xref: /openbmc/linux/net/socket.c (revision 1e911632)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static void init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	BUG_ON(sock_inode_cachep == NULL);
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 /*
309  * sockfs_dname() is called from d_path().
310  */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 				d_inode(dentry)->i_ino);
315 }
316 
317 static const struct dentry_operations sockfs_dentry_operations = {
318 	.d_dname  = sockfs_dname,
319 };
320 
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 			    struct dentry *dentry, struct inode *inode,
323 			    const char *suffix, void *value, size_t size)
324 {
325 	if (value) {
326 		if (dentry->d_name.len + 1 > size)
327 			return -ERANGE;
328 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 	}
330 	return dentry->d_name.len + 1;
331 }
332 
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336 
337 static const struct xattr_handler sockfs_xattr_handler = {
338 	.name = XATTR_NAME_SOCKPROTONAME,
339 	.get = sockfs_xattr_get,
340 };
341 
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 				     struct dentry *dentry, struct inode *inode,
344 				     const char *suffix, const void *value,
345 				     size_t size, int flags)
346 {
347 	/* Handled by LSM. */
348 	return -EAGAIN;
349 }
350 
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 	.prefix = XATTR_SECURITY_PREFIX,
353 	.set = sockfs_security_xattr_set,
354 };
355 
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 	&sockfs_xattr_handler,
358 	&sockfs_security_xattr_handler,
359 	NULL
360 };
361 
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 			 int flags, const char *dev_name, void *data)
364 {
365 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 				  sockfs_xattr_handlers,
367 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369 
370 static struct vfsmount *sock_mnt __read_mostly;
371 
372 static struct file_system_type sock_fs_type = {
373 	.name =		"sockfs",
374 	.mount =	sockfs_mount,
375 	.kill_sb =	kill_anon_super,
376 };
377 
378 /*
379  *	Obtains the first available file descriptor and sets it up for use.
380  *
381  *	These functions create file structures and maps them to fd space
382  *	of the current process. On success it returns file descriptor
383  *	and file struct implicitly stored in sock->file.
384  *	Note that another thread may close file descriptor before we return
385  *	from this function. We use the fact that now we do not refer
386  *	to socket after mapping. If one day we will need it, this
387  *	function will increment ref. count on file by 1.
388  *
389  *	In any case returned fd MAY BE not valid!
390  *	This race condition is unavoidable
391  *	with shared fd spaces, we cannot solve it inside kernel,
392  *	but we take care of internal coherence yet.
393  */
394 
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 	struct qstr name = { .name = "" };
398 	struct path path;
399 	struct file *file;
400 
401 	if (dname) {
402 		name.name = dname;
403 		name.len = strlen(name.name);
404 	} else if (sock->sk) {
405 		name.name = sock->sk->sk_prot_creator->name;
406 		name.len = strlen(name.name);
407 	}
408 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 	if (unlikely(!path.dentry))
410 		return ERR_PTR(-ENOMEM);
411 	path.mnt = mntget(sock_mnt);
412 
413 	d_instantiate(path.dentry, SOCK_INODE(sock));
414 
415 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 		  &socket_file_ops);
417 	if (IS_ERR(file)) {
418 		/* drop dentry, keep inode */
419 		ihold(d_inode(path.dentry));
420 		path_put(&path);
421 		return file;
422 	}
423 
424 	sock->file = file;
425 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 	file->private_data = sock;
427 	return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430 
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 	struct file *newfile;
434 	int fd = get_unused_fd_flags(flags);
435 	if (unlikely(fd < 0))
436 		return fd;
437 
438 	newfile = sock_alloc_file(sock, flags, NULL);
439 	if (likely(!IS_ERR(newfile))) {
440 		fd_install(fd, newfile);
441 		return fd;
442 	}
443 
444 	put_unused_fd(fd);
445 	return PTR_ERR(newfile);
446 }
447 
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 	if (file->f_op == &socket_file_ops)
451 		return file->private_data;	/* set in sock_map_fd */
452 
453 	*err = -ENOTSOCK;
454 	return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457 
458 /**
459  *	sockfd_lookup - Go from a file number to its socket slot
460  *	@fd: file handle
461  *	@err: pointer to an error code return
462  *
463  *	The file handle passed in is locked and the socket it is bound
464  *	too is returned. If an error occurs the err pointer is overwritten
465  *	with a negative errno code and NULL is returned. The function checks
466  *	for both invalid handles and passing a handle which is not a socket.
467  *
468  *	On a success the socket object pointer is returned.
469  */
470 
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 	struct file *file;
474 	struct socket *sock;
475 
476 	file = fget(fd);
477 	if (!file) {
478 		*err = -EBADF;
479 		return NULL;
480 	}
481 
482 	sock = sock_from_file(file, err);
483 	if (!sock)
484 		fput(file);
485 	return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488 
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 	struct fd f = fdget(fd);
492 	struct socket *sock;
493 
494 	*err = -EBADF;
495 	if (f.file) {
496 		sock = sock_from_file(f.file, err);
497 		if (likely(sock)) {
498 			*fput_needed = f.flags;
499 			return sock;
500 		}
501 		fdput(f);
502 	}
503 	return NULL;
504 }
505 
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 				size_t size)
508 {
509 	ssize_t len;
510 	ssize_t used = 0;
511 
512 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 	if (len < 0)
514 		return len;
515 	used += len;
516 	if (buffer) {
517 		if (size < used)
518 			return -ERANGE;
519 		buffer += len;
520 	}
521 
522 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 	used += len;
524 	if (buffer) {
525 		if (size < used)
526 			return -ERANGE;
527 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 		buffer += len;
529 	}
530 
531 	return used;
532 }
533 
534 int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 	int err = simple_setattr(dentry, iattr);
537 
538 	if (!err && (iattr->ia_valid & ATTR_UID)) {
539 		struct socket *sock = SOCKET_I(d_inode(dentry));
540 
541 		sock->sk->sk_uid = iattr->ia_uid;
542 	}
543 
544 	return err;
545 }
546 
547 static const struct inode_operations sockfs_inode_ops = {
548 	.listxattr = sockfs_listxattr,
549 	.setattr = sockfs_setattr,
550 };
551 
552 /**
553  *	sock_alloc	-	allocate a socket
554  *
555  *	Allocate a new inode and socket object. The two are bound together
556  *	and initialised. The socket is then returned. If we are out of inodes
557  *	NULL is returned.
558  */
559 
560 struct socket *sock_alloc(void)
561 {
562 	struct inode *inode;
563 	struct socket *sock;
564 
565 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 	if (!inode)
567 		return NULL;
568 
569 	sock = SOCKET_I(inode);
570 
571 	kmemcheck_annotate_bitfield(sock, type);
572 	inode->i_ino = get_next_ino();
573 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 	inode->i_uid = current_fsuid();
575 	inode->i_gid = current_fsgid();
576 	inode->i_op = &sockfs_inode_ops;
577 
578 	this_cpu_add(sockets_in_use, 1);
579 	return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582 
583 /**
584  *	sock_release	-	close a socket
585  *	@sock: socket to close
586  *
587  *	The socket is released from the protocol stack if it has a release
588  *	callback, and the inode is then released if the socket is bound to
589  *	an inode not a file.
590  */
591 
592 void sock_release(struct socket *sock)
593 {
594 	if (sock->ops) {
595 		struct module *owner = sock->ops->owner;
596 
597 		sock->ops->release(sock);
598 		sock->ops = NULL;
599 		module_put(owner);
600 	}
601 
602 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 		pr_err("%s: fasync list not empty!\n", __func__);
604 
605 	this_cpu_sub(sockets_in_use, 1);
606 	if (!sock->file) {
607 		iput(SOCK_INODE(sock));
608 		return;
609 	}
610 	sock->file = NULL;
611 }
612 EXPORT_SYMBOL(sock_release);
613 
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 	u8 flags = *tx_flags;
617 
618 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 		flags |= SKBTX_HW_TSTAMP;
620 
621 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 		flags |= SKBTX_SW_TSTAMP;
623 
624 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 		flags |= SKBTX_SCHED_TSTAMP;
626 
627 	*tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630 
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 	BUG_ON(ret == -EIOCBQUEUED);
635 	return ret;
636 }
637 
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
639 {
640 	int err = security_socket_sendmsg(sock, msg,
641 					  msg_data_left(msg));
642 
643 	return err ?: sock_sendmsg_nosec(sock, msg);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646 
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 		   struct kvec *vec, size_t num, size_t size)
649 {
650 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 	return sock_sendmsg(sock, msg);
652 }
653 EXPORT_SYMBOL(kernel_sendmsg);
654 
655 /*
656  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
657  */
658 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
659 	struct sk_buff *skb)
660 {
661 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
662 	struct scm_timestamping tss;
663 	int empty = 1;
664 	struct skb_shared_hwtstamps *shhwtstamps =
665 		skb_hwtstamps(skb);
666 
667 	/* Race occurred between timestamp enabling and packet
668 	   receiving.  Fill in the current time for now. */
669 	if (need_software_tstamp && skb->tstamp == 0)
670 		__net_timestamp(skb);
671 
672 	if (need_software_tstamp) {
673 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
674 			struct timeval tv;
675 			skb_get_timestamp(skb, &tv);
676 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
677 				 sizeof(tv), &tv);
678 		} else {
679 			struct timespec ts;
680 			skb_get_timestampns(skb, &ts);
681 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
682 				 sizeof(ts), &ts);
683 		}
684 	}
685 
686 	memset(&tss, 0, sizeof(tss));
687 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
688 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
689 		empty = 0;
690 	if (shhwtstamps &&
691 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
692 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
693 		empty = 0;
694 	if (!empty) {
695 		put_cmsg(msg, SOL_SOCKET,
696 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
697 
698 		if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
699 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
700 				 skb->len, skb->data);
701 	}
702 }
703 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
704 
705 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
706 	struct sk_buff *skb)
707 {
708 	int ack;
709 
710 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
711 		return;
712 	if (!skb->wifi_acked_valid)
713 		return;
714 
715 	ack = skb->wifi_acked;
716 
717 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
718 }
719 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
720 
721 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
722 				   struct sk_buff *skb)
723 {
724 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
725 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
726 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
727 }
728 
729 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
730 	struct sk_buff *skb)
731 {
732 	sock_recv_timestamp(msg, sk, skb);
733 	sock_recv_drops(msg, sk, skb);
734 }
735 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
736 
737 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
738 				     int flags)
739 {
740 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
741 }
742 
743 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
744 {
745 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
746 
747 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
748 }
749 EXPORT_SYMBOL(sock_recvmsg);
750 
751 /**
752  * kernel_recvmsg - Receive a message from a socket (kernel space)
753  * @sock:       The socket to receive the message from
754  * @msg:        Received message
755  * @vec:        Input s/g array for message data
756  * @num:        Size of input s/g array
757  * @size:       Number of bytes to read
758  * @flags:      Message flags (MSG_DONTWAIT, etc...)
