xref: /openbmc/linux/net/socket.c (revision 1d1997db)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 static void sock_show_fdinfo(struct seq_file *m, struct file *f);
132 
133 /*
134  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
135  *	in the operation structures but are done directly via the socketcall() multiplexor.
136  */
137 
138 static const struct file_operations socket_file_ops = {
139 	.owner =	THIS_MODULE,
140 	.llseek =	no_llseek,
141 	.read_iter =	sock_read_iter,
142 	.write_iter =	sock_write_iter,
143 	.poll =		sock_poll,
144 	.unlocked_ioctl = sock_ioctl,
145 #ifdef CONFIG_COMPAT
146 	.compat_ioctl = compat_sock_ioctl,
147 #endif
148 	.mmap =		sock_mmap,
149 	.release =	sock_close,
150 	.fasync =	sock_fasync,
151 	.sendpage =	sock_sendpage,
152 	.splice_write = generic_splice_sendpage,
153 	.splice_read =	sock_splice_read,
154 #ifdef CONFIG_PROC_FS
155 	.show_fdinfo =	sock_show_fdinfo,
156 #endif
157 };
158 
159 /*
160  *	The protocol list. Each protocol is registered in here.
161  */
162 
163 static DEFINE_SPINLOCK(net_family_lock);
164 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
165 
166 /*
167  * Support routines.
168  * Move socket addresses back and forth across the kernel/user
169  * divide and look after the messy bits.
170  */
171 
172 /**
173  *	move_addr_to_kernel	-	copy a socket address into kernel space
174  *	@uaddr: Address in user space
175  *	@kaddr: Address in kernel space
176  *	@ulen: Length in user space
177  *
178  *	The address is copied into kernel space. If the provided address is
179  *	too long an error code of -EINVAL is returned. If the copy gives
180  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
181  */
182 
183 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
184 {
185 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
186 		return -EINVAL;
187 	if (ulen == 0)
188 		return 0;
189 	if (copy_from_user(kaddr, uaddr, ulen))
190 		return -EFAULT;
191 	return audit_sockaddr(ulen, kaddr);
192 }
193 
194 /**
195  *	move_addr_to_user	-	copy an address to user space
196  *	@kaddr: kernel space address
197  *	@klen: length of address in kernel
198  *	@uaddr: user space address
199  *	@ulen: pointer to user length field
200  *
201  *	The value pointed to by ulen on entry is the buffer length available.
202  *	This is overwritten with the buffer space used. -EINVAL is returned
203  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
204  *	is returned if either the buffer or the length field are not
205  *	accessible.
206  *	After copying the data up to the limit the user specifies, the true
207  *	length of the data is written over the length limit the user
208  *	specified. Zero is returned for a success.
209  */
210 
211 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
212 			     void __user *uaddr, int __user *ulen)
213 {
214 	int err;
215 	int len;
216 
217 	BUG_ON(klen > sizeof(struct sockaddr_storage));
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0)
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __ro_after_init;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	init_waitqueue_head(&ei->socket.wq.wait);
248 	ei->socket.wq.fasync_list = NULL;
249 	ei->socket.wq.flags = 0;
250 
251 	ei->socket.state = SS_UNCONNECTED;
252 	ei->socket.flags = 0;
253 	ei->socket.ops = NULL;
254 	ei->socket.sk = NULL;
255 	ei->socket.file = NULL;
256 
257 	return &ei->vfs_inode;
258 }
259 
260 static void sock_free_inode(struct inode *inode)
261 {
262 	struct socket_alloc *ei;
263 
264 	ei = container_of(inode, struct socket_alloc, vfs_inode);
265 	kmem_cache_free(sock_inode_cachep, ei);
266 }
267 
268 static void init_once(void *foo)
269 {
270 	struct socket_alloc *ei = (struct socket_alloc *)foo;
271 
272 	inode_init_once(&ei->vfs_inode);
273 }
274 
275 static void init_inodecache(void)
276 {
277 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
278 					      sizeof(struct socket_alloc),
279 					      0,
280 					      (SLAB_HWCACHE_ALIGN |
281 					       SLAB_RECLAIM_ACCOUNT |
282 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
283 					      init_once);
284 	BUG_ON(sock_inode_cachep == NULL);
285 }
286 
287 static const struct super_operations sockfs_ops = {
288 	.alloc_inode	= sock_alloc_inode,
289 	.free_inode	= sock_free_inode,
290 	.statfs		= simple_statfs,
291 };
292 
293 /*
294  * sockfs_dname() is called from d_path().
295  */
296 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
297 {
298 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
299 				d_inode(dentry)->i_ino);
300 }
301 
302 static const struct dentry_operations sockfs_dentry_operations = {
303 	.d_dname  = sockfs_dname,
304 };
305 
306 static int sockfs_xattr_get(const struct xattr_handler *handler,
307 			    struct dentry *dentry, struct inode *inode,
308 			    const char *suffix, void *value, size_t size)
309 {
310 	if (value) {
311 		if (dentry->d_name.len + 1 > size)
312 			return -ERANGE;
313 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
314 	}
315 	return dentry->d_name.len + 1;
316 }
317 
318 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
319 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
320 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
321 
322 static const struct xattr_handler sockfs_xattr_handler = {
323 	.name = XATTR_NAME_SOCKPROTONAME,
324 	.get = sockfs_xattr_get,
325 };
326 
327 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
328 				     struct dentry *dentry, struct inode *inode,
329 				     const char *suffix, const void *value,
330 				     size_t size, int flags)
331 {
332 	/* Handled by LSM. */
333 	return -EAGAIN;
334 }
335 
336 static const struct xattr_handler sockfs_security_xattr_handler = {
337 	.prefix = XATTR_SECURITY_PREFIX,
338 	.set = sockfs_security_xattr_set,
339 };
340 
341 static const struct xattr_handler *sockfs_xattr_handlers[] = {
342 	&sockfs_xattr_handler,
343 	&sockfs_security_xattr_handler,
344 	NULL
345 };
346 
347 static int sockfs_init_fs_context(struct fs_context *fc)
348 {
349 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
350 	if (!ctx)
351 		return -ENOMEM;
352 	ctx->ops = &sockfs_ops;
353 	ctx->dops = &sockfs_dentry_operations;
354 	ctx->xattr = sockfs_xattr_handlers;
355 	return 0;
356 }
357 
358 static struct vfsmount *sock_mnt __read_mostly;
359 
360 static struct file_system_type sock_fs_type = {
361 	.name =		"sockfs",
362 	.init_fs_context = sockfs_init_fs_context,
363 	.kill_sb =	kill_anon_super,
364 };
365 
366 /*
367  *	Obtains the first available file descriptor and sets it up for use.
368  *
369  *	These functions create file structures and maps them to fd space
370  *	of the current process. On success it returns file descriptor
371  *	and file struct implicitly stored in sock->file.
372  *	Note that another thread may close file descriptor before we return
373  *	from this function. We use the fact that now we do not refer
374  *	to socket after mapping. If one day we will need it, this
375  *	function will increment ref. count on file by 1.
376  *
377  *	In any case returned fd MAY BE not valid!
378  *	This race condition is unavoidable
379  *	with shared fd spaces, we cannot solve it inside kernel,
380  *	but we take care of internal coherence yet.
381  */
382 
383 /**
384  *	sock_alloc_file - Bind a &socket to a &file
385  *	@sock: socket
386  *	@flags: file status flags
387  *	@dname: protocol name
388  *
389  *	Returns the &file bound with @sock, implicitly storing it
390  *	in sock->file. If dname is %NULL, sets to "".
391  *	On failure the return is a ERR pointer (see linux/err.h).
392  *	This function uses GFP_KERNEL internally.
393  */
394 
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 	struct file *file;
398 
399 	if (!dname)
400 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
401 
402 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
403 				O_RDWR | (flags & O_NONBLOCK),
404 				&socket_file_ops);
405 	if (IS_ERR(file)) {
406 		sock_release(sock);
407 		return file;
408 	}
409 
410 	sock->file = file;
411 	file->private_data = sock;
412 	stream_open(SOCK_INODE(sock), file);
413 	return file;
414 }
415 EXPORT_SYMBOL(sock_alloc_file);
416 
417 static int sock_map_fd(struct socket *sock, int flags)
418 {
419 	struct file *newfile;
420 	int fd = get_unused_fd_flags(flags);
421 	if (unlikely(fd < 0)) {
422 		sock_release(sock);
423 		return fd;
424 	}
425 
426 	newfile = sock_alloc_file(sock, flags, NULL);
427 	if (!IS_ERR(newfile)) {
428 		fd_install(fd, newfile);
429 		return fd;
430 	}
431 
432 	put_unused_fd(fd);
433 	return PTR_ERR(newfile);
434 }
435 
436 /**
437  *	sock_from_file - Return the &socket bounded to @file.
438  *	@file: file
439  *	@err: pointer to an error code return
440  *
441  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
442  */
443 
444 struct socket *sock_from_file(struct file *file, int *err)
445 {
446 	if (file->f_op == &socket_file_ops)
447 		return file->private_data;	/* set in sock_map_fd */
448 
449 	*err = -ENOTSOCK;
450 	return NULL;
451 }
452 EXPORT_SYMBOL(sock_from_file);
453 
454 /**
455  *	sockfd_lookup - Go from a file number to its socket slot
456  *	@fd: file handle
457  *	@err: pointer to an error code return
458  *
459  *	The file handle passed in is locked and the socket it is bound
460  *	to is returned. If an error occurs the err pointer is overwritten
461  *	with a negative errno code and NULL is returned. The function checks
462  *	for both invalid handles and passing a handle which is not a socket.
463  *
464  *	On a success the socket object pointer is returned.
465  */
466 
467 struct socket *sockfd_lookup(int fd, int *err)
468 {
469 	struct file *file;
470 	struct socket *sock;
471 
472 	file = fget(fd);
473 	if (!file) {
474 		*err = -EBADF;
475 		return NULL;
476 	}
477 
478 	sock = sock_from_file(file, err);
479 	if (!sock)
480 		fput(file);
481 	return sock;
482 }
483 EXPORT_SYMBOL(sockfd_lookup);
484 
485 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
486 {
487 	struct fd f = fdget(fd);
488 	struct socket *sock;
489 
490 	*err = -EBADF;
491 	if (f.file) {
492 		sock = sock_from_file(f.file, err);
493 		if (likely(sock)) {
494 			*fput_needed = f.flags;
495 			return sock;
496 		}
497 		fdput(f);
498 	}
499 	return NULL;
500 }
501 
502 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
503 				size_t size)
504 {
505 	ssize_t len;
506 	ssize_t used = 0;
507 
508 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
509 	if (len < 0)
510 		return len;
511 	used += len;
512 	if (buffer) {
513 		if (size < used)
514 			return -ERANGE;
515 		buffer += len;
516 	}
517 
518 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
519 	used += len;
520 	if (buffer) {
521 		if (size < used)
522 			return -ERANGE;
523 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
524 		buffer += len;
525 	}
526 
527 	return used;
528 }
529 
530 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
531 {
532 	int err = simple_setattr(dentry, iattr);
533 
534 	if (!err && (iattr->ia_valid & ATTR_UID)) {
535 		struct socket *sock = SOCKET_I(d_inode(dentry));
536 
537 		if (sock->sk)
538 			sock->sk->sk_uid = iattr->ia_uid;
539 		else
540 			err = -ENOENT;
541 	}
542 
543 	return err;
544 }
545 
546 static const struct inode_operations sockfs_inode_ops = {
547 	.listxattr = sockfs_listxattr,
548 	.setattr = sockfs_setattr,
549 };
550 
551 /**
552  *	sock_alloc - allocate a socket
553  *
554  *	Allocate a new inode and socket object. The two are bound together
555  *	and initialised. The socket is then returned. If we are out of inodes
556  *	NULL is returned. This functions uses GFP_KERNEL internally.
557  */
558 
559 struct socket *sock_alloc(void)
560 {
561 	struct inode *inode;
562 	struct socket *sock;
563 
564 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
565 	if (!inode)
566 		return NULL;
567 
568 	sock = SOCKET_I(inode);
569 
570 	inode->i_ino = get_next_ino();
571 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
572 	inode->i_uid = current_fsuid();
573 	inode->i_gid = current_fsgid();
574 	inode->i_op = &sockfs_inode_ops;
575 
576 	return sock;
577 }
578 EXPORT_SYMBOL(sock_alloc);
579 
580 /**
581  *	sock_release - close a socket
582  *	@sock: socket to close
583  *
584  *	The socket is released from the protocol stack if it has a release
585  *	callback, and the inode is then released if the socket is bound to
586  *	an inode not a file.
587  */
588 
589 static void __sock_release(struct socket *sock, struct inode *inode)
590 {
591 	if (sock->ops) {
592 		struct module *owner = sock->ops->owner;
593 
594 		if (inode)
595 			inode_lock(inode);
596 		sock->ops->release(sock);
597 		sock->sk = NULL;
598 		if (inode)
599 			inode_unlock(inode);
600 		sock->ops = NULL;
601 		module_put(owner);
602 	}
603 
604 	if (sock->wq.fasync_list)
605 		pr_err("%s: fasync list not empty!\n", __func__);
606 
607 	if (!sock->file) {
608 		iput(SOCK_INODE(sock));
609 		return;
610 	}
611 	sock->file = NULL;
612 }
613 
614 void sock_release(struct socket *sock)
615 {
616 	__sock_release(sock, NULL);
617 }
618 EXPORT_SYMBOL(sock_release);
619 
620 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
621 {
622 	u8 flags = *tx_flags;
623 
624 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
625 		flags |= SKBTX_HW_TSTAMP;
626 
627 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
628 		flags |= SKBTX_SW_TSTAMP;
629 
630 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
631 		flags |= SKBTX_SCHED_TSTAMP;
632 
633 	*tx_flags = flags;
634 }
635 EXPORT_SYMBOL(__sock_tx_timestamp);
636 
637 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
638 					   size_t));
639 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
640 					    size_t));
641 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
642 {
643 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
644 				     inet_sendmsg, sock, msg,
645 				     msg_data_left(msg));
646 	BUG_ON(ret == -EIOCBQUEUED);
647 	return ret;
648 }
649 
650 /**
651  *	sock_sendmsg - send a message through @sock
652  *	@sock: socket
653  *	@msg: message to send
654  *
655  *	Sends @msg through @sock, passing through LSM.
