xref: /openbmc/linux/net/socket.c (revision 1fa0a7dc)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 #include <linux/indirect_call_wrapper.h>
94 
95 #include <linux/uaccess.h>
96 #include <asm/unistd.h>
97 
98 #include <net/compat.h>
99 #include <net/wext.h>
100 #include <net/cls_cgroup.h>
101 
102 #include <net/sock.h>
103 #include <linux/netfilter.h>
104 
105 #include <linux/if_tun.h>
106 #include <linux/ipv6_route.h>
107 #include <linux/route.h>
108 #include <linux/sockios.h>
109 #include <net/busy_poll.h>
110 #include <linux/errqueue.h>
111 
112 /* proto_ops for ipv4 and ipv6 use the same {recv,send}msg function */
113 #if IS_ENABLED(CONFIG_INET)
114 #define INDIRECT_CALL_INET4(f, f1, ...) INDIRECT_CALL_1(f, f1, __VA_ARGS__)
115 #else
116 #define INDIRECT_CALL_INET4(f, f1, ...) f(__VA_ARGS__)
117 #endif
118 
119 #ifdef CONFIG_NET_RX_BUSY_POLL
120 unsigned int sysctl_net_busy_read __read_mostly;
121 unsigned int sysctl_net_busy_poll __read_mostly;
122 #endif
123 
124 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
125 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
126 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
127 
128 static int sock_close(struct inode *inode, struct file *file);
129 static __poll_t sock_poll(struct file *file,
130 			      struct poll_table_struct *wait);
131 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
132 #ifdef CONFIG_COMPAT
133 static long compat_sock_ioctl(struct file *file,
134 			      unsigned int cmd, unsigned long arg);
135 #endif
136 static int sock_fasync(int fd, struct file *filp, int on);
137 static ssize_t sock_sendpage(struct file *file, struct page *page,
138 			     int offset, size_t size, loff_t *ppos, int more);
139 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
140 				struct pipe_inode_info *pipe, size_t len,
141 				unsigned int flags);
142 
143 /*
144  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
145  *	in the operation structures but are done directly via the socketcall() multiplexor.
146  */
147 
148 static const struct file_operations socket_file_ops = {
149 	.owner =	THIS_MODULE,
150 	.llseek =	no_llseek,
151 	.read_iter =	sock_read_iter,
152 	.write_iter =	sock_write_iter,
153 	.poll =		sock_poll,
154 	.unlocked_ioctl = sock_ioctl,
155 #ifdef CONFIG_COMPAT
156 	.compat_ioctl = compat_sock_ioctl,
157 #endif
158 	.mmap =		sock_mmap,
159 	.release =	sock_close,
160 	.fasync =	sock_fasync,
161 	.sendpage =	sock_sendpage,
162 	.splice_write = generic_splice_sendpage,
163 	.splice_read =	sock_splice_read,
164 };
165 
166 /*
167  *	The protocol list. Each protocol is registered in here.
168  */
169 
170 static DEFINE_SPINLOCK(net_family_lock);
171 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
172 
173 /*
174  * Support routines.
175  * Move socket addresses back and forth across the kernel/user
176  * divide and look after the messy bits.
177  */
178 
179 /**
180  *	move_addr_to_kernel	-	copy a socket address into kernel space
181  *	@uaddr: Address in user space
182  *	@kaddr: Address in kernel space
183  *	@ulen: Length in user space
184  *
185  *	The address is copied into kernel space. If the provided address is
186  *	too long an error code of -EINVAL is returned. If the copy gives
187  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
188  */
189 
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 		return -EINVAL;
194 	if (ulen == 0)
195 		return 0;
196 	if (copy_from_user(kaddr, uaddr, ulen))
197 		return -EFAULT;
198 	return audit_sockaddr(ulen, kaddr);
199 }
200 
201 /**
202  *	move_addr_to_user	-	copy an address to user space
203  *	@kaddr: kernel space address
204  *	@klen: length of address in kernel
205  *	@uaddr: user space address
206  *	@ulen: pointer to user length field
207  *
208  *	The value pointed to by ulen on entry is the buffer length available.
209  *	This is overwritten with the buffer space used. -EINVAL is returned
210  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
211  *	is returned if either the buffer or the length field are not
212  *	accessible.
213  *	After copying the data up to the limit the user specifies, the true
214  *	length of the data is written over the length limit the user
215  *	specified. Zero is returned for a success.
216  */
217 
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 			     void __user *uaddr, int __user *ulen)
220 {
221 	int err;
222 	int len;
223 
224 	BUG_ON(klen > sizeof(struct sockaddr_storage));
225 	err = get_user(len, ulen);
226 	if (err)
227 		return err;
228 	if (len > klen)
229 		len = klen;
230 	if (len < 0)
231 		return -EINVAL;
232 	if (len) {
233 		if (audit_sockaddr(klen, kaddr))
234 			return -ENOMEM;
235 		if (copy_to_user(uaddr, kaddr, len))
236 			return -EFAULT;
237 	}
238 	/*
239 	 *      "fromlen shall refer to the value before truncation.."
240 	 *                      1003.1g
241 	 */
242 	return __put_user(klen, ulen);
243 }
244 
245 static struct kmem_cache *sock_inode_cachep __ro_after_init;
246 
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 	struct socket_alloc *ei;
250 	struct socket_wq *wq;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 	if (!wq) {
257 		kmem_cache_free(sock_inode_cachep, ei);
258 		return NULL;
259 	}
260 	init_waitqueue_head(&wq->wait);
261 	wq->fasync_list = NULL;
262 	wq->flags = 0;
263 	ei->socket.wq = wq;
264 
265 	ei->socket.state = SS_UNCONNECTED;
266 	ei->socket.flags = 0;
267 	ei->socket.ops = NULL;
268 	ei->socket.sk = NULL;
269 	ei->socket.file = NULL;
270 
271 	return &ei->vfs_inode;
272 }
273 
274 static void sock_destroy_inode(struct inode *inode)
275 {
276 	struct socket_alloc *ei;
277 
278 	ei = container_of(inode, struct socket_alloc, vfs_inode);
279 	kfree_rcu(ei->socket.wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static void init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	BUG_ON(sock_inode_cachep == NULL);
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 /*
309  * sockfs_dname() is called from d_path().
310  */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 				d_inode(dentry)->i_ino);
315 }
316 
317 static const struct dentry_operations sockfs_dentry_operations = {
318 	.d_dname  = sockfs_dname,
319 };
320 
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 			    struct dentry *dentry, struct inode *inode,
323 			    const char *suffix, void *value, size_t size)
324 {
325 	if (value) {
326 		if (dentry->d_name.len + 1 > size)
327 			return -ERANGE;
328 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 	}
330 	return dentry->d_name.len + 1;
331 }
332 
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336 
337 static const struct xattr_handler sockfs_xattr_handler = {
338 	.name = XATTR_NAME_SOCKPROTONAME,
339 	.get = sockfs_xattr_get,
340 };
341 
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 				     struct dentry *dentry, struct inode *inode,
344 				     const char *suffix, const void *value,
345 				     size_t size, int flags)
346 {
347 	/* Handled by LSM. */
348 	return -EAGAIN;
349 }
350 
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 	.prefix = XATTR_SECURITY_PREFIX,
353 	.set = sockfs_security_xattr_set,
354 };
355 
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 	&sockfs_xattr_handler,
358 	&sockfs_security_xattr_handler,
359 	NULL
360 };
361 
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 			 int flags, const char *dev_name, void *data)
364 {
365 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 				  sockfs_xattr_handlers,
367 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369 
370 static struct vfsmount *sock_mnt __read_mostly;
371 
372 static struct file_system_type sock_fs_type = {
373 	.name =		"sockfs",
374 	.mount =	sockfs_mount,
375 	.kill_sb =	kill_anon_super,
376 };
377 
378 /*
379  *	Obtains the first available file descriptor and sets it up for use.
380  *
381  *	These functions create file structures and maps them to fd space
382  *	of the current process. On success it returns file descriptor
383  *	and file struct implicitly stored in sock->file.
384  *	Note that another thread may close file descriptor before we return
385  *	from this function. We use the fact that now we do not refer
386  *	to socket after mapping. If one day we will need it, this
387  *	function will increment ref. count on file by 1.
388  *
389  *	In any case returned fd MAY BE not valid!
390  *	This race condition is unavoidable
391  *	with shared fd spaces, we cannot solve it inside kernel,
392  *	but we take care of internal coherence yet.
393  */
394 
395 /**
396  *	sock_alloc_file - Bind a &socket to a &file
397  *	@sock: socket
398  *	@flags: file status flags
399  *	@dname: protocol name
400  *
401  *	Returns the &file bound with @sock, implicitly storing it
402  *	in sock->file. If dname is %NULL, sets to "".
403  *	On failure the return is a ERR pointer (see linux/err.h).
404  *	This function uses GFP_KERNEL internally.
405  */
406 
407 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
408 {
409 	struct file *file;
410 
411 	if (!dname)
412 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
413 
414 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
415 				O_RDWR | (flags & O_NONBLOCK),
416 				&socket_file_ops);
417 	if (IS_ERR(file)) {
418 		sock_release(sock);
419 		return file;
420 	}
421 
422 	sock->file = file;
423 	file->private_data = sock;
424 	return file;
425 }
426 EXPORT_SYMBOL(sock_alloc_file);
427 
428 static int sock_map_fd(struct socket *sock, int flags)
429 {
430 	struct file *newfile;
431 	int fd = get_unused_fd_flags(flags);
432 	if (unlikely(fd < 0)) {
433 		sock_release(sock);
434 		return fd;
435 	}
436 
437 	newfile = sock_alloc_file(sock, flags, NULL);
438 	if (likely(!IS_ERR(newfile))) {
439 		fd_install(fd, newfile);
440 		return fd;
441 	}
442 
443 	put_unused_fd(fd);
444 	return PTR_ERR(newfile);
445 }
446 
447 /**
448  *	sock_from_file - Return the &socket bounded to @file.
449  *	@file: file
450  *	@err: pointer to an error code return
451  *
452  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
453  */
454 
455 struct socket *sock_from_file(struct file *file, int *err)
456 {
457 	if (file->f_op == &socket_file_ops)
458 		return file->private_data;	/* set in sock_map_fd */
459 
460 	*err = -ENOTSOCK;
461 	return NULL;
462 }
463 EXPORT_SYMBOL(sock_from_file);
464 
465 /**
466  *	sockfd_lookup - Go from a file number to its socket slot
467  *	@fd: file handle
468  *	@err: pointer to an error code return
469  *
470  *	The file handle passed in is locked and the socket it is bound
471  *	to is returned. If an error occurs the err pointer is overwritten
472  *	with a negative errno code and NULL is returned. The function checks
473  *	for both invalid handles and passing a handle which is not a socket.
474  *
475  *	On a success the socket object pointer is returned.
476  */
477 
478 struct socket *sockfd_lookup(int fd, int *err)
479 {
480 	struct file *file;
481 	struct socket *sock;
482 
483 	file = fget(fd);
484 	if (!file) {
485 		*err = -EBADF;
486 		return NULL;
487 	}
488 
489 	sock = sock_from_file(file, err);
490 	if (!sock)
491 		fput(file);
492 	return sock;
493 }
494 EXPORT_SYMBOL(sockfd_lookup);
495 
496 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
497 {
498 	struct fd f = fdget(fd);
499 	struct socket *sock;
500 
501 	*err = -EBADF;
502 	if (f.file) {
503 		sock = sock_from_file(f.file, err);
504 		if (likely(sock)) {
505 			*fput_needed = f.flags;
506 			return sock;
507 		}
508 		fdput(f);
509 	}
510 	return NULL;
511 }
512 
513 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
514 				size_t size)
515 {
516 	ssize_t len;
517 	ssize_t used = 0;
518 
519 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
520 	if (len < 0)
521 		return len;
522 	used += len;
523 	if (buffer) {
524 		if (size < used)
525 			return -ERANGE;
526 		buffer += len;
527 	}
528 
529 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
530 	used += len;
531 	if (buffer) {
532 		if (size < used)
533 			return -ERANGE;
534 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
535 		buffer += len;
536 	}
537 
538 	return used;
539 }
540 
541 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
542 {
543 	int err = simple_setattr(dentry, iattr);
544 
545 	if (!err && (iattr->ia_valid & ATTR_UID)) {
546 		struct socket *sock = SOCKET_I(d_inode(dentry));
547 
548 		if (sock->sk)
549 			sock->sk->sk_uid = iattr->ia_uid;
550 		else
551 			err = -ENOENT;
552 	}
553 
554 	return err;
555 }
556 
557 static const struct inode_operations sockfs_inode_ops = {
558 	.listxattr = sockfs_listxattr,
559 	.setattr = sockfs_setattr,
560 };
561 
562 /**
563  *	sock_alloc - allocate a socket
564  *
565  *	Allocate a new inode and socket object. The two are bound together
566  *	and initialised. The socket is then returned. If we are out of inodes
567  *	NULL is returned. This functions uses GFP_KERNEL internally.
