1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/ethtool.h> 56 #include <linux/mm.h> 57 #include <linux/socket.h> 58 #include <linux/file.h> 59 #include <linux/net.h> 60 #include <linux/interrupt.h> 61 #include <linux/thread_info.h> 62 #include <linux/rcupdate.h> 63 #include <linux/netdevice.h> 64 #include <linux/proc_fs.h> 65 #include <linux/seq_file.h> 66 #include <linux/mutex.h> 67 #include <linux/if_bridge.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 #include <linux/ptp_clock_kernel.h> 108 109 #ifdef CONFIG_NET_RX_BUSY_POLL 110 unsigned int sysctl_net_busy_read __read_mostly; 111 unsigned int sysctl_net_busy_poll __read_mostly; 112 #endif 113 114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 116 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 117 118 static int sock_close(struct inode *inode, struct file *file); 119 static __poll_t sock_poll(struct file *file, 120 struct poll_table_struct *wait); 121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 122 #ifdef CONFIG_COMPAT 123 static long compat_sock_ioctl(struct file *file, 124 unsigned int cmd, unsigned long arg); 125 #endif 126 static int sock_fasync(int fd, struct file *filp, int on); 127 static ssize_t sock_sendpage(struct file *file, struct page *page, 128 int offset, size_t size, loff_t *ppos, int more); 129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 130 struct pipe_inode_info *pipe, size_t len, 131 unsigned int flags); 132 133 #ifdef CONFIG_PROC_FS 134 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 135 { 136 struct socket *sock = f->private_data; 137 138 if (sock->ops->show_fdinfo) 139 sock->ops->show_fdinfo(m, sock); 140 } 141 #else 142 #define sock_show_fdinfo NULL 143 #endif 144 145 /* 146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 147 * in the operation structures but are done directly via the socketcall() multiplexor. 148 */ 149 150 static const struct file_operations socket_file_ops = { 151 .owner = THIS_MODULE, 152 .llseek = no_llseek, 153 .read_iter = sock_read_iter, 154 .write_iter = sock_write_iter, 155 .poll = sock_poll, 156 .unlocked_ioctl = sock_ioctl, 157 #ifdef CONFIG_COMPAT 158 .compat_ioctl = compat_sock_ioctl, 159 #endif 160 .mmap = sock_mmap, 161 .release = sock_close, 162 .fasync = sock_fasync, 163 .sendpage = sock_sendpage, 164 .splice_write = generic_splice_sendpage, 165 .splice_read = sock_splice_read, 166 .show_fdinfo = sock_show_fdinfo, 167 }; 168 169 static const char * const pf_family_names[] = { 170 [PF_UNSPEC] = "PF_UNSPEC", 171 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 172 [PF_INET] = "PF_INET", 173 [PF_AX25] = "PF_AX25", 174 [PF_IPX] = "PF_IPX", 175 [PF_APPLETALK] = "PF_APPLETALK", 176 [PF_NETROM] = "PF_NETROM", 177 [PF_BRIDGE] = "PF_BRIDGE", 178 [PF_ATMPVC] = "PF_ATMPVC", 179 [PF_X25] = "PF_X25", 180 [PF_INET6] = "PF_INET6", 181 [PF_ROSE] = "PF_ROSE", 182 [PF_DECnet] = "PF_DECnet", 183 [PF_NETBEUI] = "PF_NETBEUI", 184 [PF_SECURITY] = "PF_SECURITY", 185 [PF_KEY] = "PF_KEY", 186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 187 [PF_PACKET] = "PF_PACKET", 188 [PF_ASH] = "PF_ASH", 189 [PF_ECONET] = "PF_ECONET", 190 [PF_ATMSVC] = "PF_ATMSVC", 191 [PF_RDS] = "PF_RDS", 192 [PF_SNA] = "PF_SNA", 193 [PF_IRDA] = "PF_IRDA", 194 [PF_PPPOX] = "PF_PPPOX", 195 [PF_WANPIPE] = "PF_WANPIPE", 196 [PF_LLC] = "PF_LLC", 197 [PF_IB] = "PF_IB", 198 [PF_MPLS] = "PF_MPLS", 199 [PF_CAN] = "PF_CAN", 200 [PF_TIPC] = "PF_TIPC", 201 [PF_BLUETOOTH] = "PF_BLUETOOTH", 202 [PF_IUCV] = "PF_IUCV", 203 [PF_RXRPC] = "PF_RXRPC", 204 [PF_ISDN] = "PF_ISDN", 205 [PF_PHONET] = "PF_PHONET", 206 [PF_IEEE802154] = "PF_IEEE802154", 207 [PF_CAIF] = "PF_CAIF", 208 [PF_ALG] = "PF_ALG", 209 [PF_NFC] = "PF_NFC", 210 [PF_VSOCK] = "PF_VSOCK", 211 [PF_KCM] = "PF_KCM", 212 [PF_QIPCRTR] = "PF_QIPCRTR", 213 [PF_SMC] = "PF_SMC", 214 [PF_XDP] = "PF_XDP", 215 }; 216 217 /* 218 * The protocol list. Each protocol is registered in here. 219 */ 220 221 static DEFINE_SPINLOCK(net_family_lock); 222 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 223 224 /* 225 * Support routines. 226 * Move socket addresses back and forth across the kernel/user 227 * divide and look after the messy bits. 228 */ 229 230 /** 231 * move_addr_to_kernel - copy a socket address into kernel space 232 * @uaddr: Address in user space 233 * @kaddr: Address in kernel space 234 * @ulen: Length in user space 235 * 236 * The address is copied into kernel space. If the provided address is 237 * too long an error code of -EINVAL is returned. If the copy gives 238 * invalid addresses -EFAULT is returned. On a success 0 is returned. 239 */ 240 241 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 242 { 243 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 244 return -EINVAL; 245 if (ulen == 0) 246 return 0; 247 if (copy_from_user(kaddr, uaddr, ulen)) 248 return -EFAULT; 249 return audit_sockaddr(ulen, kaddr); 250 } 251 252 /** 253 * move_addr_to_user - copy an address to user space 254 * @kaddr: kernel space address 255 * @klen: length of address in kernel 256 * @uaddr: user space address 257 * @ulen: pointer to user length field 258 * 259 * The value pointed to by ulen on entry is the buffer length available. 260 * This is overwritten with the buffer space used. -EINVAL is returned 261 * if an overlong buffer is specified or a negative buffer size. -EFAULT 262 * is returned if either the buffer or the length field are not 263 * accessible. 264 * After copying the data up to the limit the user specifies, the true 265 * length of the data is written over the length limit the user 266 * specified. Zero is returned for a success. 267 */ 268 269 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 270 void __user *uaddr, int __user *ulen) 271 { 272 int err; 273 int len; 274 275 BUG_ON(klen > sizeof(struct sockaddr_storage)); 276 err = get_user(len, ulen); 277 if (err) 278 return err; 279 if (len > klen) 280 len = klen; 281 if (len < 0) 282 return -EINVAL; 283 if (len) { 284 if (audit_sockaddr(klen, kaddr)) 285 return -ENOMEM; 286 if (copy_to_user(uaddr, kaddr, len)) 287 return -EFAULT; 288 } 289 /* 290 * "fromlen shall refer to the value before truncation.." 291 * 1003.1g 292 */ 293 return __put_user(klen, ulen); 294 } 295 296 static struct kmem_cache *sock_inode_cachep __ro_after_init; 297 298 static struct inode *sock_alloc_inode(struct super_block *sb) 299 { 300 struct socket_alloc *ei; 301 302 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 303 if (!ei) 304 return NULL; 305 init_waitqueue_head(&ei->socket.wq.wait); 306 ei->socket.wq.fasync_list = NULL; 307 ei->socket.wq.flags = 0; 308 309 ei->socket.state = SS_UNCONNECTED; 310 ei->socket.flags = 0; 311 ei->socket.ops = NULL; 312 ei->socket.sk = NULL; 313 ei->socket.file = NULL; 314 315 return &ei->vfs_inode; 316 } 317 318 static void sock_free_inode(struct inode *inode) 319 { 320 struct socket_alloc *ei; 321 322 ei = container_of(inode, struct socket_alloc, vfs_inode); 323 kmem_cache_free(sock_inode_cachep, ei); 324 } 325 326 static void init_once(void *foo) 327 { 328 struct socket_alloc *ei = (struct socket_alloc *)foo; 329 330 inode_init_once(&ei->vfs_inode); 331 } 332 333 static void init_inodecache(void) 334 { 335 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 336 sizeof(struct socket_alloc), 337 0, 338 (SLAB_HWCACHE_ALIGN | 339 SLAB_RECLAIM_ACCOUNT | 340 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 341 init_once); 342 BUG_ON(sock_inode_cachep == NULL); 343 } 344 345 static const struct super_operations sockfs_ops = { 346 .alloc_inode = sock_alloc_inode, 347 .free_inode = sock_free_inode, 348 .statfs = simple_statfs, 349 }; 350 351 /* 352 * sockfs_dname() is called from d_path(). 353 */ 354 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 355 { 356 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 357 d_inode(dentry)->i_ino); 358 } 359 360 static const struct dentry_operations sockfs_dentry_operations = { 361 .d_dname = sockfs_dname, 362 }; 363 364 static int sockfs_xattr_get(const struct xattr_handler *handler, 365 struct dentry *dentry, struct inode *inode, 366 const char *suffix, void *value, size_t size) 367 { 368 if (value) { 369 if (dentry->d_name.len + 1 > size) 370 return -ERANGE; 371 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 372 } 373 return dentry->d_name.len + 1; 374 } 375 376 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 377 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 378 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 379 380 static const struct xattr_handler sockfs_xattr_handler = { 381 .name = XATTR_NAME_SOCKPROTONAME, 382 .get = sockfs_xattr_get, 383 }; 384 385 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 386 struct user_namespace *mnt_userns, 387 struct dentry *dentry, struct inode *inode, 388 const char *suffix, const void *value, 389 size_t size, int flags) 390 { 391 /* Handled by LSM. */ 392 return -EAGAIN; 393 } 394 395 static const struct xattr_handler sockfs_security_xattr_handler = { 396 .prefix = XATTR_SECURITY_PREFIX, 397 .set = sockfs_security_xattr_set, 398 }; 399 400 static const struct xattr_handler *sockfs_xattr_handlers[] = { 401 &sockfs_xattr_handler, 402 &sockfs_security_xattr_handler, 403 NULL 404 }; 405 406 static int sockfs_init_fs_context(struct fs_context *fc) 407 { 408 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 409 if (!ctx) 410 return -ENOMEM; 411 ctx->ops = &sockfs_ops; 412 ctx->dops = &sockfs_dentry_operations; 413 ctx->xattr = sockfs_xattr_handlers; 414 return 0; 415 } 416 417 static struct vfsmount *sock_mnt __read_mostly; 418 419 static struct file_system_type sock_fs_type = { 420 .name = "sockfs", 421 .init_fs_context = sockfs_init_fs_context, 422 .kill_sb = kill_anon_super, 423 }; 424 425 /* 426 * Obtains the first available file descriptor and sets it up for use. 427 * 428 * These functions create file structures and maps them to fd space 429 * of the current process. On success it returns file descriptor 430 * and file struct implicitly stored in sock->file. 431 * Note that another thread may close file descriptor before we return 432 * from this function. We use the fact that now we do not refer 433 * to socket after mapping. If one day we will need it, this 434 * function will increment ref. count on file by 1. 435 * 436 * In any case returned fd MAY BE not valid! 437 * This race condition is unavoidable 438 * with shared fd spaces, we cannot solve it inside kernel, 439 * but we take care of internal coherence yet. 440 */ 441 442 /** 443 * sock_alloc_file - Bind a &socket to a &file 444 * @sock: socket 445 * @flags: file status flags 446 * @dname: protocol name 447 * 448 * Returns the &file bound with @sock, implicitly storing it 449 * in sock->file. If dname is %NULL, sets to "". 450 * On failure the return is a ERR pointer (see linux/err.h). 451 * This function uses GFP_KERNEL internally. 452 */ 453 454 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 455 { 456 struct file *file; 457 458 if (!dname) 459 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 460 461 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 462 O_RDWR | (flags & O_NONBLOCK), 463 &socket_file_ops); 464 if (IS_ERR(file)) { 465 sock_release(sock); 466 return file; 467 } 468 469 sock->file = file; 470 file->private_data = sock; 471 stream_open(SOCK_INODE(sock), file); 472 return file; 473 } 474 EXPORT_SYMBOL(sock_alloc_file); 475 476 static int sock_map_fd(struct socket *sock, int flags) 477 { 478 struct file *newfile; 479 int fd = get_unused_fd_flags(flags); 480 if (unlikely(fd < 0)) { 481 sock_release(sock); 482 return fd; 483 } 484 485 newfile = sock_alloc_file(sock, flags, NULL); 486 if (!IS_ERR(newfile)) { 487 fd_install(fd, newfile); 488 return fd; 489 } 490 491 put_unused_fd(fd); 492 return PTR_ERR(newfile); 493 } 494 495 /** 496 * sock_from_file - Return the &socket bounded to @file. 497 * @file: file 498 * 499 * On failure returns %NULL. 500 */ 501 502 struct socket *sock_from_file(struct file *file) 503 { 504 if (file->f_op == &socket_file_ops) 505 return file->private_data; /* set in sock_map_fd */ 506 507 return NULL; 508 } 509 EXPORT_SYMBOL(sock_from_file); 510 511 /** 512 * sockfd_lookup - Go from a file number to its socket slot 513 * @fd: file handle 514 * @err: pointer to an error code return 515 * 516 * The file handle passed in is locked and the socket it is bound 517 * to is returned. If an error occurs the err pointer is overwritten 518 * with a negative errno code and NULL is returned. The function checks 519 * for both invalid handles and passing a handle which is not a socket. 