1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 #include <linux/nsproxy.h> 88 #include <linux/magic.h> 89 #include <linux/slab.h> 90 #include <linux/xattr.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 struct socket_wq *wq; 244 245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 246 if (!ei) 247 return NULL; 248 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 249 if (!wq) { 250 kmem_cache_free(sock_inode_cachep, ei); 251 return NULL; 252 } 253 init_waitqueue_head(&wq->wait); 254 wq->fasync_list = NULL; 255 RCU_INIT_POINTER(ei->socket.wq, wq); 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 struct socket_wq *wq; 270 271 ei = container_of(inode, struct socket_alloc, vfs_inode); 272 wq = rcu_dereference_protected(ei->socket.wq, 1); 273 kfree_rcu(wq, rcu); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static int init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD), 292 init_once); 293 if (sock_inode_cachep == NULL) 294 return -ENOMEM; 295 return 0; 296 } 297 298 static const struct super_operations sockfs_ops = { 299 .alloc_inode = sock_alloc_inode, 300 .destroy_inode = sock_destroy_inode, 301 .statfs = simple_statfs, 302 }; 303 304 /* 305 * sockfs_dname() is called from d_path(). 306 */ 307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 308 { 309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 310 dentry->d_inode->i_ino); 311 } 312 313 static const struct dentry_operations sockfs_dentry_operations = { 314 .d_dname = sockfs_dname, 315 }; 316 317 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 318 int flags, const char *dev_name, void *data) 319 { 320 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 321 &sockfs_dentry_operations, SOCKFS_MAGIC); 322 } 323 324 static struct vfsmount *sock_mnt __read_mostly; 325 326 static struct file_system_type sock_fs_type = { 327 .name = "sockfs", 328 .mount = sockfs_mount, 329 .kill_sb = kill_anon_super, 330 }; 331 332 /* 333 * Obtains the first available file descriptor and sets it up for use. 334 * 335 * These functions create file structures and maps them to fd space 336 * of the current process. On success it returns file descriptor 337 * and file struct implicitly stored in sock->file. 338 * Note that another thread may close file descriptor before we return 339 * from this function. We use the fact that now we do not refer 340 * to socket after mapping. If one day we will need it, this 341 * function will increment ref. count on file by 1. 342 * 343 * In any case returned fd MAY BE not valid! 344 * This race condition is unavoidable 345 * with shared fd spaces, we cannot solve it inside kernel, 346 * but we take care of internal coherence yet. 347 */ 348 349 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 350 { 351 struct qstr name = { .name = "" }; 352 struct path path; 353 struct file *file; 354 355 if (dname) { 356 name.name = dname; 357 name.len = strlen(name.name); 358 } else if (sock->sk) { 359 name.name = sock->sk->sk_prot_creator->name; 360 name.len = strlen(name.name); 361 } 362 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 363 if (unlikely(!path.dentry)) 364 return ERR_PTR(-ENOMEM); 365 path.mnt = mntget(sock_mnt); 366 367 d_instantiate(path.dentry, SOCK_INODE(sock)); 368 SOCK_INODE(sock)->i_fop = &socket_file_ops; 369 370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 371 &socket_file_ops); 372 if (unlikely(IS_ERR(file))) { 373 /* drop dentry, keep inode */ 374 ihold(path.dentry->d_inode); 375 path_put(&path); 376 return file; 377 } 378 379 sock->file = file; 380 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 381 file->private_data = sock; 382 return file; 383 } 384 EXPORT_SYMBOL(sock_alloc_file); 385 386 static int sock_map_fd(struct socket *sock, int flags) 387 { 388 struct file *newfile; 389 int fd = get_unused_fd_flags(flags); 390 if (unlikely(fd < 0)) 391 return fd; 392 393 newfile = sock_alloc_file(sock, flags, NULL); 394 if (likely(!IS_ERR(newfile))) { 395 fd_install(fd, newfile); 396 return fd; 397 } 398 399 put_unused_fd(fd); 400 return PTR_ERR(newfile); 401 } 402 403 struct socket *sock_from_file(struct file *file, int *err) 404 { 405 if (file->f_op == &socket_file_ops) 406 return file->private_data; /* set in sock_map_fd */ 407 408 *err = -ENOTSOCK; 409 return NULL; 410 } 411 EXPORT_SYMBOL(sock_from_file); 412 413 /** 414 * sockfd_lookup - Go from a file number to its socket slot 415 * @fd: file handle 416 * @err: pointer to an error code return 417 * 418 * The file handle passed in is locked and the socket it is bound 419 * too is returned. If an error occurs the err pointer is overwritten 420 * with a negative errno code and NULL is returned. The function checks 421 * for both invalid handles and passing a handle which is not a socket. 422 * 423 * On a success the socket object pointer is returned. 424 */ 425 426 struct socket *sockfd_lookup(int fd, int *err) 427 { 428 struct file *file; 429 struct socket *sock; 430 431 file = fget(fd); 432 if (!file) { 433 *err = -EBADF; 434 return NULL; 435 } 436 437 sock = sock_from_file(file, err); 438 if (!sock) 439 fput(file); 440 return sock; 441 } 442 EXPORT_SYMBOL(sockfd_lookup); 443 444 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 445 { 446 struct file *file; 447 struct socket *sock; 448 449 *err = -EBADF; 450 file = fget_light(fd, fput_needed); 451 if (file) { 452 sock = sock_from_file(file, err); 453 if (sock) 454 return sock; 455 fput_light(file, *fput_needed); 456 } 457 return NULL; 458 } 459 460 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 461 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 462 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 463 static ssize_t sockfs_getxattr(struct dentry *dentry, 464 const char *name, void *value, size_t size) 465 { 466 const char *proto_name; 467 size_t proto_size; 468 int error; 469 470 error = -ENODATA; 471 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 472 proto_name = dentry->d_name.name; 473 proto_size = strlen(proto_name); 474 475 if (value) { 476 error = -ERANGE; 477 if (proto_size + 1 > size) 478 goto out; 479 480 strncpy(value, proto_name, proto_size + 1); 481 } 482 error = proto_size + 1; 483 } 484 485 out: 486 return error; 487 } 488 489 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 490 size_t size) 491 { 492 ssize_t len; 493 ssize_t used = 0; 494 495 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 496 if (len < 0) 497 return len; 498 used += len; 499 if (buffer) { 500 if (size < used) 501 return -ERANGE; 502 buffer += len; 503 } 504 505 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 506 used += len; 507 if (buffer) { 508 if (size < used) 509 return -ERANGE; 510 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 511 buffer += len; 512 } 513 514 return used; 515 } 516 517 static const struct inode_operations sockfs_inode_ops = { 518 .getxattr = sockfs_getxattr, 519 .listxattr = sockfs_listxattr, 520 }; 521 522 /** 523 * sock_alloc - allocate a socket 524 * 525 * Allocate a new inode and socket object. The two are bound together 526 * and initialised. The socket is then returned. If we are out of inodes 527 * NULL is returned. 528 */ 529 530 static struct socket *sock_alloc(void) 531 { 532 struct inode *inode; 533 struct socket *sock; 534 535 inode = new_inode_pseudo(sock_mnt->mnt_sb); 536 if (!inode) 537 return NULL; 538 539 sock = SOCKET_I(inode); 540 541 kmemcheck_annotate_bitfield(sock, type); 542 inode->i_ino = get_next_ino(); 543 inode->i_mode = S_IFSOCK | S_IRWXUGO; 544 inode->i_uid = current_fsuid(); 545 inode->i_gid = current_fsgid(); 546 inode->i_op = &sockfs_inode_ops; 547 548 this_cpu_add(sockets_in_use, 1); 549 return sock; 550 } 551 552 /* 553 * In theory you can't get an open on this inode, but /proc provides 554 * a back door. Remember to keep it shut otherwise you'll let the 555 * creepy crawlies in. 556 */ 557 558 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 559 { 560 return -ENXIO; 561 } 562 563 const struct file_operations bad_sock_fops = { 564 .owner = THIS_MODULE, 565 .open = sock_no_open, 566 .llseek = noop_llseek, 567 }; 568 569 /** 570 * sock_release - close a socket 571 * @sock: socket to close 572 * 573 * The socket is released from the protocol stack if it has a release 574 * callback, and the inode is then released if the socket is bound to 575 * an inode not a file. 576 */ 577 578 void sock_release(struct socket *sock) 579 { 580 if (sock->ops) { 581 struct module *owner = sock->ops->owner; 582 583 sock->ops->release(sock); 584 sock->ops = NULL; 585 module_put(owner); 586 } 587 588 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 589 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 590 591 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 592 return; 593 594 this_cpu_sub(sockets_in_use, 1); 595 if (!sock->file) { 596 iput(SOCK_INODE(sock)); 597 return; 598 } 599 sock->file = NULL; 600 } 601 EXPORT_SYMBOL(sock_release); 602 603 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 604 { 605 *tx_flags = 0; 606 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 607 *tx_flags |= SKBTX_HW_TSTAMP; 608 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 609 *tx_flags |= SKBTX_SW_TSTAMP; 610 if (sock_flag(sk, SOCK_WIFI_STATUS)) 611 *tx_flags |= SKBTX_WIFI_STATUS; 612 } 613 EXPORT_SYMBOL(sock_tx_timestamp); 614 615 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 616 struct msghdr *msg, size_t size) 617 { 618 struct sock_iocb *si = kiocb_to_siocb(iocb); 619 620 si->sock = sock; 621 si->scm = NULL; 622 si->msg = msg; 623 si->size = size; 624 625 return sock->ops->sendmsg(iocb, sock, msg, size); 626 } 627 628 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 629 struct msghdr *msg, size_t size) 630 { 631 int err = security_socket_sendmsg(sock, msg, size); 632 633 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 634 } 635 636 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 637 { 638 struct kiocb iocb; 639 struct sock_iocb siocb; 640 int ret; 641 642 init_sync_kiocb(&iocb, NULL); 643 iocb.private = &siocb; 644 ret = __sock_sendmsg(&iocb, sock, msg, size); 645 if (-EIOCBQUEUED == ret) 646 ret = wait_on_sync_kiocb(&iocb); 647 return ret; 648 } 649 EXPORT_SYMBOL(sock_sendmsg); 650 651 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 652 { 653 struct kiocb iocb; 654 struct sock_iocb siocb; 655 int ret; 656 657 init_sync_kiocb(&iocb, NULL); 658 iocb.private = &siocb; 659 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 660 if (-EIOCBQUEUED == ret) 661 ret = wait_on_sync_kiocb(&iocb); 662 return ret; 663 } 664 665 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 666 struct kvec *vec, size_t num, size_t size) 667 { 668 mm_segment_t oldfs = get_fs(); 669 int result; 670 671 