xref: /openbmc/linux/net/socket.c (revision 2243acd5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90 
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93 
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97 
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100 
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109 #include <trace/events/sock.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 #ifdef CONFIG_PROC_FS
136 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
137 {
138 	struct socket *sock = f->private_data;
139 
140 	if (sock->ops->show_fdinfo)
141 		sock->ops->show_fdinfo(m, sock);
142 }
143 #else
144 #define sock_show_fdinfo NULL
145 #endif
146 
147 /*
148  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
149  *	in the operation structures but are done directly via the socketcall() multiplexor.
150  */
151 
152 static const struct file_operations socket_file_ops = {
153 	.owner =	THIS_MODULE,
154 	.llseek =	no_llseek,
155 	.read_iter =	sock_read_iter,
156 	.write_iter =	sock_write_iter,
157 	.poll =		sock_poll,
158 	.unlocked_ioctl = sock_ioctl,
159 #ifdef CONFIG_COMPAT
160 	.compat_ioctl = compat_sock_ioctl,
161 #endif
162 	.mmap =		sock_mmap,
163 	.release =	sock_close,
164 	.fasync =	sock_fasync,
165 	.sendpage =	sock_sendpage,
166 	.splice_write = generic_splice_sendpage,
167 	.splice_read =	sock_splice_read,
168 	.show_fdinfo =	sock_show_fdinfo,
169 };
170 
171 static const char * const pf_family_names[] = {
172 	[PF_UNSPEC]	= "PF_UNSPEC",
173 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
174 	[PF_INET]	= "PF_INET",
175 	[PF_AX25]	= "PF_AX25",
176 	[PF_IPX]	= "PF_IPX",
177 	[PF_APPLETALK]	= "PF_APPLETALK",
178 	[PF_NETROM]	= "PF_NETROM",
179 	[PF_BRIDGE]	= "PF_BRIDGE",
180 	[PF_ATMPVC]	= "PF_ATMPVC",
181 	[PF_X25]	= "PF_X25",
182 	[PF_INET6]	= "PF_INET6",
183 	[PF_ROSE]	= "PF_ROSE",
184 	[PF_DECnet]	= "PF_DECnet",
185 	[PF_NETBEUI]	= "PF_NETBEUI",
186 	[PF_SECURITY]	= "PF_SECURITY",
187 	[PF_KEY]	= "PF_KEY",
188 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
189 	[PF_PACKET]	= "PF_PACKET",
190 	[PF_ASH]	= "PF_ASH",
191 	[PF_ECONET]	= "PF_ECONET",
192 	[PF_ATMSVC]	= "PF_ATMSVC",
193 	[PF_RDS]	= "PF_RDS",
194 	[PF_SNA]	= "PF_SNA",
195 	[PF_IRDA]	= "PF_IRDA",
196 	[PF_PPPOX]	= "PF_PPPOX",
197 	[PF_WANPIPE]	= "PF_WANPIPE",
198 	[PF_LLC]	= "PF_LLC",
199 	[PF_IB]		= "PF_IB",
200 	[PF_MPLS]	= "PF_MPLS",
201 	[PF_CAN]	= "PF_CAN",
202 	[PF_TIPC]	= "PF_TIPC",
203 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
204 	[PF_IUCV]	= "PF_IUCV",
205 	[PF_RXRPC]	= "PF_RXRPC",
206 	[PF_ISDN]	= "PF_ISDN",
207 	[PF_PHONET]	= "PF_PHONET",
208 	[PF_IEEE802154]	= "PF_IEEE802154",
209 	[PF_CAIF]	= "PF_CAIF",
210 	[PF_ALG]	= "PF_ALG",
211 	[PF_NFC]	= "PF_NFC",
212 	[PF_VSOCK]	= "PF_VSOCK",
213 	[PF_KCM]	= "PF_KCM",
214 	[PF_QIPCRTR]	= "PF_QIPCRTR",
215 	[PF_SMC]	= "PF_SMC",
216 	[PF_XDP]	= "PF_XDP",
217 	[PF_MCTP]	= "PF_MCTP",
218 };
219 
220 /*
221  *	The protocol list. Each protocol is registered in here.
222  */
223 
224 static DEFINE_SPINLOCK(net_family_lock);
225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
226 
227 /*
228  * Support routines.
229  * Move socket addresses back and forth across the kernel/user
230  * divide and look after the messy bits.
231  */
232 
233 /**
234  *	move_addr_to_kernel	-	copy a socket address into kernel space
235  *	@uaddr: Address in user space
236  *	@kaddr: Address in kernel space
237  *	@ulen: Length in user space
238  *
239  *	The address is copied into kernel space. If the provided address is
240  *	too long an error code of -EINVAL is returned. If the copy gives
241  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
242  */
243 
244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
245 {
246 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
247 		return -EINVAL;
248 	if (ulen == 0)
249 		return 0;
250 	if (copy_from_user(kaddr, uaddr, ulen))
251 		return -EFAULT;
252 	return audit_sockaddr(ulen, kaddr);
253 }
254 
255 /**
256  *	move_addr_to_user	-	copy an address to user space
257  *	@kaddr: kernel space address
258  *	@klen: length of address in kernel
259  *	@uaddr: user space address
260  *	@ulen: pointer to user length field
261  *
262  *	The value pointed to by ulen on entry is the buffer length available.
263  *	This is overwritten with the buffer space used. -EINVAL is returned
264  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
265  *	is returned if either the buffer or the length field are not
266  *	accessible.
267  *	After copying the data up to the limit the user specifies, the true
268  *	length of the data is written over the length limit the user
269  *	specified. Zero is returned for a success.
270  */
271 
272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
273 			     void __user *uaddr, int __user *ulen)
274 {
275 	int err;
276 	int len;
277 
278 	BUG_ON(klen > sizeof(struct sockaddr_storage));
279 	err = get_user(len, ulen);
280 	if (err)
281 		return err;
282 	if (len > klen)
283 		len = klen;
284 	if (len < 0)
285 		return -EINVAL;
286 	if (len) {
287 		if (audit_sockaddr(klen, kaddr))
288 			return -ENOMEM;
289 		if (copy_to_user(uaddr, kaddr, len))
290 			return -EFAULT;
291 	}
292 	/*
293 	 *      "fromlen shall refer to the value before truncation.."
294 	 *                      1003.1g
295 	 */
296 	return __put_user(klen, ulen);
297 }
298 
299 static struct kmem_cache *sock_inode_cachep __ro_after_init;
300 
301 static struct inode *sock_alloc_inode(struct super_block *sb)
302 {
303 	struct socket_alloc *ei;
304 
305 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
306 	if (!ei)
307 		return NULL;
308 	init_waitqueue_head(&ei->socket.wq.wait);
309 	ei->socket.wq.fasync_list = NULL;
310 	ei->socket.wq.flags = 0;
311 
312 	ei->socket.state = SS_UNCONNECTED;
313 	ei->socket.flags = 0;
314 	ei->socket.ops = NULL;
315 	ei->socket.sk = NULL;
316 	ei->socket.file = NULL;
317 
318 	return &ei->vfs_inode;
319 }
320 
321 static void sock_free_inode(struct inode *inode)
322 {
323 	struct socket_alloc *ei;
324 
325 	ei = container_of(inode, struct socket_alloc, vfs_inode);
326 	kmem_cache_free(sock_inode_cachep, ei);
327 }
328 
329 static void init_once(void *foo)
330 {
331 	struct socket_alloc *ei = (struct socket_alloc *)foo;
332 
333 	inode_init_once(&ei->vfs_inode);
334 }
335 
336 static void init_inodecache(void)
337 {
338 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
339 					      sizeof(struct socket_alloc),
340 					      0,
341 					      (SLAB_HWCACHE_ALIGN |
342 					       SLAB_RECLAIM_ACCOUNT |
343 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
344 					      init_once);
345 	BUG_ON(sock_inode_cachep == NULL);
346 }
347 
348 static const struct super_operations sockfs_ops = {
349 	.alloc_inode	= sock_alloc_inode,
350 	.free_inode	= sock_free_inode,
351 	.statfs		= simple_statfs,
352 };
353 
354 /*
355  * sockfs_dname() is called from d_path().
356  */
357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
358 {
359 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
360 				d_inode(dentry)->i_ino);
361 }
362 
363 static const struct dentry_operations sockfs_dentry_operations = {
364 	.d_dname  = sockfs_dname,
365 };
366 
367 static int sockfs_xattr_get(const struct xattr_handler *handler,
368 			    struct dentry *dentry, struct inode *inode,
369 			    const char *suffix, void *value, size_t size)
370 {
371 	if (value) {
372 		if (dentry->d_name.len + 1 > size)
373 			return -ERANGE;
374 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
375 	}
376 	return dentry->d_name.len + 1;
377 }
378 
379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
382 
383 static const struct xattr_handler sockfs_xattr_handler = {
384 	.name = XATTR_NAME_SOCKPROTONAME,
385 	.get = sockfs_xattr_get,
386 };
387 
388 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
389 				     struct mnt_idmap *idmap,
390 				     struct dentry *dentry, struct inode *inode,
391 				     const char *suffix, const void *value,
392 				     size_t size, int flags)
393 {
394 	/* Handled by LSM. */
395 	return -EAGAIN;
396 }
397 
398 static const struct xattr_handler sockfs_security_xattr_handler = {
399 	.prefix = XATTR_SECURITY_PREFIX,
400 	.set = sockfs_security_xattr_set,
401 };
402 
403 static const struct xattr_handler *sockfs_xattr_handlers[] = {
404 	&sockfs_xattr_handler,
405 	&sockfs_security_xattr_handler,
406 	NULL
407 };
408 
409 static int sockfs_init_fs_context(struct fs_context *fc)
410 {
411 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
412 	if (!ctx)
413 		return -ENOMEM;
414 	ctx->ops = &sockfs_ops;
415 	ctx->dops = &sockfs_dentry_operations;
416 	ctx->xattr = sockfs_xattr_handlers;
417 	return 0;
418 }
419 
420 static struct vfsmount *sock_mnt __read_mostly;
421 
422 static struct file_system_type sock_fs_type = {
423 	.name =		"sockfs",
424 	.init_fs_context = sockfs_init_fs_context,
425 	.kill_sb =	kill_anon_super,
426 };
427 
428 /*
429  *	Obtains the first available file descriptor and sets it up for use.
430  *
431  *	These functions create file structures and maps them to fd space
432  *	of the current process. On success it returns file descriptor
433  *	and file struct implicitly stored in sock->file.
434  *	Note that another thread may close file descriptor before we return
435  *	from this function. We use the fact that now we do not refer
436  *	to socket after mapping. If one day we will need it, this
437  *	function will increment ref. count on file by 1.
438  *
439  *	In any case returned fd MAY BE not valid!
440  *	This race condition is unavoidable
441  *	with shared fd spaces, we cannot solve it inside kernel,
442  *	but we take care of internal coherence yet.
443  */
444 
445 /**
446  *	sock_alloc_file - Bind a &socket to a &file
447  *	@sock: socket
448  *	@flags: file status flags
449  *	@dname: protocol name
450  *
451  *	Returns the &file bound with @sock, implicitly storing it
452  *	in sock->file. If dname is %NULL, sets to "".
453  *
454  *	On failure @sock is released, and an ERR pointer is returned.
455  *
456  *	This function uses GFP_KERNEL internally.
457  */
458 
459 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
460 {
461 	struct file *file;
462 
463 	if (!dname)
464 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
465 
466 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
467 				O_RDWR | (flags & O_NONBLOCK),
468 				&socket_file_ops);
469 	if (IS_ERR(file)) {
470 		sock_release(sock);
471 		return file;
472 	}
473 
474 	sock->file = file;
475 	file->private_data = sock;
476 	stream_open(SOCK_INODE(sock), file);
477 	return file;
478 }
479 EXPORT_SYMBOL(sock_alloc_file);
480 
481 static int sock_map_fd(struct socket *sock, int flags)
482 {
483 	struct file *newfile;
484 	int fd = get_unused_fd_flags(flags);
485 	if (unlikely(fd < 0)) {
486 		sock_release(sock);
487 		return fd;
488 	}
489 
490 	newfile = sock_alloc_file(sock, flags, NULL);
491 	if (!IS_ERR(newfile)) {
492 		fd_install(fd, newfile);
493 		return fd;
494 	}
495 
496 	put_unused_fd(fd);
497 	return PTR_ERR(newfile);
498 }
499 
500 /**
501  *	sock_from_file - Return the &socket bounded to @file.
502  *	@file: file
503  *
504  *	On failure returns %NULL.
505  */
506 
507 struct socket *sock_from_file(struct file *file)
508 {
509 	if (file->f_op == &socket_file_ops)
510 		return file->private_data;	/* set in sock_alloc_file */
511 
512 	return NULL;
513 }
514 EXPORT_SYMBOL(sock_from_file);
515 
516 /**
517  *	sockfd_lookup - Go from a file number to its socket slot
518  *	@fd: file handle
519  *	@err: pointer to an error code return
520  *
521  *	The file handle passed in is locked and the socket it is bound
522  *	to is returned. If an error occurs the err pointer is overwritten
523  *	with a negative errno code and NULL is returned. The function checks
524  *	for both invalid handles and passing a handle which is not a socket.
