xref: /openbmc/linux/net/socket.c (revision 29c49648)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 #include <linux/ptp_clock_kernel.h>
108 
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113 
114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117 
118 static int sock_close(struct inode *inode, struct file *file);
119 static __poll_t sock_poll(struct file *file,
120 			      struct poll_table_struct *wait);
121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122 #ifdef CONFIG_COMPAT
123 static long compat_sock_ioctl(struct file *file,
124 			      unsigned int cmd, unsigned long arg);
125 #endif
126 static int sock_fasync(int fd, struct file *filp, int on);
127 static ssize_t sock_sendpage(struct file *file, struct page *page,
128 			     int offset, size_t size, loff_t *ppos, int more);
129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 				struct pipe_inode_info *pipe, size_t len,
131 				unsigned int flags);
132 
133 #ifdef CONFIG_PROC_FS
134 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135 {
136 	struct socket *sock = f->private_data;
137 
138 	if (sock->ops->show_fdinfo)
139 		sock->ops->show_fdinfo(m, sock);
140 }
141 #else
142 #define sock_show_fdinfo NULL
143 #endif
144 
145 /*
146  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147  *	in the operation structures but are done directly via the socketcall() multiplexor.
148  */
149 
150 static const struct file_operations socket_file_ops = {
151 	.owner =	THIS_MODULE,
152 	.llseek =	no_llseek,
153 	.read_iter =	sock_read_iter,
154 	.write_iter =	sock_write_iter,
155 	.poll =		sock_poll,
156 	.unlocked_ioctl = sock_ioctl,
157 #ifdef CONFIG_COMPAT
158 	.compat_ioctl = compat_sock_ioctl,
159 #endif
160 	.mmap =		sock_mmap,
161 	.release =	sock_close,
162 	.fasync =	sock_fasync,
163 	.sendpage =	sock_sendpage,
164 	.splice_write = generic_splice_sendpage,
165 	.splice_read =	sock_splice_read,
166 	.show_fdinfo =	sock_show_fdinfo,
167 };
168 
169 static const char * const pf_family_names[] = {
170 	[PF_UNSPEC]	= "PF_UNSPEC",
171 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
172 	[PF_INET]	= "PF_INET",
173 	[PF_AX25]	= "PF_AX25",
174 	[PF_IPX]	= "PF_IPX",
175 	[PF_APPLETALK]	= "PF_APPLETALK",
176 	[PF_NETROM]	= "PF_NETROM",
177 	[PF_BRIDGE]	= "PF_BRIDGE",
178 	[PF_ATMPVC]	= "PF_ATMPVC",
179 	[PF_X25]	= "PF_X25",
180 	[PF_INET6]	= "PF_INET6",
181 	[PF_ROSE]	= "PF_ROSE",
182 	[PF_DECnet]	= "PF_DECnet",
183 	[PF_NETBEUI]	= "PF_NETBEUI",
184 	[PF_SECURITY]	= "PF_SECURITY",
185 	[PF_KEY]	= "PF_KEY",
186 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
187 	[PF_PACKET]	= "PF_PACKET",
188 	[PF_ASH]	= "PF_ASH",
189 	[PF_ECONET]	= "PF_ECONET",
190 	[PF_ATMSVC]	= "PF_ATMSVC",
191 	[PF_RDS]	= "PF_RDS",
192 	[PF_SNA]	= "PF_SNA",
193 	[PF_IRDA]	= "PF_IRDA",
194 	[PF_PPPOX]	= "PF_PPPOX",
195 	[PF_WANPIPE]	= "PF_WANPIPE",
196 	[PF_LLC]	= "PF_LLC",
197 	[PF_IB]		= "PF_IB",
198 	[PF_MPLS]	= "PF_MPLS",
199 	[PF_CAN]	= "PF_CAN",
200 	[PF_TIPC]	= "PF_TIPC",
201 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
202 	[PF_IUCV]	= "PF_IUCV",
203 	[PF_RXRPC]	= "PF_RXRPC",
204 	[PF_ISDN]	= "PF_ISDN",
205 	[PF_PHONET]	= "PF_PHONET",
206 	[PF_IEEE802154]	= "PF_IEEE802154",
207 	[PF_CAIF]	= "PF_CAIF",
208 	[PF_ALG]	= "PF_ALG",
209 	[PF_NFC]	= "PF_NFC",
210 	[PF_VSOCK]	= "PF_VSOCK",
211 	[PF_KCM]	= "PF_KCM",
212 	[PF_QIPCRTR]	= "PF_QIPCRTR",
213 	[PF_SMC]	= "PF_SMC",
214 	[PF_XDP]	= "PF_XDP",
215 };
216 
217 /*
218  *	The protocol list. Each protocol is registered in here.
219  */
220 
221 static DEFINE_SPINLOCK(net_family_lock);
222 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
223 
224 /*
225  * Support routines.
226  * Move socket addresses back and forth across the kernel/user
227  * divide and look after the messy bits.
228  */
229 
230 /**
231  *	move_addr_to_kernel	-	copy a socket address into kernel space
232  *	@uaddr: Address in user space
233  *	@kaddr: Address in kernel space
234  *	@ulen: Length in user space
235  *
236  *	The address is copied into kernel space. If the provided address is
237  *	too long an error code of -EINVAL is returned. If the copy gives
238  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
239  */
240 
241 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
242 {
243 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
244 		return -EINVAL;
245 	if (ulen == 0)
246 		return 0;
247 	if (copy_from_user(kaddr, uaddr, ulen))
248 		return -EFAULT;
249 	return audit_sockaddr(ulen, kaddr);
250 }
251 
252 /**
253  *	move_addr_to_user	-	copy an address to user space
254  *	@kaddr: kernel space address
255  *	@klen: length of address in kernel
256  *	@uaddr: user space address
257  *	@ulen: pointer to user length field
258  *
259  *	The value pointed to by ulen on entry is the buffer length available.
260  *	This is overwritten with the buffer space used. -EINVAL is returned
261  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
262  *	is returned if either the buffer or the length field are not
263  *	accessible.
264  *	After copying the data up to the limit the user specifies, the true
265  *	length of the data is written over the length limit the user
266  *	specified. Zero is returned for a success.
267  */
268 
269 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
270 			     void __user *uaddr, int __user *ulen)
271 {
272 	int err;
273 	int len;
274 
275 	BUG_ON(klen > sizeof(struct sockaddr_storage));
276 	err = get_user(len, ulen);
277 	if (err)
278 		return err;
279 	if (len > klen)
280 		len = klen;
281 	if (len < 0)
282 		return -EINVAL;
283 	if (len) {
284 		if (audit_sockaddr(klen, kaddr))
285 			return -ENOMEM;
286 		if (copy_to_user(uaddr, kaddr, len))
287 			return -EFAULT;
288 	}
289 	/*
290 	 *      "fromlen shall refer to the value before truncation.."
291 	 *                      1003.1g
292 	 */
293 	return __put_user(klen, ulen);
294 }
295 
296 static struct kmem_cache *sock_inode_cachep __ro_after_init;
297 
298 static struct inode *sock_alloc_inode(struct super_block *sb)
299 {
300 	struct socket_alloc *ei;
301 
302 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
303 	if (!ei)
304 		return NULL;
305 	init_waitqueue_head(&ei->socket.wq.wait);
306 	ei->socket.wq.fasync_list = NULL;
307 	ei->socket.wq.flags = 0;
308 
309 	ei->socket.state = SS_UNCONNECTED;
310 	ei->socket.flags = 0;
311 	ei->socket.ops = NULL;
312 	ei->socket.sk = NULL;
313 	ei->socket.file = NULL;
314 
315 	return &ei->vfs_inode;
316 }
317 
318 static void sock_free_inode(struct inode *inode)
319 {
320 	struct socket_alloc *ei;
321 
322 	ei = container_of(inode, struct socket_alloc, vfs_inode);
323 	kmem_cache_free(sock_inode_cachep, ei);
324 }
325 
326 static void init_once(void *foo)
327 {
328 	struct socket_alloc *ei = (struct socket_alloc *)foo;
329 
330 	inode_init_once(&ei->vfs_inode);
331 }
332 
333 static void init_inodecache(void)
334 {
335 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
336 					      sizeof(struct socket_alloc),
337 					      0,
338 					      (SLAB_HWCACHE_ALIGN |
339 					       SLAB_RECLAIM_ACCOUNT |
340 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
341 					      init_once);
342 	BUG_ON(sock_inode_cachep == NULL);
343 }
344 
345 static const struct super_operations sockfs_ops = {
346 	.alloc_inode	= sock_alloc_inode,
347 	.free_inode	= sock_free_inode,
348 	.statfs		= simple_statfs,
349 };
350 
351 /*
352  * sockfs_dname() is called from d_path().
353  */
354 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
355 {
356 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
357 				d_inode(dentry)->i_ino);
358 }
359 
360 static const struct dentry_operations sockfs_dentry_operations = {
361 	.d_dname  = sockfs_dname,
362 };
363 
364 static int sockfs_xattr_get(const struct xattr_handler *handler,
365 			    struct dentry *dentry, struct inode *inode,
366 			    const char *suffix, void *value, size_t size)
367 {
368 	if (value) {
369 		if (dentry->d_name.len + 1 > size)
370 			return -ERANGE;
371 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
372 	}
373 	return dentry->d_name.len + 1;
374 }
375 
376 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
377 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
378 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
379 
380 static const struct xattr_handler sockfs_xattr_handler = {
381 	.name = XATTR_NAME_SOCKPROTONAME,
382 	.get = sockfs_xattr_get,
383 };
384 
385 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
386 				     struct user_namespace *mnt_userns,
387 				     struct dentry *dentry, struct inode *inode,
388 				     const char *suffix, const void *value,
389 				     size_t size, int flags)
390 {
391 	/* Handled by LSM. */
392 	return -EAGAIN;
393 }
394 
395 static const struct xattr_handler sockfs_security_xattr_handler = {
396 	.prefix = XATTR_SECURITY_PREFIX,
397 	.set = sockfs_security_xattr_set,
398 };
399 
400 static const struct xattr_handler *sockfs_xattr_handlers[] = {
401 	&sockfs_xattr_handler,
402 	&sockfs_security_xattr_handler,
403 	NULL
404 };
405 
406 static int sockfs_init_fs_context(struct fs_context *fc)
407 {
408 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
409 	if (!ctx)
410 		return -ENOMEM;
411 	ctx->ops = &sockfs_ops;
412 	ctx->dops = &sockfs_dentry_operations;
413 	ctx->xattr = sockfs_xattr_handlers;
414 	return 0;
415 }
416 
417 static struct vfsmount *sock_mnt __read_mostly;
418 
419 static struct file_system_type sock_fs_type = {
420 	.name =		"sockfs",
421 	.init_fs_context = sockfs_init_fs_context,
422 	.kill_sb =	kill_anon_super,
423 };
424 
425 /*
426  *	Obtains the first available file descriptor and sets it up for use.
427  *
428  *	These functions create file structures and maps them to fd space
429  *	of the current process. On success it returns file descriptor
430  *	and file struct implicitly stored in sock->file.
431  *	Note that another thread may close file descriptor before we return
432  *	from this function. We use the fact that now we do not refer
433  *	to socket after mapping. If one day we will need it, this
434  *	function will increment ref. count on file by 1.
435  *
436  *	In any case returned fd MAY BE not valid!
437  *	This race condition is unavoidable
438  *	with shared fd spaces, we cannot solve it inside kernel,
439  *	but we take care of internal coherence yet.
440  */
441 
442 /**
443  *	sock_alloc_file - Bind a &socket to a &file
444  *	@sock: socket
445  *	@flags: file status flags
446  *	@dname: protocol name
447  *
448  *	Returns the &file bound with @sock, implicitly storing it
449  *	in sock->file. If dname is %NULL, sets to "".
450  *	On failure the return is a ERR pointer (see linux/err.h).
451  *	This function uses GFP_KERNEL internally.
452  */
453 
454 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
455 {
456 	struct file *file;
457 
458 	if (!dname)
459 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
460 
461 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
462 				O_RDWR | (flags & O_NONBLOCK),
463 				&socket_file_ops);
464 	if (IS_ERR(file)) {
465 		sock_release(sock);
466 		return file;
467 	}
468 
469 	sock->file = file;
470 	file->private_data = sock;
471 	stream_open(SOCK_INODE(sock), file);
472 	return file;
473 }
474 EXPORT_SYMBOL(sock_alloc_file);
475 
476 static int sock_map_fd(struct socket *sock, int flags)
477 {
478 	struct file *newfile;
479 	int fd = get_unused_fd_flags(flags);
480 	if (unlikely(fd < 0)) {
481 		sock_release(sock);
482 		return fd;
483 	}
484 
485 	newfile = sock_alloc_file(sock, flags, NULL);
486 	if (!IS_ERR(newfile)) {
487 		fd_install(fd, newfile);
488 		return fd;
489 	}
490 
491 	put_unused_fd(fd);
492 	return PTR_ERR(newfile);
493 }
494 
495 /**
496  *	sock_from_file - Return the &socket bounded to @file.