520 * 521 * On a success the socket object pointer is returned. 522 */ 523 524 struct socket *sockfd_lookup(int fd, int *err) 525 { 526 struct file *file; 527 struct socket *sock; 528 529 file = fget(fd); 530 if (!file) { 531 *err = -EBADF; 532 return NULL; 533 } 534 535 sock = sock_from_file(file); 536 if (!sock) { 537 *err = -ENOTSOCK; 538 fput(file); 539 } 540 return sock; 541 } 542 EXPORT_SYMBOL(sockfd_lookup); 543 544 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 545 { 546 struct fd f = fdget(fd); 547 struct socket *sock; 548 549 *err = -EBADF; 550 if (f.file) { 551 sock = sock_from_file(f.file); 552 if (likely(sock)) { 553 *fput_needed = f.flags & FDPUT_FPUT; 554 return sock; 555 } 556 *err = -ENOTSOCK; 557 fdput(f); 558 } 559 return NULL; 560 } 561 562 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 563 size_t size) 564 { 565 ssize_t len; 566 ssize_t used = 0; 567 568 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 569 if (len < 0) 570 return len; 571 used += len; 572 if (buffer) { 573 if (size < used) 574 return -ERANGE; 575 buffer += len; 576 } 577 578 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 579 used += len; 580 if (buffer) { 581 if (size < used) 582 return -ERANGE; 583 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 584 buffer += len; 585 } 586 587 return used; 588 } 589 590 static int sockfs_setattr(struct user_namespace *mnt_userns, 591 struct dentry *dentry, struct iattr *iattr) 592 { 593 int err = simple_setattr(&init_user_ns, dentry, iattr); 594 595 if (!err && (iattr->ia_valid & ATTR_UID)) { 596 struct socket *sock = SOCKET_I(d_inode(dentry)); 597 598 if (sock->sk) 599 sock->sk->sk_uid = iattr->ia_uid; 600 else 601 err = -ENOENT; 602 } 603 604 return err; 605 } 606 607 static const struct inode_operations sockfs_inode_ops = { 608 .listxattr = sockfs_listxattr, 609 .setattr = sockfs_setattr, 610 }; 611 612 /** 613 * sock_alloc - allocate a socket 614 * 615 * Allocate a new inode and socket object. The two are bound together 616 * and initialised. The socket is then returned. If we are out of inodes 617 * NULL is returned. This functions uses GFP_KERNEL internally. 618 */ 619 620 struct socket *sock_alloc(void) 621 { 622 struct inode *inode; 623 struct socket *sock; 624 625 inode = new_inode_pseudo(sock_mnt->mnt_sb); 626 if (!inode) 627 return NULL; 628 629 sock = SOCKET_I(inode); 630 631 inode->i_ino = get_next_ino(); 632 inode->i_mode = S_IFSOCK | S_IRWXUGO; 633 inode->i_uid = current_fsuid(); 634 inode->i_gid = current_fsgid(); 635 inode->i_op = &sockfs_inode_ops; 636 637 return sock; 638 } 639 EXPORT_SYMBOL(sock_alloc); 640 641 static void __sock_release(struct socket *sock, struct inode *inode) 642 { 643 if (sock->ops) { 644 struct module *owner = sock->ops->owner; 645 646 if (inode) 647 inode_lock(inode); 648 sock->ops->release(sock); 649 sock->sk = NULL; 650 if (inode) 651 inode_unlock(inode); 652 sock->ops = NULL; 653 module_put(owner); 654 } 655 656 if (sock->wq.fasync_list) 657 pr_err("%s: fasync list not empty!\n", __func__); 658 659 if (!sock->file) { 660 iput(SOCK_INODE(sock)); 661 return; 662 } 663 sock->file = NULL; 664 } 665 666 /** 667 * sock_release - close a socket 668 * @sock: socket to close 669 * 670 * The socket is released from the protocol stack if it has a release 671 * callback, and the inode is then released if the socket is bound to 672 * an inode not a file. 673 */ 674 void sock_release(struct socket *sock) 675 { 676 __sock_release(sock, NULL); 677 } 678 EXPORT_SYMBOL(sock_release); 679 680 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 681 { 682 u8 flags = *tx_flags; 683 684 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 685 flags |= SKBTX_HW_TSTAMP; 686 687 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 688 flags |= SKBTX_SW_TSTAMP; 689 690 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 691 flags |= SKBTX_SCHED_TSTAMP; 692 693 *tx_flags = flags; 694 } 695 EXPORT_SYMBOL(__sock_tx_timestamp); 696 697 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 698 size_t)); 699 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 700 size_t)); 701 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 702 { 703 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 704 inet_sendmsg, sock, msg, 705 msg_data_left(msg)); 706 BUG_ON(ret == -EIOCBQUEUED); 707 return ret; 708 } 709 710 /** 711 * sock_sendmsg - send a message through @sock 712 * @sock: socket 713 * @msg: message to send 714 * 715 * Sends @msg through @sock, passing through LSM. 716 * Returns the number of bytes sent, or an error code. 717 */ 718 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 719 { 720 int err = security_socket_sendmsg(sock, msg, 721 msg_data_left(msg)); 722 723 return err ?: sock_sendmsg_nosec(sock, msg); 724 } 725 EXPORT_SYMBOL(sock_sendmsg); 726 727 /** 728 * kernel_sendmsg - send a message through @sock (kernel-space) 729 * @sock: socket 730 * @msg: message header 731 * @vec: kernel vec 732 * @num: vec array length 733 * @size: total message data size 734 * 735 * Builds the message data with @vec and sends it through @sock. 736 * Returns the number of bytes sent, or an error code. 737 */ 738 739 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 740 struct kvec *vec, size_t num, size_t size) 741 { 742 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 743 return sock_sendmsg(sock, msg); 744 } 745 EXPORT_SYMBOL(kernel_sendmsg); 746 747 /** 748 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 749 * @sk: sock 750 * @msg: message header 751 * @vec: output s/g array 752 * @num: output s/g array length 753 * @size: total message data size 754 * 755 * Builds the message data with @vec and sends it through @sock. 756 * Returns the number of bytes sent, or an error code. 757 * Caller must hold @sk. 758 */ 759 760 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 761 struct kvec *vec, size_t num, size_t size) 762 { 763 struct socket *sock = sk->sk_socket; 764 765 if (!sock->ops->sendmsg_locked) 766 return sock_no_sendmsg_locked(sk, msg, size); 767 768 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 769 770 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 771 } 772 EXPORT_SYMBOL(kernel_sendmsg_locked); 773 774 static bool skb_is_err_queue(const struct sk_buff *skb) 775 { 776 /* pkt_type of skbs enqueued on the error queue are set to 777 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 778 * in recvmsg, since skbs received on a local socket will never 779 * have a pkt_type of PACKET_OUTGOING. 780 */ 781 return skb->pkt_type == PACKET_OUTGOING; 782 } 783 784 /* On transmit, software and hardware timestamps are returned independently. 785 * As the two skb clones share the hardware timestamp, which may be updated 786 * before the software timestamp is received, a hardware TX timestamp may be 787 * returned only if there is no software TX timestamp. Ignore false software 788 * timestamps, which may be made in the __sock_recv_timestamp() call when the 789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 790 * hardware timestamp. 791 */ 792 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 793 { 794 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 795 } 796 797 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 798 { 799 struct scm_ts_pktinfo ts_pktinfo; 800 struct net_device *orig_dev; 801 802 if (!skb_mac_header_was_set(skb)) 803 return; 804 805 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 806 807 rcu_read_lock(); 808 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 809 if (orig_dev) 810 ts_pktinfo.if_index = orig_dev->ifindex; 811 rcu_read_unlock(); 812 813 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 814 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 815 sizeof(ts_pktinfo), &ts_pktinfo); 816 } 817 818 /* 819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 820 */ 821 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 822 struct sk_buff *skb) 823 { 824 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 825 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 826 struct scm_timestamping_internal tss; 827 828 int empty = 1, false_tstamp = 0; 829 struct skb_shared_hwtstamps *shhwtstamps = 830 skb_hwtstamps(skb); 831 832 /* Race occurred between timestamp enabling and packet 833 receiving. Fill in the current time for now. */ 834 if (need_software_tstamp && skb->tstamp == 0) { 835 __net_timestamp(skb); 836 false_tstamp = 1; 837 } 838 839 if (need_software_tstamp) { 840 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 841 if (new_tstamp) { 842 struct __kernel_sock_timeval tv; 843 844 skb_get_new_timestamp(skb, &tv); 845 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 846 sizeof(tv), &tv); 847 } else { 848 struct __kernel_old_timeval tv; 849 850 skb_get_timestamp(skb, &tv); 851 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 852 sizeof(tv), &tv); 853 } 854 } else { 855 if (new_tstamp) { 856 struct __kernel_timespec ts; 857 858 skb_get_new_timestampns(skb, &ts); 859 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 860 sizeof(ts), &ts); 861 } else { 862 struct __kernel_old_timespec ts; 863 864 skb_get_timestampns(skb, &ts); 865 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 866 sizeof(ts), &ts); 867 } 868 } 869 } 870 871 memset(&tss, 0, sizeof(tss)); 872 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 873 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 874 empty = 0; 875 if (shhwtstamps && 876 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 877 !skb_is_swtx_tstamp(skb, false_tstamp)) { 878 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 879 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc); 880 881 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp, 882 tss.ts + 2)) { 883 empty = 0; 884 885 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 886 !skb_is_err_queue(skb)) 887 put_ts_pktinfo(msg, skb); 888 } 889 } 890 if (!empty) { 891 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 892 put_cmsg_scm_timestamping64(msg, &tss); 893 else 894 put_cmsg_scm_timestamping(msg, &tss); 895 896 if (skb_is_err_queue(skb) && skb->len && 897 SKB_EXT_ERR(skb)->opt_stats) 898 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 899 skb->len, skb->data); 900 } 901 } 902 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 903 904 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 905 struct sk_buff *skb) 906 { 907 int ack; 908 909 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 910 return; 911 if (!skb->wifi_acked_valid) 912 return; 913 914 ack = skb->wifi_acked; 915 916 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 917 } 918 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 919 920 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 921 struct sk_buff *skb) 922 { 923 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 924 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 925 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 926 } 927 928 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 929 struct sk_buff *skb) 930 { 931 sock_recv_timestamp(msg, sk, skb); 932 sock_recv_drops(msg, sk, skb); 933 } 934 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 935 936 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 937 size_t, int)); 938 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 939 size_t, int)); 940 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 941 int flags) 942 { 943 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 944 inet_recvmsg, sock, msg, msg_data_left(msg), 945 flags); 946 } 947 948 /** 949 * sock_recvmsg - receive a message from @sock 950 * @sock: socket 951 * @msg: message to receive 952 * @flags: message flags 953 * 954 * Receives @msg from @sock, passing through LSM. Returns the total number 955 * of bytes received, or an error. 