525  *
526  *	On a success the socket object pointer is returned.
527  */
528 
529 struct socket *sockfd_lookup(int fd, int *err)
530 {
531 	struct file *file;
532 	struct socket *sock;
533 
534 	file = fget(fd);
535 	if (!file) {
536 		*err = -EBADF;
537 		return NULL;
538 	}
539 
540 	sock = sock_from_file(file);
541 	if (!sock) {
542 		*err = -ENOTSOCK;
543 		fput(file);
544 	}
545 	return sock;
546 }
547 EXPORT_SYMBOL(sockfd_lookup);
548 
549 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
550 {
551 	struct fd f = fdget(fd);
552 	struct socket *sock;
553 
554 	*err = -EBADF;
555 	if (f.file) {
556 		sock = sock_from_file(f.file);
557 		if (likely(sock)) {
558 			*fput_needed = f.flags & FDPUT_FPUT;
559 			return sock;
560 		}
561 		*err = -ENOTSOCK;
562 		fdput(f);
563 	}
564 	return NULL;
565 }
566 
567 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
568 				size_t size)
569 {
570 	ssize_t len;
571 	ssize_t used = 0;
572 
573 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
574 	if (len < 0)
575 		return len;
576 	used += len;
577 	if (buffer) {
578 		if (size < used)
579 			return -ERANGE;
580 		buffer += len;
581 	}
582 
583 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
584 	used += len;
585 	if (buffer) {
586 		if (size < used)
587 			return -ERANGE;
588 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
589 		buffer += len;
590 	}
591 
592 	return used;
593 }
594 
595 static int sockfs_setattr(struct mnt_idmap *idmap,
596 			  struct dentry *dentry, struct iattr *iattr)
597 {
598 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
599 
600 	if (!err && (iattr->ia_valid & ATTR_UID)) {
601 		struct socket *sock = SOCKET_I(d_inode(dentry));
602 
603 		if (sock->sk)
604 			sock->sk->sk_uid = iattr->ia_uid;
605 		else
606 			err = -ENOENT;
607 	}
608 
609 	return err;
610 }
611 
612 static const struct inode_operations sockfs_inode_ops = {
613 	.listxattr = sockfs_listxattr,
614 	.setattr = sockfs_setattr,
615 };
616 
617 /**
618  *	sock_alloc - allocate a socket
619  *
620  *	Allocate a new inode and socket object. The two are bound together
621  *	and initialised. The socket is then returned. If we are out of inodes
622  *	NULL is returned. This functions uses GFP_KERNEL internally.
623  */
624 
625 struct socket *sock_alloc(void)
626 {
627 	struct inode *inode;
628 	struct socket *sock;
629 
630 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
631 	if (!inode)
632 		return NULL;
633 
634 	sock = SOCKET_I(inode);
635 
636 	inode->i_ino = get_next_ino();
637 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
638 	inode->i_uid = current_fsuid();
639 	inode->i_gid = current_fsgid();
640 	inode->i_op = &sockfs_inode_ops;
641 
642 	return sock;
643 }
644 EXPORT_SYMBOL(sock_alloc);
645 
646 static void __sock_release(struct socket *sock, struct inode *inode)
647 {
648 	if (sock->ops) {
649 		struct module *owner = sock->ops->owner;
650 
651 		if (inode)
652 			inode_lock(inode);
653 		sock->ops->release(sock);
654 		sock->sk = NULL;
655 		if (inode)
656 			inode_unlock(inode);
657 		sock->ops = NULL;
658 		module_put(owner);
659 	}
660 
661 	if (sock->wq.fasync_list)
662 		pr_err("%s: fasync list not empty!\n", __func__);
663 
664 	if (!sock->file) {
665 		iput(SOCK_INODE(sock));
666 		return;
667 	}
668 	sock->file = NULL;
669 }
670 
671 /**
672  *	sock_release - close a socket
673  *	@sock: socket to close
674  *
675  *	The socket is released from the protocol stack if it has a release
676  *	callback, and the inode is then released if the socket is bound to
677  *	an inode not a file.
678  */
679 void sock_release(struct socket *sock)
680 {
681 	__sock_release(sock, NULL);
682 }
683 EXPORT_SYMBOL(sock_release);
684 
685 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
686 {
687 	u8 flags = *tx_flags;
688 
689 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
690 		flags |= SKBTX_HW_TSTAMP;
691 
692 		/* PTP hardware clocks can provide a free running cycle counter
693 		 * as a time base for virtual clocks. Tell driver to use the
694 		 * free running cycle counter for timestamp if socket is bound
695 		 * to virtual clock.
696 		 */
697 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
698 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
699 	}
700 
701 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
702 		flags |= SKBTX_SW_TSTAMP;
703 
704 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
705 		flags |= SKBTX_SCHED_TSTAMP;
706 
707 	*tx_flags = flags;
708 }
709 EXPORT_SYMBOL(__sock_tx_timestamp);
710 
711 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
712 					   size_t));
713 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
714 					    size_t));
715 
716 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
717 						 int flags)
718 {
719 	trace_sock_send_length(sk, ret, 0);
720 }
721 
722 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
723 {
724 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
725 				     inet_sendmsg, sock, msg,
726 				     msg_data_left(msg));
727 	BUG_ON(ret == -EIOCBQUEUED);
728 
729 	if (trace_sock_send_length_enabled())
730 		call_trace_sock_send_length(sock->sk, ret, 0);
731 	return ret;
732 }
733 
734 /**
735  *	sock_sendmsg - send a message through @sock
736  *	@sock: socket
737  *	@msg: message to send
738  *
739  *	Sends @msg through @sock, passing through LSM.
740  *	Returns the number of bytes sent, or an error code.
741  */
742 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
743 {
744 	int err = security_socket_sendmsg(sock, msg,
745 					  msg_data_left(msg));
746 
747 	return err ?: sock_sendmsg_nosec(sock, msg);
748 }
749 EXPORT_SYMBOL(sock_sendmsg);
750 
751 /**
752  *	kernel_sendmsg - send a message through @sock (kernel-space)
753  *	@sock: socket
754  *	@msg: message header
755  *	@vec: kernel vec
756  *	@num: vec array length
757  *	@size: total message data size
758  *
759  *	Builds the message data with @vec and sends it through @sock.
760  *	Returns the number of bytes sent, or an error code.
761  */
762 
763 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
764 		   struct kvec *vec, size_t num, size_t size)
765 {
766 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
767 	return sock_sendmsg(sock, msg);
768 }
769 EXPORT_SYMBOL(kernel_sendmsg);
770 
771 /**
772  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
773  *	@sk: sock
774  *	@msg: message header
775  *	@vec: output s/g array
776  *	@num: output s/g array length
777  *	@size: total message data size
778  *
779  *	Builds the message data with @vec and sends it through @sock.
780  *	Returns the number of bytes sent, or an error code.
781  *	Caller must hold @sk.
782  */
783 
784 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
785 			  struct kvec *vec, size_t num, size_t size)
786 {
787 	struct socket *sock = sk->sk_socket;
788 
789 	if (!sock->ops->sendmsg_locked)
790 		return sock_no_sendmsg_locked(sk, msg, size);
791 
792 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
793 
794 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
795 }
796 EXPORT_SYMBOL(kernel_sendmsg_locked);
797 
798 static bool skb_is_err_queue(const struct sk_buff *skb)
799 {
800 	/* pkt_type of skbs enqueued on the error queue are set to
801 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
802 	 * in recvmsg, since skbs received on a local socket will never
803 	 * have a pkt_type of PACKET_OUTGOING.
804 	 */
805 	return skb->pkt_type == PACKET_OUTGOING;
806 }
807 
808 /* On transmit, software and hardware timestamps are returned independently.
809  * As the two skb clones share the hardware timestamp, which may be updated
810  * before the software timestamp is received, a hardware TX timestamp may be
811  * returned only if there is no software TX timestamp. Ignore false software
812  * timestamps, which may be made in the __sock_recv_timestamp() call when the
813  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
814  * hardware timestamp.
815  */
816 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
817 {
818 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
819 }
820 
821 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
822 {
823 	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
824 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
825 	struct net_device *orig_dev;
826 	ktime_t hwtstamp;
827 
828 	rcu_read_lock();
829 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
830 	if (orig_dev) {
831 		*if_index = orig_dev->ifindex;
832 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
833 	} else {
834 		hwtstamp = shhwtstamps->hwtstamp;
835 	}
836 	rcu_read_unlock();
837 
838 	return hwtstamp;
839 }
840 
841 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
842 			   int if_index)
843 {
844 	struct scm_ts_pktinfo ts_pktinfo;
845 	struct net_device *orig_dev;
846 
847 	if (!skb_mac_header_was_set(skb))
848 		return;
849 
850 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
851 
852 	if (!if_index) {
853 		rcu_read_lock();
854 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
855 		if (orig_dev)
856 			if_index = orig_dev->ifindex;
857 		rcu_read_unlock();
858 	}
859 	ts_pktinfo.if_index = if_index;
860 
861 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
862 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
863 		 sizeof(ts_pktinfo), &ts_pktinfo);
864 }
865 
866 /*
867  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
868  */
869 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
870 	struct sk_buff *skb)
871 {
872 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
873 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
874 	struct scm_timestamping_internal tss;
875 
876 	int empty = 1, false_tstamp = 0;
877 	struct skb_shared_hwtstamps *shhwtstamps =
878 		skb_hwtstamps(skb);
879 	int if_index;
880 	ktime_t hwtstamp;
881 
882 	/* Race occurred between timestamp enabling and packet
883 	   receiving.  Fill in the current time for now. */
884 	if (need_software_tstamp && skb->tstamp == 0) {
885 		__net_timestamp(skb);
886 		false_tstamp = 1;
887 	}
888 
889 	if (need_software_tstamp) {
890 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
891 			if (new_tstamp) {
892 				struct __kernel_sock_timeval tv;
893 
894 				skb_get_new_timestamp(skb, &tv);
895 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
896 					 sizeof(tv), &tv);
897 			} else {
898 				struct __kernel_old_timeval tv;
899 
900 				skb_get_timestamp(skb, &tv);
901 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
902 					 sizeof(tv), &tv);
903 			}
904 		} else {
905 			if (new_tstamp) {
906 				struct __kernel_timespec ts;
907 
908 				skb_get_new_timestampns(skb, &ts);
909 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
910 					 sizeof(ts), &ts);
911 			} else {
912 				struct __kernel_old_timespec ts;
913 
914 				skb_get_timestampns(skb, &ts);
915 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
916 					 sizeof(ts), &ts);
917 			}
918 		}
919 	}
920 
921 	memset(&tss, 0, sizeof(tss));
922 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
923 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
924 		empty = 0;
925 	if (shhwtstamps &&
926 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
927 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
928 		if_index = 0;
929 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
930 			hwtstamp = get_timestamp(sk, skb, &if_index);
931 		else
932 			hwtstamp = shhwtstamps->hwtstamp;
933 
934 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
935 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
936 							 sk->sk_bind_phc);
937 
938 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
939 			empty = 0;
940 
941 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
942 			    !skb_is_err_queue(skb))
943 				put_ts_pktinfo(msg, skb, if_index);
944 		}
945 	}
946 	if (!empty) {
947 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
948 			put_cmsg_scm_timestamping64(msg, &tss);
949 		else
950 			put_cmsg_scm_timestamping(msg, &tss);
951 
952 		if (skb_is_err_queue(skb) && skb->len &&
953 		    SKB_EXT_ERR(skb)->opt_stats)
954 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
955 				 skb->len, skb->data);
956 	}
957 }
958 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
959 
960 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
961 	struct sk_buff *skb)
962 {
963 	int ack;
964 
965 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
966 		return;
967 	if (!skb->wifi_acked_valid)
968 		return;
969 
970 	ack = skb->wifi_acked;
971 
972 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
973 }
974 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
975 
976 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
977 				   struct sk_buff *skb)
978 {
979 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
980 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
981 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
982 }
983 
984 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
985 			   struct sk_buff *skb)
986 {
987 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
988 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
989 		__u32 mark = skb->mark;
990 
991 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
992 	}
993 }
994 
995 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
996 		       struct sk_buff *skb)
997 {
998 	sock_recv_timestamp(msg, sk, skb);
999 	sock_recv_drops(msg, sk, skb);
1000 	sock_recv_mark(msg, sk, skb);
1001 }
1002 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1003 
1004 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1005 					   size_t, int));
1006 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1007 					    size_t, int));
1008 
1009 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1010 {
1011 	trace_sock_recv_length(sk, ret, flags);
1012 }
1013 
1014 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1015 				     int flags)
1016 {
1017 	int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
1018 				     inet_recvmsg, sock, msg,
1019 				     msg_data_left(msg), flags);
1020 	if (trace_sock_recv_length_enabled())
1021 		call_trace_sock_recv_length(sock->sk, ret, flags);
1022 	return ret;
1023 }
1024 
1025 /**
1026  *	sock_recvmsg - receive a message from @sock
1027  *	@sock: socket
1028  *	@msg: message to receive
1029  *	@flags: message flags
1030  *
1031  *	Receives @msg from @sock, passing through LSM. Returns the total number
1032  *	of bytes received, or an error.