497  *	@file: file
498  *
499  *	On failure returns %NULL.
500  */
501 
502 struct socket *sock_from_file(struct file *file)
503 {
504 	if (file->f_op == &socket_file_ops)
505 		return file->private_data;	/* set in sock_map_fd */
506 
507 	return NULL;
508 }
509 EXPORT_SYMBOL(sock_from_file);
510 
511 /**
512  *	sockfd_lookup - Go from a file number to its socket slot
513  *	@fd: file handle
514  *	@err: pointer to an error code return
515  *
516  *	The file handle passed in is locked and the socket it is bound
517  *	to is returned. If an error occurs the err pointer is overwritten
518  *	with a negative errno code and NULL is returned. The function checks
519  *	for both invalid handles and passing a handle which is not a socket.
520  *
521  *	On a success the socket object pointer is returned.
522  */
523 
524 struct socket *sockfd_lookup(int fd, int *err)
525 {
526 	struct file *file;
527 	struct socket *sock;
528 
529 	file = fget(fd);
530 	if (!file) {
531 		*err = -EBADF;
532 		return NULL;
533 	}
534 
535 	sock = sock_from_file(file);
536 	if (!sock) {
537 		*err = -ENOTSOCK;
538 		fput(file);
539 	}
540 	return sock;
541 }
542 EXPORT_SYMBOL(sockfd_lookup);
543 
544 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
545 {
546 	struct fd f = fdget(fd);
547 	struct socket *sock;
548 
549 	*err = -EBADF;
550 	if (f.file) {
551 		sock = sock_from_file(f.file);
552 		if (likely(sock)) {
553 			*fput_needed = f.flags & FDPUT_FPUT;
554 			return sock;
555 		}
556 		*err = -ENOTSOCK;
557 		fdput(f);
558 	}
559 	return NULL;
560 }
561 
562 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
563 				size_t size)
564 {
565 	ssize_t len;
566 	ssize_t used = 0;
567 
568 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
569 	if (len < 0)
570 		return len;
571 	used += len;
572 	if (buffer) {
573 		if (size < used)
574 			return -ERANGE;
575 		buffer += len;
576 	}
577 
578 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
579 	used += len;
580 	if (buffer) {
581 		if (size < used)
582 			return -ERANGE;
583 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
584 		buffer += len;
585 	}
586 
587 	return used;
588 }
589 
590 static int sockfs_setattr(struct user_namespace *mnt_userns,
591 			  struct dentry *dentry, struct iattr *iattr)
592 {
593 	int err = simple_setattr(&init_user_ns, dentry, iattr);
594 
595 	if (!err && (iattr->ia_valid & ATTR_UID)) {
596 		struct socket *sock = SOCKET_I(d_inode(dentry));
597 
598 		if (sock->sk)
599 			sock->sk->sk_uid = iattr->ia_uid;
600 		else
601 			err = -ENOENT;
602 	}
603 
604 	return err;
605 }
606 
607 static const struct inode_operations sockfs_inode_ops = {
608 	.listxattr = sockfs_listxattr,
609 	.setattr = sockfs_setattr,
610 };
611 
612 /**
613  *	sock_alloc - allocate a socket
614  *
615  *	Allocate a new inode and socket object. The two are bound together
616  *	and initialised. The socket is then returned. If we are out of inodes
617  *	NULL is returned. This functions uses GFP_KERNEL internally.
618  */
619 
620 struct socket *sock_alloc(void)
621 {
622 	struct inode *inode;
623 	struct socket *sock;
624 
625 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
626 	if (!inode)
627 		return NULL;
628 
629 	sock = SOCKET_I(inode);
630 
631 	inode->i_ino = get_next_ino();
632 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
633 	inode->i_uid = current_fsuid();
634 	inode->i_gid = current_fsgid();
635 	inode->i_op = &sockfs_inode_ops;
636 
637 	return sock;
638 }
639 EXPORT_SYMBOL(sock_alloc);
640 
641 static void __sock_release(struct socket *sock, struct inode *inode)
642 {
643 	if (sock->ops) {
644 		struct module *owner = sock->ops->owner;
645 
646 		if (inode)
647 			inode_lock(inode);
648 		sock->ops->release(sock);
649 		sock->sk = NULL;
650 		if (inode)
651 			inode_unlock(inode);
652 		sock->ops = NULL;
653 		module_put(owner);
654 	}
655 
656 	if (sock->wq.fasync_list)
657 		pr_err("%s: fasync list not empty!\n", __func__);
658 
659 	if (!sock->file) {
660 		iput(SOCK_INODE(sock));
661 		return;
662 	}
663 	sock->file = NULL;
664 }
665 
666 /**
667  *	sock_release - close a socket
668  *	@sock: socket to close
669  *
670  *	The socket is released from the protocol stack if it has a release
671  *	callback, and the inode is then released if the socket is bound to
672  *	an inode not a file.
673  */
674 void sock_release(struct socket *sock)
675 {
676 	__sock_release(sock, NULL);
677 }
678 EXPORT_SYMBOL(sock_release);
679 
680 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
681 {
682 	u8 flags = *tx_flags;
683 
684 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
685 		flags |= SKBTX_HW_TSTAMP;
686 
687 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
688 		flags |= SKBTX_SW_TSTAMP;
689 
690 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
691 		flags |= SKBTX_SCHED_TSTAMP;
692 
693 	*tx_flags = flags;
694 }
695 EXPORT_SYMBOL(__sock_tx_timestamp);
696 
697 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
698 					   size_t));
699 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
700 					    size_t));
701 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
702 {
703 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
704 				     inet_sendmsg, sock, msg,
705 				     msg_data_left(msg));
706 	BUG_ON(ret == -EIOCBQUEUED);
707 	return ret;
708 }
709 
710 /**
711  *	sock_sendmsg - send a message through @sock
712  *	@sock: socket
713  *	@msg: message to send
714  *
715  *	Sends @msg through @sock, passing through LSM.
716  *	Returns the number of bytes sent, or an error code.
717  */
718 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
719 {
720 	int err = security_socket_sendmsg(sock, msg,
721 					  msg_data_left(msg));
722 
723 	return err ?: sock_sendmsg_nosec(sock, msg);
724 }
725 EXPORT_SYMBOL(sock_sendmsg);
726 
727 /**
728  *	kernel_sendmsg - send a message through @sock (kernel-space)
729  *	@sock: socket
730  *	@msg: message header
731  *	@vec: kernel vec
732  *	@num: vec array length
733  *	@size: total message data size
734  *
735  *	Builds the message data with @vec and sends it through @sock.
736  *	Returns the number of bytes sent, or an error code.
737  */
738 
739 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
740 		   struct kvec *vec, size_t num, size_t size)
741 {
742 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
743 	return sock_sendmsg(sock, msg);
744 }
745 EXPORT_SYMBOL(kernel_sendmsg);
746 
747 /**
748  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
749  *	@sk: sock
750  *	@msg: message header
751  *	@vec: output s/g array
752  *	@num: output s/g array length
753  *	@size: total message data size
754  *
755  *	Builds the message data with @vec and sends it through @sock.
756  *	Returns the number of bytes sent, or an error code.
757  *	Caller must hold @sk.
758  */
759 
760 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
761 			  struct kvec *vec, size_t num, size_t size)
762 {
763 	struct socket *sock = sk->sk_socket;
764 
765 	if (!sock->ops->sendmsg_locked)
766 		return sock_no_sendmsg_locked(sk, msg, size);
767 
768 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
769 
770 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
771 }
772 EXPORT_SYMBOL(kernel_sendmsg_locked);
773 
774 static bool skb_is_err_queue(const struct sk_buff *skb)
775 {
776 	/* pkt_type of skbs enqueued on the error queue are set to
777 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
778 	 * in recvmsg, since skbs received on a local socket will never
779 	 * have a pkt_type of PACKET_OUTGOING.
780 	 */
781 	return skb->pkt_type == PACKET_OUTGOING;
782 }
783 
784 /* On transmit, software and hardware timestamps are returned independently.
785  * As the two skb clones share the hardware timestamp, which may be updated
786  * before the software timestamp is received, a hardware TX timestamp may be
787  * returned only if there is no software TX timestamp. Ignore false software
788  * timestamps, which may be made in the __sock_recv_timestamp() call when the
789  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
790  * hardware timestamp.
791  */
792 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
793 {
794 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
795 }
796 
797 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
798 {
799 	struct scm_ts_pktinfo ts_pktinfo;
800 	struct net_device *orig_dev;
801 
802 	if (!skb_mac_header_was_set(skb))
803 		return;
804 
805 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
806 
807 	rcu_read_lock();
808 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
809 	if (orig_dev)
810 		ts_pktinfo.if_index = orig_dev->ifindex;
811 	rcu_read_unlock();
812 
813 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
814 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
815 		 sizeof(ts_pktinfo), &ts_pktinfo);
816 }
817 
818 /*
819  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
820  */
821 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
822 	struct sk_buff *skb)
823 {
824 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
825 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
826 	struct scm_timestamping_internal tss;
827 
828 	int empty = 1, false_tstamp = 0;
829 	struct skb_shared_hwtstamps *shhwtstamps =
830 		skb_hwtstamps(skb);
831 
832 	/* Race occurred between timestamp enabling and packet
833 	   receiving.  Fill in the current time for now. */
834 	if (need_software_tstamp && skb->tstamp == 0) {
835 		__net_timestamp(skb);
836 		false_tstamp = 1;
837 	}
838 
839 	if (need_software_tstamp) {
840 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
841 			if (new_tstamp) {
842 				struct __kernel_sock_timeval tv;
843 
844 				skb_get_new_timestamp(skb, &tv);
845 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
846 					 sizeof(tv), &tv);
847 			} else {
848 				struct __kernel_old_timeval tv;
849 
850 				skb_get_timestamp(skb, &tv);
851 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
852 					 sizeof(tv), &tv);
853 			}
854 		} else {
855 			if (new_tstamp) {
856 				struct __kernel_timespec ts;
857 
858 				skb_get_new_timestampns(skb, &ts);
859 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
860 					 sizeof(ts), &ts);
861 			} else {
862 				struct __kernel_old_timespec ts;
863 
864 				skb_get_timestampns(skb, &ts);
865 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
866 					 sizeof(ts), &ts);
867 			}
868 		}
869 	}
870 
871 	memset(&tss, 0, sizeof(tss));
872 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
873 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
874 		empty = 0;
875 	if (shhwtstamps &&
876 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
877 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
878 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
879 			ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
880 
881 		if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
882 					     tss.ts + 2)) {
883 			empty = 0;
884 
885 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
886 			    !skb_is_err_queue(skb))
887 				put_ts_pktinfo(msg, skb);
888 		}
889 	}
890 	if (!empty) {
891 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
892 			put_cmsg_scm_timestamping64(msg, &tss);
893 		else
894 			put_cmsg_scm_timestamping(msg, &tss);
895 
896 		if (skb_is_err_queue(skb) && skb->len &&
897 		    SKB_EXT_ERR(skb)->opt_stats)
898 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
899 				 skb->len, skb->data);
900 	}
901 }
902 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
903 
904 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
905 	struct sk_buff *skb)
906 {
907 	int ack;
908 
909 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
910 		return;
911 	if (!skb->wifi_acked_valid)
912 		return;
913 
914 	ack = skb->wifi_acked;
915 
916 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
917 }
918 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
919 
920 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
921 				   struct sk_buff *skb)
922 {
923 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
924 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
925 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
926 }
927 
928 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
929 	struct sk_buff *skb)
930 {
931 	sock_recv_timestamp(msg, sk, skb);
932 	sock_recv_drops(msg, sk, skb);
933 }
934 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
935 
936 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
937 					   size_t, int));
938 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
939 					    size_t, int));
940 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
941 				     int flags)
942 {
943 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
944 				  inet_recvmsg, sock, msg, msg_data_left(msg),
945 				  flags);
946 }
947 
948 /**
949  *	sock_recvmsg - receive a message from @sock
950  *	@sock: socket
951  *	@msg: message to receive
952  *	@flags: message flags
953  *
954  *	Receives @msg from @sock, passing through LSM. Returns the total number
955  *	of bytes received, or an error.
956  */
957 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
958 {
959 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
960 
961 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
962 }
963 EXPORT_SYMBOL(sock_recvmsg);
964 
965 /**
966  *	kernel_recvmsg - Receive a message from a socket (kernel space)
967  *	@sock: The socket to receive the message from
968  *	@msg: Received message
969  *	@vec: Input s/g array for message data
970  *	@num: Size of input s/g array
971  *	@size: Number of bytes to read
972  *	@flags: Message flags (MSG_DONTWAIT, etc...)
973  *
974  *	On return the msg structure contains the scatter/gather array passed in the
975  *	vec argument. The array is modified so that it consists of the unfilled
976  *	portion of the original array.