568  */
569 
570 struct socket *sock_alloc(void)
571 {
572 	struct inode *inode;
573 	struct socket *sock;
574 
575 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
576 	if (!inode)
577 		return NULL;
578 
579 	sock = SOCKET_I(inode);
580 
581 	inode->i_ino = get_next_ino();
582 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
583 	inode->i_uid = current_fsuid();
584 	inode->i_gid = current_fsgid();
585 	inode->i_op = &sockfs_inode_ops;
586 
587 	return sock;
588 }
589 EXPORT_SYMBOL(sock_alloc);
590 
591 /**
592  *	sock_release - close a socket
593  *	@sock: socket to close
594  *
595  *	The socket is released from the protocol stack if it has a release
596  *	callback, and the inode is then released if the socket is bound to
597  *	an inode not a file.
598  */
599 
600 static void __sock_release(struct socket *sock, struct inode *inode)
601 {
602 	if (sock->ops) {
603 		struct module *owner = sock->ops->owner;
604 
605 		if (inode)
606 			inode_lock(inode);
607 		sock->ops->release(sock);
608 		sock->sk = NULL;
609 		if (inode)
610 			inode_unlock(inode);
611 		sock->ops = NULL;
612 		module_put(owner);
613 	}
614 
615 	if (sock->wq->fasync_list)
616 		pr_err("%s: fasync list not empty!\n", __func__);
617 
618 	if (!sock->file) {
619 		iput(SOCK_INODE(sock));
620 		return;
621 	}
622 	sock->file = NULL;
623 }
624 
625 void sock_release(struct socket *sock)
626 {
627 	__sock_release(sock, NULL);
628 }
629 EXPORT_SYMBOL(sock_release);
630 
631 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
632 {
633 	u8 flags = *tx_flags;
634 
635 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
636 		flags |= SKBTX_HW_TSTAMP;
637 
638 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
639 		flags |= SKBTX_SW_TSTAMP;
640 
641 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
642 		flags |= SKBTX_SCHED_TSTAMP;
643 
644 	*tx_flags = flags;
645 }
646 EXPORT_SYMBOL(__sock_tx_timestamp);
647 
648 /**
649  *	sock_sendmsg - send a message through @sock
650  *	@sock: socket
651  *	@msg: message to send
652  *
653  *	Sends @msg through @sock, passing through LSM.
654  *	Returns the number of bytes sent, or an error code.
655  */
656 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
657 					   size_t));
658 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
659 {
660 	int ret = INDIRECT_CALL_INET4(sock->ops->sendmsg, inet_sendmsg, sock,
661 				      msg, msg_data_left(msg));
662 	BUG_ON(ret == -EIOCBQUEUED);
663 	return ret;
664 }
665 
666 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
667 {
668 	int err = security_socket_sendmsg(sock, msg,
669 					  msg_data_left(msg));
670 
671 	return err ?: sock_sendmsg_nosec(sock, msg);
672 }
673 EXPORT_SYMBOL(sock_sendmsg);
674 
675 /**
676  *	kernel_sendmsg - send a message through @sock (kernel-space)
677  *	@sock: socket
678  *	@msg: message header
679  *	@vec: kernel vec
680  *	@num: vec array length
681  *	@size: total message data size
682  *
683  *	Builds the message data with @vec and sends it through @sock.
684  *	Returns the number of bytes sent, or an error code.
685  */
686 
687 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
688 		   struct kvec *vec, size_t num, size_t size)
689 {
690 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
691 	return sock_sendmsg(sock, msg);
692 }
693 EXPORT_SYMBOL(kernel_sendmsg);
694 
695 /**
696  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
697  *	@sk: sock
698  *	@msg: message header
699  *	@vec: output s/g array
700  *	@num: output s/g array length
701  *	@size: total message data size
702  *
703  *	Builds the message data with @vec and sends it through @sock.
704  *	Returns the number of bytes sent, or an error code.
705  *	Caller must hold @sk.
706  */
707 
708 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
709 			  struct kvec *vec, size_t num, size_t size)
710 {
711 	struct socket *sock = sk->sk_socket;
712 
713 	if (!sock->ops->sendmsg_locked)
714 		return sock_no_sendmsg_locked(sk, msg, size);
715 
716 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
717 
718 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
719 }
720 EXPORT_SYMBOL(kernel_sendmsg_locked);
721 
722 static bool skb_is_err_queue(const struct sk_buff *skb)
723 {
724 	/* pkt_type of skbs enqueued on the error queue are set to
725 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
726 	 * in recvmsg, since skbs received on a local socket will never
727 	 * have a pkt_type of PACKET_OUTGOING.
728 	 */
729 	return skb->pkt_type == PACKET_OUTGOING;
730 }
731 
732 /* On transmit, software and hardware timestamps are returned independently.
733  * As the two skb clones share the hardware timestamp, which may be updated
734  * before the software timestamp is received, a hardware TX timestamp may be
735  * returned only if there is no software TX timestamp. Ignore false software
736  * timestamps, which may be made in the __sock_recv_timestamp() call when the
737  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
738  * hardware timestamp.
739  */
740 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
741 {
742 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
743 }
744 
745 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
746 {
747 	struct scm_ts_pktinfo ts_pktinfo;
748 	struct net_device *orig_dev;
749 
750 	if (!skb_mac_header_was_set(skb))
751 		return;
752 
753 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
754 
755 	rcu_read_lock();
756 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
757 	if (orig_dev)
758 		ts_pktinfo.if_index = orig_dev->ifindex;
759 	rcu_read_unlock();
760 
761 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
762 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
763 		 sizeof(ts_pktinfo), &ts_pktinfo);
764 }
765 
766 /*
767  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
768  */
769 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
770 	struct sk_buff *skb)
771 {
772 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
773 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
774 	struct scm_timestamping_internal tss;
775 
776 	int empty = 1, false_tstamp = 0;
777 	struct skb_shared_hwtstamps *shhwtstamps =
778 		skb_hwtstamps(skb);
779 
780 	/* Race occurred between timestamp enabling and packet
781 	   receiving.  Fill in the current time for now. */
782 	if (need_software_tstamp && skb->tstamp == 0) {
783 		__net_timestamp(skb);
784 		false_tstamp = 1;
785 	}
786 
787 	if (need_software_tstamp) {
788 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
789 			if (new_tstamp) {
790 				struct __kernel_sock_timeval tv;
791 
792 				skb_get_new_timestamp(skb, &tv);
793 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
794 					 sizeof(tv), &tv);
795 			} else {
796 				struct __kernel_old_timeval tv;
797 
798 				skb_get_timestamp(skb, &tv);
799 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
800 					 sizeof(tv), &tv);
801 			}
802 		} else {
803 			if (new_tstamp) {
804 				struct __kernel_timespec ts;
805 
806 				skb_get_new_timestampns(skb, &ts);
807 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
808 					 sizeof(ts), &ts);
809 			} else {
810 				struct timespec ts;
811 
812 				skb_get_timestampns(skb, &ts);
813 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
814 					 sizeof(ts), &ts);
815 			}
816 		}
817 	}
818 
819 	memset(&tss, 0, sizeof(tss));
820 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
821 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
822 		empty = 0;
823 	if (shhwtstamps &&
824 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
825 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
826 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
827 		empty = 0;
828 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
829 		    !skb_is_err_queue(skb))
830 			put_ts_pktinfo(msg, skb);
831 	}
832 	if (!empty) {
833 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
834 			put_cmsg_scm_timestamping64(msg, &tss);
835 		else
836 			put_cmsg_scm_timestamping(msg, &tss);
837 
838 		if (skb_is_err_queue(skb) && skb->len &&
839 		    SKB_EXT_ERR(skb)->opt_stats)
840 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
841 				 skb->len, skb->data);
842 	}
843 }
844 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
845 
846 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
847 	struct sk_buff *skb)
848 {
849 	int ack;
850 
851 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
852 		return;
853 	if (!skb->wifi_acked_valid)
854 		return;
855 
856 	ack = skb->wifi_acked;
857 
858 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
859 }
860 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
861 
862 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
863 				   struct sk_buff *skb)
864 {
865 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
866 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
867 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
868 }
869 
870 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
871 	struct sk_buff *skb)
872 {
873 	sock_recv_timestamp(msg, sk, skb);
874 	sock_recv_drops(msg, sk, skb);
875 }
876 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
877 
878 /**
879  *	sock_recvmsg - receive a message from @sock
880  *	@sock: socket
881  *	@msg: message to receive
882  *	@flags: message flags
883  *
884  *	Receives @msg from @sock, passing through LSM. Returns the total number
885  *	of bytes received, or an error.
886  */
887 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
888 					   size_t , int ));
889 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
890 				     int flags)
891 {
892 	return INDIRECT_CALL_INET4(sock->ops->recvmsg, inet_recvmsg, sock, msg,
893 				   msg_data_left(msg), flags);
894 }
895 
896 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
897 {
898 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
899 
900 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
901 }
902 EXPORT_SYMBOL(sock_recvmsg);
903 
904 /**
905  *	kernel_recvmsg - Receive a message from a socket (kernel space)
906  *	@sock: The socket to receive the message from
907  *	@msg: Received message
908  *	@vec: Input s/g array for message data
909  *	@num: Size of input s/g array
910  *	@size: Number of bytes to read
911  *	@flags: Message flags (MSG_DONTWAIT, etc...)
912  *
913  *	On return the msg structure contains the scatter/gather array passed in the
914  *	vec argument. The array is modified so that it consists of the unfilled
915  *	portion of the original array.
916  *
917  *	The returned value is the total number of bytes received, or an error.
918  */
919 
920 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
921 		   struct kvec *vec, size_t num, size_t size, int flags)
922 {
923 	mm_segment_t oldfs = get_fs();
924 	int result;
925 
926 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
927 	set_fs(KERNEL_DS);
928 	result = sock_recvmsg(sock, msg, flags);
929 	set_fs(oldfs);
930 	return result;
931 }
932 EXPORT_SYMBOL(kernel_recvmsg);
933 
934 static ssize_t sock_sendpage(struct file *file, struct page *page,
935 			     int offset, size_t size, loff_t *ppos, int more)
936 {
937 	struct socket *sock;
938 	int flags;
939 
940 	sock = file->private_data;
941 
942 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
943 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
944 	flags |= more;
945 
946 	return kernel_sendpage(sock, page, offset, size, flags);
947 }
948 
949 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
950 				struct pipe_inode_info *pipe, size_t len,
951 				unsigned int flags)
952 {
953 	struct socket *sock = file->private_data;
954 
955 	if (unlikely(!sock->ops->splice_read))
956 		return generic_file_splice_read(file, ppos, pipe, len, flags);
957 
958 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
959 }
960 
961 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
962 {
963 	struct file *file = iocb->ki_filp;
964 	struct socket *sock = file->private_data;
965 	struct msghdr msg = {.msg_iter = *to,
966 			     .msg_iocb = iocb};
967 	ssize_t res;
968 
969 	if (file->f_flags & O_NONBLOCK)
970 		msg.msg_flags = MSG_DONTWAIT;
971 
972 	if (iocb->ki_pos != 0)
973 		return -ESPIPE;
974 
975 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
976 		return 0;
977 
978 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
979 	*to = msg.msg_iter;
980 	return res;
981 }
982 
983 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
984 {
985 	struct file *file = iocb->ki_filp;
986 	struct socket *sock = file->private_data;
987 	struct msghdr msg = {.msg_iter = *from,
988 			     .msg_iocb = iocb};
989 	ssize_t res;
990 
991 	if (iocb->ki_pos != 0)
992 		return -ESPIPE;
993 
994 	if (file->f_flags & O_NONBLOCK)
995 		msg.msg_flags = MSG_DONTWAIT;
996 
997 	if (sock->type == SOCK_SEQPACKET)
998 		msg.msg_flags |= MSG_EOR;
999 
1000 	res = sock_sendmsg(sock, &msg);
1001 	*from = msg.msg_iter;
1002 	return res;
1003 }
1004 
1005 /*
1006  * Atomic setting of ioctl hooks to avoid race
1007  * with module unload.
1008  */
1009 
1010 static DEFINE_MUTEX(br_ioctl_mutex);
1011 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1012 
1013 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1014 {
1015 	mutex_lock(&br_ioctl_mutex);
1016 	br_ioctl_hook = hook;
1017 	mutex_unlock(&br_ioctl_mutex);
1018 }
1019 EXPORT_SYMBOL(brioctl_set);
1020 
1021 static DEFINE_MUTEX(vlan_ioctl_mutex);
1022 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1023 
1024 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1025 {
1026 	mutex_lock(&vlan_ioctl_mutex);
1027 	vlan_ioctl_hook = hook;
1028 	mutex_unlock(&vlan_ioctl_mutex);
1029 }
1030 EXPORT_SYMBOL(vlan_ioctl_set);
1031 
1032 static DEFINE_MUTEX(dlci_ioctl_mutex);
1033 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1034 
1035 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1036 {
1037 	mutex_lock(&dlci_ioctl_mutex);
1038 	dlci_ioctl_hook = hook;
1039 	mutex_unlock(&dlci_ioctl_mutex);
1040 }
1041 EXPORT_SYMBOL(dlci_ioctl_set);
1042 
1043 static long sock_do_ioctl(struct net *net, struct socket *sock,
1044 			  unsigned int cmd, unsigned long arg)
1045 {
1046 	int err;
1047 	void __user *argp = (void __user *)arg;
1048 
1049 	err = sock->ops->ioctl(sock, cmd, arg);
1050 
1051 	/*
1052 	 * If this ioctl is unknown try to hand it down
1053 	 * to the NIC driver.
