137 	case SIOCGIFHWADDR:
3138 	case SIOCSIFHWADDR:
3139 	case SIOCADDMULTI:
3140 	case SIOCDELMULTI:
3141 	case SIOCGIFINDEX:
3142 	case SIOCGIFADDR:
3143 	case SIOCSIFADDR:
3144 	case SIOCSIFHWBROADCAST:
3145 	case SIOCDIFADDR:
3146 	case SIOCGIFBRDADDR:
3147 	case SIOCSIFBRDADDR:
3148 	case SIOCGIFDSTADDR:
3149 	case SIOCSIFDSTADDR:
3150 	case SIOCGIFNETMASK:
3151 	case SIOCSIFNETMASK:
3152 	case SIOCSIFPFLAGS:
3153 	case SIOCGIFPFLAGS:
3154 	case SIOCGIFTXQLEN:
3155 	case SIOCSIFTXQLEN:
3156 	case SIOCBRADDIF:
3157 	case SIOCBRDELIF:
3158 	case SIOCSIFNAME:
3159 	case SIOCGMIIPHY:
3160 	case SIOCGMIIREG:
3161 	case SIOCSMIIREG:
3162 		return dev_ifsioc(net, sock, cmd, argp);
3163 
3164 	case SIOCSARP:
3165 	case SIOCGARP:
3166 	case SIOCDARP:
3167 	case SIOCATMARK:
3168 		return sock_do_ioctl(net, sock, cmd, arg);
3169 	}
3170 
3171 	return -ENOIOCTLCMD;
3172 }
3173 
3174 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3175 			      unsigned long arg)
3176 {
3177 	struct socket *sock = file->private_data;
3178 	int ret = -ENOIOCTLCMD;
3179 	struct sock *sk;
3180 	struct net *net;
3181 
3182 	sk = sock->sk;
3183 	net = sock_net(sk);
3184 
3185 	if (sock->ops->compat_ioctl)
3186 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3187 
3188 	if (ret == -ENOIOCTLCMD &&
3189 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3190 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3191 
3192 	if (ret == -ENOIOCTLCMD)
3193 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3194 
3195 	return ret;
3196 }
3197 #endif
3198 
3199 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3200 {
3201 	return sock->ops->bind(sock, addr, addrlen);
3202 }
3203 EXPORT_SYMBOL(kernel_bind);
3204 
3205 int kernel_listen(struct socket *sock, int backlog)
3206 {
3207 	return sock->ops->listen(sock, backlog);
3208 }
3209 EXPORT_SYMBOL(kernel_listen);
3210 
3211 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3212 {
3213 	struct sock *sk = sock->sk;
3214 	int err;
3215 
3216 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3217 			       newsock);
3218 	if (err < 0)
3219 		goto done;
3220 
3221 	err = sock->ops->accept(sock, *newsock, flags);
3222 	if (err < 0) {
3223 		sock_release(*newsock);
3224 		*newsock = NULL;
3225 		goto done;
3226 	}
3227 
3228 	(*newsock)->ops = sock->ops;
3229 	__module_get((*newsock)->ops->owner);
3230 
3231 done:
3232 	return err;
3233 }
3234 EXPORT_SYMBOL(kernel_accept);
3235 
3236 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3237 		   int flags)
3238 {
3239 	return sock->ops->connect(sock, addr, addrlen, flags);
3240 }
3241 EXPORT_SYMBOL(kernel_connect);
3242 
3243 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3244 			 int *addrlen)
3245 {
3246 	return sock->ops->getname(sock, addr, addrlen, 0);
3247 }
3248 EXPORT_SYMBOL(kernel_getsockname);
3249 
3250 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3251 			 int *addrlen)
3252 {
3253 	return sock->ops->getname(sock, addr, addrlen, 1);
3254 }
3255 EXPORT_SYMBOL(kernel_getpeername);
3256 
3257 int kernel_getsockopt(struct socket *sock, int level, int optname,
3258 			char *optval, int *optlen)
3259 {
3260 	mm_segment_t oldfs = get_fs();
3261 	char __user *uoptval;
3262 	int __user *uoptlen;
3263 	int err;
3264 
3265 	uoptval = (char __user __force *) optval;
3266 	uoptlen = (int __user __force *) optlen;
3267 
3268 	set_fs(KERNEL_DS);
3269 	if (level == SOL_SOCKET)
3270 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3271 	else
3272 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3273 					    uoptlen);
3274 	set_fs(oldfs);
3275 	return err;
3276 }
3277 EXPORT_SYMBOL(kernel_getsockopt);
3278 
3279 int kernel_setsockopt(struct socket *sock, int level, int optname,
3280 			char *optval, unsigned int optlen)
3281 {
3282 	mm_segment_t oldfs = get_fs();
3283 	char __user *uoptval;
3284 	int err;
3285 
3286 	uoptval = (char __user __force *) optval;
3287 
3288 	set_fs(KERNEL_DS);
3289 	if (level == SOL_SOCKET)
3290 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3291 	else
3292 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3293 					    optlen);
3294 	set_fs(oldfs);
3295 	return err;
3296 }
3297 EXPORT_SYMBOL(kernel_setsockopt);
3298 
3299 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3300 		    size_t size, int flags)
3301 {
3302 	if (sock->ops->sendpage)
3303 		return sock->ops->sendpage(sock, page, offset, size, flags);
3304 
3305 	return sock_no_sendpage(sock, page, offset, size, flags);
3306 }
3307 EXPORT_SYMBOL(kernel_sendpage);
3308 
3309 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3310 {
3311 	mm_segment_t oldfs = get_fs();
3312 	int err;
3313 
3314 	set_fs(KERNEL_DS);
3315 	err = sock->ops->ioctl(sock, cmd, arg);
3316 	set_fs(oldfs);
3317 
3318 	return err;
3319 }
3320 EXPORT_SYMBOL(kernel_sock_ioctl);
3321 
3322 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3323 {
3324 	return sock->ops->shutdown(sock, how);
3325 }
3326 EXPORT_SYMBOL(kernel_sock_shutdown);
3327