977  *
978  *	The returned value is the total number of bytes received, or an error.
979  */
980 
981 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
982 		   struct kvec *vec, size_t num, size_t size, int flags)
983 {
984 	msg->msg_control_is_user = false;
985 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
986 	return sock_recvmsg(sock, msg, flags);
987 }
988 EXPORT_SYMBOL(kernel_recvmsg);
989 
990 static ssize_t sock_sendpage(struct file *file, struct page *page,
991 			     int offset, size_t size, loff_t *ppos, int more)
992 {
993 	struct socket *sock;
994 	int flags;
995 
996 	sock = file->private_data;
997 
998 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
999 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000 	flags |= more;
1001 
1002 	return kernel_sendpage(sock, page, offset, size, flags);
1003 }
1004 
1005 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006 				struct pipe_inode_info *pipe, size_t len,
1007 				unsigned int flags)
1008 {
1009 	struct socket *sock = file->private_data;
1010 
1011 	if (unlikely(!sock->ops->splice_read))
1012 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1013 
1014 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015 }
1016 
1017 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018 {
1019 	struct file *file = iocb->ki_filp;
1020 	struct socket *sock = file->private_data;
1021 	struct msghdr msg = {.msg_iter = *to,
1022 			     .msg_iocb = iocb};
1023 	ssize_t res;
1024 
1025 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026 		msg.msg_flags = MSG_DONTWAIT;
1027 
1028 	if (iocb->ki_pos != 0)
1029 		return -ESPIPE;
1030 
1031 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1032 		return 0;
1033 
1034 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035 	*to = msg.msg_iter;
1036 	return res;
1037 }
1038 
1039 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040 {
1041 	struct file *file = iocb->ki_filp;
1042 	struct socket *sock = file->private_data;
1043 	struct msghdr msg = {.msg_iter = *from,
1044 			     .msg_iocb = iocb};
1045 	ssize_t res;
1046 
1047 	if (iocb->ki_pos != 0)
1048 		return -ESPIPE;
1049 
1050 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051 		msg.msg_flags = MSG_DONTWAIT;
1052 
1053 	if (sock->type == SOCK_SEQPACKET)
1054 		msg.msg_flags |= MSG_EOR;
1055 
1056 	res = sock_sendmsg(sock, &msg);
1057 	*from = msg.msg_iter;
1058 	return res;
1059 }
1060 
1061 /*
1062  * Atomic setting of ioctl hooks to avoid race
1063  * with module unload.
1064  */
1065 
1066 static DEFINE_MUTEX(br_ioctl_mutex);
1067 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068 
1069 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1070 {
1071 	mutex_lock(&br_ioctl_mutex);
1072 	br_ioctl_hook = hook;
1073 	mutex_unlock(&br_ioctl_mutex);
1074 }
1075 EXPORT_SYMBOL(brioctl_set);
1076 
1077 static DEFINE_MUTEX(vlan_ioctl_mutex);
1078 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079 
1080 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081 {
1082 	mutex_lock(&vlan_ioctl_mutex);
1083 	vlan_ioctl_hook = hook;
1084 	mutex_unlock(&vlan_ioctl_mutex);
1085 }
1086 EXPORT_SYMBOL(vlan_ioctl_set);
1087 
1088 static long sock_do_ioctl(struct net *net, struct socket *sock,
1089 			  unsigned int cmd, unsigned long arg)
1090 {
1091 	struct ifreq ifr;
1092 	bool need_copyout;
1093 	int err;
1094 	void __user *argp = (void __user *)arg;
1095 
1096 	err = sock->ops->ioctl(sock, cmd, arg);
1097 
1098 	/*
1099 	 * If this ioctl is unknown try to hand it down
1100 	 * to the NIC driver.
1101 	 */
1102 	if (err != -ENOIOCTLCMD)
1103 		return err;
1104 
1105 	if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1106 		return -EFAULT;
1107 	err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1108 	if (!err && need_copyout)
1109 		if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1110 			return -EFAULT;
1111 
1112 	return err;
1113 }
1114 
1115 /*
1116  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1117  *	what to do with it - that's up to the protocol still.
1118  */
1119 
1120 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1121 {
1122 	struct socket *sock;
1123 	struct sock *sk;
1124 	void __user *argp = (void __user *)arg;
1125 	int pid, err;
1126 	struct net *net;
1127 
1128 	sock = file->private_data;
1129 	sk = sock->sk;
1130 	net = sock_net(sk);
1131 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1132 		struct ifreq ifr;
1133 		bool need_copyout;
1134 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1135 			return -EFAULT;
1136 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1137 		if (!err && need_copyout)
1138 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1139 				return -EFAULT;
1140 	} else
1141 #ifdef CONFIG_WEXT_CORE
1142 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1143 		err = wext_handle_ioctl(net, cmd, argp);
1144 	} else
1145 #endif
1146 		switch (cmd) {
1147 		case FIOSETOWN:
1148 		case SIOCSPGRP:
1149 			err = -EFAULT;
1150 			if (get_user(pid, (int __user *)argp))
1151 				break;
1152 			err = f_setown(sock->file, pid, 1);
1153 			break;
1154 		case FIOGETOWN:
1155 		case SIOCGPGRP:
1156 			err = put_user(f_getown(sock->file),
1157 				       (int __user *)argp);
1158 			break;
1159 		case SIOCGIFBR:
1160 		case SIOCSIFBR:
1161 		case SIOCBRADDBR:
1162 		case SIOCBRDELBR:
1163 			err = -ENOPKG;
1164 			if (!br_ioctl_hook)
1165 				request_module("bridge");
1166 
1167 			mutex_lock(&br_ioctl_mutex);
1168 			if (br_ioctl_hook)
1169 				err = br_ioctl_hook(net, cmd, argp);
1170 			mutex_unlock(&br_ioctl_mutex);
1171 			break;
1172 		case SIOCGIFVLAN:
1173 		case SIOCSIFVLAN:
1174 			err = -ENOPKG;
1175 			if (!vlan_ioctl_hook)
1176 				request_module("8021q");
1177 
1178 			mutex_lock(&vlan_ioctl_mutex);
1179 			if (vlan_ioctl_hook)
1180 				err = vlan_ioctl_hook(net, argp);
1181 			mutex_unlock(&vlan_ioctl_mutex);
1182 			break;
1183 		case SIOCGSKNS:
1184 			err = -EPERM;
1185 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1186 				break;
1187 
1188 			err = open_related_ns(&net->ns, get_net_ns);
1189 			break;
1190 		case SIOCGSTAMP_OLD:
1191 		case SIOCGSTAMPNS_OLD:
1192 			if (!sock->ops->gettstamp) {
1193 				err = -ENOIOCTLCMD;
1194 				break;
1195 			}
1196 			err = sock->ops->gettstamp(sock, argp,
1197 						   cmd == SIOCGSTAMP_OLD,
1198 						   !IS_ENABLED(CONFIG_64BIT));
1199 			break;
1200 		case SIOCGSTAMP_NEW:
1201 		case SIOCGSTAMPNS_NEW:
1202 			if (!sock->ops->gettstamp) {
1203 				err = -ENOIOCTLCMD;
1204 				break;
1205 			}
1206 			err = sock->ops->gettstamp(sock, argp,
1207 						   cmd == SIOCGSTAMP_NEW,
1208 						   false);
1209 			break;
1210 
1211 		case SIOCGIFCONF:
1212 			err = dev_ifconf(net, argp);
1213 			break;
1214 
1215 		default:
1216 			err = sock_do_ioctl(net, sock, cmd, arg);
1217 			break;
1218 		}
1219 	return err;
1220 }
1221 
1222 /**
1223  *	sock_create_lite - creates a socket
1224  *	@family: protocol family (AF_INET, ...)
1225  *	@type: communication type (SOCK_STREAM, ...)
1226  *	@protocol: protocol (0, ...)
1227  *	@res: new socket
1228  *
1229  *	Creates a new socket and assigns it to @res, passing through LSM.
1230  *	The new socket initialization is not complete, see kernel_accept().
1231  *	Returns 0 or an error. On failure @res is set to %NULL.
1232  *	This function internally uses GFP_KERNEL.
1233  */
1234 
1235 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1236 {
1237 	int err;
1238 	struct socket *sock = NULL;
1239 
1240 	err = security_socket_create(family, type, protocol, 1);
1241 	if (err)
1242 		goto out;
1243 
1244 	sock = sock_alloc();
1245 	if (!sock) {
1246 		err = -ENOMEM;
1247 		goto out;
1248 	}
1249 
1250 	sock->type = type;
1251 	err = security_socket_post_create(sock, family, type, protocol, 1);
1252 	if (err)
1253 		goto out_release;
1254 
1255 out:
1256 	*res = sock;
1257 	return err;
1258 out_release:
1259 	sock_release(sock);
1260 	sock = NULL;
1261 	goto out;
1262 }
1263 EXPORT_SYMBOL(sock_create_lite);
1264 
1265 /* No kernel lock held - perfect */
1266 static __poll_t sock_poll(struct file *file, poll_table *wait)
1267 {
1268 	struct socket *sock = file->private_data;
1269 	__poll_t events = poll_requested_events(wait), flag = 0;
1270 
1271 	if (!sock->ops->poll)
1272 		return 0;
1273 
1274 	if (sk_can_busy_loop(sock->sk)) {
1275 		/* poll once if requested by the syscall */
1276 		if (events & POLL_BUSY_LOOP)
1277 			sk_busy_loop(sock->sk, 1);
1278 
1279 		/* if this socket can poll_ll, tell the system call */
1280 		flag = POLL_BUSY_LOOP;
1281 	}
1282 
1283 	return sock->ops->poll(file, sock, wait) | flag;
1284 }
1285 
1286 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1287 {
1288 	struct socket *sock = file->private_data;
1289 
1290 	return sock->ops->mmap(file, sock, vma);
1291 }
1292 
1293 static int sock_close(struct inode *inode, struct file *filp)
1294 {
1295 	__sock_release(SOCKET_I(inode), inode);
1296 	return 0;
1297 }
1298 
1299 /*
1300  *	Update the socket async list
1301  *
1302  *	Fasync_list locking strategy.
1303  *
1304  *	1. fasync_list is modified only under process context socket lock
1305  *	   i.e. under semaphore.
1306  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1307  *	   or under socket lock
1308  */
1309 
1310 static int sock_fasync(int fd, struct file *filp, int on)
1311 {
1312 	struct socket *sock = filp->private_data;
1313 	struct sock *sk = sock->sk;
1314 	struct socket_wq *wq = &sock->wq;
1315 
1316 	if (sk == NULL)
1317 		return -EINVAL;
1318 
1319 	lock_sock(sk);
1320 	fasync_helper(fd, filp, on, &wq->fasync_list);
1321 
1322 	if (!wq->fasync_list)
1323 		sock_reset_flag(sk, SOCK_FASYNC);
1324 	else
1325 		sock_set_flag(sk, SOCK_FASYNC);
1326 
1327 	release_sock(sk);
1328 	return 0;
1329 }
1330 
1331 /* This function may be called only under rcu_lock */
1332 
1333 int sock_wake_async(struct socket_wq *wq, int how, int band)
1334 {
1335 	if (!wq || !wq->fasync_list)
1336 		return -1;
1337 
1338 	switch (how) {
1339 	case SOCK_WAKE_WAITD:
1340 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1341 			break;
1342 		goto call_kill;
1343 	case SOCK_WAKE_SPACE:
1344 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1345 			break;
1346 		fallthrough;
1347 	case SOCK_WAKE_IO:
1348 call_kill:
1349 		kill_fasync(&wq->fasync_list, SIGIO, band);
1350 		break;
1351 	case SOCK_WAKE_URG:
1352 		kill_fasync(&wq->fasync_list, SIGURG, band);
1353 	}
1354 
1355 	return 0;
1356 }
1357 EXPORT_SYMBOL(sock_wake_async);
1358 
1359 /**
1360  *	__sock_create - creates a socket
1361  *	@net: net namespace
1362  *	@family: protocol family (AF_INET, ...)
1363  *	@type: communication type (SOCK_STREAM, ...)
1364  *	@protocol: protocol (0, ...)
1365  *	@res: new socket
1366  *	@kern: boolean for kernel space sockets
1367  *
1368  *	Creates a new socket and assigns it to @res, passing through LSM.
1369  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1370  *	be set to true if the socket resides in kernel space.
1371  *	This function internally uses GFP_KERNEL.
1372  */
1373 
1374 int __sock_create(struct net *net, int family, int type, int protocol,
1375 			 struct socket **res, int kern)
1376 {
1377 	int err;
1378 	struct socket *sock;
1379 	const struct net_proto_family *pf;
1380 
1381 	/*
1382 	 *      Check protocol is in range
1383 	 */
1384 	if (family < 0 || family >= NPROTO)
1385 		return -EAFNOSUPPORT;
1386 	if (type < 0 || type >= SOCK_MAX)
1387 		return -EINVAL;
1388 
1389 	/* Compatibility.