656  *	Returns the number of bytes sent, or an error code.
657  */
658 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
659 {
660 	int err = security_socket_sendmsg(sock, msg,
661 					  msg_data_left(msg));
662 
663 	return err ?: sock_sendmsg_nosec(sock, msg);
664 }
665 EXPORT_SYMBOL(sock_sendmsg);
666 
667 /**
668  *	kernel_sendmsg - send a message through @sock (kernel-space)
669  *	@sock: socket
670  *	@msg: message header
671  *	@vec: kernel vec
672  *	@num: vec array length
673  *	@size: total message data size
674  *
675  *	Builds the message data with @vec and sends it through @sock.
676  *	Returns the number of bytes sent, or an error code.
677  */
678 
679 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
680 		   struct kvec *vec, size_t num, size_t size)
681 {
682 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
683 	return sock_sendmsg(sock, msg);
684 }
685 EXPORT_SYMBOL(kernel_sendmsg);
686 
687 /**
688  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
689  *	@sk: sock
690  *	@msg: message header
691  *	@vec: output s/g array
692  *	@num: output s/g array length
693  *	@size: total message data size
694  *
695  *	Builds the message data with @vec and sends it through @sock.
696  *	Returns the number of bytes sent, or an error code.
697  *	Caller must hold @sk.
698  */
699 
700 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
701 			  struct kvec *vec, size_t num, size_t size)
702 {
703 	struct socket *sock = sk->sk_socket;
704 
705 	if (!sock->ops->sendmsg_locked)
706 		return sock_no_sendmsg_locked(sk, msg, size);
707 
708 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
709 
710 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
711 }
712 EXPORT_SYMBOL(kernel_sendmsg_locked);
713 
714 static bool skb_is_err_queue(const struct sk_buff *skb)
715 {
716 	/* pkt_type of skbs enqueued on the error queue are set to
717 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
718 	 * in recvmsg, since skbs received on a local socket will never
719 	 * have a pkt_type of PACKET_OUTGOING.
720 	 */
721 	return skb->pkt_type == PACKET_OUTGOING;
722 }
723 
724 /* On transmit, software and hardware timestamps are returned independently.
725  * As the two skb clones share the hardware timestamp, which may be updated
726  * before the software timestamp is received, a hardware TX timestamp may be
727  * returned only if there is no software TX timestamp. Ignore false software
728  * timestamps, which may be made in the __sock_recv_timestamp() call when the
729  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
730  * hardware timestamp.
731  */
732 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
733 {
734 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
735 }
736 
737 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
738 {
739 	struct scm_ts_pktinfo ts_pktinfo;
740 	struct net_device *orig_dev;
741 
742 	if (!skb_mac_header_was_set(skb))
743 		return;
744 
745 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
746 
747 	rcu_read_lock();
748 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
749 	if (orig_dev)
750 		ts_pktinfo.if_index = orig_dev->ifindex;
751 	rcu_read_unlock();
752 
753 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
754 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
755 		 sizeof(ts_pktinfo), &ts_pktinfo);
756 }
757 
758 /*
759  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
760  */
761 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
762 	struct sk_buff *skb)
763 {
764 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
765 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
766 	struct scm_timestamping_internal tss;
767 
768 	int empty = 1, false_tstamp = 0;
769 	struct skb_shared_hwtstamps *shhwtstamps =
770 		skb_hwtstamps(skb);
771 
772 	/* Race occurred between timestamp enabling and packet
773 	   receiving.  Fill in the current time for now. */
774 	if (need_software_tstamp && skb->tstamp == 0) {
775 		__net_timestamp(skb);
776 		false_tstamp = 1;
777 	}
778 
779 	if (need_software_tstamp) {
780 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
781 			if (new_tstamp) {
782 				struct __kernel_sock_timeval tv;
783 
784 				skb_get_new_timestamp(skb, &tv);
785 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
786 					 sizeof(tv), &tv);
787 			} else {
788 				struct __kernel_old_timeval tv;
789 
790 				skb_get_timestamp(skb, &tv);
791 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
792 					 sizeof(tv), &tv);
793 			}
794 		} else {
795 			if (new_tstamp) {
796 				struct __kernel_timespec ts;
797 
798 				skb_get_new_timestampns(skb, &ts);
799 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
800 					 sizeof(ts), &ts);
801 			} else {
802 				struct __kernel_old_timespec ts;
803 
804 				skb_get_timestampns(skb, &ts);
805 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
806 					 sizeof(ts), &ts);
807 			}
808 		}
809 	}
810 
811 	memset(&tss, 0, sizeof(tss));
812 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
813 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
814 		empty = 0;
815 	if (shhwtstamps &&
816 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
817 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
818 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
819 		empty = 0;
820 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
821 		    !skb_is_err_queue(skb))
822 			put_ts_pktinfo(msg, skb);
823 	}
824 	if (!empty) {
825 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
826 			put_cmsg_scm_timestamping64(msg, &tss);
827 		else
828 			put_cmsg_scm_timestamping(msg, &tss);
829 
830 		if (skb_is_err_queue(skb) && skb->len &&
831 		    SKB_EXT_ERR(skb)->opt_stats)
832 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
833 				 skb->len, skb->data);
834 	}
835 }
836 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
837 
838 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
839 	struct sk_buff *skb)
840 {
841 	int ack;
842 
843 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
844 		return;
845 	if (!skb->wifi_acked_valid)
846 		return;
847 
848 	ack = skb->wifi_acked;
849 
850 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
851 }
852 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
853 
854 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
855 				   struct sk_buff *skb)
856 {
857 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
858 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
859 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
860 }
861 
862 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
863 	struct sk_buff *skb)
864 {
865 	sock_recv_timestamp(msg, sk, skb);
866 	sock_recv_drops(msg, sk, skb);
867 }
868 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
869 
870 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
871 					   size_t, int));
872 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
873 					    size_t, int));
874 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
875 				     int flags)
876 {
877 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
878 				  inet_recvmsg, sock, msg, msg_data_left(msg),
879 				  flags);
880 }
881 
882 /**
883  *	sock_recvmsg - receive a message from @sock
884  *	@sock: socket
885  *	@msg: message to receive
886  *	@flags: message flags
887  *
888  *	Receives @msg from @sock, passing through LSM. Returns the total number
889  *	of bytes received, or an error.
890  */
891 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
892 {
893 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
894 
895 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
896 }
897 EXPORT_SYMBOL(sock_recvmsg);
898 
899 /**
900  *	kernel_recvmsg - Receive a message from a socket (kernel space)
901  *	@sock: The socket to receive the message from
902  *	@msg: Received message
903  *	@vec: Input s/g array for message data
904  *	@num: Size of input s/g array
905  *	@size: Number of bytes to read
906  *	@flags: Message flags (MSG_DONTWAIT, etc...)
907  *
908  *	On return the msg structure contains the scatter/gather array passed in the
909  *	vec argument. The array is modified so that it consists of the unfilled
910  *	portion of the original array.
911  *
912  *	The returned value is the total number of bytes received, or an error.
913  */
914 
915 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
916 		   struct kvec *vec, size_t num, size_t size, int flags)
917 {
918 	mm_segment_t oldfs = get_fs();
919 	int result;
920 
921 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
922 	set_fs(KERNEL_DS);
923 	result = sock_recvmsg(sock, msg, flags);
924 	set_fs(oldfs);
925 	return result;
926 }
927 EXPORT_SYMBOL(kernel_recvmsg);
928 
929 static ssize_t sock_sendpage(struct file *file, struct page *page,
930 			     int offset, size_t size, loff_t *ppos, int more)
931 {
932 	struct socket *sock;
933 	int flags;
934 
935 	sock = file->private_data;
936 
937 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
938 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
939 	flags |= more;
940 
941 	return kernel_sendpage(sock, page, offset, size, flags);
942 }
943 
944 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
945 				struct pipe_inode_info *pipe, size_t len,
946 				unsigned int flags)
947 {
948 	struct socket *sock = file->private_data;
949 
950 	if (unlikely(!sock->ops->splice_read))
951 		return generic_file_splice_read(file, ppos, pipe, len, flags);
952 
953 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
954 }
955 
956 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
957 {
958 	struct file *file = iocb->ki_filp;
959 	struct socket *sock = file->private_data;
960 	struct msghdr msg = {.msg_iter = *to,
961 			     .msg_iocb = iocb};
962 	ssize_t res;
963 
964 	if (file->f_flags & O_NONBLOCK)
965 		msg.msg_flags = MSG_DONTWAIT;
966 
967 	if (iocb->ki_pos != 0)
968 		return -ESPIPE;
969 
970 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
971 		return 0;
972 
973 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
974 	*to = msg.msg_iter;
975 	return res;
976 }
977 
978 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
979 {
980 	struct file *file = iocb->ki_filp;
981 	struct socket *sock = file->private_data;
982 	struct msghdr msg = {.msg_iter = *from,
983 			     .msg_iocb = iocb};
984 	ssize_t res;
985 
986 	if (iocb->ki_pos != 0)
987 		return -ESPIPE;
988 
989 	if (file->f_flags & O_NONBLOCK)
990 		msg.msg_flags = MSG_DONTWAIT;
991 
992 	if (sock->type == SOCK_SEQPACKET)
993 		msg.msg_flags |= MSG_EOR;
994 
995 	res = sock_sendmsg(sock, &msg);
996 	*from = msg.msg_iter;
997 	return res;
998 }
999 
1000 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
1001 {
1002 	struct socket *sock = f->private_data;
1003 
1004 	if (sock->ops->show_fdinfo)
1005 		sock->ops->show_fdinfo(m, sock);
1006 }
1007 
1008 /*
1009  * Atomic setting of ioctl hooks to avoid race
1010  * with module unload.
1011  */
1012 
1013 static DEFINE_MUTEX(br_ioctl_mutex);
1014 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1015 
1016 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1017 {
1018 	mutex_lock(&br_ioctl_mutex);
1019 	br_ioctl_hook = hook;
1020 	mutex_unlock(&br_ioctl_mutex);
1021 }
1022 EXPORT_SYMBOL(brioctl_set);
1023 
1024 static DEFINE_MUTEX(vlan_ioctl_mutex);
1025 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1026 
1027 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1028 {
1029 	mutex_lock(&vlan_ioctl_mutex);
1030 	vlan_ioctl_hook = hook;
1031 	mutex_unlock(&vlan_ioctl_mutex);
1032 }
1033 EXPORT_SYMBOL(vlan_ioctl_set);
1034 
1035 static DEFINE_MUTEX(dlci_ioctl_mutex);
1036 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1037 
1038 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1039 {
1040 	mutex_lock(&dlci_ioctl_mutex);
1041 	dlci_ioctl_hook = hook;
1042 	mutex_unlock(&dlci_ioctl_mutex);
1043 }
1044 EXPORT_SYMBOL(dlci_ioctl_set);
1045 
1046 static long sock_do_ioctl(struct net *net, struct socket *sock,
1047 			  unsigned int cmd, unsigned long arg)
1048 {
1049 	int err;
1050 	void __user *argp = (void __user *)arg;
1051 
1052 	err = sock->ops->ioctl(sock, cmd, arg);
1053 
1054 	/*
1055 	 * If this ioctl is unknown try to hand it down
1056 	 * to the NIC driver.
1057 	 */
1058 	if (err != -ENOIOCTLCMD)
1059 		return err;
1060 
1061 	if (cmd == SIOCGIFCONF) {
1062 		struct ifconf ifc;
1063 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1064 			return -EFAULT;
1065 		rtnl_lock();
1066 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1067 		rtnl_unlock();
1068 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1069 			err = -EFAULT;
1070 	} else {
1071 		struct ifreq ifr;
1072 		bool need_copyout;
1073 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1074 			return -EFAULT;
1075 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1076 		if (!err && need_copyout)
1077 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1078 				return -EFAULT;
1079 	}
1080 	return err;
1081 }
1082 
1083 /*
1084  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1085  *	what to do with it - that's up to the protocol still.
1086  */
1087 
1088 /**
1089  *	get_net_ns - increment the refcount of the network namespace
1090  *	@ns: common namespace (net)
1091  *
1092  *	Returns the net's common namespace.