956 */ 957 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 958 { 959 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 960 961 return err ?: sock_recvmsg_nosec(sock, msg, flags); 962 } 963 EXPORT_SYMBOL(sock_recvmsg); 964 965 /** 966 * kernel_recvmsg - Receive a message from a socket (kernel space) 967 * @sock: The socket to receive the message from 968 * @msg: Received message 969 * @vec: Input s/g array for message data 970 * @num: Size of input s/g array 971 * @size: Number of bytes to read 972 * @flags: Message flags (MSG_DONTWAIT, etc...) 973 * 974 * On return the msg structure contains the scatter/gather array passed in the 975 * vec argument. The array is modified so that it consists of the unfilled 976 * portion of the original array. 977 * 978 * The returned value is the total number of bytes received, or an error. 979 */ 980 981 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 982 struct kvec *vec, size_t num, size_t size, int flags) 983 { 984 msg->msg_control_is_user = false; 985 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 986 return sock_recvmsg(sock, msg, flags); 987 } 988 EXPORT_SYMBOL(kernel_recvmsg); 989 990 static ssize_t sock_sendpage(struct file *file, struct page *page, 991 int offset, size_t size, loff_t *ppos, int more) 992 { 993 struct socket *sock; 994 int flags; 995 996 sock = file->private_data; 997 998 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 999 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 1000 flags |= more; 1001 1002 return kernel_sendpage(sock, page, offset, size, flags); 1003 } 1004 1005 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1006 struct pipe_inode_info *pipe, size_t len, 1007 unsigned int flags) 1008 { 1009 struct socket *sock = file->private_data; 1010 1011 if (unlikely(!sock->ops->splice_read)) 1012 return generic_file_splice_read(file, ppos, pipe, len, flags); 1013 1014 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1015 } 1016 1017 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1018 { 1019 struct file *file = iocb->ki_filp; 1020 struct socket *sock = file->private_data; 1021 struct msghdr msg = {.msg_iter = *to, 1022 .msg_iocb = iocb}; 1023 ssize_t res; 1024 1025 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1026 msg.msg_flags = MSG_DONTWAIT; 1027 1028 if (iocb->ki_pos != 0) 1029 return -ESPIPE; 1030 1031 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1032 return 0; 1033 1034 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1035 *to = msg.msg_iter; 1036 return res; 1037 } 1038 1039 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1040 { 1041 struct file *file = iocb->ki_filp; 1042 struct socket *sock = file->private_data; 1043 struct msghdr msg = {.msg_iter = *from, 1044 .msg_iocb = iocb}; 1045 ssize_t res; 1046 1047 if (iocb->ki_pos != 0) 1048 return -ESPIPE; 1049 1050 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1051 msg.msg_flags = MSG_DONTWAIT; 1052 1053 if (sock->type == SOCK_SEQPACKET) 1054 msg.msg_flags |= MSG_EOR; 1055 1056 res = sock_sendmsg(sock, &msg); 1057 *from = msg.msg_iter; 1058 return res; 1059 } 1060 1061 /* 1062 * Atomic setting of ioctl hooks to avoid race 1063 * with module unload. 1064 */ 1065 1066 static DEFINE_MUTEX(br_ioctl_mutex); 1067 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1068 1069 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1070 { 1071 mutex_lock(&br_ioctl_mutex); 1072 br_ioctl_hook = hook; 1073 mutex_unlock(&br_ioctl_mutex); 1074 } 1075 EXPORT_SYMBOL(brioctl_set); 1076 1077 static DEFINE_MUTEX(vlan_ioctl_mutex); 1078 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1079 1080 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1081 { 1082 mutex_lock(&vlan_ioctl_mutex); 1083 vlan_ioctl_hook = hook; 1084 mutex_unlock(&vlan_ioctl_mutex); 1085 } 1086 EXPORT_SYMBOL(vlan_ioctl_set); 1087 1088 static long sock_do_ioctl(struct net *net, struct socket *sock, 1089 unsigned int cmd, unsigned long arg) 1090 { 1091 struct ifreq ifr; 1092 bool need_copyout; 1093 int err; 1094 void __user *argp = (void __user *)arg; 1095 1096 err = sock->ops->ioctl(sock, cmd, arg); 1097 1098 /* 1099 * If this ioctl is unknown try to hand it down 1100 * to the NIC driver. 1101 */ 1102 if (err != -ENOIOCTLCMD) 1103 return err; 1104 1105 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1106 return -EFAULT; 1107 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1108 if (!err && need_copyout) 1109 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1110 return -EFAULT; 1111 1112 return err; 1113 } 1114 1115 /* 1116 * With an ioctl, arg may well be a user mode pointer, but we don't know 1117 * what to do with it - that's up to the protocol still. 1118 */ 1119 1120 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1121 { 1122 struct socket *sock; 1123 struct sock *sk; 1124 void __user *argp = (void __user *)arg; 1125 int pid, err; 1126 struct net *net; 1127 1128 sock = file->private_data; 1129 sk = sock->sk; 1130 net = sock_net(sk); 1131 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1132 struct ifreq ifr; 1133 bool need_copyout; 1134 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1135 return -EFAULT; 1136 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1137 if (!err && need_copyout) 1138 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1139 return -EFAULT; 1140 } else 1141 #ifdef CONFIG_WEXT_CORE 1142 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1143 err = wext_handle_ioctl(net, cmd, argp); 1144 } else 1145 #endif 1146 switch (cmd) { 1147 case FIOSETOWN: 1148 case SIOCSPGRP: 1149 err = -EFAULT; 1150 if (get_user(pid, (int __user *)argp)) 1151 break; 1152 err = f_setown(sock->file, pid, 1); 1153 break; 1154 case FIOGETOWN: 1155 case SIOCGPGRP: 1156 err = put_user(f_getown(sock->file), 1157 (int __user *)argp); 1158 break; 1159 case SIOCGIFBR: 1160 case SIOCSIFBR: 1161 case SIOCBRADDBR: 1162 case SIOCBRDELBR: 1163 err = -ENOPKG; 1164 if (!br_ioctl_hook) 1165 request_module("bridge"); 1166 1167 mutex_lock(&br_ioctl_mutex); 1168 if (br_ioctl_hook) 1169 err = br_ioctl_hook(net, cmd, argp); 1170 mutex_unlock(&br_ioctl_mutex); 1171 break; 1172 case SIOCGIFVLAN: 1173 case SIOCSIFVLAN: 1174 err = -ENOPKG; 1175 if (!vlan_ioctl_hook) 1176 request_module("8021q"); 1177 1178 mutex_lock(&vlan_ioctl_mutex); 1179 if (vlan_ioctl_hook) 1180 err = vlan_ioctl_hook(net, argp); 1181 mutex_unlock(&vlan_ioctl_mutex); 1182 break; 1183 case SIOCGSKNS: 1184 err = -EPERM; 1185 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1186 break; 1187 1188 err = open_related_ns(&net->ns, get_net_ns); 1189 break; 1190 case SIOCGSTAMP_OLD: 1191 case SIOCGSTAMPNS_OLD: 1192 if (!sock->ops->gettstamp) { 1193 err = -ENOIOCTLCMD; 1194 break; 1195 } 1196 err = sock->ops->gettstamp(sock, argp, 1197 cmd == SIOCGSTAMP_OLD, 1198 !IS_ENABLED(CONFIG_64BIT)); 1199 break; 1200 case SIOCGSTAMP_NEW: 1201 case SIOCGSTAMPNS_NEW: 1202 if (!sock->ops->gettstamp) { 1203 err = -ENOIOCTLCMD; 1204 break; 1205 } 1206 err = sock->ops->gettstamp(sock, argp, 1207 cmd == SIOCGSTAMP_NEW, 1208 false); 1209 break; 1210 1211 case SIOCGIFCONF: 1212 err = dev_ifconf(net, argp); 1213 break; 1214 1215 default: 1216 err = sock_do_ioctl(net, sock, cmd, arg); 1217 break; 1218 } 1219 return err; 1220 } 1221 1222 /** 1223 * sock_create_lite - creates a socket 1224 * @family: protocol family (AF_INET, ...) 1225 * @type: communication type (SOCK_STREAM, ...) 1226 * @protocol: protocol (0, ...) 1227 * @res: new socket 1228 * 1229 * Creates a new socket and assigns it to @res, passing through LSM. 1230 * The new socket initialization is not complete, see kernel_accept(). 1231 * Returns 0 or an error. On failure @res is set to %NULL. 1232 * This function internally uses GFP_KERNEL. 1233 */ 1234 1235 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1236 { 1237 int err; 1238 struct socket *sock = NULL; 1239 1240 err = security_socket_create(family, type, protocol, 1); 1241 if (err) 1242 goto out; 1243 1244 sock = sock_alloc(); 1245 if (!sock) { 1246 err = -ENOMEM; 1247 goto out; 1248 } 1249 1250 sock->type = type; 1251 err = security_socket_post_create(sock, family, type, protocol, 1); 1252 if (err) 1253 goto out_release; 1254 1255 out: 1256 *res = sock; 1257 return err; 1258 out_release: 1259 sock_release(sock); 1260 sock = NULL; 1261 goto out; 1262 } 1263 EXPORT_SYMBOL(sock_create_lite); 1264 1265 /* No kernel lock held - perfect */ 1266 static __poll_t sock_poll(struct file *file, poll_table *wait) 1267 { 1268 struct socket *sock = file->private_data; 1269 __poll_t events = poll_requested_events(wait), flag = 0; 1270 1271 if (!sock->ops->poll) 1272 return 0; 1273 1274 if (sk_can_busy_loop(sock->sk)) { 1275 /* poll once if requested by the syscall */ 1276 if (events & POLL_BUSY_LOOP) 1277 sk_busy_loop(sock->sk, 1); 1278 1279 /* if this socket can poll_ll, tell the system call */ 1280 flag = POLL_BUSY_LOOP; 1281 } 1282 1283 return sock->ops->poll(file, sock, wait) | flag; 1284 } 1285 1286 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1287 { 1288 struct socket *sock = file->private_data; 1289 1290 return sock->ops->mmap(file, sock, vma); 1291 } 1292 1293 static int sock_close(struct inode *inode, struct file *filp) 1294 { 1295 __sock_release(SOCKET_I(inode), inode); 1296 return 0; 1297 } 1298 1299 /* 1300 * Update the socket async list 1301 * 1302 * Fasync_list locking strategy. 1303 * 1304 * 1. fasync_list is modified only under process context socket lock 1305 * i.e. under semaphore. 1306 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1307 * or under socket lock 1308 */ 1309 1310 static int sock_fasync(int fd, struct file *filp, int on) 1311 { 1312 struct socket *sock = filp->private_data; 1313 struct sock *sk = sock->sk; 1314 struct socket_wq *wq = &sock->wq; 1315 1316 if (sk == NULL) 1317 return -EINVAL; 1318 1319 lock_sock(sk); 1320 fasync_helper(fd, filp, on, &wq->fasync_list); 1321 1322 if (!wq->fasync_list) 1323 sock_reset_flag(sk, SOCK_FASYNC); 1324 else 1325 sock_set_flag(sk, SOCK_FASYNC); 1326 1327 release_sock(sk); 1328 return 0; 1329 } 1330 1331 /* This function may be called only under rcu_lock */ 1332 1333 int sock_wake_async(struct socket_wq *wq, int how, int band) 1334 { 1335 if (!wq || !wq->fasync_list) 1336 return -1; 1337 1338 switch (how) { 1339 case SOCK_WAKE_WAITD: 1340 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1341 break; 1342 goto call_kill; 1343 case SOCK_WAKE_SPACE: 1344 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1345 break; 1346 fallthrough; 1347 case SOCK_WAKE_IO: 1348 call_kill: 1349 kill_fasync(&wq->fasync_list, SIGIO, band); 1350 break; 1351 case SOCK_WAKE_URG: 1352 kill_fasync(&wq->fasync_list, SIGURG, band); 1353 } 1354 1355 return 0; 1356 } 1357 EXPORT_SYMBOL(sock_wake_async); 1358 1359 /** 1360 * __sock_create - creates a socket 1361 * @net: net namespace 1362 * @family: protocol family (AF_INET, ...) 1363 * @type: communication type (SOCK_STREAM, ...) 1364 * @protocol: protocol (0, ...) 1365 * @res: new socket 1366 * @kern: boolean for kernel space sockets 1367 * 1368 * Creates a new socket and assigns it to @res, passing through LSM. 1369 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1370 * be set to true if the socket resides in kernel space. 1371 * This function internally uses GFP_KERNEL. 