1033  */
1034 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1035 {
1036 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1037 
1038 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1039 }
1040 EXPORT_SYMBOL(sock_recvmsg);
1041 
1042 /**
1043  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1044  *	@sock: The socket to receive the message from
1045  *	@msg: Received message
1046  *	@vec: Input s/g array for message data
1047  *	@num: Size of input s/g array
1048  *	@size: Number of bytes to read
1049  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1050  *
1051  *	On return the msg structure contains the scatter/gather array passed in the
1052  *	vec argument. The array is modified so that it consists of the unfilled
1053  *	portion of the original array.
1054  *
1055  *	The returned value is the total number of bytes received, or an error.
1056  */
1057 
1058 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1059 		   struct kvec *vec, size_t num, size_t size, int flags)
1060 {
1061 	msg->msg_control_is_user = false;
1062 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1063 	return sock_recvmsg(sock, msg, flags);
1064 }
1065 EXPORT_SYMBOL(kernel_recvmsg);
1066 
1067 static ssize_t sock_sendpage(struct file *file, struct page *page,
1068 			     int offset, size_t size, loff_t *ppos, int more)
1069 {
1070 	struct socket *sock;
1071 	int flags;
1072 	int ret;
1073 
1074 	sock = file->private_data;
1075 
1076 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1077 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1078 	flags |= more;
1079 
1080 	ret = kernel_sendpage(sock, page, offset, size, flags);
1081 
1082 	if (trace_sock_send_length_enabled())
1083 		call_trace_sock_send_length(sock->sk, ret, 0);
1084 	return ret;
1085 }
1086 
1087 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1088 				struct pipe_inode_info *pipe, size_t len,
1089 				unsigned int flags)
1090 {
1091 	struct socket *sock = file->private_data;
1092 
1093 	if (unlikely(!sock->ops->splice_read))
1094 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1095 
1096 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1097 }
1098 
1099 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1100 {
1101 	struct file *file = iocb->ki_filp;
1102 	struct socket *sock = file->private_data;
1103 	struct msghdr msg = {.msg_iter = *to,
1104 			     .msg_iocb = iocb};
1105 	ssize_t res;
1106 
1107 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1108 		msg.msg_flags = MSG_DONTWAIT;
1109 
1110 	if (iocb->ki_pos != 0)
1111 		return -ESPIPE;
1112 
1113 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1114 		return 0;
1115 
1116 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1117 	*to = msg.msg_iter;
1118 	return res;
1119 }
1120 
1121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1122 {
1123 	struct file *file = iocb->ki_filp;
1124 	struct socket *sock = file->private_data;
1125 	struct msghdr msg = {.msg_iter = *from,
1126 			     .msg_iocb = iocb};
1127 	ssize_t res;
1128 
1129 	if (iocb->ki_pos != 0)
1130 		return -ESPIPE;
1131 
1132 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1133 		msg.msg_flags = MSG_DONTWAIT;
1134 
1135 	if (sock->type == SOCK_SEQPACKET)
1136 		msg.msg_flags |= MSG_EOR;
1137 
1138 	res = sock_sendmsg(sock, &msg);
1139 	*from = msg.msg_iter;
1140 	return res;
1141 }
1142 
1143 /*
1144  * Atomic setting of ioctl hooks to avoid race
1145  * with module unload.
1146  */
1147 
1148 static DEFINE_MUTEX(br_ioctl_mutex);
1149 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1150 			    unsigned int cmd, struct ifreq *ifr,
1151 			    void __user *uarg);
1152 
1153 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1154 			     unsigned int cmd, struct ifreq *ifr,
1155 			     void __user *uarg))
1156 {
1157 	mutex_lock(&br_ioctl_mutex);
1158 	br_ioctl_hook = hook;
1159 	mutex_unlock(&br_ioctl_mutex);
1160 }
1161 EXPORT_SYMBOL(brioctl_set);
1162 
1163 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1164 		  struct ifreq *ifr, void __user *uarg)
1165 {
1166 	int err = -ENOPKG;
1167 
1168 	if (!br_ioctl_hook)
1169 		request_module("bridge");
1170 
1171 	mutex_lock(&br_ioctl_mutex);
1172 	if (br_ioctl_hook)
1173 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1174 	mutex_unlock(&br_ioctl_mutex);
1175 
1176 	return err;
1177 }
1178 
1179 static DEFINE_MUTEX(vlan_ioctl_mutex);
1180 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1181 
1182 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1183 {
1184 	mutex_lock(&vlan_ioctl_mutex);
1185 	vlan_ioctl_hook = hook;
1186 	mutex_unlock(&vlan_ioctl_mutex);
1187 }
1188 EXPORT_SYMBOL(vlan_ioctl_set);
1189 
1190 static long sock_do_ioctl(struct net *net, struct socket *sock,
1191 			  unsigned int cmd, unsigned long arg)
1192 {
1193 	struct ifreq ifr;
1194 	bool need_copyout;
1195 	int err;
1196 	void __user *argp = (void __user *)arg;
1197 	void __user *data;
1198 
1199 	err = sock->ops->ioctl(sock, cmd, arg);
1200 
1201 	/*
1202 	 * If this ioctl is unknown try to hand it down
1203 	 * to the NIC driver.
1204 	 */
1205 	if (err != -ENOIOCTLCMD)
1206 		return err;
1207 
1208 	if (!is_socket_ioctl_cmd(cmd))
1209 		return -ENOTTY;
1210 
1211 	if (get_user_ifreq(&ifr, &data, argp))
1212 		return -EFAULT;
1213 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1214 	if (!err && need_copyout)
1215 		if (put_user_ifreq(&ifr, argp))
1216 			return -EFAULT;
1217 
1218 	return err;
1219 }
1220 
1221 /*
1222  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1223  *	what to do with it - that's up to the protocol still.
1224  */
1225 
1226 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1227 {
1228 	struct socket *sock;
1229 	struct sock *sk;
1230 	void __user *argp = (void __user *)arg;
1231 	int pid, err;
1232 	struct net *net;
1233 
1234 	sock = file->private_data;
1235 	sk = sock->sk;
1236 	net = sock_net(sk);
1237 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1238 		struct ifreq ifr;
1239 		void __user *data;
1240 		bool need_copyout;
1241 		if (get_user_ifreq(&ifr, &data, argp))
1242 			return -EFAULT;
1243 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1244 		if (!err && need_copyout)
1245 			if (put_user_ifreq(&ifr, argp))
1246 				return -EFAULT;
1247 	} else
1248 #ifdef CONFIG_WEXT_CORE
1249 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1250 		err = wext_handle_ioctl(net, cmd, argp);
1251 	} else
1252 #endif
1253 		switch (cmd) {
1254 		case FIOSETOWN:
1255 		case SIOCSPGRP:
1256 			err = -EFAULT;
1257 			if (get_user(pid, (int __user *)argp))
1258 				break;
1259 			err = f_setown(sock->file, pid, 1);
1260 			break;
1261 		case FIOGETOWN:
1262 		case SIOCGPGRP:
1263 			err = put_user(f_getown(sock->file),
1264 				       (int __user *)argp);
1265 			break;
1266 		case SIOCGIFBR:
1267 		case SIOCSIFBR:
1268 		case SIOCBRADDBR:
1269 		case SIOCBRDELBR:
1270 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1271 			break;
1272 		case SIOCGIFVLAN:
1273 		case SIOCSIFVLAN:
1274 			err = -ENOPKG;
1275 			if (!vlan_ioctl_hook)
1276 				request_module("8021q");
1277 
1278 			mutex_lock(&vlan_ioctl_mutex);
1279 			if (vlan_ioctl_hook)
1280 				err = vlan_ioctl_hook(net, argp);
1281 			mutex_unlock(&vlan_ioctl_mutex);
1282 			break;
1283 		case SIOCGSKNS:
1284 			err = -EPERM;
1285 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1286 				break;
1287 
1288 			err = open_related_ns(&net->ns, get_net_ns);
1289 			break;
1290 		case SIOCGSTAMP_OLD:
1291 		case SIOCGSTAMPNS_OLD:
1292 			if (!sock->ops->gettstamp) {
1293 				err = -ENOIOCTLCMD;
1294 				break;
1295 			}
1296 			err = sock->ops->gettstamp(sock, argp,
1297 						   cmd == SIOCGSTAMP_OLD,
1298 						   !IS_ENABLED(CONFIG_64BIT));
1299 			break;
1300 		case SIOCGSTAMP_NEW:
1301 		case SIOCGSTAMPNS_NEW:
1302 			if (!sock->ops->gettstamp) {
1303 				err = -ENOIOCTLCMD;
1304 				break;
1305 			}
1306 			err = sock->ops->gettstamp(sock, argp,
1307 						   cmd == SIOCGSTAMP_NEW,
1308 						   false);
1309 			break;
1310 
1311 		case SIOCGIFCONF:
1312 			err = dev_ifconf(net, argp);
1313 			break;
1314 
1315 		default:
1316 			err = sock_do_ioctl(net, sock, cmd, arg);
1317 			break;
1318 		}
1319 	return err;
1320 }
1321 
1322 /**
1323  *	sock_create_lite - creates a socket
1324  *	@family: protocol family (AF_INET, ...)
1325  *	@type: communication type (SOCK_STREAM, ...)
1326  *	@protocol: protocol (0, ...)
1327  *	@res: new socket
1328  *
1329  *	Creates a new socket and assigns it to @res, passing through LSM.
1330  *	The new socket initialization is not complete, see kernel_accept().
1331  *	Returns 0 or an error. On failure @res is set to %NULL.
1332  *	This function internally uses GFP_KERNEL.
1333  */
1334 
1335 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1336 {
1337 	int err;
1338 	struct socket *sock = NULL;
1339 
1340 	err = security_socket_create(family, type, protocol, 1);
1341 	if (err)
1342 		goto out;
1343 
1344 	sock = sock_alloc();
1345 	if (!sock) {
1346 		err = -ENOMEM;
1347 		goto out;
1348 	}
1349 
1350 	sock->type = type;
1351 	err = security_socket_post_create(sock, family, type, protocol, 1);
1352 	if (err)
1353 		goto out_release;
1354 
1355 out:
1356 	*res = sock;
1357 	return err;
1358 out_release:
1359 	sock_release(sock);
1360 	sock = NULL;
1361 	goto out;
1362 }
1363 EXPORT_SYMBOL(sock_create_lite);
1364 
1365 /* No kernel lock held - perfect */
1366 static __poll_t sock_poll(struct file *file, poll_table *wait)
1367 {
1368 	struct socket *sock = file->private_data;
1369 	__poll_t events = poll_requested_events(wait), flag = 0;
1370 
1371 	if (!sock->ops->poll)
1372 		return 0;
1373 
1374 	if (sk_can_busy_loop(sock->sk)) {
1375 		/* poll once if requested by the syscall */
1376 		if (events & POLL_BUSY_LOOP)
1377 			sk_busy_loop(sock->sk, 1);
1378 
1379 		/* if this socket can poll_ll, tell the system call */
1380 		flag = POLL_BUSY_LOOP;
1381 	}
1382 
1383 	return sock->ops->poll(file, sock, wait) | flag;
1384 }
1385 
1386 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1387 {
1388 	struct socket *sock = file->private_data;
1389 
1390 	return sock->ops->mmap(file, sock, vma);
1391 }
1392 
1393 static int sock_close(struct inode *inode, struct file *filp)
1394 {
1395 	__sock_release(SOCKET_I(inode), inode);
1396 	return 0;
1397 }
1398 
1399 /*
1400  *	Update the socket async list
1401  *
1402  *	Fasync_list locking strategy.
1403  *
1404  *	1. fasync_list is modified only under process context socket lock
1405  *	   i.e. under semaphore.
1406  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1407  *	   or under socket lock
1408  */
1409 
1410 static int sock_fasync(int fd, struct file *filp, int on)
1411 {
1412 	struct socket *sock = filp->private_data;
1413 	struct sock *sk = sock->sk;
1414 	struct socket_wq *wq = &sock->wq;
1415 
1416 	if (sk == NULL)
1417 		return -EINVAL;
1418 
1419 	lock_sock(sk);
1420 	fasync_helper(fd, filp, on, &wq->fasync_list);
1421 
1422 	if (!wq->fasync_list)
1423 		sock_reset_flag(sk, SOCK_FASYNC);
1424 	else
1425 		sock_set_flag(sk, SOCK_FASYNC);
1426 
1427 	release_sock(sk);
1428 	return 0;
1429 }
1430 
1431 /* This function may be called only under rcu_lock */
1432 
1433 int sock_wake_async(struct socket_wq *wq, int how, int band)
1434 {
1435 	if (!wq || !wq->fasync_list)
1436 		return -1;
1437 
1438 	switch (how) {
1439 	case SOCK_WAKE_WAITD:
1440 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1441 			break;
1442 		goto call_kill;
1443 	case SOCK_WAKE_SPACE:
1444 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1445 			break;
1446 		fallthrough;
1447 	case SOCK_WAKE_IO:
1448 call_kill:
1449 		kill_fasync(&wq->fasync_list, SIGIO, band);
1450 		break;
1451 	case SOCK_WAKE_URG:
1452 		kill_fasync(&wq->fasync_list, SIGURG, band);
1453 	}
1454 
1455 	return 0;
1456 }
1457 EXPORT_SYMBOL(sock_wake_async);
1458 
1459 /**
1460  *	__sock_create - creates a socket
1461  *	@net: net namespace
1462  *	@family: protocol family (AF_INET, ...)