1054 	 */
1055 	if (err != -ENOIOCTLCMD)
1056 		return err;
1057 
1058 	if (cmd == SIOCGIFCONF) {
1059 		struct ifconf ifc;
1060 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1061 			return -EFAULT;
1062 		rtnl_lock();
1063 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1064 		rtnl_unlock();
1065 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1066 			err = -EFAULT;
1067 	} else {
1068 		struct ifreq ifr;
1069 		bool need_copyout;
1070 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1071 			return -EFAULT;
1072 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1073 		if (!err && need_copyout)
1074 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1075 				return -EFAULT;
1076 	}
1077 	return err;
1078 }
1079 
1080 /*
1081  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1082  *	what to do with it - that's up to the protocol still.
1083  */
1084 
1085 /**
1086  *	get_net_ns - increment the refcount of the network namespace
1087  *	@ns: common namespace (net)
1088  *
1089  *	Returns the net's common namespace.
1090  */
1091 
1092 struct ns_common *get_net_ns(struct ns_common *ns)
1093 {
1094 	return &get_net(container_of(ns, struct net, ns))->ns;
1095 }
1096 EXPORT_SYMBOL_GPL(get_net_ns);
1097 
1098 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1099 {
1100 	struct socket *sock;
1101 	struct sock *sk;
1102 	void __user *argp = (void __user *)arg;
1103 	int pid, err;
1104 	struct net *net;
1105 
1106 	sock = file->private_data;
1107 	sk = sock->sk;
1108 	net = sock_net(sk);
1109 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1110 		struct ifreq ifr;
1111 		bool need_copyout;
1112 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1113 			return -EFAULT;
1114 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1115 		if (!err && need_copyout)
1116 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1117 				return -EFAULT;
1118 	} else
1119 #ifdef CONFIG_WEXT_CORE
1120 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1121 		err = wext_handle_ioctl(net, cmd, argp);
1122 	} else
1123 #endif
1124 		switch (cmd) {
1125 		case FIOSETOWN:
1126 		case SIOCSPGRP:
1127 			err = -EFAULT;
1128 			if (get_user(pid, (int __user *)argp))
1129 				break;
1130 			err = f_setown(sock->file, pid, 1);
1131 			break;
1132 		case FIOGETOWN:
1133 		case SIOCGPGRP:
1134 			err = put_user(f_getown(sock->file),
1135 				       (int __user *)argp);
1136 			break;
1137 		case SIOCGIFBR:
1138 		case SIOCSIFBR:
1139 		case SIOCBRADDBR:
1140 		case SIOCBRDELBR:
1141 			err = -ENOPKG;
1142 			if (!br_ioctl_hook)
1143 				request_module("bridge");
1144 
1145 			mutex_lock(&br_ioctl_mutex);
1146 			if (br_ioctl_hook)
1147 				err = br_ioctl_hook(net, cmd, argp);
1148 			mutex_unlock(&br_ioctl_mutex);
1149 			break;
1150 		case SIOCGIFVLAN:
1151 		case SIOCSIFVLAN:
1152 			err = -ENOPKG;
1153 			if (!vlan_ioctl_hook)
1154 				request_module("8021q");
1155 
1156 			mutex_lock(&vlan_ioctl_mutex);
1157 			if (vlan_ioctl_hook)
1158 				err = vlan_ioctl_hook(net, argp);
1159 			mutex_unlock(&vlan_ioctl_mutex);
1160 			break;
1161 		case SIOCADDDLCI:
1162 		case SIOCDELDLCI:
1163 			err = -ENOPKG;
1164 			if (!dlci_ioctl_hook)
1165 				request_module("dlci");
1166 
1167 			mutex_lock(&dlci_ioctl_mutex);
1168 			if (dlci_ioctl_hook)
1169 				err = dlci_ioctl_hook(cmd, argp);
1170 			mutex_unlock(&dlci_ioctl_mutex);
1171 			break;
1172 		case SIOCGSKNS:
1173 			err = -EPERM;
1174 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1175 				break;
1176 
1177 			err = open_related_ns(&net->ns, get_net_ns);
1178 			break;
1179 		case SIOCGSTAMP_OLD:
1180 		case SIOCGSTAMPNS_OLD:
1181 			if (!sock->ops->gettstamp) {
1182 				err = -ENOIOCTLCMD;
1183 				break;
1184 			}
1185 			err = sock->ops->gettstamp(sock, argp,
1186 						   cmd == SIOCGSTAMP_OLD,
1187 						   !IS_ENABLED(CONFIG_64BIT));
1188 			break;
1189 		case SIOCGSTAMP_NEW:
1190 		case SIOCGSTAMPNS_NEW:
1191 			if (!sock->ops->gettstamp) {
1192 				err = -ENOIOCTLCMD;
1193 				break;
1194 			}
1195 			err = sock->ops->gettstamp(sock, argp,
1196 						   cmd == SIOCGSTAMP_NEW,
1197 						   false);
1198 			break;
1199 		default:
1200 			err = sock_do_ioctl(net, sock, cmd, arg);
1201 			break;
1202 		}
1203 	return err;
1204 }
1205 
1206 /**
1207  *	sock_create_lite - creates a socket
1208  *	@family: protocol family (AF_INET, ...)
1209  *	@type: communication type (SOCK_STREAM, ...)
1210  *	@protocol: protocol (0, ...)
1211  *	@res: new socket
1212  *
1213  *	Creates a new socket and assigns it to @res, passing through LSM.
1214  *	The new socket initialization is not complete, see kernel_accept().
1215  *	Returns 0 or an error. On failure @res is set to %NULL.
1216  *	This function internally uses GFP_KERNEL.
1217  */
1218 
1219 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1220 {
1221 	int err;
1222 	struct socket *sock = NULL;
1223 
1224 	err = security_socket_create(family, type, protocol, 1);
1225 	if (err)
1226 		goto out;
1227 
1228 	sock = sock_alloc();
1229 	if (!sock) {
1230 		err = -ENOMEM;
1231 		goto out;
1232 	}
1233 
1234 	sock->type = type;
1235 	err = security_socket_post_create(sock, family, type, protocol, 1);
1236 	if (err)
1237 		goto out_release;
1238 
1239 out:
1240 	*res = sock;
1241 	return err;
1242 out_release:
1243 	sock_release(sock);
1244 	sock = NULL;
1245 	goto out;
1246 }
1247 EXPORT_SYMBOL(sock_create_lite);
1248 
1249 /* No kernel lock held - perfect */
1250 static __poll_t sock_poll(struct file *file, poll_table *wait)
1251 {
1252 	struct socket *sock = file->private_data;
1253 	__poll_t events = poll_requested_events(wait), flag = 0;
1254 
1255 	if (!sock->ops->poll)
1256 		return 0;
1257 
1258 	if (sk_can_busy_loop(sock->sk)) {
1259 		/* poll once if requested by the syscall */
1260 		if (events & POLL_BUSY_LOOP)
1261 			sk_busy_loop(sock->sk, 1);
1262 
1263 		/* if this socket can poll_ll, tell the system call */
1264 		flag = POLL_BUSY_LOOP;
1265 	}
1266 
1267 	return sock->ops->poll(file, sock, wait) | flag;
1268 }
1269 
1270 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1271 {
1272 	struct socket *sock = file->private_data;
1273 
1274 	return sock->ops->mmap(file, sock, vma);
1275 }
1276 
1277 static int sock_close(struct inode *inode, struct file *filp)
1278 {
1279 	__sock_release(SOCKET_I(inode), inode);
1280 	return 0;
1281 }
1282 
1283 /*
1284  *	Update the socket async list
1285  *
1286  *	Fasync_list locking strategy.
1287  *
1288  *	1. fasync_list is modified only under process context socket lock
1289  *	   i.e. under semaphore.
1290  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1291  *	   or under socket lock
1292  */
1293 
1294 static int sock_fasync(int fd, struct file *filp, int on)
1295 {
1296 	struct socket *sock = filp->private_data;
1297 	struct sock *sk = sock->sk;
1298 	struct socket_wq *wq;
1299 
1300 	if (sk == NULL)
1301 		return -EINVAL;
1302 
1303 	lock_sock(sk);
1304 	wq = sock->wq;
1305 	fasync_helper(fd, filp, on, &wq->fasync_list);
1306 
1307 	if (!wq->fasync_list)
1308 		sock_reset_flag(sk, SOCK_FASYNC);
1309 	else
1310 		sock_set_flag(sk, SOCK_FASYNC);
1311 
1312 	release_sock(sk);
1313 	return 0;
1314 }
1315 
1316 /* This function may be called only under rcu_lock */
1317 
1318 int sock_wake_async(struct socket_wq *wq, int how, int band)
1319 {
1320 	if (!wq || !wq->fasync_list)
1321 		return -1;
1322 
1323 	switch (how) {
1324 	case SOCK_WAKE_WAITD:
1325 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1326 			break;
1327 		goto call_kill;
1328 	case SOCK_WAKE_SPACE:
1329 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1330 			break;
1331 		/* fall through */
1332 	case SOCK_WAKE_IO:
1333 call_kill:
1334 		kill_fasync(&wq->fasync_list, SIGIO, band);
1335 		break;
1336 	case SOCK_WAKE_URG:
1337 		kill_fasync(&wq->fasync_list, SIGURG, band);
1338 	}
1339 
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL(sock_wake_async);
1343 
1344 /**
1345  *	__sock_create - creates a socket
1346  *	@net: net namespace
1347  *	@family: protocol family (AF_INET, ...)
1348  *	@type: communication type (SOCK_STREAM, ...)
1349  *	@protocol: protocol (0, ...)
1350  *	@res: new socket
1351  *	@kern: boolean for kernel space sockets
1352  *
1353  *	Creates a new socket and assigns it to @res, passing through LSM.
1354  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1355  *	be set to true if the socket resides in kernel space.
1356  *	This function internally uses GFP_KERNEL.
1357  */
1358 
1359 int __sock_create(struct net *net, int family, int type, int protocol,
1360 			 struct socket **res, int kern)
1361 {
1362 	int err;
1363 	struct socket *sock;
1364 	const struct net_proto_family *pf;
1365 
1366 	/*
1367 	 *      Check protocol is in range
1368 	 */
1369 	if (family < 0 || family >= NPROTO)
1370 		return -EAFNOSUPPORT;
1371 	if (type < 0 || type >= SOCK_MAX)
1372 		return -EINVAL;
1373 
1374 	/* Compatibility.
1375 
1376 	   This uglymoron is moved from INET layer to here to avoid
1377 	   deadlock in module load.
1378 	 */
1379 	if (family == PF_INET && type == SOCK_PACKET) {
1380 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1381 			     current->comm);
1382 		family = PF_PACKET;
1383 	}
1384 
1385 	err = security_socket_create(family, type, protocol, kern);
1386 	if (err)
1387 		return err;
1388 
1389 	/*
1390 	 *	Allocate the socket and allow the family to set things up. if
1391 	 *	the protocol is 0, the family is instructed to select an appropriate
1392 	 *	default.
1393 	 */
1394 	sock = sock_alloc();
1395 	if (!sock) {
1396 		net_warn_ratelimited("socket: no more sockets\n");
1397 		return -ENFILE;	/* Not exactly a match, but its the
1398 				   closest posix thing */
1399 	}
1400 
1401 	sock->type = type;
1402 
1403 #ifdef CONFIG_MODULES
1404 	/* Attempt to load a protocol module if the find failed.
1405 	 *
1406 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1407 	 * requested real, full-featured networking support upon configuration.
1408 	 * Otherwise module support will break!
1409 	 */
1410 	if (rcu_access_pointer(net_families[family]) == NULL)
1411 		request_module("net-pf-%d", family);
1412 #endif
1413 
1414 	rcu_read_lock();
1415 	pf = rcu_dereference(net_families[family]);
1416 	err = -EAFNOSUPPORT;
1417 	if (!pf)
1418 		goto out_release;
1419 
1420 	/*
1421 	 * We will call the ->create function, that possibly is in a loadable
1422 	 * module, so we have to bump that loadable module refcnt first.
1423 	 */
1424 	if (!try_module_get(pf->owner))
1425 		goto out_release;
1426 
1427 	/* Now protected by module ref count */
1428 	rcu_read_unlock();
1429 
1430 	err = pf->create(net, sock, protocol, kern);
1431 	if (err < 0)
1432 		goto out_module_put;
1433 
1434 	/*
1435 	 * Now to bump the refcnt of the [loadable] module that owns this
1436 	 * socket at sock_release time we decrement its refcnt.
1437 	 */
1438 	if (!try_module_get(sock->ops->owner))
1439 		goto out_module_busy;
1440 
1441 	/*
1442 	 * Now that we're done with the ->create function, the [loadable]
1443 	 * module can have its refcnt decremented
1444 	 */
1445 	module_put(pf->owner);
1446 	err = security_socket_post_create(sock, family, type, protocol, kern);
1447 	if (err)
1448 		goto out_sock_release;
1449 	*res = sock;
1450 
1451 	return 0;
1452 
1453 out_module_busy:
1454 	err = -EAFNOSUPPORT;
1455 out_module_put:
1456 	sock->ops = NULL;
1457 	module_put(pf->owner);
1458 out_sock_release:
1459 	sock_release(sock);
1460 	return err;
1461 
1462 out_release:
1463 	rcu_read_unlock();
1464 	goto out_sock_release;
1465 }
1466 EXPORT_SYMBOL(__sock_create);
1467 
1468 /**
1469  *	sock_create - creates a socket
1470  *	@family: protocol family (AF_INET, ...)