1372 */ 1373 1374 int __sock_create(struct net *net, int family, int type, int protocol, 1375 struct socket **res, int kern) 1376 { 1377 int err; 1378 struct socket *sock; 1379 const struct net_proto_family *pf; 1380 1381 /* 1382 * Check protocol is in range 1383 */ 1384 if (family < 0 || family >= NPROTO) 1385 return -EAFNOSUPPORT; 1386 if (type < 0 || type >= SOCK_MAX) 1387 return -EINVAL; 1388 1389 /* Compatibility. 1390 1391 This uglymoron is moved from INET layer to here to avoid 1392 deadlock in module load. 1393 */ 1394 if (family == PF_INET && type == SOCK_PACKET) { 1395 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1396 current->comm); 1397 family = PF_PACKET; 1398 } 1399 1400 err = security_socket_create(family, type, protocol, kern); 1401 if (err) 1402 return err; 1403 1404 /* 1405 * Allocate the socket and allow the family to set things up. if 1406 * the protocol is 0, the family is instructed to select an appropriate 1407 * default. 1408 */ 1409 sock = sock_alloc(); 1410 if (!sock) { 1411 net_warn_ratelimited("socket: no more sockets\n"); 1412 return -ENFILE; /* Not exactly a match, but its the 1413 closest posix thing */ 1414 } 1415 1416 sock->type = type; 1417 1418 #ifdef CONFIG_MODULES 1419 /* Attempt to load a protocol module if the find failed. 1420 * 1421 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1422 * requested real, full-featured networking support upon configuration. 1423 * Otherwise module support will break! 1424 */ 1425 if (rcu_access_pointer(net_families[family]) == NULL) 1426 request_module("net-pf-%d", family); 1427 #endif 1428 1429 rcu_read_lock(); 1430 pf = rcu_dereference(net_families[family]); 1431 err = -EAFNOSUPPORT; 1432 if (!pf) 1433 goto out_release; 1434 1435 /* 1436 * We will call the ->create function, that possibly is in a loadable 1437 * module, so we have to bump that loadable module refcnt first. 1438 */ 1439 if (!try_module_get(pf->owner)) 1440 goto out_release; 1441 1442 /* Now protected by module ref count */ 1443 rcu_read_unlock(); 1444 1445 err = pf->create(net, sock, protocol, kern); 1446 if (err < 0) 1447 goto out_module_put; 1448 1449 /* 1450 * Now to bump the refcnt of the [loadable] module that owns this 1451 * socket at sock_release time we decrement its refcnt. 1452 */ 1453 if (!try_module_get(sock->ops->owner)) 1454 goto out_module_busy; 1455 1456 /* 1457 * Now that we're done with the ->create function, the [loadable] 1458 * module can have its refcnt decremented 1459 */ 1460 module_put(pf->owner); 1461 err = security_socket_post_create(sock, family, type, protocol, kern); 1462 if (err) 1463 goto out_sock_release; 1464 *res = sock; 1465 1466 return 0; 1467 1468 out_module_busy: 1469 err = -EAFNOSUPPORT; 1470 out_module_put: 1471 sock->ops = NULL; 1472 module_put(pf->owner); 1473 out_sock_release: 1474 sock_release(sock); 1475 return err; 1476 1477 out_release: 1478 rcu_read_unlock(); 1479 goto out_sock_release; 1480 } 1481 EXPORT_SYMBOL(__sock_create); 1482 1483 /** 1484 * sock_create - creates a socket 1485 * @family: protocol family (AF_INET, ...) 1486 * @type: communication type (SOCK_STREAM, ...) 1487 * @protocol: protocol (0, ...) 1488 * @res: new socket 1489 * 1490 * A wrapper around __sock_create(). 1491 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1492 */ 1493 1494 int sock_create(int family, int type, int protocol, struct socket **res) 1495 { 1496 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1497 } 1498 EXPORT_SYMBOL(sock_create); 1499 1500 /** 1501 * sock_create_kern - creates a socket (kernel space) 1502 * @net: net namespace 1503 * @family: protocol family (AF_INET, ...) 1504 * @type: communication type (SOCK_STREAM, ...) 1505 * @protocol: protocol (0, ...) 1506 * @res: new socket 1507 * 1508 * A wrapper around __sock_create(). 1509 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1510 */ 1511 1512 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1513 { 1514 return __sock_create(net, family, type, protocol, res, 1); 1515 } 1516 EXPORT_SYMBOL(sock_create_kern); 1517 1518 int __sys_socket(int family, int type, int protocol) 1519 { 1520 int retval; 1521 struct socket *sock; 1522 int flags; 1523 1524 /* Check the SOCK_* constants for consistency. */ 1525 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1526 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1527 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1528 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1529 1530 flags = type & ~SOCK_TYPE_MASK; 1531 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1532 return -EINVAL; 1533 type &= SOCK_TYPE_MASK; 1534 1535 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1536 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1537 1538 retval = sock_create(family, type, protocol, &sock); 1539 if (retval < 0) 1540 return retval; 1541 1542 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1543 } 1544 1545 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1546 { 1547 return __sys_socket(family, type, protocol); 1548 } 1549 1550 /* 1551 * Create a pair of connected sockets. 1552 */ 1553 1554 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1555 { 1556 struct socket *sock1, *sock2; 1557 int fd1, fd2, err; 1558 struct file *newfile1, *newfile2; 1559 int flags; 1560 1561 flags = type & ~SOCK_TYPE_MASK; 1562 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1563 return -EINVAL; 1564 type &= SOCK_TYPE_MASK; 1565 1566 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1567 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1568 1569 /* 1570 * reserve descriptors and make sure we won't fail 1571 * to return them to userland. 1572 */ 1573 fd1 = get_unused_fd_flags(flags); 1574 if (unlikely(fd1 < 0)) 1575 return fd1; 1576 1577 fd2 = get_unused_fd_flags(flags); 1578 if (unlikely(fd2 < 0)) { 1579 put_unused_fd(fd1); 1580 return fd2; 1581 } 1582 1583 err = put_user(fd1, &usockvec[0]); 1584 if (err) 1585 goto out; 1586 1587 err = put_user(fd2, &usockvec[1]); 1588 if (err) 1589 goto out; 1590 1591 /* 1592 * Obtain the first socket and check if the underlying protocol 1593 * supports the socketpair call. 1594 */ 1595 1596 err = sock_create(family, type, protocol, &sock1); 1597 if (unlikely(err < 0)) 1598 goto out; 1599 1600 err = sock_create(family, type, protocol, &sock2); 1601 if (unlikely(err < 0)) { 1602 sock_release(sock1); 1603 goto out; 1604 } 1605 1606 err = security_socket_socketpair(sock1, sock2); 1607 if (unlikely(err)) { 1608 sock_release(sock2); 1609 sock_release(sock1); 1610 goto out; 1611 } 1612 1613 err = sock1->ops->socketpair(sock1, sock2); 1614 if (unlikely(err < 0)) { 1615 sock_release(sock2); 1616 sock_release(sock1); 1617 goto out; 1618 } 1619 1620 newfile1 = sock_alloc_file(sock1, flags, NULL); 1621 if (IS_ERR(newfile1)) { 1622 err = PTR_ERR(newfile1); 1623 sock_release(sock2); 1624 goto out; 1625 } 1626 1627 newfile2 = sock_alloc_file(sock2, flags, NULL); 1628 if (IS_ERR(newfile2)) { 1629 err = PTR_ERR(newfile2); 1630 fput(newfile1); 1631 goto out; 1632 } 1633 1634 audit_fd_pair(fd1, fd2); 1635 1636 fd_install(fd1, newfile1); 1637 fd_install(fd2, newfile2); 1638 return 0; 1639 1640 out: 1641 put_unused_fd(fd2); 1642 put_unused_fd(fd1); 1643 return err; 1644 } 1645 1646 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1647 int __user *, usockvec) 1648 { 1649 return __sys_socketpair(family, type, protocol, usockvec); 1650 } 1651 1652 /* 1653 * Bind a name to a socket. Nothing much to do here since it's 1654 * the protocol's responsibility to handle the local address. 1655 * 1656 * We move the socket address to kernel space before we call 1657 * the protocol layer (having also checked the address is ok). 1658 */ 1659 1660 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1661 { 1662 struct socket *sock; 1663 struct sockaddr_storage address; 1664 int err, fput_needed; 1665 1666 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1667 if (sock) { 1668 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1669 if (!err) { 1670 err = security_socket_bind(sock, 1671 (struct sockaddr *)&address, 1672 addrlen); 1673 if (!err) 1674 err = sock->ops->bind(sock, 1675 (struct sockaddr *) 1676 &address, addrlen); 1677 } 1678 fput_light(sock->file, fput_needed); 1679 } 1680 return err; 1681 } 1682 1683 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1684 { 1685 return __sys_bind(fd, umyaddr, addrlen); 1686 } 1687 1688 /* 1689 * Perform a listen. Basically, we allow the protocol to do anything 1690 * necessary for a listen, and if that works, we mark the socket as 1691 * ready for listening. 1692 */ 1693 1694 int __sys_listen(int fd, int backlog) 1695 { 1696 struct socket *sock; 1697 int err, fput_needed; 1698 int somaxconn; 1699 1700 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1701 if (sock) { 1702 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1703 if ((unsigned int)backlog > somaxconn) 1704 backlog = somaxconn; 1705 1706 err = security_socket_listen(sock, backlog); 1707 if (!err) 1708 err = sock->ops->listen(sock, backlog); 1709 1710 fput_light(sock->file, fput_needed); 1711 } 1712 return err; 1713 } 1714 1715 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1716 { 1717 return __sys_listen(fd, backlog); 1718 } 1719 1720 int __sys_accept4_file(struct file *file, unsigned file_flags, 1721 struct sockaddr __user *upeer_sockaddr, 1722 int __user *upeer_addrlen, int flags, 1723 unsigned long nofile) 1724 { 1725 struct socket *sock, *newsock; 1726 struct file *newfile; 1727 int err, len, newfd; 1728 struct sockaddr_storage address; 1729 1730 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1731 return -EINVAL; 1732 1733 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1734 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1735 1736 sock = sock_from_file(file); 1737 if (!sock) { 1738 err = -ENOTSOCK; 1739 goto out; 1740 } 1741 1742 err = -ENFILE; 1743 newsock = sock_alloc(); 1744 if (!newsock) 1745 goto out; 1746 1747 newsock->type = sock->type; 1748 newsock->ops = sock->ops; 1749 1750 /* 1751 * We don't need try_module_get here, as the listening socket (sock) 1752 * has the protocol module (sock->ops->owner) held. 1753 */ 1754 __module_get(newsock->ops->owner); 1755 1756 newfd = __get_unused_fd_flags(flags, nofile); 1757 if (unlikely(newfd < 0)) { 1758 err = newfd; 1759 sock_release(newsock); 1760 goto out; 1761 } 1762 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1763 if (IS_ERR(newfile)) { 1764 err = PTR_ERR(newfile); 1765 put_unused_fd(newfd); 1766 goto out; 1767 } 1768 1769 err = security_socket_accept(sock, newsock); 1770 if (err) 1771 goto out_fd; 1772 1773 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1774 false); 1775 if (err < 0) 1776 goto out_fd; 1777 1778 if (upeer_sockaddr) { 1779 len = newsock->ops->getname(newsock, 1780 (struct sockaddr *)&address, 2); 1781 if (len < 0) { 1782 err = -ECONNABORTED; 1783 goto out_fd; 1784 } 1785 err = move_addr_to_user(&address, 1786 len, upeer_sockaddr, upeer_addrlen); 1787 if (err < 0) 1788 goto out_fd; 1789 } 1790 1791 /* File flags are not inherited via accept() unlike another OSes. */ 1792 1793 fd_install(newfd, newfile); 1794 err = newfd; 1795 out: 1796 return err; 1797 out_fd: 1798 fput(newfile); 1799 put_unused_fd(newfd); 1800 goto out; 1801 1802 } 1803 1804 /* 1805 * For accept, we attempt to create a new socket, set up the link 1806 * with the client, wake up the client, then return the new 1807 * connected fd. We collect the address of the connector in kernel 1808 * space and move it to user at the very end. This is unclean because 1809 * we open the socket then return an error. 