759  *
760  * On return the msg structure contains the scatter/gather array passed in the
761  * vec argument. The array is modified so that it consists of the unfilled
762  * portion of the original array.
763  *
764  * The returned value is the total number of bytes received, or an error.
765  */
766 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
767 		   struct kvec *vec, size_t num, size_t size, int flags)
768 {
769 	mm_segment_t oldfs = get_fs();
770 	int result;
771 
772 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
773 	set_fs(KERNEL_DS);
774 	result = sock_recvmsg(sock, msg, flags);
775 	set_fs(oldfs);
776 	return result;
777 }
778 EXPORT_SYMBOL(kernel_recvmsg);
779 
780 static ssize_t sock_sendpage(struct file *file, struct page *page,
781 			     int offset, size_t size, loff_t *ppos, int more)
782 {
783 	struct socket *sock;
784 	int flags;
785 
786 	sock = file->private_data;
787 
788 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
789 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
790 	flags |= more;
791 
792 	return kernel_sendpage(sock, page, offset, size, flags);
793 }
794 
795 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
796 				struct pipe_inode_info *pipe, size_t len,
797 				unsigned int flags)
798 {
799 	struct socket *sock = file->private_data;
800 
801 	if (unlikely(!sock->ops->splice_read))
802 		return -EINVAL;
803 
804 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
805 }
806 
807 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
808 {
809 	struct file *file = iocb->ki_filp;
810 	struct socket *sock = file->private_data;
811 	struct msghdr msg = {.msg_iter = *to,
812 			     .msg_iocb = iocb};
813 	ssize_t res;
814 
815 	if (file->f_flags & O_NONBLOCK)
816 		msg.msg_flags = MSG_DONTWAIT;
817 
818 	if (iocb->ki_pos != 0)
819 		return -ESPIPE;
820 
821 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
822 		return 0;
823 
824 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
825 	*to = msg.msg_iter;
826 	return res;
827 }
828 
829 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
830 {
831 	struct file *file = iocb->ki_filp;
832 	struct socket *sock = file->private_data;
833 	struct msghdr msg = {.msg_iter = *from,
834 			     .msg_iocb = iocb};
835 	ssize_t res;
836 
837 	if (iocb->ki_pos != 0)
838 		return -ESPIPE;
839 
840 	if (file->f_flags & O_NONBLOCK)
841 		msg.msg_flags = MSG_DONTWAIT;
842 
843 	if (sock->type == SOCK_SEQPACKET)
844 		msg.msg_flags |= MSG_EOR;
845 
846 	res = sock_sendmsg(sock, &msg);
847 	*from = msg.msg_iter;
848 	return res;
849 }
850 
851 /*
852  * Atomic setting of ioctl hooks to avoid race
853  * with module unload.
854  */
855 
856 static DEFINE_MUTEX(br_ioctl_mutex);
857 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
858 
859 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
860 {
861 	mutex_lock(&br_ioctl_mutex);
862 	br_ioctl_hook = hook;
863 	mutex_unlock(&br_ioctl_mutex);
864 }
865 EXPORT_SYMBOL(brioctl_set);
866 
867 static DEFINE_MUTEX(vlan_ioctl_mutex);
868 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
869 
870 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
871 {
872 	mutex_lock(&vlan_ioctl_mutex);
873 	vlan_ioctl_hook = hook;
874 	mutex_unlock(&vlan_ioctl_mutex);
875 }
876 EXPORT_SYMBOL(vlan_ioctl_set);
877 
878 static DEFINE_MUTEX(dlci_ioctl_mutex);
879 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
880 
881 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
882 {
883 	mutex_lock(&dlci_ioctl_mutex);
884 	dlci_ioctl_hook = hook;
885 	mutex_unlock(&dlci_ioctl_mutex);
886 }
887 EXPORT_SYMBOL(dlci_ioctl_set);
888 
889 static long sock_do_ioctl(struct net *net, struct socket *sock,
890 				 unsigned int cmd, unsigned long arg)
891 {
892 	int err;
893 	void __user *argp = (void __user *)arg;
894 
895 	err = sock->ops->ioctl(sock, cmd, arg);
896 
897 	/*
898 	 * If this ioctl is unknown try to hand it down
899 	 * to the NIC driver.
900 	 */
901 	if (err == -ENOIOCTLCMD)
902 		err = dev_ioctl(net, cmd, argp);
903 
904 	return err;
905 }
906 
907 /*
908  *	With an ioctl, arg may well be a user mode pointer, but we don't know
909  *	what to do with it - that's up to the protocol still.
910  */
911 
912 static struct ns_common *get_net_ns(struct ns_common *ns)
913 {
914 	return &get_net(container_of(ns, struct net, ns))->ns;
915 }
916 
917 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
918 {
919 	struct socket *sock;
920 	struct sock *sk;
921 	void __user *argp = (void __user *)arg;
922 	int pid, err;
923 	struct net *net;
924 
925 	sock = file->private_data;
926 	sk = sock->sk;
927 	net = sock_net(sk);
928 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
929 		err = dev_ioctl(net, cmd, argp);
930 	} else
931 #ifdef CONFIG_WEXT_CORE
932 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
933 		err = dev_ioctl(net, cmd, argp);
934 	} else
935 #endif
936 		switch (cmd) {
937 		case FIOSETOWN:
938 		case SIOCSPGRP:
939 			err = -EFAULT;
940 			if (get_user(pid, (int __user *)argp))
941 				break;
942 			f_setown(sock->file, pid, 1);
943 			err = 0;
944 			break;
945 		case FIOGETOWN:
946 		case SIOCGPGRP:
947 			err = put_user(f_getown(sock->file),
948 				       (int __user *)argp);
949 			break;
950 		case SIOCGIFBR:
951 		case SIOCSIFBR:
952 		case SIOCBRADDBR:
953 		case SIOCBRDELBR:
954 			err = -ENOPKG;
955 			if (!br_ioctl_hook)
956 				request_module("bridge");
957 
958 			mutex_lock(&br_ioctl_mutex);
959 			if (br_ioctl_hook)
960 				err = br_ioctl_hook(net, cmd, argp);
961 			mutex_unlock(&br_ioctl_mutex);
962 			break;
963 		case SIOCGIFVLAN:
964 		case SIOCSIFVLAN:
965 			err = -ENOPKG;
966 			if (!vlan_ioctl_hook)
967 				request_module("8021q");
968 
969 			mutex_lock(&vlan_ioctl_mutex);
970 			if (vlan_ioctl_hook)
971 				err = vlan_ioctl_hook(net, argp);
972 			mutex_unlock(&vlan_ioctl_mutex);
973 			break;
974 		case SIOCADDDLCI:
975 		case SIOCDELDLCI:
976 			err = -ENOPKG;
977 			if (!dlci_ioctl_hook)
978 				request_module("dlci");
979 
980 			mutex_lock(&dlci_ioctl_mutex);
981 			if (dlci_ioctl_hook)
982 				err = dlci_ioctl_hook(cmd, argp);
983 			mutex_unlock(&dlci_ioctl_mutex);
984 			break;
985 		case SIOCGSKNS:
986 			err = -EPERM;
987 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
988 				break;
989 
990 			err = open_related_ns(&net->ns, get_net_ns);
991 			break;
992 		default:
993 			err = sock_do_ioctl(net, sock, cmd, arg);
994 			break;
995 		}
996 	return err;
997 }
998 
999 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1000 {
1001 	int err;
1002 	struct socket *sock = NULL;
1003 
1004 	err = security_socket_create(family, type, protocol, 1);
1005 	if (err)
1006 		goto out;
1007 
1008 	sock = sock_alloc();
1009 	if (!sock) {
1010 		err = -ENOMEM;
1011 		goto out;
1012 	}
1013 
1014 	sock->type = type;
1015 	err = security_socket_post_create(sock, family, type, protocol, 1);
1016 	if (err)
1017 		goto out_release;
1018 
1019 out:
1020 	*res = sock;
1021 	return err;
1022 out_release:
1023 	sock_release(sock);
1024 	sock = NULL;
1025 	goto out;
1026 }
1027 EXPORT_SYMBOL(sock_create_lite);
1028 
1029 /* No kernel lock held - perfect */
1030 static unsigned int sock_poll(struct file *file, poll_table *wait)
1031 {
1032 	unsigned int busy_flag = 0;
1033 	struct socket *sock;
1034 
1035 	/*
1036 	 *      We can't return errors to poll, so it's either yes or no.
1037 	 */
1038 	sock = file->private_data;
1039 
1040 	if (sk_can_busy_loop(sock->sk)) {
1041 		/* this socket can poll_ll so tell the system call */
1042 		busy_flag = POLL_BUSY_LOOP;
1043 
1044 		/* once, only if requested by syscall */
1045 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1046 			sk_busy_loop(sock->sk, 1);
1047 	}
1048 
1049 	return busy_flag | sock->ops->poll(file, sock, wait);
1050 }
1051 
1052 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1053 {
1054 	struct socket *sock = file->private_data;
1055 
1056 	return sock->ops->mmap(file, sock, vma);
1057 }
1058 
1059 static int sock_close(struct inode *inode, struct file *filp)
1060 {
1061 	sock_release(SOCKET_I(inode));
1062 	return 0;
1063 }
1064 
1065 /*
1066  *	Update the socket async list
1067  *
1068  *	Fasync_list locking strategy.
1069  *
1070  *	1. fasync_list is modified only under process context socket lock
1071  *	   i.e. under semaphore.
1072  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1073  *	   or under socket lock
1074  */
1075 
1076 static int sock_fasync(int fd, struct file *filp, int on)
1077 {
1078 	struct socket *sock = filp->private_data;
1079 	struct sock *sk = sock->sk;
1080 	struct socket_wq *wq;
1081 
1082 	if (sk == NULL)
1083 		return -EINVAL;
1084 
1085 	lock_sock(sk);
1086 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1087 	fasync_helper(fd, filp, on, &wq->fasync_list);
1088 
1089 	if (!wq->fasync_list)
1090 		sock_reset_flag(sk, SOCK_FASYNC);
1091 	else
1092 		sock_set_flag(sk, SOCK_FASYNC);
1093 
1094 	release_sock(sk);
1095 	return 0;
1096 }
1097 
1098 /* This function may be called only under rcu_lock */
1099 
1100 int sock_wake_async(struct socket_wq *wq, int how, int band)
1101 {
1102 	if (!wq || !wq->fasync_list)
1103 		return -1;
1104 
1105 	switch (how) {
1106 	case SOCK_WAKE_WAITD:
1107 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1108 			break;
1109 		goto call_kill;
1110 	case SOCK_WAKE_SPACE:
1111 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1112 			break;
1113 		/* fall through */
1114 	case SOCK_WAKE_IO:
1115 call_kill:
1116 		kill_fasync(&wq->fasync_list, SIGIO, band);
1117 		break;
1118 	case SOCK_WAKE_URG:
1119 		kill_fasync(&wq->fasync_list, SIGURG, band);
1120 	}
1121 
1122 	return 0;
1123 }
1124 EXPORT_SYMBOL(sock_wake_async);
1125 
1126 int __sock_create(struct net *net, int family, int type, int protocol,
1127 			 struct socket **res, int kern)
1128 {
1129 	int err;
1130 	struct socket *sock;
1131 	const struct net_proto_family *pf;
1132 
1133 	/*
1134 	 *      Check protocol is in range
1135 	 */
1136 	if (family < 0 || family >= NPROTO)
1137 		return -EAFNOSUPPORT;
1138 	if (type < 0 || type >= SOCK_MAX)
1139 		return -EINVAL;
1140 
1141 	/* Compatibility.