1093  */
1094 
1095 struct ns_common *get_net_ns(struct ns_common *ns)
1096 {
1097 	return &get_net(container_of(ns, struct net, ns))->ns;
1098 }
1099 EXPORT_SYMBOL_GPL(get_net_ns);
1100 
1101 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1102 {
1103 	struct socket *sock;
1104 	struct sock *sk;
1105 	void __user *argp = (void __user *)arg;
1106 	int pid, err;
1107 	struct net *net;
1108 
1109 	sock = file->private_data;
1110 	sk = sock->sk;
1111 	net = sock_net(sk);
1112 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1113 		struct ifreq ifr;
1114 		bool need_copyout;
1115 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1116 			return -EFAULT;
1117 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1118 		if (!err && need_copyout)
1119 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1120 				return -EFAULT;
1121 	} else
1122 #ifdef CONFIG_WEXT_CORE
1123 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1124 		err = wext_handle_ioctl(net, cmd, argp);
1125 	} else
1126 #endif
1127 		switch (cmd) {
1128 		case FIOSETOWN:
1129 		case SIOCSPGRP:
1130 			err = -EFAULT;
1131 			if (get_user(pid, (int __user *)argp))
1132 				break;
1133 			err = f_setown(sock->file, pid, 1);
1134 			break;
1135 		case FIOGETOWN:
1136 		case SIOCGPGRP:
1137 			err = put_user(f_getown(sock->file),
1138 				       (int __user *)argp);
1139 			break;
1140 		case SIOCGIFBR:
1141 		case SIOCSIFBR:
1142 		case SIOCBRADDBR:
1143 		case SIOCBRDELBR:
1144 			err = -ENOPKG;
1145 			if (!br_ioctl_hook)
1146 				request_module("bridge");
1147 
1148 			mutex_lock(&br_ioctl_mutex);
1149 			if (br_ioctl_hook)
1150 				err = br_ioctl_hook(net, cmd, argp);
1151 			mutex_unlock(&br_ioctl_mutex);
1152 			break;
1153 		case SIOCGIFVLAN:
1154 		case SIOCSIFVLAN:
1155 			err = -ENOPKG;
1156 			if (!vlan_ioctl_hook)
1157 				request_module("8021q");
1158 
1159 			mutex_lock(&vlan_ioctl_mutex);
1160 			if (vlan_ioctl_hook)
1161 				err = vlan_ioctl_hook(net, argp);
1162 			mutex_unlock(&vlan_ioctl_mutex);
1163 			break;
1164 		case SIOCADDDLCI:
1165 		case SIOCDELDLCI:
1166 			err = -ENOPKG;
1167 			if (!dlci_ioctl_hook)
1168 				request_module("dlci");
1169 
1170 			mutex_lock(&dlci_ioctl_mutex);
1171 			if (dlci_ioctl_hook)
1172 				err = dlci_ioctl_hook(cmd, argp);
1173 			mutex_unlock(&dlci_ioctl_mutex);
1174 			break;
1175 		case SIOCGSKNS:
1176 			err = -EPERM;
1177 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1178 				break;
1179 
1180 			err = open_related_ns(&net->ns, get_net_ns);
1181 			break;
1182 		case SIOCGSTAMP_OLD:
1183 		case SIOCGSTAMPNS_OLD:
1184 			if (!sock->ops->gettstamp) {
1185 				err = -ENOIOCTLCMD;
1186 				break;
1187 			}
1188 			err = sock->ops->gettstamp(sock, argp,
1189 						   cmd == SIOCGSTAMP_OLD,
1190 						   !IS_ENABLED(CONFIG_64BIT));
1191 			break;
1192 		case SIOCGSTAMP_NEW:
1193 		case SIOCGSTAMPNS_NEW:
1194 			if (!sock->ops->gettstamp) {
1195 				err = -ENOIOCTLCMD;
1196 				break;
1197 			}
1198 			err = sock->ops->gettstamp(sock, argp,
1199 						   cmd == SIOCGSTAMP_NEW,
1200 						   false);
1201 			break;
1202 		default:
1203 			err = sock_do_ioctl(net, sock, cmd, arg);
1204 			break;
1205 		}
1206 	return err;
1207 }
1208 
1209 /**
1210  *	sock_create_lite - creates a socket
1211  *	@family: protocol family (AF_INET, ...)
1212  *	@type: communication type (SOCK_STREAM, ...)
1213  *	@protocol: protocol (0, ...)
1214  *	@res: new socket
1215  *
1216  *	Creates a new socket and assigns it to @res, passing through LSM.
1217  *	The new socket initialization is not complete, see kernel_accept().
1218  *	Returns 0 or an error. On failure @res is set to %NULL.
1219  *	This function internally uses GFP_KERNEL.
1220  */
1221 
1222 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1223 {
1224 	int err;
1225 	struct socket *sock = NULL;
1226 
1227 	err = security_socket_create(family, type, protocol, 1);
1228 	if (err)
1229 		goto out;
1230 
1231 	sock = sock_alloc();
1232 	if (!sock) {
1233 		err = -ENOMEM;
1234 		goto out;
1235 	}
1236 
1237 	sock->type = type;
1238 	err = security_socket_post_create(sock, family, type, protocol, 1);
1239 	if (err)
1240 		goto out_release;
1241 
1242 out:
1243 	*res = sock;
1244 	return err;
1245 out_release:
1246 	sock_release(sock);
1247 	sock = NULL;
1248 	goto out;
1249 }
1250 EXPORT_SYMBOL(sock_create_lite);
1251 
1252 /* No kernel lock held - perfect */
1253 static __poll_t sock_poll(struct file *file, poll_table *wait)
1254 {
1255 	struct socket *sock = file->private_data;
1256 	__poll_t events = poll_requested_events(wait), flag = 0;
1257 
1258 	if (!sock->ops->poll)
1259 		return 0;
1260 
1261 	if (sk_can_busy_loop(sock->sk)) {
1262 		/* poll once if requested by the syscall */
1263 		if (events & POLL_BUSY_LOOP)
1264 			sk_busy_loop(sock->sk, 1);
1265 
1266 		/* if this socket can poll_ll, tell the system call */
1267 		flag = POLL_BUSY_LOOP;
1268 	}
1269 
1270 	return sock->ops->poll(file, sock, wait) | flag;
1271 }
1272 
1273 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1274 {
1275 	struct socket *sock = file->private_data;
1276 
1277 	return sock->ops->mmap(file, sock, vma);
1278 }
1279 
1280 static int sock_close(struct inode *inode, struct file *filp)
1281 {
1282 	__sock_release(SOCKET_I(inode), inode);
1283 	return 0;
1284 }
1285 
1286 /*
1287  *	Update the socket async list
1288  *
1289  *	Fasync_list locking strategy.
1290  *
1291  *	1. fasync_list is modified only under process context socket lock
1292  *	   i.e. under semaphore.
1293  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1294  *	   or under socket lock
1295  */
1296 
1297 static int sock_fasync(int fd, struct file *filp, int on)
1298 {
1299 	struct socket *sock = filp->private_data;
1300 	struct sock *sk = sock->sk;
1301 	struct socket_wq *wq = &sock->wq;
1302 
1303 	if (sk == NULL)
1304 		return -EINVAL;
1305 
1306 	lock_sock(sk);
1307 	fasync_helper(fd, filp, on, &wq->fasync_list);
1308 
1309 	if (!wq->fasync_list)
1310 		sock_reset_flag(sk, SOCK_FASYNC);
1311 	else
1312 		sock_set_flag(sk, SOCK_FASYNC);
1313 
1314 	release_sock(sk);
1315 	return 0;
1316 }
1317 
1318 /* This function may be called only under rcu_lock */
1319 
1320 int sock_wake_async(struct socket_wq *wq, int how, int band)
1321 {
1322 	if (!wq || !wq->fasync_list)
1323 		return -1;
1324 
1325 	switch (how) {
1326 	case SOCK_WAKE_WAITD:
1327 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1328 			break;
1329 		goto call_kill;
1330 	case SOCK_WAKE_SPACE:
1331 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1332 			break;
1333 		/* fall through */
1334 	case SOCK_WAKE_IO:
1335 call_kill:
1336 		kill_fasync(&wq->fasync_list, SIGIO, band);
1337 		break;
1338 	case SOCK_WAKE_URG:
1339 		kill_fasync(&wq->fasync_list, SIGURG, band);
1340 	}
1341 
1342 	return 0;
1343 }
1344 EXPORT_SYMBOL(sock_wake_async);
1345 
1346 /**
1347  *	__sock_create - creates a socket
1348  *	@net: net namespace
1349  *	@family: protocol family (AF_INET, ...)
1350  *	@type: communication type (SOCK_STREAM, ...)
1351  *	@protocol: protocol (0, ...)
1352  *	@res: new socket
1353  *	@kern: boolean for kernel space sockets
1354  *
1355  *	Creates a new socket and assigns it to @res, passing through LSM.
1356  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1357  *	be set to true if the socket resides in kernel space.
1358  *	This function internally uses GFP_KERNEL.
1359  */
1360 
1361 int __sock_create(struct net *net, int family, int type, int protocol,
1362 			 struct socket **res, int kern)
1363 {
1364 	int err;
1365 	struct socket *sock;
1366 	const struct net_proto_family *pf;
1367 
1368 	/*
1369 	 *      Check protocol is in range
1370 	 */
1371 	if (family < 0 || family >= NPROTO)
1372 		return -EAFNOSUPPORT;
1373 	if (type < 0 || type >= SOCK_MAX)
1374 		return -EINVAL;
1375 
1376 	/* Compatibility.
1377 
1378 	   This uglymoron is moved from INET layer to here to avoid
1379 	   deadlock in module load.
1380 	 */
1381 	if (family == PF_INET && type == SOCK_PACKET) {
1382 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1383 			     current->comm);
1384 		family = PF_PACKET;
1385 	}
1386 
1387 	err = security_socket_create(family, type, protocol, kern);
1388 	if (err)
1389 		return err;
1390 
1391 	/*
1392 	 *	Allocate the socket and allow the family to set things up. if
1393 	 *	the protocol is 0, the family is instructed to select an appropriate
1394 	 *	default.
1395 	 */
1396 	sock = sock_alloc();
1397 	if (!sock) {
1398 		net_warn_ratelimited("socket: no more sockets\n");
1399 		return -ENFILE;	/* Not exactly a match, but its the
1400 				   closest posix thing */
1401 	}
1402 
1403 	sock->type = type;
1404 
1405 #ifdef CONFIG_MODULES
1406 	/* Attempt to load a protocol module if the find failed.
1407 	 *
1408 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1409 	 * requested real, full-featured networking support upon configuration.
1410 	 * Otherwise module support will break!
1411 	 */
1412 	if (rcu_access_pointer(net_families[family]) == NULL)
1413 		request_module("net-pf-%d", family);
1414 #endif
1415 
1416 	rcu_read_lock();
1417 	pf = rcu_dereference(net_families[family]);
1418 	err = -EAFNOSUPPORT;
1419 	if (!pf)
1420 		goto out_release;
1421 
1422 	/*
1423 	 * We will call the ->create function, that possibly is in a loadable
1424 	 * module, so we have to bump that loadable module refcnt first.
1425 	 */
1426 	if (!try_module_get(pf->owner))
1427 		goto out_release;
1428 
1429 	/* Now protected by module ref count */
1430 	rcu_read_unlock();
1431 
1432 	err = pf->create(net, sock, protocol, kern);
1433 	if (err < 0)
1434 		goto out_module_put;
1435 
1436 	/*
1437 	 * Now to bump the refcnt of the [loadable] module that owns this
1438 	 * socket at sock_release time we decrement its refcnt.
1439 	 */
1440 	if (!try_module_get(sock->ops->owner))
1441 		goto out_module_busy;
1442 
1443 	/*
1444 	 * Now that we're done with the ->create function, the [loadable]
1445 	 * module can have its refcnt decremented
1446 	 */
1447 	module_put(pf->owner);
1448 	err = security_socket_post_create(sock, family, type, protocol, kern);
1449 	if (err)
1450 		goto out_sock_release;
1451 	*res = sock;
1452 
1453 	return 0;
1454 
1455 out_module_busy:
1456 	err = -EAFNOSUPPORT;
1457 out_module_put:
1458 	sock->ops = NULL;
1459 	module_put(pf->owner);
1460 out_sock_release:
1461 	sock_release(sock);
1462 	return err;
1463 
1464 out_release:
1465 	rcu_read_unlock();
1466 	goto out_sock_release;
1467 }
1468 EXPORT_SYMBOL(__sock_create);
1469 
1470 /**
1471  *	sock_create - creates a socket
1472  *	@family: protocol family (AF_INET, ...)
1473  *	@type: communication type (SOCK_STREAM, ...)
1474  *	@protocol: protocol (0, ...)
1475  *	@res: new socket
1476  *
1477  *	A wrapper around __sock_create().
1478  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1479  */
1480 
1481 int sock_create(int family, int type, int protocol, struct socket **res)
1482 {
1483 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1484 }
1485 EXPORT_SYMBOL(sock_create);
1486 
1487 /**
1488  *	sock_create_kern - creates a socket (kernel space)
1489  *	@net: net namespace
1490  *	@family: protocol family (AF_INET, ...)
1491  *	@type: communication type (SOCK_STREAM, ...)
1492  *	@protocol: protocol (0, ...)
1493  *	@res: new socket
1494  *
1495  *	A wrapper around __sock_create().
1496  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1497  */
1498 
1499 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1500 {
1501 	return __sock_create(net, family, type, protocol, res, 1);
1502 }
1503 EXPORT_SYMBOL(sock_create_kern);
1504 
1505 int __sys_socket(int family, int type, int protocol)
1506 {
1507 	int retval;
1508 	struct socket *sock;
1509 	int flags;
1510 
1511 	/* Check the SOCK_* constants for consistency.  */
1512 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1513 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1514 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1515 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1516 
1517 	flags = type & ~SOCK_TYPE_MASK;
1518 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1519 		return -EINVAL;
1520 	type &= SOCK_TYPE_MASK;
1521 
1522 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1523 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1524 
1525 	retval = sock_create(family, type, protocol, &sock);
1526 	if (retval < 0)
1527 		return retval;
1528 
1529 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1530 }
1531 
1532 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1533 {
1534 	return __sys_socket(family, type, protocol);
1535 }
1536 
1537 /*
1538  *	Create a pair of connected sockets.