1463  *	@type: communication type (SOCK_STREAM, ...)
1464  *	@protocol: protocol (0, ...)
1465  *	@res: new socket
1466  *	@kern: boolean for kernel space sockets
1467  *
1468  *	Creates a new socket and assigns it to @res, passing through LSM.
1469  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1470  *	be set to true if the socket resides in kernel space.
1471  *	This function internally uses GFP_KERNEL.
1472  */
1473 
1474 int __sock_create(struct net *net, int family, int type, int protocol,
1475 			 struct socket **res, int kern)
1476 {
1477 	int err;
1478 	struct socket *sock;
1479 	const struct net_proto_family *pf;
1480 
1481 	/*
1482 	 *      Check protocol is in range
1483 	 */
1484 	if (family < 0 || family >= NPROTO)
1485 		return -EAFNOSUPPORT;
1486 	if (type < 0 || type >= SOCK_MAX)
1487 		return -EINVAL;
1488 
1489 	/* Compatibility.
1490 
1491 	   This uglymoron is moved from INET layer to here to avoid
1492 	   deadlock in module load.
1493 	 */
1494 	if (family == PF_INET && type == SOCK_PACKET) {
1495 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1496 			     current->comm);
1497 		family = PF_PACKET;
1498 	}
1499 
1500 	err = security_socket_create(family, type, protocol, kern);
1501 	if (err)
1502 		return err;
1503 
1504 	/*
1505 	 *	Allocate the socket and allow the family to set things up. if
1506 	 *	the protocol is 0, the family is instructed to select an appropriate
1507 	 *	default.
1508 	 */
1509 	sock = sock_alloc();
1510 	if (!sock) {
1511 		net_warn_ratelimited("socket: no more sockets\n");
1512 		return -ENFILE;	/* Not exactly a match, but its the
1513 				   closest posix thing */
1514 	}
1515 
1516 	sock->type = type;
1517 
1518 #ifdef CONFIG_MODULES
1519 	/* Attempt to load a protocol module if the find failed.
1520 	 *
1521 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1522 	 * requested real, full-featured networking support upon configuration.
1523 	 * Otherwise module support will break!
1524 	 */
1525 	if (rcu_access_pointer(net_families[family]) == NULL)
1526 		request_module("net-pf-%d", family);
1527 #endif
1528 
1529 	rcu_read_lock();
1530 	pf = rcu_dereference(net_families[family]);
1531 	err = -EAFNOSUPPORT;
1532 	if (!pf)
1533 		goto out_release;
1534 
1535 	/*
1536 	 * We will call the ->create function, that possibly is in a loadable
1537 	 * module, so we have to bump that loadable module refcnt first.
1538 	 */
1539 	if (!try_module_get(pf->owner))
1540 		goto out_release;
1541 
1542 	/* Now protected by module ref count */
1543 	rcu_read_unlock();
1544 
1545 	err = pf->create(net, sock, protocol, kern);
1546 	if (err < 0)
1547 		goto out_module_put;
1548 
1549 	/*
1550 	 * Now to bump the refcnt of the [loadable] module that owns this
1551 	 * socket at sock_release time we decrement its refcnt.
1552 	 */
1553 	if (!try_module_get(sock->ops->owner))
1554 		goto out_module_busy;
1555 
1556 	/*
1557 	 * Now that we're done with the ->create function, the [loadable]
1558 	 * module can have its refcnt decremented
1559 	 */
1560 	module_put(pf->owner);
1561 	err = security_socket_post_create(sock, family, type, protocol, kern);
1562 	if (err)
1563 		goto out_sock_release;
1564 	*res = sock;
1565 
1566 	return 0;
1567 
1568 out_module_busy:
1569 	err = -EAFNOSUPPORT;
1570 out_module_put:
1571 	sock->ops = NULL;
1572 	module_put(pf->owner);
1573 out_sock_release:
1574 	sock_release(sock);
1575 	return err;
1576 
1577 out_release:
1578 	rcu_read_unlock();
1579 	goto out_sock_release;
1580 }
1581 EXPORT_SYMBOL(__sock_create);
1582 
1583 /**
1584  *	sock_create - creates a socket
1585  *	@family: protocol family (AF_INET, ...)
1586  *	@type: communication type (SOCK_STREAM, ...)
1587  *	@protocol: protocol (0, ...)
1588  *	@res: new socket
1589  *
1590  *	A wrapper around __sock_create().
1591  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1592  */
1593 
1594 int sock_create(int family, int type, int protocol, struct socket **res)
1595 {
1596 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1597 }
1598 EXPORT_SYMBOL(sock_create);
1599 
1600 /**
1601  *	sock_create_kern - creates a socket (kernel space)
1602  *	@net: net namespace
1603  *	@family: protocol family (AF_INET, ...)
1604  *	@type: communication type (SOCK_STREAM, ...)
1605  *	@protocol: protocol (0, ...)
1606  *	@res: new socket
1607  *
1608  *	A wrapper around __sock_create().
1609  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1610  */
1611 
1612 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1613 {
1614 	return __sock_create(net, family, type, protocol, res, 1);
1615 }
1616 EXPORT_SYMBOL(sock_create_kern);
1617 
1618 static struct socket *__sys_socket_create(int family, int type, int protocol)
1619 {
1620 	struct socket *sock;
1621 	int retval;
1622 
1623 	/* Check the SOCK_* constants for consistency.  */
1624 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1625 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1626 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1627 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1628 
1629 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1630 		return ERR_PTR(-EINVAL);
1631 	type &= SOCK_TYPE_MASK;
1632 
1633 	retval = sock_create(family, type, protocol, &sock);
1634 	if (retval < 0)
1635 		return ERR_PTR(retval);
1636 
1637 	return sock;
1638 }
1639 
1640 struct file *__sys_socket_file(int family, int type, int protocol)
1641 {
1642 	struct socket *sock;
1643 	int flags;
1644 
1645 	sock = __sys_socket_create(family, type, protocol);
1646 	if (IS_ERR(sock))
1647 		return ERR_CAST(sock);
1648 
1649 	flags = type & ~SOCK_TYPE_MASK;
1650 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1651 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1652 
1653 	return sock_alloc_file(sock, flags, NULL);
1654 }
1655 
1656 int __sys_socket(int family, int type, int protocol)
1657 {
1658 	struct socket *sock;
1659 	int flags;
1660 
1661 	sock = __sys_socket_create(family, type, protocol);
1662 	if (IS_ERR(sock))
1663 		return PTR_ERR(sock);
1664 
1665 	flags = type & ~SOCK_TYPE_MASK;
1666 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1667 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1668 
1669 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1670 }
1671 
1672 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1673 {
1674 	return __sys_socket(family, type, protocol);
1675 }
1676 
1677 /*
1678  *	Create a pair of connected sockets.
1679  */
1680 
1681 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1682 {
1683 	struct socket *sock1, *sock2;
1684 	int fd1, fd2, err;
1685 	struct file *newfile1, *newfile2;
1686 	int flags;
1687 
1688 	flags = type & ~SOCK_TYPE_MASK;
1689 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1690 		return -EINVAL;
1691 	type &= SOCK_TYPE_MASK;
1692 
1693 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1694 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1695 
1696 	/*
1697 	 * reserve descriptors and make sure we won't fail
1698 	 * to return them to userland.
1699 	 */
1700 	fd1 = get_unused_fd_flags(flags);
1701 	if (unlikely(fd1 < 0))
1702 		return fd1;
1703 
1704 	fd2 = get_unused_fd_flags(flags);
1705 	if (unlikely(fd2 < 0)) {
1706 		put_unused_fd(fd1);
1707 		return fd2;
1708 	}
1709 
1710 	err = put_user(fd1, &usockvec[0]);
1711 	if (err)
1712 		goto out;
1713 
1714 	err = put_user(fd2, &usockvec[1]);
1715 	if (err)
1716 		goto out;
1717 
1718 	/*
1719 	 * Obtain the first socket and check if the underlying protocol
1720 	 * supports the socketpair call.
1721 	 */
1722 
1723 	err = sock_create(family, type, protocol, &sock1);
1724 	if (unlikely(err < 0))
1725 		goto out;
1726 
1727 	err = sock_create(family, type, protocol, &sock2);
1728 	if (unlikely(err < 0)) {
1729 		sock_release(sock1);
1730 		goto out;
1731 	}
1732 
1733 	err = security_socket_socketpair(sock1, sock2);
1734 	if (unlikely(err)) {
1735 		sock_release(sock2);
1736 		sock_release(sock1);
1737 		goto out;
1738 	}
1739 
1740 	err = sock1->ops->socketpair(sock1, sock2);
1741 	if (unlikely(err < 0)) {
1742 		sock_release(sock2);
1743 		sock_release(sock1);
1744 		goto out;
1745 	}
1746 
1747 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1748 	if (IS_ERR(newfile1)) {
1749 		err = PTR_ERR(newfile1);
1750 		sock_release(sock2);
1751 		goto out;
1752 	}
1753 
1754 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1755 	if (IS_ERR(newfile2)) {
1756 		err = PTR_ERR(newfile2);
1757 		fput(newfile1);
1758 		goto out;
1759 	}
1760 
1761 	audit_fd_pair(fd1, fd2);
1762 
1763 	fd_install(fd1, newfile1);
1764 	fd_install(fd2, newfile2);
1765 	return 0;
1766 
1767 out:
1768 	put_unused_fd(fd2);
1769 	put_unused_fd(fd1);
1770 	return err;
1771 }
1772 
1773 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1774 		int __user *, usockvec)
1775 {
1776 	return __sys_socketpair(family, type, protocol, usockvec);
1777 }
1778 
1779 /*
1780  *	Bind a name to a socket. Nothing much to do here since it's
1781  *	the protocol's responsibility to handle the local address.
1782  *
1783  *	We move the socket address to kernel space before we call
1784  *	the protocol layer (having also checked the address is ok).
1785  */
1786 
1787 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1788 {
1789 	struct socket *sock;
1790 	struct sockaddr_storage address;
1791 	int err, fput_needed;
1792 
1793 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1794 	if (sock) {
1795 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1796 		if (!err) {
1797 			err = security_socket_bind(sock,
1798 						   (struct sockaddr *)&address,
1799 						   addrlen);
1800 			if (!err)
1801 				err = sock->ops->bind(sock,
1802 						      (struct sockaddr *)
1803 						      &address, addrlen);
1804 		}
1805 		fput_light(sock->file, fput_needed);
1806 	}
1807 	return err;
1808 }
1809 
1810 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1811 {
1812 	return __sys_bind(fd, umyaddr, addrlen);
1813 }
1814 
1815 /*
1816  *	Perform a listen. Basically, we allow the protocol to do anything
1817  *	necessary for a listen, and if that works, we mark the socket as
1818  *	ready for listening.
1819  */
1820 
1821 int __sys_listen(int fd, int backlog)
1822 {
1823 	struct socket *sock;
1824 	int err, fput_needed;
1825 	int somaxconn;
1826 
1827 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1828 	if (sock) {
1829 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1830 		if ((unsigned int)backlog > somaxconn)
1831 			backlog = somaxconn;
1832 
1833 		err = security_socket_listen(sock, backlog);
1834 		if (!err)
1835 			err = sock->ops->listen(sock, backlog);
1836 
1837 		fput_light(sock->file, fput_needed);
1838 	}
1839 	return err;
1840 }
1841 
1842 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1843 {
1844 	return __sys_listen(fd, backlog);
1845 }
1846 
1847 struct file *do_accept(struct file *file, unsigned file_flags,
1848 		       struct sockaddr __user *upeer_sockaddr,
1849 		       int __user *upeer_addrlen, int flags)
1850 {
1851 	struct socket *sock, *newsock;
1852 	struct file *newfile;
1853 	int err, len;
1854 	struct sockaddr_storage address;
1855 
1856 	sock = sock_from_file(file);
1857 	if (!sock)
1858 		return ERR_PTR(-ENOTSOCK);
1859 
1860 	newsock = sock_alloc();
1861 	if (!newsock)
1862 		return ERR_PTR(-ENFILE);
1863 
1864 	newsock->type = sock->type;
1865 	newsock->ops = sock->ops;
1866 
1867 	/*
1868 	 * We don't need try_module_get here, as the listening socket (sock)
1869 	 * has the protocol module (sock->ops->owner) held.