1142 
1143 	   This uglymoron is moved from INET layer to here to avoid
1144 	   deadlock in module load.
1145 	 */
1146 	if (family == PF_INET && type == SOCK_PACKET) {
1147 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1148 			     current->comm);
1149 		family = PF_PACKET;
1150 	}
1151 
1152 	err = security_socket_create(family, type, protocol, kern);
1153 	if (err)
1154 		return err;
1155 
1156 	/*
1157 	 *	Allocate the socket and allow the family to set things up. if
1158 	 *	the protocol is 0, the family is instructed to select an appropriate
1159 	 *	default.
1160 	 */
1161 	sock = sock_alloc();
1162 	if (!sock) {
1163 		net_warn_ratelimited("socket: no more sockets\n");
1164 		return -ENFILE;	/* Not exactly a match, but its the
1165 				   closest posix thing */
1166 	}
1167 
1168 	sock->type = type;
1169 
1170 #ifdef CONFIG_MODULES
1171 	/* Attempt to load a protocol module if the find failed.
1172 	 *
1173 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1174 	 * requested real, full-featured networking support upon configuration.
1175 	 * Otherwise module support will break!
1176 	 */
1177 	if (rcu_access_pointer(net_families[family]) == NULL)
1178 		request_module("net-pf-%d", family);
1179 #endif
1180 
1181 	rcu_read_lock();
1182 	pf = rcu_dereference(net_families[family]);
1183 	err = -EAFNOSUPPORT;
1184 	if (!pf)
1185 		goto out_release;
1186 
1187 	/*
1188 	 * We will call the ->create function, that possibly is in a loadable
1189 	 * module, so we have to bump that loadable module refcnt first.
1190 	 */
1191 	if (!try_module_get(pf->owner))
1192 		goto out_release;
1193 
1194 	/* Now protected by module ref count */
1195 	rcu_read_unlock();
1196 
1197 	err = pf->create(net, sock, protocol, kern);
1198 	if (err < 0)
1199 		goto out_module_put;
1200 
1201 	/*
1202 	 * Now to bump the refcnt of the [loadable] module that owns this
1203 	 * socket at sock_release time we decrement its refcnt.
1204 	 */
1205 	if (!try_module_get(sock->ops->owner))
1206 		goto out_module_busy;
1207 
1208 	/*
1209 	 * Now that we're done with the ->create function, the [loadable]
1210 	 * module can have its refcnt decremented
1211 	 */
1212 	module_put(pf->owner);
1213 	err = security_socket_post_create(sock, family, type, protocol, kern);
1214 	if (err)
1215 		goto out_sock_release;
1216 	*res = sock;
1217 
1218 	return 0;
1219 
1220 out_module_busy:
1221 	err = -EAFNOSUPPORT;
1222 out_module_put:
1223 	sock->ops = NULL;
1224 	module_put(pf->owner);
1225 out_sock_release:
1226 	sock_release(sock);
1227 	return err;
1228 
1229 out_release:
1230 	rcu_read_unlock();
1231 	goto out_sock_release;
1232 }
1233 EXPORT_SYMBOL(__sock_create);
1234 
1235 int sock_create(int family, int type, int protocol, struct socket **res)
1236 {
1237 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1238 }
1239 EXPORT_SYMBOL(sock_create);
1240 
1241 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1242 {
1243 	return __sock_create(net, family, type, protocol, res, 1);
1244 }
1245 EXPORT_SYMBOL(sock_create_kern);
1246 
1247 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1248 {
1249 	int retval;
1250 	struct socket *sock;
1251 	int flags;
1252 
1253 	/* Check the SOCK_* constants for consistency.  */
1254 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1255 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1256 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1257 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1258 
1259 	flags = type & ~SOCK_TYPE_MASK;
1260 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1261 		return -EINVAL;
1262 	type &= SOCK_TYPE_MASK;
1263 
1264 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1265 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1266 
1267 	retval = sock_create(family, type, protocol, &sock);
1268 	if (retval < 0)
1269 		goto out;
1270 
1271 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1272 	if (retval < 0)
1273 		goto out_release;
1274 
1275 out:
1276 	/* It may be already another descriptor 8) Not kernel problem. */
1277 	return retval;
1278 
1279 out_release:
1280 	sock_release(sock);
1281 	return retval;
1282 }
1283 
1284 /*
1285  *	Create a pair of connected sockets.
1286  */
1287 
1288 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1289 		int __user *, usockvec)
1290 {
1291 	struct socket *sock1, *sock2;
1292 	int fd1, fd2, err;
1293 	struct file *newfile1, *newfile2;
1294 	int flags;
1295 
1296 	flags = type & ~SOCK_TYPE_MASK;
1297 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1298 		return -EINVAL;
1299 	type &= SOCK_TYPE_MASK;
1300 
1301 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1302 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1303 
1304 	/*
1305 	 * Obtain the first socket and check if the underlying protocol
1306 	 * supports the socketpair call.
1307 	 */
1308 
1309 	err = sock_create(family, type, protocol, &sock1);
1310 	if (err < 0)
1311 		goto out;
1312 
1313 	err = sock_create(family, type, protocol, &sock2);
1314 	if (err < 0)
1315 		goto out_release_1;
1316 
1317 	err = sock1->ops->socketpair(sock1, sock2);
1318 	if (err < 0)
1319 		goto out_release_both;
1320 
1321 	fd1 = get_unused_fd_flags(flags);
1322 	if (unlikely(fd1 < 0)) {
1323 		err = fd1;
1324 		goto out_release_both;
1325 	}
1326 
1327 	fd2 = get_unused_fd_flags(flags);
1328 	if (unlikely(fd2 < 0)) {
1329 		err = fd2;
1330 		goto out_put_unused_1;
1331 	}
1332 
1333 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1334 	if (IS_ERR(newfile1)) {
1335 		err = PTR_ERR(newfile1);
1336 		goto out_put_unused_both;
1337 	}
1338 
1339 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1340 	if (IS_ERR(newfile2)) {
1341 		err = PTR_ERR(newfile2);
1342 		goto out_fput_1;
1343 	}
1344 
1345 	err = put_user(fd1, &usockvec[0]);
1346 	if (err)
1347 		goto out_fput_both;
1348 
1349 	err = put_user(fd2, &usockvec[1]);
1350 	if (err)
1351 		goto out_fput_both;
1352 
1353 	audit_fd_pair(fd1, fd2);
1354 
1355 	fd_install(fd1, newfile1);
1356 	fd_install(fd2, newfile2);
1357 	/* fd1 and fd2 may be already another descriptors.
1358 	 * Not kernel problem.
1359 	 */
1360 
1361 	return 0;
1362 
1363 out_fput_both:
1364 	fput(newfile2);
1365 	fput(newfile1);
1366 	put_unused_fd(fd2);
1367 	put_unused_fd(fd1);
1368 	goto out;
1369 
1370 out_fput_1:
1371 	fput(newfile1);
1372 	put_unused_fd(fd2);
1373 	put_unused_fd(fd1);
1374 	sock_release(sock2);
1375 	goto out;
1376 
1377 out_put_unused_both:
1378 	put_unused_fd(fd2);
1379 out_put_unused_1:
1380 	put_unused_fd(fd1);
1381 out_release_both:
1382 	sock_release(sock2);
1383 out_release_1:
1384 	sock_release(sock1);
1385 out:
1386 	return err;
1387 }
1388 
1389 /*
1390  *	Bind a name to a socket. Nothing much to do here since it's
1391  *	the protocol's responsibility to handle the local address.
1392  *
1393  *	We move the socket address to kernel space before we call
1394  *	the protocol layer (having also checked the address is ok).
1395  */
1396 
1397 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1398 {
1399 	struct socket *sock;
1400 	struct sockaddr_storage address;
1401 	int err, fput_needed;
1402 
1403 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1404 	if (sock) {
1405 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1406 		if (err >= 0) {
1407 			err = security_socket_bind(sock,
1408 						   (struct sockaddr *)&address,
1409 						   addrlen);
1410 			if (!err)
1411 				err = sock->ops->bind(sock,
1412 						      (struct sockaddr *)
1413 						      &address, addrlen);
1414 		}
1415 		fput_light(sock->file, fput_needed);
1416 	}
1417 	return err;
1418 }
1419 
1420 /*
1421  *	Perform a listen. Basically, we allow the protocol to do anything
1422  *	necessary for a listen, and if that works, we mark the socket as
1423  *	ready for listening.
1424  */
1425 
1426 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1427 {
1428 	struct socket *sock;
1429 	int err, fput_needed;
1430 	int somaxconn;
1431 
1432 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1433 	if (sock) {
1434 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1435 		if ((unsigned int)backlog > somaxconn)
1436 			backlog = somaxconn;
1437 
1438 		err = security_socket_listen(sock, backlog);
1439 		if (!err)
1440 			err = sock->ops->listen(sock, backlog);
1441 
1442 		fput_light(sock->file, fput_needed);
1443 	}
1444 	return err;
1445 }
1446 
1447 /*
1448  *	For accept, we attempt to create a new socket, set up the link
1449  *	with the client, wake up the client, then return the new
1450  *	connected fd. We collect the address of the connector in kernel
1451  *	space and move it to user at the very end. This is unclean because
1452  *	we open the socket then return an error.
1453  *
1454  *	1003.1g adds the ability to recvmsg() to query connection pending
1455  *	status to recvmsg. We need to add that support in a way thats
1456  *	clean when we restucture accept also.
1457  */
1458 
1459 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1460 		int __user *, upeer_addrlen, int, flags)
1461 {
1462 	struct socket *sock, *newsock;
1463 	struct file *newfile;
1464 	int err, len, newfd, fput_needed;
1465 	struct sockaddr_storage address;
1466 
1467 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1468 		return -EINVAL;
1469 
1470 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1471 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1472 
1473 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1474 	if (!sock)
1475 		goto out;
1476 
1477 	err = -ENFILE;
1478 	newsock = sock_alloc();
1479 	if (!newsock)
1480 		goto out_put;
1481 
1482 	newsock->type = sock->type;
1483 	newsock->ops = sock->ops;
1484 
1485 	/*
1486 	 * We don't need try_module_get here, as the listening socket (sock)
1487 	 * has the protocol module (sock->ops->owner) held.