1390 
1391 	   This uglymoron is moved from INET layer to here to avoid
1392 	   deadlock in module load.
1393 	 */
1394 	if (family == PF_INET && type == SOCK_PACKET) {
1395 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1396 			     current->comm);
1397 		family = PF_PACKET;
1398 	}
1399 
1400 	err = security_socket_create(family, type, protocol, kern);
1401 	if (err)
1402 		return err;
1403 
1404 	/*
1405 	 *	Allocate the socket and allow the family to set things up. if
1406 	 *	the protocol is 0, the family is instructed to select an appropriate
1407 	 *	default.
1408 	 */
1409 	sock = sock_alloc();
1410 	if (!sock) {
1411 		net_warn_ratelimited("socket: no more sockets\n");
1412 		return -ENFILE;	/* Not exactly a match, but its the
1413 				   closest posix thing */
1414 	}
1415 
1416 	sock->type = type;
1417 
1418 #ifdef CONFIG_MODULES
1419 	/* Attempt to load a protocol module if the find failed.
1420 	 *
1421 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1422 	 * requested real, full-featured networking support upon configuration.
1423 	 * Otherwise module support will break!
1424 	 */
1425 	if (rcu_access_pointer(net_families[family]) == NULL)
1426 		request_module("net-pf-%d", family);
1427 #endif
1428 
1429 	rcu_read_lock();
1430 	pf = rcu_dereference(net_families[family]);
1431 	err = -EAFNOSUPPORT;
1432 	if (!pf)
1433 		goto out_release;
1434 
1435 	/*
1436 	 * We will call the ->create function, that possibly is in a loadable
1437 	 * module, so we have to bump that loadable module refcnt first.
1438 	 */
1439 	if (!try_module_get(pf->owner))
1440 		goto out_release;
1441 
1442 	/* Now protected by module ref count */
1443 	rcu_read_unlock();
1444 
1445 	err = pf->create(net, sock, protocol, kern);
1446 	if (err < 0)
1447 		goto out_module_put;
1448 
1449 	/*
1450 	 * Now to bump the refcnt of the [loadable] module that owns this
1451 	 * socket at sock_release time we decrement its refcnt.
1452 	 */
1453 	if (!try_module_get(sock->ops->owner))
1454 		goto out_module_busy;
1455 
1456 	/*
1457 	 * Now that we're done with the ->create function, the [loadable]
1458 	 * module can have its refcnt decremented
1459 	 */
1460 	module_put(pf->owner);
1461 	err = security_socket_post_create(sock, family, type, protocol, kern);
1462 	if (err)
1463 		goto out_sock_release;
1464 	*res = sock;
1465 
1466 	return 0;
1467 
1468 out_module_busy:
1469 	err = -EAFNOSUPPORT;
1470 out_module_put:
1471 	sock->ops = NULL;
1472 	module_put(pf->owner);
1473 out_sock_release:
1474 	sock_release(sock);
1475 	return err;
1476 
1477 out_release:
1478 	rcu_read_unlock();
1479 	goto out_sock_release;
1480 }
1481 EXPORT_SYMBOL(__sock_create);
1482 
1483 /**
1484  *	sock_create - creates a socket
1485  *	@family: protocol family (AF_INET, ...)
1486  *	@type: communication type (SOCK_STREAM, ...)
1487  *	@protocol: protocol (0, ...)
1488  *	@res: new socket
1489  *
1490  *	A wrapper around __sock_create().
1491  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1492  */
1493 
1494 int sock_create(int family, int type, int protocol, struct socket **res)
1495 {
1496 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1497 }
1498 EXPORT_SYMBOL(sock_create);
1499 
1500 /**
1501  *	sock_create_kern - creates a socket (kernel space)
1502  *	@net: net namespace
1503  *	@family: protocol family (AF_INET, ...)
1504  *	@type: communication type (SOCK_STREAM, ...)
1505  *	@protocol: protocol (0, ...)
1506  *	@res: new socket
1507  *
1508  *	A wrapper around __sock_create().
1509  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1510  */
1511 
1512 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1513 {
1514 	return __sock_create(net, family, type, protocol, res, 1);
1515 }
1516 EXPORT_SYMBOL(sock_create_kern);
1517 
1518 int __sys_socket(int family, int type, int protocol)
1519 {
1520 	int retval;
1521 	struct socket *sock;
1522 	int flags;
1523 
1524 	/* Check the SOCK_* constants for consistency.  */
1525 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1526 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1527 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1528 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1529 
1530 	flags = type & ~SOCK_TYPE_MASK;
1531 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1532 		return -EINVAL;
1533 	type &= SOCK_TYPE_MASK;
1534 
1535 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1536 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1537 
1538 	retval = sock_create(family, type, protocol, &sock);
1539 	if (retval < 0)
1540 		return retval;
1541 
1542 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1543 }
1544 
1545 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1546 {
1547 	return __sys_socket(family, type, protocol);
1548 }
1549 
1550 /*
1551  *	Create a pair of connected sockets.
1552  */
1553 
1554 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1555 {
1556 	struct socket *sock1, *sock2;
1557 	int fd1, fd2, err;
1558 	struct file *newfile1, *newfile2;
1559 	int flags;
1560 
1561 	flags = type & ~SOCK_TYPE_MASK;
1562 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1563 		return -EINVAL;
1564 	type &= SOCK_TYPE_MASK;
1565 
1566 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1567 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1568 
1569 	/*
1570 	 * reserve descriptors and make sure we won't fail
1571 	 * to return them to userland.
1572 	 */
1573 	fd1 = get_unused_fd_flags(flags);
1574 	if (unlikely(fd1 < 0))
1575 		return fd1;
1576 
1577 	fd2 = get_unused_fd_flags(flags);
1578 	if (unlikely(fd2 < 0)) {
1579 		put_unused_fd(fd1);
1580 		return fd2;
1581 	}
1582 
1583 	err = put_user(fd1, &usockvec[0]);
1584 	if (err)
1585 		goto out;
1586 
1587 	err = put_user(fd2, &usockvec[1]);
1588 	if (err)
1589 		goto out;
1590 
1591 	/*
1592 	 * Obtain the first socket and check if the underlying protocol
1593 	 * supports the socketpair call.
1594 	 */
1595 
1596 	err = sock_create(family, type, protocol, &sock1);
1597 	if (unlikely(err < 0))
1598 		goto out;
1599 
1600 	err = sock_create(family, type, protocol, &sock2);
1601 	if (unlikely(err < 0)) {
1602 		sock_release(sock1);
1603 		goto out;
1604 	}
1605 
1606 	err = security_socket_socketpair(sock1, sock2);
1607 	if (unlikely(err)) {
1608 		sock_release(sock2);
1609 		sock_release(sock1);
1610 		goto out;
1611 	}
1612 
1613 	err = sock1->ops->socketpair(sock1, sock2);
1614 	if (unlikely(err < 0)) {
1615 		sock_release(sock2);
1616 		sock_release(sock1);
1617 		goto out;
1618 	}
1619 
1620 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1621 	if (IS_ERR(newfile1)) {
1622 		err = PTR_ERR(newfile1);
1623 		sock_release(sock2);
1624 		goto out;
1625 	}
1626 
1627 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1628 	if (IS_ERR(newfile2)) {
1629 		err = PTR_ERR(newfile2);
1630 		fput(newfile1);
1631 		goto out;
1632 	}
1633 
1634 	audit_fd_pair(fd1, fd2);
1635 
1636 	fd_install(fd1, newfile1);
1637 	fd_install(fd2, newfile2);
1638 	return 0;
1639 
1640 out:
1641 	put_unused_fd(fd2);
1642 	put_unused_fd(fd1);
1643 	return err;
1644 }
1645 
1646 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1647 		int __user *, usockvec)
1648 {
1649 	return __sys_socketpair(family, type, protocol, usockvec);
1650 }
1651 
1652 /*
1653  *	Bind a name to a socket. Nothing much to do here since it's
1654  *	the protocol's responsibility to handle the local address.
1655  *
1656  *	We move the socket address to kernel space before we call
1657  *	the protocol layer (having also checked the address is ok).
1658  */
1659 
1660 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1661 {
1662 	struct socket *sock;
1663 	struct sockaddr_storage address;
1664 	int err, fput_needed;
1665 
1666 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1667 	if (sock) {
1668 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1669 		if (!err) {
1670 			err = security_socket_bind(sock,
1671 						   (struct sockaddr *)&address,
1672 						   addrlen);
1673 			if (!err)
1674 				err = sock->ops->bind(sock,
1675 						      (struct sockaddr *)
1676 						      &address, addrlen);
1677 		}
1678 		fput_light(sock->file, fput_needed);
1679 	}
1680 	return err;
1681 }
1682 
1683 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1684 {
1685 	return __sys_bind(fd, umyaddr, addrlen);
1686 }
1687 
1688 /*
1689  *	Perform a listen. Basically, we allow the protocol to do anything
1690  *	necessary for a listen, and if that works, we mark the socket as
1691  *	ready for listening.
1692  */
1693 
1694 int __sys_listen(int fd, int backlog)
1695 {
1696 	struct socket *sock;
1697 	int err, fput_needed;
1698 	int somaxconn;
1699 
1700 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1701 	if (sock) {
1702 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1703 		if ((unsigned int)backlog > somaxconn)
1704 			backlog = somaxconn;
1705 
1706 		err = security_socket_listen(sock, backlog);
1707 		if (!err)
1708 			err = sock->ops->listen(sock, backlog);
1709 
1710 		fput_light(sock->file, fput_needed);
1711 	}
1712 	return err;
1713 }
1714 
1715 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1716 {
1717 	return __sys_listen(fd, backlog);
1718 }
1719 
1720 int __sys_accept4_file(struct file *file, unsigned file_flags,
1721 		       struct sockaddr __user *upeer_sockaddr,
1722 		       int __user *upeer_addrlen, int flags,
1723 		       unsigned long nofile)
1724 {
1725 	struct socket *sock, *newsock;
1726 	struct file *newfile;
1727 	int err, len, newfd;
1728 	struct sockaddr_storage address;
1729 
1730 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1731 		return -EINVAL;
1732 
1733 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1734 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1735 
1736 	sock = sock_from_file(file);
1737 	if (!sock) {
1738 		err = -ENOTSOCK;
1739 		goto out;
1740 	}
1741 
1742 	err = -ENFILE;
1743 	newsock = sock_alloc();
1744 	if (!newsock)
1745 		goto out;
1746 
1747 	newsock->type = sock->type;
1748 	newsock->ops = sock->ops;
1749 
1750 	/*
1751 	 * We don't need try_module_get here, as the listening socket (sock)
1752 	 * has the protocol module (sock->ops->owner) held.
1753 	 */
1754 	__module_get(newsock->ops->owner);
1755 
1756 	newfd = __get_unused_fd_flags(flags, nofile);
1757 	if (unlikely(newfd < 0)) {
1758 		err = newfd;
1759 		sock_release(newsock);
1760 		goto out;
1761 	}
1762 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1763 	if (IS_ERR(newfile)) {
1764 		err = PTR_ERR(newfile);
1765 		put_unused_fd(newfd);
1766 		goto out;
1767 	}
1768 
1769 	err = security_socket_accept(sock, newsock);
1770 	if (err)
1771 		goto out_fd;
1772 
1773 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1774 					false);
1775 	if (err < 0)
1776 		goto out_fd;
1777 
1778 	if (upeer_sockaddr) {
1779 		len = newsock->ops->getname(newsock,
1780 					(struct sockaddr *)&address, 2);
1781 		if (len < 0) {
1782 			err = -ECONNABORTED;
1783 			goto out_fd;
1784 		}
1785 		err = move_addr_to_user(&address,
1786 					len, upeer_sockaddr, upeer_addrlen);
1787 		if (err < 0)
1788 			goto out_fd;
1789 	}
1790 
1791 	/* File flags are not inherited via accept() unlike another OSes. */
1792 
1793 	fd_install(newfd, newfile);
1794 	err = newfd;
1795 out:
1796 	return err;
1797 out_fd:
1798 	fput(newfile);
1799 	put_unused_fd(newfd);
1800 	goto out;
1801 
1802 }
1803 
1804 /*
1805  *	For accept, we attempt to create a new socket, set up the link
1806  *	with the client, wake up the client, then return the new
1807  *	connected fd. We collect the address of the connector in kernel
1808  *	space and move it to user at the very end. This is unclean because
1809  *	we open the socket then return an error.
1810  *
1811  *	1003.1g adds the ability to recvmsg() to query connection pending
1812  *	status to recvmsg. We need to add that support in a way thats
1813  *	clean when we restructure accept also.