1810 * 1811 * 1003.1g adds the ability to recvmsg() to query connection pending 1812 * status to recvmsg. We need to add that support in a way thats 1813 * clean when we restructure accept also. 1814 */ 1815 1816 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1817 int __user *upeer_addrlen, int flags) 1818 { 1819 int ret = -EBADF; 1820 struct fd f; 1821 1822 f = fdget(fd); 1823 if (f.file) { 1824 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1825 upeer_addrlen, flags, 1826 rlimit(RLIMIT_NOFILE)); 1827 fdput(f); 1828 } 1829 1830 return ret; 1831 } 1832 1833 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1834 int __user *, upeer_addrlen, int, flags) 1835 { 1836 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1837 } 1838 1839 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1840 int __user *, upeer_addrlen) 1841 { 1842 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1843 } 1844 1845 /* 1846 * Attempt to connect to a socket with the server address. The address 1847 * is in user space so we verify it is OK and move it to kernel space. 1848 * 1849 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1850 * break bindings 1851 * 1852 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1853 * other SEQPACKET protocols that take time to connect() as it doesn't 1854 * include the -EINPROGRESS status for such sockets. 1855 */ 1856 1857 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1858 int addrlen, int file_flags) 1859 { 1860 struct socket *sock; 1861 int err; 1862 1863 sock = sock_from_file(file); 1864 if (!sock) { 1865 err = -ENOTSOCK; 1866 goto out; 1867 } 1868 1869 err = 1870 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1871 if (err) 1872 goto out; 1873 1874 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1875 sock->file->f_flags | file_flags); 1876 out: 1877 return err; 1878 } 1879 1880 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1881 { 1882 int ret = -EBADF; 1883 struct fd f; 1884 1885 f = fdget(fd); 1886 if (f.file) { 1887 struct sockaddr_storage address; 1888 1889 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1890 if (!ret) 1891 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1892 fdput(f); 1893 } 1894 1895 return ret; 1896 } 1897 1898 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1899 int, addrlen) 1900 { 1901 return __sys_connect(fd, uservaddr, addrlen); 1902 } 1903 1904 /* 1905 * Get the local address ('name') of a socket object. Move the obtained 1906 * name to user space. 1907 */ 1908 1909 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1910 int __user *usockaddr_len) 1911 { 1912 struct socket *sock; 1913 struct sockaddr_storage address; 1914 int err, fput_needed; 1915 1916 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1917 if (!sock) 1918 goto out; 1919 1920 err = security_socket_getsockname(sock); 1921 if (err) 1922 goto out_put; 1923 1924 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1925 if (err < 0) 1926 goto out_put; 1927 /* "err" is actually length in this case */ 1928 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1929 1930 out_put: 1931 fput_light(sock->file, fput_needed); 1932 out: 1933 return err; 1934 } 1935 1936 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1937 int __user *, usockaddr_len) 1938 { 1939 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1940 } 1941 1942 /* 1943 * Get the remote address ('name') of a socket object. Move the obtained 1944 * name to user space. 1945 */ 1946 1947 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1948 int __user *usockaddr_len) 1949 { 1950 struct socket *sock; 1951 struct sockaddr_storage address; 1952 int err, fput_needed; 1953 1954 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1955 if (sock != NULL) { 1956 err = security_socket_getpeername(sock); 1957 if (err) { 1958 fput_light(sock->file, fput_needed); 1959 return err; 1960 } 1961 1962 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1963 if (err >= 0) 1964 /* "err" is actually length in this case */ 1965 err = move_addr_to_user(&address, err, usockaddr, 1966 usockaddr_len); 1967 fput_light(sock->file, fput_needed); 1968 } 1969 return err; 1970 } 1971 1972 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1973 int __user *, usockaddr_len) 1974 { 1975 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1976 } 1977 1978 /* 1979 * Send a datagram to a given address. We move the address into kernel 1980 * space and check the user space data area is readable before invoking 1981 * the protocol. 1982 */ 1983 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1984 struct sockaddr __user *addr, int addr_len) 1985 { 1986 struct socket *sock; 1987 struct sockaddr_storage address; 1988 int err; 1989 struct msghdr msg; 1990 struct iovec iov; 1991 int fput_needed; 1992 1993 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1994 if (unlikely(err)) 1995 return err; 1996 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1997 if (!sock) 1998 goto out; 1999 2000 msg.msg_name = NULL; 2001 msg.msg_control = NULL; 2002 msg.msg_controllen = 0; 2003 msg.msg_namelen = 0; 2004 if (addr) { 2005 err = move_addr_to_kernel(addr, addr_len, &address); 2006 if (err < 0) 2007 goto out_put; 2008 msg.msg_name = (struct sockaddr *)&address; 2009 msg.msg_namelen = addr_len; 2010 } 2011 if (sock->file->f_flags & O_NONBLOCK) 2012 flags |= MSG_DONTWAIT; 2013 msg.msg_flags = flags; 2014 err = sock_sendmsg(sock, &msg); 2015 2016 out_put: 2017 fput_light(sock->file, fput_needed); 2018 out: 2019 return err; 2020 } 2021 2022 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2023 unsigned int, flags, struct sockaddr __user *, addr, 2024 int, addr_len) 2025 { 2026 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2027 } 2028 2029 /* 2030 * Send a datagram down a socket. 2031 */ 2032 2033 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2034 unsigned int, flags) 2035 { 2036 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2037 } 2038 2039 /* 2040 * Receive a frame from the socket and optionally record the address of the 2041 * sender. We verify the buffers are writable and if needed move the 2042 * sender address from kernel to user space. 2043 */ 2044 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2045 struct sockaddr __user *addr, int __user *addr_len) 2046 { 2047 struct socket *sock; 2048 struct iovec iov; 2049 struct msghdr msg; 2050 struct sockaddr_storage address; 2051 int err, err2; 2052 int fput_needed; 2053 2054 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2055 if (unlikely(err)) 2056 return err; 2057 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2058 if (!sock) 2059 goto out; 2060 2061 msg.msg_control = NULL; 2062 msg.msg_controllen = 0; 2063 /* Save some cycles and don't copy the address if not needed */ 2064 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2065 /* We assume all kernel code knows the size of sockaddr_storage */ 2066 msg.msg_namelen = 0; 2067 msg.msg_iocb = NULL; 2068 msg.msg_flags = 0; 2069 if (sock->file->f_flags & O_NONBLOCK) 2070 flags |= MSG_DONTWAIT; 2071 err = sock_recvmsg(sock, &msg, flags); 2072 2073 if (err >= 0 && addr != NULL) { 2074 err2 = move_addr_to_user(&address, 2075 msg.msg_namelen, addr, addr_len); 2076 if (err2 < 0) 2077 err = err2; 2078 } 2079 2080 fput_light(sock->file, fput_needed); 2081 out: 2082 return err; 2083 } 2084 2085 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2086 unsigned int, flags, struct sockaddr __user *, addr, 2087 int __user *, addr_len) 2088 { 2089 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2090 } 2091 2092 /* 2093 * Receive a datagram from a socket. 2094 */ 2095 2096 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2097 unsigned int, flags) 2098 { 2099 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2100 } 2101 2102 static bool sock_use_custom_sol_socket(const struct socket *sock) 2103 { 2104 const struct sock *sk = sock->sk; 2105 2106 /* Use sock->ops->setsockopt() for MPTCP */ 2107 return IS_ENABLED(CONFIG_MPTCP) && 2108 sk->sk_protocol == IPPROTO_MPTCP && 2109 sk->sk_type == SOCK_STREAM && 2110 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6); 2111 } 2112 2113 /* 2114 * Set a socket option. Because we don't know the option lengths we have 2115 * to pass the user mode parameter for the protocols to sort out. 2116 */ 2117 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2118 int optlen) 2119 { 2120 sockptr_t optval = USER_SOCKPTR(user_optval); 2121 char *kernel_optval = NULL; 2122 int err, fput_needed; 2123 struct socket *sock; 2124 2125 if (optlen < 0) 2126 return -EINVAL; 2127 2128 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2129 if (!sock) 2130 return err; 2131 2132 err = security_socket_setsockopt(sock, level, optname); 2133 if (err) 2134 goto out_put; 2135 2136 if (!in_compat_syscall()) 2137 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2138 user_optval, &optlen, 2139 &kernel_optval); 2140 if (err < 0) 2141 goto out_put; 2142 if (err > 0) { 2143 err = 0; 2144 goto out_put; 2145 } 2146 2147 if (kernel_optval) 2148 optval = KERNEL_SOCKPTR(kernel_optval); 2149 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2150 err = sock_setsockopt(sock, level, optname, optval, optlen); 2151 else if (unlikely(!sock->ops->setsockopt)) 2152 err = -EOPNOTSUPP; 2153 else 2154 err = sock->ops->setsockopt(sock, level, optname, optval, 2155 optlen); 2156 kfree(kernel_optval); 2157 out_put: 2158 fput_light(sock->file, fput_needed); 2159 return err; 2160 } 2161 2162 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2163 char __user *, optval, int, optlen) 2164 { 2165 return __sys_setsockopt(fd, level, optname, optval, optlen); 2166 } 2167 2168 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2169 int optname)); 2170 2171 /* 2172 * Get a socket option. Because we don't know the option lengths we have 2173 * to pass a user mode parameter for the protocols to sort out. 2174 */ 2175 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2176 int __user *optlen) 2177 { 2178 int err, fput_needed; 2179 struct socket *sock; 2180 int max_optlen; 2181 2182 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2183 if (!sock) 2184 return err; 2185 2186 err = security_socket_getsockopt(sock, level, optname); 2187 if (err) 2188 goto out_put; 2189 2190 if (!in_compat_syscall()) 2191 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2192 2193 if (level == SOL_SOCKET) 2194 err = sock_getsockopt(sock, level, optname, optval, optlen); 2195 else if (unlikely(!sock->ops->getsockopt)) 2196 err = -EOPNOTSUPP; 2197 else 2198 err = sock->ops->getsockopt(sock, level, optname, optval, 2199 optlen); 2200 2201 if (!in_compat_syscall()) 2202 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2203 optval, optlen, max_optlen, 2204 err); 2205 out_put: 2206 fput_light(sock->file, fput_needed); 2207 return err; 2208 } 2209 2210 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2211 char __user *, optval, int __user *, optlen) 2212 { 2213 return __sys_getsockopt(fd, level, optname, optval, optlen); 2214 } 2215 2216 /* 2217 * Shutdown a socket. 2218 */ 2219 2220 int __sys_shutdown_sock(struct socket *sock, int how) 2221 { 2222 int err; 2223 2224 err = security_socket_shutdown(sock, how); 2225 if (!err) 2226 err = sock->ops->shutdown(sock, how); 2227 2228 return err; 2229 } 2230 2231 int __sys_shutdown(int fd, int how) 2232 { 2233 int err, fput_needed; 2234 struct socket *sock; 2235 2236 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2237 if (sock != NULL) { 2238 err = __sys_shutdown_sock(sock, how); 2239 fput_light(sock->file, fput_needed); 2240 } 2241 return err; 2242 } 2243 2244 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2245 { 2246 return __sys_shutdown(fd, how); 2247 } 2248 2249 /* A couple of helpful macros for getting the address of the 32/64 bit 2250 * fields which are the same type (int / unsigned) on our platforms. 