1539  */
1540 
1541 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1542 {
1543 	struct socket *sock1, *sock2;
1544 	int fd1, fd2, err;
1545 	struct file *newfile1, *newfile2;
1546 	int flags;
1547 
1548 	flags = type & ~SOCK_TYPE_MASK;
1549 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1550 		return -EINVAL;
1551 	type &= SOCK_TYPE_MASK;
1552 
1553 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1554 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1555 
1556 	/*
1557 	 * reserve descriptors and make sure we won't fail
1558 	 * to return them to userland.
1559 	 */
1560 	fd1 = get_unused_fd_flags(flags);
1561 	if (unlikely(fd1 < 0))
1562 		return fd1;
1563 
1564 	fd2 = get_unused_fd_flags(flags);
1565 	if (unlikely(fd2 < 0)) {
1566 		put_unused_fd(fd1);
1567 		return fd2;
1568 	}
1569 
1570 	err = put_user(fd1, &usockvec[0]);
1571 	if (err)
1572 		goto out;
1573 
1574 	err = put_user(fd2, &usockvec[1]);
1575 	if (err)
1576 		goto out;
1577 
1578 	/*
1579 	 * Obtain the first socket and check if the underlying protocol
1580 	 * supports the socketpair call.
1581 	 */
1582 
1583 	err = sock_create(family, type, protocol, &sock1);
1584 	if (unlikely(err < 0))
1585 		goto out;
1586 
1587 	err = sock_create(family, type, protocol, &sock2);
1588 	if (unlikely(err < 0)) {
1589 		sock_release(sock1);
1590 		goto out;
1591 	}
1592 
1593 	err = security_socket_socketpair(sock1, sock2);
1594 	if (unlikely(err)) {
1595 		sock_release(sock2);
1596 		sock_release(sock1);
1597 		goto out;
1598 	}
1599 
1600 	err = sock1->ops->socketpair(sock1, sock2);
1601 	if (unlikely(err < 0)) {
1602 		sock_release(sock2);
1603 		sock_release(sock1);
1604 		goto out;
1605 	}
1606 
1607 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1608 	if (IS_ERR(newfile1)) {
1609 		err = PTR_ERR(newfile1);
1610 		sock_release(sock2);
1611 		goto out;
1612 	}
1613 
1614 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1615 	if (IS_ERR(newfile2)) {
1616 		err = PTR_ERR(newfile2);
1617 		fput(newfile1);
1618 		goto out;
1619 	}
1620 
1621 	audit_fd_pair(fd1, fd2);
1622 
1623 	fd_install(fd1, newfile1);
1624 	fd_install(fd2, newfile2);
1625 	return 0;
1626 
1627 out:
1628 	put_unused_fd(fd2);
1629 	put_unused_fd(fd1);
1630 	return err;
1631 }
1632 
1633 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1634 		int __user *, usockvec)
1635 {
1636 	return __sys_socketpair(family, type, protocol, usockvec);
1637 }
1638 
1639 /*
1640  *	Bind a name to a socket. Nothing much to do here since it's
1641  *	the protocol's responsibility to handle the local address.
1642  *
1643  *	We move the socket address to kernel space before we call
1644  *	the protocol layer (having also checked the address is ok).
1645  */
1646 
1647 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1648 {
1649 	struct socket *sock;
1650 	struct sockaddr_storage address;
1651 	int err, fput_needed;
1652 
1653 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654 	if (sock) {
1655 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1656 		if (!err) {
1657 			err = security_socket_bind(sock,
1658 						   (struct sockaddr *)&address,
1659 						   addrlen);
1660 			if (!err)
1661 				err = sock->ops->bind(sock,
1662 						      (struct sockaddr *)
1663 						      &address, addrlen);
1664 		}
1665 		fput_light(sock->file, fput_needed);
1666 	}
1667 	return err;
1668 }
1669 
1670 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1671 {
1672 	return __sys_bind(fd, umyaddr, addrlen);
1673 }
1674 
1675 /*
1676  *	Perform a listen. Basically, we allow the protocol to do anything
1677  *	necessary for a listen, and if that works, we mark the socket as
1678  *	ready for listening.
1679  */
1680 
1681 int __sys_listen(int fd, int backlog)
1682 {
1683 	struct socket *sock;
1684 	int err, fput_needed;
1685 	int somaxconn;
1686 
1687 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1688 	if (sock) {
1689 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1690 		if ((unsigned int)backlog > somaxconn)
1691 			backlog = somaxconn;
1692 
1693 		err = security_socket_listen(sock, backlog);
1694 		if (!err)
1695 			err = sock->ops->listen(sock, backlog);
1696 
1697 		fput_light(sock->file, fput_needed);
1698 	}
1699 	return err;
1700 }
1701 
1702 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1703 {
1704 	return __sys_listen(fd, backlog);
1705 }
1706 
1707 int __sys_accept4_file(struct file *file, unsigned file_flags,
1708 		       struct sockaddr __user *upeer_sockaddr,
1709 		       int __user *upeer_addrlen, int flags)
1710 {
1711 	struct socket *sock, *newsock;
1712 	struct file *newfile;
1713 	int err, len, newfd;
1714 	struct sockaddr_storage address;
1715 
1716 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1717 		return -EINVAL;
1718 
1719 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1720 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1721 
1722 	sock = sock_from_file(file, &err);
1723 	if (!sock)
1724 		goto out;
1725 
1726 	err = -ENFILE;
1727 	newsock = sock_alloc();
1728 	if (!newsock)
1729 		goto out;
1730 
1731 	newsock->type = sock->type;
1732 	newsock->ops = sock->ops;
1733 
1734 	/*
1735 	 * We don't need try_module_get here, as the listening socket (sock)
1736 	 * has the protocol module (sock->ops->owner) held.
1737 	 */
1738 	__module_get(newsock->ops->owner);
1739 
1740 	newfd = get_unused_fd_flags(flags);
1741 	if (unlikely(newfd < 0)) {
1742 		err = newfd;
1743 		sock_release(newsock);
1744 		goto out;
1745 	}
1746 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1747 	if (IS_ERR(newfile)) {
1748 		err = PTR_ERR(newfile);
1749 		put_unused_fd(newfd);
1750 		goto out;
1751 	}
1752 
1753 	err = security_socket_accept(sock, newsock);
1754 	if (err)
1755 		goto out_fd;
1756 
1757 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1758 					false);
1759 	if (err < 0)
1760 		goto out_fd;
1761 
1762 	if (upeer_sockaddr) {
1763 		len = newsock->ops->getname(newsock,
1764 					(struct sockaddr *)&address, 2);
1765 		if (len < 0) {
1766 			err = -ECONNABORTED;
1767 			goto out_fd;
1768 		}
1769 		err = move_addr_to_user(&address,
1770 					len, upeer_sockaddr, upeer_addrlen);
1771 		if (err < 0)
1772 			goto out_fd;
1773 	}
1774 
1775 	/* File flags are not inherited via accept() unlike another OSes. */
1776 
1777 	fd_install(newfd, newfile);
1778 	err = newfd;
1779 out:
1780 	return err;
1781 out_fd:
1782 	fput(newfile);
1783 	put_unused_fd(newfd);
1784 	goto out;
1785 
1786 }
1787 
1788 /*
1789  *	For accept, we attempt to create a new socket, set up the link
1790  *	with the client, wake up the client, then return the new
1791  *	connected fd. We collect the address of the connector in kernel
1792  *	space and move it to user at the very end. This is unclean because
1793  *	we open the socket then return an error.
1794  *
1795  *	1003.1g adds the ability to recvmsg() to query connection pending
1796  *	status to recvmsg. We need to add that support in a way thats
1797  *	clean when we restructure accept also.
1798  */
1799 
1800 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1801 		  int __user *upeer_addrlen, int flags)
1802 {
1803 	int ret = -EBADF;
1804 	struct fd f;
1805 
1806 	f = fdget(fd);
1807 	if (f.file) {
1808 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1809 						upeer_addrlen, flags);
1810 		if (f.flags)
1811 			fput(f.file);
1812 	}
1813 
1814 	return ret;
1815 }
1816 
1817 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1818 		int __user *, upeer_addrlen, int, flags)
1819 {
1820 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1821 }
1822 
1823 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1824 		int __user *, upeer_addrlen)
1825 {
1826 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1827 }
1828 
1829 /*
1830  *	Attempt to connect to a socket with the server address.  The address
1831  *	is in user space so we verify it is OK and move it to kernel space.
1832  *
1833  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1834  *	break bindings
1835  *
1836  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1837  *	other SEQPACKET protocols that take time to connect() as it doesn't
1838  *	include the -EINPROGRESS status for such sockets.
1839  */
1840 
1841 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1842 		       int addrlen, int file_flags)
1843 {
1844 	struct socket *sock;
1845 	int err;
1846 
1847 	sock = sock_from_file(file, &err);
1848 	if (!sock)
1849 		goto out;
1850 
1851 	err =
1852 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1853 	if (err)
1854 		goto out;
1855 
1856 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1857 				 sock->file->f_flags | file_flags);
1858 out:
1859 	return err;
1860 }
1861 
1862 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1863 {
1864 	int ret = -EBADF;
1865 	struct fd f;
1866 
1867 	f = fdget(fd);
1868 	if (f.file) {
1869 		struct sockaddr_storage address;
1870 
1871 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1872 		if (!ret)
1873 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1874 		if (f.flags)
1875 			fput(f.file);
1876 	}
1877 
1878 	return ret;
1879 }
1880 
1881 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1882 		int, addrlen)
1883 {
1884 	return __sys_connect(fd, uservaddr, addrlen);
1885 }
1886 
1887 /*
1888  *	Get the local address ('name') of a socket object. Move the obtained
1889  *	name to user space.
1890  */
1891 
1892 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1893 		      int __user *usockaddr_len)
1894 {
1895 	struct socket *sock;
1896 	struct sockaddr_storage address;
1897 	int err, fput_needed;
1898 
1899 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1900 	if (!sock)
1901 		goto out;
1902 
1903 	err = security_socket_getsockname(sock);
1904 	if (err)
1905 		goto out_put;
1906 
1907 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1908 	if (err < 0)
1909 		goto out_put;
1910         /* "err" is actually length in this case */
1911 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1912 
1913 out_put:
1914 	fput_light(sock->file, fput_needed);
1915 out:
1916 	return err;
1917 }
1918 
1919 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1920 		int __user *, usockaddr_len)
1921 {
1922 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1923 }
1924 
1925 /*
1926  *	Get the remote address ('name') of a socket object. Move the obtained
1927  *	name to user space.
1928  */
1929 
1930 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1931 		      int __user *usockaddr_len)
1932 {
1933 	struct socket *sock;
1934 	struct sockaddr_storage address;
1935 	int err, fput_needed;
1936 
1937 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1938 	if (sock != NULL) {
1939 		err = security_socket_getpeername(sock);
1940 		if (err) {
1941 			fput_light(sock->file, fput_needed);
1942 			return err;
1943 		}
1944 
1945 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1946 		if (err >= 0)
1947 			/* "err" is actually length in this case */
1948 			err = move_addr_to_user(&address, err, usockaddr,
1949 						usockaddr_len);
1950 		fput_light(sock->file, fput_needed);
1951 	}
1952 	return err;
1953 }
1954 
1955 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1956 		int __user *, usockaddr_len)
1957 {
1958 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1959 }
1960 
1961 /*
1962  *	Send a datagram to a given address. We move the address into kernel
1963  *	space and check the user space data area is readable before invoking
1964  *	the protocol.
1965  */
1966 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1967 		 struct sockaddr __user *addr,  int addr_len)
1968 {
1969 	struct socket *sock;
1970 	struct sockaddr_storage address;
1971 	int err;
1972 	struct msghdr msg;
1973 	struct iovec iov;
1974 	int fput_needed;
1975 
1976 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1977 	if (unlikely(err))
1978 		return err;
1979 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1980 	if (!sock)
1981 		goto out;
1982 
1983 	msg.msg_name = NULL;
1984 	msg.msg_control = NULL;
1985 	msg.msg_controllen = 0;
1986 	msg.msg_namelen = 0;
1987 	if (addr) {
1988 		err = move_addr_to_kernel(addr, addr_len, &address);
1989 		if (err < 0)
1990 			goto out_put;
1991 		msg.msg_name = (struct sockaddr *)&address;
1992 		msg.msg_namelen = addr_len;
1993 	}
1994 	if (sock->file->f_flags & O_NONBLOCK)
1995 		flags |= MSG_DONTWAIT;
1996 	msg.msg_flags = flags;
1997 	err = sock_sendmsg(sock, &msg);
1998 
1999 out_put:
2000 	fput_light(sock->file, fput_needed);
2001 out:
2002 	return err;
2003 }
2004 
2005 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2006 		unsigned int, flags, struct sockaddr __user *, addr,
2007 		int, addr_len)
2008 {
2009 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2010 }
2011 
2012 /*
2013  *	Send a datagram down a socket.
2014  */
2015 
2016 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2017 		unsigned int, flags)
2018 {
2019 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2020 }
2021 
2022 /*
2023  *	Receive a frame from the socket and optionally record the address of the
2024  *	sender. We verify the buffers are writable and if needed move the
2025  *	sender address from kernel to user space.