1814  */
1815 
1816 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1817 		  int __user *upeer_addrlen, int flags)
1818 {
1819 	int ret = -EBADF;
1820 	struct fd f;
1821 
1822 	f = fdget(fd);
1823 	if (f.file) {
1824 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1825 						upeer_addrlen, flags,
1826 						rlimit(RLIMIT_NOFILE));
1827 		fdput(f);
1828 	}
1829 
1830 	return ret;
1831 }
1832 
1833 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1834 		int __user *, upeer_addrlen, int, flags)
1835 {
1836 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1837 }
1838 
1839 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1840 		int __user *, upeer_addrlen)
1841 {
1842 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1843 }
1844 
1845 /*
1846  *	Attempt to connect to a socket with the server address.  The address
1847  *	is in user space so we verify it is OK and move it to kernel space.
1848  *
1849  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1850  *	break bindings
1851  *
1852  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1853  *	other SEQPACKET protocols that take time to connect() as it doesn't
1854  *	include the -EINPROGRESS status for such sockets.
1855  */
1856 
1857 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1858 		       int addrlen, int file_flags)
1859 {
1860 	struct socket *sock;
1861 	int err;
1862 
1863 	sock = sock_from_file(file);
1864 	if (!sock) {
1865 		err = -ENOTSOCK;
1866 		goto out;
1867 	}
1868 
1869 	err =
1870 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1871 	if (err)
1872 		goto out;
1873 
1874 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1875 				 sock->file->f_flags | file_flags);
1876 out:
1877 	return err;
1878 }
1879 
1880 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1881 {
1882 	int ret = -EBADF;
1883 	struct fd f;
1884 
1885 	f = fdget(fd);
1886 	if (f.file) {
1887 		struct sockaddr_storage address;
1888 
1889 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1890 		if (!ret)
1891 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1892 		fdput(f);
1893 	}
1894 
1895 	return ret;
1896 }
1897 
1898 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1899 		int, addrlen)
1900 {
1901 	return __sys_connect(fd, uservaddr, addrlen);
1902 }
1903 
1904 /*
1905  *	Get the local address ('name') of a socket object. Move the obtained
1906  *	name to user space.
1907  */
1908 
1909 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1910 		      int __user *usockaddr_len)
1911 {
1912 	struct socket *sock;
1913 	struct sockaddr_storage address;
1914 	int err, fput_needed;
1915 
1916 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1917 	if (!sock)
1918 		goto out;
1919 
1920 	err = security_socket_getsockname(sock);
1921 	if (err)
1922 		goto out_put;
1923 
1924 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1925 	if (err < 0)
1926 		goto out_put;
1927         /* "err" is actually length in this case */
1928 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1929 
1930 out_put:
1931 	fput_light(sock->file, fput_needed);
1932 out:
1933 	return err;
1934 }
1935 
1936 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1937 		int __user *, usockaddr_len)
1938 {
1939 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1940 }
1941 
1942 /*
1943  *	Get the remote address ('name') of a socket object. Move the obtained
1944  *	name to user space.
1945  */
1946 
1947 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1948 		      int __user *usockaddr_len)
1949 {
1950 	struct socket *sock;
1951 	struct sockaddr_storage address;
1952 	int err, fput_needed;
1953 
1954 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1955 	if (sock != NULL) {
1956 		err = security_socket_getpeername(sock);
1957 		if (err) {
1958 			fput_light(sock->file, fput_needed);
1959 			return err;
1960 		}
1961 
1962 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1963 		if (err >= 0)
1964 			/* "err" is actually length in this case */
1965 			err = move_addr_to_user(&address, err, usockaddr,
1966 						usockaddr_len);
1967 		fput_light(sock->file, fput_needed);
1968 	}
1969 	return err;
1970 }
1971 
1972 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1973 		int __user *, usockaddr_len)
1974 {
1975 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1976 }
1977 
1978 /*
1979  *	Send a datagram to a given address. We move the address into kernel
1980  *	space and check the user space data area is readable before invoking
1981  *	the protocol.
1982  */
1983 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1984 		 struct sockaddr __user *addr,  int addr_len)
1985 {
1986 	struct socket *sock;
1987 	struct sockaddr_storage address;
1988 	int err;
1989 	struct msghdr msg;
1990 	struct iovec iov;
1991 	int fput_needed;
1992 
1993 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1994 	if (unlikely(err))
1995 		return err;
1996 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1997 	if (!sock)
1998 		goto out;
1999 
2000 	msg.msg_name = NULL;
2001 	msg.msg_control = NULL;
2002 	msg.msg_controllen = 0;
2003 	msg.msg_namelen = 0;
2004 	if (addr) {
2005 		err = move_addr_to_kernel(addr, addr_len, &address);
2006 		if (err < 0)
2007 			goto out_put;
2008 		msg.msg_name = (struct sockaddr *)&address;
2009 		msg.msg_namelen = addr_len;
2010 	}
2011 	if (sock->file->f_flags & O_NONBLOCK)
2012 		flags |= MSG_DONTWAIT;
2013 	msg.msg_flags = flags;
2014 	err = sock_sendmsg(sock, &msg);
2015 
2016 out_put:
2017 	fput_light(sock->file, fput_needed);
2018 out:
2019 	return err;
2020 }
2021 
2022 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2023 		unsigned int, flags, struct sockaddr __user *, addr,
2024 		int, addr_len)
2025 {
2026 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2027 }
2028 
2029 /*
2030  *	Send a datagram down a socket.
2031  */
2032 
2033 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2034 		unsigned int, flags)
2035 {
2036 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2037 }
2038 
2039 /*
2040  *	Receive a frame from the socket and optionally record the address of the
2041  *	sender. We verify the buffers are writable and if needed move the
2042  *	sender address from kernel to user space.
2043  */
2044 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2045 		   struct sockaddr __user *addr, int __user *addr_len)
2046 {
2047 	struct socket *sock;
2048 	struct iovec iov;
2049 	struct msghdr msg;
2050 	struct sockaddr_storage address;
2051 	int err, err2;
2052 	int fput_needed;
2053 
2054 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2055 	if (unlikely(err))
2056 		return err;
2057 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2058 	if (!sock)
2059 		goto out;
2060 
2061 	msg.msg_control = NULL;
2062 	msg.msg_controllen = 0;
2063 	/* Save some cycles and don't copy the address if not needed */
2064 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2065 	/* We assume all kernel code knows the size of sockaddr_storage */
2066 	msg.msg_namelen = 0;
2067 	msg.msg_iocb = NULL;
2068 	msg.msg_flags = 0;
2069 	if (sock->file->f_flags & O_NONBLOCK)
2070 		flags |= MSG_DONTWAIT;
2071 	err = sock_recvmsg(sock, &msg, flags);
2072 
2073 	if (err >= 0 && addr != NULL) {
2074 		err2 = move_addr_to_user(&address,
2075 					 msg.msg_namelen, addr, addr_len);
2076 		if (err2 < 0)
2077 			err = err2;
2078 	}
2079 
2080 	fput_light(sock->file, fput_needed);
2081 out:
2082 	return err;
2083 }
2084 
2085 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2086 		unsigned int, flags, struct sockaddr __user *, addr,
2087 		int __user *, addr_len)
2088 {
2089 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2090 }
2091 
2092 /*
2093  *	Receive a datagram from a socket.
2094  */
2095 
2096 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2097 		unsigned int, flags)
2098 {
2099 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2100 }
2101 
2102 static bool sock_use_custom_sol_socket(const struct socket *sock)
2103 {
2104 	const struct sock *sk = sock->sk;
2105 
2106 	/* Use sock->ops->setsockopt() for MPTCP */
2107 	return IS_ENABLED(CONFIG_MPTCP) &&
2108 	       sk->sk_protocol == IPPROTO_MPTCP &&
2109 	       sk->sk_type == SOCK_STREAM &&
2110 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2111 }
2112 
2113 /*
2114  *	Set a socket option. Because we don't know the option lengths we have
2115  *	to pass the user mode parameter for the protocols to sort out.
2116  */
2117 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2118 		int optlen)
2119 {
2120 	sockptr_t optval = USER_SOCKPTR(user_optval);
2121 	char *kernel_optval = NULL;
2122 	int err, fput_needed;
2123 	struct socket *sock;
2124 
2125 	if (optlen < 0)
2126 		return -EINVAL;
2127 
2128 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2129 	if (!sock)
2130 		return err;
2131 
2132 	err = security_socket_setsockopt(sock, level, optname);
2133 	if (err)
2134 		goto out_put;
2135 
2136 	if (!in_compat_syscall())
2137 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2138 						     user_optval, &optlen,
2139 						     &kernel_optval);
2140 	if (err < 0)
2141 		goto out_put;
2142 	if (err > 0) {
2143 		err = 0;
2144 		goto out_put;
2145 	}
2146 
2147 	if (kernel_optval)
2148 		optval = KERNEL_SOCKPTR(kernel_optval);
2149 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2150 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2151 	else if (unlikely(!sock->ops->setsockopt))
2152 		err = -EOPNOTSUPP;
2153 	else
2154 		err = sock->ops->setsockopt(sock, level, optname, optval,
2155 					    optlen);
2156 	kfree(kernel_optval);
2157 out_put:
2158 	fput_light(sock->file, fput_needed);
2159 	return err;
2160 }
2161 
2162 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2163 		char __user *, optval, int, optlen)
2164 {
2165 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2166 }
2167 
2168 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2169 							 int optname));
2170 
2171 /*
2172  *	Get a socket option. Because we don't know the option lengths we have
2173  *	to pass a user mode parameter for the protocols to sort out.
2174  */
2175 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2176 		int __user *optlen)
2177 {
2178 	int err, fput_needed;
2179 	struct socket *sock;
2180 	int max_optlen;
2181 
2182 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2183 	if (!sock)
2184 		return err;
2185 
2186 	err = security_socket_getsockopt(sock, level, optname);
2187 	if (err)
2188 		goto out_put;
2189 
2190 	if (!in_compat_syscall())
2191 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2192 
2193 	if (level == SOL_SOCKET)
2194 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2195 	else if (unlikely(!sock->ops->getsockopt))
2196 		err = -EOPNOTSUPP;
2197 	else
2198 		err = sock->ops->getsockopt(sock, level, optname, optval,
2199 					    optlen);
2200 
2201 	if (!in_compat_syscall())
2202 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2203 						     optval, optlen, max_optlen,
2204 						     err);
2205 out_put:
2206 	fput_light(sock->file, fput_needed);
2207 	return err;
2208 }
2209 
2210 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2211 		char __user *, optval, int __user *, optlen)
2212 {
2213 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2214 }
2215 
2216 /*
2217  *	Shutdown a socket.
2218  */
2219 
2220 int __sys_shutdown_sock(struct socket *sock, int how)
2221 {
2222 	int err;
2223 
2224 	err = security_socket_shutdown(sock, how);
2225 	if (!err)
2226 		err = sock->ops->shutdown(sock, how);
2227 
2228 	return err;
2229 }
2230 
2231 int __sys_shutdown(int fd, int how)
2232 {
2233 	int err, fput_needed;
2234 	struct socket *sock;
2235 
2236 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2237 	if (sock != NULL) {
2238 		err = __sys_shutdown_sock(sock, how);
2239 		fput_light(sock->file, fput_needed);
2240 	}
2241 	return err;
2242 }
2243 
2244 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2245 {
2246 	return __sys_shutdown(fd, how);
2247 }
2248 
2249 /* A couple of helpful macros for getting the address of the 32/64 bit
2250  * fields which are the same type (int / unsigned) on our platforms.