1471  *	@type: communication type (SOCK_STREAM, ...)
1472  *	@protocol: protocol (0, ...)
1473  *	@res: new socket
1474  *
1475  *	A wrapper around __sock_create().
1476  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1477  */
1478 
1479 int sock_create(int family, int type, int protocol, struct socket **res)
1480 {
1481 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1482 }
1483 EXPORT_SYMBOL(sock_create);
1484 
1485 /**
1486  *	sock_create_kern - creates a socket (kernel space)
1487  *	@net: net namespace
1488  *	@family: protocol family (AF_INET, ...)
1489  *	@type: communication type (SOCK_STREAM, ...)
1490  *	@protocol: protocol (0, ...)
1491  *	@res: new socket
1492  *
1493  *	A wrapper around __sock_create().
1494  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1495  */
1496 
1497 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1498 {
1499 	return __sock_create(net, family, type, protocol, res, 1);
1500 }
1501 EXPORT_SYMBOL(sock_create_kern);
1502 
1503 int __sys_socket(int family, int type, int protocol)
1504 {
1505 	int retval;
1506 	struct socket *sock;
1507 	int flags;
1508 
1509 	/* Check the SOCK_* constants for consistency.  */
1510 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1511 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1512 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1513 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1514 
1515 	flags = type & ~SOCK_TYPE_MASK;
1516 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1517 		return -EINVAL;
1518 	type &= SOCK_TYPE_MASK;
1519 
1520 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1521 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1522 
1523 	retval = sock_create(family, type, protocol, &sock);
1524 	if (retval < 0)
1525 		return retval;
1526 
1527 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1528 }
1529 
1530 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1531 {
1532 	return __sys_socket(family, type, protocol);
1533 }
1534 
1535 /*
1536  *	Create a pair of connected sockets.
1537  */
1538 
1539 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1540 {
1541 	struct socket *sock1, *sock2;
1542 	int fd1, fd2, err;
1543 	struct file *newfile1, *newfile2;
1544 	int flags;
1545 
1546 	flags = type & ~SOCK_TYPE_MASK;
1547 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1548 		return -EINVAL;
1549 	type &= SOCK_TYPE_MASK;
1550 
1551 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1552 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1553 
1554 	/*
1555 	 * reserve descriptors and make sure we won't fail
1556 	 * to return them to userland.
1557 	 */
1558 	fd1 = get_unused_fd_flags(flags);
1559 	if (unlikely(fd1 < 0))
1560 		return fd1;
1561 
1562 	fd2 = get_unused_fd_flags(flags);
1563 	if (unlikely(fd2 < 0)) {
1564 		put_unused_fd(fd1);
1565 		return fd2;
1566 	}
1567 
1568 	err = put_user(fd1, &usockvec[0]);
1569 	if (err)
1570 		goto out;
1571 
1572 	err = put_user(fd2, &usockvec[1]);
1573 	if (err)
1574 		goto out;
1575 
1576 	/*
1577 	 * Obtain the first socket and check if the underlying protocol
1578 	 * supports the socketpair call.
1579 	 */
1580 
1581 	err = sock_create(family, type, protocol, &sock1);
1582 	if (unlikely(err < 0))
1583 		goto out;
1584 
1585 	err = sock_create(family, type, protocol, &sock2);
1586 	if (unlikely(err < 0)) {
1587 		sock_release(sock1);
1588 		goto out;
1589 	}
1590 
1591 	err = security_socket_socketpair(sock1, sock2);
1592 	if (unlikely(err)) {
1593 		sock_release(sock2);
1594 		sock_release(sock1);
1595 		goto out;
1596 	}
1597 
1598 	err = sock1->ops->socketpair(sock1, sock2);
1599 	if (unlikely(err < 0)) {
1600 		sock_release(sock2);
1601 		sock_release(sock1);
1602 		goto out;
1603 	}
1604 
1605 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1606 	if (IS_ERR(newfile1)) {
1607 		err = PTR_ERR(newfile1);
1608 		sock_release(sock2);
1609 		goto out;
1610 	}
1611 
1612 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1613 	if (IS_ERR(newfile2)) {
1614 		err = PTR_ERR(newfile2);
1615 		fput(newfile1);
1616 		goto out;
1617 	}
1618 
1619 	audit_fd_pair(fd1, fd2);
1620 
1621 	fd_install(fd1, newfile1);
1622 	fd_install(fd2, newfile2);
1623 	return 0;
1624 
1625 out:
1626 	put_unused_fd(fd2);
1627 	put_unused_fd(fd1);
1628 	return err;
1629 }
1630 
1631 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1632 		int __user *, usockvec)
1633 {
1634 	return __sys_socketpair(family, type, protocol, usockvec);
1635 }
1636 
1637 /*
1638  *	Bind a name to a socket. Nothing much to do here since it's
1639  *	the protocol's responsibility to handle the local address.
1640  *
1641  *	We move the socket address to kernel space before we call
1642  *	the protocol layer (having also checked the address is ok).
1643  */
1644 
1645 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1646 {
1647 	struct socket *sock;
1648 	struct sockaddr_storage address;
1649 	int err, fput_needed;
1650 
1651 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1652 	if (sock) {
1653 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1654 		if (!err) {
1655 			err = security_socket_bind(sock,
1656 						   (struct sockaddr *)&address,
1657 						   addrlen);
1658 			if (!err)
1659 				err = sock->ops->bind(sock,
1660 						      (struct sockaddr *)
1661 						      &address, addrlen);
1662 		}
1663 		fput_light(sock->file, fput_needed);
1664 	}
1665 	return err;
1666 }
1667 
1668 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1669 {
1670 	return __sys_bind(fd, umyaddr, addrlen);
1671 }
1672 
1673 /*
1674  *	Perform a listen. Basically, we allow the protocol to do anything
1675  *	necessary for a listen, and if that works, we mark the socket as
1676  *	ready for listening.
1677  */
1678 
1679 int __sys_listen(int fd, int backlog)
1680 {
1681 	struct socket *sock;
1682 	int err, fput_needed;
1683 	int somaxconn;
1684 
1685 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1686 	if (sock) {
1687 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1688 		if ((unsigned int)backlog > somaxconn)
1689 			backlog = somaxconn;
1690 
1691 		err = security_socket_listen(sock, backlog);
1692 		if (!err)
1693 			err = sock->ops->listen(sock, backlog);
1694 
1695 		fput_light(sock->file, fput_needed);
1696 	}
1697 	return err;
1698 }
1699 
1700 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1701 {
1702 	return __sys_listen(fd, backlog);
1703 }
1704 
1705 /*
1706  *	For accept, we attempt to create a new socket, set up the link
1707  *	with the client, wake up the client, then return the new
1708  *	connected fd. We collect the address of the connector in kernel
1709  *	space and move it to user at the very end. This is unclean because
1710  *	we open the socket then return an error.
1711  *
1712  *	1003.1g adds the ability to recvmsg() to query connection pending
1713  *	status to recvmsg. We need to add that support in a way thats
1714  *	clean when we restructure accept also.
1715  */
1716 
1717 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1718 		  int __user *upeer_addrlen, int flags)
1719 {
1720 	struct socket *sock, *newsock;
1721 	struct file *newfile;
1722 	int err, len, newfd, fput_needed;
1723 	struct sockaddr_storage address;
1724 
1725 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1726 		return -EINVAL;
1727 
1728 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1729 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1730 
1731 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1732 	if (!sock)
1733 		goto out;
1734 
1735 	err = -ENFILE;
1736 	newsock = sock_alloc();
1737 	if (!newsock)
1738 		goto out_put;
1739 
1740 	newsock->type = sock->type;
1741 	newsock->ops = sock->ops;
1742 
1743 	/*
1744 	 * We don't need try_module_get here, as the listening socket (sock)
1745 	 * has the protocol module (sock->ops->owner) held.
1746 	 */
1747 	__module_get(newsock->ops->owner);
1748 
1749 	newfd = get_unused_fd_flags(flags);
1750 	if (unlikely(newfd < 0)) {
1751 		err = newfd;
1752 		sock_release(newsock);
1753 		goto out_put;
1754 	}
1755 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1756 	if (IS_ERR(newfile)) {
1757 		err = PTR_ERR(newfile);
1758 		put_unused_fd(newfd);
1759 		goto out_put;
1760 	}
1761 
1762 	err = security_socket_accept(sock, newsock);
1763 	if (err)
1764 		goto out_fd;
1765 
1766 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1767 	if (err < 0)
1768 		goto out_fd;
1769 
1770 	if (upeer_sockaddr) {
1771 		len = newsock->ops->getname(newsock,
1772 					(struct sockaddr *)&address, 2);
1773 		if (len < 0) {
1774 			err = -ECONNABORTED;
1775 			goto out_fd;
1776 		}
1777 		err = move_addr_to_user(&address,
1778 					len, upeer_sockaddr, upeer_addrlen);
1779 		if (err < 0)
1780 			goto out_fd;
1781 	}
1782 
1783 	/* File flags are not inherited via accept() unlike another OSes. */
1784 
1785 	fd_install(newfd, newfile);
1786 	err = newfd;
1787 
1788 out_put:
1789 	fput_light(sock->file, fput_needed);
1790 out:
1791 	return err;
1792 out_fd:
1793 	fput(newfile);
1794 	put_unused_fd(newfd);
1795 	goto out_put;
1796 }
1797 
1798 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1799 		int __user *, upeer_addrlen, int, flags)
1800 {
1801 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1802 }
1803 
1804 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1805 		int __user *, upeer_addrlen)
1806 {
1807 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1808 }
1809 
1810 /*
1811  *	Attempt to connect to a socket with the server address.  The address
1812  *	is in user space so we verify it is OK and move it to kernel space.
1813  *
1814  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1815  *	break bindings
1816  *
1817  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1818  *	other SEQPACKET protocols that take time to connect() as it doesn't
1819  *	include the -EINPROGRESS status for such sockets.
1820  */
1821 
1822 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1823 {
1824 	struct socket *sock;
1825 	struct sockaddr_storage address;
1826 	int err, fput_needed;
1827 
1828 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1829 	if (!sock)
1830 		goto out;
1831 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1832 	if (err < 0)
1833 		goto out_put;
1834 
1835 	err =
1836 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1837 	if (err)
1838 		goto out_put;
1839 
1840 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1841 				 sock->file->f_flags);
1842 out_put:
1843 	fput_light(sock->file, fput_needed);
1844 out:
1845 	return err;
1846 }
1847 
1848 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1849 		int, addrlen)
1850 {
1851 	return __sys_connect(fd, uservaddr, addrlen);
1852 }
1853 
1854 /*
1855  *	Get the local address ('name') of a socket object. Move the obtained
1856  *	name to user space.
1857  */
1858 
1859 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1860 		      int __user *usockaddr_len)
1861 {
1862 	struct socket *sock;
1863 	struct sockaddr_storage address;
1864 	int err, fput_needed;
1865 
1866 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1867 	if (!sock)
1868 		goto out;
1869 
1870 	err = security_socket_getsockname(sock);
1871 	if (err)
1872 		goto out_put;
1873 
1874 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1875 	if (err < 0)
1876 		goto out_put;
1877         /* "err" is actually length in this case */
1878 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1879 
1880 out_put:
1881 	fput_light(sock->file, fput_needed);
1882 out:
1883 	return err;
1884 }
1885 
1886 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1887 		int __user *, usockaddr_len)
1888 {
1889 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1890 }
1891 
1892 /*
1893  *	Get the remote address ('name') of a socket object. Move the obtained
1894  *	name to user space.
1895  */
1896 
1897 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1898 		      int __user *usockaddr_len)
1899 {
1900 	struct socket *sock;
1901 	struct sockaddr_storage address;
1902 	int err, fput_needed;
1903 
1904 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1905 	if (sock != NULL) {
1906 		err = security_socket_getpeername(sock);
1907 		if (err) {
1908 			fput_light(sock->file, fput_needed);
1909 			return err;
1910 		}
1911 
1912 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1913 		if (err >= 0)
1914 			/* "err" is actually length in this case */
1915 			err = move_addr_to_user(&address, err, usockaddr,
1916 						usockaddr_len);
1917 		fput_light(sock->file, fput_needed);
1918 	}
1919 	return err;
1920 }
1921 
1922 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1923 		int __user *, usockaddr_len)
1924 {
1925 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1926 }
1927 
1928 /*
1929  *	Send a datagram to a given address. We move the address into kernel
1930  *	space and check the user space data area is readable before invoking
1931  *	the protocol.
1932  */
1933 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1934 		 struct sockaddr __user *addr,  int addr_len)
1935 {
1936 	struct socket *sock;
1937 	struct sockaddr_storage address;
1938 	int err;
1939 	struct msghdr msg;
1940 	struct iovec iov;
1941 	int fput_needed;
1942 
1943 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1944 	if (unlikely(err))
1945 		return err;
1946 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1947 	if (!sock)
1948 		goto out;
1949 
1950 	msg.msg_name = NULL;
1951 	msg.msg_control = NULL;
1952 	msg.msg_controllen = 0;
1953 	msg.msg_namelen = 0;
1954 	if (addr) {
1955 		err = move_addr_to_kernel(addr, addr_len, &address);
1956 		if (err < 0)
1957 			goto out_put;
1958 		msg.msg_name = (struct sockaddr *)&address;
1959 		msg.msg_namelen = addr_len;
1960 	}
1961 	if (sock->file->f_flags & O_NONBLOCK)
1962 		flags |= MSG_DONTWAIT;
1963 	msg.msg_flags = flags;
1964 	err = sock_sendmsg(sock, &msg);
1965 
1966 out_put:
1967 	fput_light(sock->file, fput_needed);
1968 out:
1969 	return err;
1970 }
1971 
1972 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1973 		unsigned int, flags, struct sockaddr __user *, addr,
1974 		int, addr_len)
1975 {
1976 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1977 }
1978 
1979 /*
1980  *	Send a datagram down a socket.