2026  */
2027 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2028 		   struct sockaddr __user *addr, int __user *addr_len)
2029 {
2030 	struct socket *sock;
2031 	struct iovec iov;
2032 	struct msghdr msg;
2033 	struct sockaddr_storage address;
2034 	int err, err2;
2035 	int fput_needed;
2036 
2037 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2038 	if (unlikely(err))
2039 		return err;
2040 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2041 	if (!sock)
2042 		goto out;
2043 
2044 	msg.msg_control = NULL;
2045 	msg.msg_controllen = 0;
2046 	/* Save some cycles and don't copy the address if not needed */
2047 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2048 	/* We assume all kernel code knows the size of sockaddr_storage */
2049 	msg.msg_namelen = 0;
2050 	msg.msg_iocb = NULL;
2051 	msg.msg_flags = 0;
2052 	if (sock->file->f_flags & O_NONBLOCK)
2053 		flags |= MSG_DONTWAIT;
2054 	err = sock_recvmsg(sock, &msg, flags);
2055 
2056 	if (err >= 0 && addr != NULL) {
2057 		err2 = move_addr_to_user(&address,
2058 					 msg.msg_namelen, addr, addr_len);
2059 		if (err2 < 0)
2060 			err = err2;
2061 	}
2062 
2063 	fput_light(sock->file, fput_needed);
2064 out:
2065 	return err;
2066 }
2067 
2068 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2069 		unsigned int, flags, struct sockaddr __user *, addr,
2070 		int __user *, addr_len)
2071 {
2072 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2073 }
2074 
2075 /*
2076  *	Receive a datagram from a socket.
2077  */
2078 
2079 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2080 		unsigned int, flags)
2081 {
2082 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2083 }
2084 
2085 /*
2086  *	Set a socket option. Because we don't know the option lengths we have
2087  *	to pass the user mode parameter for the protocols to sort out.
2088  */
2089 
2090 static int __sys_setsockopt(int fd, int level, int optname,
2091 			    char __user *optval, int optlen)
2092 {
2093 	mm_segment_t oldfs = get_fs();
2094 	char *kernel_optval = NULL;
2095 	int err, fput_needed;
2096 	struct socket *sock;
2097 
2098 	if (optlen < 0)
2099 		return -EINVAL;
2100 
2101 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102 	if (sock != NULL) {
2103 		err = security_socket_setsockopt(sock, level, optname);
2104 		if (err)
2105 			goto out_put;
2106 
2107 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2108 						     &optname, optval, &optlen,
2109 						     &kernel_optval);
2110 
2111 		if (err < 0) {
2112 			goto out_put;
2113 		} else if (err > 0) {
2114 			err = 0;
2115 			goto out_put;
2116 		}
2117 
2118 		if (kernel_optval) {
2119 			set_fs(KERNEL_DS);
2120 			optval = (char __user __force *)kernel_optval;
2121 		}
2122 
2123 		if (level == SOL_SOCKET)
2124 			err =
2125 			    sock_setsockopt(sock, level, optname, optval,
2126 					    optlen);
2127 		else
2128 			err =
2129 			    sock->ops->setsockopt(sock, level, optname, optval,
2130 						  optlen);
2131 
2132 		if (kernel_optval) {
2133 			set_fs(oldfs);
2134 			kfree(kernel_optval);
2135 		}
2136 out_put:
2137 		fput_light(sock->file, fput_needed);
2138 	}
2139 	return err;
2140 }
2141 
2142 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2143 		char __user *, optval, int, optlen)
2144 {
2145 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2146 }
2147 
2148 /*
2149  *	Get a socket option. Because we don't know the option lengths we have
2150  *	to pass a user mode parameter for the protocols to sort out.
2151  */
2152 
2153 static int __sys_getsockopt(int fd, int level, int optname,
2154 			    char __user *optval, int __user *optlen)
2155 {
2156 	int err, fput_needed;
2157 	struct socket *sock;
2158 	int max_optlen;
2159 
2160 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161 	if (sock != NULL) {
2162 		err = security_socket_getsockopt(sock, level, optname);
2163 		if (err)
2164 			goto out_put;
2165 
2166 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2167 
2168 		if (level == SOL_SOCKET)
2169 			err =
2170 			    sock_getsockopt(sock, level, optname, optval,
2171 					    optlen);
2172 		else
2173 			err =
2174 			    sock->ops->getsockopt(sock, level, optname, optval,
2175 						  optlen);
2176 
2177 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2178 						     optval, optlen,
2179 						     max_optlen, err);
2180 out_put:
2181 		fput_light(sock->file, fput_needed);
2182 	}
2183 	return err;
2184 }
2185 
2186 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2187 		char __user *, optval, int __user *, optlen)
2188 {
2189 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2190 }
2191 
2192 /*
2193  *	Shutdown a socket.
2194  */
2195 
2196 int __sys_shutdown(int fd, int how)
2197 {
2198 	int err, fput_needed;
2199 	struct socket *sock;
2200 
2201 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2202 	if (sock != NULL) {
2203 		err = security_socket_shutdown(sock, how);
2204 		if (!err)
2205 			err = sock->ops->shutdown(sock, how);
2206 		fput_light(sock->file, fput_needed);
2207 	}
2208 	return err;
2209 }
2210 
2211 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2212 {
2213 	return __sys_shutdown(fd, how);
2214 }
2215 
2216 /* A couple of helpful macros for getting the address of the 32/64 bit
2217  * fields which are the same type (int / unsigned) on our platforms.
2218  */
2219 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2220 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2221 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2222 
2223 struct used_address {
2224 	struct sockaddr_storage name;
2225 	unsigned int name_len;
2226 };
2227 
2228 static int copy_msghdr_from_user(struct msghdr *kmsg,
2229 				 struct user_msghdr __user *umsg,
2230 				 struct sockaddr __user **save_addr,
2231 				 struct iovec **iov)
2232 {
2233 	struct user_msghdr msg;
2234 	ssize_t err;
2235 
2236 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2237 		return -EFAULT;
2238 
2239 	kmsg->msg_control = (void __force *)msg.msg_control;
2240 	kmsg->msg_controllen = msg.msg_controllen;
2241 	kmsg->msg_flags = msg.msg_flags;
2242 
2243 	kmsg->msg_namelen = msg.msg_namelen;
2244 	if (!msg.msg_name)
2245 		kmsg->msg_namelen = 0;
2246 
2247 	if (kmsg->msg_namelen < 0)
2248 		return -EINVAL;
2249 
2250 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2251 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2252 
2253 	if (save_addr)
2254 		*save_addr = msg.msg_name;
2255 
2256 	if (msg.msg_name && kmsg->msg_namelen) {
2257 		if (!save_addr) {
2258 			err = move_addr_to_kernel(msg.msg_name,
2259 						  kmsg->msg_namelen,
2260 						  kmsg->msg_name);
2261 			if (err < 0)
2262 				return err;
2263 		}
2264 	} else {
2265 		kmsg->msg_name = NULL;
2266 		kmsg->msg_namelen = 0;
2267 	}
2268 
2269 	if (msg.msg_iovlen > UIO_MAXIOV)
2270 		return -EMSGSIZE;
2271 
2272 	kmsg->msg_iocb = NULL;
2273 
2274 	err = import_iovec(save_addr ? READ : WRITE,
2275 			    msg.msg_iov, msg.msg_iovlen,
2276 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2277 	return err < 0 ? err : 0;
2278 }
2279 
2280 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2281 			   unsigned int flags, struct used_address *used_address,
2282 			   unsigned int allowed_msghdr_flags)
2283 {
2284 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2285 				__aligned(sizeof(__kernel_size_t));
2286 	/* 20 is size of ipv6_pktinfo */
2287 	unsigned char *ctl_buf = ctl;
2288 	int ctl_len;
2289 	ssize_t err;
2290 
2291 	err = -ENOBUFS;
2292 
2293 	if (msg_sys->msg_controllen > INT_MAX)
2294 		goto out;
2295 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2296 	ctl_len = msg_sys->msg_controllen;
2297 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2298 		err =
2299 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2300 						     sizeof(ctl));
2301 		if (err)
2302 			goto out;
2303 		ctl_buf = msg_sys->msg_control;
2304 		ctl_len = msg_sys->msg_controllen;
2305 	} else if (ctl_len) {
2306 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2307 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2308 		if (ctl_len > sizeof(ctl)) {
2309 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2310 			if (ctl_buf == NULL)
2311 				goto out;
2312 		}
2313 		err = -EFAULT;
2314 		/*
2315 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2316 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2317 		 * checking falls down on this.
2318 		 */
2319 		if (copy_from_user(ctl_buf,
2320 				   (void __user __force *)msg_sys->msg_control,
2321 				   ctl_len))
2322 			goto out_freectl;
2323 		msg_sys->msg_control = ctl_buf;
2324 	}
2325 	msg_sys->msg_flags = flags;
2326 
2327 	if (sock->file->f_flags & O_NONBLOCK)
2328 		msg_sys->msg_flags |= MSG_DONTWAIT;
2329 	/*
2330 	 * If this is sendmmsg() and current destination address is same as
2331 	 * previously succeeded address, omit asking LSM's decision.
2332 	 * used_address->name_len is initialized to UINT_MAX so that the first
2333 	 * destination address never matches.
2334 	 */
2335 	if (used_address && msg_sys->msg_name &&
2336 	    used_address->name_len == msg_sys->msg_namelen &&
2337 	    !memcmp(&used_address->name, msg_sys->msg_name,
2338 		    used_address->name_len)) {
2339 		err = sock_sendmsg_nosec(sock, msg_sys);
2340 		goto out_freectl;
2341 	}
2342 	err = sock_sendmsg(sock, msg_sys);
2343 	/*
2344 	 * If this is sendmmsg() and sending to current destination address was
2345 	 * successful, remember it.
2346 	 */
2347 	if (used_address && err >= 0) {
2348 		used_address->name_len = msg_sys->msg_namelen;
2349 		if (msg_sys->msg_name)
2350 			memcpy(&used_address->name, msg_sys->msg_name,
2351 			       used_address->name_len);
2352 	}
2353 
2354 out_freectl:
2355 	if (ctl_buf != ctl)
2356 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2357 out:
2358 	return err;
2359 }
2360 
2361 int sendmsg_copy_msghdr(struct msghdr *msg,
2362 			struct user_msghdr __user *umsg, unsigned flags,
2363 			struct iovec **iov)
2364 {
2365 	int err;
2366 
2367 	if (flags & MSG_CMSG_COMPAT) {
2368 		struct compat_msghdr __user *msg_compat;
2369 
2370 		msg_compat = (struct compat_msghdr __user *) umsg;
2371 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2372 	} else {
2373 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2374 	}
2375 	if (err < 0)
2376 		return err;
2377 
2378 	return 0;
2379 }
2380 
2381 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2382 			 struct msghdr *msg_sys, unsigned int flags,
2383 			 struct used_address *used_address,
2384 			 unsigned int allowed_msghdr_flags)
2385 {
2386 	struct sockaddr_storage address;
2387 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2388 	ssize_t err;
2389 
2390 	msg_sys->msg_name = &address;
2391 
2392 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2393 	if (err < 0)
2394 		return err;
2395 
2396 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2397 				allowed_msghdr_flags);
2398 	kfree(iov);
2399 	return err;
2400 }
2401 
2402 /*
2403  *	BSD sendmsg interface
2404  */
2405 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2406 			unsigned int flags)
2407 {
2408 	/* disallow ancillary data requests from this path */
2409 	if (msg->msg_control || msg->msg_controllen)
2410 		return -EINVAL;
2411 
2412 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2413 }
2414 
2415 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2416 		   bool forbid_cmsg_compat)
2417 {
2418 	int fput_needed, err;
2419 	struct msghdr msg_sys;
2420 	struct socket *sock;
2421 
2422 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2423 		return -EINVAL;
2424 
2425 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2426 	if (!sock)
2427 		goto out;
2428 
2429 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2430 
2431 	fput_light(sock->file, fput_needed);
2432 out:
2433 	return err;
2434 }
2435 
2436 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2437 {
2438 	return __sys_sendmsg(fd, msg, flags, true);
2439 }
2440 
2441 /*
2442  *	Linux sendmmsg interface
2443  */
2444 
2445 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2446 		   unsigned int flags, bool forbid_cmsg_compat)
2447 {
2448 	int fput_needed, err, datagrams;
2449 	struct socket *sock;
2450 	struct mmsghdr __user *entry;
2451 	struct compat_mmsghdr __user *compat_entry;
2452 	struct msghdr msg_sys;
2453 	struct used_address used_address;
2454 	unsigned int oflags = flags;
2455 
2456 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2457 		return -EINVAL;
2458 
2459 	if (vlen > UIO_MAXIOV)
2460 		vlen = UIO_MAXIOV;
2461 
2462 	datagrams = 0;
2463 
2464 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2465 	if (!sock)
2466 		return err;
2467 
2468 	used_address.name_len = UINT_MAX;
2469 	entry = mmsg;
2470 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2471 	err = 0;
2472 	flags |= MSG_BATCH;
2473 
2474 	while (datagrams < vlen) {
2475 		if (datagrams == vlen - 1)
2476 			flags = oflags;
2477 
2478 		if (MSG_CMSG_COMPAT & flags) {
2479 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2480 					     &msg_sys, flags, &used_address, MSG_EOR);
2481 			if (err < 0)
2482 				break;
2483 			err = __put_user(err, &compat_entry->msg_len);
2484 			++compat_entry;
2485 		} else {
2486 			err = ___sys_sendmsg(sock,
2487 					     (struct user_msghdr __user *)entry,
2488 					     &msg_sys, flags, &used_address, MSG_EOR);
2489 			if (err < 0)
2490 				break;
2491 			err = put_user(err, &entry->msg_len);
2492 			++entry;
2493 		}
2494 
2495 		if (err)
2496 			break;
2497 		++datagrams;
2498 		if (msg_data_left(&msg_sys))
2499 			break;
2500 		cond_resched();
2501 	}
2502 
2503 	fput_light(sock->file, fput_needed);
2504 
2505 	/* We only return an error if no datagrams were able to be sent */
2506 	if (datagrams != 0)
2507 		return datagrams;
2508 
2509 	return err;
2510 }
2511 
2512 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2513 		unsigned int, vlen, unsigned int, flags)