1870 	 */
1871 	__module_get(newsock->ops->owner);
1872 
1873 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1874 	if (IS_ERR(newfile))
1875 		return newfile;
1876 
1877 	err = security_socket_accept(sock, newsock);
1878 	if (err)
1879 		goto out_fd;
1880 
1881 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1882 					false);
1883 	if (err < 0)
1884 		goto out_fd;
1885 
1886 	if (upeer_sockaddr) {
1887 		len = newsock->ops->getname(newsock,
1888 					(struct sockaddr *)&address, 2);
1889 		if (len < 0) {
1890 			err = -ECONNABORTED;
1891 			goto out_fd;
1892 		}
1893 		err = move_addr_to_user(&address,
1894 					len, upeer_sockaddr, upeer_addrlen);
1895 		if (err < 0)
1896 			goto out_fd;
1897 	}
1898 
1899 	/* File flags are not inherited via accept() unlike another OSes. */
1900 	return newfile;
1901 out_fd:
1902 	fput(newfile);
1903 	return ERR_PTR(err);
1904 }
1905 
1906 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1907 			      int __user *upeer_addrlen, int flags)
1908 {
1909 	struct file *newfile;
1910 	int newfd;
1911 
1912 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1913 		return -EINVAL;
1914 
1915 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1916 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1917 
1918 	newfd = get_unused_fd_flags(flags);
1919 	if (unlikely(newfd < 0))
1920 		return newfd;
1921 
1922 	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1923 			    flags);
1924 	if (IS_ERR(newfile)) {
1925 		put_unused_fd(newfd);
1926 		return PTR_ERR(newfile);
1927 	}
1928 	fd_install(newfd, newfile);
1929 	return newfd;
1930 }
1931 
1932 /*
1933  *	For accept, we attempt to create a new socket, set up the link
1934  *	with the client, wake up the client, then return the new
1935  *	connected fd. We collect the address of the connector in kernel
1936  *	space and move it to user at the very end. This is unclean because
1937  *	we open the socket then return an error.
1938  *
1939  *	1003.1g adds the ability to recvmsg() to query connection pending
1940  *	status to recvmsg. We need to add that support in a way thats
1941  *	clean when we restructure accept also.
1942  */
1943 
1944 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1945 		  int __user *upeer_addrlen, int flags)
1946 {
1947 	int ret = -EBADF;
1948 	struct fd f;
1949 
1950 	f = fdget(fd);
1951 	if (f.file) {
1952 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1953 					 upeer_addrlen, flags);
1954 		fdput(f);
1955 	}
1956 
1957 	return ret;
1958 }
1959 
1960 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1961 		int __user *, upeer_addrlen, int, flags)
1962 {
1963 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1964 }
1965 
1966 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1967 		int __user *, upeer_addrlen)
1968 {
1969 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1970 }
1971 
1972 /*
1973  *	Attempt to connect to a socket with the server address.  The address
1974  *	is in user space so we verify it is OK and move it to kernel space.
1975  *
1976  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1977  *	break bindings
1978  *
1979  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1980  *	other SEQPACKET protocols that take time to connect() as it doesn't
1981  *	include the -EINPROGRESS status for such sockets.
1982  */
1983 
1984 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1985 		       int addrlen, int file_flags)
1986 {
1987 	struct socket *sock;
1988 	int err;
1989 
1990 	sock = sock_from_file(file);
1991 	if (!sock) {
1992 		err = -ENOTSOCK;
1993 		goto out;
1994 	}
1995 
1996 	err =
1997 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1998 	if (err)
1999 		goto out;
2000 
2001 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
2002 				 sock->file->f_flags | file_flags);
2003 out:
2004 	return err;
2005 }
2006 
2007 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2008 {
2009 	int ret = -EBADF;
2010 	struct fd f;
2011 
2012 	f = fdget(fd);
2013 	if (f.file) {
2014 		struct sockaddr_storage address;
2015 
2016 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2017 		if (!ret)
2018 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2019 		fdput(f);
2020 	}
2021 
2022 	return ret;
2023 }
2024 
2025 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2026 		int, addrlen)
2027 {
2028 	return __sys_connect(fd, uservaddr, addrlen);
2029 }
2030 
2031 /*
2032  *	Get the local address ('name') of a socket object. Move the obtained
2033  *	name to user space.
2034  */
2035 
2036 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2037 		      int __user *usockaddr_len)
2038 {
2039 	struct socket *sock;
2040 	struct sockaddr_storage address;
2041 	int err, fput_needed;
2042 
2043 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2044 	if (!sock)
2045 		goto out;
2046 
2047 	err = security_socket_getsockname(sock);
2048 	if (err)
2049 		goto out_put;
2050 
2051 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2052 	if (err < 0)
2053 		goto out_put;
2054 	/* "err" is actually length in this case */
2055 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2056 
2057 out_put:
2058 	fput_light(sock->file, fput_needed);
2059 out:
2060 	return err;
2061 }
2062 
2063 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2064 		int __user *, usockaddr_len)
2065 {
2066 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2067 }
2068 
2069 /*
2070  *	Get the remote address ('name') of a socket object. Move the obtained
2071  *	name to user space.
2072  */
2073 
2074 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2075 		      int __user *usockaddr_len)
2076 {
2077 	struct socket *sock;
2078 	struct sockaddr_storage address;
2079 	int err, fput_needed;
2080 
2081 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2082 	if (sock != NULL) {
2083 		err = security_socket_getpeername(sock);
2084 		if (err) {
2085 			fput_light(sock->file, fput_needed);
2086 			return err;
2087 		}
2088 
2089 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2090 		if (err >= 0)
2091 			/* "err" is actually length in this case */
2092 			err = move_addr_to_user(&address, err, usockaddr,
2093 						usockaddr_len);
2094 		fput_light(sock->file, fput_needed);
2095 	}
2096 	return err;
2097 }
2098 
2099 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2100 		int __user *, usockaddr_len)
2101 {
2102 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2103 }
2104 
2105 /*
2106  *	Send a datagram to a given address. We move the address into kernel
2107  *	space and check the user space data area is readable before invoking
2108  *	the protocol.
2109  */
2110 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2111 		 struct sockaddr __user *addr,  int addr_len)
2112 {
2113 	struct socket *sock;
2114 	struct sockaddr_storage address;
2115 	int err;
2116 	struct msghdr msg;
2117 	struct iovec iov;
2118 	int fput_needed;
2119 
2120 	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2121 	if (unlikely(err))
2122 		return err;
2123 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2124 	if (!sock)
2125 		goto out;
2126 
2127 	msg.msg_name = NULL;
2128 	msg.msg_control = NULL;
2129 	msg.msg_controllen = 0;
2130 	msg.msg_namelen = 0;
2131 	msg.msg_ubuf = NULL;
2132 	if (addr) {
2133 		err = move_addr_to_kernel(addr, addr_len, &address);
2134 		if (err < 0)
2135 			goto out_put;
2136 		msg.msg_name = (struct sockaddr *)&address;
2137 		msg.msg_namelen = addr_len;
2138 	}
2139 	if (sock->file->f_flags & O_NONBLOCK)
2140 		flags |= MSG_DONTWAIT;
2141 	msg.msg_flags = flags;
2142 	err = sock_sendmsg(sock, &msg);
2143 
2144 out_put:
2145 	fput_light(sock->file, fput_needed);
2146 out:
2147 	return err;
2148 }
2149 
2150 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2151 		unsigned int, flags, struct sockaddr __user *, addr,
2152 		int, addr_len)
2153 {
2154 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2155 }
2156 
2157 /*
2158  *	Send a datagram down a socket.
2159  */
2160 
2161 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2162 		unsigned int, flags)
2163 {
2164 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2165 }
2166 
2167 /*
2168  *	Receive a frame from the socket and optionally record the address of the
2169  *	sender. We verify the buffers are writable and if needed move the
2170  *	sender address from kernel to user space.
2171  */
2172 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2173 		   struct sockaddr __user *addr, int __user *addr_len)
2174 {
2175 	struct sockaddr_storage address;
2176 	struct msghdr msg = {
2177 		/* Save some cycles and don't copy the address if not needed */
2178 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2179 	};
2180 	struct socket *sock;
2181 	struct iovec iov;
2182 	int err, err2;
2183 	int fput_needed;
2184 
2185 	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2186 	if (unlikely(err))
2187 		return err;
2188 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2189 	if (!sock)
2190 		goto out;
2191 
2192 	if (sock->file->f_flags & O_NONBLOCK)
2193 		flags |= MSG_DONTWAIT;
2194 	err = sock_recvmsg(sock, &msg, flags);
2195 
2196 	if (err >= 0 && addr != NULL) {
2197 		err2 = move_addr_to_user(&address,
2198 					 msg.msg_namelen, addr, addr_len);
2199 		if (err2 < 0)
2200 			err = err2;
2201 	}
2202 
2203 	fput_light(sock->file, fput_needed);
2204 out:
2205 	return err;
2206 }
2207 
2208 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2209 		unsigned int, flags, struct sockaddr __user *, addr,
2210 		int __user *, addr_len)
2211 {
2212 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2213 }
2214 
2215 /*
2216  *	Receive a datagram from a socket.
2217  */
2218 
2219 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2220 		unsigned int, flags)
2221 {
2222 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2223 }
2224 
2225 static bool sock_use_custom_sol_socket(const struct socket *sock)
2226 {
2227 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2228 }
2229 
2230 /*
2231  *	Set a socket option. Because we don't know the option lengths we have
2232  *	to pass the user mode parameter for the protocols to sort out.
2233  */
2234 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2235 		int optlen)
2236 {
2237 	sockptr_t optval = USER_SOCKPTR(user_optval);
2238 	char *kernel_optval = NULL;
2239 	int err, fput_needed;
2240 	struct socket *sock;
2241 
2242 	if (optlen < 0)
2243 		return -EINVAL;
2244 
2245 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2246 	if (!sock)
2247 		return err;
2248 
2249 	err = security_socket_setsockopt(sock, level, optname);
2250 	if (err)
2251 		goto out_put;
2252 
2253 	if (!in_compat_syscall())
2254 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2255 						     user_optval, &optlen,
2256 						     &kernel_optval);
2257 	if (err < 0)
2258 		goto out_put;
2259 	if (err > 0) {
2260 		err = 0;
2261 		goto out_put;
2262 	}
2263 
2264 	if (kernel_optval)
2265 		optval = KERNEL_SOCKPTR(kernel_optval);
2266 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2267 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2268 	else if (unlikely(!sock->ops->setsockopt))
2269 		err = -EOPNOTSUPP;
2270 	else
2271 		err = sock->ops->setsockopt(sock, level, optname, optval,
2272 					    optlen);
2273 	kfree(kernel_optval);
2274 out_put:
2275 	fput_light(sock->file, fput_needed);
2276 	return err;
2277 }
2278 
2279 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2280 		char __user *, optval, int, optlen)
2281 {
2282 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2283 }
2284 
2285 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2286 							 int optname));
2287 
2288 /*
2289  *	Get a socket option. Because we don't know the option lengths we have
2290  *	to pass a user mode parameter for the protocols to sort out.
2291  */
2292 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2293 		int __user *optlen)
2294 {
2295 	int err, fput_needed;
2296 	struct socket *sock;
2297 	int max_optlen;
2298 
2299 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2300 	if (!sock)
2301 		return err;
2302 
2303 	err = security_socket_getsockopt(sock, level, optname);
2304 	if (err)
2305 		goto out_put;
2306 
2307 	if (!in_compat_syscall())
2308 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2309 
2310 	if (level == SOL_SOCKET)
2311 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2312 	else if (unlikely(!sock->ops->getsockopt))
2313 		err = -EOPNOTSUPP;
2314 	else
2315 		err = sock->ops->getsockopt(sock, level, optname, optval,
2316 					    optlen);
2317 
2318 	if (!in_compat_syscall())
2319 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2320 						     optval, optlen, max_optlen,
2321 						     err);
2322 out_put:
2323 	fput_light(sock->file, fput_needed);
2324 	return err;
2325 }
2326 
2327 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2328 		char __user *, optval, int __user *, optlen)
2329 {
2330 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2331 }
2332 
2333 /*
2334  *	Shutdown a socket.
2335  */
2336 
2337 int __sys_shutdown_sock(struct socket *sock, int how)
2338 {
2339 	int err;
2340 
2341 	err = security_socket_shutdown(sock, how);
2342 	if (!err)
2343 		err = sock->ops->shutdown(sock, how);
2344 
2345 	return err;
2346 }
2347 
2348 int __sys_shutdown(int fd, int how)
2349 {
2350 	int err, fput_needed;
2351 	struct socket *sock;
2352 
2353 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2354 	if (sock != NULL) {
2355 		err = __sys_shutdown_sock(sock, how);
2356 		fput_light(sock->file, fput_needed);
2357 	}
2358 	return err;
2359 }
2360 
2361 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2362 {
2363 	return __sys_shutdown(fd, how);
2364 }
2365 
2366 /* A couple of helpful macros for getting the address of the 32/64 bit
2367  * fields which are the same type (int / unsigned) on our platforms.