1488 	 */
1489 	__module_get(newsock->ops->owner);
1490 
1491 	newfd = get_unused_fd_flags(flags);
1492 	if (unlikely(newfd < 0)) {
1493 		err = newfd;
1494 		sock_release(newsock);
1495 		goto out_put;
1496 	}
1497 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1498 	if (IS_ERR(newfile)) {
1499 		err = PTR_ERR(newfile);
1500 		put_unused_fd(newfd);
1501 		sock_release(newsock);
1502 		goto out_put;
1503 	}
1504 
1505 	err = security_socket_accept(sock, newsock);
1506 	if (err)
1507 		goto out_fd;
1508 
1509 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1510 	if (err < 0)
1511 		goto out_fd;
1512 
1513 	if (upeer_sockaddr) {
1514 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1515 					  &len, 2) < 0) {
1516 			err = -ECONNABORTED;
1517 			goto out_fd;
1518 		}
1519 		err = move_addr_to_user(&address,
1520 					len, upeer_sockaddr, upeer_addrlen);
1521 		if (err < 0)
1522 			goto out_fd;
1523 	}
1524 
1525 	/* File flags are not inherited via accept() unlike another OSes. */
1526 
1527 	fd_install(newfd, newfile);
1528 	err = newfd;
1529 
1530 out_put:
1531 	fput_light(sock->file, fput_needed);
1532 out:
1533 	return err;
1534 out_fd:
1535 	fput(newfile);
1536 	put_unused_fd(newfd);
1537 	goto out_put;
1538 }
1539 
1540 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1541 		int __user *, upeer_addrlen)
1542 {
1543 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1544 }
1545 
1546 /*
1547  *	Attempt to connect to a socket with the server address.  The address
1548  *	is in user space so we verify it is OK and move it to kernel space.
1549  *
1550  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1551  *	break bindings
1552  *
1553  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1554  *	other SEQPACKET protocols that take time to connect() as it doesn't
1555  *	include the -EINPROGRESS status for such sockets.
1556  */
1557 
1558 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1559 		int, addrlen)
1560 {
1561 	struct socket *sock;
1562 	struct sockaddr_storage address;
1563 	int err, fput_needed;
1564 
1565 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1566 	if (!sock)
1567 		goto out;
1568 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1569 	if (err < 0)
1570 		goto out_put;
1571 
1572 	err =
1573 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1574 	if (err)
1575 		goto out_put;
1576 
1577 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1578 				 sock->file->f_flags);
1579 out_put:
1580 	fput_light(sock->file, fput_needed);
1581 out:
1582 	return err;
1583 }
1584 
1585 /*
1586  *	Get the local address ('name') of a socket object. Move the obtained
1587  *	name to user space.
1588  */
1589 
1590 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1591 		int __user *, usockaddr_len)
1592 {
1593 	struct socket *sock;
1594 	struct sockaddr_storage address;
1595 	int len, err, fput_needed;
1596 
1597 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598 	if (!sock)
1599 		goto out;
1600 
1601 	err = security_socket_getsockname(sock);
1602 	if (err)
1603 		goto out_put;
1604 
1605 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1606 	if (err)
1607 		goto out_put;
1608 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1609 
1610 out_put:
1611 	fput_light(sock->file, fput_needed);
1612 out:
1613 	return err;
1614 }
1615 
1616 /*
1617  *	Get the remote address ('name') of a socket object. Move the obtained
1618  *	name to user space.
1619  */
1620 
1621 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1622 		int __user *, usockaddr_len)
1623 {
1624 	struct socket *sock;
1625 	struct sockaddr_storage address;
1626 	int len, err, fput_needed;
1627 
1628 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1629 	if (sock != NULL) {
1630 		err = security_socket_getpeername(sock);
1631 		if (err) {
1632 			fput_light(sock->file, fput_needed);
1633 			return err;
1634 		}
1635 
1636 		err =
1637 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1638 				       1);
1639 		if (!err)
1640 			err = move_addr_to_user(&address, len, usockaddr,
1641 						usockaddr_len);
1642 		fput_light(sock->file, fput_needed);
1643 	}
1644 	return err;
1645 }
1646 
1647 /*
1648  *	Send a datagram to a given address. We move the address into kernel
1649  *	space and check the user space data area is readable before invoking
1650  *	the protocol.
1651  */
1652 
1653 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1654 		unsigned int, flags, struct sockaddr __user *, addr,
1655 		int, addr_len)
1656 {
1657 	struct socket *sock;
1658 	struct sockaddr_storage address;
1659 	int err;
1660 	struct msghdr msg;
1661 	struct iovec iov;
1662 	int fput_needed;
1663 
1664 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1665 	if (unlikely(err))
1666 		return err;
1667 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1668 	if (!sock)
1669 		goto out;
1670 
1671 	msg.msg_name = NULL;
1672 	msg.msg_control = NULL;
1673 	msg.msg_controllen = 0;
1674 	msg.msg_namelen = 0;
1675 	if (addr) {
1676 		err = move_addr_to_kernel(addr, addr_len, &address);
1677 		if (err < 0)
1678 			goto out_put;
1679 		msg.msg_name = (struct sockaddr *)&address;
1680 		msg.msg_namelen = addr_len;
1681 	}
1682 	if (sock->file->f_flags & O_NONBLOCK)
1683 		flags |= MSG_DONTWAIT;
1684 	msg.msg_flags = flags;
1685 	err = sock_sendmsg(sock, &msg);
1686 
1687 out_put:
1688 	fput_light(sock->file, fput_needed);
1689 out:
1690 	return err;
1691 }
1692 
1693 /*
1694  *	Send a datagram down a socket.
1695  */
1696 
1697 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1698 		unsigned int, flags)
1699 {
1700 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1701 }
1702 
1703 /*
1704  *	Receive a frame from the socket and optionally record the address of the
1705  *	sender. We verify the buffers are writable and if needed move the
1706  *	sender address from kernel to user space.
1707  */
1708 
1709 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1710 		unsigned int, flags, struct sockaddr __user *, addr,
1711 		int __user *, addr_len)
1712 {
1713 	struct socket *sock;
1714 	struct iovec iov;
1715 	struct msghdr msg;
1716 	struct sockaddr_storage address;
1717 	int err, err2;
1718 	int fput_needed;
1719 
1720 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1721 	if (unlikely(err))
1722 		return err;
1723 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1724 	if (!sock)
1725 		goto out;
1726 
1727 	msg.msg_control = NULL;
1728 	msg.msg_controllen = 0;
1729 	/* Save some cycles and don't copy the address if not needed */
1730 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1731 	/* We assume all kernel code knows the size of sockaddr_storage */
1732 	msg.msg_namelen = 0;
1733 	msg.msg_iocb = NULL;
1734 	if (sock->file->f_flags & O_NONBLOCK)
1735 		flags |= MSG_DONTWAIT;
1736 	err = sock_recvmsg(sock, &msg, flags);
1737 
1738 	if (err >= 0 && addr != NULL) {
1739 		err2 = move_addr_to_user(&address,
1740 					 msg.msg_namelen, addr, addr_len);
1741 		if (err2 < 0)
1742 			err = err2;
1743 	}
1744 
1745 	fput_light(sock->file, fput_needed);
1746 out:
1747 	return err;
1748 }
1749 
1750 /*
1751  *	Receive a datagram from a socket.
1752  */
1753 
1754 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1755 		unsigned int, flags)
1756 {
1757 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1758 }
1759 
1760 /*
1761  *	Set a socket option. Because we don't know the option lengths we have
1762  *	to pass the user mode parameter for the protocols to sort out.
1763  */
1764 
1765 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1766 		char __user *, optval, int, optlen)
1767 {
1768 	int err, fput_needed;
1769 	struct socket *sock;
1770 
1771 	if (optlen < 0)
1772 		return -EINVAL;
1773 
1774 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1775 	if (sock != NULL) {
1776 		err = security_socket_setsockopt(sock, level, optname);
1777 		if (err)
1778 			goto out_put;
1779 
1780 		if (level == SOL_SOCKET)
1781 			err =
1782 			    sock_setsockopt(sock, level, optname, optval,
1783 					    optlen);
1784 		else
1785 			err =
1786 			    sock->ops->setsockopt(sock, level, optname, optval,
1787 						  optlen);
1788 out_put:
1789 		fput_light(sock->file, fput_needed);
1790 	}
1791 	return err;
1792 }
1793 
1794 /*
1795  *	Get a socket option. Because we don't know the option lengths we have
1796  *	to pass a user mode parameter for the protocols to sort out.
1797  */
1798 
1799 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1800 		char __user *, optval, int __user *, optlen)
1801 {
1802 	int err, fput_needed;
1803 	struct socket *sock;
1804 
1805 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806 	if (sock != NULL) {
1807 		err = security_socket_getsockopt(sock, level, optname);
1808 		if (err)
1809 			goto out_put;
1810 
1811 		if (level == SOL_SOCKET)
1812 			err =
1813 			    sock_getsockopt(sock, level, optname, optval,
1814 					    optlen);
1815 		else
1816 			err =
1817 			    sock->ops->getsockopt(sock, level, optname, optval,
1818 						  optlen);
1819 out_put:
1820 		fput_light(sock->file, fput_needed);
1821 	}
1822 	return err;
1823 }
1824 
1825 /*
1826  *	Shutdown a socket.
1827  */
1828 
1829 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1830 {
1831 	int err, fput_needed;
1832 	struct socket *sock;
1833 
1834 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1835 	if (sock != NULL) {
1836 		err = security_socket_shutdown(sock, how);
1837 		if (!err)
1838 			err = sock->ops->shutdown(sock, how);
1839 		fput_light(sock->file, fput_needed);
1840 	}
1841 	return err;
1842 }
1843 
1844 /* A couple of helpful macros for getting the address of the 32/64 bit
1845  * fields which are the same type (int / unsigned) on our platforms.