set_fs(KERNEL_DS); 672 /* 673 * the following is safe, since for compiler definitions of kvec and 674 * iovec are identical, yielding the same in-core layout and alignment 675 */ 676 msg->msg_iov = (struct iovec *)vec; 677 msg->msg_iovlen = num; 678 result = sock_sendmsg(sock, msg, size); 679 set_fs(oldfs); 680 return result; 681 } 682 EXPORT_SYMBOL(kernel_sendmsg); 683 684 /* 685 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 686 */ 687 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 688 struct sk_buff *skb) 689 { 690 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 691 struct timespec ts[3]; 692 int empty = 1; 693 struct skb_shared_hwtstamps *shhwtstamps = 694 skb_hwtstamps(skb); 695 696 /* Race occurred between timestamp enabling and packet 697 receiving. Fill in the current time for now. */ 698 if (need_software_tstamp && skb->tstamp.tv64 == 0) 699 __net_timestamp(skb); 700 701 if (need_software_tstamp) { 702 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 703 struct timeval tv; 704 skb_get_timestamp(skb, &tv); 705 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 706 sizeof(tv), &tv); 707 } else { 708 skb_get_timestampns(skb, &ts[0]); 709 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 710 sizeof(ts[0]), &ts[0]); 711 } 712 } 713 714 715 memset(ts, 0, sizeof(ts)); 716 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) && 717 ktime_to_timespec_cond(skb->tstamp, ts + 0)) 718 empty = 0; 719 if (shhwtstamps) { 720 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 721 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1)) 722 empty = 0; 723 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 724 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2)) 725 empty = 0; 726 } 727 if (!empty) 728 put_cmsg(msg, SOL_SOCKET, 729 SCM_TIMESTAMPING, sizeof(ts), &ts); 730 } 731 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 732 733 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 734 struct sk_buff *skb) 735 { 736 int ack; 737 738 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 739 return; 740 if (!skb->wifi_acked_valid) 741 return; 742 743 ack = skb->wifi_acked; 744 745 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 746 } 747 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 748 749 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 750 struct sk_buff *skb) 751 { 752 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 753 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 754 sizeof(__u32), &skb->dropcount); 755 } 756 757 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 758 struct sk_buff *skb) 759 { 760 sock_recv_timestamp(msg, sk, skb); 761 sock_recv_drops(msg, sk, skb); 762 } 763 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 764 765 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 766 struct msghdr *msg, size_t size, int flags) 767 { 768 struct sock_iocb *si = kiocb_to_siocb(iocb); 769 770 si->sock = sock; 771 si->scm = NULL; 772 si->msg = msg; 773 si->size = size; 774 si->flags = flags; 775 776 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 777 } 778 779 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 780 struct msghdr *msg, size_t size, int flags) 781 { 782 int err = security_socket_recvmsg(sock, msg, size, flags); 783 784 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 785 } 786 787 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 788 size_t size, int flags) 789 { 790 struct kiocb iocb; 791 struct sock_iocb siocb; 792 int ret; 793 794 init_sync_kiocb(&iocb, NULL); 795 iocb.private = &siocb; 796 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 797 if (-EIOCBQUEUED == ret) 798 ret = wait_on_sync_kiocb(&iocb); 799 return ret; 800 } 801 EXPORT_SYMBOL(sock_recvmsg); 802 803 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 804 size_t size, int flags) 805 { 806 struct kiocb iocb; 807 struct sock_iocb siocb; 808 int ret; 809 810 init_sync_kiocb(&iocb, NULL); 811 iocb.private = &siocb; 812 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 813 if (-EIOCBQUEUED == ret) 814 ret = wait_on_sync_kiocb(&iocb); 815 return ret; 816 } 817 818 /** 819 * kernel_recvmsg - Receive a message from a socket (kernel space) 820 * @sock: The socket to receive the message from 821 * @msg: Received message 822 * @vec: Input s/g array for message data 823 * @num: Size of input s/g array 824 * @size: Number of bytes to read 825 * @flags: Message flags (MSG_DONTWAIT, etc...) 826 * 827 * On return the msg structure contains the scatter/gather array passed in the 828 * vec argument. The array is modified so that it consists of the unfilled 829 * portion of the original array. 830 * 831 * The returned value is the total number of bytes received, or an error. 832 */ 833 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 834 struct kvec *vec, size_t num, size_t size, int flags) 835 { 836 mm_segment_t oldfs = get_fs(); 837 int result; 838 839 set_fs(KERNEL_DS); 840 /* 841 * the following is safe, since for compiler definitions of kvec and 842 * iovec are identical, yielding the same in-core layout and alignment 843 */ 844 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 845 result = sock_recvmsg(sock, msg, size, flags); 846 set_fs(oldfs); 847 return result; 848 } 849 EXPORT_SYMBOL(kernel_recvmsg); 850 851 static void sock_aio_dtor(struct kiocb *iocb) 852 { 853 kfree(iocb->private); 854 } 855 856 static ssize_t sock_sendpage(struct file *file, struct page *page, 857 int offset, size_t size, loff_t *ppos, int more) 858 { 859 struct socket *sock; 860 int flags; 861 862 sock = file->private_data; 863 864 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 865 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 866 flags |= more; 867 868 return kernel_sendpage(sock, page, offset, size, flags); 869 } 870 871 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 872 struct pipe_inode_info *pipe, size_t len, 873 unsigned int flags) 874 { 875 struct socket *sock = file->private_data; 876 877 if (unlikely(!sock->ops->splice_read)) 878 return -EINVAL; 879 880 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 881 } 882 883 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 884 struct sock_iocb *siocb) 885 { 886 if (!is_sync_kiocb(iocb)) { 887 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 888 if (!siocb) 889 return NULL; 890 iocb->ki_dtor = sock_aio_dtor; 891 } 892 893 siocb->kiocb = iocb; 894 iocb->private = siocb; 895 return siocb; 896 } 897 898 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 899 struct file *file, const struct iovec *iov, 900 unsigned long nr_segs) 901 { 902 struct socket *sock = file->private_data; 903 size_t size = 0; 904 int i; 905 906 for (i = 0; i < nr_segs; i++) 907 size += iov[i].iov_len; 908 909 msg->msg_name = NULL; 910 msg->msg_namelen = 0; 911 msg->msg_control = NULL; 912 msg->msg_controllen = 0; 913 msg->msg_iov = (struct iovec *)iov; 914 msg->msg_iovlen = nr_segs; 915 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 916 917 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 918 } 919 920 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 921 unsigned long nr_segs, loff_t pos) 922 { 923 struct sock_iocb siocb, *x; 924 925 if (pos != 0) 926 return -ESPIPE; 927 928 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 929 return 0; 930 931 932 x = alloc_sock_iocb(iocb, &siocb); 933 if (!x) 934 return -ENOMEM; 935 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 936 } 937 938 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 939 struct file *file, const struct iovec *iov, 940 unsigned long nr_segs) 941 { 942 struct socket *sock = file->private_data; 943 size_t size = 0; 944 int i; 945 946 for (i = 0; i < nr_segs; i++) 947 size += iov[i].iov_len; 948 949 msg->msg_name = NULL; 950 msg->msg_namelen = 0; 951 msg->msg_control = NULL; 952 msg->msg_controllen = 0; 953 msg->msg_iov = (struct iovec *)iov; 954 msg->msg_iovlen = nr_segs; 955 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 956 if (sock->type == SOCK_SEQPACKET) 957 msg->msg_flags |= MSG_EOR; 958 959 return __sock_sendmsg(iocb, sock, msg, size); 960 } 961 962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 963 unsigned long nr_segs, loff_t pos) 964 { 965 struct sock_iocb siocb, *x; 966 967 if (pos != 0) 968 return -ESPIPE; 969 970 x = alloc_sock_iocb(iocb, &siocb); 971 if (!x) 972 return -ENOMEM; 973 974 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 975 } 976 977 /* 978 * Atomic setting of ioctl hooks to avoid race 979 * with module unload. 980 */ 981 982 static DEFINE_MUTEX(br_ioctl_mutex); 983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 984 985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 986 { 987 mutex_lock(&br_ioctl_mutex); 988 br_ioctl_hook = hook; 989 mutex_unlock(&br_ioctl_mutex); 990 } 991 EXPORT_SYMBOL(brioctl_set); 992 993 static DEFINE_MUTEX(vlan_ioctl_mutex); 994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 995 996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 997 { 998 mutex_lock(&vlan_ioctl_mutex); 999 vlan_ioctl_hook = hook; 1000 mutex_unlock(&vlan_ioctl_mutex); 1001 } 1002 EXPORT_SYMBOL(vlan_ioctl_set); 1003 1004 static DEFINE_MUTEX(dlci_ioctl_mutex); 1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1006 1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1008 { 1009 mutex_lock(&dlci_ioctl_mutex); 1010 dlci_ioctl_hook = hook; 1011 mutex_unlock(&dlci_ioctl_mutex); 1012 } 1013 EXPORT_SYMBOL(dlci_ioctl_set); 1014 1015 static long sock_do_ioctl(struct net *net, struct socket *sock, 1016 unsigned int cmd, unsigned long arg) 1017 { 1018 int err; 1019 void __user *argp = (void __user *)arg; 1020 1021 err = sock->ops->ioctl(sock, cmd, arg); 1022 1023 /* 1024 * If this ioctl is unknown try to hand it down 1025 * to the NIC driver. 1026 */ 1027 if (err == -ENOIOCTLCMD) 1028 err = dev_ioctl(net, cmd, argp); 1029 1030 return err; 1031 } 1032 1033 /* 1034 * With an ioctl, arg may well be a user mode pointer, but we don't know 1035 * what to do with it - that's up to the protocol still. 