2368  */
2369 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2370 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2371 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2372 
2373 struct used_address {
2374 	struct sockaddr_storage name;
2375 	unsigned int name_len;
2376 };
2377 
2378 int __copy_msghdr(struct msghdr *kmsg,
2379 		  struct user_msghdr *msg,
2380 		  struct sockaddr __user **save_addr)
2381 {
2382 	ssize_t err;
2383 
2384 	kmsg->msg_control_is_user = true;
2385 	kmsg->msg_get_inq = 0;
2386 	kmsg->msg_control_user = msg->msg_control;
2387 	kmsg->msg_controllen = msg->msg_controllen;
2388 	kmsg->msg_flags = msg->msg_flags;
2389 
2390 	kmsg->msg_namelen = msg->msg_namelen;
2391 	if (!msg->msg_name)
2392 		kmsg->msg_namelen = 0;
2393 
2394 	if (kmsg->msg_namelen < 0)
2395 		return -EINVAL;
2396 
2397 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2398 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2399 
2400 	if (save_addr)
2401 		*save_addr = msg->msg_name;
2402 
2403 	if (msg->msg_name && kmsg->msg_namelen) {
2404 		if (!save_addr) {
2405 			err = move_addr_to_kernel(msg->msg_name,
2406 						  kmsg->msg_namelen,
2407 						  kmsg->msg_name);
2408 			if (err < 0)
2409 				return err;
2410 		}
2411 	} else {
2412 		kmsg->msg_name = NULL;
2413 		kmsg->msg_namelen = 0;
2414 	}
2415 
2416 	if (msg->msg_iovlen > UIO_MAXIOV)
2417 		return -EMSGSIZE;
2418 
2419 	kmsg->msg_iocb = NULL;
2420 	kmsg->msg_ubuf = NULL;
2421 	return 0;
2422 }
2423 
2424 static int copy_msghdr_from_user(struct msghdr *kmsg,
2425 				 struct user_msghdr __user *umsg,
2426 				 struct sockaddr __user **save_addr,
2427 				 struct iovec **iov)
2428 {
2429 	struct user_msghdr msg;
2430 	ssize_t err;
2431 
2432 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2433 		return -EFAULT;
2434 
2435 	err = __copy_msghdr(kmsg, &msg, save_addr);
2436 	if (err)
2437 		return err;
2438 
2439 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2440 			    msg.msg_iov, msg.msg_iovlen,
2441 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2442 	return err < 0 ? err : 0;
2443 }
2444 
2445 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2446 			   unsigned int flags, struct used_address *used_address,
2447 			   unsigned int allowed_msghdr_flags)
2448 {
2449 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2450 				__aligned(sizeof(__kernel_size_t));
2451 	/* 20 is size of ipv6_pktinfo */
2452 	unsigned char *ctl_buf = ctl;
2453 	int ctl_len;
2454 	ssize_t err;
2455 
2456 	err = -ENOBUFS;
2457 
2458 	if (msg_sys->msg_controllen > INT_MAX)
2459 		goto out;
2460 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2461 	ctl_len = msg_sys->msg_controllen;
2462 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2463 		err =
2464 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2465 						     sizeof(ctl));
2466 		if (err)
2467 			goto out;
2468 		ctl_buf = msg_sys->msg_control;
2469 		ctl_len = msg_sys->msg_controllen;
2470 	} else if (ctl_len) {
2471 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2472 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2473 		if (ctl_len > sizeof(ctl)) {
2474 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2475 			if (ctl_buf == NULL)
2476 				goto out;
2477 		}
2478 		err = -EFAULT;
2479 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2480 			goto out_freectl;
2481 		msg_sys->msg_control = ctl_buf;
2482 		msg_sys->msg_control_is_user = false;
2483 	}
2484 	msg_sys->msg_flags = flags;
2485 
2486 	if (sock->file->f_flags & O_NONBLOCK)
2487 		msg_sys->msg_flags |= MSG_DONTWAIT;
2488 	/*
2489 	 * If this is sendmmsg() and current destination address is same as
2490 	 * previously succeeded address, omit asking LSM's decision.
2491 	 * used_address->name_len is initialized to UINT_MAX so that the first
2492 	 * destination address never matches.
2493 	 */
2494 	if (used_address && msg_sys->msg_name &&
2495 	    used_address->name_len == msg_sys->msg_namelen &&
2496 	    !memcmp(&used_address->name, msg_sys->msg_name,
2497 		    used_address->name_len)) {
2498 		err = sock_sendmsg_nosec(sock, msg_sys);
2499 		goto out_freectl;
2500 	}
2501 	err = sock_sendmsg(sock, msg_sys);
2502 	/*
2503 	 * If this is sendmmsg() and sending to current destination address was
2504 	 * successful, remember it.
2505 	 */
2506 	if (used_address && err >= 0) {
2507 		used_address->name_len = msg_sys->msg_namelen;
2508 		if (msg_sys->msg_name)
2509 			memcpy(&used_address->name, msg_sys->msg_name,
2510 			       used_address->name_len);
2511 	}
2512 
2513 out_freectl:
2514 	if (ctl_buf != ctl)
2515 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2516 out:
2517 	return err;
2518 }
2519 
2520 int sendmsg_copy_msghdr(struct msghdr *msg,
2521 			struct user_msghdr __user *umsg, unsigned flags,
2522 			struct iovec **iov)
2523 {
2524 	int err;
2525 
2526 	if (flags & MSG_CMSG_COMPAT) {
2527 		struct compat_msghdr __user *msg_compat;
2528 
2529 		msg_compat = (struct compat_msghdr __user *) umsg;
2530 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2531 	} else {
2532 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2533 	}
2534 	if (err < 0)
2535 		return err;
2536 
2537 	return 0;
2538 }
2539 
2540 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2541 			 struct msghdr *msg_sys, unsigned int flags,
2542 			 struct used_address *used_address,
2543 			 unsigned int allowed_msghdr_flags)
2544 {
2545 	struct sockaddr_storage address;
2546 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2547 	ssize_t err;
2548 
2549 	msg_sys->msg_name = &address;
2550 
2551 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2552 	if (err < 0)
2553 		return err;
2554 
2555 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2556 				allowed_msghdr_flags);
2557 	kfree(iov);
2558 	return err;
2559 }
2560 
2561 /*
2562  *	BSD sendmsg interface
2563  */
2564 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2565 			unsigned int flags)
2566 {
2567 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2568 }
2569 
2570 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2571 		   bool forbid_cmsg_compat)
2572 {
2573 	int fput_needed, err;
2574 	struct msghdr msg_sys;
2575 	struct socket *sock;
2576 
2577 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2578 		return -EINVAL;
2579 
2580 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2581 	if (!sock)
2582 		goto out;
2583 
2584 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2585 
2586 	fput_light(sock->file, fput_needed);
2587 out:
2588 	return err;
2589 }
2590 
2591 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2592 {
2593 	return __sys_sendmsg(fd, msg, flags, true);
2594 }
2595 
2596 /*
2597  *	Linux sendmmsg interface
2598  */
2599 
2600 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2601 		   unsigned int flags, bool forbid_cmsg_compat)
2602 {
2603 	int fput_needed, err, datagrams;
2604 	struct socket *sock;
2605 	struct mmsghdr __user *entry;
2606 	struct compat_mmsghdr __user *compat_entry;
2607 	struct msghdr msg_sys;
2608 	struct used_address used_address;
2609 	unsigned int oflags = flags;
2610 
2611 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2612 		return -EINVAL;
2613 
2614 	if (vlen > UIO_MAXIOV)
2615 		vlen = UIO_MAXIOV;
2616 
2617 	datagrams = 0;
2618 
2619 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2620 	if (!sock)
2621 		return err;
2622 
2623 	used_address.name_len = UINT_MAX;
2624 	entry = mmsg;
2625 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2626 	err = 0;
2627 	flags |= MSG_BATCH;
2628 
2629 	while (datagrams < vlen) {
2630 		if (datagrams == vlen - 1)
2631 			flags = oflags;
2632 
2633 		if (MSG_CMSG_COMPAT & flags) {
2634 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2635 					     &msg_sys, flags, &used_address, MSG_EOR);
2636 			if (err < 0)
2637 				break;
2638 			err = __put_user(err, &compat_entry->msg_len);
2639 			++compat_entry;
2640 		} else {
2641 			err = ___sys_sendmsg(sock,
2642 					     (struct user_msghdr __user *)entry,
2643 					     &msg_sys, flags, &used_address, MSG_EOR);
2644 			if (err < 0)
2645 				break;
2646 			err = put_user(err, &entry->msg_len);
2647 			++entry;
2648 		}
2649 
2650 		if (err)
2651 			break;
2652 		++datagrams;
2653 		if (msg_data_left(&msg_sys))
2654 			break;
2655 		cond_resched();
2656 	}
2657 
2658 	fput_light(sock->file, fput_needed);
2659 
2660 	/* We only return an error if no datagrams were able to be sent */
2661 	if (datagrams != 0)
2662 		return datagrams;
2663 
2664 	return err;
2665 }
2666 
2667 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2668 		unsigned int, vlen, unsigned int, flags)
2669 {
2670 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2671 }
2672 
2673 int recvmsg_copy_msghdr(struct msghdr *msg,
2674 			struct user_msghdr __user *umsg, unsigned flags,
2675 			struct sockaddr __user **uaddr,
2676 			struct iovec **iov)
2677 {
2678 	ssize_t err;
2679 
2680 	if (MSG_CMSG_COMPAT & flags) {
2681 		struct compat_msghdr __user *msg_compat;
2682 
2683 		msg_compat = (struct compat_msghdr __user *) umsg;
2684 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2685 	} else {
2686 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2687 	}
2688 	if (err < 0)
2689 		return err;
2690 
2691 	return 0;
2692 }
2693 
2694 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2695 			   struct user_msghdr __user *msg,
2696 			   struct sockaddr __user *uaddr,
2697 			   unsigned int flags, int nosec)
2698 {
2699 	struct compat_msghdr __user *msg_compat =
2700 					(struct compat_msghdr __user *) msg;
2701 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2702 	struct sockaddr_storage addr;
2703 	unsigned long cmsg_ptr;
2704 	int len;
2705 	ssize_t err;
2706 
2707 	msg_sys->msg_name = &addr;
2708 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2709 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2710 
2711 	/* We assume all kernel code knows the size of sockaddr_storage */
2712 	msg_sys->msg_namelen = 0;
2713 
2714 	if (sock->file->f_flags & O_NONBLOCK)
2715 		flags |= MSG_DONTWAIT;
2716 
2717 	if (unlikely(nosec))
2718 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2719 	else
2720 		err = sock_recvmsg(sock, msg_sys, flags);
2721 
2722 	if (err < 0)
2723 		goto out;
2724 	len = err;
2725 
2726 	if (uaddr != NULL) {
2727 		err = move_addr_to_user(&addr,
2728 					msg_sys->msg_namelen, uaddr,
2729 					uaddr_len);
2730 		if (err < 0)
2731 			goto out;
2732 	}
2733 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2734 			 COMPAT_FLAGS(msg));
2735 	if (err)
2736 		goto out;
2737 	if (MSG_CMSG_COMPAT & flags)
2738 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2739 				 &msg_compat->msg_controllen);
2740 	else
2741 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2742 				 &msg->msg_controllen);
2743 	if (err)
2744 		goto out;
2745 	err = len;
2746 out:
2747 	return err;
2748 }
2749 
2750 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2751 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2752 {
2753 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2754 	/* user mode address pointers */
2755 	struct sockaddr __user *uaddr;
2756 	ssize_t err;
2757 
2758 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2759 	if (err < 0)
2760 		return err;
2761 
2762 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2763 	kfree(iov);
2764 	return err;
2765 }
2766 
2767 /*
2768  *	BSD recvmsg interface
2769  */
2770 
2771 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2772 			struct user_msghdr __user *umsg,
2773 			struct sockaddr __user *uaddr, unsigned int flags)
2774 {
2775 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2776 }
2777 
2778 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2779 		   bool forbid_cmsg_compat)
2780 {
2781 	int fput_needed, err;
2782 	struct msghdr msg_sys;
2783 	struct socket *sock;
2784 
2785 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2786 		return -EINVAL;
2787 
2788 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2789 	if (!sock)
2790 		goto out;
2791 
2792 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2793 
2794 	fput_light(sock->file, fput_needed);
2795 out:
2796 	return err;
2797 }
2798 
2799 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2800 		unsigned int, flags)
2801 {
2802 	return __sys_recvmsg(fd, msg, flags, true);
2803 }
2804 
2805 /*
2806  *     Linux recvmmsg interface
2807  */
2808 
2809 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2810 			  unsigned int vlen, unsigned int flags,
2811 			  struct timespec64 *timeout)
2812 {
2813 	int fput_needed, err, datagrams;
2814 	struct socket *sock;
2815 	struct mmsghdr __user *entry;
2816 	struct compat_mmsghdr __user *compat_entry;
2817 	struct msghdr msg_sys;
2818 	struct timespec64 end_time;
2819 	struct timespec64 timeout64;
2820 
2821 	if (timeout &&
2822 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2823 				    timeout->tv_nsec))
2824 		return -EINVAL;
2825 
2826 	datagrams = 0;
2827 
2828 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2829 	if (!sock)
2830 		return err;
2831 
2832 	if (likely(!(flags & MSG_ERRQUEUE))) {
2833 		err = sock_error(sock->sk);
2834 		if (err) {
2835 			datagrams = err;
2836 			goto out_put;
2837 		}
2838 	}
2839 
2840 	entry = mmsg;
2841 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2842 
2843 	while (datagrams < vlen) {
2844 		/*
2845 		 * No need to ask LSM for more than the first datagram.