1846  */
1847 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1848 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1849 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1850 
1851 struct used_address {
1852 	struct sockaddr_storage name;
1853 	unsigned int name_len;
1854 };
1855 
1856 static int copy_msghdr_from_user(struct msghdr *kmsg,
1857 				 struct user_msghdr __user *umsg,
1858 				 struct sockaddr __user **save_addr,
1859 				 struct iovec **iov)
1860 {
1861 	struct sockaddr __user *uaddr;
1862 	struct iovec __user *uiov;
1863 	size_t nr_segs;
1864 	ssize_t err;
1865 
1866 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1867 	    __get_user(uaddr, &umsg->msg_name) ||
1868 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1869 	    __get_user(uiov, &umsg->msg_iov) ||
1870 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1871 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1872 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1873 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1874 		return -EFAULT;
1875 
1876 	if (!uaddr)
1877 		kmsg->msg_namelen = 0;
1878 
1879 	if (kmsg->msg_namelen < 0)
1880 		return -EINVAL;
1881 
1882 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1883 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1884 
1885 	if (save_addr)
1886 		*save_addr = uaddr;
1887 
1888 	if (uaddr && kmsg->msg_namelen) {
1889 		if (!save_addr) {
1890 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1891 						  kmsg->msg_name);
1892 			if (err < 0)
1893 				return err;
1894 		}
1895 	} else {
1896 		kmsg->msg_name = NULL;
1897 		kmsg->msg_namelen = 0;
1898 	}
1899 
1900 	if (nr_segs > UIO_MAXIOV)
1901 		return -EMSGSIZE;
1902 
1903 	kmsg->msg_iocb = NULL;
1904 
1905 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1906 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1907 }
1908 
1909 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1910 			 struct msghdr *msg_sys, unsigned int flags,
1911 			 struct used_address *used_address,
1912 			 unsigned int allowed_msghdr_flags)
1913 {
1914 	struct compat_msghdr __user *msg_compat =
1915 	    (struct compat_msghdr __user *)msg;
1916 	struct sockaddr_storage address;
1917 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1918 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1919 				__aligned(sizeof(__kernel_size_t));
1920 	/* 20 is size of ipv6_pktinfo */
1921 	unsigned char *ctl_buf = ctl;
1922 	int ctl_len;
1923 	ssize_t err;
1924 
1925 	msg_sys->msg_name = &address;
1926 
1927 	if (MSG_CMSG_COMPAT & flags)
1928 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1929 	else
1930 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1931 	if (err < 0)
1932 		return err;
1933 
1934 	err = -ENOBUFS;
1935 
1936 	if (msg_sys->msg_controllen > INT_MAX)
1937 		goto out_freeiov;
1938 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1939 	ctl_len = msg_sys->msg_controllen;
1940 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1941 		err =
1942 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1943 						     sizeof(ctl));
1944 		if (err)
1945 			goto out_freeiov;
1946 		ctl_buf = msg_sys->msg_control;
1947 		ctl_len = msg_sys->msg_controllen;
1948 	} else if (ctl_len) {
1949 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
1950 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
1951 		if (ctl_len > sizeof(ctl)) {
1952 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953 			if (ctl_buf == NULL)
1954 				goto out_freeiov;
1955 		}
1956 		err = -EFAULT;
1957 		/*
1958 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960 		 * checking falls down on this.
1961 		 */
1962 		if (copy_from_user(ctl_buf,
1963 				   (void __user __force *)msg_sys->msg_control,
1964 				   ctl_len))
1965 			goto out_freectl;
1966 		msg_sys->msg_control = ctl_buf;
1967 	}
1968 	msg_sys->msg_flags = flags;
1969 
1970 	if (sock->file->f_flags & O_NONBLOCK)
1971 		msg_sys->msg_flags |= MSG_DONTWAIT;
1972 	/*
1973 	 * If this is sendmmsg() and current destination address is same as
1974 	 * previously succeeded address, omit asking LSM's decision.
1975 	 * used_address->name_len is initialized to UINT_MAX so that the first
1976 	 * destination address never matches.
1977 	 */
1978 	if (used_address && msg_sys->msg_name &&
1979 	    used_address->name_len == msg_sys->msg_namelen &&
1980 	    !memcmp(&used_address->name, msg_sys->msg_name,
1981 		    used_address->name_len)) {
1982 		err = sock_sendmsg_nosec(sock, msg_sys);
1983 		goto out_freectl;
1984 	}
1985 	err = sock_sendmsg(sock, msg_sys);
1986 	/*
1987 	 * If this is sendmmsg() and sending to current destination address was
1988 	 * successful, remember it.
1989 	 */
1990 	if (used_address && err >= 0) {
1991 		used_address->name_len = msg_sys->msg_namelen;
1992 		if (msg_sys->msg_name)
1993 			memcpy(&used_address->name, msg_sys->msg_name,
1994 			       used_address->name_len);
1995 	}
1996 
1997 out_freectl:
1998 	if (ctl_buf != ctl)
1999 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000 out_freeiov:
2001 	kfree(iov);
2002 	return err;
2003 }
2004 
2005 /*
2006  *	BSD sendmsg interface
2007  */
2008 
2009 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2010 {
2011 	int fput_needed, err;
2012 	struct msghdr msg_sys;
2013 	struct socket *sock;
2014 
2015 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016 	if (!sock)
2017 		goto out;
2018 
2019 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020 
2021 	fput_light(sock->file, fput_needed);
2022 out:
2023 	return err;
2024 }
2025 
2026 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027 {
2028 	if (flags & MSG_CMSG_COMPAT)
2029 		return -EINVAL;
2030 	return __sys_sendmsg(fd, msg, flags);
2031 }
2032 
2033 /*
2034  *	Linux sendmmsg interface
2035  */
2036 
2037 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038 		   unsigned int flags)
2039 {
2040 	int fput_needed, err, datagrams;
2041 	struct socket *sock;
2042 	struct mmsghdr __user *entry;
2043 	struct compat_mmsghdr __user *compat_entry;
2044 	struct msghdr msg_sys;
2045 	struct used_address used_address;
2046 	unsigned int oflags = flags;
2047 
2048 	if (vlen > UIO_MAXIOV)
2049 		vlen = UIO_MAXIOV;
2050 
2051 	datagrams = 0;
2052 
2053 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054 	if (!sock)
2055 		return err;
2056 
2057 	used_address.name_len = UINT_MAX;
2058 	entry = mmsg;
2059 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060 	err = 0;
2061 	flags |= MSG_BATCH;
2062 
2063 	while (datagrams < vlen) {
2064 		if (datagrams == vlen - 1)
2065 			flags = oflags;
2066 
2067 		if (MSG_CMSG_COMPAT & flags) {
2068 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069 					     &msg_sys, flags, &used_address, MSG_EOR);
2070 			if (err < 0)
2071 				break;
2072 			err = __put_user(err, &compat_entry->msg_len);
2073 			++compat_entry;
2074 		} else {
2075 			err = ___sys_sendmsg(sock,
2076 					     (struct user_msghdr __user *)entry,
2077 					     &msg_sys, flags, &used_address, MSG_EOR);
2078 			if (err < 0)
2079 				break;
2080 			err = put_user(err, &entry->msg_len);
2081 			++entry;
2082 		}
2083 
2084 		if (err)
2085 			break;
2086 		++datagrams;
2087 		if (msg_data_left(&msg_sys))
2088 			break;
2089 		cond_resched();
2090 	}
2091 
2092 	fput_light(sock->file, fput_needed);
2093 
2094 	/* We only return an error if no datagrams were able to be sent */
2095 	if (datagrams != 0)
2096 		return datagrams;
2097 
2098 	return err;
2099 }
2100 
2101 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102 		unsigned int, vlen, unsigned int, flags)
2103 {
2104 	if (flags & MSG_CMSG_COMPAT)
2105 		return -EINVAL;
2106 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107 }
2108 
2109 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2111 {
2112 	struct compat_msghdr __user *msg_compat =
2113 	    (struct compat_msghdr __user *)msg;
2114 	struct iovec iovstack[UIO_FASTIOV];
2115 	struct iovec *iov = iovstack;
2116 	unsigned long cmsg_ptr;
2117 	int len;
2118 	ssize_t err;
2119 
2120 	/* kernel mode address */
2121 	struct sockaddr_storage addr;
2122 
2123 	/* user mode address pointers */
2124 	struct sockaddr __user *uaddr;
2125 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126 
2127 	msg_sys->msg_name = &addr;
2128 
2129 	if (MSG_CMSG_COMPAT & flags)
2130 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131 	else
2132 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2133 	if (err < 0)
2134 		return err;
2135 
2136 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138 
2139 	/* We assume all kernel code knows the size of sockaddr_storage */
2140 	msg_sys->msg_namelen = 0;
2141 
2142 	if (sock->file->f_flags & O_NONBLOCK)
2143 		flags |= MSG_DONTWAIT;
2144 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2145 	if (err < 0)
2146 		goto out_freeiov;
2147 	len = err;
2148 
2149 	if (uaddr != NULL) {
2150 		err = move_addr_to_user(&addr,
2151 					msg_sys->msg_namelen, uaddr,
2152 					uaddr_len);
2153 		if (err < 0)
2154 			goto out_freeiov;
2155 	}
2156 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157 			 COMPAT_FLAGS(msg));
2158 	if (err)
2159 		goto out_freeiov;
2160 	if (MSG_CMSG_COMPAT & flags)
2161 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162 				 &msg_compat->msg_controllen);
2163 	else
2164 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165 				 &msg->msg_controllen);
2166 	if (err)
2167 		goto out_freeiov;
2168 	err = len;
2169 
2170 out_freeiov:
2171 	kfree(iov);
2172 	return err;
2173 }
2174 
2175 /*
2176  *	BSD recvmsg interface
2177  */
2178 
2179 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2180 {
2181 	int fput_needed, err;
2182 	struct msghdr msg_sys;
2183 	struct socket *sock;
2184 
2185 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186 	if (!sock)
2187 		goto out;
2188 
2189 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190 
2191 	fput_light(sock->file, fput_needed);
2192 out:
2193 	return err;
2194 }
2195 
2196 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197 		unsigned int, flags)
2198 {
2199 	if (flags & MSG_CMSG_COMPAT)
2200 		return -EINVAL;
2201 	return __sys_recvmsg(fd, msg, flags);
2202 }
2203 
2204 /*
2205  *     Linux recvmmsg interface
2206  */
2207 
2208 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209 		   unsigned int flags, struct timespec *timeout)
2210 {
2211 	int fput_needed, err, datagrams;
2212 	struct socket *sock;
2213 	struct mmsghdr __user *entry;
2214 	struct compat_mmsghdr __user *compat_entry;
2215 	struct msghdr msg_sys;
2216 	struct timespec64 end_time;
2217 	struct timespec64 timeout64;
2218 
2219 	if (timeout &&
2220 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2221 				    timeout->tv_nsec))
2222 		return -EINVAL;
2223 
2224 	datagrams = 0;
2225 
2226 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227 	if (!sock)
2228 		return err;
2229 
2230 	err = sock_error(sock->sk);
2231 	if (err)
2232 		goto out_put;
2233 
2234 	entry = mmsg;
2235 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2236 
2237 	while (datagrams < vlen) {
2238 		/*
2239 		 * No need to ask LSM for more than the first datagram.