1036 */ 1037 1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1039 { 1040 struct socket *sock; 1041 struct sock *sk; 1042 void __user *argp = (void __user *)arg; 1043 int pid, err; 1044 struct net *net; 1045 1046 sock = file->private_data; 1047 sk = sock->sk; 1048 net = sock_net(sk); 1049 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1050 err = dev_ioctl(net, cmd, argp); 1051 } else 1052 #ifdef CONFIG_WEXT_CORE 1053 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1054 err = dev_ioctl(net, cmd, argp); 1055 } else 1056 #endif 1057 switch (cmd) { 1058 case FIOSETOWN: 1059 case SIOCSPGRP: 1060 err = -EFAULT; 1061 if (get_user(pid, (int __user *)argp)) 1062 break; 1063 err = f_setown(sock->file, pid, 1); 1064 break; 1065 case FIOGETOWN: 1066 case SIOCGPGRP: 1067 err = put_user(f_getown(sock->file), 1068 (int __user *)argp); 1069 break; 1070 case SIOCGIFBR: 1071 case SIOCSIFBR: 1072 case SIOCBRADDBR: 1073 case SIOCBRDELBR: 1074 err = -ENOPKG; 1075 if (!br_ioctl_hook) 1076 request_module("bridge"); 1077 1078 mutex_lock(&br_ioctl_mutex); 1079 if (br_ioctl_hook) 1080 err = br_ioctl_hook(net, cmd, argp); 1081 mutex_unlock(&br_ioctl_mutex); 1082 break; 1083 case SIOCGIFVLAN: 1084 case SIOCSIFVLAN: 1085 err = -ENOPKG; 1086 if (!vlan_ioctl_hook) 1087 request_module("8021q"); 1088 1089 mutex_lock(&vlan_ioctl_mutex); 1090 if (vlan_ioctl_hook) 1091 err = vlan_ioctl_hook(net, argp); 1092 mutex_unlock(&vlan_ioctl_mutex); 1093 break; 1094 case SIOCADDDLCI: 1095 case SIOCDELDLCI: 1096 err = -ENOPKG; 1097 if (!dlci_ioctl_hook) 1098 request_module("dlci"); 1099 1100 mutex_lock(&dlci_ioctl_mutex); 1101 if (dlci_ioctl_hook) 1102 err = dlci_ioctl_hook(cmd, argp); 1103 mutex_unlock(&dlci_ioctl_mutex); 1104 break; 1105 default: 1106 err = sock_do_ioctl(net, sock, cmd, arg); 1107 break; 1108 } 1109 return err; 1110 } 1111 1112 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1113 { 1114 int err; 1115 struct socket *sock = NULL; 1116 1117 err = security_socket_create(family, type, protocol, 1); 1118 if (err) 1119 goto out; 1120 1121 sock = sock_alloc(); 1122 if (!sock) { 1123 err = -ENOMEM; 1124 goto out; 1125 } 1126 1127 sock->type = type; 1128 err = security_socket_post_create(sock, family, type, protocol, 1); 1129 if (err) 1130 goto out_release; 1131 1132 out: 1133 *res = sock; 1134 return err; 1135 out_release: 1136 sock_release(sock); 1137 sock = NULL; 1138 goto out; 1139 } 1140 EXPORT_SYMBOL(sock_create_lite); 1141 1142 /* No kernel lock held - perfect */ 1143 static unsigned int sock_poll(struct file *file, poll_table *wait) 1144 { 1145 struct socket *sock; 1146 1147 /* 1148 * We can't return errors to poll, so it's either yes or no. 1149 */ 1150 sock = file->private_data; 1151 return sock->ops->poll(file, sock, wait); 1152 } 1153 1154 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1155 { 1156 struct socket *sock = file->private_data; 1157 1158 return sock->ops->mmap(file, sock, vma); 1159 } 1160 1161 static int sock_close(struct inode *inode, struct file *filp) 1162 { 1163 sock_release(SOCKET_I(inode)); 1164 return 0; 1165 } 1166 1167 /* 1168 * Update the socket async list 1169 * 1170 * Fasync_list locking strategy. 1171 * 1172 * 1. fasync_list is modified only under process context socket lock 1173 * i.e. under semaphore. 1174 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1175 * or under socket lock 1176 */ 1177 1178 static int sock_fasync(int fd, struct file *filp, int on) 1179 { 1180 struct socket *sock = filp->private_data; 1181 struct sock *sk = sock->sk; 1182 struct socket_wq *wq; 1183 1184 if (sk == NULL) 1185 return -EINVAL; 1186 1187 lock_sock(sk); 1188 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1189 fasync_helper(fd, filp, on, &wq->fasync_list); 1190 1191 if (!wq->fasync_list) 1192 sock_reset_flag(sk, SOCK_FASYNC); 1193 else 1194 sock_set_flag(sk, SOCK_FASYNC); 1195 1196 release_sock(sk); 1197 return 0; 1198 } 1199 1200 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1201 1202 int sock_wake_async(struct socket *sock, int how, int band) 1203 { 1204 struct socket_wq *wq; 1205 1206 if (!sock) 1207 return -1; 1208 rcu_read_lock(); 1209 wq = rcu_dereference(sock->wq); 1210 if (!wq || !wq->fasync_list) { 1211 rcu_read_unlock(); 1212 return -1; 1213 } 1214 switch (how) { 1215 case SOCK_WAKE_WAITD: 1216 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1217 break; 1218 goto call_kill; 1219 case SOCK_WAKE_SPACE: 1220 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1221 break; 1222 /* fall through */ 1223 case SOCK_WAKE_IO: 1224 call_kill: 1225 kill_fasync(&wq->fasync_list, SIGIO, band); 1226 break; 1227 case SOCK_WAKE_URG: 1228 kill_fasync(&wq->fasync_list, SIGURG, band); 1229 } 1230 rcu_read_unlock(); 1231 return 0; 1232 } 1233 EXPORT_SYMBOL(sock_wake_async); 1234 1235 int __sock_create(struct net *net, int family, int type, int protocol, 1236 struct socket **res, int kern) 1237 { 1238 int err; 1239 struct socket *sock; 1240 const struct net_proto_family *pf; 1241 1242 /* 1243 * Check protocol is in range 1244 */ 1245 if (family < 0 || family >= NPROTO) 1246 return -EAFNOSUPPORT; 1247 if (type < 0 || type >= SOCK_MAX) 1248 return -EINVAL; 1249 1250 /* Compatibility. 1251 1252 This uglymoron is moved from INET layer to here to avoid 1253 deadlock in module load. 1254 */ 1255 if (family == PF_INET && type == SOCK_PACKET) { 1256 static int warned; 1257 if (!warned) { 1258 warned = 1; 1259 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1260 current->comm); 1261 } 1262 family = PF_PACKET; 1263 } 1264 1265 err = security_socket_create(family, type, protocol, kern); 1266 if (err) 1267 return err; 1268 1269 /* 1270 * Allocate the socket and allow the family to set things up. if 1271 * the protocol is 0, the family is instructed to select an appropriate 1272 * default. 1273 */ 1274 sock = sock_alloc(); 1275 if (!sock) { 1276 net_warn_ratelimited("socket: no more sockets\n"); 1277 return -ENFILE; /* Not exactly a match, but its the 1278 closest posix thing */ 1279 } 1280 1281 sock->type = type; 1282 1283 #ifdef CONFIG_MODULES 1284 /* Attempt to load a protocol module if the find failed. 1285 * 1286 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1287 * requested real, full-featured networking support upon configuration. 1288 * Otherwise module support will break! 1289 */ 1290 if (rcu_access_pointer(net_families[family]) == NULL) 1291 request_module("net-pf-%d", family); 1292 #endif 1293 1294 rcu_read_lock(); 1295 pf = rcu_dereference(net_families[family]); 1296 err = -EAFNOSUPPORT; 1297 if (!pf) 1298 goto out_release; 1299 1300 /* 1301 * We will call the ->create function, that possibly is in a loadable 1302 * module, so we have to bump that loadable module refcnt first. 1303 */ 1304 if (!try_module_get(pf->owner)) 1305 goto out_release; 1306 1307 /* Now protected by module ref count */ 1308 rcu_read_unlock(); 1309 1310 err = pf->create(net, sock, protocol, kern); 1311 if (err < 0) 1312 goto out_module_put; 1313 1314 /* 1315 * Now to bump the refcnt of the [loadable] module that owns this 1316 * socket at sock_release time we decrement its refcnt. 1317 */ 1318 if (!try_module_get(sock->ops->owner)) 1319 goto out_module_busy; 1320 1321 /* 1322 * Now that we're done with the ->create function, the [loadable] 1323 * module can have its refcnt decremented 1324 */ 1325 module_put(pf->owner); 1326 err = security_socket_post_create(sock, family, type, protocol, kern); 1327 if (err) 1328 goto out_sock_release; 1329 *res = sock; 1330 1331 return 0; 1332 1333 out_module_busy: 1334 err = -EAFNOSUPPORT; 1335 out_module_put: 1336 sock->ops = NULL; 1337 module_put(pf->owner); 1338 out_sock_release: 1339 sock_release(sock); 1340 return err; 1341 1342 out_release: 1343 rcu_read_unlock(); 1344 goto out_sock_release; 1345 } 1346 EXPORT_SYMBOL(__sock_create); 1347 1348 int sock_create(int family, int type, int protocol, struct socket **res) 1349 { 1350 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1351 } 1352 EXPORT_SYMBOL(sock_create); 1353 1354 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1355 { 1356 return __sock_create(&init_net, family, type, protocol, res, 1); 1357 } 1358 EXPORT_SYMBOL(sock_create_kern); 1359 1360 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1361 { 1362 int retval; 1363 struct socket *sock; 1364 int flags; 1365 1366 /* Check the SOCK_* constants for consistency. */ 1367 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1368 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1369 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1370 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1371 1372 flags = type & ~SOCK_TYPE_MASK; 1373 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1374 return -EINVAL; 1375 type &= SOCK_TYPE_MASK; 1376 1377 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1378 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1379 1380 retval = sock_create(family, type, protocol, &sock); 1381 if (retval < 0) 1382 goto out; 1383 1384 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1385 if (retval < 0) 1386 goto out_release; 1387 1388 out: 1389 /* It may be already another descriptor 8) Not kernel problem. */ 1390 return retval; 1391 1392 out_release: 1393 sock_release(sock); 1394 return retval; 1395 } 1396 1397 /* 1398 * Create a pair of connected sockets. 1399 */ 1400 1401 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1402 int __user *, usockvec) 1403 { 1404 struct socket *sock1, *sock2; 1405 int fd1, fd2, err; 1406 struct file *newfile1, *newfile2; 1407 int flags; 1408 1409 flags = type & ~SOCK_TYPE_MASK; 1410 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1411 return -EINVAL; 1412 type &= SOCK_TYPE_MASK; 1413 1414 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1415 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1416 1417 /* 1418 * Obtain the first socket and check if the underlying protocol 1419 * supports the socketpair call. 1420 */ 1421 1422 err = sock_create(family, type, protocol, &sock1); 1423 if (err < 0) 1424 goto out; 1425 1426 err = sock_create(family, type, protocol, &sock2); 1427 if (err < 0) 1428 goto out_release_1; 1429 1430 err = sock1->ops->socketpair(sock1, sock2); 1431 if (err < 0) 1432 goto out_release_both; 1433 1434 fd1 = get_unused_fd_flags(flags); 1435 if (unlikely(fd1 < 0)) { 1436 err = fd1; 1437 goto out_release_both; 1438 } 1439 fd2 = get_unused_fd_flags(flags); 1440 if (unlikely(fd2 < 0)) { 1441 err = fd2; 1442 put_unused_fd(fd1); 1443 goto out_release_both; 1444 } 1445 1446 newfile1 = sock_alloc_file(sock1, flags, NULL); 1447 if (unlikely(IS_ERR(newfile1))) { 1448 err = PTR_ERR(newfile1); 1449 put_unused_fd(fd1); 1450 put_unused_fd(fd2); 1451 goto out_release_both; 1452 } 1453 1454 newfile2 = sock_alloc_file(sock2, flags, NULL); 1455 if (IS_ERR(newfile2)) { 1456 err = PTR_ERR(newfile2); 1457 fput(newfile1); 1458 put_unused_fd(fd1); 1459 put_unused_fd(fd2); 1460 sock_release(sock2); 1461 goto out; 1462 } 1463 1464 audit_fd_pair(fd1, fd2); 1465 fd_install(fd1, newfile1); 1466 fd_install(fd2, newfile2); 1467 /* fd1 and fd2 may be already another descriptors. 1468 * Not kernel problem. 1469 */ 1470 1471 err = put_user(fd1, &usockvec[0]); 1472 if (!err) 1473 err = put_user(fd2, &usockvec[1]); 1474 if (!err) 1475 return 0; 1476 1477 sys_close(fd2); 1478 sys_close(fd1); 1479 return err; 1480 1481 out_release_both: 1482 sock_release(sock2); 1483 out_release_1: 1484 sock_release(sock1); 1485 out: 1486 return err; 1487 } 1488 1489 /* 1490 * Bind a name to a socket. Nothing much to do here since it's 1491 * the protocol's responsibility to handle the local address. 