1981  */
1982 
1983 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1984 		unsigned int, flags)
1985 {
1986 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1987 }
1988 
1989 /*
1990  *	Receive a frame from the socket and optionally record the address of the
1991  *	sender. We verify the buffers are writable and if needed move the
1992  *	sender address from kernel to user space.
1993  */
1994 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1995 		   struct sockaddr __user *addr, int __user *addr_len)
1996 {
1997 	struct socket *sock;
1998 	struct iovec iov;
1999 	struct msghdr msg;
2000 	struct sockaddr_storage address;
2001 	int err, err2;
2002 	int fput_needed;
2003 
2004 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2005 	if (unlikely(err))
2006 		return err;
2007 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2008 	if (!sock)
2009 		goto out;
2010 
2011 	msg.msg_control = NULL;
2012 	msg.msg_controllen = 0;
2013 	/* Save some cycles and don't copy the address if not needed */
2014 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2015 	/* We assume all kernel code knows the size of sockaddr_storage */
2016 	msg.msg_namelen = 0;
2017 	msg.msg_iocb = NULL;
2018 	msg.msg_flags = 0;
2019 	if (sock->file->f_flags & O_NONBLOCK)
2020 		flags |= MSG_DONTWAIT;
2021 	err = sock_recvmsg(sock, &msg, flags);
2022 
2023 	if (err >= 0 && addr != NULL) {
2024 		err2 = move_addr_to_user(&address,
2025 					 msg.msg_namelen, addr, addr_len);
2026 		if (err2 < 0)
2027 			err = err2;
2028 	}
2029 
2030 	fput_light(sock->file, fput_needed);
2031 out:
2032 	return err;
2033 }
2034 
2035 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2036 		unsigned int, flags, struct sockaddr __user *, addr,
2037 		int __user *, addr_len)
2038 {
2039 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2040 }
2041 
2042 /*
2043  *	Receive a datagram from a socket.
2044  */
2045 
2046 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2047 		unsigned int, flags)
2048 {
2049 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2050 }
2051 
2052 /*
2053  *	Set a socket option. Because we don't know the option lengths we have
2054  *	to pass the user mode parameter for the protocols to sort out.
2055  */
2056 
2057 static int __sys_setsockopt(int fd, int level, int optname,
2058 			    char __user *optval, int optlen)
2059 {
2060 	int err, fput_needed;
2061 	struct socket *sock;
2062 
2063 	if (optlen < 0)
2064 		return -EINVAL;
2065 
2066 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2067 	if (sock != NULL) {
2068 		err = security_socket_setsockopt(sock, level, optname);
2069 		if (err)
2070 			goto out_put;
2071 
2072 		if (level == SOL_SOCKET)
2073 			err =
2074 			    sock_setsockopt(sock, level, optname, optval,
2075 					    optlen);
2076 		else
2077 			err =
2078 			    sock->ops->setsockopt(sock, level, optname, optval,
2079 						  optlen);
2080 out_put:
2081 		fput_light(sock->file, fput_needed);
2082 	}
2083 	return err;
2084 }
2085 
2086 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2087 		char __user *, optval, int, optlen)
2088 {
2089 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2090 }
2091 
2092 /*
2093  *	Get a socket option. Because we don't know the option lengths we have
2094  *	to pass a user mode parameter for the protocols to sort out.
2095  */
2096 
2097 static int __sys_getsockopt(int fd, int level, int optname,
2098 			    char __user *optval, int __user *optlen)
2099 {
2100 	int err, fput_needed;
2101 	struct socket *sock;
2102 
2103 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2104 	if (sock != NULL) {
2105 		err = security_socket_getsockopt(sock, level, optname);
2106 		if (err)
2107 			goto out_put;
2108 
2109 		if (level == SOL_SOCKET)
2110 			err =
2111 			    sock_getsockopt(sock, level, optname, optval,
2112 					    optlen);
2113 		else
2114 			err =
2115 			    sock->ops->getsockopt(sock, level, optname, optval,
2116 						  optlen);
2117 out_put:
2118 		fput_light(sock->file, fput_needed);
2119 	}
2120 	return err;
2121 }
2122 
2123 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2124 		char __user *, optval, int __user *, optlen)
2125 {
2126 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2127 }
2128 
2129 /*
2130  *	Shutdown a socket.
2131  */
2132 
2133 int __sys_shutdown(int fd, int how)
2134 {
2135 	int err, fput_needed;
2136 	struct socket *sock;
2137 
2138 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2139 	if (sock != NULL) {
2140 		err = security_socket_shutdown(sock, how);
2141 		if (!err)
2142 			err = sock->ops->shutdown(sock, how);
2143 		fput_light(sock->file, fput_needed);
2144 	}
2145 	return err;
2146 }
2147 
2148 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2149 {
2150 	return __sys_shutdown(fd, how);
2151 }
2152 
2153 /* A couple of helpful macros for getting the address of the 32/64 bit
2154  * fields which are the same type (int / unsigned) on our platforms.
2155  */
2156 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2157 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2158 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2159 
2160 struct used_address {
2161 	struct sockaddr_storage name;
2162 	unsigned int name_len;
2163 };
2164 
2165 static int copy_msghdr_from_user(struct msghdr *kmsg,
2166 				 struct user_msghdr __user *umsg,
2167 				 struct sockaddr __user **save_addr,
2168 				 struct iovec **iov)
2169 {
2170 	struct user_msghdr msg;
2171 	ssize_t err;
2172 
2173 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2174 		return -EFAULT;
2175 
2176 	kmsg->msg_control = (void __force *)msg.msg_control;
2177 	kmsg->msg_controllen = msg.msg_controllen;
2178 	kmsg->msg_flags = msg.msg_flags;
2179 
2180 	kmsg->msg_namelen = msg.msg_namelen;
2181 	if (!msg.msg_name)
2182 		kmsg->msg_namelen = 0;
2183 
2184 	if (kmsg->msg_namelen < 0)
2185 		return -EINVAL;
2186 
2187 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2188 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2189 
2190 	if (save_addr)
2191 		*save_addr = msg.msg_name;
2192 
2193 	if (msg.msg_name && kmsg->msg_namelen) {
2194 		if (!save_addr) {
2195 			err = move_addr_to_kernel(msg.msg_name,
2196 						  kmsg->msg_namelen,
2197 						  kmsg->msg_name);
2198 			if (err < 0)
2199 				return err;
2200 		}
2201 	} else {
2202 		kmsg->msg_name = NULL;
2203 		kmsg->msg_namelen = 0;
2204 	}
2205 
2206 	if (msg.msg_iovlen > UIO_MAXIOV)
2207 		return -EMSGSIZE;
2208 
2209 	kmsg->msg_iocb = NULL;
2210 
2211 	return import_iovec(save_addr ? READ : WRITE,
2212 			    msg.msg_iov, msg.msg_iovlen,
2213 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2214 }
2215 
2216 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2217 			 struct msghdr *msg_sys, unsigned int flags,
2218 			 struct used_address *used_address,
2219 			 unsigned int allowed_msghdr_flags)
2220 {
2221 	struct compat_msghdr __user *msg_compat =
2222 	    (struct compat_msghdr __user *)msg;
2223 	struct sockaddr_storage address;
2224 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2225 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2226 				__aligned(sizeof(__kernel_size_t));
2227 	/* 20 is size of ipv6_pktinfo */
2228 	unsigned char *ctl_buf = ctl;
2229 	int ctl_len;
2230 	ssize_t err;
2231 
2232 	msg_sys->msg_name = &address;
2233 
2234 	if (MSG_CMSG_COMPAT & flags)
2235 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2236 	else
2237 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2238 	if (err < 0)
2239 		return err;
2240 
2241 	err = -ENOBUFS;
2242 
2243 	if (msg_sys->msg_controllen > INT_MAX)
2244 		goto out_freeiov;
2245 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2246 	ctl_len = msg_sys->msg_controllen;
2247 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2248 		err =
2249 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2250 						     sizeof(ctl));
2251 		if (err)
2252 			goto out_freeiov;
2253 		ctl_buf = msg_sys->msg_control;
2254 		ctl_len = msg_sys->msg_controllen;
2255 	} else if (ctl_len) {
2256 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2257 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2258 		if (ctl_len > sizeof(ctl)) {
2259 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2260 			if (ctl_buf == NULL)
2261 				goto out_freeiov;
2262 		}
2263 		err = -EFAULT;
2264 		/*
2265 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2266 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2267 		 * checking falls down on this.
2268 		 */
2269 		if (copy_from_user(ctl_buf,
2270 				   (void __user __force *)msg_sys->msg_control,
2271 				   ctl_len))
2272 			goto out_freectl;
2273 		msg_sys->msg_control = ctl_buf;
2274 	}
2275 	msg_sys->msg_flags = flags;
2276 
2277 	if (sock->file->f_flags & O_NONBLOCK)
2278 		msg_sys->msg_flags |= MSG_DONTWAIT;
2279 	/*
2280 	 * If this is sendmmsg() and current destination address is same as
2281 	 * previously succeeded address, omit asking LSM's decision.
2282 	 * used_address->name_len is initialized to UINT_MAX so that the first
2283 	 * destination address never matches.
2284 	 */
2285 	if (used_address && msg_sys->msg_name &&
2286 	    used_address->name_len == msg_sys->msg_namelen &&
2287 	    !memcmp(&used_address->name, msg_sys->msg_name,
2288 		    used_address->name_len)) {
2289 		err = sock_sendmsg_nosec(sock, msg_sys);
2290 		goto out_freectl;
2291 	}
2292 	err = sock_sendmsg(sock, msg_sys);
2293 	/*
2294 	 * If this is sendmmsg() and sending to current destination address was
2295 	 * successful, remember it.