2846 		 */
2847 		if (MSG_CMSG_COMPAT & flags) {
2848 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2849 					     &msg_sys, flags & ~MSG_WAITFORONE,
2850 					     datagrams);
2851 			if (err < 0)
2852 				break;
2853 			err = __put_user(err, &compat_entry->msg_len);
2854 			++compat_entry;
2855 		} else {
2856 			err = ___sys_recvmsg(sock,
2857 					     (struct user_msghdr __user *)entry,
2858 					     &msg_sys, flags & ~MSG_WAITFORONE,
2859 					     datagrams);
2860 			if (err < 0)
2861 				break;
2862 			err = put_user(err, &entry->msg_len);
2863 			++entry;
2864 		}
2865 
2866 		if (err)
2867 			break;
2868 		++datagrams;
2869 
2870 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2871 		if (flags & MSG_WAITFORONE)
2872 			flags |= MSG_DONTWAIT;
2873 
2874 		if (timeout) {
2875 			ktime_get_ts64(&timeout64);
2876 			*timeout = timespec64_sub(end_time, timeout64);
2877 			if (timeout->tv_sec < 0) {
2878 				timeout->tv_sec = timeout->tv_nsec = 0;
2879 				break;
2880 			}
2881 
2882 			/* Timeout, return less than vlen datagrams */
2883 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2884 				break;
2885 		}
2886 
2887 		/* Out of band data, return right away */
2888 		if (msg_sys.msg_flags & MSG_OOB)
2889 			break;
2890 		cond_resched();
2891 	}
2892 
2893 	if (err == 0)
2894 		goto out_put;
2895 
2896 	if (datagrams == 0) {
2897 		datagrams = err;
2898 		goto out_put;
2899 	}
2900 
2901 	/*
2902 	 * We may return less entries than requested (vlen) if the
2903 	 * sock is non block and there aren't enough datagrams...
2904 	 */
2905 	if (err != -EAGAIN) {
2906 		/*
2907 		 * ... or  if recvmsg returns an error after we
2908 		 * received some datagrams, where we record the
2909 		 * error to return on the next call or if the
2910 		 * app asks about it using getsockopt(SO_ERROR).
2911 		 */
2912 		sock->sk->sk_err = -err;
2913 	}
2914 out_put:
2915 	fput_light(sock->file, fput_needed);
2916 
2917 	return datagrams;
2918 }
2919 
2920 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2921 		   unsigned int vlen, unsigned int flags,
2922 		   struct __kernel_timespec __user *timeout,
2923 		   struct old_timespec32 __user *timeout32)
2924 {
2925 	int datagrams;
2926 	struct timespec64 timeout_sys;
2927 
2928 	if (timeout && get_timespec64(&timeout_sys, timeout))
2929 		return -EFAULT;
2930 
2931 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2932 		return -EFAULT;
2933 
2934 	if (!timeout && !timeout32)
2935 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2936 
2937 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2938 
2939 	if (datagrams <= 0)
2940 		return datagrams;
2941 
2942 	if (timeout && put_timespec64(&timeout_sys, timeout))
2943 		datagrams = -EFAULT;
2944 
2945 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2946 		datagrams = -EFAULT;
2947 
2948 	return datagrams;
2949 }
2950 
2951 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2952 		unsigned int, vlen, unsigned int, flags,
2953 		struct __kernel_timespec __user *, timeout)
2954 {
2955 	if (flags & MSG_CMSG_COMPAT)
2956 		return -EINVAL;
2957 
2958 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2959 }
2960 
2961 #ifdef CONFIG_COMPAT_32BIT_TIME
2962 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2963 		unsigned int, vlen, unsigned int, flags,
2964 		struct old_timespec32 __user *, timeout)
2965 {
2966 	if (flags & MSG_CMSG_COMPAT)
2967 		return -EINVAL;
2968 
2969 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2970 }
2971 #endif
2972 
2973 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2974 /* Argument list sizes for sys_socketcall */
2975 #define AL(x) ((x) * sizeof(unsigned long))
2976 static const unsigned char nargs[21] = {
2977 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2978 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2979 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2980 	AL(4), AL(5), AL(4)
2981 };
2982 
2983 #undef AL
2984 
2985 /*
2986  *	System call vectors.
2987  *
2988  *	Argument checking cleaned up. Saved 20% in size.
2989  *  This function doesn't need to set the kernel lock because
2990  *  it is set by the callees.
2991  */
2992 
2993 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2994 {
2995 	unsigned long a[AUDITSC_ARGS];
2996 	unsigned long a0, a1;
2997 	int err;
2998 	unsigned int len;
2999 
3000 	if (call < 1 || call > SYS_SENDMMSG)
3001 		return -EINVAL;
3002 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3003 
3004 	len = nargs[call];
3005 	if (len > sizeof(a))
3006 		return -EINVAL;
3007 
3008 	/* copy_from_user should be SMP safe. */
3009 	if (copy_from_user(a, args, len))
3010 		return -EFAULT;
3011 
3012 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3013 	if (err)
3014 		return err;
3015 
3016 	a0 = a[0];
3017 	a1 = a[1];
3018 
3019 	switch (call) {
3020 	case SYS_SOCKET:
3021 		err = __sys_socket(a0, a1, a[2]);
3022 		break;
3023 	case SYS_BIND:
3024 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3025 		break;
3026 	case SYS_CONNECT:
3027 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3028 		break;
3029 	case SYS_LISTEN:
3030 		err = __sys_listen(a0, a1);
3031 		break;
3032 	case SYS_ACCEPT:
3033 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3034 				    (int __user *)a[2], 0);
3035 		break;
3036 	case SYS_GETSOCKNAME:
3037 		err =
3038 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3039 				      (int __user *)a[2]);
3040 		break;
3041 	case SYS_GETPEERNAME:
3042 		err =
3043 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3044 				      (int __user *)a[2]);
3045 		break;
3046 	case SYS_SOCKETPAIR:
3047 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3048 		break;
3049 	case SYS_SEND:
3050 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3051 				   NULL, 0);
3052 		break;
3053 	case SYS_SENDTO:
3054 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3055 				   (struct sockaddr __user *)a[4], a[5]);
3056 		break;
3057 	case SYS_RECV:
3058 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3059 				     NULL, NULL);
3060 		break;
3061 	case SYS_RECVFROM:
3062 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3063 				     (struct sockaddr __user *)a[4],
3064 				     (int __user *)a[5]);
3065 		break;
3066 	case SYS_SHUTDOWN:
3067 		err = __sys_shutdown(a0, a1);
3068 		break;
3069 	case SYS_SETSOCKOPT:
3070 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3071 				       a[4]);
3072 		break;
3073 	case SYS_GETSOCKOPT:
3074 		err =
3075 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3076 				     (int __user *)a[4]);
3077 		break;
3078 	case SYS_SENDMSG:
3079 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3080 				    a[2], true);
3081 		break;
3082 	case SYS_SENDMMSG:
3083 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3084 				     a[3], true);
3085 		break;
3086 	case SYS_RECVMSG:
3087 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3088 				    a[2], true);
3089 		break;
3090 	case SYS_RECVMMSG:
3091 		if (IS_ENABLED(CONFIG_64BIT))
3092 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3093 					     a[2], a[3],
3094 					     (struct __kernel_timespec __user *)a[4],
3095 					     NULL);
3096 		else
3097 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3098 					     a[2], a[3], NULL,
3099 					     (struct old_timespec32 __user *)a[4]);
3100 		break;
3101 	case SYS_ACCEPT4:
3102 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3103 				    (int __user *)a[2], a[3]);
3104 		break;
3105 	default:
3106 		err = -EINVAL;
3107 		break;
3108 	}
3109 	return err;
3110 }
3111 
3112 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3113 
3114 /**
3115  *	sock_register - add a socket protocol handler
3116  *	@ops: description of protocol
3117  *
3118  *	This function is called by a protocol handler that wants to
3119  *	advertise its address family, and have it linked into the
3120  *	socket interface. The value ops->family corresponds to the
3121  *	socket system call protocol family.
3122  */
3123 int sock_register(const struct net_proto_family *ops)
3124 {
3125 	int err;
3126 
3127 	if (ops->family >= NPROTO) {
3128 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3129 		return -ENOBUFS;
3130 	}
3131 
3132 	spin_lock(&net_family_lock);
3133 	if (rcu_dereference_protected(net_families[ops->family],
3134 				      lockdep_is_held(&net_family_lock)))
3135 		err = -EEXIST;
3136 	else {
3137 		rcu_assign_pointer(net_families[ops->family], ops);
3138 		err = 0;
3139 	}
3140 	spin_unlock(&net_family_lock);
3141 
3142 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3143 	return err;
3144 }
3145 EXPORT_SYMBOL(sock_register);
3146 
3147 /**
3148  *	sock_unregister - remove a protocol handler
3149  *	@family: protocol family to remove
3150  *
3151  *	This function is called by a protocol handler that wants to
3152  *	remove its address family, and have it unlinked from the
3153  *	new socket creation.
3154  *
3155  *	If protocol handler is a module, then it can use module reference
3156  *	counts to protect against new references. If protocol handler is not
3157  *	a module then it needs to provide its own protection in
3158  *	the ops->create routine.
3159  */
3160 void sock_unregister(int family)
3161 {
3162 	BUG_ON(family < 0 || family >= NPROTO);
3163 
3164 	spin_lock(&net_family_lock);
3165 	RCU_INIT_POINTER(net_families[family], NULL);
3166 	spin_unlock(&net_family_lock);
3167 
3168 	synchronize_rcu();
3169 
3170 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3171 }
3172 EXPORT_SYMBOL(sock_unregister);
3173 
3174 bool sock_is_registered(int family)
3175 {
3176 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3177 }
3178 
3179 static int __init sock_init(void)
3180 {
3181 	int err;
3182 	/*
3183 	 *      Initialize the network sysctl infrastructure.
3184 	 */
3185 	err = net_sysctl_init();
3186 	if (err)
3187 		goto out;
3188 
3189 	/*
3190 	 *      Initialize skbuff SLAB cache
3191 	 */
3192 	skb_init();
3193 
3194 	/*
3195 	 *      Initialize the protocols module.
3196 	 */
3197 
3198 	init_inodecache();
3199 
3200 	err = register_filesystem(&sock_fs_type);
3201 	if (err)
3202 		goto out;
3203 	sock_mnt = kern_mount(&sock_fs_type);
3204 	if (IS_ERR(sock_mnt)) {
3205 		err = PTR_ERR(sock_mnt);
3206 		goto out_mount;
3207 	}
3208 
3209 	/* The real protocol initialization is performed in later initcalls.
3210 	 */
3211 
3212 #ifdef CONFIG_NETFILTER
3213 	err = netfilter_init();
3214 	if (err)
3215 		goto out;
3216 #endif
3217 
3218 	ptp_classifier_init();
3219 
3220 out:
3221 	return err;
3222 
3223 out_mount:
3224 	unregister_filesystem(&sock_fs_type);
3225 	goto out;
3226 }
3227 
3228 core_initcall(sock_init);	/* early initcall */
3229 
3230 #ifdef CONFIG_PROC_FS
3231 void socket_seq_show(struct seq_file *seq)
3232 {
3233 	seq_printf(seq, "sockets: used %d\n",
3234 		   sock_inuse_get(seq->private));
3235 }
3236 #endif				/* CONFIG_PROC_FS */
3237 
3238 /* Handle the fact that while struct ifreq has the same *layout* on
3239  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3240  * which are handled elsewhere, it still has different *size* due to
3241  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3242  * resulting in struct ifreq being 32 and 40 bytes respectively).
3243  * As a result, if the struct happens to be at the end of a page and
3244  * the next page isn't readable/writable, we get a fault. To prevent
3245  * that, copy back and forth to the full size.