2240 		 */
2241 		if (MSG_CMSG_COMPAT & flags) {
2242 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2243 					     &msg_sys, flags & ~MSG_WAITFORONE,
2244 					     datagrams);
2245 			if (err < 0)
2246 				break;
2247 			err = __put_user(err, &compat_entry->msg_len);
2248 			++compat_entry;
2249 		} else {
2250 			err = ___sys_recvmsg(sock,
2251 					     (struct user_msghdr __user *)entry,
2252 					     &msg_sys, flags & ~MSG_WAITFORONE,
2253 					     datagrams);
2254 			if (err < 0)
2255 				break;
2256 			err = put_user(err, &entry->msg_len);
2257 			++entry;
2258 		}
2259 
2260 		if (err)
2261 			break;
2262 		++datagrams;
2263 
2264 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265 		if (flags & MSG_WAITFORONE)
2266 			flags |= MSG_DONTWAIT;
2267 
2268 		if (timeout) {
2269 			ktime_get_ts64(&timeout64);
2270 			*timeout = timespec64_to_timespec(
2271 					timespec64_sub(end_time, timeout64));
2272 			if (timeout->tv_sec < 0) {
2273 				timeout->tv_sec = timeout->tv_nsec = 0;
2274 				break;
2275 			}
2276 
2277 			/* Timeout, return less than vlen datagrams */
2278 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2279 				break;
2280 		}
2281 
2282 		/* Out of band data, return right away */
2283 		if (msg_sys.msg_flags & MSG_OOB)
2284 			break;
2285 		cond_resched();
2286 	}
2287 
2288 	if (err == 0)
2289 		goto out_put;
2290 
2291 	if (datagrams == 0) {
2292 		datagrams = err;
2293 		goto out_put;
2294 	}
2295 
2296 	/*
2297 	 * We may return less entries than requested (vlen) if the
2298 	 * sock is non block and there aren't enough datagrams...
2299 	 */
2300 	if (err != -EAGAIN) {
2301 		/*
2302 		 * ... or  if recvmsg returns an error after we
2303 		 * received some datagrams, where we record the
2304 		 * error to return on the next call or if the
2305 		 * app asks about it using getsockopt(SO_ERROR).
2306 		 */
2307 		sock->sk->sk_err = -err;
2308 	}
2309 out_put:
2310 	fput_light(sock->file, fput_needed);
2311 
2312 	return datagrams;
2313 }
2314 
2315 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2316 		unsigned int, vlen, unsigned int, flags,
2317 		struct timespec __user *, timeout)
2318 {
2319 	int datagrams;
2320 	struct timespec timeout_sys;
2321 
2322 	if (flags & MSG_CMSG_COMPAT)
2323 		return -EINVAL;
2324 
2325 	if (!timeout)
2326 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2327 
2328 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2329 		return -EFAULT;
2330 
2331 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2332 
2333 	if (datagrams > 0 &&
2334 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2335 		datagrams = -EFAULT;
2336 
2337 	return datagrams;
2338 }
2339 
2340 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2341 /* Argument list sizes for sys_socketcall */
2342 #define AL(x) ((x) * sizeof(unsigned long))
2343 static const unsigned char nargs[21] = {
2344 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2345 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2346 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2347 	AL(4), AL(5), AL(4)
2348 };
2349 
2350 #undef AL
2351 
2352 /*
2353  *	System call vectors.
2354  *
2355  *	Argument checking cleaned up. Saved 20% in size.
2356  *  This function doesn't need to set the kernel lock because
2357  *  it is set by the callees.
2358  */
2359 
2360 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2361 {
2362 	unsigned long a[AUDITSC_ARGS];
2363 	unsigned long a0, a1;
2364 	int err;
2365 	unsigned int len;
2366 
2367 	if (call < 1 || call > SYS_SENDMMSG)
2368 		return -EINVAL;
2369 
2370 	len = nargs[call];
2371 	if (len > sizeof(a))
2372 		return -EINVAL;
2373 
2374 	/* copy_from_user should be SMP safe. */
2375 	if (copy_from_user(a, args, len))
2376 		return -EFAULT;
2377 
2378 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2379 	if (err)
2380 		return err;
2381 
2382 	a0 = a[0];
2383 	a1 = a[1];
2384 
2385 	switch (call) {
2386 	case SYS_SOCKET:
2387 		err = sys_socket(a0, a1, a[2]);
2388 		break;
2389 	case SYS_BIND:
2390 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2391 		break;
2392 	case SYS_CONNECT:
2393 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2394 		break;
2395 	case SYS_LISTEN:
2396 		err = sys_listen(a0, a1);
2397 		break;
2398 	case SYS_ACCEPT:
2399 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2400 				  (int __user *)a[2], 0);
2401 		break;
2402 	case SYS_GETSOCKNAME:
2403 		err =
2404 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2405 				    (int __user *)a[2]);
2406 		break;
2407 	case SYS_GETPEERNAME:
2408 		err =
2409 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2410 				    (int __user *)a[2]);
2411 		break;
2412 	case SYS_SOCKETPAIR:
2413 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2414 		break;
2415 	case SYS_SEND:
2416 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2417 		break;
2418 	case SYS_SENDTO:
2419 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2420 				 (struct sockaddr __user *)a[4], a[5]);
2421 		break;
2422 	case SYS_RECV:
2423 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2424 		break;
2425 	case SYS_RECVFROM:
2426 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2427 				   (struct sockaddr __user *)a[4],
2428 				   (int __user *)a[5]);
2429 		break;
2430 	case SYS_SHUTDOWN:
2431 		err = sys_shutdown(a0, a1);
2432 		break;
2433 	case SYS_SETSOCKOPT:
2434 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2435 		break;
2436 	case SYS_GETSOCKOPT:
2437 		err =
2438 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2439 				   (int __user *)a[4]);
2440 		break;
2441 	case SYS_SENDMSG:
2442 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2443 		break;
2444 	case SYS_SENDMMSG:
2445 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2446 		break;
2447 	case SYS_RECVMSG:
2448 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2449 		break;
2450 	case SYS_RECVMMSG:
2451 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2452 				   (struct timespec __user *)a[4]);
2453 		break;
2454 	case SYS_ACCEPT4:
2455 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2456 				  (int __user *)a[2], a[3]);
2457 		break;
2458 	default:
2459 		err = -EINVAL;
2460 		break;
2461 	}
2462 	return err;
2463 }
2464 
2465 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2466 
2467 /**
2468  *	sock_register - add a socket protocol handler
2469  *	@ops: description of protocol
2470  *
2471  *	This function is called by a protocol handler that wants to
2472  *	advertise its address family, and have it linked into the
2473  *	socket interface. The value ops->family corresponds to the
2474  *	socket system call protocol family.
2475  */
2476 int sock_register(const struct net_proto_family *ops)
2477 {
2478 	int err;
2479 
2480 	if (ops->family >= NPROTO) {
2481 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2482 		return -ENOBUFS;
2483 	}
2484 
2485 	spin_lock(&net_family_lock);
2486 	if (rcu_dereference_protected(net_families[ops->family],
2487 				      lockdep_is_held(&net_family_lock)))
2488 		err = -EEXIST;
2489 	else {
2490 		rcu_assign_pointer(net_families[ops->family], ops);
2491 		err = 0;
2492 	}
2493 	spin_unlock(&net_family_lock);
2494 
2495 	pr_info("NET: Registered protocol family %d\n", ops->family);
2496 	return err;
2497 }
2498 EXPORT_SYMBOL(sock_register);
2499 
2500 /**
2501  *	sock_unregister - remove a protocol handler
2502  *	@family: protocol family to remove
2503  *
2504  *	This function is called by a protocol handler that wants to
2505  *	remove its address family, and have it unlinked from the
2506  *	new socket creation.
2507  *
2508  *	If protocol handler is a module, then it can use module reference
2509  *	counts to protect against new references. If protocol handler is not
2510  *	a module then it needs to provide its own protection in
2511  *	the ops->create routine.
2512  */
2513 void sock_unregister(int family)
2514 {
2515 	BUG_ON(family < 0 || family >= NPROTO);
2516 
2517 	spin_lock(&net_family_lock);
2518 	RCU_INIT_POINTER(net_families[family], NULL);
2519 	spin_unlock(&net_family_lock);
2520 
2521 	synchronize_rcu();
2522 
2523 	pr_info("NET: Unregistered protocol family %d\n", family);
2524 }
2525 EXPORT_SYMBOL(sock_unregister);
2526 
2527 static int __init sock_init(void)
2528 {
2529 	int err;
2530 	/*
2531 	 *      Initialize the network sysctl infrastructure.
2532 	 */
2533 	err = net_sysctl_init();
2534 	if (err)
2535 		goto out;
2536 
2537 	/*
2538 	 *      Initialize skbuff SLAB cache
2539 	 */
2540 	skb_init();
2541 
2542 	/*
2543 	 *      Initialize the protocols module.
2544 	 */
2545 
2546 	init_inodecache();
2547 
2548 	err = register_filesystem(&sock_fs_type);
2549 	if (err)
2550 		goto out_fs;
2551 	sock_mnt = kern_mount(&sock_fs_type);
2552 	if (IS_ERR(sock_mnt)) {
2553 		err = PTR_ERR(sock_mnt);
2554 		goto out_mount;
2555 	}
2556 
2557 	/* The real protocol initialization is performed in later initcalls.
2558 	 */
2559 
2560 #ifdef CONFIG_NETFILTER
2561 	err = netfilter_init();
2562 	if (err)
2563 		goto out;
2564 #endif
2565 
2566 	ptp_classifier_init();
2567 
2568 out:
2569 	return err;
2570 
2571 out_mount:
2572 	unregister_filesystem(&sock_fs_type);
2573 out_fs:
2574 	goto out;
2575 }
2576 
2577 core_initcall(sock_init);	/* early initcall */
2578 
2579 #ifdef CONFIG_PROC_FS
2580 void socket_seq_show(struct seq_file *seq)
2581 {
2582 	int cpu;
2583 	int counter = 0;
2584 
2585 	for_each_possible_cpu(cpu)
2586 	    counter += per_cpu(sockets_in_use, cpu);
2587 
2588 	/* It can be negative, by the way. 8) */
2589 	if (counter < 0)
2590 		counter = 0;
2591 
2592 	seq_printf(seq, "sockets: used %d\n", counter);
2593 }
2594 #endif				/* CONFIG_PROC_FS */
2595 
2596 #ifdef CONFIG_COMPAT
2597 static int do_siocgstamp(struct net *net, struct socket *sock,
2598 			 unsigned int cmd, void __user *up)
2599 {
2600 	mm_segment_t old_fs = get_fs();
2601 	struct timeval ktv;
2602 	int err;
2603 
2604 	set_fs(KERNEL_DS);
2605 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2606 	set_fs(old_fs);
2607 	if (!err)
2608 		err = compat_put_timeval(&ktv, up);
2609 
2610 	return err;
2611 }
2612 
2613 static int do_siocgstampns(struct net *net, struct socket *sock,
2614 			   unsigned int cmd, void __user *up)
2615 {
2616 	mm_segment_t old_fs = get_fs();
2617 	struct timespec kts;
2618 	int err;
2619 
2620 	set_fs(KERNEL_DS);
2621 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2622 	set_fs(old_fs);
2623 	if (!err)
2624 		err = compat_put_timespec(&kts, up);
2625 
2626 	return err;
2627 }
2628 
2629 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2630 {
2631 	struct ifreq __user *uifr;
2632 	int err;
2633 
2634 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2635 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2636 		return -EFAULT;
2637 
2638 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2639 	if (err)
2640 		return err;
2641 
2642 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2643 		return -EFAULT;
2644 
2645 	return 0;
2646 }
2647 
2648 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2649 {
2650 	struct compat_ifconf ifc32;
2651 	struct ifconf ifc;
2652 	struct ifconf __user *uifc;
2653 	struct compat_ifreq __user *ifr32;
2654 	struct ifreq __user *ifr;
2655 	unsigned int i, j;
2656 	int err;
2657 
2658 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2659 		return -EFAULT;
2660 
2661 	memset(&ifc, 0, sizeof(ifc));
2662 	if (ifc32.ifcbuf == 0) {
2663 		ifc32.ifc_len = 0;
2664 		ifc.ifc_len = 0;
2665 		ifc.ifc_req = NULL;
2666 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2667 	} else {
2668 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2669 			sizeof(struct ifreq);
2670 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2671 		ifc.ifc_len = len;
2672 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2673 		ifr32 = compat_ptr(ifc32.ifcbuf);
2674 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2675 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2676 				return -EFAULT;
2677 			ifr++;
2678 			ifr32++;
2679 		}
2680 	}
2681 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2682 		return -EFAULT;
2683 
2684 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2685 	if (err)
2686 		return err;
2687 
2688 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2689 		return -EFAULT;
2690 
2691 	ifr = ifc.ifc_req;
2692 	ifr32 = compat_ptr(ifc32.ifcbuf);
2693 	for (i = 0, j = 0;
2694 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2695 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2696 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2697 			return -EFAULT;
2698 		ifr32++;
2699 		ifr++;
2700 	}
2701 
2702 	if (ifc32.ifcbuf == 0) {
2703 		/* Translate from 64-bit structure multiple to
2704 		 * a 32-bit one.