2296 	 */
2297 	if (used_address && err >= 0) {
2298 		used_address->name_len = msg_sys->msg_namelen;
2299 		if (msg_sys->msg_name)
2300 			memcpy(&used_address->name, msg_sys->msg_name,
2301 			       used_address->name_len);
2302 	}
2303 
2304 out_freectl:
2305 	if (ctl_buf != ctl)
2306 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2307 out_freeiov:
2308 	kfree(iov);
2309 	return err;
2310 }
2311 
2312 /*
2313  *	BSD sendmsg interface
2314  */
2315 
2316 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2317 		   bool forbid_cmsg_compat)
2318 {
2319 	int fput_needed, err;
2320 	struct msghdr msg_sys;
2321 	struct socket *sock;
2322 
2323 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2324 		return -EINVAL;
2325 
2326 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2327 	if (!sock)
2328 		goto out;
2329 
2330 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2331 
2332 	fput_light(sock->file, fput_needed);
2333 out:
2334 	return err;
2335 }
2336 
2337 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2338 {
2339 	return __sys_sendmsg(fd, msg, flags, true);
2340 }
2341 
2342 /*
2343  *	Linux sendmmsg interface
2344  */
2345 
2346 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2347 		   unsigned int flags, bool forbid_cmsg_compat)
2348 {
2349 	int fput_needed, err, datagrams;
2350 	struct socket *sock;
2351 	struct mmsghdr __user *entry;
2352 	struct compat_mmsghdr __user *compat_entry;
2353 	struct msghdr msg_sys;
2354 	struct used_address used_address;
2355 	unsigned int oflags = flags;
2356 
2357 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2358 		return -EINVAL;
2359 
2360 	if (vlen > UIO_MAXIOV)
2361 		vlen = UIO_MAXIOV;
2362 
2363 	datagrams = 0;
2364 
2365 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2366 	if (!sock)
2367 		return err;
2368 
2369 	used_address.name_len = UINT_MAX;
2370 	entry = mmsg;
2371 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2372 	err = 0;
2373 	flags |= MSG_BATCH;
2374 
2375 	while (datagrams < vlen) {
2376 		if (datagrams == vlen - 1)
2377 			flags = oflags;
2378 
2379 		if (MSG_CMSG_COMPAT & flags) {
2380 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2381 					     &msg_sys, flags, &used_address, MSG_EOR);
2382 			if (err < 0)
2383 				break;
2384 			err = __put_user(err, &compat_entry->msg_len);
2385 			++compat_entry;
2386 		} else {
2387 			err = ___sys_sendmsg(sock,
2388 					     (struct user_msghdr __user *)entry,
2389 					     &msg_sys, flags, &used_address, MSG_EOR);
2390 			if (err < 0)
2391 				break;
2392 			err = put_user(err, &entry->msg_len);
2393 			++entry;
2394 		}
2395 
2396 		if (err)
2397 			break;
2398 		++datagrams;
2399 		if (msg_data_left(&msg_sys))
2400 			break;
2401 		cond_resched();
2402 	}
2403 
2404 	fput_light(sock->file, fput_needed);
2405 
2406 	/* We only return an error if no datagrams were able to be sent */
2407 	if (datagrams != 0)
2408 		return datagrams;
2409 
2410 	return err;
2411 }
2412 
2413 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2414 		unsigned int, vlen, unsigned int, flags)
2415 {
2416 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2417 }
2418 
2419 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2420 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2421 {
2422 	struct compat_msghdr __user *msg_compat =
2423 	    (struct compat_msghdr __user *)msg;
2424 	struct iovec iovstack[UIO_FASTIOV];
2425 	struct iovec *iov = iovstack;
2426 	unsigned long cmsg_ptr;
2427 	int len;
2428 	ssize_t err;
2429 
2430 	/* kernel mode address */
2431 	struct sockaddr_storage addr;
2432 
2433 	/* user mode address pointers */
2434 	struct sockaddr __user *uaddr;
2435 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2436 
2437 	msg_sys->msg_name = &addr;
2438 
2439 	if (MSG_CMSG_COMPAT & flags)
2440 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2441 	else
2442 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2443 	if (err < 0)
2444 		return err;
2445 
2446 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2447 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2448 
2449 	/* We assume all kernel code knows the size of sockaddr_storage */
2450 	msg_sys->msg_namelen = 0;
2451 
2452 	if (sock->file->f_flags & O_NONBLOCK)
2453 		flags |= MSG_DONTWAIT;
2454 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2455 	if (err < 0)
2456 		goto out_freeiov;
2457 	len = err;
2458 
2459 	if (uaddr != NULL) {
2460 		err = move_addr_to_user(&addr,
2461 					msg_sys->msg_namelen, uaddr,
2462 					uaddr_len);
2463 		if (err < 0)
2464 			goto out_freeiov;
2465 	}
2466 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2467 			 COMPAT_FLAGS(msg));
2468 	if (err)
2469 		goto out_freeiov;
2470 	if (MSG_CMSG_COMPAT & flags)
2471 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2472 				 &msg_compat->msg_controllen);
2473 	else
2474 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2475 				 &msg->msg_controllen);
2476 	if (err)
2477 		goto out_freeiov;
2478 	err = len;
2479 
2480 out_freeiov:
2481 	kfree(iov);
2482 	return err;
2483 }
2484 
2485 /*
2486  *	BSD recvmsg interface
2487  */
2488 
2489 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2490 		   bool forbid_cmsg_compat)
2491 {
2492 	int fput_needed, err;
2493 	struct msghdr msg_sys;
2494 	struct socket *sock;
2495 
2496 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2497 		return -EINVAL;
2498 
2499 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2500 	if (!sock)
2501 		goto out;
2502 
2503 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2504 
2505 	fput_light(sock->file, fput_needed);
2506 out:
2507 	return err;
2508 }
2509 
2510 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2511 		unsigned int, flags)
2512 {
2513 	return __sys_recvmsg(fd, msg, flags, true);
2514 }
2515 
2516 /*
2517  *     Linux recvmmsg interface
2518  */
2519 
2520 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2521 			  unsigned int vlen, unsigned int flags,
2522 			  struct timespec64 *timeout)
2523 {
2524 	int fput_needed, err, datagrams;
2525 	struct socket *sock;
2526 	struct mmsghdr __user *entry;
2527 	struct compat_mmsghdr __user *compat_entry;
2528 	struct msghdr msg_sys;
2529 	struct timespec64 end_time;
2530 	struct timespec64 timeout64;
2531 
2532 	if (timeout &&
2533 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2534 				    timeout->tv_nsec))
2535 		return -EINVAL;
2536 
2537 	datagrams = 0;
2538 
2539 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2540 	if (!sock)
2541 		return err;
2542 
2543 	if (likely(!(flags & MSG_ERRQUEUE))) {
2544 		err = sock_error(sock->sk);
2545 		if (err) {
2546 			datagrams = err;
2547 			goto out_put;
2548 		}
2549 	}
2550 
2551 	entry = mmsg;
2552 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2553 
2554 	while (datagrams < vlen) {
2555 		/*
2556 		 * No need to ask LSM for more than the first datagram.
2557 		 */
2558 		if (MSG_CMSG_COMPAT & flags) {
2559 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2560 					     &msg_sys, flags & ~MSG_WAITFORONE,
2561 					     datagrams);
2562 			if (err < 0)
2563 				break;
2564 			err = __put_user(err, &compat_entry->msg_len);
2565 			++compat_entry;
2566 		} else {
2567 			err = ___sys_recvmsg(sock,
2568 					     (struct user_msghdr __user *)entry,
2569 					     &msg_sys, flags & ~MSG_WAITFORONE,
2570 					     datagrams);
2571 			if (err < 0)
2572 				break;
2573 			err = put_user(err, &entry->msg_len);
2574 			++entry;
2575 		}
2576 
2577 		if (err)
2578 			break;
2579 		++datagrams;
2580 
2581 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2582 		if (flags & MSG_WAITFORONE)
2583 			flags |= MSG_DONTWAIT;
2584 
2585 		if (timeout) {
2586 			ktime_get_ts64(&timeout64);
2587 			*timeout = timespec64_sub(end_time, timeout64);
2588 			if (timeout->tv_sec < 0) {
2589 				timeout->tv_sec = timeout->tv_nsec = 0;
2590 				break;
2591 			}
2592 
2593 			/* Timeout, return less than vlen datagrams */
2594 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2595 				break;
2596 		}
2597 
2598 		/* Out of band data, return right away */
2599 		if (msg_sys.msg_flags & MSG_OOB)
2600 			break;
2601 		cond_resched();
2602 	}
2603 
2604 	if (err == 0)
2605 		goto out_put;
2606 
2607 	if (datagrams == 0) {
2608 		datagrams = err;
2609 		goto out_put;
2610 	}
2611 
2612 	/*
2613 	 * We may return less entries than requested (vlen) if the
2614 	 * sock is non block and there aren't enough datagrams...
2615 	 */
2616 	if (err != -EAGAIN) {
2617 		/*
2618 		 * ... or  if recvmsg returns an error after we
2619 		 * received some datagrams, where we record the
2620 		 * error to return on the next call or if the
2621 		 * app asks about it using getsockopt(SO_ERROR).
2622 		 */
2623 		sock->sk->sk_err = -err;
2624 	}
2625 out_put:
2626 	fput_light(sock->file, fput_needed);
2627 
2628 	return datagrams;
2629 }
2630 
2631 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2632 		   unsigned int vlen, unsigned int flags,
2633 		   struct __kernel_timespec __user *timeout,
2634 		   struct old_timespec32 __user *timeout32)
2635 {
2636 	int datagrams;
2637 	struct timespec64 timeout_sys;
2638 
2639 	if (timeout && get_timespec64(&timeout_sys, timeout))
2640 		return -EFAULT;
2641 
2642 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2643 		return -EFAULT;
2644 
2645 	if (!timeout && !timeout32)
2646 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2647 
2648 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2649 
2650 	if (datagrams <= 0)
2651 		return datagrams;
2652 
2653 	if (timeout && put_timespec64(&timeout_sys, timeout))
2654 		datagrams = -EFAULT;
2655 
2656 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2657 		datagrams = -EFAULT;
2658 
2659 	return datagrams;
2660 }
2661 
2662 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2663 		unsigned int, vlen, unsigned int, flags,
2664 		struct __kernel_timespec __user *, timeout)
2665 {
2666 	if (flags & MSG_CMSG_COMPAT)
2667 		return -EINVAL;
2668 
2669 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2670 }
2671 
2672 #ifdef CONFIG_COMPAT_32BIT_TIME
2673 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2674 		unsigned int, vlen, unsigned int, flags,
2675 		struct old_timespec32 __user *, timeout)
2676 {
2677 	if (flags & MSG_CMSG_COMPAT)
2678 		return -EINVAL;
2679 
2680 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2681 }
2682 #endif
2683 
2684 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2685 /* Argument list sizes for sys_socketcall */
2686 #define AL(x) ((x) * sizeof(unsigned long))
2687 static const unsigned char nargs[21] = {
2688 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2689 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2690 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2691 	AL(4), AL(5), AL(4)
2692 };
2693 
2694 #undef AL
2695 
2696 /*
2697  *	System call vectors.
2698  *
2699  *	Argument checking cleaned up. Saved 20% in size.
2700  *  This function doesn't need to set the kernel lock because
2701  *  it is set by the callees.
2702  */
2703 
2704 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2705 {
2706 	unsigned long a[AUDITSC_ARGS];
2707 	unsigned long a0, a1;
2708 	int err;
2709 	unsigned int len;
2710 
2711 	if (call < 1 || call > SYS_SENDMMSG)
2712 		return -EINVAL;
2713 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2714 
2715 	len = nargs[call];
2716 	if (len > sizeof(a))
2717 		return -EINVAL;
2718 
2719 	/* copy_from_user should be SMP safe. */
2720 	if (copy_from_user(a, args, len))
2721 		return -EFAULT;
2722 
2723 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2724 	if (err)
2725 		return err;
2726 
2727 	a0 = a[0];
2728 	a1 = a[1];
2729 
2730 	switch (call) {
2731 	case SYS_SOCKET:
2732 		err = __sys_socket(a0, a1, a[2]);
2733 		break;
2734 	case SYS_BIND:
2735 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2736 		break;
2737 	case SYS_CONNECT:
2738 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2739 		break;
2740 	case SYS_LISTEN:
2741 		err = __sys_listen(a0, a1);
2742 		break;
2743 	case SYS_ACCEPT:
2744 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2745 				    (int __user *)a[2], 0);
2746 		break;
2747 	case SYS_GETSOCKNAME:
2748 		err =
2749 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2750 				      (int __user *)a[2]);
2751 		break;
2752 	case SYS_GETPEERNAME:
2753 		err =
2754 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2755 				      (int __user *)a[2]);
2756 		break;
2757 	case SYS_SOCKETPAIR:
2758 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2759 		break;
2760 	case SYS_SEND:
2761 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2762 				   NULL, 0);
2763 		break;
2764 	case SYS_SENDTO:
2765 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2766 				   (struct sockaddr __user *)a[4], a[5]);
2767 		break;
2768 	case SYS_RECV:
2769 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2770 				     NULL, NULL);
2771 		break;
2772 	case SYS_RECVFROM:
2773 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2774 				     (struct sockaddr __user *)a[4],
2775 				     (int __user *)a[5]);
2776 		break;
2777 	case SYS_SHUTDOWN:
2778 		err = __sys_shutdown(a0, a1);
2779 		break;
2780 	case SYS_SETSOCKOPT:
2781 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2782 				       a[4]);
2783 		break;
2784 	case SYS_GETSOCKOPT:
2785 		err =
2786 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2787 				     (int __user *)a[4]);
2788 		break;
2789 	case SYS_SENDMSG:
2790 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2791 				    a[2], true);
2792 		break;
2793 	case SYS_SENDMMSG:
2794 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2795 				     a[3], true);
2796 		break;
2797 	case SYS_RECVMSG:
2798 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2799 				    a[2], true);
2800 		break;
2801 	case SYS_RECVMMSG:
2802 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2803 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2804 					     a[2], a[3],
2805 					     (struct __kernel_timespec __user *)a[4],
2806 					     NULL);
2807 		else
2808 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2809 					     a[2], a[3], NULL,
2810 					     (struct old_timespec32 __user *)a[4]);
2811 		break;
2812 	case SYS_ACCEPT4:
2813 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2814 				    (int __user *)a[2], a[3]);
2815 		break;
2816 	default:
2817 		err = -EINVAL;
2818 		break;
2819 	}
2820 	return err;
2821 }
2822 
2823 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2824 
2825 /**
2826  *	sock_register - add a socket protocol handler
2827  *	@ops: description of protocol
2828  *
2829  *	This function is called by a protocol handler that wants to
2830  *	advertise its address family, and have it linked into the
2831  *	socket interface. The value ops->family corresponds to the
2832  *	socket system call protocol family.
2833  */
2834 int sock_register(const struct net_proto_family *ops)
2835 {
2836 	int err;
2837 
2838 	if (ops->family >= NPROTO) {
2839 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2840 		return -ENOBUFS;
2841 	}
2842 
2843 	spin_lock(&net_family_lock);
2844 	if (rcu_dereference_protected(net_families[ops->family],
2845 				      lockdep_is_held(&net_family_lock)))
2846 		err = -EEXIST;
2847 	else {
2848 		rcu_assign_pointer(net_families[ops->family], ops);
2849 		err = 0;
2850 	}
2851 	spin_unlock(&net_family_lock);
2852 
2853 	pr_info("NET: Registered protocol family %d\n", ops->family);
2854 	return err;
2855 }
2856 EXPORT_SYMBOL(sock_register);
2857 
2858 /**
2859  *	sock_unregister - remove a protocol handler
2860  *	@family: protocol family to remove
2861  *
2862  *	This function is called by a protocol handler that wants to
2863  *	remove its address family, and have it unlinked from the
2864  *	new socket creation.
2865  *
2866  *	If protocol handler is a module, then it can use module reference
2867  *	counts to protect against new references. If protocol handler is not
2868  *	a module then it needs to provide its own protection in
2869  *	the ops->create routine.