3246  */
3247 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3248 {
3249 	if (in_compat_syscall()) {
3250 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3251 
3252 		memset(ifr, 0, sizeof(*ifr));
3253 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3254 			return -EFAULT;
3255 
3256 		if (ifrdata)
3257 			*ifrdata = compat_ptr(ifr32->ifr_data);
3258 
3259 		return 0;
3260 	}
3261 
3262 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3263 		return -EFAULT;
3264 
3265 	if (ifrdata)
3266 		*ifrdata = ifr->ifr_data;
3267 
3268 	return 0;
3269 }
3270 EXPORT_SYMBOL(get_user_ifreq);
3271 
3272 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3273 {
3274 	size_t size = sizeof(*ifr);
3275 
3276 	if (in_compat_syscall())
3277 		size = sizeof(struct compat_ifreq);
3278 
3279 	if (copy_to_user(arg, ifr, size))
3280 		return -EFAULT;
3281 
3282 	return 0;
3283 }
3284 EXPORT_SYMBOL(put_user_ifreq);
3285 
3286 #ifdef CONFIG_COMPAT
3287 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3288 {
3289 	compat_uptr_t uptr32;
3290 	struct ifreq ifr;
3291 	void __user *saved;
3292 	int err;
3293 
3294 	if (get_user_ifreq(&ifr, NULL, uifr32))
3295 		return -EFAULT;
3296 
3297 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3298 		return -EFAULT;
3299 
3300 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3301 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3302 
3303 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3304 	if (!err) {
3305 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3306 		if (put_user_ifreq(&ifr, uifr32))
3307 			err = -EFAULT;
3308 	}
3309 	return err;
3310 }
3311 
3312 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3313 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3314 				 struct compat_ifreq __user *u_ifreq32)
3315 {
3316 	struct ifreq ifreq;
3317 	void __user *data;
3318 
3319 	if (!is_socket_ioctl_cmd(cmd))
3320 		return -ENOTTY;
3321 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3322 		return -EFAULT;
3323 	ifreq.ifr_data = data;
3324 
3325 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3326 }
3327 
3328 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3329 			 unsigned int cmd, unsigned long arg)
3330 {
3331 	void __user *argp = compat_ptr(arg);
3332 	struct sock *sk = sock->sk;
3333 	struct net *net = sock_net(sk);
3334 
3335 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3336 		return sock_ioctl(file, cmd, (unsigned long)argp);
3337 
3338 	switch (cmd) {
3339 	case SIOCWANDEV:
3340 		return compat_siocwandev(net, argp);
3341 	case SIOCGSTAMP_OLD:
3342 	case SIOCGSTAMPNS_OLD:
3343 		if (!sock->ops->gettstamp)
3344 			return -ENOIOCTLCMD;
3345 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3346 					    !COMPAT_USE_64BIT_TIME);
3347 
3348 	case SIOCETHTOOL:
3349 	case SIOCBONDSLAVEINFOQUERY:
3350 	case SIOCBONDINFOQUERY:
3351 	case SIOCSHWTSTAMP:
3352 	case SIOCGHWTSTAMP:
3353 		return compat_ifr_data_ioctl(net, cmd, argp);
3354 
3355 	case FIOSETOWN:
3356 	case SIOCSPGRP:
3357 	case FIOGETOWN:
3358 	case SIOCGPGRP:
3359 	case SIOCBRADDBR:
3360 	case SIOCBRDELBR:
3361 	case SIOCGIFVLAN:
3362 	case SIOCSIFVLAN:
3363 	case SIOCGSKNS:
3364 	case SIOCGSTAMP_NEW:
3365 	case SIOCGSTAMPNS_NEW:
3366 	case SIOCGIFCONF:
3367 	case SIOCSIFBR:
3368 	case SIOCGIFBR:
3369 		return sock_ioctl(file, cmd, arg);
3370 
3371 	case SIOCGIFFLAGS:
3372 	case SIOCSIFFLAGS:
3373 	case SIOCGIFMAP:
3374 	case SIOCSIFMAP:
3375 	case SIOCGIFMETRIC:
3376 	case SIOCSIFMETRIC:
3377 	case SIOCGIFMTU:
3378 	case SIOCSIFMTU:
3379 	case SIOCGIFMEM:
3380 	case SIOCSIFMEM:
3381 	case SIOCGIFHWADDR:
3382 	case SIOCSIFHWADDR:
3383 	case SIOCADDMULTI:
3384 	case SIOCDELMULTI:
3385 	case SIOCGIFINDEX:
3386 	case SIOCGIFADDR:
3387 	case SIOCSIFADDR:
3388 	case SIOCSIFHWBROADCAST:
3389 	case SIOCDIFADDR:
3390 	case SIOCGIFBRDADDR:
3391 	case SIOCSIFBRDADDR:
3392 	case SIOCGIFDSTADDR:
3393 	case SIOCSIFDSTADDR:
3394 	case SIOCGIFNETMASK:
3395 	case SIOCSIFNETMASK:
3396 	case SIOCSIFPFLAGS:
3397 	case SIOCGIFPFLAGS:
3398 	case SIOCGIFTXQLEN:
3399 	case SIOCSIFTXQLEN:
3400 	case SIOCBRADDIF:
3401 	case SIOCBRDELIF:
3402 	case SIOCGIFNAME:
3403 	case SIOCSIFNAME:
3404 	case SIOCGMIIPHY:
3405 	case SIOCGMIIREG:
3406 	case SIOCSMIIREG:
3407 	case SIOCBONDENSLAVE:
3408 	case SIOCBONDRELEASE:
3409 	case SIOCBONDSETHWADDR:
3410 	case SIOCBONDCHANGEACTIVE:
3411 	case SIOCSARP:
3412 	case SIOCGARP:
3413 	case SIOCDARP:
3414 	case SIOCOUTQ:
3415 	case SIOCOUTQNSD:
3416 	case SIOCATMARK:
3417 		return sock_do_ioctl(net, sock, cmd, arg);
3418 	}
3419 
3420 	return -ENOIOCTLCMD;
3421 }
3422 
3423 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3424 			      unsigned long arg)
3425 {
3426 	struct socket *sock = file->private_data;
3427 	int ret = -ENOIOCTLCMD;
3428 	struct sock *sk;
3429 	struct net *net;
3430 
3431 	sk = sock->sk;
3432 	net = sock_net(sk);
3433 
3434 	if (sock->ops->compat_ioctl)
3435 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3436 
3437 	if (ret == -ENOIOCTLCMD &&
3438 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3439 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3440 
3441 	if (ret == -ENOIOCTLCMD)
3442 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3443 
3444 	return ret;
3445 }
3446 #endif
3447 
3448 /**
3449  *	kernel_bind - bind an address to a socket (kernel space)
3450  *	@sock: socket
3451  *	@addr: address
3452  *	@addrlen: length of address
3453  *
3454  *	Returns 0 or an error.
3455  */
3456 
3457 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3458 {
3459 	return sock->ops->bind(sock, addr, addrlen);
3460 }
3461 EXPORT_SYMBOL(kernel_bind);
3462 
3463 /**
3464  *	kernel_listen - move socket to listening state (kernel space)
3465  *	@sock: socket
3466  *	@backlog: pending connections queue size
3467  *
3468  *	Returns 0 or an error.
3469  */
3470 
3471 int kernel_listen(struct socket *sock, int backlog)
3472 {
3473 	return sock->ops->listen(sock, backlog);
3474 }
3475 EXPORT_SYMBOL(kernel_listen);
3476 
3477 /**
3478  *	kernel_accept - accept a connection (kernel space)
3479  *	@sock: listening socket
3480  *	@newsock: new connected socket
3481  *	@flags: flags
3482  *
3483  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3484  *	If it fails, @newsock is guaranteed to be %NULL.
3485  *	Returns 0 or an error.
3486  */
3487 
3488 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3489 {
3490 	struct sock *sk = sock->sk;
3491 	int err;
3492 
3493 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3494 			       newsock);
3495 	if (err < 0)
3496 		goto done;
3497 
3498 	err = sock->ops->accept(sock, *newsock, flags, true);
3499 	if (err < 0) {
3500 		sock_release(*newsock);
3501 		*newsock = NULL;
3502 		goto done;
3503 	}
3504 
3505 	(*newsock)->ops = sock->ops;
3506 	__module_get((*newsock)->ops->owner);
3507 
3508 done:
3509 	return err;
3510 }
3511 EXPORT_SYMBOL(kernel_accept);
3512 
3513 /**
3514  *	kernel_connect - connect a socket (kernel space)
3515  *	@sock: socket
3516  *	@addr: address
3517  *	@addrlen: address length
3518  *	@flags: flags (O_NONBLOCK, ...)
3519  *
3520  *	For datagram sockets, @addr is the address to which datagrams are sent
3521  *	by default, and the only address from which datagrams are received.
3522  *	For stream sockets, attempts to connect to @addr.
3523  *	Returns 0 or an error code.
3524  */
3525 
3526 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3527 		   int flags)
3528 {
3529 	return sock->ops->connect(sock, addr, addrlen, flags);
3530 }
3531 EXPORT_SYMBOL(kernel_connect);
3532 
3533 /**
3534  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3535  *	@sock: socket
3536  *	@addr: address holder
3537  *
3538  * 	Fills the @addr pointer with the address which the socket is bound.
3539  *	Returns the length of the address in bytes or an error code.
3540  */
3541 
3542 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3543 {
3544 	return sock->ops->getname(sock, addr, 0);
3545 }
3546 EXPORT_SYMBOL(kernel_getsockname);
3547 
3548 /**
3549  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3550  *	@sock: socket
3551  *	@addr: address holder
3552  *
3553  * 	Fills the @addr pointer with the address which the socket is connected.
3554  *	Returns the length of the address in bytes or an error code.
3555  */
3556 
3557 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3558 {
3559 	return sock->ops->getname(sock, addr, 1);
3560 }
3561 EXPORT_SYMBOL(kernel_getpeername);
3562 
3563 /**
3564  *	kernel_sendpage - send a &page through a socket (kernel space)
3565  *	@sock: socket
3566  *	@page: page
3567  *	@offset: page offset
3568  *	@size: total size in bytes
3569  *	@flags: flags (MSG_DONTWAIT, ...)
3570  *
3571  *	Returns the total amount sent in bytes or an error.
3572  */
3573 
3574 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3575 		    size_t size, int flags)
3576 {
3577 	if (sock->ops->sendpage) {
3578 		/* Warn in case the improper page to zero-copy send */
3579 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3580 		return sock->ops->sendpage(sock, page, offset, size, flags);
3581 	}
3582 	return sock_no_sendpage(sock, page, offset, size, flags);
3583 }
3584 EXPORT_SYMBOL(kernel_sendpage);
3585 
3586 /**
3587  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3588  *	@sk: sock
3589  *	@page: page
3590  *	@offset: page offset
3591  *	@size: total size in bytes
3592  *	@flags: flags (MSG_DONTWAIT, ...)
3593  *
3594  *	Returns the total amount sent in bytes or an error.
3595  *	Caller must hold @sk.
3596  */
3597 
3598 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3599 			   size_t size, int flags)
3600 {
3601 	struct socket *sock = sk->sk_socket;
3602 
3603 	if (sock->ops->sendpage_locked)
3604 		return sock->ops->sendpage_locked(sk, page, offset, size,
3605 						  flags);
3606 
3607 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3608 }
3609 EXPORT_SYMBOL(kernel_sendpage_locked);
3610 
3611 /**
3612  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3613  *	@sock: socket
3614  *	@how: connection part
3615  *
3616  *	Returns 0 or an error.
3617  */
3618 
3619 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3620 {
3621 	return sock->ops->shutdown(sock, how);
3622 }
3623 EXPORT_SYMBOL(kernel_sock_shutdown);
3624 
3625 /**
3626  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3627  *	@sk: socket
3628  *
3629  *	This routine returns the IP overhead imposed by a socket i.e.
3630  *	the length of the underlying IP header, depending on whether
3631  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3632  *	on at the socket. Assumes that the caller has a lock on the socket.
3633  */
3634 
3635 u32 kernel_sock_ip_overhead(struct sock *sk)
3636 {
3637 	struct inet_sock *inet;
3638 	struct ip_options_rcu *opt;
3639 	u32 overhead = 0;
3640 #if IS_ENABLED(CONFIG_IPV6)
3641 	struct ipv6_pinfo *np;
3642 	struct ipv6_txoptions *optv6 = NULL;
3643 #endif /* IS_ENABLED(CONFIG_IPV6) */
3644 
3645 	if (!sk)
3646 		return overhead;
3647 
3648 	switch (sk->sk_family) {
3649 	case AF_INET:
3650 		inet = inet_sk(sk);
3651 		overhead += sizeof(struct iphdr);
3652 		opt = rcu_dereference_protected(inet->inet_opt,
3653 						sock_owned_by_user(sk));
3654 		if (opt)
3655 			overhead += opt->opt.optlen;
3656 		return overhead;
3657 #if IS_ENABLED(CONFIG_IPV6)
3658 	case AF_INET6:
3659 		np = inet6_sk(sk);
3660 		overhead += sizeof(struct ipv6hdr);
3661 		if (np)
3662 			optv6 = rcu_dereference_protected(np->opt,
3663 							  sock_owned_by_user(sk));
3664 		if (optv6)
3665 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3666 		return overhead;
3667 #endif /* IS_ENABLED(CONFIG_IPV6) */
3668 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3669 		return overhead;
3670 	}
3671 }
3672 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3673