2251 */ 2252 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2253 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2254 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2255 2256 struct used_address { 2257 struct sockaddr_storage name; 2258 unsigned int name_len; 2259 }; 2260 2261 int __copy_msghdr_from_user(struct msghdr *kmsg, 2262 struct user_msghdr __user *umsg, 2263 struct sockaddr __user **save_addr, 2264 struct iovec __user **uiov, size_t *nsegs) 2265 { 2266 struct user_msghdr msg; 2267 ssize_t err; 2268 2269 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2270 return -EFAULT; 2271 2272 kmsg->msg_control_is_user = true; 2273 kmsg->msg_control_user = msg.msg_control; 2274 kmsg->msg_controllen = msg.msg_controllen; 2275 kmsg->msg_flags = msg.msg_flags; 2276 2277 kmsg->msg_namelen = msg.msg_namelen; 2278 if (!msg.msg_name) 2279 kmsg->msg_namelen = 0; 2280 2281 if (kmsg->msg_namelen < 0) 2282 return -EINVAL; 2283 2284 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2285 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2286 2287 if (save_addr) 2288 *save_addr = msg.msg_name; 2289 2290 if (msg.msg_name && kmsg->msg_namelen) { 2291 if (!save_addr) { 2292 err = move_addr_to_kernel(msg.msg_name, 2293 kmsg->msg_namelen, 2294 kmsg->msg_name); 2295 if (err < 0) 2296 return err; 2297 } 2298 } else { 2299 kmsg->msg_name = NULL; 2300 kmsg->msg_namelen = 0; 2301 } 2302 2303 if (msg.msg_iovlen > UIO_MAXIOV) 2304 return -EMSGSIZE; 2305 2306 kmsg->msg_iocb = NULL; 2307 *uiov = msg.msg_iov; 2308 *nsegs = msg.msg_iovlen; 2309 return 0; 2310 } 2311 2312 static int copy_msghdr_from_user(struct msghdr *kmsg, 2313 struct user_msghdr __user *umsg, 2314 struct sockaddr __user **save_addr, 2315 struct iovec **iov) 2316 { 2317 struct user_msghdr msg; 2318 ssize_t err; 2319 2320 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, 2321 &msg.msg_iovlen); 2322 if (err) 2323 return err; 2324 2325 err = import_iovec(save_addr ? READ : WRITE, 2326 msg.msg_iov, msg.msg_iovlen, 2327 UIO_FASTIOV, iov, &kmsg->msg_iter); 2328 return err < 0 ? err : 0; 2329 } 2330 2331 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2332 unsigned int flags, struct used_address *used_address, 2333 unsigned int allowed_msghdr_flags) 2334 { 2335 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2336 __aligned(sizeof(__kernel_size_t)); 2337 /* 20 is size of ipv6_pktinfo */ 2338 unsigned char *ctl_buf = ctl; 2339 int ctl_len; 2340 ssize_t err; 2341 2342 err = -ENOBUFS; 2343 2344 if (msg_sys->msg_controllen > INT_MAX) 2345 goto out; 2346 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2347 ctl_len = msg_sys->msg_controllen; 2348 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2349 err = 2350 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2351 sizeof(ctl)); 2352 if (err) 2353 goto out; 2354 ctl_buf = msg_sys->msg_control; 2355 ctl_len = msg_sys->msg_controllen; 2356 } else if (ctl_len) { 2357 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2358 CMSG_ALIGN(sizeof(struct cmsghdr))); 2359 if (ctl_len > sizeof(ctl)) { 2360 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2361 if (ctl_buf == NULL) 2362 goto out; 2363 } 2364 err = -EFAULT; 2365 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2366 goto out_freectl; 2367 msg_sys->msg_control = ctl_buf; 2368 msg_sys->msg_control_is_user = false; 2369 } 2370 msg_sys->msg_flags = flags; 2371 2372 if (sock->file->f_flags & O_NONBLOCK) 2373 msg_sys->msg_flags |= MSG_DONTWAIT; 2374 /* 2375 * If this is sendmmsg() and current destination address is same as 2376 * previously succeeded address, omit asking LSM's decision. 2377 * used_address->name_len is initialized to UINT_MAX so that the first 2378 * destination address never matches. 2379 */ 2380 if (used_address && msg_sys->msg_name && 2381 used_address->name_len == msg_sys->msg_namelen && 2382 !memcmp(&used_address->name, msg_sys->msg_name, 2383 used_address->name_len)) { 2384 err = sock_sendmsg_nosec(sock, msg_sys); 2385 goto out_freectl; 2386 } 2387 err = sock_sendmsg(sock, msg_sys); 2388 /* 2389 * If this is sendmmsg() and sending to current destination address was 2390 * successful, remember it. 2391 */ 2392 if (used_address && err >= 0) { 2393 used_address->name_len = msg_sys->msg_namelen; 2394 if (msg_sys->msg_name) 2395 memcpy(&used_address->name, msg_sys->msg_name, 2396 used_address->name_len); 2397 } 2398 2399 out_freectl: 2400 if (ctl_buf != ctl) 2401 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2402 out: 2403 return err; 2404 } 2405 2406 int sendmsg_copy_msghdr(struct msghdr *msg, 2407 struct user_msghdr __user *umsg, unsigned flags, 2408 struct iovec **iov) 2409 { 2410 int err; 2411 2412 if (flags & MSG_CMSG_COMPAT) { 2413 struct compat_msghdr __user *msg_compat; 2414 2415 msg_compat = (struct compat_msghdr __user *) umsg; 2416 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2417 } else { 2418 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2419 } 2420 if (err < 0) 2421 return err; 2422 2423 return 0; 2424 } 2425 2426 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2427 struct msghdr *msg_sys, unsigned int flags, 2428 struct used_address *used_address, 2429 unsigned int allowed_msghdr_flags) 2430 { 2431 struct sockaddr_storage address; 2432 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2433 ssize_t err; 2434 2435 msg_sys->msg_name = &address; 2436 2437 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2438 if (err < 0) 2439 return err; 2440 2441 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2442 allowed_msghdr_flags); 2443 kfree(iov); 2444 return err; 2445 } 2446 2447 /* 2448 * BSD sendmsg interface 2449 */ 2450 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2451 unsigned int flags) 2452 { 2453 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2454 } 2455 2456 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2457 bool forbid_cmsg_compat) 2458 { 2459 int fput_needed, err; 2460 struct msghdr msg_sys; 2461 struct socket *sock; 2462 2463 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2464 return -EINVAL; 2465 2466 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2467 if (!sock) 2468 goto out; 2469 2470 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2471 2472 fput_light(sock->file, fput_needed); 2473 out: 2474 return err; 2475 } 2476 2477 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2478 { 2479 return __sys_sendmsg(fd, msg, flags, true); 2480 } 2481 2482 /* 2483 * Linux sendmmsg interface 2484 */ 2485 2486 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2487 unsigned int flags, bool forbid_cmsg_compat) 2488 { 2489 int fput_needed, err, datagrams; 2490 struct socket *sock; 2491 struct mmsghdr __user *entry; 2492 struct compat_mmsghdr __user *compat_entry; 2493 struct msghdr msg_sys; 2494 struct used_address used_address; 2495 unsigned int oflags = flags; 2496 2497 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2498 return -EINVAL; 2499 2500 if (vlen > UIO_MAXIOV) 2501 vlen = UIO_MAXIOV; 2502 2503 datagrams = 0; 2504 2505 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2506 if (!sock) 2507 return err; 2508 2509 used_address.name_len = UINT_MAX; 2510 entry = mmsg; 2511 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2512 err = 0; 2513 flags |= MSG_BATCH; 2514 2515 while (datagrams < vlen) { 2516 if (datagrams == vlen - 1) 2517 flags = oflags; 2518 2519 if (MSG_CMSG_COMPAT & flags) { 2520 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2521 &msg_sys, flags, &used_address, MSG_EOR); 2522 if (err < 0) 2523 break; 2524 err = __put_user(err, &compat_entry->msg_len); 2525 ++compat_entry; 2526 } else { 2527 err = ___sys_sendmsg(sock, 2528 (struct user_msghdr __user *)entry, 2529 &msg_sys, flags, &used_address, MSG_EOR); 2530 if (err < 0) 2531 break; 2532 err = put_user(err, &entry->msg_len); 2533 ++entry; 2534 } 2535 2536 if (err) 2537 break; 2538 ++datagrams; 2539 if (msg_data_left(&msg_sys)) 2540 break; 2541 cond_resched(); 2542 } 2543 2544 fput_light(sock->file, fput_needed); 2545 2546 /* We only return an error if no datagrams were able to be sent */ 2547 if (datagrams != 0) 2548 return datagrams; 2549 2550 return err; 2551 } 2552 2553 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2554 unsigned int, vlen, unsigned int, flags) 2555 { 2556 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2557 } 2558 2559 int recvmsg_copy_msghdr(struct msghdr *msg, 2560 struct user_msghdr __user *umsg, unsigned flags, 2561 struct sockaddr __user **uaddr, 2562 struct iovec **iov) 2563 { 2564 ssize_t err; 2565 2566 if (MSG_CMSG_COMPAT & flags) { 2567 struct compat_msghdr __user *msg_compat; 2568 2569 msg_compat = (struct compat_msghdr __user *) umsg; 2570 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2571 } else { 2572 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2573 } 2574 if (err < 0) 2575 return err; 2576 2577 return 0; 2578 } 2579 2580 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2581 struct user_msghdr __user *msg, 2582 struct sockaddr __user *uaddr, 2583 unsigned int flags, int nosec) 2584 { 2585 struct compat_msghdr __user *msg_compat = 2586 (struct compat_msghdr __user *) msg; 2587 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2588 struct sockaddr_storage addr; 2589 unsigned long cmsg_ptr; 2590 int len; 2591 ssize_t err; 2592 2593 msg_sys->msg_name = &addr; 2594 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2595 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2596 2597 /* We assume all kernel code knows the size of sockaddr_storage */ 2598 msg_sys->msg_namelen = 0; 2599 2600 if (sock->file->f_flags & O_NONBLOCK) 2601 flags |= MSG_DONTWAIT; 2602 2603 if (unlikely(nosec)) 2604 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2605 else 2606 err = sock_recvmsg(sock, msg_sys, flags); 2607 2608 if (err < 0) 2609 goto out; 2610 len = err; 2611 2612 if (uaddr != NULL) { 2613 err = move_addr_to_user(&addr, 2614 msg_sys->msg_namelen, uaddr, 2615 uaddr_len); 2616 if (err < 0) 2617 goto out; 2618 } 2619 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2620 COMPAT_FLAGS(msg)); 2621 if (err) 2622 goto out; 2623 if (MSG_CMSG_COMPAT & flags) 2624 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2625 &msg_compat->msg_controllen); 2626 else 2627 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2628 &msg->msg_controllen); 2629 if (err) 2630 goto out; 2631 err = len; 2632 out: 2633 return err; 2634 } 2635 2636 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2637 struct msghdr *msg_sys, unsigned int flags, int nosec) 2638 { 2639 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2640 /* user mode address pointers */ 2641 struct sockaddr __user *uaddr; 2642 ssize_t err; 2643 2644 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2645 if (err < 0) 2646 return err; 2647 2648 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2649 kfree(iov); 2650 return err; 2651 } 2652 2653 /* 2654 * BSD recvmsg interface 2655 */ 2656 2657 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2658 struct user_msghdr __user *umsg, 2659 struct sockaddr __user *uaddr, unsigned int flags) 2660 { 2661 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2662 } 2663 2664 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2665 bool forbid_cmsg_compat) 2666 { 2667 int fput_needed, err; 2668 struct msghdr msg_sys; 2669 struct socket *sock; 2670 2671 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2672 return -EINVAL; 2673 2674 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2675 if (!sock) 2676 goto out; 2677 2678 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2679 2680 fput_light(sock->file, fput_needed); 2681 out: 2682 return err; 2683 } 2684 2685 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2686 unsigned int, flags) 2687 { 2688 return __sys_recvmsg(fd, msg, flags, true); 2689 } 2690 2691 /* 2692 * Linux recvmmsg interface 2693 */ 2694 2695 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2696 unsigned int vlen, unsigned int flags, 2697 struct timespec64 *timeout) 2698 { 2699 int fput_needed, err, datagrams; 2700 struct socket *sock; 2701 struct mmsghdr __user *entry; 2702 struct compat_mmsghdr __user *compat_entry; 2703 struct msghdr msg_sys; 2704 struct timespec64 end_time; 2705 struct timespec64 timeout64; 2706 2707 if (timeout && 2708 poll_select_set_timeout(&end_time, timeout->tv_sec, 2709 timeout->tv_nsec)) 2710 return -EINVAL; 2711 2712 datagrams = 0; 2713 2714 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2715 if (!sock) 2716 return err; 2717 2718 if (likely(!