1492 * 1493 * We move the socket address to kernel space before we call 1494 * the protocol layer (having also checked the address is ok). 1495 */ 1496 1497 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1498 { 1499 struct socket *sock; 1500 struct sockaddr_storage address; 1501 int err, fput_needed; 1502 1503 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1504 if (sock) { 1505 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1506 if (err >= 0) { 1507 err = security_socket_bind(sock, 1508 (struct sockaddr *)&address, 1509 addrlen); 1510 if (!err) 1511 err = sock->ops->bind(sock, 1512 (struct sockaddr *) 1513 &address, addrlen); 1514 } 1515 fput_light(sock->file, fput_needed); 1516 } 1517 return err; 1518 } 1519 1520 /* 1521 * Perform a listen. Basically, we allow the protocol to do anything 1522 * necessary for a listen, and if that works, we mark the socket as 1523 * ready for listening. 1524 */ 1525 1526 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1527 { 1528 struct socket *sock; 1529 int err, fput_needed; 1530 int somaxconn; 1531 1532 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1533 if (sock) { 1534 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1535 if ((unsigned int)backlog > somaxconn) 1536 backlog = somaxconn; 1537 1538 err = security_socket_listen(sock, backlog); 1539 if (!err) 1540 err = sock->ops->listen(sock, backlog); 1541 1542 fput_light(sock->file, fput_needed); 1543 } 1544 return err; 1545 } 1546 1547 /* 1548 * For accept, we attempt to create a new socket, set up the link 1549 * with the client, wake up the client, then return the new 1550 * connected fd. We collect the address of the connector in kernel 1551 * space and move it to user at the very end. This is unclean because 1552 * we open the socket then return an error. 1553 * 1554 * 1003.1g adds the ability to recvmsg() to query connection pending 1555 * status to recvmsg. We need to add that support in a way thats 1556 * clean when we restucture accept also. 1557 */ 1558 1559 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1560 int __user *, upeer_addrlen, int, flags) 1561 { 1562 struct socket *sock, *newsock; 1563 struct file *newfile; 1564 int err, len, newfd, fput_needed; 1565 struct sockaddr_storage address; 1566 1567 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1568 return -EINVAL; 1569 1570 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1571 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1572 1573 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1574 if (!sock) 1575 goto out; 1576 1577 err = -ENFILE; 1578 newsock = sock_alloc(); 1579 if (!newsock) 1580 goto out_put; 1581 1582 newsock->type = sock->type; 1583 newsock->ops = sock->ops; 1584 1585 /* 1586 * We don't need try_module_get here, as the listening socket (sock) 1587 * has the protocol module (sock->ops->owner) held. 1588 */ 1589 __module_get(newsock->ops->owner); 1590 1591 newfd = get_unused_fd_flags(flags); 1592 if (unlikely(newfd < 0)) { 1593 err = newfd; 1594 sock_release(newsock); 1595 goto out_put; 1596 } 1597 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1598 if (unlikely(IS_ERR(newfile))) { 1599 err = PTR_ERR(newfile); 1600 put_unused_fd(newfd); 1601 sock_release(newsock); 1602 goto out_put; 1603 } 1604 1605 err = security_socket_accept(sock, newsock); 1606 if (err) 1607 goto out_fd; 1608 1609 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1610 if (err < 0) 1611 goto out_fd; 1612 1613 if (upeer_sockaddr) { 1614 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1615 &len, 2) < 0) { 1616 err = -ECONNABORTED; 1617 goto out_fd; 1618 } 1619 err = move_addr_to_user(&address, 1620 len, upeer_sockaddr, upeer_addrlen); 1621 if (err < 0) 1622 goto out_fd; 1623 } 1624 1625 /* File flags are not inherited via accept() unlike another OSes. */ 1626 1627 fd_install(newfd, newfile); 1628 err = newfd; 1629 1630 out_put: 1631 fput_light(sock->file, fput_needed); 1632 out: 1633 return err; 1634 out_fd: 1635 fput(newfile); 1636 put_unused_fd(newfd); 1637 goto out_put; 1638 } 1639 1640 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1641 int __user *, upeer_addrlen) 1642 { 1643 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1644 } 1645 1646 /* 1647 * Attempt to connect to a socket with the server address. The address 1648 * is in user space so we verify it is OK and move it to kernel space. 1649 * 1650 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1651 * break bindings 1652 * 1653 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1654 * other SEQPACKET protocols that take time to connect() as it doesn't 1655 * include the -EINPROGRESS status for such sockets. 1656 */ 1657 1658 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1659 int, addrlen) 1660 { 1661 struct socket *sock; 1662 struct sockaddr_storage address; 1663 int err, fput_needed; 1664 1665 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1666 if (!sock) 1667 goto out; 1668 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1669 if (err < 0) 1670 goto out_put; 1671 1672 err = 1673 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1674 if (err) 1675 goto out_put; 1676 1677 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1678 sock->file->f_flags); 1679 out_put: 1680 fput_light(sock->file, fput_needed); 1681 out: 1682 return err; 1683 } 1684 1685 /* 1686 * Get the local address ('name') of a socket object. Move the obtained 1687 * name to user space. 1688 */ 1689 1690 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1691 int __user *, usockaddr_len) 1692 { 1693 struct socket *sock; 1694 struct sockaddr_storage address; 1695 int len, err, fput_needed; 1696 1697 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1698 if (!sock) 1699 goto out; 1700 1701 err = security_socket_getsockname(sock); 1702 if (err) 1703 goto out_put; 1704 1705 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1706 if (err) 1707 goto out_put; 1708 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1709 1710 out_put: 1711 fput_light(sock->file, fput_needed); 1712 out: 1713 return err; 1714 } 1715 1716 /* 1717 * Get the remote address ('name') of a socket object. Move the obtained 1718 * name to user space. 1719 */ 1720 1721 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1722 int __user *, usockaddr_len) 1723 { 1724 struct socket *sock; 1725 struct sockaddr_storage address; 1726 int len, err, fput_needed; 1727 1728 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1729 if (sock != NULL) { 1730 err = security_socket_getpeername(sock); 1731 if (err) { 1732 fput_light(sock->file, fput_needed); 1733 return err; 1734 } 1735 1736 err = 1737 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1738 1); 1739 if (!err) 1740 err = move_addr_to_user(&address, len, usockaddr, 1741 usockaddr_len); 1742 fput_light(sock->file, fput_needed); 1743 } 1744 return err; 1745 } 1746 1747 /* 1748 * Send a datagram to a given address. We move the address into kernel 1749 * space and check the user space data area is readable before invoking 1750 * the protocol. 1751 */ 1752 1753 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1754 unsigned int, flags, struct sockaddr __user *, addr, 1755 int, addr_len) 1756 { 1757 struct socket *sock; 1758 struct sockaddr_storage address; 1759 int err; 1760 struct msghdr msg; 1761 struct iovec iov; 1762 int fput_needed; 1763 1764 if (len > INT_MAX) 1765 len = INT_MAX; 1766 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1767 if (!sock) 1768 goto out; 1769 1770 iov.iov_base = buff; 1771 iov.iov_len = len; 1772 msg.msg_name = NULL; 1773 msg.msg_iov = &iov; 1774 msg.msg_iovlen = 1; 1775 msg.msg_control = NULL; 1776 msg.msg_controllen = 0; 1777 msg.msg_namelen = 0; 1778 if (addr) { 1779 err = move_addr_to_kernel(addr, addr_len, &address); 1780 if (err < 0) 1781 goto out_put; 1782 msg.msg_name = (struct sockaddr *)&address; 1783 msg.msg_namelen = addr_len; 1784 } 1785 if (sock->file->f_flags & O_NONBLOCK) 1786 flags |= MSG_DONTWAIT; 1787 msg.msg_flags = flags; 1788 err = sock_sendmsg(sock, &msg, len); 1789 1790 out_put: 1791 fput_light(sock->file, fput_needed); 1792 out: 1793 return err; 1794 } 1795 1796 /* 1797 * Send a datagram down a socket. 1798 */ 1799 1800 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1801 unsigned int, flags) 1802 { 1803 return sys_sendto(fd, buff, len, flags, NULL, 0); 1804 } 1805 1806 /* 1807 * Receive a frame from the socket and optionally record the address of the 1808 * sender. We verify the buffers are writable and if needed move the 1809 * sender address from kernel to user space. 1810 */ 1811 1812 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1813 unsigned int, flags, struct sockaddr __user *, addr, 1814 int __user *, addr_len) 1815 { 1816 struct socket *sock; 1817 struct iovec iov; 1818 struct msghdr msg; 1819 struct sockaddr_storage address; 1820 int err, err2; 1821 int fput_needed; 1822 1823 if (size > INT_MAX) 1824 size = INT_MAX; 1825 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1826 if (!sock) 1827 goto out; 1828 1829 msg.msg_control = NULL; 1830 msg.msg_controllen = 0; 1831 msg.msg_iovlen = 1; 1832 msg.msg_iov = &iov; 1833 iov.iov_len = size; 1834 iov.iov_base = ubuf; 1835 msg.msg_name = (struct sockaddr *)&address; 1836 msg.msg_namelen = sizeof(address); 1837 if (sock->file->f_flags & O_NONBLOCK) 1838 flags |= MSG_DONTWAIT; 1839 err = sock_recvmsg(sock, &msg, size, flags); 1840 1841 if (err >= 0 && addr != NULL) { 1842 err2 = move_addr_to_user(&address, 1843 msg.msg_namelen, addr, addr_len); 1844 if (err2 < 0) 1845 err = err2; 1846 } 1847 1848 fput_light(sock->file, fput_needed); 1849 out: 1850 return err; 1851 } 1852 1853 /* 1854 * Receive a datagram from a socket. 