2514 {
2515 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2516 }
2517 
2518 int recvmsg_copy_msghdr(struct msghdr *msg,
2519 			struct user_msghdr __user *umsg, unsigned flags,
2520 			struct sockaddr __user **uaddr,
2521 			struct iovec **iov)
2522 {
2523 	ssize_t err;
2524 
2525 	if (MSG_CMSG_COMPAT & flags) {
2526 		struct compat_msghdr __user *msg_compat;
2527 
2528 		msg_compat = (struct compat_msghdr __user *) umsg;
2529 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2530 	} else {
2531 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2532 	}
2533 	if (err < 0)
2534 		return err;
2535 
2536 	return 0;
2537 }
2538 
2539 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2540 			   struct user_msghdr __user *msg,
2541 			   struct sockaddr __user *uaddr,
2542 			   unsigned int flags, int nosec)
2543 {
2544 	struct compat_msghdr __user *msg_compat =
2545 					(struct compat_msghdr __user *) msg;
2546 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2547 	struct sockaddr_storage addr;
2548 	unsigned long cmsg_ptr;
2549 	int len;
2550 	ssize_t err;
2551 
2552 	msg_sys->msg_name = &addr;
2553 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2554 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2555 
2556 	/* We assume all kernel code knows the size of sockaddr_storage */
2557 	msg_sys->msg_namelen = 0;
2558 
2559 	if (sock->file->f_flags & O_NONBLOCK)
2560 		flags |= MSG_DONTWAIT;
2561 
2562 	if (unlikely(nosec))
2563 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2564 	else
2565 		err = sock_recvmsg(sock, msg_sys, flags);
2566 
2567 	if (err < 0)
2568 		goto out;
2569 	len = err;
2570 
2571 	if (uaddr != NULL) {
2572 		err = move_addr_to_user(&addr,
2573 					msg_sys->msg_namelen, uaddr,
2574 					uaddr_len);
2575 		if (err < 0)
2576 			goto out;
2577 	}
2578 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2579 			 COMPAT_FLAGS(msg));
2580 	if (err)
2581 		goto out;
2582 	if (MSG_CMSG_COMPAT & flags)
2583 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2584 				 &msg_compat->msg_controllen);
2585 	else
2586 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2587 				 &msg->msg_controllen);
2588 	if (err)
2589 		goto out;
2590 	err = len;
2591 out:
2592 	return err;
2593 }
2594 
2595 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2596 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2597 {
2598 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2599 	/* user mode address pointers */
2600 	struct sockaddr __user *uaddr;
2601 	ssize_t err;
2602 
2603 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2604 	if (err < 0)
2605 		return err;
2606 
2607 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2608 	kfree(iov);
2609 	return err;
2610 }
2611 
2612 /*
2613  *	BSD recvmsg interface
2614  */
2615 
2616 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2617 			struct user_msghdr __user *umsg,
2618 			struct sockaddr __user *uaddr, unsigned int flags)
2619 {
2620 	/* disallow ancillary data requests from this path */
2621 	if (msg->msg_control || msg->msg_controllen)
2622 		return -EINVAL;
2623 
2624 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2625 }
2626 
2627 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2628 		   bool forbid_cmsg_compat)
2629 {
2630 	int fput_needed, err;
2631 	struct msghdr msg_sys;
2632 	struct socket *sock;
2633 
2634 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2635 		return -EINVAL;
2636 
2637 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2638 	if (!sock)
2639 		goto out;
2640 
2641 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2642 
2643 	fput_light(sock->file, fput_needed);
2644 out:
2645 	return err;
2646 }
2647 
2648 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2649 		unsigned int, flags)
2650 {
2651 	return __sys_recvmsg(fd, msg, flags, true);
2652 }
2653 
2654 /*
2655  *     Linux recvmmsg interface
2656  */
2657 
2658 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2659 			  unsigned int vlen, unsigned int flags,
2660 			  struct timespec64 *timeout)
2661 {
2662 	int fput_needed, err, datagrams;
2663 	struct socket *sock;
2664 	struct mmsghdr __user *entry;
2665 	struct compat_mmsghdr __user *compat_entry;
2666 	struct msghdr msg_sys;
2667 	struct timespec64 end_time;
2668 	struct timespec64 timeout64;
2669 
2670 	if (timeout &&
2671 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2672 				    timeout->tv_nsec))
2673 		return -EINVAL;
2674 
2675 	datagrams = 0;
2676 
2677 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2678 	if (!sock)
2679 		return err;
2680 
2681 	if (likely(!(flags & MSG_ERRQUEUE))) {
2682 		err = sock_error(sock->sk);
2683 		if (err) {
2684 			datagrams = err;
2685 			goto out_put;
2686 		}
2687 	}
2688 
2689 	entry = mmsg;
2690 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2691 
2692 	while (datagrams < vlen) {
2693 		/*
2694 		 * No need to ask LSM for more than the first datagram.
2695 		 */
2696 		if (MSG_CMSG_COMPAT & flags) {
2697 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2698 					     &msg_sys, flags & ~MSG_WAITFORONE,
2699 					     datagrams);
2700 			if (err < 0)
2701 				break;
2702 			err = __put_user(err, &compat_entry->msg_len);
2703 			++compat_entry;
2704 		} else {
2705 			err = ___sys_recvmsg(sock,
2706 					     (struct user_msghdr __user *)entry,
2707 					     &msg_sys, flags & ~MSG_WAITFORONE,
2708 					     datagrams);
2709 			if (err < 0)
2710 				break;
2711 			err = put_user(err, &entry->msg_len);
2712 			++entry;
2713 		}
2714 
2715 		if (err)
2716 			break;
2717 		++datagrams;
2718 
2719 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2720 		if (flags & MSG_WAITFORONE)
2721 			flags |= MSG_DONTWAIT;
2722 
2723 		if (timeout) {
2724 			ktime_get_ts64(&timeout64);
2725 			*timeout = timespec64_sub(end_time, timeout64);
2726 			if (timeout->tv_sec < 0) {
2727 				timeout->tv_sec = timeout->tv_nsec = 0;
2728 				break;
2729 			}
2730 
2731 			/* Timeout, return less than vlen datagrams */
2732 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2733 				break;
2734 		}
2735 
2736 		/* Out of band data, return right away */
2737 		if (msg_sys.msg_flags & MSG_OOB)
2738 			break;
2739 		cond_resched();
2740 	}
2741 
2742 	if (err == 0)
2743 		goto out_put;
2744 
2745 	if (datagrams == 0) {
2746 		datagrams = err;
2747 		goto out_put;
2748 	}
2749 
2750 	/*
2751 	 * We may return less entries than requested (vlen) if the
2752 	 * sock is non block and there aren't enough datagrams...
2753 	 */
2754 	if (err != -EAGAIN) {
2755 		/*
2756 		 * ... or  if recvmsg returns an error after we
2757 		 * received some datagrams, where we record the
2758 		 * error to return on the next call or if the
2759 		 * app asks about it using getsockopt(SO_ERROR).
2760 		 */
2761 		sock->sk->sk_err = -err;
2762 	}
2763 out_put:
2764 	fput_light(sock->file, fput_needed);
2765 
2766 	return datagrams;
2767 }
2768 
2769 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2770 		   unsigned int vlen, unsigned int flags,
2771 		   struct __kernel_timespec __user *timeout,
2772 		   struct old_timespec32 __user *timeout32)
2773 {
2774 	int datagrams;
2775 	struct timespec64 timeout_sys;
2776 
2777 	if (timeout && get_timespec64(&timeout_sys, timeout))
2778 		return -EFAULT;
2779 
2780 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2781 		return -EFAULT;
2782 
2783 	if (!timeout && !timeout32)
2784 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2785 
2786 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2787 
2788 	if (datagrams <= 0)
2789 		return datagrams;
2790 
2791 	if (timeout && put_timespec64(&timeout_sys, timeout))
2792 		datagrams = -EFAULT;
2793 
2794 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2795 		datagrams = -EFAULT;
2796 
2797 	return datagrams;
2798 }
2799 
2800 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2801 		unsigned int, vlen, unsigned int, flags,
2802 		struct __kernel_timespec __user *, timeout)
2803 {
2804 	if (flags & MSG_CMSG_COMPAT)
2805 		return -EINVAL;
2806 
2807 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2808 }
2809 
2810 #ifdef CONFIG_COMPAT_32BIT_TIME
2811 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2812 		unsigned int, vlen, unsigned int, flags,
2813 		struct old_timespec32 __user *, timeout)
2814 {
2815 	if (flags & MSG_CMSG_COMPAT)
2816 		return -EINVAL;
2817 
2818 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2819 }
2820 #endif
2821 
2822 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2823 /* Argument list sizes for sys_socketcall */
2824 #define AL(x) ((x) * sizeof(unsigned long))
2825 static const unsigned char nargs[21] = {
2826 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2827 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2828 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2829 	AL(4), AL(5), AL(4)
2830 };
2831 
2832 #undef AL
2833 
2834 /*
2835  *	System call vectors.
2836  *
2837  *	Argument checking cleaned up. Saved 20% in size.
2838  *  This function doesn't need to set the kernel lock because
2839  *  it is set by the callees.
2840  */
2841 
2842 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2843 {
2844 	unsigned long a[AUDITSC_ARGS];
2845 	unsigned long a0, a1;
2846 	int err;
2847 	unsigned int len;
2848 
2849 	if (call < 1 || call > SYS_SENDMMSG)
2850 		return -EINVAL;
2851 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2852 
2853 	len = nargs[call];
2854 	if (len > sizeof(a))
2855 		return -EINVAL;
2856 
2857 	/* copy_from_user should be SMP safe. */
2858 	if (copy_from_user(a, args, len))
2859 		return -EFAULT;
2860 
2861 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2862 	if (err)
2863 		return err;
2864 
2865 	a0 = a[0];
2866 	a1 = a[1];
2867 
2868 	switch (call) {
2869 	case SYS_SOCKET:
2870 		err = __sys_socket(a0, a1, a[2]);
2871 		break;
2872 	case SYS_BIND:
2873 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2874 		break;
2875 	case SYS_CONNECT:
2876 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2877 		break;
2878 	case SYS_LISTEN:
2879 		err = __sys_listen(a0, a1);
2880 		break;
2881 	case SYS_ACCEPT:
2882 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2883 				    (int __user *)a[2], 0);
2884 		break;
2885 	case SYS_GETSOCKNAME:
2886 		err =
2887 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2888 				      (int __user *)a[2]);
2889 		break;
2890 	case SYS_GETPEERNAME:
2891 		err =
2892 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2893 				      (int __user *)a[2]);
2894 		break;
2895 	case SYS_SOCKETPAIR:
2896 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2897 		break;
2898 	case SYS_SEND:
2899 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2900 				   NULL, 0);
2901 		break;
2902 	case SYS_SENDTO:
2903 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2904 				   (struct sockaddr __user *)a[4], a[5]);
2905 		break;
2906 	case SYS_RECV:
2907 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2908 				     NULL, NULL);
2909 		break;
2910 	case SYS_RECVFROM:
2911 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2912 				     (struct sockaddr __user *)a[4],
2913 				     (int __user *)a[5]);
2914 		break;
2915 	case SYS_SHUTDOWN:
2916 		err = __sys_shutdown(a0, a1);
2917 		break;
2918 	case SYS_SETSOCKOPT:
2919 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2920 				       a[4]);
2921 		break;
2922 	case SYS_GETSOCKOPT:
2923 		err =
2924 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2925 				     (int __user *)a[4]);
2926 		break;
2927 	case SYS_SENDMSG:
2928 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2929 				    a[2], true);
2930 		break;
2931 	case SYS_SENDMMSG:
2932 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2933 				     a[3], true);
2934 		break;
2935 	case SYS_RECVMSG:
2936 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2937 				    a[2], true);
2938 		break;
2939 	case SYS_RECVMMSG:
2940 		if (IS_ENABLED(CONFIG_64BIT))
2941 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2942 					     a[2], a[3],
2943 					     (struct __kernel_timespec __user *)a[4],
2944 					     NULL);
2945 		else
2946 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2947 					     a[2], a[3], NULL,
2948 					     (struct old_timespec32 __user *)a[4]);
2949 		break;
2950 	case SYS_ACCEPT4:
2951 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2952 				    (int __user *)a[2], a[3]);
2953 		break;
2954 	default:
2955 		err = -EINVAL;
2956 		break;
2957 	}
2958 	return err;
2959 }
2960 
2961 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2962 
2963 /**
2964  *	sock_register - add a socket protocol handler
2965  *	@ops: description of protocol
2966  *
2967  *	This function is called by a protocol handler that wants to
2968  *	advertise its address family, and have it linked into the
2969  *	socket interface. The value ops->family corresponds to the
2970  *	socket system call protocol family.
2971  */
2972 int sock_register(const struct net_proto_family *ops)
2973 {
2974 	int err;
2975 
2976 	if (ops->family >= NPROTO) {
2977 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2978 		return -ENOBUFS;
2979 	}
2980 
2981 	spin_lock(&net_family_lock);
2982 	if (rcu_dereference_protected(net_families[ops->family],
2983 				      lockdep_is_held(&net_family_lock)))
2984 		err = -EEXIST;
2985 	else {
2986 		rcu_assign_pointer(net_families[ops->family], ops);
2987 		err = 0;
2988 	}
2989 	spin_unlock(&net_family_lock);
2990 
2991 	pr_info("NET: Registered protocol family %d\n", ops->family);
2992 	return err;
2993 }
2994 EXPORT_SYMBOL(sock_register);
2995 
2996 /**
2997  *	sock_unregister - remove a protocol handler
2998  *	@family: protocol family to remove
2999  *
3000  *	This function is called by a protocol handler that wants to
3001  *	remove its address family, and have it unlinked from the
3002  *	new socket creation.