(flags & MSG_ERRQUEUE))) { 2719 err = sock_error(sock->sk); 2720 if (err) { 2721 datagrams = err; 2722 goto out_put; 2723 } 2724 } 2725 2726 entry = mmsg; 2727 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2728 2729 while (datagrams < vlen) { 2730 /* 2731 * No need to ask LSM for more than the first datagram. 2732 */ 2733 if (MSG_CMSG_COMPAT & flags) { 2734 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2735 &msg_sys, flags & ~MSG_WAITFORONE, 2736 datagrams); 2737 if (err < 0) 2738 break; 2739 err = __put_user(err, &compat_entry->msg_len); 2740 ++compat_entry; 2741 } else { 2742 err = ___sys_recvmsg(sock, 2743 (struct user_msghdr __user *)entry, 2744 &msg_sys, flags & ~MSG_WAITFORONE, 2745 datagrams); 2746 if (err < 0) 2747 break; 2748 err = put_user(err, &entry->msg_len); 2749 ++entry; 2750 } 2751 2752 if (err) 2753 break; 2754 ++datagrams; 2755 2756 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2757 if (flags & MSG_WAITFORONE) 2758 flags |= MSG_DONTWAIT; 2759 2760 if (timeout) { 2761 ktime_get_ts64(&timeout64); 2762 *timeout = timespec64_sub(end_time, timeout64); 2763 if (timeout->tv_sec < 0) { 2764 timeout->tv_sec = timeout->tv_nsec = 0; 2765 break; 2766 } 2767 2768 /* Timeout, return less than vlen datagrams */ 2769 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2770 break; 2771 } 2772 2773 /* Out of band data, return right away */ 2774 if (msg_sys.msg_flags & MSG_OOB) 2775 break; 2776 cond_resched(); 2777 } 2778 2779 if (err == 0) 2780 goto out_put; 2781 2782 if (datagrams == 0) { 2783 datagrams = err; 2784 goto out_put; 2785 } 2786 2787 /* 2788 * We may return less entries than requested (vlen) if the 2789 * sock is non block and there aren't enough datagrams... 2790 */ 2791 if (err != -EAGAIN) { 2792 /* 2793 * ... or if recvmsg returns an error after we 2794 * received some datagrams, where we record the 2795 * error to return on the next call or if the 2796 * app asks about it using getsockopt(SO_ERROR). 2797 */ 2798 sock->sk->sk_err = -err; 2799 } 2800 out_put: 2801 fput_light(sock->file, fput_needed); 2802 2803 return datagrams; 2804 } 2805 2806 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2807 unsigned int vlen, unsigned int flags, 2808 struct __kernel_timespec __user *timeout, 2809 struct old_timespec32 __user *timeout32) 2810 { 2811 int datagrams; 2812 struct timespec64 timeout_sys; 2813 2814 if (timeout && get_timespec64(&timeout_sys, timeout)) 2815 return -EFAULT; 2816 2817 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2818 return -EFAULT; 2819 2820 if (!timeout && !timeout32) 2821 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2822 2823 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2824 2825 if (datagrams <= 0) 2826 return datagrams; 2827 2828 if (timeout && put_timespec64(&timeout_sys, timeout)) 2829 datagrams = -EFAULT; 2830 2831 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2832 datagrams = -EFAULT; 2833 2834 return datagrams; 2835 } 2836 2837 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2838 unsigned int, vlen, unsigned int, flags, 2839 struct __kernel_timespec __user *, timeout) 2840 { 2841 if (flags & MSG_CMSG_COMPAT) 2842 return -EINVAL; 2843 2844 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2845 } 2846 2847 #ifdef CONFIG_COMPAT_32BIT_TIME 2848 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2849 unsigned int, vlen, unsigned int, flags, 2850 struct old_timespec32 __user *, timeout) 2851 { 2852 if (flags & MSG_CMSG_COMPAT) 2853 return -EINVAL; 2854 2855 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2856 } 2857 #endif 2858 2859 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2860 /* Argument list sizes for sys_socketcall */ 2861 #define AL(x) ((x) * sizeof(unsigned long)) 2862 static const unsigned char nargs[21] = { 2863 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2864 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2865 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2866 AL(4), AL(5), AL(4) 2867 }; 2868 2869 #undef AL 2870 2871 /* 2872 * System call vectors. 2873 * 2874 * Argument checking cleaned up. Saved 20% in size. 2875 * This function doesn't need to set the kernel lock because 2876 * it is set by the callees. 2877 */ 2878 2879 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2880 { 2881 unsigned long a[AUDITSC_ARGS]; 2882 unsigned long a0, a1; 2883 int err; 2884 unsigned int len; 2885 2886 if (call < 1 || call > SYS_SENDMMSG) 2887 return -EINVAL; 2888 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2889 2890 len = nargs[call]; 2891 if (len > sizeof(a)) 2892 return -EINVAL; 2893 2894 /* copy_from_user should be SMP safe. */ 2895 if (copy_from_user(a, args, len)) 2896 return -EFAULT; 2897 2898 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2899 if (err) 2900 return err; 2901 2902 a0 = a[0]; 2903 a1 = a[1]; 2904 2905 switch (call) { 2906 case SYS_SOCKET: 2907 err = __sys_socket(a0, a1, a[2]); 2908 break; 2909 case SYS_BIND: 2910 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2911 break; 2912 case SYS_CONNECT: 2913 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2914 break; 2915 case SYS_LISTEN: 2916 err = __sys_listen(a0, a1); 2917 break; 2918 case SYS_ACCEPT: 2919 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2920 (int __user *)a[2], 0); 2921 break; 2922 case SYS_GETSOCKNAME: 2923 err = 2924 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2925 (int __user *)a[2]); 2926 break; 2927 case SYS_GETPEERNAME: 2928 err = 2929 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2930 (int __user *)a[2]); 2931 break; 2932 case SYS_SOCKETPAIR: 2933 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2934 break; 2935 case SYS_SEND: 2936 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2937 NULL, 0); 2938 break; 2939 case SYS_SENDTO: 2940 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2941 (struct sockaddr __user *)a[4], a[5]); 2942 break; 2943 case SYS_RECV: 2944 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2945 NULL, NULL); 2946 break; 2947 case SYS_RECVFROM: 2948 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2949 (struct sockaddr __user *)a[4], 2950 (int __user *)a[5]); 2951 break; 2952 case SYS_SHUTDOWN: 2953 err = __sys_shutdown(a0, a1); 2954 break; 2955 case SYS_SETSOCKOPT: 2956 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2957 a[4]); 2958 break; 2959 case SYS_GETSOCKOPT: 2960 err = 2961 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2962 (int __user *)a[4]); 2963 break; 2964 case SYS_SENDMSG: 2965 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2966 a[2], true); 2967 break; 2968 case SYS_SENDMMSG: 2969 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2970 a[3], true); 2971 break; 2972 case SYS_RECVMSG: 2973 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2974 a[2], true); 2975 break; 2976 case SYS_RECVMMSG: 2977 if (IS_ENABLED(CONFIG_64BIT)) 2978 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2979 a[2], a[3], 2980 (struct __kernel_timespec __user *)a[4], 2981 NULL); 2982 else 2983 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2984 a[2], a[3], NULL, 2985 (struct old_timespec32 __user *)a[4]); 2986 break; 2987 case SYS_ACCEPT4: 2988 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2989 (int __user *)a[2], a[3]); 2990 break; 2991 default: 2992 err = -EINVAL; 2993 break; 2994 } 2995 return err; 2996 } 2997 2998 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2999 3000 /** 3001 * sock_register - add a socket protocol handler 3002 * @ops: description of protocol 3003 * 3004 * This function is called by a protocol handler that wants to 3005 * advertise its address family, and have it linked into the 3006 * socket interface. The value ops->family corresponds to the 3007 * socket system call protocol family. 3008 */ 3009 int sock_register(const struct net_proto_family *ops) 3010 { 3011 int err; 3012 3013 if (ops->family >= NPROTO) { 3014 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3015 return -ENOBUFS; 3016 } 3017 3018 spin_lock(&net_family_lock); 3019 if (rcu_dereference_protected(net_families[ops->family], 3020 lockdep_is_held(&net_family_lock))) 3021 err = -EEXIST; 3022 else { 3023 rcu_assign_pointer(net_families[ops->family], ops); 3024 err = 0; 3025 } 3026 spin_unlock(&net_family_lock); 3027 3028 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3029 return err; 3030 } 3031 EXPORT_SYMBOL(sock_register); 3032 3033 /** 3034 * sock_unregister - remove a protocol handler 3035 * @family: protocol family to remove 3036 * 3037 * This function is called by a protocol handler that wants to 3038 * remove its address family, and have it unlinked from the 3039 * new socket creation. 3040 * 3041 * If protocol handler is a module, then it can use module reference 3042 * counts to protect against new references. If protocol handler is not 3043 * a module then it needs to provide its own protection in 3044 * the ops->create routine. 3045 */ 3046 void sock_unregister(int family) 3047 { 3048 BUG_ON(family < 0 || family >= NPROTO); 3049 3050 spin_lock(&net_family_lock); 3051 RCU_INIT_POINTER(net_families[family], NULL); 3052 spin_unlock(&net_family_lock); 3053 3054 synchronize_rcu(); 3055 3056 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3057 } 3058 EXPORT_SYMBOL(sock_unregister); 3059 3060 bool sock_is_registered(int family) 3061 { 3062 return family < NPROTO && rcu_access_pointer(net_families[family]); 3063 } 3064 3065 static int __init sock_init(void) 3066 { 3067 int err; 3068 /* 3069 * Initialize the network sysctl infrastructure. 3070 */ 3071 err = net_sysctl_init(); 3072 if (err) 3073 goto out; 3074 3075 /* 3076 * Initialize skbuff SLAB cache 3077 */ 3078 skb_init(); 3079 3080 /* 3081 * Initialize the protocols module. 3082 */ 3083 3084 init_inodecache(); 3085 3086 err = register_filesystem(&sock_fs_type); 3087 if (err) 3088 goto out; 3089 sock_mnt = kern_mount(&sock_fs_type); 3090 if (IS_ERR(sock_mnt)) { 3091 err = PTR_ERR(sock_mnt); 3092 goto out_mount; 3093 } 3094 3095 /* The real protocol initialization is performed in later initcalls. 3096 */ 3097 3098 #ifdef CONFIG_NETFILTER 3099 err = netfilter_init(); 3100 if (err) 3101 goto out; 3102 #endif 3103 3104 ptp_classifier_init(); 3105 3106 out: 3107 return err; 3108 3109 out_mount: 3110 unregister_filesystem(&sock_fs_type); 3111 goto out; 3112 } 3113 3114 core_initcall(sock_init); /* early initcall */ 3115 3116 #ifdef CONFIG_PROC_FS 3117 void socket_seq_show(struct seq_file *seq) 3118 { 3119 seq_printf(seq, "sockets: used %d\n", 3120 sock_inuse_get(seq->private)); 3121 } 3122 #endif /* CONFIG_PROC_FS */ 3123 3124 /* Handle the fact that while struct ifreq has the same *layout* on 3125 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3126 * which are handled elsewhere, it still has different *size* due to 3127 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3128 * resulting in struct ifreq being 32 and 40 bytes respectively). 