2870  */
2871 void sock_unregister(int family)
2872 {
2873 	BUG_ON(family < 0 || family >= NPROTO);
2874 
2875 	spin_lock(&net_family_lock);
2876 	RCU_INIT_POINTER(net_families[family], NULL);
2877 	spin_unlock(&net_family_lock);
2878 
2879 	synchronize_rcu();
2880 
2881 	pr_info("NET: Unregistered protocol family %d\n", family);
2882 }
2883 EXPORT_SYMBOL(sock_unregister);
2884 
2885 bool sock_is_registered(int family)
2886 {
2887 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2888 }
2889 
2890 static int __init sock_init(void)
2891 {
2892 	int err;
2893 	/*
2894 	 *      Initialize the network sysctl infrastructure.
2895 	 */
2896 	err = net_sysctl_init();
2897 	if (err)
2898 		goto out;
2899 
2900 	/*
2901 	 *      Initialize skbuff SLAB cache
2902 	 */
2903 	skb_init();
2904 
2905 	/*
2906 	 *      Initialize the protocols module.
2907 	 */
2908 
2909 	init_inodecache();
2910 
2911 	err = register_filesystem(&sock_fs_type);
2912 	if (err)
2913 		goto out_fs;
2914 	sock_mnt = kern_mount(&sock_fs_type);
2915 	if (IS_ERR(sock_mnt)) {
2916 		err = PTR_ERR(sock_mnt);
2917 		goto out_mount;
2918 	}
2919 
2920 	/* The real protocol initialization is performed in later initcalls.
2921 	 */
2922 
2923 #ifdef CONFIG_NETFILTER
2924 	err = netfilter_init();
2925 	if (err)
2926 		goto out;
2927 #endif
2928 
2929 	ptp_classifier_init();
2930 
2931 out:
2932 	return err;
2933 
2934 out_mount:
2935 	unregister_filesystem(&sock_fs_type);
2936 out_fs:
2937 	goto out;
2938 }
2939 
2940 core_initcall(sock_init);	/* early initcall */
2941 
2942 #ifdef CONFIG_PROC_FS
2943 void socket_seq_show(struct seq_file *seq)
2944 {
2945 	seq_printf(seq, "sockets: used %d\n",
2946 		   sock_inuse_get(seq->private));
2947 }
2948 #endif				/* CONFIG_PROC_FS */
2949 
2950 #ifdef CONFIG_COMPAT
2951 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2952 {
2953 	struct compat_ifconf ifc32;
2954 	struct ifconf ifc;
2955 	int err;
2956 
2957 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2958 		return -EFAULT;
2959 
2960 	ifc.ifc_len = ifc32.ifc_len;
2961 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2962 
2963 	rtnl_lock();
2964 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2965 	rtnl_unlock();
2966 	if (err)
2967 		return err;
2968 
2969 	ifc32.ifc_len = ifc.ifc_len;
2970 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2971 		return -EFAULT;
2972 
2973 	return 0;
2974 }
2975 
2976 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2977 {
2978 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2979 	bool convert_in = false, convert_out = false;
2980 	size_t buf_size = 0;
2981 	struct ethtool_rxnfc __user *rxnfc = NULL;
2982 	struct ifreq ifr;
2983 	u32 rule_cnt = 0, actual_rule_cnt;
2984 	u32 ethcmd;
2985 	u32 data;
2986 	int ret;
2987 
2988 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2989 		return -EFAULT;
2990 
2991 	compat_rxnfc = compat_ptr(data);
2992 
2993 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2994 		return -EFAULT;
2995 
2996 	/* Most ethtool structures are defined without padding.
2997 	 * Unfortunately struct ethtool_rxnfc is an exception.
2998 	 */
2999 	switch (ethcmd) {
3000 	default:
3001 		break;
3002 	case ETHTOOL_GRXCLSRLALL:
3003 		/* Buffer size is variable */
3004 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3005 			return -EFAULT;
3006 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3007 			return -ENOMEM;
3008 		buf_size += rule_cnt * sizeof(u32);
3009 		/* fall through */
3010 	case ETHTOOL_GRXRINGS:
3011 	case ETHTOOL_GRXCLSRLCNT:
3012 	case ETHTOOL_GRXCLSRULE:
3013 	case ETHTOOL_SRXCLSRLINS:
3014 		convert_out = true;
3015 		/* fall through */
3016 	case ETHTOOL_SRXCLSRLDEL:
3017 		buf_size += sizeof(struct ethtool_rxnfc);
3018 		convert_in = true;
3019 		rxnfc = compat_alloc_user_space(buf_size);
3020 		break;
3021 	}
3022 
3023 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3024 		return -EFAULT;
3025 
3026 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3027 
3028 	if (convert_in) {
3029 		/* We expect there to be holes between fs.m_ext and
3030 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3031 		 */
3032 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3033 			     sizeof(compat_rxnfc->fs.m_ext) !=
3034 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3035 			     sizeof(rxnfc->fs.m_ext));
3036 		BUILD_BUG_ON(
3037 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3038 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3039 			offsetof(struct ethtool_rxnfc, fs.location) -
3040 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3041 
3042 		if (copy_in_user(rxnfc, compat_rxnfc,
3043 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3044 				 (void __user *)rxnfc) ||
3045 		    copy_in_user(&rxnfc->fs.ring_cookie,
3046 				 &compat_rxnfc->fs.ring_cookie,
3047 				 (void __user *)(&rxnfc->fs.location + 1) -
3048 				 (void __user *)&rxnfc->fs.ring_cookie))
3049 			return -EFAULT;
3050 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3051 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3052 				return -EFAULT;
3053 		} else if (copy_in_user(&rxnfc->rule_cnt,
3054 					&compat_rxnfc->rule_cnt,
3055 					sizeof(rxnfc->rule_cnt)))
3056 			return -EFAULT;
3057 	}
3058 
3059 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3060 	if (ret)
3061 		return ret;
3062 
3063 	if (convert_out) {
3064 		if (copy_in_user(compat_rxnfc, rxnfc,
3065 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3066 				 (const void __user *)rxnfc) ||
3067 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3068 				 &rxnfc->fs.ring_cookie,
3069 				 (const void __user *)(&rxnfc->fs.location + 1) -
3070 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3071 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3072 				 sizeof(rxnfc->rule_cnt)))
3073 			return -EFAULT;
3074 
3075 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3076 			/* As an optimisation, we only copy the actual
3077 			 * number of rules that the underlying
3078 			 * function returned.  Since Mallory might
3079 			 * change the rule count in user memory, we
3080 			 * check that it is less than the rule count
3081 			 * originally given (as the user buffer size),
3082 			 * which has been range-checked.
3083 			 */
3084 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3085 				return -EFAULT;
3086 			if (actual_rule_cnt < rule_cnt)
3087 				rule_cnt = actual_rule_cnt;
3088 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3089 					 &rxnfc->rule_locs[0],
3090 					 rule_cnt * sizeof(u32)))
3091 				return -EFAULT;
3092 		}
3093 	}
3094 
3095 	return 0;
3096 }
3097 
3098 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3099 {
3100 	compat_uptr_t uptr32;
3101 	struct ifreq ifr;
3102 	void __user *saved;
3103 	int err;
3104 
3105 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3106 		return -EFAULT;
3107 
3108 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3109 		return -EFAULT;
3110 
3111 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3112 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3113 
3114 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3115 	if (!err) {
3116 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3117 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3118 			err = -EFAULT;
3119 	}
3120 	return err;
3121 }
3122 
3123 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3124 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3125 				 struct compat_ifreq __user *u_ifreq32)
3126 {
3127 	struct ifreq ifreq;
3128 	u32 data32;
3129 
3130 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3131 		return -EFAULT;
3132 	if (get_user(data32, &u_ifreq32->ifr_data))
3133 		return -EFAULT;
3134 	ifreq.ifr_data = compat_ptr(data32);
3135 
3136 	return dev_ioctl(net, cmd, &ifreq, NULL);
3137 }
3138 
3139 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3140 			      unsigned int cmd,
3141 			      struct compat_ifreq __user *uifr32)
3142 {
3143 	struct ifreq __user *uifr;
3144 	int err;
3145 
3146 	/* Handle the fact that while struct ifreq has the same *layout* on
3147 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3148 	 * which are handled elsewhere, it still has different *size* due to
3149 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3150 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3151 	 * As a result, if the struct happens to be at the end of a page and
3152 	 * the next page isn't readable/writable, we get a fault. To prevent
3153 	 * that, copy back and forth to the full size.
3154 	 */
3155 
3156 	uifr = compat_alloc_user_space(sizeof(*uifr));
3157 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3158 		return -EFAULT;
3159 
3160 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3161 
3162 	if (!err) {
3163 		switch (cmd) {
3164 		case SIOCGIFFLAGS:
3165 		case SIOCGIFMETRIC:
3166 		case SIOCGIFMTU:
3167 		case SIOCGIFMEM:
3168 		case SIOCGIFHWADDR:
3169 		case SIOCGIFINDEX:
3170 		case SIOCGIFADDR:
3171 		case SIOCGIFBRDADDR:
3172 		case SIOCGIFDSTADDR:
3173 		case SIOCGIFNETMASK:
3174 		case SIOCGIFPFLAGS:
3175 		case SIOCGIFTXQLEN:
3176 		case SIOCGMIIPHY:
3177 		case SIOCGMIIREG:
3178 		case SIOCGIFNAME:
3179 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3180 				err = -EFAULT;
3181 			break;
3182 		}
3183 	}
3184 	return err;
3185 }
3186 
3187 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3188 			struct compat_ifreq __user *uifr32)
3189 {
3190 	struct ifreq ifr;
3191 	struct compat_ifmap __user *uifmap32;
3192 	int err;
3193 
3194 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3195 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3196 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3197 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3198 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3199 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3200 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3201 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3202 	if (err)
3203 		return -EFAULT;
3204 
3205 	err = dev_ioctl(net, cmd, &ifr, NULL);
3206 
3207 	if (cmd == SIOCGIFMAP && !err) {
3208 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3209 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3210 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3211 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3212 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3213 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3214 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3215 		if (err)
3216 			err = -EFAULT;
3217 	}
3218 	return err;
3219 }
3220 
3221 struct rtentry32 {
3222 	u32		rt_pad1;
3223 	struct sockaddr rt_dst;         /* target address               */
3224 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3225 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3226 	unsigned short	rt_flags;
3227 	short		rt_pad2;
3228 	u32		rt_pad3;
3229 	unsigned char	rt_tos;
3230 	unsigned char	rt_class;
3231 	short		rt_pad4;
3232 	short		rt_metric;      /* +1 for binary compatibility! */
3233 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3234 	u32		rt_mtu;         /* per route MTU/Window         */
3235 	u32		rt_window;      /* Window clamping              */
3236 	unsigned short  rt_irtt;        /* Initial RTT                  */
3237 };
3238 
3239 struct in6_rtmsg32 {
3240 	struct in6_addr		rtmsg_dst;
3241 	struct in6_addr		rtmsg_src;
3242 	struct in6_addr		rtmsg_gateway;
3243 	u32			rtmsg_type;
3244 	u16			rtmsg_dst_len;
3245 	u16			rtmsg_src_len;
3246 	u32			rtmsg_metric;
3247 	u32			rtmsg_info;
3248 	u32			rtmsg_flags;
3249 	s32			rtmsg_ifindex;
3250 };
3251 
3252 static int routing_ioctl(struct net *net, struct socket *sock,
3253 			 unsigned int cmd, void __user *argp)
3254 {
3255 	int ret;
3256 	void *r = NULL;
3257 	struct in6_rtmsg r6;
3258 	struct rtentry r4;
3259 	char devname[16];
3260 	u32 rtdev;
3261 	mm_segment_t old_fs = get_fs();
3262 
3263 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3264 		struct in6_rtmsg32 __user *ur6 = argp;
3265 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3266 			3 * sizeof(struct in6_addr));
3267 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3268 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3269 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3270 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3271 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3272 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3273 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3274 
3275 		r = (void *) &r6;
3276 	} else { /* ipv4 */
3277 		struct rtentry32 __user *ur4 = argp;
3278 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3279 					3 * sizeof(struct sockaddr));