1855 */ 1856 1857 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1858 unsigned int flags) 1859 { 1860 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1861 } 1862 1863 /* 1864 * Set a socket option. Because we don't know the option lengths we have 1865 * to pass the user mode parameter for the protocols to sort out. 1866 */ 1867 1868 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1869 char __user *, optval, int, optlen) 1870 { 1871 int err, fput_needed; 1872 struct socket *sock; 1873 1874 if (optlen < 0) 1875 return -EINVAL; 1876 1877 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1878 if (sock != NULL) { 1879 err = security_socket_setsockopt(sock, level, optname); 1880 if (err) 1881 goto out_put; 1882 1883 if (level == SOL_SOCKET) 1884 err = 1885 sock_setsockopt(sock, level, optname, optval, 1886 optlen); 1887 else 1888 err = 1889 sock->ops->setsockopt(sock, level, optname, optval, 1890 optlen); 1891 out_put: 1892 fput_light(sock->file, fput_needed); 1893 } 1894 return err; 1895 } 1896 1897 /* 1898 * Get a socket option. Because we don't know the option lengths we have 1899 * to pass a user mode parameter for the protocols to sort out. 1900 */ 1901 1902 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1903 char __user *, optval, int __user *, optlen) 1904 { 1905 int err, fput_needed; 1906 struct socket *sock; 1907 1908 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1909 if (sock != NULL) { 1910 err = security_socket_getsockopt(sock, level, optname); 1911 if (err) 1912 goto out_put; 1913 1914 if (level == SOL_SOCKET) 1915 err = 1916 sock_getsockopt(sock, level, optname, optval, 1917 optlen); 1918 else 1919 err = 1920 sock->ops->getsockopt(sock, level, optname, optval, 1921 optlen); 1922 out_put: 1923 fput_light(sock->file, fput_needed); 1924 } 1925 return err; 1926 } 1927 1928 /* 1929 * Shutdown a socket. 1930 */ 1931 1932 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1933 { 1934 int err, fput_needed; 1935 struct socket *sock; 1936 1937 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1938 if (sock != NULL) { 1939 err = security_socket_shutdown(sock, how); 1940 if (!err) 1941 err = sock->ops->shutdown(sock, how); 1942 fput_light(sock->file, fput_needed); 1943 } 1944 return err; 1945 } 1946 1947 /* A couple of helpful macros for getting the address of the 32/64 bit 1948 * fields which are the same type (int / unsigned) on our platforms. 1949 */ 1950 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1951 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1952 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1953 1954 struct used_address { 1955 struct sockaddr_storage name; 1956 unsigned int name_len; 1957 }; 1958 1959 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1960 struct msghdr *msg_sys, unsigned int flags, 1961 struct used_address *used_address) 1962 { 1963 struct compat_msghdr __user *msg_compat = 1964 (struct compat_msghdr __user *)msg; 1965 struct sockaddr_storage address; 1966 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1967 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1968 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1969 /* 20 is size of ipv6_pktinfo */ 1970 unsigned char *ctl_buf = ctl; 1971 int err, ctl_len, total_len; 1972 1973 err = -EFAULT; 1974 if (MSG_CMSG_COMPAT & flags) { 1975 if (get_compat_msghdr(msg_sys, msg_compat)) 1976 return -EFAULT; 1977 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1978 return -EFAULT; 1979 1980 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1981 err = -EMSGSIZE; 1982 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1983 goto out; 1984 err = -ENOMEM; 1985 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 1986 GFP_KERNEL); 1987 if (!iov) 1988 goto out; 1989 } 1990 1991 /* This will also move the address data into kernel space */ 1992 if (MSG_CMSG_COMPAT & flags) { 1993 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 1994 } else 1995 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 1996 if (err < 0) 1997 goto out_freeiov; 1998 total_len = err; 1999 2000 err = -ENOBUFS; 2001 2002 if (msg_sys->msg_controllen > INT_MAX) 2003 goto out_freeiov; 2004 ctl_len = msg_sys->msg_controllen; 2005 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2006 err = 2007 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2008 sizeof(ctl)); 2009 if (err) 2010 goto out_freeiov; 2011 ctl_buf = msg_sys->msg_control; 2012 ctl_len = msg_sys->msg_controllen; 2013 } else if (ctl_len) { 2014 if (ctl_len > sizeof(ctl)) { 2015 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2016 if (ctl_buf == NULL) 2017 goto out_freeiov; 2018 } 2019 err = -EFAULT; 2020 /* 2021 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2022 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2023 * checking falls down on this. 2024 */ 2025 if (copy_from_user(ctl_buf, 2026 (void __user __force *)msg_sys->msg_control, 2027 ctl_len)) 2028 goto out_freectl; 2029 msg_sys->msg_control = ctl_buf; 2030 } 2031 msg_sys->msg_flags = flags; 2032 2033 if (sock->file->f_flags & O_NONBLOCK) 2034 msg_sys->msg_flags |= MSG_DONTWAIT; 2035 /* 2036 * If this is sendmmsg() and current destination address is same as 2037 * previously succeeded address, omit asking LSM's decision. 2038 * used_address->name_len is initialized to UINT_MAX so that the first 2039 * destination address never matches. 2040 */ 2041 if (used_address && msg_sys->msg_name && 2042 used_address->name_len == msg_sys->msg_namelen && 2043 !memcmp(&used_address->name, msg_sys->msg_name, 2044 used_address->name_len)) { 2045 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2046 goto out_freectl; 2047 } 2048 err = sock_sendmsg(sock, msg_sys, total_len); 2049 /* 2050 * If this is sendmmsg() and sending to current destination address was 2051 * successful, remember it. 2052 */ 2053 if (used_address && err >= 0) { 2054 used_address->name_len = msg_sys->msg_namelen; 2055 if (msg_sys->msg_name) 2056 memcpy(&used_address->name, msg_sys->msg_name, 2057 used_address->name_len); 2058 } 2059 2060 out_freectl: 2061 if (ctl_buf != ctl) 2062 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2063 out_freeiov: 2064 if (iov != iovstack) 2065 kfree(iov); 2066 out: 2067 return err; 2068 } 2069 2070 /* 2071 * BSD sendmsg interface 2072 */ 2073 2074 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 2075 { 2076 int fput_needed, err; 2077 struct msghdr msg_sys; 2078 struct socket *sock; 2079 2080 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2081 if (!sock) 2082 goto out; 2083 2084 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2085 2086 fput_light(sock->file, fput_needed); 2087 out: 2088 return err; 2089 } 2090 2091 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2092 { 2093 if (flags & MSG_CMSG_COMPAT) 2094 return -EINVAL; 2095 return __sys_sendmsg(fd, msg, flags); 2096 } 2097 2098 /* 2099 * Linux sendmmsg interface 2100 */ 2101 2102 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2103 unsigned int flags) 2104 { 2105 int fput_needed, err, datagrams; 2106 struct socket *sock; 2107 struct mmsghdr __user *entry; 2108 struct compat_mmsghdr __user *compat_entry; 2109 struct msghdr msg_sys; 2110 struct used_address used_address; 2111 2112 if (vlen > UIO_MAXIOV) 2113 vlen = UIO_MAXIOV; 2114 2115 datagrams = 0; 2116 2117 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2118 if (!sock) 2119 return err; 2120 2121 used_address.name_len = UINT_MAX; 2122 entry = mmsg; 2123 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2124 err = 0; 2125 2126 while (datagrams < vlen) { 2127 if (MSG_CMSG_COMPAT & flags) { 2128 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2129 &msg_sys, flags, &used_address); 2130 if (err < 0) 2131 break; 2132 err = __put_user(err, &compat_entry->msg_len); 2133 ++compat_entry; 2134 } else { 2135 err = ___sys_sendmsg(sock, 2136 (struct msghdr __user *)entry, 2137 &msg_sys, flags, &used_address); 2138 if (err < 0) 2139 break; 2140 err = put_user(err, &entry->msg_len); 2141 ++entry; 2142 } 2143 2144 if (err) 2145 break; 2146 ++datagrams; 2147 } 2148 2149 fput_light(sock->file, fput_needed); 2150 2151 /* We only return an error if no datagrams were able to be sent */ 2152 if (datagrams != 0) 2153 return datagrams; 2154 2155 return err; 2156 } 2157 2158 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2159 unsigned int, vlen, unsigned int, flags) 2160 { 2161 if (flags & MSG_CMSG_COMPAT) 2162 return -EINVAL; 2163 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2164 } 2165 2166 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2167 struct msghdr *msg_sys, unsigned int flags, int nosec) 2168 { 2169 struct compat_msghdr __user *msg_compat = 2170 (struct compat_msghdr __user *)msg; 2171 struct iovec iovstack[UIO_FASTIOV]; 2172 struct iovec *iov = iovstack; 2173 unsigned long cmsg_ptr; 2174 int err, total_len, len; 2175 2176 /* kernel mode address */ 2177 struct sockaddr_storage addr; 2178 2179 /* user mode address pointers */ 2180 struct sockaddr __user *uaddr; 2181 int __user *uaddr_len; 2182 2183 if (MSG_CMSG_COMPAT & flags) { 2184 if (get_compat_msghdr(msg_sys, msg_compat)) 2185 return -EFAULT; 2186 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2187 return -EFAULT; 2188 2189 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2190 err = -EMSGSIZE; 2191 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2192 goto out; 2193 err = -ENOMEM; 2194 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2195 GFP_KERNEL); 2196 if (!iov) 2197 goto out; 2198 } 2199 2200 /* 2201 * Save the user-mode address (verify_iovec will change the 2202 * kernel msghdr to use the kernel address space) 2203 */ 2204 2205 uaddr = (__force void __user *)msg_sys->msg_name; 2206 uaddr_len = COMPAT_NAMELEN(msg); 2207 if (MSG_CMSG_COMPAT & flags) { 2208 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2209 } else 2210 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2211 if (err < 0) 2212 goto out_freeiov; 2213 total_len = err; 2214 2215 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2216 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2217 2218 if (sock->file->f_flags & O_NONBLOCK) 2219 flags |= MSG_DONTWAIT; 2220 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2221 total_len, flags); 2222 if (err < 0) 2223 goto out_freeiov; 2224 len = err; 2225 2226 if (uaddr != NULL) { 2227 err = move_addr_to_user(&addr, 2228 msg_sys->msg_namelen, uaddr, 2229 uaddr_len); 2230 if (err < 0) 2231 goto out_freeiov; 2232 } 2233 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2234 COMPAT_FLAGS(msg)); 2235 if (err) 2236 goto out_freeiov; 2237 if (MSG_CMSG_COMPAT & flags) 2238 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2239 &msg_compat->msg_controllen); 2240 else 2241 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2242 &msg->msg_controllen); 2243 if (err) 2244 goto out_freeiov; 2245 err = len; 2246 2247 out_freeiov: 2248 if (iov != iovstack) 2249 kfree(iov); 2250 out: 2251 return err; 2252 } 2253 2254 /* 2255 * BSD recvmsg interface 2256 */ 2257 2258 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags) 2259 { 2260 int fput_needed, err; 2261 struct msghdr msg_sys; 2262 struct socket *sock; 2263 2264 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2265 if (!sock) 2266 goto out; 2267 2268 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2269 2270 fput_light(sock->file, fput_needed); 2271 out: 2272 return err; 2273 } 2274 2275 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2276 unsigned int, flags) 2277 { 2278 if (flags & MSG_CMSG_COMPAT) 2279 return -EINVAL; 2280 return __sys_recvmsg(fd, msg, flags); 2281 } 2282 2283 /* 2284 * Linux recvmmsg interface 2285 */ 2286 2287 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2288 unsigned int flags, struct timespec *timeout) 2289 { 2290 int fput_needed, err, datagrams; 2291 struct socket *sock; 2292 struct mmsghdr __user *entry; 2293 struct compat_mmsghdr __user *compat_entry; 2294 struct msghdr msg_sys; 2295 struct timespec end_time; 2296 2297 if (timeout && 2298 poll_select_set_timeout(&end_time, timeout->tv_sec, 2299 timeout->tv_nsec)) 2300 return -EINVAL; 2301 2302 datagrams = 0; 2303 2304 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2305 if (!sock) 2306 return err; 2307 2308 err = sock_error(sock->sk); 2309 if (err) 2310 goto out_put; 2311 2312 entry = mmsg; 2313 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2314 2315 while (datagrams < vlen) { 2316 /* 2317 * No need to ask LSM for more than the first datagram. 