3129 * As a result, if the struct happens to be at the end of a page and 3130 * the next page isn't readable/writable, we get a fault. To prevent 3131 * that, copy back and forth to the full size. 3132 */ 3133 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3134 { 3135 if (in_compat_syscall()) { 3136 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3137 3138 memset(ifr, 0, sizeof(*ifr)); 3139 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3140 return -EFAULT; 3141 3142 if (ifrdata) 3143 *ifrdata = compat_ptr(ifr32->ifr_data); 3144 3145 return 0; 3146 } 3147 3148 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3149 return -EFAULT; 3150 3151 if (ifrdata) 3152 *ifrdata = ifr->ifr_data; 3153 3154 return 0; 3155 } 3156 EXPORT_SYMBOL(get_user_ifreq); 3157 3158 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3159 { 3160 size_t size = sizeof(*ifr); 3161 3162 if (in_compat_syscall()) 3163 size = sizeof(struct compat_ifreq); 3164 3165 if (copy_to_user(arg, ifr, size)) 3166 return -EFAULT; 3167 3168 return 0; 3169 } 3170 EXPORT_SYMBOL(put_user_ifreq); 3171 3172 #ifdef CONFIG_COMPAT 3173 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3174 { 3175 compat_uptr_t uptr32; 3176 struct ifreq ifr; 3177 void __user *saved; 3178 int err; 3179 3180 if (get_user_ifreq(&ifr, NULL, uifr32)) 3181 return -EFAULT; 3182 3183 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3184 return -EFAULT; 3185 3186 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3187 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3188 3189 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3190 if (!err) { 3191 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3192 if (put_user_ifreq(&ifr, uifr32)) 3193 err = -EFAULT; 3194 } 3195 return err; 3196 } 3197 3198 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3199 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3200 struct compat_ifreq __user *u_ifreq32) 3201 { 3202 struct ifreq ifreq; 3203 u32 data32; 3204 3205 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3206 return -EFAULT; 3207 if (get_user(data32, &u_ifreq32->ifr_data)) 3208 return -EFAULT; 3209 ifreq.ifr_data = compat_ptr(data32); 3210 3211 return dev_ioctl(net, cmd, &ifreq, NULL); 3212 } 3213 3214 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3215 unsigned int cmd, 3216 unsigned long arg, 3217 struct compat_ifreq __user *uifr32) 3218 { 3219 struct ifreq ifr; 3220 bool need_copyout; 3221 int err; 3222 3223 err = sock->ops->ioctl(sock, cmd, arg); 3224 3225 /* If this ioctl is unknown try to hand it down 3226 * to the NIC driver. 3227 */ 3228 if (err != -ENOIOCTLCMD) 3229 return err; 3230 3231 if (get_user_ifreq(&ifr, NULL, uifr32)) 3232 return -EFAULT; 3233 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 3234 if (!err && need_copyout) 3235 if (put_user_ifreq(&ifr, uifr32)) 3236 return -EFAULT; 3237 3238 return err; 3239 } 3240 3241 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3242 * for some operations; this forces use of the newer bridge-utils that 3243 * use compatible ioctls 3244 */ 3245 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3246 { 3247 compat_ulong_t tmp; 3248 3249 if (get_user(tmp, argp)) 3250 return -EFAULT; 3251 if (tmp == BRCTL_GET_VERSION) 3252 return BRCTL_VERSION + 1; 3253 return -EINVAL; 3254 } 3255 3256 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3257 unsigned int cmd, unsigned long arg) 3258 { 3259 void __user *argp = compat_ptr(arg); 3260 struct sock *sk = sock->sk; 3261 struct net *net = sock_net(sk); 3262 3263 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3264 return compat_ifr_data_ioctl(net, cmd, argp); 3265 3266 switch (cmd) { 3267 case SIOCSIFBR: 3268 case SIOCGIFBR: 3269 return old_bridge_ioctl(argp); 3270 case SIOCWANDEV: 3271 return compat_siocwandev(net, argp); 3272 case SIOCGSTAMP_OLD: 3273 case SIOCGSTAMPNS_OLD: 3274 if (!sock->ops->gettstamp) 3275 return -ENOIOCTLCMD; 3276 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3277 !COMPAT_USE_64BIT_TIME); 3278 3279 case SIOCETHTOOL: 3280 case SIOCBONDSLAVEINFOQUERY: 3281 case SIOCBONDINFOQUERY: 3282 case SIOCSHWTSTAMP: 3283 case SIOCGHWTSTAMP: 3284 return compat_ifr_data_ioctl(net, cmd, argp); 3285 3286 case FIOSETOWN: 3287 case SIOCSPGRP: 3288 case FIOGETOWN: 3289 case SIOCGPGRP: 3290 case SIOCBRADDBR: 3291 case SIOCBRDELBR: 3292 case SIOCGIFVLAN: 3293 case SIOCSIFVLAN: 3294 case SIOCGSKNS: 3295 case SIOCGSTAMP_NEW: 3296 case SIOCGSTAMPNS_NEW: 3297 case SIOCGIFCONF: 3298 return sock_ioctl(file, cmd, arg); 3299 3300 case SIOCGIFFLAGS: 3301 case SIOCSIFFLAGS: 3302 case SIOCGIFMAP: 3303 case SIOCSIFMAP: 3304 case SIOCGIFMETRIC: 3305 case SIOCSIFMETRIC: 3306 case SIOCGIFMTU: 3307 case SIOCSIFMTU: 3308 case SIOCGIFMEM: 3309 case SIOCSIFMEM: 3310 case SIOCGIFHWADDR: 3311 case SIOCSIFHWADDR: 3312 case SIOCADDMULTI: 3313 case SIOCDELMULTI: 3314 case SIOCGIFINDEX: 3315 case SIOCGIFADDR: 3316 case SIOCSIFADDR: 3317 case SIOCSIFHWBROADCAST: 3318 case SIOCDIFADDR: 3319 case SIOCGIFBRDADDR: 3320 case SIOCSIFBRDADDR: 3321 case SIOCGIFDSTADDR: 3322 case SIOCSIFDSTADDR: 3323 case SIOCGIFNETMASK: 3324 case SIOCSIFNETMASK: 3325 case SIOCSIFPFLAGS: 3326 case SIOCGIFPFLAGS: 3327 case SIOCGIFTXQLEN: 3328 case SIOCSIFTXQLEN: 3329 case SIOCBRADDIF: 3330 case SIOCBRDELIF: 3331 case SIOCGIFNAME: 3332 case SIOCSIFNAME: 3333 case SIOCGMIIPHY: 3334 case SIOCGMIIREG: 3335 case SIOCSMIIREG: 3336 case SIOCBONDENSLAVE: 3337 case SIOCBONDRELEASE: 3338 case SIOCBONDSETHWADDR: 3339 case SIOCBONDCHANGEACTIVE: 3340 return compat_ifreq_ioctl(net, sock, cmd, arg, argp); 3341 3342 case SIOCSARP: 3343 case SIOCGARP: 3344 case SIOCDARP: 3345 case SIOCOUTQ: 3346 case SIOCOUTQNSD: 3347 case SIOCATMARK: 3348 return sock_do_ioctl(net, sock, cmd, arg); 3349 } 3350 3351 return -ENOIOCTLCMD; 3352 } 3353 3354 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3355 unsigned long arg) 3356 { 3357 struct socket *sock = file->private_data; 3358 int ret = -ENOIOCTLCMD; 3359 struct sock *sk; 3360 struct net *net; 3361 3362 sk = sock->sk; 3363 net = sock_net(sk); 3364 3365 if (sock->ops->compat_ioctl) 3366 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3367 3368 if (ret == -ENOIOCTLCMD && 3369 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3370 ret = compat_wext_handle_ioctl(net, cmd, arg); 3371 3372 if (ret == -ENOIOCTLCMD) 3373 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3374 3375 return ret; 3376 } 3377 #endif 3378 3379 /** 3380 * kernel_bind - bind an address to a socket (kernel space) 3381 * @sock: socket 3382 * @addr: address 3383 * @addrlen: length of address 3384 * 3385 * Returns 0 or an error. 3386 */ 3387 3388 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3389 { 3390 return sock->ops->bind(sock, addr, addrlen); 3391 } 3392 EXPORT_SYMBOL(kernel_bind); 3393 3394 /** 3395 * kernel_listen - move socket to listening state (kernel space) 3396 * @sock: socket 3397 * @backlog: pending connections queue size 3398 * 3399 * Returns 0 or an error. 3400 */ 3401 3402 int kernel_listen(struct socket *sock, int backlog) 3403 { 3404 return sock->ops->listen(sock, backlog); 3405 } 3406 EXPORT_SYMBOL(kernel_listen); 3407 3408 /** 3409 * kernel_accept - accept a connection (kernel space) 3410 * @sock: listening socket 3411 * @newsock: new connected socket 3412 * @flags: flags 3413 * 3414 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3415 * If it fails, @newsock is guaranteed to be %NULL. 3416 * Returns 0 or an error. 3417 */ 3418 3419 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3420 { 3421 struct sock *sk = sock->sk; 3422 int err; 3423 3424 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3425 newsock); 3426 if (err < 0) 3427 goto done; 3428 3429 err = sock->ops->accept(sock, *newsock, flags, true); 3430 if (err < 0) { 3431 sock_release(*newsock); 3432 *newsock = NULL; 3433 goto done; 3434 } 3435 3436 (*newsock)->ops = sock->ops; 3437 __module_get((*newsock)->ops->owner); 3438 3439 done: 3440 return err; 3441 } 3442 EXPORT_SYMBOL(kernel_accept); 3443 3444 /** 3445 * kernel_connect - connect a socket (kernel space) 3446 * @sock: socket 3447 * @addr: address 3448 * @addrlen: address length 3449 * @flags: flags (O_NONBLOCK, ...) 3450 * 3451 * For datagram sockets, @addr is the address to which datagrams are sent 3452 * by default, and the only address from which datagrams are received. 3453 * For stream sockets, attempts to connect to @addr. 3454 * Returns 0 or an error code. 3455 */ 3456 3457 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3458 int flags) 3459 { 3460 return sock->ops->connect(sock, addr, addrlen, flags); 3461 } 3462 EXPORT_SYMBOL(kernel_connect); 3463 3464 /** 3465 * kernel_getsockname - get the address which the socket is bound (kernel space) 3466 * @sock: socket 3467 * @addr: address holder 3468 * 3469 * Fills the @addr pointer with the address which the socket is bound. 3470 * Returns 0 or an error code. 3471 */ 3472 3473 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3474 { 3475 return sock->ops->getname(sock, addr, 0); 3476 } 3477 EXPORT_SYMBOL(kernel_getsockname); 3478 3479 /** 3480 * kernel_getpeername - get the address which the socket is connected (kernel space) 3481 * @sock: socket 3482 * @addr: address holder 3483 * 3484 * Fills the @addr pointer with the address which the socket is connected. 3485 * Returns 0 or an error code. 3486 */ 3487 3488 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3489 { 3490 return sock->ops->getname(sock, addr, 1); 3491 } 3492 EXPORT_SYMBOL(kernel_getpeername); 3493 3494 /** 3495 * kernel_sendpage - send a &page through a socket (kernel space) 3496 * @sock: socket 3497 * @page: page 3498 * @offset: page offset 3499 * @size: total size in bytes 3500 * @flags: flags (MSG_DONTWAIT, ...) 3501 * 3502 * Returns the total amount sent in bytes or an error. 3503 */ 3504 3505 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3506 size_t size, int flags) 3507 { 3508 if (sock->ops->sendpage) { 3509 /* Warn in case the improper page to zero-copy send */ 3510 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3511 return sock->ops->sendpage(sock, page, offset, size, flags); 3512 } 3513 return sock_no_sendpage(sock, page, offset, size, flags); 3514 } 3515 EXPORT_SYMBOL(kernel_sendpage); 3516 3517 /** 3518 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3519 * @sk: sock 3520 * @page: page 3521 * @offset: page offset 3522 * @size: total size in bytes 3523 * @flags: flags (MSG_DONTWAIT, ...) 3524 * 3525 * Returns the total amount sent in bytes or an error. 3526 * Caller must hold @sk. 3527 */ 3528 3529 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3530 size_t size, int flags) 3531 { 3532 struct socket *sock = sk->sk_socket; 3533 3534 if (sock->ops->sendpage_locked) 3535 return sock->ops->sendpage_locked(sk, page, offset, size, 3536 flags); 3537 3538 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3539 } 3540 EXPORT_SYMBOL(kernel_sendpage_locked); 3541 3542 /** 3543 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3544 * @sock: socket 3545 * @how: connection part 3546 * 3547 * Returns 0 or an error. 3548 */ 3549 3550 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3551 { 3552 return sock->ops->shutdown(sock, how); 3553 } 3554 EXPORT_SYMBOL(kernel_sock_shutdown); 3555 3556 /** 3557 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3558 * @sk: socket 3559 * 3560 * This routine returns the IP overhead imposed by a socket i.e. 3561 * the length of the underlying IP header, depending on whether 3562 * this is an IPv4 or IPv6 socket and the length from IP options turned 3563 * on at the socket. Assumes that the caller has a lock on the socket. 3564 */ 3565 3566 u32 kernel_sock_ip_overhead(struct sock *sk) 3567 { 3568 struct inet_sock *inet; 3569 struct ip_options_rcu *opt; 3570 u32 overhead = 0; 3571 #if IS_ENABLED(CONFIG_IPV6) 3572 struct ipv6_pinfo *np; 3573 struct ipv6_txoptions *optv6 = NULL; 3574 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3575 3576 if (!sk) 3577 return overhead; 3578 3579 switch (sk->sk_family) { 3580 case AF_INET: 3581 inet = inet_sk(sk); 3582 overhead += sizeof(struct iphdr); 3583 opt = rcu_dereference_protected(inet->inet_opt, 3584 sock_owned_by_user(sk)); 3585 if (opt) 3586 overhead += opt->opt.optlen; 3587 return overhead; 3588 #if IS_ENABLED(CONFIG_IPV6) 3589 case AF_INET6: 3590 np = inet6_sk(sk); 3591 overhead += sizeof(struct ipv6hdr); 3592 if (np) 3593 optv6 = rcu_dereference_protected(np->opt, 3594 sock_owned_by_user(sk)); 3595 if (optv6) 3596 overhead += (optv6->opt_flen + optv6->opt_nflen); 3597 return overhead; 3598 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3599 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3600 return overhead; 3601 } 3602 } 3603 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3604