3280 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3281 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3282 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3283 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3284 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3285 		ret |= get_user(rtdev, &(ur4->rt_dev));
3286 		if (rtdev) {
3287 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3288 			r4.rt_dev = (char __user __force *)devname;
3289 			devname[15] = 0;
3290 		} else
3291 			r4.rt_dev = NULL;
3292 
3293 		r = (void *) &r4;
3294 	}
3295 
3296 	if (ret) {
3297 		ret = -EFAULT;
3298 		goto out;
3299 	}
3300 
3301 	set_fs(KERNEL_DS);
3302 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3303 	set_fs(old_fs);
3304 
3305 out:
3306 	return ret;
3307 }
3308 
3309 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3310  * for some operations; this forces use of the newer bridge-utils that
3311  * use compatible ioctls
3312  */
3313 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3314 {
3315 	compat_ulong_t tmp;
3316 
3317 	if (get_user(tmp, argp))
3318 		return -EFAULT;
3319 	if (tmp == BRCTL_GET_VERSION)
3320 		return BRCTL_VERSION + 1;
3321 	return -EINVAL;
3322 }
3323 
3324 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3325 			 unsigned int cmd, unsigned long arg)
3326 {
3327 	void __user *argp = compat_ptr(arg);
3328 	struct sock *sk = sock->sk;
3329 	struct net *net = sock_net(sk);
3330 
3331 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3332 		return compat_ifr_data_ioctl(net, cmd, argp);
3333 
3334 	switch (cmd) {
3335 	case SIOCSIFBR:
3336 	case SIOCGIFBR:
3337 		return old_bridge_ioctl(argp);
3338 	case SIOCGIFCONF:
3339 		return compat_dev_ifconf(net, argp);
3340 	case SIOCETHTOOL:
3341 		return ethtool_ioctl(net, argp);
3342 	case SIOCWANDEV:
3343 		return compat_siocwandev(net, argp);
3344 	case SIOCGIFMAP:
3345 	case SIOCSIFMAP:
3346 		return compat_sioc_ifmap(net, cmd, argp);
3347 	case SIOCADDRT:
3348 	case SIOCDELRT:
3349 		return routing_ioctl(net, sock, cmd, argp);
3350 	case SIOCGSTAMP_OLD:
3351 	case SIOCGSTAMPNS_OLD:
3352 		if (!sock->ops->gettstamp)
3353 			return -ENOIOCTLCMD;
3354 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3355 					    !COMPAT_USE_64BIT_TIME);
3356 
3357 	case SIOCBONDSLAVEINFOQUERY:
3358 	case SIOCBONDINFOQUERY:
3359 	case SIOCSHWTSTAMP:
3360 	case SIOCGHWTSTAMP:
3361 		return compat_ifr_data_ioctl(net, cmd, argp);
3362 
3363 	case FIOSETOWN:
3364 	case SIOCSPGRP:
3365 	case FIOGETOWN:
3366 	case SIOCGPGRP:
3367 	case SIOCBRADDBR:
3368 	case SIOCBRDELBR:
3369 	case SIOCGIFVLAN:
3370 	case SIOCSIFVLAN:
3371 	case SIOCADDDLCI:
3372 	case SIOCDELDLCI:
3373 	case SIOCGSKNS:
3374 	case SIOCGSTAMP_NEW:
3375 	case SIOCGSTAMPNS_NEW:
3376 		return sock_ioctl(file, cmd, arg);
3377 
3378 	case SIOCGIFFLAGS:
3379 	case SIOCSIFFLAGS:
3380 	case SIOCGIFMETRIC:
3381 	case SIOCSIFMETRIC:
3382 	case SIOCGIFMTU:
3383 	case SIOCSIFMTU:
3384 	case SIOCGIFMEM:
3385 	case SIOCSIFMEM:
3386 	case SIOCGIFHWADDR:
3387 	case SIOCSIFHWADDR:
3388 	case SIOCADDMULTI:
3389 	case SIOCDELMULTI:
3390 	case SIOCGIFINDEX:
3391 	case SIOCGIFADDR:
3392 	case SIOCSIFADDR:
3393 	case SIOCSIFHWBROADCAST:
3394 	case SIOCDIFADDR:
3395 	case SIOCGIFBRDADDR:
3396 	case SIOCSIFBRDADDR:
3397 	case SIOCGIFDSTADDR:
3398 	case SIOCSIFDSTADDR:
3399 	case SIOCGIFNETMASK:
3400 	case SIOCSIFNETMASK:
3401 	case SIOCSIFPFLAGS:
3402 	case SIOCGIFPFLAGS:
3403 	case SIOCGIFTXQLEN:
3404 	case SIOCSIFTXQLEN:
3405 	case SIOCBRADDIF:
3406 	case SIOCBRDELIF:
3407 	case SIOCGIFNAME:
3408 	case SIOCSIFNAME:
3409 	case SIOCGMIIPHY:
3410 	case SIOCGMIIREG:
3411 	case SIOCSMIIREG:
3412 	case SIOCBONDENSLAVE:
3413 	case SIOCBONDRELEASE:
3414 	case SIOCBONDSETHWADDR:
3415 	case SIOCBONDCHANGEACTIVE:
3416 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3417 
3418 	case SIOCSARP:
3419 	case SIOCGARP:
3420 	case SIOCDARP:
3421 	case SIOCATMARK:
3422 		return sock_do_ioctl(net, sock, cmd, arg);
3423 	}
3424 
3425 	return -ENOIOCTLCMD;
3426 }
3427 
3428 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3429 			      unsigned long arg)
3430 {
3431 	struct socket *sock = file->private_data;
3432 	int ret = -ENOIOCTLCMD;
3433 	struct sock *sk;
3434 	struct net *net;
3435 
3436 	sk = sock->sk;
3437 	net = sock_net(sk);
3438 
3439 	if (sock->ops->compat_ioctl)
3440 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3441 
3442 	if (ret == -ENOIOCTLCMD &&
3443 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3444 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3445 
3446 	if (ret == -ENOIOCTLCMD)
3447 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3448 
3449 	return ret;
3450 }
3451 #endif
3452 
3453 /**
3454  *	kernel_bind - bind an address to a socket (kernel space)
3455  *	@sock: socket
3456  *	@addr: address
3457  *	@addrlen: length of address
3458  *
3459  *	Returns 0 or an error.
3460  */
3461 
3462 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3463 {
3464 	return sock->ops->bind(sock, addr, addrlen);
3465 }
3466 EXPORT_SYMBOL(kernel_bind);
3467 
3468 /**
3469  *	kernel_listen - move socket to listening state (kernel space)
3470  *	@sock: socket
3471  *	@backlog: pending connections queue size
3472  *
3473  *	Returns 0 or an error.
3474  */
3475 
3476 int kernel_listen(struct socket *sock, int backlog)
3477 {
3478 	return sock->ops->listen(sock, backlog);
3479 }
3480 EXPORT_SYMBOL(kernel_listen);
3481 
3482 /**
3483  *	kernel_accept - accept a connection (kernel space)
3484  *	@sock: listening socket
3485  *	@newsock: new connected socket
3486  *	@flags: flags
3487  *
3488  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3489  *	If it fails, @newsock is guaranteed to be %NULL.
3490  *	Returns 0 or an error.
3491  */
3492 
3493 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3494 {
3495 	struct sock *sk = sock->sk;
3496 	int err;
3497 
3498 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3499 			       newsock);
3500 	if (err < 0)
3501 		goto done;
3502 
3503 	err = sock->ops->accept(sock, *newsock, flags, true);
3504 	if (err < 0) {
3505 		sock_release(*newsock);
3506 		*newsock = NULL;
3507 		goto done;
3508 	}
3509 
3510 	(*newsock)->ops = sock->ops;
3511 	__module_get((*newsock)->ops->owner);
3512 
3513 done:
3514 	return err;
3515 }
3516 EXPORT_SYMBOL(kernel_accept);
3517 
3518 /**
3519  *	kernel_connect - connect a socket (kernel space)
3520  *	@sock: socket
3521  *	@addr: address
3522  *	@addrlen: address length
3523  *	@flags: flags (O_NONBLOCK, ...)
3524  *
3525  *	For datagram sockets, @addr is the addres to which datagrams are sent
3526  *	by default, and the only address from which datagrams are received.
3527  *	For stream sockets, attempts to connect to @addr.
3528  *	Returns 0 or an error code.
3529  */
3530 
3531 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3532 		   int flags)
3533 {
3534 	return sock->ops->connect(sock, addr, addrlen, flags);
3535 }
3536 EXPORT_SYMBOL(kernel_connect);
3537 
3538 /**
3539  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3540  *	@sock: socket
3541  *	@addr: address holder
3542  *
3543  * 	Fills the @addr pointer with the address which the socket is bound.
3544  *	Returns 0 or an error code.
3545  */
3546 
3547 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3548 {
3549 	return sock->ops->getname(sock, addr, 0);
3550 }
3551 EXPORT_SYMBOL(kernel_getsockname);
3552 
3553 /**
3554  *	kernel_peername - get the address which the socket is connected (kernel space)
3555  *	@sock: socket
3556  *	@addr: address holder
3557  *
3558  * 	Fills the @addr pointer with the address which the socket is connected.
3559  *	Returns 0 or an error code.
3560  */
3561 
3562 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3563 {
3564 	return sock->ops->getname(sock, addr, 1);
3565 }
3566 EXPORT_SYMBOL(kernel_getpeername);
3567 
3568 /**
3569  *	kernel_getsockopt - get a socket option (kernel space)
3570  *	@sock: socket
3571  *	@level: API level (SOL_SOCKET, ...)
3572  *	@optname: option tag
3573  *	@optval: option value
3574  *	@optlen: option length
3575  *
3576  *	Assigns the option length to @optlen.
3577  *	Returns 0 or an error.
3578  */
3579 
3580 int kernel_getsockopt(struct socket *sock, int level, int optname,
3581 			char *optval, int *optlen)
3582 {
3583 	mm_segment_t oldfs = get_fs();
3584 	char __user *uoptval;
3585 	int __user *uoptlen;
3586 	int err;
3587 
3588 	uoptval = (char __user __force *) optval;
3589 	uoptlen = (int __user __force *) optlen;
3590 
3591 	set_fs(KERNEL_DS);
3592 	if (level == SOL_SOCKET)
3593 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3594 	else
3595 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3596 					    uoptlen);
3597 	set_fs(oldfs);
3598 	return err;
3599 }
3600 EXPORT_SYMBOL(kernel_getsockopt);
3601 
3602 /**
3603  *	kernel_setsockopt - set a socket option (kernel space)
3604  *	@sock: socket
3605  *	@level: API level (SOL_SOCKET, ...)
3606  *	@optname: option tag
3607  *	@optval: option value
3608  *	@optlen: option length
3609  *
3610  *	Returns 0 or an error.
3611  */
3612 
3613 int kernel_setsockopt(struct socket *sock, int level, int optname,
3614 			char *optval, unsigned int optlen)
3615 {
3616 	mm_segment_t oldfs = get_fs();
3617 	char __user *uoptval;
3618 	int err;
3619 
3620 	uoptval = (char __user __force *) optval;
3621 
3622 	set_fs(KERNEL_DS);
3623 	if (level == SOL_SOCKET)
3624 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3625 	else
3626 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3627 					    optlen);
3628 	set_fs(oldfs);
3629 	return err;
3630 }
3631 EXPORT_SYMBOL(kernel_setsockopt);
3632 
3633 /**
3634  *	kernel_sendpage - send a &page through a socket (kernel space)
3635  *	@sock: socket
3636  *	@page: page
3637  *	@offset: page offset
3638  *	@size: total size in bytes
3639  *	@flags: flags (MSG_DONTWAIT, ...)
3640  *
3641  *	Returns the total amount sent in bytes or an error.
3642  */
3643 
3644 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3645 		    size_t size, int flags)
3646 {
3647 	if (sock->ops->sendpage)
3648 		return sock->ops->sendpage(sock, page, offset, size, flags);
3649 
3650 	return sock_no_sendpage(sock, page, offset, size, flags);
3651 }
3652 EXPORT_SYMBOL(kernel_sendpage);
3653 
3654 /**
3655  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3656  *	@sk: sock
3657  *	@page: page
3658  *	@offset: page offset
3659  *	@size: total size in bytes
3660  *	@flags: flags (MSG_DONTWAIT, ...)
3661  *
3662  *	Returns the total amount sent in bytes or an error.
3663  *	Caller must hold @sk.
3664  */
3665 
3666 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3667 			   size_t size, int flags)
3668 {
3669 	struct socket *sock = sk->sk_socket;
3670 
3671 	if (sock->ops->sendpage_locked)
3672 		return sock->ops->sendpage_locked(sk, page, offset, size,
3673 						  flags);
3674 
3675 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3676 }
3677 EXPORT_SYMBOL(kernel_sendpage_locked);
3678 
3679 /**
3680  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3681  *	@sock: socket
3682  *	@how: connection part
3683  *
3684  *	Returns 0 or an error.
3685  */
3686 
3687 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3688 {
3689 	return sock->ops->shutdown(sock, how);
3690 }
3691 EXPORT_SYMBOL(kernel_sock_shutdown);
3692 
3693 /**
3694  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3695  *	@sk: socket
3696  *
3697  *	This routine returns the IP overhead imposed by a socket i.e.
3698  *	the length of the underlying IP header, depending on whether
3699  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3700  *	on at the socket. Assumes that the caller has a lock on the socket.
3701  */
3702 
3703 u32 kernel_sock_ip_overhead(struct sock *sk)
3704 {
3705 	struct inet_sock *inet;
3706 	struct ip_options_rcu *opt;
3707 	u32 overhead = 0;
3708 #if IS_ENABLED(CONFIG_IPV6)
3709 	struct ipv6_pinfo *np;
3710 	struct ipv6_txoptions *optv6 = NULL;
3711 #endif /* IS_ENABLED(CONFIG_IPV6) */
3712 
3713 	if (!sk)
3714 		return overhead;
3715 
3716 	switch (sk->sk_family) {
3717 	case AF_INET:
3718 		inet = inet_sk(sk);
3719 		overhead += sizeof(struct iphdr);
3720 		opt = rcu_dereference_protected(inet->inet_opt,
3721 						sock_owned_by_user(sk));
3722 		if (opt)
3723 			overhead += opt->opt.optlen;
3724 		return overhead;
3725 #if IS_ENABLED(CONFIG_IPV6)
3726 	case AF_INET6:
3727 		np = inet6_sk(sk);
3728 		overhead += sizeof(struct ipv6hdr);
3729 		if (np)
3730 			optv6 = rcu_dereference_protected(np->opt,
3731 							  sock_owned_by_user(sk));
3732 		if (optv6)
3733 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3734 		return overhead;
3735 #endif /* IS_ENABLED(CONFIG_IPV6) */
3736 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3737 		return overhead;
3738 	}
3739 }
3740 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3741