3003  *
3004  *	If protocol handler is a module, then it can use module reference
3005  *	counts to protect against new references. If protocol handler is not
3006  *	a module then it needs to provide its own protection in
3007  *	the ops->create routine.
3008  */
3009 void sock_unregister(int family)
3010 {
3011 	BUG_ON(family < 0 || family >= NPROTO);
3012 
3013 	spin_lock(&net_family_lock);
3014 	RCU_INIT_POINTER(net_families[family], NULL);
3015 	spin_unlock(&net_family_lock);
3016 
3017 	synchronize_rcu();
3018 
3019 	pr_info("NET: Unregistered protocol family %d\n", family);
3020 }
3021 EXPORT_SYMBOL(sock_unregister);
3022 
3023 bool sock_is_registered(int family)
3024 {
3025 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3026 }
3027 
3028 static int __init sock_init(void)
3029 {
3030 	int err;
3031 	/*
3032 	 *      Initialize the network sysctl infrastructure.
3033 	 */
3034 	err = net_sysctl_init();
3035 	if (err)
3036 		goto out;
3037 
3038 	/*
3039 	 *      Initialize skbuff SLAB cache
3040 	 */
3041 	skb_init();
3042 
3043 	/*
3044 	 *      Initialize the protocols module.
3045 	 */
3046 
3047 	init_inodecache();
3048 
3049 	err = register_filesystem(&sock_fs_type);
3050 	if (err)
3051 		goto out_fs;
3052 	sock_mnt = kern_mount(&sock_fs_type);
3053 	if (IS_ERR(sock_mnt)) {
3054 		err = PTR_ERR(sock_mnt);
3055 		goto out_mount;
3056 	}
3057 
3058 	/* The real protocol initialization is performed in later initcalls.
3059 	 */
3060 
3061 #ifdef CONFIG_NETFILTER
3062 	err = netfilter_init();
3063 	if (err)
3064 		goto out;
3065 #endif
3066 
3067 	ptp_classifier_init();
3068 
3069 out:
3070 	return err;
3071 
3072 out_mount:
3073 	unregister_filesystem(&sock_fs_type);
3074 out_fs:
3075 	goto out;
3076 }
3077 
3078 core_initcall(sock_init);	/* early initcall */
3079 
3080 #ifdef CONFIG_PROC_FS
3081 void socket_seq_show(struct seq_file *seq)
3082 {
3083 	seq_printf(seq, "sockets: used %d\n",
3084 		   sock_inuse_get(seq->private));
3085 }
3086 #endif				/* CONFIG_PROC_FS */
3087 
3088 #ifdef CONFIG_COMPAT
3089 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3090 {
3091 	struct compat_ifconf ifc32;
3092 	struct ifconf ifc;
3093 	int err;
3094 
3095 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3096 		return -EFAULT;
3097 
3098 	ifc.ifc_len = ifc32.ifc_len;
3099 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3100 
3101 	rtnl_lock();
3102 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3103 	rtnl_unlock();
3104 	if (err)
3105 		return err;
3106 
3107 	ifc32.ifc_len = ifc.ifc_len;
3108 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3109 		return -EFAULT;
3110 
3111 	return 0;
3112 }
3113 
3114 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3115 {
3116 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3117 	bool convert_in = false, convert_out = false;
3118 	size_t buf_size = 0;
3119 	struct ethtool_rxnfc __user *rxnfc = NULL;
3120 	struct ifreq ifr;
3121 	u32 rule_cnt = 0, actual_rule_cnt;
3122 	u32 ethcmd;
3123 	u32 data;
3124 	int ret;
3125 
3126 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3127 		return -EFAULT;
3128 
3129 	compat_rxnfc = compat_ptr(data);
3130 
3131 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3132 		return -EFAULT;
3133 
3134 	/* Most ethtool structures are defined without padding.
3135 	 * Unfortunately struct ethtool_rxnfc is an exception.
3136 	 */
3137 	switch (ethcmd) {
3138 	default:
3139 		break;
3140 	case ETHTOOL_GRXCLSRLALL:
3141 		/* Buffer size is variable */
3142 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3143 			return -EFAULT;
3144 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3145 			return -ENOMEM;
3146 		buf_size += rule_cnt * sizeof(u32);
3147 		/* fall through */
3148 	case ETHTOOL_GRXRINGS:
3149 	case ETHTOOL_GRXCLSRLCNT:
3150 	case ETHTOOL_GRXCLSRULE:
3151 	case ETHTOOL_SRXCLSRLINS:
3152 		convert_out = true;
3153 		/* fall through */
3154 	case ETHTOOL_SRXCLSRLDEL:
3155 		buf_size += sizeof(struct ethtool_rxnfc);
3156 		convert_in = true;
3157 		rxnfc = compat_alloc_user_space(buf_size);
3158 		break;
3159 	}
3160 
3161 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3162 		return -EFAULT;
3163 
3164 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3165 
3166 	if (convert_in) {
3167 		/* We expect there to be holes between fs.m_ext and
3168 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3169 		 */
3170 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3171 			     sizeof(compat_rxnfc->fs.m_ext) !=
3172 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3173 			     sizeof(rxnfc->fs.m_ext));
3174 		BUILD_BUG_ON(
3175 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3176 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3177 			offsetof(struct ethtool_rxnfc, fs.location) -
3178 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3179 
3180 		if (copy_in_user(rxnfc, compat_rxnfc,
3181 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3182 				 (void __user *)rxnfc) ||
3183 		    copy_in_user(&rxnfc->fs.ring_cookie,
3184 				 &compat_rxnfc->fs.ring_cookie,
3185 				 (void __user *)(&rxnfc->fs.location + 1) -
3186 				 (void __user *)&rxnfc->fs.ring_cookie))
3187 			return -EFAULT;
3188 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3189 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3190 				return -EFAULT;
3191 		} else if (copy_in_user(&rxnfc->rule_cnt,
3192 					&compat_rxnfc->rule_cnt,
3193 					sizeof(rxnfc->rule_cnt)))
3194 			return -EFAULT;
3195 	}
3196 
3197 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3198 	if (ret)
3199 		return ret;
3200 
3201 	if (convert_out) {
3202 		if (copy_in_user(compat_rxnfc, rxnfc,
3203 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3204 				 (const void __user *)rxnfc) ||
3205 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3206 				 &rxnfc->fs.ring_cookie,
3207 				 (const void __user *)(&rxnfc->fs.location + 1) -
3208 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3209 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3210 				 sizeof(rxnfc->rule_cnt)))
3211 			return -EFAULT;
3212 
3213 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3214 			/* As an optimisation, we only copy the actual
3215 			 * number of rules that the underlying
3216 			 * function returned.  Since Mallory might
3217 			 * change the rule count in user memory, we
3218 			 * check that it is less than the rule count
3219 			 * originally given (as the user buffer size),
3220 			 * which has been range-checked.
3221 			 */
3222 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3223 				return -EFAULT;
3224 			if (actual_rule_cnt < rule_cnt)
3225 				rule_cnt = actual_rule_cnt;
3226 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3227 					 &rxnfc->rule_locs[0],
3228 					 rule_cnt * sizeof(u32)))
3229 				return -EFAULT;
3230 		}
3231 	}
3232 
3233 	return 0;
3234 }
3235 
3236 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3237 {
3238 	compat_uptr_t uptr32;
3239 	struct ifreq ifr;
3240 	void __user *saved;
3241 	int err;
3242 
3243 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3244 		return -EFAULT;
3245 
3246 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3247 		return -EFAULT;
3248 
3249 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3250 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3251 
3252 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3253 	if (!err) {
3254 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3255 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3256 			err = -EFAULT;
3257 	}
3258 	return err;
3259 }
3260 
3261 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3262 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3263 				 struct compat_ifreq __user *u_ifreq32)
3264 {
3265 	struct ifreq ifreq;
3266 	u32 data32;
3267 
3268 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3269 		return -EFAULT;
3270 	if (get_user(data32, &u_ifreq32->ifr_data))
3271 		return -EFAULT;
3272 	ifreq.ifr_data = compat_ptr(data32);
3273 
3274 	return dev_ioctl(net, cmd, &ifreq, NULL);
3275 }
3276 
3277 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3278 			      unsigned int cmd,
3279 			      struct compat_ifreq __user *uifr32)
3280 {
3281 	struct ifreq __user *uifr;
3282 	int err;
3283 
3284 	/* Handle the fact that while struct ifreq has the same *layout* on
3285 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3286 	 * which are handled elsewhere, it still has different *size* due to
3287 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3288 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3289 	 * As a result, if the struct happens to be at the end of a page and
3290 	 * the next page isn't readable/writable, we get a fault. To prevent
3291 	 * that, copy back and forth to the full size.
3292 	 */
3293 
3294 	uifr = compat_alloc_user_space(sizeof(*uifr));
3295 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3296 		return -EFAULT;
3297 
3298 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3299 
3300 	if (!err) {
3301 		switch (cmd) {
3302 		case SIOCGIFFLAGS:
3303 		case SIOCGIFMETRIC:
3304 		case SIOCGIFMTU:
3305 		case SIOCGIFMEM:
3306 		case SIOCGIFHWADDR:
3307 		case SIOCGIFINDEX:
3308 		case SIOCGIFADDR:
3309 		case SIOCGIFBRDADDR:
3310 		case SIOCGIFDSTADDR:
3311 		case SIOCGIFNETMASK:
3312 		case SIOCGIFPFLAGS:
3313 		case SIOCGIFTXQLEN:
3314 		case SIOCGMIIPHY:
3315 		case SIOCGMIIREG:
3316 		case SIOCGIFNAME:
3317 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3318 				err = -EFAULT;
3319 			break;
3320 		}
3321 	}
3322 	return err;
3323 }
3324 
3325 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3326 			struct compat_ifreq __user *uifr32)
3327 {
3328 	struct ifreq ifr;
3329 	struct compat_ifmap __user *uifmap32;
3330 	int err;
3331 
3332 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3333 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3334 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3335 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3336 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3337 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3338 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3339 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3340 	if (err)
3341 		return -EFAULT;
3342 
3343 	err = dev_ioctl(net, cmd, &ifr, NULL);
3344 
3345 	if (cmd == SIOCGIFMAP && !err) {
3346 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3347 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3348 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3349 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3350 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3351 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3352 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3353 		if (err)
3354 			err = -EFAULT;
3355 	}
3356 	return err;
3357 }
3358 
3359 struct rtentry32 {
3360 	u32		rt_pad1;
3361 	struct sockaddr rt_dst;         /* target address               */
3362 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3363 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3364 	unsigned short	rt_flags;
3365 	short		rt_pad2;
3366 	u32		rt_pad3;
3367 	unsigned char	rt_tos;
3368 	unsigned char	rt_class;
3369 	short		rt_pad4;
3370 	short		rt_metric;      /* +1 for binary compatibility! */
3371 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3372 	u32		rt_mtu;         /* per route MTU/Window         */
3373 	u32		rt_window;      /* Window clamping              */
3374 	unsigned short  rt_irtt;        /* Initial RTT                  */
3375 };
3376 
3377 struct in6_rtmsg32 {
3378 	struct in6_addr		rtmsg_dst;
3379 	struct in6_addr		rtmsg_src;
3380 	struct in6_addr		rtmsg_gateway;
3381 	u32			rtmsg_type;
3382 	u16			rtmsg_dst_len;
3383 	u16			rtmsg_src_len;
3384 	u32			rtmsg_metric;
3385 	u32			rtmsg_info;
3386 	u32			rtmsg_flags;
3387 	s32			rtmsg_ifindex;
3388 };
3389 
3390 static int routing_ioctl(struct net *net, struct socket *sock,
3391 			 unsigned int cmd, void __user *argp)
3392 {
3393 	int ret;
3394 	void *r = NULL;
3395 	struct in6_rtmsg r6;
3396 	struct rtentry r4;
3397 	char devname[16];
3398 	u32 rtdev;
3399 	mm_segment_t old_fs = get_fs();
3400 
3401 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3402 		struct in6_rtmsg32 __user *ur6 = argp;
3403 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3404 			3 * sizeof(struct in6_addr));
3405 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3406 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3407 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3408 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3409 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3410 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3411 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3412 
3413 		r = (void *) &r6;
3414 	} else { /* ipv4 */
3415 		struct rtentry32 __user *ur4 = argp;
3416 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3417 					3 * sizeof(struct sockaddr));