2705 		 */
2706 		i = ifc.ifc_len;
2707 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2708 		ifc32.ifc_len = i;
2709 	} else {
2710 		ifc32.ifc_len = i;
2711 	}
2712 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2713 		return -EFAULT;
2714 
2715 	return 0;
2716 }
2717 
2718 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2719 {
2720 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2721 	bool convert_in = false, convert_out = false;
2722 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2723 	struct ethtool_rxnfc __user *rxnfc;
2724 	struct ifreq __user *ifr;
2725 	u32 rule_cnt = 0, actual_rule_cnt;
2726 	u32 ethcmd;
2727 	u32 data;
2728 	int ret;
2729 
2730 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2731 		return -EFAULT;
2732 
2733 	compat_rxnfc = compat_ptr(data);
2734 
2735 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2736 		return -EFAULT;
2737 
2738 	/* Most ethtool structures are defined without padding.
2739 	 * Unfortunately struct ethtool_rxnfc is an exception.
2740 	 */
2741 	switch (ethcmd) {
2742 	default:
2743 		break;
2744 	case ETHTOOL_GRXCLSRLALL:
2745 		/* Buffer size is variable */
2746 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2747 			return -EFAULT;
2748 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2749 			return -ENOMEM;
2750 		buf_size += rule_cnt * sizeof(u32);
2751 		/* fall through */
2752 	case ETHTOOL_GRXRINGS:
2753 	case ETHTOOL_GRXCLSRLCNT:
2754 	case ETHTOOL_GRXCLSRULE:
2755 	case ETHTOOL_SRXCLSRLINS:
2756 		convert_out = true;
2757 		/* fall through */
2758 	case ETHTOOL_SRXCLSRLDEL:
2759 		buf_size += sizeof(struct ethtool_rxnfc);
2760 		convert_in = true;
2761 		break;
2762 	}
2763 
2764 	ifr = compat_alloc_user_space(buf_size);
2765 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2766 
2767 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2768 		return -EFAULT;
2769 
2770 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2771 		     &ifr->ifr_ifru.ifru_data))
2772 		return -EFAULT;
2773 
2774 	if (convert_in) {
2775 		/* We expect there to be holes between fs.m_ext and
2776 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2777 		 */
2778 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2779 			     sizeof(compat_rxnfc->fs.m_ext) !=
2780 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2781 			     sizeof(rxnfc->fs.m_ext));
2782 		BUILD_BUG_ON(
2783 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2784 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2785 			offsetof(struct ethtool_rxnfc, fs.location) -
2786 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2787 
2788 		if (copy_in_user(rxnfc, compat_rxnfc,
2789 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2790 				 (void __user *)rxnfc) ||
2791 		    copy_in_user(&rxnfc->fs.ring_cookie,
2792 				 &compat_rxnfc->fs.ring_cookie,
2793 				 (void __user *)(&rxnfc->fs.location + 1) -
2794 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2795 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2796 				 sizeof(rxnfc->rule_cnt)))
2797 			return -EFAULT;
2798 	}
2799 
2800 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2801 	if (ret)
2802 		return ret;
2803 
2804 	if (convert_out) {
2805 		if (copy_in_user(compat_rxnfc, rxnfc,
2806 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2807 				 (const void __user *)rxnfc) ||
2808 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2809 				 &rxnfc->fs.ring_cookie,
2810 				 (const void __user *)(&rxnfc->fs.location + 1) -
2811 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2812 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2813 				 sizeof(rxnfc->rule_cnt)))
2814 			return -EFAULT;
2815 
2816 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2817 			/* As an optimisation, we only copy the actual
2818 			 * number of rules that the underlying
2819 			 * function returned.  Since Mallory might
2820 			 * change the rule count in user memory, we
2821 			 * check that it is less than the rule count
2822 			 * originally given (as the user buffer size),
2823 			 * which has been range-checked.
2824 			 */
2825 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2826 				return -EFAULT;
2827 			if (actual_rule_cnt < rule_cnt)
2828 				rule_cnt = actual_rule_cnt;
2829 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2830 					 &rxnfc->rule_locs[0],
2831 					 rule_cnt * sizeof(u32)))
2832 				return -EFAULT;
2833 		}
2834 	}
2835 
2836 	return 0;
2837 }
2838 
2839 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2840 {
2841 	void __user *uptr;
2842 	compat_uptr_t uptr32;
2843 	struct ifreq __user *uifr;
2844 
2845 	uifr = compat_alloc_user_space(sizeof(*uifr));
2846 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2847 		return -EFAULT;
2848 
2849 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2850 		return -EFAULT;
2851 
2852 	uptr = compat_ptr(uptr32);
2853 
2854 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2855 		return -EFAULT;
2856 
2857 	return dev_ioctl(net, SIOCWANDEV, uifr);
2858 }
2859 
2860 static int bond_ioctl(struct net *net, unsigned int cmd,
2861 			 struct compat_ifreq __user *ifr32)
2862 {
2863 	struct ifreq kifr;
2864 	mm_segment_t old_fs;
2865 	int err;
2866 
2867 	switch (cmd) {
2868 	case SIOCBONDENSLAVE:
2869 	case SIOCBONDRELEASE:
2870 	case SIOCBONDSETHWADDR:
2871 	case SIOCBONDCHANGEACTIVE:
2872 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2873 			return -EFAULT;
2874 
2875 		old_fs = get_fs();
2876 		set_fs(KERNEL_DS);
2877 		err = dev_ioctl(net, cmd,
2878 				(struct ifreq __user __force *) &kifr);
2879 		set_fs(old_fs);
2880 
2881 		return err;
2882 	default:
2883 		return -ENOIOCTLCMD;
2884 	}
2885 }
2886 
2887 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2888 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2889 				 struct compat_ifreq __user *u_ifreq32)
2890 {
2891 	struct ifreq __user *u_ifreq64;
2892 	char tmp_buf[IFNAMSIZ];
2893 	void __user *data64;
2894 	u32 data32;
2895 
2896 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2897 			   IFNAMSIZ))
2898 		return -EFAULT;
2899 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2900 		return -EFAULT;
2901 	data64 = compat_ptr(data32);
2902 
2903 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2904 
2905 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2906 			 IFNAMSIZ))
2907 		return -EFAULT;
2908 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2909 		return -EFAULT;
2910 
2911 	return dev_ioctl(net, cmd, u_ifreq64);
2912 }
2913 
2914 static int dev_ifsioc(struct net *net, struct socket *sock,
2915 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2916 {
2917 	struct ifreq __user *uifr;
2918 	int err;
2919 
2920 	uifr = compat_alloc_user_space(sizeof(*uifr));
2921 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2922 		return -EFAULT;
2923 
2924 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2925 
2926 	if (!err) {
2927 		switch (cmd) {
2928 		case SIOCGIFFLAGS:
2929 		case SIOCGIFMETRIC:
2930 		case SIOCGIFMTU:
2931 		case SIOCGIFMEM:
2932 		case SIOCGIFHWADDR:
2933 		case SIOCGIFINDEX:
2934 		case SIOCGIFADDR:
2935 		case SIOCGIFBRDADDR:
2936 		case SIOCGIFDSTADDR:
2937 		case SIOCGIFNETMASK:
2938 		case SIOCGIFPFLAGS:
2939 		case SIOCGIFTXQLEN:
2940 		case SIOCGMIIPHY:
2941 		case SIOCGMIIREG:
2942 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2943 				err = -EFAULT;
2944 			break;
2945 		}
2946 	}
2947 	return err;
2948 }
2949 
2950 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2951 			struct compat_ifreq __user *uifr32)
2952 {
2953 	struct ifreq ifr;
2954 	struct compat_ifmap __user *uifmap32;
2955 	mm_segment_t old_fs;
2956 	int err;
2957 
2958 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2959 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2960 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2961 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2962 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2963 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2964 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2965 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2966 	if (err)
2967 		return -EFAULT;
2968 
2969 	old_fs = get_fs();
2970 	set_fs(KERNEL_DS);
2971 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2972 	set_fs(old_fs);
2973 
2974 	if (cmd == SIOCGIFMAP && !err) {
2975 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2976 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2977 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2978 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2979 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2980 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2981 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2982 		if (err)
2983 			err = -EFAULT;
2984 	}
2985 	return err;
2986 }
2987 
2988 struct rtentry32 {
2989 	u32		rt_pad1;
2990 	struct sockaddr rt_dst;         /* target address               */
2991 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2992 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2993 	unsigned short	rt_flags;
2994 	short		rt_pad2;
2995 	u32		rt_pad3;
2996 	unsigned char	rt_tos;
2997 	unsigned char	rt_class;
2998 	short		rt_pad4;
2999 	short		rt_metric;      /* +1 for binary compatibility! */
3000 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3001 	u32		rt_mtu;         /* per route MTU/Window         */
3002 	u32		rt_window;      /* Window clamping              */
3003 	unsigned short  rt_irtt;        /* Initial RTT                  */