2251  */
2252 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2253 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2254 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2255 
2256 struct used_address {
2257 	struct sockaddr_storage name;
2258 	unsigned int name_len;
2259 };
2260 
2261 int __copy_msghdr_from_user(struct msghdr *kmsg,
2262 			    struct user_msghdr __user *umsg,
2263 			    struct sockaddr __user **save_addr,
2264 			    struct iovec __user **uiov, size_t *nsegs)
2265 {
2266 	struct user_msghdr msg;
2267 	ssize_t err;
2268 
2269 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2270 		return -EFAULT;
2271 
2272 	kmsg->msg_control_is_user = true;
2273 	kmsg->msg_control_user = msg.msg_control;
2274 	kmsg->msg_controllen = msg.msg_controllen;
2275 	kmsg->msg_flags = msg.msg_flags;
2276 
2277 	kmsg->msg_namelen = msg.msg_namelen;
2278 	if (!msg.msg_name)
2279 		kmsg->msg_namelen = 0;
2280 
2281 	if (kmsg->msg_namelen < 0)
2282 		return -EINVAL;
2283 
2284 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2285 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2286 
2287 	if (save_addr)
2288 		*save_addr = msg.msg_name;
2289 
2290 	if (msg.msg_name && kmsg->msg_namelen) {
2291 		if (!save_addr) {
2292 			err = move_addr_to_kernel(msg.msg_name,
2293 						  kmsg->msg_namelen,
2294 						  kmsg->msg_name);
2295 			if (err < 0)
2296 				return err;
2297 		}
2298 	} else {
2299 		kmsg->msg_name = NULL;
2300 		kmsg->msg_namelen = 0;
2301 	}
2302 
2303 	if (msg.msg_iovlen > UIO_MAXIOV)
2304 		return -EMSGSIZE;
2305 
2306 	kmsg->msg_iocb = NULL;
2307 	*uiov = msg.msg_iov;
2308 	*nsegs = msg.msg_iovlen;
2309 	return 0;
2310 }
2311 
2312 static int copy_msghdr_from_user(struct msghdr *kmsg,
2313 				 struct user_msghdr __user *umsg,
2314 				 struct sockaddr __user **save_addr,
2315 				 struct iovec **iov)
2316 {
2317 	struct user_msghdr msg;
2318 	ssize_t err;
2319 
2320 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2321 					&msg.msg_iovlen);
2322 	if (err)
2323 		return err;
2324 
2325 	err = import_iovec(save_addr ? READ : WRITE,
2326 			    msg.msg_iov, msg.msg_iovlen,
2327 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2328 	return err < 0 ? err : 0;
2329 }
2330 
2331 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2332 			   unsigned int flags, struct used_address *used_address,
2333 			   unsigned int allowed_msghdr_flags)
2334 {
2335 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2336 				__aligned(sizeof(__kernel_size_t));
2337 	/* 20 is size of ipv6_pktinfo */
2338 	unsigned char *ctl_buf = ctl;
2339 	int ctl_len;
2340 	ssize_t err;
2341 
2342 	err = -ENOBUFS;
2343 
2344 	if (msg_sys->msg_controllen > INT_MAX)
2345 		goto out;
2346 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2347 	ctl_len = msg_sys->msg_controllen;
2348 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2349 		err =
2350 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2351 						     sizeof(ctl));
2352 		if (err)
2353 			goto out;
2354 		ctl_buf = msg_sys->msg_control;
2355 		ctl_len = msg_sys->msg_controllen;
2356 	} else if (ctl_len) {
2357 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2358 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2359 		if (ctl_len > sizeof(ctl)) {
2360 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2361 			if (ctl_buf == NULL)
2362 				goto out;
2363 		}
2364 		err = -EFAULT;
2365 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2366 			goto out_freectl;
2367 		msg_sys->msg_control = ctl_buf;
2368 		msg_sys->msg_control_is_user = false;
2369 	}
2370 	msg_sys->msg_flags = flags;
2371 
2372 	if (sock->file->f_flags & O_NONBLOCK)
2373 		msg_sys->msg_flags |= MSG_DONTWAIT;
2374 	/*
2375 	 * If this is sendmmsg() and current destination address is same as
2376 	 * previously succeeded address, omit asking LSM's decision.
2377 	 * used_address->name_len is initialized to UINT_MAX so that the first
2378 	 * destination address never matches.
2379 	 */
2380 	if (used_address && msg_sys->msg_name &&
2381 	    used_address->name_len == msg_sys->msg_namelen &&
2382 	    !memcmp(&used_address->name, msg_sys->msg_name,
2383 		    used_address->name_len)) {
2384 		err = sock_sendmsg_nosec(sock, msg_sys);
2385 		goto out_freectl;
2386 	}
2387 	err = sock_sendmsg(sock, msg_sys);
2388 	/*
2389 	 * If this is sendmmsg() and sending to current destination address was
2390 	 * successful, remember it.
2391 	 */
2392 	if (used_address && err >= 0) {
2393 		used_address->name_len = msg_sys->msg_namelen;
2394 		if (msg_sys->msg_name)
2395 			memcpy(&used_address->name, msg_sys->msg_name,
2396 			       used_address->name_len);
2397 	}
2398 
2399 out_freectl:
2400 	if (ctl_buf != ctl)
2401 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2402 out:
2403 	return err;
2404 }
2405 
2406 int sendmsg_copy_msghdr(struct msghdr *msg,
2407 			struct user_msghdr __user *umsg, unsigned flags,
2408 			struct iovec **iov)
2409 {
2410 	int err;
2411 
2412 	if (flags & MSG_CMSG_COMPAT) {
2413 		struct compat_msghdr __user *msg_compat;
2414 
2415 		msg_compat = (struct compat_msghdr __user *) umsg;
2416 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2417 	} else {
2418 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2419 	}
2420 	if (err < 0)
2421 		return err;
2422 
2423 	return 0;
2424 }
2425 
2426 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2427 			 struct msghdr *msg_sys, unsigned int flags,
2428 			 struct used_address *used_address,
2429 			 unsigned int allowed_msghdr_flags)
2430 {
2431 	struct sockaddr_storage address;
2432 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2433 	ssize_t err;
2434 
2435 	msg_sys->msg_name = &address;
2436 
2437 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2438 	if (err < 0)
2439 		return err;
2440 
2441 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2442 				allowed_msghdr_flags);
2443 	kfree(iov);
2444 	return err;
2445 }
2446 
2447 /*
2448  *	BSD sendmsg interface
2449  */
2450 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2451 			unsigned int flags)
2452 {
2453 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2454 }
2455 
2456 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2457 		   bool forbid_cmsg_compat)
2458 {
2459 	int fput_needed, err;
2460 	struct msghdr msg_sys;
2461 	struct socket *sock;
2462 
2463 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2464 		return -EINVAL;
2465 
2466 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2467 	if (!sock)
2468 		goto out;
2469 
2470 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2471 
2472 	fput_light(sock->file, fput_needed);
2473 out:
2474 	return err;
2475 }
2476 
2477 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2478 {
2479 	return __sys_sendmsg(fd, msg, flags, true);
2480 }
2481 
2482 /*
2483  *	Linux sendmmsg interface
2484  */
2485 
2486 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2487 		   unsigned int flags, bool forbid_cmsg_compat)
2488 {
2489 	int fput_needed, err, datagrams;
2490 	struct socket *sock;
2491 	struct mmsghdr __user *entry;
2492 	struct compat_mmsghdr __user *compat_entry;
2493 	struct msghdr msg_sys;
2494 	struct used_address used_address;
2495 	unsigned int oflags = flags;
2496 
2497 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2498 		return -EINVAL;
2499 
2500 	if (vlen > UIO_MAXIOV)
2501 		vlen = UIO_MAXIOV;
2502 
2503 	datagrams = 0;
2504 
2505 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2506 	if (!sock)
2507 		return err;
2508 
2509 	used_address.name_len = UINT_MAX;
2510 	entry = mmsg;
2511 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2512 	err = 0;
2513 	flags |= MSG_BATCH;
2514 
2515 	while (datagrams < vlen) {
2516 		if (datagrams == vlen - 1)
2517 			flags = oflags;
2518 
2519 		if (MSG_CMSG_COMPAT & flags) {
2520 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2521 					     &msg_sys, flags, &used_address, MSG_EOR);
2522 			if (err < 0)
2523 				break;
2524 			err = __put_user(err, &compat_entry->msg_len);
2525 			++compat_entry;
2526 		} else {
2527 			err = ___sys_sendmsg(sock,
2528 					     (struct user_msghdr __user *)entry,
2529 					     &msg_sys, flags, &used_address, MSG_EOR);
2530 			if (err < 0)
2531 				break;
2532 			err = put_user(err, &entry->msg_len);
2533 			++entry;
2534 		}
2535 
2536 		if (err)
2537 			break;
2538 		++datagrams;
2539 		if (msg_data_left(&msg_sys))
2540 			break;
2541 		cond_resched();
2542 	}
2543 
2544 	fput_light(sock->file, fput_needed);
2545 
2546 	/* We only return an error if no datagrams were able to be sent */
2547 	if (datagrams != 0)
2548 		return datagrams;
2549 
2550 	return err;
2551 }
2552 
2553 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2554 		unsigned int, vlen, unsigned int, flags)
2555 {
2556 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2557 }
2558 
2559 int recvmsg_copy_msghdr(struct msghdr *msg,
2560 			struct user_msghdr __user *umsg, unsigned flags,
2561 			struct sockaddr __user **uaddr,
2562 			struct iovec **iov)
2563 {
2564 	ssize_t err;
2565 
2566 	if (MSG_CMSG_COMPAT & flags) {
2567 		struct compat_msghdr __user *msg_compat;
2568 
2569 		msg_compat = (struct compat_msghdr __user *) umsg;
2570 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2571 	} else {
2572 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2573 	}
2574 	if (err < 0)
2575 		return err;
2576 
2577 	return 0;
2578 }
2579 
2580 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2581 			   struct user_msghdr __user *msg,
2582 			   struct sockaddr __user *uaddr,
2583 			   unsigned int flags, int nosec)
2584 {
2585 	struct compat_msghdr __user *msg_compat =
2586 					(struct compat_msghdr __user *) msg;
2587 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2588 	struct sockaddr_storage addr;
2589 	unsigned long cmsg_ptr;
2590 	int len;
2591 	ssize_t err;
2592 
2593 	msg_sys->msg_name = &addr;
2594 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2595 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2596 
2597 	/* We assume all kernel code knows the size of sockaddr_storage */
2598 	msg_sys->msg_namelen = 0;
2599 
2600 	if (sock->file->f_flags & O_NONBLOCK)
2601 		flags |= MSG_DONTWAIT;
2602 
2603 	if (unlikely(nosec))
2604 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2605 	else
2606 		err = sock_recvmsg(sock, msg_sys, flags);
2607 
2608 	if (err < 0)
2609 		goto out;
2610 	len = err;
2611 
2612 	if (uaddr != NULL) {
2613 		err = move_addr_to_user(&addr,
2614 					msg_sys->msg_namelen, uaddr,
2615 					uaddr_len);
2616 		if (err < 0)
2617 			goto out;
2618 	}
2619 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2620 			 COMPAT_FLAGS(msg));
2621 	if (err)
2622 		goto out;
2623 	if (MSG_CMSG_COMPAT & flags)
2624 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2625 				 &msg_compat->msg_controllen);
2626 	else
2627 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2628 				 &msg->msg_controllen);
2629 	if (err)
2630 		goto out;
2631 	err = len;
2632 out:
2633 	return err;
2634 }
2635 
2636 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2637 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2638 {
2639 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2640 	/* user mode address pointers */
2641 	struct sockaddr __user *uaddr;
2642 	ssize_t err;
2643 
2644 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2645 	if (err < 0)
2646 		return err;
2647 
2648 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2649 	kfree(iov);
2650 	return err;
2651 }
2652 
2653 /*
2654  *	BSD recvmsg interface
2655  */
2656 
2657 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2658 			struct user_msghdr __user *umsg,
2659 			struct sockaddr __user *uaddr, unsigned int flags)
2660 {
2661 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2662 }
2663 
2664 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2665 		   bool forbid_cmsg_compat)
2666 {
2667 	int fput_needed, err;
2668 	struct msghdr msg_sys;
2669 	struct socket *sock;
2670 
2671 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2672 		return -EINVAL;
2673 
2674 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2675 	if (!sock)
2676 		goto out;
2677 
2678 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2679 
2680 	fput_light(sock->file, fput_needed);
2681 out:
2682 	return err;
2683 }
2684 
2685 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2686 		unsigned int, flags)
2687 {
2688 	return __sys_recvmsg(fd, msg, flags, true);
2689 }
2690 
2691 /*
2692  *     Linux recvmmsg interface
2693  */
2694 
2695 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2696 			  unsigned int vlen, unsigned int flags,
2697 			  struct timespec64 *timeout)
2698 {
2699 	int fput_needed, err, datagrams;
2700 	struct socket *sock;
2701 	struct mmsghdr __user *entry;
2702 	struct compat_mmsghdr __user *compat_entry;
2703 	struct msghdr msg_sys;
2704 	struct timespec64 end_time;
2705 	struct timespec64 timeout64;
2706 
2707 	if (timeout &&
2708 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2709 				    timeout->tv_nsec))
2710 		return -EINVAL;
2711 
2712 	datagrams = 0;
2713 
2714 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2715 	if (!sock)
2716 		return err;
2717 
2718 	if (likely(!(flags & MSG_ERRQUEUE))) {
2719 		err = sock_error(sock->sk);
2720 		if (err) {
2721 			datagrams = err;
2722 			goto out_put;
2723 		}
2724 	}
2725 
2726 	entry = mmsg;
2727 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2728 
2729 	while (datagrams < vlen) {
2730 		/*
2731 		 * No need to ask LSM for more than the first datagram.