3418 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3419 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3420 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3421 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3422 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3423 		ret |= get_user(rtdev, &(ur4->rt_dev));
3424 		if (rtdev) {
3425 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3426 			r4.rt_dev = (char __user __force *)devname;
3427 			devname[15] = 0;
3428 		} else
3429 			r4.rt_dev = NULL;
3430 
3431 		r = (void *) &r4;
3432 	}
3433 
3434 	if (ret) {
3435 		ret = -EFAULT;
3436 		goto out;
3437 	}
3438 
3439 	set_fs(KERNEL_DS);
3440 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3441 	set_fs(old_fs);
3442 
3443 out:
3444 	return ret;
3445 }
3446 
3447 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3448  * for some operations; this forces use of the newer bridge-utils that
3449  * use compatible ioctls
3450  */
3451 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3452 {
3453 	compat_ulong_t tmp;
3454 
3455 	if (get_user(tmp, argp))
3456 		return -EFAULT;
3457 	if (tmp == BRCTL_GET_VERSION)
3458 		return BRCTL_VERSION + 1;
3459 	return -EINVAL;
3460 }
3461 
3462 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3463 			 unsigned int cmd, unsigned long arg)
3464 {
3465 	void __user *argp = compat_ptr(arg);
3466 	struct sock *sk = sock->sk;
3467 	struct net *net = sock_net(sk);
3468 
3469 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3470 		return compat_ifr_data_ioctl(net, cmd, argp);
3471 
3472 	switch (cmd) {
3473 	case SIOCSIFBR:
3474 	case SIOCGIFBR:
3475 		return old_bridge_ioctl(argp);
3476 	case SIOCGIFCONF:
3477 		return compat_dev_ifconf(net, argp);
3478 	case SIOCETHTOOL:
3479 		return ethtool_ioctl(net, argp);
3480 	case SIOCWANDEV:
3481 		return compat_siocwandev(net, argp);
3482 	case SIOCGIFMAP:
3483 	case SIOCSIFMAP:
3484 		return compat_sioc_ifmap(net, cmd, argp);
3485 	case SIOCADDRT:
3486 	case SIOCDELRT:
3487 		return routing_ioctl(net, sock, cmd, argp);
3488 	case SIOCGSTAMP_OLD:
3489 	case SIOCGSTAMPNS_OLD:
3490 		if (!sock->ops->gettstamp)
3491 			return -ENOIOCTLCMD;
3492 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3493 					    !COMPAT_USE_64BIT_TIME);
3494 
3495 	case SIOCBONDSLAVEINFOQUERY:
3496 	case SIOCBONDINFOQUERY:
3497 	case SIOCSHWTSTAMP:
3498 	case SIOCGHWTSTAMP:
3499 		return compat_ifr_data_ioctl(net, cmd, argp);
3500 
3501 	case FIOSETOWN:
3502 	case SIOCSPGRP:
3503 	case FIOGETOWN:
3504 	case SIOCGPGRP:
3505 	case SIOCBRADDBR:
3506 	case SIOCBRDELBR:
3507 	case SIOCGIFVLAN:
3508 	case SIOCSIFVLAN:
3509 	case SIOCADDDLCI:
3510 	case SIOCDELDLCI:
3511 	case SIOCGSKNS:
3512 	case SIOCGSTAMP_NEW:
3513 	case SIOCGSTAMPNS_NEW:
3514 		return sock_ioctl(file, cmd, arg);
3515 
3516 	case SIOCGIFFLAGS:
3517 	case SIOCSIFFLAGS:
3518 	case SIOCGIFMETRIC:
3519 	case SIOCSIFMETRIC:
3520 	case SIOCGIFMTU:
3521 	case SIOCSIFMTU:
3522 	case SIOCGIFMEM:
3523 	case SIOCSIFMEM:
3524 	case SIOCGIFHWADDR:
3525 	case SIOCSIFHWADDR:
3526 	case SIOCADDMULTI:
3527 	case SIOCDELMULTI:
3528 	case SIOCGIFINDEX:
3529 	case SIOCGIFADDR:
3530 	case SIOCSIFADDR:
3531 	case SIOCSIFHWBROADCAST:
3532 	case SIOCDIFADDR:
3533 	case SIOCGIFBRDADDR:
3534 	case SIOCSIFBRDADDR:
3535 	case SIOCGIFDSTADDR:
3536 	case SIOCSIFDSTADDR:
3537 	case SIOCGIFNETMASK:
3538 	case SIOCSIFNETMASK:
3539 	case SIOCSIFPFLAGS:
3540 	case SIOCGIFPFLAGS:
3541 	case SIOCGIFTXQLEN:
3542 	case SIOCSIFTXQLEN:
3543 	case SIOCBRADDIF:
3544 	case SIOCBRDELIF:
3545 	case SIOCGIFNAME:
3546 	case SIOCSIFNAME:
3547 	case SIOCGMIIPHY:
3548 	case SIOCGMIIREG:
3549 	case SIOCSMIIREG:
3550 	case SIOCBONDENSLAVE:
3551 	case SIOCBONDRELEASE:
3552 	case SIOCBONDSETHWADDR:
3553 	case SIOCBONDCHANGEACTIVE:
3554 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3555 
3556 	case SIOCSARP:
3557 	case SIOCGARP:
3558 	case SIOCDARP:
3559 	case SIOCOUTQ:
3560 	case SIOCOUTQNSD:
3561 	case SIOCATMARK:
3562 		return sock_do_ioctl(net, sock, cmd, arg);
3563 	}
3564 
3565 	return -ENOIOCTLCMD;
3566 }
3567 
3568 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3569 			      unsigned long arg)
3570 {
3571 	struct socket *sock = file->private_data;
3572 	int ret = -ENOIOCTLCMD;
3573 	struct sock *sk;
3574 	struct net *net;
3575 
3576 	sk = sock->sk;
3577 	net = sock_net(sk);
3578 
3579 	if (sock->ops->compat_ioctl)
3580 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3581 
3582 	if (ret == -ENOIOCTLCMD &&
3583 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3584 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3585 
3586 	if (ret == -ENOIOCTLCMD)
3587 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3588 
3589 	return ret;
3590 }
3591 #endif
3592 
3593 /**
3594  *	kernel_bind - bind an address to a socket (kernel space)
3595  *	@sock: socket
3596  *	@addr: address
3597  *	@addrlen: length of address
3598  *
3599  *	Returns 0 or an error.
3600  */
3601 
3602 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3603 {
3604 	return sock->ops->bind(sock, addr, addrlen);
3605 }
3606 EXPORT_SYMBOL(kernel_bind);
3607 
3608 /**
3609  *	kernel_listen - move socket to listening state (kernel space)
3610  *	@sock: socket
3611  *	@backlog: pending connections queue size
3612  *
3613  *	Returns 0 or an error.
3614  */
3615 
3616 int kernel_listen(struct socket *sock, int backlog)
3617 {
3618 	return sock->ops->listen(sock, backlog);
3619 }
3620 EXPORT_SYMBOL(kernel_listen);
3621 
3622 /**
3623  *	kernel_accept - accept a connection (kernel space)
3624  *	@sock: listening socket
3625  *	@newsock: new connected socket
3626  *	@flags: flags
3627  *
3628  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3629  *	If it fails, @newsock is guaranteed to be %NULL.
3630  *	Returns 0 or an error.
3631  */
3632 
3633 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3634 {
3635 	struct sock *sk = sock->sk;
3636 	int err;
3637 
3638 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3639 			       newsock);
3640 	if (err < 0)
3641 		goto done;
3642 
3643 	err = sock->ops->accept(sock, *newsock, flags, true);
3644 	if (err < 0) {
3645 		sock_release(*newsock);
3646 		*newsock = NULL;
3647 		goto done;
3648 	}
3649 
3650 	(*newsock)->ops = sock->ops;
3651 	__module_get((*newsock)->ops->owner);
3652 
3653 done:
3654 	return err;
3655 }
3656 EXPORT_SYMBOL(kernel_accept);
3657 
3658 /**
3659  *	kernel_connect - connect a socket (kernel space)
3660  *	@sock: socket
3661  *	@addr: address
3662  *	@addrlen: address length
3663  *	@flags: flags (O_NONBLOCK, ...)
3664  *
3665  *	For datagram sockets, @addr is the addres to which datagrams are sent
3666  *	by default, and the only address from which datagrams are received.
3667  *	For stream sockets, attempts to connect to @addr.
3668  *	Returns 0 or an error code.
3669  */
3670 
3671 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3672 		   int flags)
3673 {
3674 	return sock->ops->connect(sock, addr, addrlen, flags);
3675 }
3676 EXPORT_SYMBOL(kernel_connect);
3677 
3678 /**
3679  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3680  *	@sock: socket
3681  *	@addr: address holder
3682  *
3683  * 	Fills the @addr pointer with the address which the socket is bound.
3684  *	Returns 0 or an error code.
3685  */
3686 
3687 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3688 {
3689 	return sock->ops->getname(sock, addr, 0);
3690 }
3691 EXPORT_SYMBOL(kernel_getsockname);
3692 
3693 /**
3694  *	kernel_peername - get the address which the socket is connected (kernel space)
3695  *	@sock: socket
3696  *	@addr: address holder
3697  *
3698  * 	Fills the @addr pointer with the address which the socket is connected.
3699  *	Returns 0 or an error code.
3700  */
3701 
3702 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3703 {
3704 	return sock->ops->getname(sock, addr, 1);
3705 }
3706 EXPORT_SYMBOL(kernel_getpeername);
3707 
3708 /**
3709  *	kernel_getsockopt - get a socket option (kernel space)
3710  *	@sock: socket
3711  *	@level: API level (SOL_SOCKET, ...)
3712  *	@optname: option tag
3713  *	@optval: option value
3714  *	@optlen: option length
3715  *
3716  *	Assigns the option length to @optlen.
3717  *	Returns 0 or an error.
3718  */
3719 
3720 int kernel_getsockopt(struct socket *sock, int level, int optname,
3721 			char *optval, int *optlen)
3722 {
3723 	mm_segment_t oldfs = get_fs();
3724 	char __user *uoptval;
3725 	int __user *uoptlen;
3726 	int err;
3727 
3728 	uoptval = (char __user __force *) optval;
3729 	uoptlen = (int __user __force *) optlen;
3730 
3731 	set_fs(KERNEL_DS);
3732 	if (level == SOL_SOCKET)
3733 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3734 	else
3735 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3736 					    uoptlen);
3737 	set_fs(oldfs);
3738 	return err;
3739 }
3740 EXPORT_SYMBOL(kernel_getsockopt);
3741 
3742 /**
3743  *	kernel_setsockopt - set a socket option (kernel space)
3744  *	@sock: socket
3745  *	@level: API level (SOL_SOCKET, ...)
3746  *	@optname: option tag
3747  *	@optval: option value
3748  *	@optlen: option length
3749  *
3750  *	Returns 0 or an error.
3751  */
3752 
3753 int kernel_setsockopt(struct socket *sock, int level, int optname,
3754 			char *optval, unsigned int optlen)
3755 {
3756 	mm_segment_t oldfs = get_fs();
3757 	char __user *uoptval;
3758 	int err;
3759 
3760 	uoptval = (char __user __force *) optval;
3761 
3762 	set_fs(KERNEL_DS);
3763 	if (level == SOL_SOCKET)
3764 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3765 	else
3766 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3767 					    optlen);
3768 	set_fs(oldfs);
3769 	return err;
3770 }
3771 EXPORT_SYMBOL(kernel_setsockopt);
3772 
3773 /**
3774  *	kernel_sendpage - send a &page through a socket (kernel space)
3775  *	@sock: socket
3776  *	@page: page
3777  *	@offset: page offset
3778  *	@size: total size in bytes
3779  *	@flags: flags (MSG_DONTWAIT, ...)
3780  *
3781  *	Returns the total amount sent in bytes or an error.
3782  */
3783 
3784 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3785 		    size_t size, int flags)
3786 {
3787 	if (sock->ops->sendpage)
3788 		return sock->ops->sendpage(sock, page, offset, size, flags);
3789 
3790 	return sock_no_sendpage(sock, page, offset, size, flags);
3791 }
3792 EXPORT_SYMBOL(kernel_sendpage);
3793 
3794 /**
3795  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3796  *	@sk: sock
3797  *	@page: page
3798  *	@offset: page offset
3799  *	@size: total size in bytes
3800  *	@flags: flags (MSG_DONTWAIT, ...)
3801  *
3802  *	Returns the total amount sent in bytes or an error.
3803  *	Caller must hold @sk.
3804  */
3805 
3806 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3807 			   size_t size, int flags)
3808 {
3809 	struct socket *sock = sk->sk_socket;
3810 
3811 	if (sock->ops->sendpage_locked)
3812 		return sock->ops->sendpage_locked(sk, page, offset, size,
3813 						  flags);
3814 
3815 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3816 }
3817 EXPORT_SYMBOL(kernel_sendpage_locked);
3818 
3819 /**
3820  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3821  *	@sock: socket
3822  *	@how: connection part
3823  *
3824  *	Returns 0 or an error.
3825  */
3826 
3827 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3828 {
3829 	return sock->ops->shutdown(sock, how);
3830 }
3831 EXPORT_SYMBOL(kernel_sock_shutdown);
3832 
3833 /**
3834  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3835  *	@sk: socket
3836  *
3837  *	This routine returns the IP overhead imposed by a socket i.e.
3838  *	the length of the underlying IP header, depending on whether
3839  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3840  *	on at the socket. Assumes that the caller has a lock on the socket.
3841  */
3842 
3843 u32 kernel_sock_ip_overhead(struct sock *sk)
3844 {
3845 	struct inet_sock *inet;
3846 	struct ip_options_rcu *opt;
3847 	u32 overhead = 0;
3848 #if IS_ENABLED(CONFIG_IPV6)
3849 	struct ipv6_pinfo *np;
3850 	struct ipv6_txoptions *optv6 = NULL;
3851 #endif /* IS_ENABLED(CONFIG_IPV6) */
3852 
3853 	if (!sk)
3854 		return overhead;
3855 
3856 	switch (sk->sk_family) {
3857 	case AF_INET:
3858 		inet = inet_sk(sk);
3859 		overhead += sizeof(struct iphdr);
3860 		opt = rcu_dereference_protected(inet->inet_opt,
3861 						sock_owned_by_user(sk));
3862 		if (opt)
3863 			overhead += opt->opt.optlen;
3864 		return overhead;
3865 #if IS_ENABLED(CONFIG_IPV6)
3866 	case AF_INET6:
3867 		np = inet6_sk(sk);
3868 		overhead += sizeof(struct ipv6hdr);
3869 		if (np)
3870 			optv6 = rcu_dereference_protected(np->opt,
3871 							  sock_owned_by_user(sk));
3872 		if (optv6)
3873 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3874 		return overhead;
3875 #endif /* IS_ENABLED(CONFIG_IPV6) */
3876 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3877 		return overhead;
3878 	}
3879 }
3880 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3881