2318 */ 2319 if (MSG_CMSG_COMPAT & flags) { 2320 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2321 &msg_sys, flags & ~MSG_WAITFORONE, 2322 datagrams); 2323 if (err < 0) 2324 break; 2325 err = __put_user(err, &compat_entry->msg_len); 2326 ++compat_entry; 2327 } else { 2328 err = ___sys_recvmsg(sock, 2329 (struct msghdr __user *)entry, 2330 &msg_sys, flags & ~MSG_WAITFORONE, 2331 datagrams); 2332 if (err < 0) 2333 break; 2334 err = put_user(err, &entry->msg_len); 2335 ++entry; 2336 } 2337 2338 if (err) 2339 break; 2340 ++datagrams; 2341 2342 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2343 if (flags & MSG_WAITFORONE) 2344 flags |= MSG_DONTWAIT; 2345 2346 if (timeout) { 2347 ktime_get_ts(timeout); 2348 *timeout = timespec_sub(end_time, *timeout); 2349 if (timeout->tv_sec < 0) { 2350 timeout->tv_sec = timeout->tv_nsec = 0; 2351 break; 2352 } 2353 2354 /* Timeout, return less than vlen datagrams */ 2355 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2356 break; 2357 } 2358 2359 /* Out of band data, return right away */ 2360 if (msg_sys.msg_flags & MSG_OOB) 2361 break; 2362 } 2363 2364 out_put: 2365 fput_light(sock->file, fput_needed); 2366 2367 if (err == 0) 2368 return datagrams; 2369 2370 if (datagrams != 0) { 2371 /* 2372 * We may return less entries than requested (vlen) if the 2373 * sock is non block and there aren't enough datagrams... 2374 */ 2375 if (err != -EAGAIN) { 2376 /* 2377 * ... or if recvmsg returns an error after we 2378 * received some datagrams, where we record the 2379 * error to return on the next call or if the 2380 * app asks about it using getsockopt(SO_ERROR). 2381 */ 2382 sock->sk->sk_err = -err; 2383 } 2384 2385 return datagrams; 2386 } 2387 2388 return err; 2389 } 2390 2391 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2392 unsigned int, vlen, unsigned int, flags, 2393 struct timespec __user *, timeout) 2394 { 2395 int datagrams; 2396 struct timespec timeout_sys; 2397 2398 if (flags & MSG_CMSG_COMPAT) 2399 return -EINVAL; 2400 2401 if (!timeout) 2402 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2403 2404 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2405 return -EFAULT; 2406 2407 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2408 2409 if (datagrams > 0 && 2410 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2411 datagrams = -EFAULT; 2412 2413 return datagrams; 2414 } 2415 2416 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2417 /* Argument list sizes for sys_socketcall */ 2418 #define AL(x) ((x) * sizeof(unsigned long)) 2419 static const unsigned char nargs[21] = { 2420 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2421 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2422 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2423 AL(4), AL(5), AL(4) 2424 }; 2425 2426 #undef AL 2427 2428 /* 2429 * System call vectors. 2430 * 2431 * Argument checking cleaned up. Saved 20% in size. 2432 * This function doesn't need to set the kernel lock because 2433 * it is set by the callees. 2434 */ 2435 2436 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2437 { 2438 unsigned long a[AUDITSC_ARGS]; 2439 unsigned long a0, a1; 2440 int err; 2441 unsigned int len; 2442 2443 if (call < 1 || call > SYS_SENDMMSG) 2444 return -EINVAL; 2445 2446 len = nargs[call]; 2447 if (len > sizeof(a)) 2448 return -EINVAL; 2449 2450 /* copy_from_user should be SMP safe. */ 2451 if (copy_from_user(a, args, len)) 2452 return -EFAULT; 2453 2454 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2455 if (err) 2456 return err; 2457 2458 a0 = a[0]; 2459 a1 = a[1]; 2460 2461 switch (call) { 2462 case SYS_SOCKET: 2463 err = sys_socket(a0, a1, a[2]); 2464 break; 2465 case SYS_BIND: 2466 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2467 break; 2468 case SYS_CONNECT: 2469 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2470 break; 2471 case SYS_LISTEN: 2472 err = sys_listen(a0, a1); 2473 break; 2474 case SYS_ACCEPT: 2475 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2476 (int __user *)a[2], 0); 2477 break; 2478 case SYS_GETSOCKNAME: 2479 err = 2480 sys_getsockname(a0, (struct sockaddr __user *)a1, 2481 (int __user *)a[2]); 2482 break; 2483 case SYS_GETPEERNAME: 2484 err = 2485 sys_getpeername(a0, (struct sockaddr __user *)a1, 2486 (int __user *)a[2]); 2487 break; 2488 case SYS_SOCKETPAIR: 2489 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2490 break; 2491 case SYS_SEND: 2492 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2493 break; 2494 case SYS_SENDTO: 2495 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2496 (struct sockaddr __user *)a[4], a[5]); 2497 break; 2498 case SYS_RECV: 2499 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2500 break; 2501 case SYS_RECVFROM: 2502 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2503 (struct sockaddr __user *)a[4], 2504 (int __user *)a[5]); 2505 break; 2506 case SYS_SHUTDOWN: 2507 err = sys_shutdown(a0, a1); 2508 break; 2509 case SYS_SETSOCKOPT: 2510 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2511 break; 2512 case SYS_GETSOCKOPT: 2513 err = 2514 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2515 (int __user *)a[4]); 2516 break; 2517 case SYS_SENDMSG: 2518 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2519 break; 2520 case SYS_SENDMMSG: 2521 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2522 break; 2523 case SYS_RECVMSG: 2524 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2525 break; 2526 case SYS_RECVMMSG: 2527 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2528 (struct timespec __user *)a[4]); 2529 break; 2530 case SYS_ACCEPT4: 2531 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2532 (int __user *)a[2], a[3]); 2533 break; 2534 default: 2535 err = -EINVAL; 2536 break; 2537 } 2538 return err; 2539 } 2540 2541 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2542 2543 /** 2544 * sock_register - add a socket protocol handler 2545 * @ops: description of protocol 2546 * 2547 * This function is called by a protocol handler that wants to 2548 * advertise its address family, and have it linked into the 2549 * socket interface. The value ops->family coresponds to the 2550 * socket system call protocol family. 2551 */ 2552 int sock_register(const struct net_proto_family *ops) 2553 { 2554 int err; 2555 2556 if (ops->family >= NPROTO) { 2557 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2558 NPROTO); 2559 return -ENOBUFS; 2560 } 2561 2562 spin_lock(&net_family_lock); 2563 if (rcu_dereference_protected(net_families[ops->family], 2564 lockdep_is_held(&net_family_lock))) 2565 err = -EEXIST; 2566 else { 2567 rcu_assign_pointer(net_families[ops->family], ops); 2568 err = 0; 2569 } 2570 spin_unlock(&net_family_lock); 2571 2572 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2573 return err; 2574 } 2575 EXPORT_SYMBOL(sock_register); 2576 2577 /** 2578 * sock_unregister - remove a protocol handler 2579 * @family: protocol family to remove 2580 * 2581 * This function is called by a protocol handler that wants to 2582 * remove its address family, and have it unlinked from the 2583 * new socket creation. 2584 * 2585 * If protocol handler is a module, then it can use module reference 2586 * counts to protect against new references. If protocol handler is not 2587 * a module then it needs to provide its own protection in 2588 * the ops->create routine. 2589 */ 2590 void sock_unregister(int family) 2591 { 2592 BUG_ON(family < 0 || family >= NPROTO); 2593 2594 spin_lock(&net_family_lock); 2595 RCU_INIT_POINTER(net_families[family], NULL); 2596 spin_unlock(&net_family_lock); 2597 2598 synchronize_rcu(); 2599 2600 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2601 } 2602 EXPORT_SYMBOL(sock_unregister); 2603 2604 static int __init sock_init(void) 2605 { 2606 int err; 2607 /* 2608 * Initialize the network sysctl infrastructure. 2609 */ 2610 err = net_sysctl_init(); 2611 if (err) 2612 goto out; 2613 2614 /* 2615 * Initialize skbuff SLAB cache 2616 */ 2617 skb_init(); 2618 2619 /* 2620 * Initialize the protocols module. 2621 */ 2622 2623 init_inodecache(); 2624 2625 err = register_filesystem(&sock_fs_type); 2626 if (err) 2627 goto out_fs; 2628 sock_mnt = kern_mount(&sock_fs_type); 2629 if (IS_ERR(sock_mnt)) { 2630 err = PTR_ERR(sock_mnt); 2631 goto out_mount; 2632 } 2633 2634 /* The real protocol initialization is performed in later initcalls. 