2732 		 */
2733 		if (MSG_CMSG_COMPAT & flags) {
2734 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2735 					     &msg_sys, flags & ~MSG_WAITFORONE,
2736 					     datagrams);
2737 			if (err < 0)
2738 				break;
2739 			err = __put_user(err, &compat_entry->msg_len);
2740 			++compat_entry;
2741 		} else {
2742 			err = ___sys_recvmsg(sock,
2743 					     (struct user_msghdr __user *)entry,
2744 					     &msg_sys, flags & ~MSG_WAITFORONE,
2745 					     datagrams);
2746 			if (err < 0)
2747 				break;
2748 			err = put_user(err, &entry->msg_len);
2749 			++entry;
2750 		}
2751 
2752 		if (err)
2753 			break;
2754 		++datagrams;
2755 
2756 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2757 		if (flags & MSG_WAITFORONE)
2758 			flags |= MSG_DONTWAIT;
2759 
2760 		if (timeout) {
2761 			ktime_get_ts64(&timeout64);
2762 			*timeout = timespec64_sub(end_time, timeout64);
2763 			if (timeout->tv_sec < 0) {
2764 				timeout->tv_sec = timeout->tv_nsec = 0;
2765 				break;
2766 			}
2767 
2768 			/* Timeout, return less than vlen datagrams */
2769 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2770 				break;
2771 		}
2772 
2773 		/* Out of band data, return right away */
2774 		if (msg_sys.msg_flags & MSG_OOB)
2775 			break;
2776 		cond_resched();
2777 	}
2778 
2779 	if (err == 0)
2780 		goto out_put;
2781 
2782 	if (datagrams == 0) {
2783 		datagrams = err;
2784 		goto out_put;
2785 	}
2786 
2787 	/*
2788 	 * We may return less entries than requested (vlen) if the
2789 	 * sock is non block and there aren't enough datagrams...
2790 	 */
2791 	if (err != -EAGAIN) {
2792 		/*
2793 		 * ... or  if recvmsg returns an error after we
2794 		 * received some datagrams, where we record the
2795 		 * error to return on the next call or if the
2796 		 * app asks about it using getsockopt(SO_ERROR).
2797 		 */
2798 		sock->sk->sk_err = -err;
2799 	}
2800 out_put:
2801 	fput_light(sock->file, fput_needed);
2802 
2803 	return datagrams;
2804 }
2805 
2806 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2807 		   unsigned int vlen, unsigned int flags,
2808 		   struct __kernel_timespec __user *timeout,
2809 		   struct old_timespec32 __user *timeout32)
2810 {
2811 	int datagrams;
2812 	struct timespec64 timeout_sys;
2813 
2814 	if (timeout && get_timespec64(&timeout_sys, timeout))
2815 		return -EFAULT;
2816 
2817 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2818 		return -EFAULT;
2819 
2820 	if (!timeout && !timeout32)
2821 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2822 
2823 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2824 
2825 	if (datagrams <= 0)
2826 		return datagrams;
2827 
2828 	if (timeout && put_timespec64(&timeout_sys, timeout))
2829 		datagrams = -EFAULT;
2830 
2831 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2832 		datagrams = -EFAULT;
2833 
2834 	return datagrams;
2835 }
2836 
2837 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2838 		unsigned int, vlen, unsigned int, flags,
2839 		struct __kernel_timespec __user *, timeout)
2840 {
2841 	if (flags & MSG_CMSG_COMPAT)
2842 		return -EINVAL;
2843 
2844 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2845 }
2846 
2847 #ifdef CONFIG_COMPAT_32BIT_TIME
2848 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2849 		unsigned int, vlen, unsigned int, flags,
2850 		struct old_timespec32 __user *, timeout)
2851 {
2852 	if (flags & MSG_CMSG_COMPAT)
2853 		return -EINVAL;
2854 
2855 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2856 }
2857 #endif
2858 
2859 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2860 /* Argument list sizes for sys_socketcall */
2861 #define AL(x) ((x) * sizeof(unsigned long))
2862 static const unsigned char nargs[21] = {
2863 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2864 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2865 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2866 	AL(4), AL(5), AL(4)
2867 };
2868 
2869 #undef AL
2870 
2871 /*
2872  *	System call vectors.
2873  *
2874  *	Argument checking cleaned up. Saved 20% in size.
2875  *  This function doesn't need to set the kernel lock because
2876  *  it is set by the callees.
2877  */
2878 
2879 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2880 {
2881 	unsigned long a[AUDITSC_ARGS];
2882 	unsigned long a0, a1;
2883 	int err;
2884 	unsigned int len;
2885 
2886 	if (call < 1 || call > SYS_SENDMMSG)
2887 		return -EINVAL;
2888 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2889 
2890 	len = nargs[call];
2891 	if (len > sizeof(a))
2892 		return -EINVAL;
2893 
2894 	/* copy_from_user should be SMP safe. */
2895 	if (copy_from_user(a, args, len))
2896 		return -EFAULT;
2897 
2898 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2899 	if (err)
2900 		return err;
2901 
2902 	a0 = a[0];
2903 	a1 = a[1];
2904 
2905 	switch (call) {
2906 	case SYS_SOCKET:
2907 		err = __sys_socket(a0, a1, a[2]);
2908 		break;
2909 	case SYS_BIND:
2910 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2911 		break;
2912 	case SYS_CONNECT:
2913 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2914 		break;
2915 	case SYS_LISTEN:
2916 		err = __sys_listen(a0, a1);
2917 		break;
2918 	case SYS_ACCEPT:
2919 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2920 				    (int __user *)a[2], 0);
2921 		break;
2922 	case SYS_GETSOCKNAME:
2923 		err =
2924 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2925 				      (int __user *)a[2]);
2926 		break;
2927 	case SYS_GETPEERNAME:
2928 		err =
2929 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2930 				      (int __user *)a[2]);
2931 		break;
2932 	case SYS_SOCKETPAIR:
2933 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2934 		break;
2935 	case SYS_SEND:
2936 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2937 				   NULL, 0);
2938 		break;
2939 	case SYS_SENDTO:
2940 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2941 				   (struct sockaddr __user *)a[4], a[5]);
2942 		break;
2943 	case SYS_RECV:
2944 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2945 				     NULL, NULL);
2946 		break;
2947 	case SYS_RECVFROM:
2948 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2949 				     (struct sockaddr __user *)a[4],
2950 				     (int __user *)a[5]);
2951 		break;
2952 	case SYS_SHUTDOWN:
2953 		err = __sys_shutdown(a0, a1);
2954 		break;
2955 	case SYS_SETSOCKOPT:
2956 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2957 				       a[4]);
2958 		break;
2959 	case SYS_GETSOCKOPT:
2960 		err =
2961 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2962 				     (int __user *)a[4]);
2963 		break;
2964 	case SYS_SENDMSG:
2965 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2966 				    a[2], true);
2967 		break;
2968 	case SYS_SENDMMSG:
2969 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2970 				     a[3], true);
2971 		break;
2972 	case SYS_RECVMSG:
2973 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2974 				    a[2], true);
2975 		break;
2976 	case SYS_RECVMMSG:
2977 		if (IS_ENABLED(CONFIG_64BIT))
2978 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2979 					     a[2], a[3],
2980 					     (struct __kernel_timespec __user *)a[4],
2981 					     NULL);
2982 		else
2983 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2984 					     a[2], a[3], NULL,
2985 					     (struct old_timespec32 __user *)a[4]);
2986 		break;
2987 	case SYS_ACCEPT4:
2988 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2989 				    (int __user *)a[2], a[3]);
2990 		break;
2991 	default:
2992 		err = -EINVAL;
2993 		break;
2994 	}
2995 	return err;
2996 }
2997 
2998 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2999 
3000 /**
3001  *	sock_register - add a socket protocol handler
3002  *	@ops: description of protocol
3003  *
3004  *	This function is called by a protocol handler that wants to
3005  *	advertise its address family, and have it linked into the
3006  *	socket interface. The value ops->family corresponds to the
3007  *	socket system call protocol family.
3008  */
3009 int sock_register(const struct net_proto_family *ops)
3010 {
3011 	int err;
3012 
3013 	if (ops->family >= NPROTO) {
3014 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3015 		return -ENOBUFS;
3016 	}
3017 
3018 	spin_lock(&net_family_lock);
3019 	if (rcu_dereference_protected(net_families[ops->family],
3020 				      lockdep_is_held(&net_family_lock)))
3021 		err = -EEXIST;
3022 	else {
3023 		rcu_assign_pointer(net_families[ops->family], ops);
3024 		err = 0;
3025 	}
3026 	spin_unlock(&net_family_lock);
3027 
3028 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3029 	return err;
3030 }
3031 EXPORT_SYMBOL(sock_register);
3032 
3033 /**
3034  *	sock_unregister - remove a protocol handler
3035  *	@family: protocol family to remove
3036  *
3037  *	This function is called by a protocol handler that wants to
3038  *	remove its address family, and have it unlinked from the
3039  *	new socket creation.
3040  *
3041  *	If protocol handler is a module, then it can use module reference
3042  *	counts to protect against new references. If protocol handler is not
3043  *	a module then it needs to provide its own protection in
3044  *	the ops->create routine.
3045  */
3046 void sock_unregister(int family)
3047 {
3048 	BUG_ON(family < 0 || family >= NPROTO);
3049 
3050 	spin_lock(&net_family_lock);
3051 	RCU_INIT_POINTER(net_families[family], NULL);
3052 	spin_unlock(&net_family_lock);
3053 
3054 	synchronize_rcu();
3055 
3056 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3057 }
3058 EXPORT_SYMBOL(sock_unregister);
3059 
3060 bool sock_is_registered(int family)
3061 {
3062 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3063 }
3064 
3065 static int __init sock_init(void)
3066 {
3067 	int err;
3068 	/*
3069 	 *      Initialize the network sysctl infrastructure.
3070 	 */
3071 	err = net_sysctl_init();
3072 	if (err)
3073 		goto out;
3074 
3075 	/*
3076 	 *      Initialize skbuff SLAB cache
3077 	 */
3078 	skb_init();
3079 
3080 	/*
3081 	 *      Initialize the protocols module.
3082 	 */
3083 
3084 	init_inodecache();
3085 
3086 	err = register_filesystem(&sock_fs_type);
3087 	if (err)
3088 		goto out;
3089 	sock_mnt = kern_mount(&sock_fs_type);
3090 	if (IS_ERR(sock_mnt)) {
3091 		err = PTR_ERR(sock_mnt);
3092 		goto out_mount;
3093 	}
3094 
3095 	/* The real protocol initialization is performed in later initcalls.
3096 	 */
3097 
3098 #ifdef CONFIG_NETFILTER
3099 	err = netfilter_init();
3100 	if (err)
3101 		goto out;
3102 #endif
3103 
3104 	ptp_classifier_init();
3105 
3106 out:
3107 	return err;
3108 
3109 out_mount:
3110 	unregister_filesystem(&sock_fs_type);
3111 	goto out;
3112 }
3113 
3114 core_initcall(sock_init);	/* early initcall */
3115 
3116 #ifdef CONFIG_PROC_FS
3117 void socket_seq_show(struct seq_file *seq)
3118 {
3119 	seq_printf(seq, "sockets: used %d\n",
3120 		   sock_inuse_get(seq->private));
3121 }
3122 #endif				/* CONFIG_PROC_FS */
3123 
3124 /* Handle the fact that while struct ifreq has the same *layout* on
3125  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3126  * which are handled elsewhere, it still has different *size* due to
3127  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3128  * resulting in struct ifreq being 32 and 40 bytes respectively).
3129  * As a result, if the struct happens to be at the end of a page and
3130  * the next page isn't readable/writable, we get a fault. To prevent
3131  * that, copy back and forth to the full size.
3132  */
3133 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3134 {
3135 	if (in_compat_syscall()) {
3136 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3137 
3138 		memset(ifr, 0, sizeof(*ifr));
3139 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3140 			return -EFAULT;
3141 
3142 		if (ifrdata)
3143 			*ifrdata = compat_ptr(ifr32->ifr_data);
3144 
3145 		return 0;
3146 	}
3147 
3148 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3149 		return -EFAULT;
3150 
3151 	if (ifrdata)
3152 		*ifrdata = ifr->ifr_data;
3153 
3154 	return 0;
3155 }
3156 EXPORT_SYMBOL(get_user_ifreq);
3157 
3158 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3159 {
3160 	size_t size = sizeof(*ifr);
3161 
3162 	if (in_compat_syscall())
3163 		size = sizeof(struct compat_ifreq);
3164 
3165 	if (copy_to_user(arg, ifr, size))
3166 		return -EFAULT;
3167 
3168 	return 0;
3169 }
3170 EXPORT_SYMBOL(put_user_ifreq);
3171 
3172 #ifdef CONFIG_COMPAT
3173 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3174 {
3175 	compat_uptr_t uptr32;
3176 	struct ifreq ifr;
3177 	void __user *saved;
3178 	int err;
3179 
3180 	if (get_user_ifreq(&ifr, NULL, uifr32))
3181 		return -EFAULT;
3182 
3183 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3184 		return -EFAULT;
3185 
3186 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3187 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3188 
3189 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3190 	if (!err) {
3191 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3192 		if (put_user_ifreq(&ifr, uifr32))
3193 			err = -EFAULT;
3194 	}
3195 	return err;
3196 }
3197 
3198 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3199 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3200 				 struct compat_ifreq __user *u_ifreq32)
3201 {
3202 	struct ifreq ifreq;
3203 	u32 data32;
3204 
3205 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3206 		return -EFAULT;
3207 	if (get_user(data32, &u_ifreq32->ifr_data))
3208 		return -EFAULT;
3209 	ifreq.ifr_data = compat_ptr(data32);
3210 
3211 	return dev_ioctl(net, cmd, &ifreq, NULL);
3212 }
3213 
3214 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3215 			      unsigned int cmd,
3216 			      unsigned long arg,
3217 			      struct compat_ifreq __user *uifr32)
3218 {
3219 	struct ifreq ifr;
3220 	bool need_copyout;
3221 	int err;
3222 
3223 	err = sock->ops->ioctl(sock, cmd, arg);
3224 
3225 	/* If this ioctl is unknown try to hand it down
3226 	 * to the NIC driver.