3004 };
3005 
3006 struct in6_rtmsg32 {
3007 	struct in6_addr		rtmsg_dst;
3008 	struct in6_addr		rtmsg_src;
3009 	struct in6_addr		rtmsg_gateway;
3010 	u32			rtmsg_type;
3011 	u16			rtmsg_dst_len;
3012 	u16			rtmsg_src_len;
3013 	u32			rtmsg_metric;
3014 	u32			rtmsg_info;
3015 	u32			rtmsg_flags;
3016 	s32			rtmsg_ifindex;
3017 };
3018 
3019 static int routing_ioctl(struct net *net, struct socket *sock,
3020 			 unsigned int cmd, void __user *argp)
3021 {
3022 	int ret;
3023 	void *r = NULL;
3024 	struct in6_rtmsg r6;
3025 	struct rtentry r4;
3026 	char devname[16];
3027 	u32 rtdev;
3028 	mm_segment_t old_fs = get_fs();
3029 
3030 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3031 		struct in6_rtmsg32 __user *ur6 = argp;
3032 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3033 			3 * sizeof(struct in6_addr));
3034 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3035 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3036 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3037 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3038 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3039 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3040 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3041 
3042 		r = (void *) &r6;
3043 	} else { /* ipv4 */
3044 		struct rtentry32 __user *ur4 = argp;
3045 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3046 					3 * sizeof(struct sockaddr));
3047 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3048 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3049 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3050 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3051 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3052 		ret |= get_user(rtdev, &(ur4->rt_dev));
3053 		if (rtdev) {
3054 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3055 			r4.rt_dev = (char __user __force *)devname;
3056 			devname[15] = 0;
3057 		} else
3058 			r4.rt_dev = NULL;
3059 
3060 		r = (void *) &r4;
3061 	}
3062 
3063 	if (ret) {
3064 		ret = -EFAULT;
3065 		goto out;
3066 	}
3067 
3068 	set_fs(KERNEL_DS);
3069 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3070 	set_fs(old_fs);
3071 
3072 out:
3073 	return ret;
3074 }
3075 
3076 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3077  * for some operations; this forces use of the newer bridge-utils that
3078  * use compatible ioctls
3079  */
3080 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3081 {
3082 	compat_ulong_t tmp;
3083 
3084 	if (get_user(tmp, argp))
3085 		return -EFAULT;
3086 	if (tmp == BRCTL_GET_VERSION)
3087 		return BRCTL_VERSION + 1;
3088 	return -EINVAL;
3089 }
3090 
3091 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3092 			 unsigned int cmd, unsigned long arg)
3093 {
3094 	void __user *argp = compat_ptr(arg);
3095 	struct sock *sk = sock->sk;
3096 	struct net *net = sock_net(sk);
3097 
3098 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3099 		return compat_ifr_data_ioctl(net, cmd, argp);
3100 
3101 	switch (cmd) {
3102 	case SIOCSIFBR:
3103 	case SIOCGIFBR:
3104 		return old_bridge_ioctl(argp);
3105 	case SIOCGIFNAME:
3106 		return dev_ifname32(net, argp);
3107 	case SIOCGIFCONF:
3108 		return dev_ifconf(net, argp);
3109 	case SIOCETHTOOL:
3110 		return ethtool_ioctl(net, argp);
3111 	case SIOCWANDEV:
3112 		return compat_siocwandev(net, argp);
3113 	case SIOCGIFMAP:
3114 	case SIOCSIFMAP:
3115 		return compat_sioc_ifmap(net, cmd, argp);
3116 	case SIOCBONDENSLAVE:
3117 	case SIOCBONDRELEASE:
3118 	case SIOCBONDSETHWADDR:
3119 	case SIOCBONDCHANGEACTIVE:
3120 		return bond_ioctl(net, cmd, argp);
3121 	case SIOCADDRT:
3122 	case SIOCDELRT:
3123 		return routing_ioctl(net, sock, cmd, argp);
3124 	case SIOCGSTAMP:
3125 		return do_siocgstamp(net, sock, cmd, argp);
3126 	case SIOCGSTAMPNS:
3127 		return do_siocgstampns(net, sock, cmd, argp);
3128 	case SIOCBONDSLAVEINFOQUERY:
3129 	case SIOCBONDINFOQUERY:
3130 	case SIOCSHWTSTAMP:
3131 	case SIOCGHWTSTAMP:
3132 		return compat_ifr_data_ioctl(net, cmd, argp);
3133 
3134 	case FIOSETOWN:
3135 	case SIOCSPGRP:
3136 	case FIOGETOWN:
3137 	case SIOCGPGRP:
3138 	case SIOCBRADDBR:
3139 	case SIOCBRDELBR:
3140 	case SIOCGIFVLAN:
3141 	case SIOCSIFVLAN:
3142 	case SIOCADDDLCI:
3143 	case SIOCDELDLCI:
3144 	case SIOCGSKNS:
3145 		return sock_ioctl(file, cmd, arg);
3146 
3147 	case SIOCGIFFLAGS:
3148 	case SIOCSIFFLAGS:
3149 	case SIOCGIFMETRIC:
3150 	case SIOCSIFMETRIC:
3151 	case SIOCGIFMTU:
3152 	case SIOCSIFMTU:
3153 	case SIOCGIFMEM:
3154 	case SIOCSIFMEM:
3155 	case SIOCGIFHWADDR:
3156 	case SIOCSIFHWADDR:
3157 	case SIOCADDMULTI:
3158 	case SIOCDELMULTI:
3159 	case SIOCGIFINDEX:
3160 	case SIOCGIFADDR:
3161 	case SIOCSIFADDR:
3162 	case SIOCSIFHWBROADCAST:
3163 	case SIOCDIFADDR:
3164 	case SIOCGIFBRDADDR:
3165 	case SIOCSIFBRDADDR:
3166 	case SIOCGIFDSTADDR:
3167 	case SIOCSIFDSTADDR:
3168 	case SIOCGIFNETMASK:
3169 	case SIOCSIFNETMASK:
3170 	case SIOCSIFPFLAGS:
3171 	case SIOCGIFPFLAGS:
3172 	case SIOCGIFTXQLEN:
3173 	case SIOCSIFTXQLEN:
3174 	case SIOCBRADDIF:
3175 	case SIOCBRDELIF:
3176 	case SIOCSIFNAME:
3177 	case SIOCGMIIPHY:
3178 	case SIOCGMIIREG:
3179 	case SIOCSMIIREG:
3180 		return dev_ifsioc(net, sock, cmd, argp);
3181 
3182 	case SIOCSARP:
3183 	case SIOCGARP:
3184 	case SIOCDARP:
3185 	case SIOCATMARK:
3186 		return sock_do_ioctl(net, sock, cmd, arg);
3187 	}
3188 
3189 	return -ENOIOCTLCMD;
3190 }
3191 
3192 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3193 			      unsigned long arg)
3194 {
3195 	struct socket *sock = file->private_data;
3196 	int ret = -ENOIOCTLCMD;
3197 	struct sock *sk;
3198 	struct net *net;
3199 
3200 	sk = sock->sk;
3201 	net = sock_net(sk);
3202 
3203 	if (sock->ops->compat_ioctl)
3204 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3205 
3206 	if (ret == -ENOIOCTLCMD &&
3207 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3208 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3209 
3210 	if (ret == -ENOIOCTLCMD)
3211 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3212 
3213 	return ret;
3214 }
3215 #endif
3216 
3217 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3218 {
3219 	return sock->ops->bind(sock, addr, addrlen);
3220 }
3221 EXPORT_SYMBOL(kernel_bind);
3222 
3223 int kernel_listen(struct socket *sock, int backlog)
3224 {
3225 	return sock->ops->listen(sock, backlog);
3226 }
3227 EXPORT_SYMBOL(kernel_listen);
3228 
3229 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3230 {
3231 	struct sock *sk = sock->sk;
3232 	int err;
3233 
3234 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3235 			       newsock);
3236 	if (err < 0)
3237 		goto done;
3238 
3239 	err = sock->ops->accept(sock, *newsock, flags);
3240 	if (err < 0) {
3241 		sock_release(*newsock);
3242 		*newsock = NULL;
3243 		goto done;
3244 	}
3245 
3246 	(*newsock)->ops = sock->ops;
3247 	__module_get((*newsock)->ops->owner);
3248 
3249 done:
3250 	return err;
3251 }
3252 EXPORT_SYMBOL(kernel_accept);
3253 
3254 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3255 		   int flags)
3256 {
3257 	return sock->ops->connect(sock, addr, addrlen, flags);
3258 }
3259 EXPORT_SYMBOL(kernel_connect);
3260 
3261 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3262 			 int *addrlen)
3263 {
3264 	return sock->ops->getname(sock, addr, addrlen, 0);
3265 }
3266 EXPORT_SYMBOL(kernel_getsockname);
3267 
3268 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3269 			 int *addrlen)
3270 {
3271 	return sock->ops->getname(sock, addr, addrlen, 1);
3272 }
3273 EXPORT_SYMBOL(kernel_getpeername);
3274 
3275 int kernel_getsockopt(struct socket *sock, int level, int optname,
3276 			char *optval, int *optlen)
3277 {
3278 	mm_segment_t oldfs = get_fs();
3279 	char __user *uoptval;
3280 	int __user *uoptlen;
3281 	int err;
3282 
3283 	uoptval = (char __user __force *) optval;
3284 	uoptlen = (int __user __force *) optlen;
3285 
3286 	set_fs(KERNEL_DS);
3287 	if (level == SOL_SOCKET)
3288 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3289 	else
3290 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3291 					    uoptlen);
3292 	set_fs(oldfs);
3293 	return err;
3294 }
3295 EXPORT_SYMBOL(kernel_getsockopt);
3296 
3297 int kernel_setsockopt(struct socket *sock, int level, int optname,
3298 			char *optval, unsigned int optlen)
3299 {
3300 	mm_segment_t oldfs = get_fs();
3301 	char __user *uoptval;
3302 	int err;
3303 
3304 	uoptval = (char __user __force *) optval;
3305 
3306 	set_fs(KERNEL_DS);
3307 	if (level == SOL_SOCKET)
3308 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3309 	else
3310 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3311 					    optlen);
3312 	set_fs(oldfs);
3313 	return err;
3314 }
3315 EXPORT_SYMBOL(kernel_setsockopt);
3316 
3317 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3318 		    size_t size, int flags)
3319 {
3320 	if (sock->ops->sendpage)
3321 		return sock->ops->sendpage(sock, page, offset, size, flags);
3322 
3323 	return sock_no_sendpage(sock, page, offset, size, flags);
3324 }
3325 EXPORT_SYMBOL(kernel_sendpage);
3326 
3327 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3328 {
3329 	mm_segment_t oldfs = get_fs();
3330 	int err;
3331 
3332 	set_fs(KERNEL_DS);
3333 	err = sock->ops->ioctl(sock, cmd, arg);
3334 	set_fs(oldfs);
3335 
3336 	return err;
3337 }
3338 EXPORT_SYMBOL(kernel_sock_ioctl);
3339 
3340 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3341 {
3342 	return sock->ops->shutdown(sock, how);
3343 }
3344 EXPORT_SYMBOL(kernel_sock_shutdown);
3345