2635 */ 2636 2637 #ifdef CONFIG_NETFILTER 2638 netfilter_init(); 2639 #endif 2640 2641 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2642 skb_timestamping_init(); 2643 #endif 2644 2645 out: 2646 return err; 2647 2648 out_mount: 2649 unregister_filesystem(&sock_fs_type); 2650 out_fs: 2651 goto out; 2652 } 2653 2654 core_initcall(sock_init); /* early initcall */ 2655 2656 #ifdef CONFIG_PROC_FS 2657 void socket_seq_show(struct seq_file *seq) 2658 { 2659 int cpu; 2660 int counter = 0; 2661 2662 for_each_possible_cpu(cpu) 2663 counter += per_cpu(sockets_in_use, cpu); 2664 2665 /* It can be negative, by the way. 8) */ 2666 if (counter < 0) 2667 counter = 0; 2668 2669 seq_printf(seq, "sockets: used %d\n", counter); 2670 } 2671 #endif /* CONFIG_PROC_FS */ 2672 2673 #ifdef CONFIG_COMPAT 2674 static int do_siocgstamp(struct net *net, struct socket *sock, 2675 unsigned int cmd, void __user *up) 2676 { 2677 mm_segment_t old_fs = get_fs(); 2678 struct timeval ktv; 2679 int err; 2680 2681 set_fs(KERNEL_DS); 2682 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2683 set_fs(old_fs); 2684 if (!err) 2685 err = compat_put_timeval(&ktv, up); 2686 2687 return err; 2688 } 2689 2690 static int do_siocgstampns(struct net *net, struct socket *sock, 2691 unsigned int cmd, void __user *up) 2692 { 2693 mm_segment_t old_fs = get_fs(); 2694 struct timespec kts; 2695 int err; 2696 2697 set_fs(KERNEL_DS); 2698 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2699 set_fs(old_fs); 2700 if (!err) 2701 err = compat_put_timespec(&kts, up); 2702 2703 return err; 2704 } 2705 2706 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2707 { 2708 struct ifreq __user *uifr; 2709 int err; 2710 2711 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2712 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2713 return -EFAULT; 2714 2715 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2716 if (err) 2717 return err; 2718 2719 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2720 return -EFAULT; 2721 2722 return 0; 2723 } 2724 2725 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2726 { 2727 struct compat_ifconf ifc32; 2728 struct ifconf ifc; 2729 struct ifconf __user *uifc; 2730 struct compat_ifreq __user *ifr32; 2731 struct ifreq __user *ifr; 2732 unsigned int i, j; 2733 int err; 2734 2735 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2736 return -EFAULT; 2737 2738 memset(&ifc, 0, sizeof(ifc)); 2739 if (ifc32.ifcbuf == 0) { 2740 ifc32.ifc_len = 0; 2741 ifc.ifc_len = 0; 2742 ifc.ifc_req = NULL; 2743 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2744 } else { 2745 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2746 sizeof(struct ifreq); 2747 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2748 ifc.ifc_len = len; 2749 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2750 ifr32 = compat_ptr(ifc32.ifcbuf); 2751 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2752 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2753 return -EFAULT; 2754 ifr++; 2755 ifr32++; 2756 } 2757 } 2758 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2759 return -EFAULT; 2760 2761 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2762 if (err) 2763 return err; 2764 2765 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2766 return -EFAULT; 2767 2768 ifr = ifc.ifc_req; 2769 ifr32 = compat_ptr(ifc32.ifcbuf); 2770 for (i = 0, j = 0; 2771 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2772 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2773 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2774 return -EFAULT; 2775 ifr32++; 2776 ifr++; 2777 } 2778 2779 if (ifc32.ifcbuf == 0) { 2780 /* Translate from 64-bit structure multiple to 2781 * a 32-bit one. 2782 */ 2783 i = ifc.ifc_len; 2784 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2785 ifc32.ifc_len = i; 2786 } else { 2787 ifc32.ifc_len = i; 2788 } 2789 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2790 return -EFAULT; 2791 2792 return 0; 2793 } 2794 2795 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2796 { 2797 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2798 bool convert_in = false, convert_out = false; 2799 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2800 struct ethtool_rxnfc __user *rxnfc; 2801 struct ifreq __user *ifr; 2802 u32 rule_cnt = 0, actual_rule_cnt; 2803 u32 ethcmd; 2804 u32 data; 2805 int ret; 2806 2807 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2808 return -EFAULT; 2809 2810 compat_rxnfc = compat_ptr(data); 2811 2812 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2813 return -EFAULT; 2814 2815 /* Most ethtool structures are defined without padding. 2816 * Unfortunately struct ethtool_rxnfc is an exception. 2817 */ 2818 switch (ethcmd) { 2819 default: 2820 break; 2821 case ETHTOOL_GRXCLSRLALL: 2822 /* Buffer size is variable */ 2823 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2824 return -EFAULT; 2825 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2826 return -ENOMEM; 2827 buf_size += rule_cnt * sizeof(u32); 2828 /* fall through */ 2829 case ETHTOOL_GRXRINGS: 2830 case ETHTOOL_GRXCLSRLCNT: 2831 case ETHTOOL_GRXCLSRULE: 2832 case ETHTOOL_SRXCLSRLINS: 2833 convert_out = true; 2834 /* fall through */ 2835 case ETHTOOL_SRXCLSRLDEL: 2836 buf_size += sizeof(struct ethtool_rxnfc); 2837 convert_in = true; 2838 break; 2839 } 2840 2841 ifr = compat_alloc_user_space(buf_size); 2842 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2843 2844 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2845 return -EFAULT; 2846 2847 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2848 &ifr->ifr_ifru.ifru_data)) 2849 return -EFAULT; 2850 2851 if (convert_in) { 2852 /* We expect there to be holes between fs.m_ext and 2853 * fs.ring_cookie and at the end of fs, but nowhere else. 2854 */ 2855 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2856 sizeof(compat_rxnfc->fs.m_ext) != 2857 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2858 sizeof(rxnfc->fs.m_ext)); 2859 BUILD_BUG_ON( 2860 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2861 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2862 offsetof(struct ethtool_rxnfc, fs.location) - 2863 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2864 2865 if (copy_in_user(rxnfc, compat_rxnfc, 2866 (void __user *)(&rxnfc->fs.m_ext + 1) - 2867 (void __user *)rxnfc) || 2868 copy_in_user(&rxnfc->fs.ring_cookie, 2869 &compat_rxnfc->fs.ring_cookie, 2870 (void __user *)(&rxnfc->fs.location + 1) - 2871 (void __user *)&rxnfc->fs.ring_cookie) || 2872 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2873 sizeof(rxnfc->rule_cnt))) 2874 return -EFAULT; 2875 } 2876 2877 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2878 if (ret) 2879 return ret; 2880 2881 if (convert_out) { 2882 if (copy_in_user(compat_rxnfc, rxnfc, 2883 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2884 (const void __user *)rxnfc) || 2885 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2886 &rxnfc->fs.ring_cookie, 2887 (const void __user *)(&rxnfc->fs.location + 1) - 2888 (const void __user *)&rxnfc->fs.ring_cookie) || 2889 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2890 sizeof(rxnfc->rule_cnt))) 2891 return -EFAULT; 2892 2893 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2894 /* As an optimisation, we only copy the actual 2895 * number of rules that the underlying 2896 * function returned. Since Mallory might 2897 * change the rule count in user memory, we 2898 * check that it is less than the rule count 2899 * originally given (as the user buffer size), 2900 * which has been range-checked. 2901 */ 2902 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2903 return -EFAULT; 2904 if (actual_rule_cnt < rule_cnt) 2905 rule_cnt = actual_rule_cnt; 2906 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2907 &rxnfc->rule_locs[0], 2908 rule_cnt * sizeof(u32))) 2909 return -EFAULT; 2910 } 2911 } 2912 2913 return 0; 2914 } 2915 2916 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2917 { 2918 void __user *uptr; 2919 compat_uptr_t uptr32; 2920 struct ifreq __user *uifr; 2921 2922 uifr = compat_alloc_user_space(sizeof(*uifr)); 2923 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2924 return -EFAULT; 2925 2926 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2927 return -EFAULT; 2928 2929 uptr = compat_ptr(uptr32); 2930 2931 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2932 return -EFAULT; 2933 2934 return dev_ioctl(net, SIOCWANDEV, uifr); 2935 } 2936 2937 static int bond_ioctl(struct net *net, unsigned int cmd, 2938 struct compat_ifreq __user *ifr32) 2939 { 2940 struct ifreq kifr; 2941 struct ifreq __user *uifr; 2942 mm_segment_t old_fs; 2943 int err; 2944 u32 data; 2945 void __user *datap; 2946 2947 switch (cmd) { 2948 case SIOCBONDENSLAVE: 2949 case SIOCBONDRELEASE: 2950 case SIOCBONDSETHWADDR: 2951 case SIOCBONDCHANGEACTIVE: 2952 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2953 return -EFAULT; 2954 2955 old_fs = get_fs(); 2956 set_fs(KERNEL_DS); 2957 err = dev_ioctl(net, cmd, 2958 (struct ifreq __user __force *) &kifr); 2959 set_fs(old_fs); 2960 2961 return err; 2962 case SIOCBONDSLAVEINFOQUERY: 2963 case SIOCBONDINFOQUERY: 2964 uifr = compat_alloc_user_space(sizeof(*uifr)); 2965 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2966 return -EFAULT; 2967 2968 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2969 return -EFAULT; 2970 2971 datap = compat_ptr(data); 2972 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2973 return -EFAULT; 2974 2975 return dev_ioctl(net, cmd, uifr); 2976 default: 2977 return -ENOIOCTLCMD; 2978 } 2979 } 2980 2981 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2982 struct compat_ifreq __user *u_ifreq32) 2983 { 2984 struct ifreq __user *u_ifreq64; 2985 char tmp_buf[IFNAMSIZ]; 2986 void __user *data64; 2987 u32 data32; 2988 2989 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2990 IFNAMSIZ)) 2991 return -EFAULT; 2992 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2993 return -EFAULT; 2994 data64 = compat_ptr(data32); 2995 2996 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2997 2998 /* Don't check these user accesses, just let that get trapped 2999 * in the ioctl handler instead. 3000 */ 3001 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3002 IFNAMSIZ)) 3003 return -EFAULT; 3004 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3005 return -EFAULT; 3006 3007 return dev_ioctl(net, cmd, u_ifreq64); 3008 } 3009 3010 static int dev_ifsioc(struct net *net, struct socket *sock, 3011 unsigned int cmd, struct compat_ifreq __user *uifr32) 3012 { 3013 struct ifreq __user *uifr; 3014 int err; 3015 3016 uifr = compat_alloc_user_space(sizeof(*uifr)); 3017 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3018 return -EFAULT; 3019 3020 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3021 3022 if (!err) { 3023 switch (cmd) { 3024 case SIOCGIFFLAGS: 3025 case SIOCGIFMETRIC: 3026 case SIOCGIFMTU: 3027 case SIOCGIFMEM: 3028 case SIOCGIFHWADDR: 3029 case SIOCGIFINDEX: 3030 case SIOCGIFADDR: 3031 case SIOCGIFBRDADDR: 3032 case SIOCGIFDSTADDR: 3033 case SIOCGIFNETMASK: 3034 case SIOCGIFPFLAGS: 3035 case SIOCGIFTXQLEN: 3036 case SIOCGMIIPHY: 3037 case SIOCGMIIREG: 3038 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3039 err = -EFAULT; 3040 break; 3041 } 3042 } 3043 return err; 3044 } 3045 3046 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3047 struct compat_ifreq __user *uifr32) 3048 { 3049 struct ifreq ifr; 3050 struct compat_ifmap __user *uifmap32; 3051 mm_segment_t old_fs; 3052 int err; 3053 3054 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3055 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3056 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3057 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3058 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3059 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 3060 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 3061 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 3062 if (err) 3063 return -EFAULT; 3064 3065 old_fs = get_fs(); 3066 set_fs(KERNEL_DS); 3067 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3068 set_fs(old_fs); 3069 3070 if (cmd == SIOCGIFMAP && !err) { 3071 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3072 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3073 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3074 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3075 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 3076 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 3077 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 3078 if (err) 3079 err = -EFAULT; 3080 } 3081 return err; 3082 } 3083 3084 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 3085 { 3086 void __user *uptr; 3087 compat_uptr_t uptr32; 3088 struct ifreq __user *uifr; 3089 3090 uifr = compat_alloc_user_space(sizeof(*uifr)); 3091 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 3092 return -EFAULT; 3093 3094 if (get_user(uptr32, &uifr32->ifr_data)) 3095 return -EFAULT; 3096 3097 uptr = compat_ptr(uptr32); 3098 3099 if (put_user(uptr, &uifr->ifr_data)) 3100 return -EFAULT; 3101 3102 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 3103 } 3104 3105 struct rtentry32 { 3106 u32 rt_pad1; 3107 struct sockaddr rt_dst; /* target address */ 3108 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3109 struct sockaddr rt_genmask; /* target network mask (IP) */ 3110 unsigned short rt_flags; 3111 short rt_pad2; 3112 u32 rt_pad3; 3113 unsigned char rt_tos; 3114 unsigned char rt_class; 3115 short rt_pad4; 3116 short rt_metric; /* +1 for binary compatibility! */ 3117 /* char * */ u32 rt_dev; /* forcing the device at add */ 3118 u32 rt_mtu; /* per route MTU/Window */ 3119 u32 rt_window; /* Window clamping */ 3120 unsigned short rt_irtt; /* Initial RTT */ 3121 }; 3122 3123 struct in6_rtmsg32 { 3124 struct in6_addr rtmsg_dst; 3125 struct in6_addr rtmsg_src; 3126 struct in6_addr rtmsg_gateway; 3127 u32 rtmsg_type; 3128 u16 rtmsg_dst_len; 3129 u16 rtmsg_src_len; 3130 u32 rtmsg_metric; 3131 u32 rtmsg_info; 3132 u32 rtmsg_flags; 3133 s32 rtmsg_ifindex; 3134 }; 3135 3136 static int routing_ioctl(struct net *net, struct socket *sock, 3137 unsigned int cmd, void __user *argp) 3138 { 3139 int ret; 3140 void *r = NULL; 3141 struct in6_rtmsg r6; 3142 struct rtentry r4; 3143 char devname[16]; 3144 u32 rtdev; 3145 mm_segment_t old_fs = get_fs(); 3146 3147 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3148 struct in6_rtmsg32 __user *ur6 = argp; 3149 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3150 3 * sizeof(struct in6_addr)); 3151 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3152 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3153 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3154 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3155 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3156 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3157 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3158 3159 r = (void *) &r6; 3160 } else { /* ipv4 */ 3161 struct rtentry32 __user *ur4 = argp; 3162 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3163 3 * sizeof(struct sockaddr)); 3164 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 3165 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 3166 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3167 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 3168 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3169 ret |= __get_user(rtdev, &(ur4->rt_dev)); 3170 if (rtdev) { 3171 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3172 r4.rt_dev = (char __user __force *)devname; 3173 devname[15] = 0; 3174 } else 3175 r4.rt_dev = NULL; 3176 3177 r = (void *) &r4; 3178 } 3179 3180 if (ret) { 3181 ret = -EFAULT; 3182 goto out; 3183 } 3184 3185 set_fs(KERNEL_DS); 3186 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3187 set_fs(old_fs); 3188 3189 out: 3190 return ret; 3191 } 3192 3193 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3194 * for some operations; this forces use of the newer bridge-utils that 3195 * use compatible ioctls 3196 */ 3197 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3198 { 3199 compat_ulong_t tmp; 3200 3201 if (get_user(tmp, argp)) 3202 return -EFAULT; 3203 if (tmp == BRCTL_GET_VERSION) 3204 return BRCTL_VERSION + 1; 3205 return -EINVAL; 3206 } 3207 3208 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3209 unsigned int cmd, unsigned long arg) 3210 { 3211 void __user *argp = compat_ptr(arg); 3212 struct sock *sk = sock->sk; 3213 struct net *net = sock_net(sk); 3214 3215 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3216 return siocdevprivate_ioctl(net, cmd, argp); 3217 3218 switch (cmd) { 3219 case SIOCSIFBR: 3220 case SIOCGIFBR: 3221 return old_bridge_ioctl(argp); 3222 case SIOCGIFNAME: 3223 return dev_ifname32(net, argp); 3224 case SIOCGIFCONF: 3225 return dev_ifconf(net, argp); 3226 case SIOCETHTOOL: 3227 return ethtool_ioctl(net, argp); 3228 case SIOCWANDEV: 3229 return compat_siocwandev(net, argp); 3230 case SIOCGIFMAP: 3231 case SIOCSIFMAP: 3232 return compat_sioc_ifmap(net, cmd, argp); 3233 case SIOCBONDENSLAVE: 3234 case SIOCBONDRELEASE: 3235 case SIOCBONDSETHWADDR: 3236 case SIOCBONDSLAVEINFOQUERY: 3237 case SIOCBONDINFOQUERY: 3238 case SIOCBONDCHANGEACTIVE: 3239 return bond_ioctl(net, cmd, argp); 3240 case SIOCADDRT: 3241 case SIOCDELRT: 3242 return routing_ioctl(net, sock, cmd, argp); 3243 case SIOCGSTAMP: 3244 return do_siocgstamp(net, sock, cmd, argp); 3245 case SIOCGSTAMPNS: 3246 return do_siocgstampns(net, sock, cmd, argp); 3247 case SIOCSHWTSTAMP: 3248 return compat_siocshwtstamp(net, argp); 3249 3250 case FIOSETOWN: 3251 case SIOCSPGRP: 3252 case FIOGETOWN: 3253 case SIOCGPGRP: 3254 case SIOCBRADDBR: 3255 case SIOCBRDELBR: 3256 case SIOCGIFVLAN: 3257 case SIOCSIFVLAN: 3258 case SIOCADDDLCI: 3259 case SIOCDELDLCI: 3260 return sock_ioctl(file, cmd, arg); 3261 3262 case SIOCGIFFLAGS: 3263 case SIOCSIFFLAGS: 3264 case SIOCGIFMETRIC: 3265 case SIOCSIFMETRIC: 3266 case SIOCGIFMTU: 3267 case SIOCSIFMTU: 3268 case SIOCGIFMEM: 3269 case SIOCSIFMEM: 3270 case SIOCGIFHWADDR: 3271 case SIOCSIFHWADDR: 3272 case SIOCADDMULTI: 3273 case SIOCDELMULTI: 3274 case SIOCGIFINDEX: 3275 case SIOCGIFADDR: 3276 case SIOCSIFADDR: 3277 case SIOCSIFHWBROADCAST: 3278 case SIOCDIFADDR: 3279 case SIOCGIFBRDADDR: 3280 case SIOCSIFBRDADDR: 3281 case SIOCGIFDSTADDR: 3282 case SIOCSIFDSTADDR: 3283 case SIOCGIFNETMASK: 3284 case SIOCSIFNETMASK: 3285 case SIOCSIFPFLAGS: 3286 case SIOCGIFPFLAGS: 3287 case SIOCGIFTXQLEN: 3288 case SIOCSIFTXQLEN: 3289 case SIOCBRADDIF: 3290 case SIOCBRDELIF: 3291 case SIOCSIFNAME: 3292 case SIOCGMIIPHY: 3293 case SIOCGMIIREG: 3294 case SIOCSMIIREG: 3295 return dev_ifsioc(net, sock, cmd, argp); 3296 3297 case SIOCSARP: 3298 case SIOCGARP: 3299 case SIOCDARP: 3300 case SIOCATMARK: 3301 return sock_do_ioctl(net, sock, cmd, arg); 3302 } 3303 3304 return -ENOIOCTLCMD; 3305 } 3306 3307 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3308 unsigned long arg) 3309 { 3310 struct socket *sock = file->private_data; 3311 int ret = -ENOIOCTLCMD; 3312 struct sock *sk; 3313 struct net *net; 3314 3315 sk = sock->sk; 3316 net = sock_net(sk); 3317 3318 if (sock->ops->compat_ioctl) 3319 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3320 3321 if (ret == -ENOIOCTLCMD && 3322 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3323 ret = compat_wext_handle_ioctl(net, cmd, arg); 3324 3325 if (ret == -ENOIOCTLCMD) 3326 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3327 3328 return ret; 3329 } 3330 #endif 3331 3332 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3333 { 3334 return sock->ops->bind(sock, addr, addrlen); 3335 } 3336 EXPORT_SYMBOL(kernel_bind); 3337 3338 int kernel_listen(struct socket *sock, int backlog) 3339 { 3340 return sock->ops->listen(sock, backlog); 3341 } 3342 EXPORT_SYMBOL(kernel_listen); 3343 3344 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3345 { 3346 struct sock *sk = sock->sk; 3347 int err; 3348 3349 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3350 newsock); 3351 if (err < 0) 3352 goto done; 3353 3354 err = sock->ops->accept(sock, *newsock, flags); 3355 if (err < 0) { 3356 sock_release(*newsock); 3357 *newsock = NULL; 3358 goto done; 3359 } 3360 3361 (*newsock)->ops = sock->ops; 3362 __module_get((*newsock)->ops->owner); 3363 3364 done: 3365 return err; 3366 } 3367 EXPORT_SYMBOL(kernel_accept); 3368 3369 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3370 int flags) 3371 { 3372 return sock->ops->connect(sock, addr, addrlen, flags); 3373 } 3374 EXPORT_SYMBOL(kernel_connect); 3375 3376 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3377 int *addrlen) 3378 { 3379 return sock->ops->getname(sock, addr, addrlen, 0); 3380 } 3381 EXPORT_SYMBOL(kernel_getsockname); 3382 3383 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3384 int *addrlen) 3385 { 3386 return sock->ops->getname(sock, addr, addrlen, 1); 3387 } 3388 EXPORT_SYMBOL(kernel_getpeername); 3389 3390 int kernel_getsockopt(struct socket *sock, int level, int optname, 3391 char *optval, int *optlen) 3392 { 3393 mm_segment_t oldfs = get_fs(); 3394 char __user *uoptval; 3395 int __user *uoptlen; 3396 int err; 3397 3398 uoptval = (char __user __force *) optval; 3399 uoptlen = (int __user __force *) optlen; 3400 3401 set_fs(KERNEL_DS); 3402 if (level == SOL_SOCKET) 3403 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3404 else 3405 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3406 uoptlen); 3407 set_fs(oldfs); 3408 return err; 3409 } 3410 EXPORT_SYMBOL(kernel_getsockopt); 3411 3412 int kernel_setsockopt(struct socket *sock, int level, int optname, 3413 char *optval, unsigned int optlen) 3414 { 3415 mm_segment_t oldfs = get_fs(); 3416 char __user *uoptval; 3417 int err; 3418 3419 uoptval = (char __user __force *) optval; 3420 3421 set_fs(KERNEL_DS); 3422 if (level == SOL_SOCKET) 3423 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3424 else 3425 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3426 optlen); 3427 set_fs(oldfs); 3428 return err; 3429 } 3430 EXPORT_SYMBOL(kernel_setsockopt); 3431 3432 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3433 size_t size, int flags) 3434 { 3435 if (sock->ops->sendpage) 3436 return sock->ops->sendpage(sock, page, offset, size, flags); 3437 3438 return sock_no_sendpage(sock, page, offset, size, flags); 3439 } 3440 EXPORT_SYMBOL(kernel_sendpage); 3441 3442 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3443 { 3444 mm_segment_t oldfs = get_fs(); 3445 int err; 3446 3447 set_fs(KERNEL_DS); 3448 err = sock->ops->ioctl(sock, cmd, arg); 3449 set_fs(oldfs); 3450 3451 return err; 3452 } 3453 EXPORT_SYMBOL(kernel_sock_ioctl); 3454 3455 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3456 { 3457 return sock->ops->shutdown(sock, how); 3458 } 3459 EXPORT_SYMBOL(kernel_sock_shutdown); 3460