3227 	 */
3228 	if (err != -ENOIOCTLCMD)
3229 		return err;
3230 
3231 	if (get_user_ifreq(&ifr, NULL, uifr32))
3232 		return -EFAULT;
3233 	err = dev_ioctl(net, cmd, &ifr, &need_copyout);
3234 	if (!err && need_copyout)
3235 		if (put_user_ifreq(&ifr, uifr32))
3236 			return -EFAULT;
3237 
3238 	return err;
3239 }
3240 
3241 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3242  * for some operations; this forces use of the newer bridge-utils that
3243  * use compatible ioctls
3244  */
3245 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3246 {
3247 	compat_ulong_t tmp;
3248 
3249 	if (get_user(tmp, argp))
3250 		return -EFAULT;
3251 	if (tmp == BRCTL_GET_VERSION)
3252 		return BRCTL_VERSION + 1;
3253 	return -EINVAL;
3254 }
3255 
3256 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3257 			 unsigned int cmd, unsigned long arg)
3258 {
3259 	void __user *argp = compat_ptr(arg);
3260 	struct sock *sk = sock->sk;
3261 	struct net *net = sock_net(sk);
3262 
3263 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3264 		return compat_ifr_data_ioctl(net, cmd, argp);
3265 
3266 	switch (cmd) {
3267 	case SIOCSIFBR:
3268 	case SIOCGIFBR:
3269 		return old_bridge_ioctl(argp);
3270 	case SIOCWANDEV:
3271 		return compat_siocwandev(net, argp);
3272 	case SIOCGSTAMP_OLD:
3273 	case SIOCGSTAMPNS_OLD:
3274 		if (!sock->ops->gettstamp)
3275 			return -ENOIOCTLCMD;
3276 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3277 					    !COMPAT_USE_64BIT_TIME);
3278 
3279 	case SIOCETHTOOL:
3280 	case SIOCBONDSLAVEINFOQUERY:
3281 	case SIOCBONDINFOQUERY:
3282 	case SIOCSHWTSTAMP:
3283 	case SIOCGHWTSTAMP:
3284 		return compat_ifr_data_ioctl(net, cmd, argp);
3285 
3286 	case FIOSETOWN:
3287 	case SIOCSPGRP:
3288 	case FIOGETOWN:
3289 	case SIOCGPGRP:
3290 	case SIOCBRADDBR:
3291 	case SIOCBRDELBR:
3292 	case SIOCGIFVLAN:
3293 	case SIOCSIFVLAN:
3294 	case SIOCGSKNS:
3295 	case SIOCGSTAMP_NEW:
3296 	case SIOCGSTAMPNS_NEW:
3297 	case SIOCGIFCONF:
3298 		return sock_ioctl(file, cmd, arg);
3299 
3300 	case SIOCGIFFLAGS:
3301 	case SIOCSIFFLAGS:
3302 	case SIOCGIFMAP:
3303 	case SIOCSIFMAP:
3304 	case SIOCGIFMETRIC:
3305 	case SIOCSIFMETRIC:
3306 	case SIOCGIFMTU:
3307 	case SIOCSIFMTU:
3308 	case SIOCGIFMEM:
3309 	case SIOCSIFMEM:
3310 	case SIOCGIFHWADDR:
3311 	case SIOCSIFHWADDR:
3312 	case SIOCADDMULTI:
3313 	case SIOCDELMULTI:
3314 	case SIOCGIFINDEX:
3315 	case SIOCGIFADDR:
3316 	case SIOCSIFADDR:
3317 	case SIOCSIFHWBROADCAST:
3318 	case SIOCDIFADDR:
3319 	case SIOCGIFBRDADDR:
3320 	case SIOCSIFBRDADDR:
3321 	case SIOCGIFDSTADDR:
3322 	case SIOCSIFDSTADDR:
3323 	case SIOCGIFNETMASK:
3324 	case SIOCSIFNETMASK:
3325 	case SIOCSIFPFLAGS:
3326 	case SIOCGIFPFLAGS:
3327 	case SIOCGIFTXQLEN:
3328 	case SIOCSIFTXQLEN:
3329 	case SIOCBRADDIF:
3330 	case SIOCBRDELIF:
3331 	case SIOCGIFNAME:
3332 	case SIOCSIFNAME:
3333 	case SIOCGMIIPHY:
3334 	case SIOCGMIIREG:
3335 	case SIOCSMIIREG:
3336 	case SIOCBONDENSLAVE:
3337 	case SIOCBONDRELEASE:
3338 	case SIOCBONDSETHWADDR:
3339 	case SIOCBONDCHANGEACTIVE:
3340 		return compat_ifreq_ioctl(net, sock, cmd, arg, argp);
3341 
3342 	case SIOCSARP:
3343 	case SIOCGARP:
3344 	case SIOCDARP:
3345 	case SIOCOUTQ:
3346 	case SIOCOUTQNSD:
3347 	case SIOCATMARK:
3348 		return sock_do_ioctl(net, sock, cmd, arg);
3349 	}
3350 
3351 	return -ENOIOCTLCMD;
3352 }
3353 
3354 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3355 			      unsigned long arg)
3356 {
3357 	struct socket *sock = file->private_data;
3358 	int ret = -ENOIOCTLCMD;
3359 	struct sock *sk;
3360 	struct net *net;
3361 
3362 	sk = sock->sk;
3363 	net = sock_net(sk);
3364 
3365 	if (sock->ops->compat_ioctl)
3366 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3367 
3368 	if (ret == -ENOIOCTLCMD &&
3369 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3370 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3371 
3372 	if (ret == -ENOIOCTLCMD)
3373 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3374 
3375 	return ret;
3376 }
3377 #endif
3378 
3379 /**
3380  *	kernel_bind - bind an address to a socket (kernel space)
3381  *	@sock: socket
3382  *	@addr: address
3383  *	@addrlen: length of address
3384  *
3385  *	Returns 0 or an error.
3386  */
3387 
3388 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3389 {
3390 	return sock->ops->bind(sock, addr, addrlen);
3391 }
3392 EXPORT_SYMBOL(kernel_bind);
3393 
3394 /**
3395  *	kernel_listen - move socket to listening state (kernel space)
3396  *	@sock: socket
3397  *	@backlog: pending connections queue size
3398  *
3399  *	Returns 0 or an error.
3400  */
3401 
3402 int kernel_listen(struct socket *sock, int backlog)
3403 {
3404 	return sock->ops->listen(sock, backlog);
3405 }
3406 EXPORT_SYMBOL(kernel_listen);
3407 
3408 /**
3409  *	kernel_accept - accept a connection (kernel space)
3410  *	@sock: listening socket
3411  *	@newsock: new connected socket
3412  *	@flags: flags
3413  *
3414  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3415  *	If it fails, @newsock is guaranteed to be %NULL.
3416  *	Returns 0 or an error.
3417  */
3418 
3419 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3420 {
3421 	struct sock *sk = sock->sk;
3422 	int err;
3423 
3424 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3425 			       newsock);
3426 	if (err < 0)
3427 		goto done;
3428 
3429 	err = sock->ops->accept(sock, *newsock, flags, true);
3430 	if (err < 0) {
3431 		sock_release(*newsock);
3432 		*newsock = NULL;
3433 		goto done;
3434 	}
3435 
3436 	(*newsock)->ops = sock->ops;
3437 	__module_get((*newsock)->ops->owner);
3438 
3439 done:
3440 	return err;
3441 }
3442 EXPORT_SYMBOL(kernel_accept);
3443 
3444 /**
3445  *	kernel_connect - connect a socket (kernel space)
3446  *	@sock: socket
3447  *	@addr: address
3448  *	@addrlen: address length
3449  *	@flags: flags (O_NONBLOCK, ...)
3450  *
3451  *	For datagram sockets, @addr is the address to which datagrams are sent
3452  *	by default, and the only address from which datagrams are received.
3453  *	For stream sockets, attempts to connect to @addr.
3454  *	Returns 0 or an error code.
3455  */
3456 
3457 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3458 		   int flags)
3459 {
3460 	return sock->ops->connect(sock, addr, addrlen, flags);
3461 }
3462 EXPORT_SYMBOL(kernel_connect);
3463 
3464 /**
3465  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3466  *	@sock: socket
3467  *	@addr: address holder
3468  *
3469  * 	Fills the @addr pointer with the address which the socket is bound.
3470  *	Returns 0 or an error code.
3471  */
3472 
3473 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3474 {
3475 	return sock->ops->getname(sock, addr, 0);
3476 }
3477 EXPORT_SYMBOL(kernel_getsockname);
3478 
3479 /**
3480  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3481  *	@sock: socket
3482  *	@addr: address holder
3483  *
3484  * 	Fills the @addr pointer with the address which the socket is connected.
3485  *	Returns 0 or an error code.
3486  */
3487 
3488 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3489 {
3490 	return sock->ops->getname(sock, addr, 1);
3491 }
3492 EXPORT_SYMBOL(kernel_getpeername);
3493 
3494 /**
3495  *	kernel_sendpage - send a &page through a socket (kernel space)
3496  *	@sock: socket
3497  *	@page: page
3498  *	@offset: page offset
3499  *	@size: total size in bytes
3500  *	@flags: flags (MSG_DONTWAIT, ...)
3501  *
3502  *	Returns the total amount sent in bytes or an error.
3503  */
3504 
3505 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3506 		    size_t size, int flags)
3507 {
3508 	if (sock->ops->sendpage) {
3509 		/* Warn in case the improper page to zero-copy send */
3510 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3511 		return sock->ops->sendpage(sock, page, offset, size, flags);
3512 	}
3513 	return sock_no_sendpage(sock, page, offset, size, flags);
3514 }
3515 EXPORT_SYMBOL(kernel_sendpage);
3516 
3517 /**
3518  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3519  *	@sk: sock
3520  *	@page: page
3521  *	@offset: page offset
3522  *	@size: total size in bytes
3523  *	@flags: flags (MSG_DONTWAIT, ...)
3524  *
3525  *	Returns the total amount sent in bytes or an error.
3526  *	Caller must hold @sk.
3527  */
3528 
3529 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3530 			   size_t size, int flags)
3531 {
3532 	struct socket *sock = sk->sk_socket;
3533 
3534 	if (sock->ops->sendpage_locked)
3535 		return sock->ops->sendpage_locked(sk, page, offset, size,
3536 						  flags);
3537 
3538 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3539 }
3540 EXPORT_SYMBOL(kernel_sendpage_locked);
3541 
3542 /**
3543  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3544  *	@sock: socket
3545  *	@how: connection part
3546  *
3547  *	Returns 0 or an error.
3548  */
3549 
3550 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3551 {
3552 	return sock->ops->shutdown(sock, how);
3553 }
3554 EXPORT_SYMBOL(kernel_sock_shutdown);
3555 
3556 /**
3557  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3558  *	@sk: socket
3559  *
3560  *	This routine returns the IP overhead imposed by a socket i.e.
3561  *	the length of the underlying IP header, depending on whether
3562  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3563  *	on at the socket. Assumes that the caller has a lock on the socket.
3564  */
3565 
3566 u32 kernel_sock_ip_overhead(struct sock *sk)
3567 {
3568 	struct inet_sock *inet;
3569 	struct ip_options_rcu *opt;
3570 	u32 overhead = 0;
3571 #if IS_ENABLED(CONFIG_IPV6)
3572 	struct ipv6_pinfo *np;
3573 	struct ipv6_txoptions *optv6 = NULL;
3574 #endif /* IS_ENABLED(CONFIG_IPV6) */
3575 
3576 	if (!sk)
3577 		return overhead;
3578 
3579 	switch (sk->sk_family) {
3580 	case AF_INET:
3581 		inet = inet_sk(sk);
3582 		overhead += sizeof(struct iphdr);
3583 		opt = rcu_dereference_protected(inet->inet_opt,
3584 						sock_owned_by_user(sk));
3585 		if (opt)
3586 			overhead += opt->opt.optlen;
3587 		return overhead;
3588 #if IS_ENABLED(CONFIG_IPV6)
3589 	case AF_INET6:
3590 		np = inet6_sk(sk);
3591 		overhead += sizeof(struct ipv6hdr);
3592 		if (np)
3593 			optv6 = rcu_dereference_protected(np->opt,
3594 							  sock_owned_by_user(sk));
3595 		if (optv6)
3596 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3597 		return overhead;
3598 #endif /* IS_ENABLED(CONFIG_IPV6) */
3599 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3600 		return overhead;
3601 	}
3602 }
3603 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3604