1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 #include <linux/nsproxy.h> 88 #include <linux/magic.h> 89 #include <linux/slab.h> 90 #include <linux/xattr.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 #include <net/busy_poll.h> 108 109 #ifdef CONFIG_NET_RX_BUSY_POLL 110 unsigned int sysctl_net_busy_read __read_mostly; 111 unsigned int sysctl_net_busy_poll __read_mostly; 112 #endif 113 114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 116 unsigned long nr_segs, loff_t pos); 117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 118 unsigned long nr_segs, loff_t pos); 119 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 120 121 static int sock_close(struct inode *inode, struct file *file); 122 static unsigned int sock_poll(struct file *file, 123 struct poll_table_struct *wait); 124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 125 #ifdef CONFIG_COMPAT 126 static long compat_sock_ioctl(struct file *file, 127 unsigned int cmd, unsigned long arg); 128 #endif 129 static int sock_fasync(int fd, struct file *filp, int on); 130 static ssize_t sock_sendpage(struct file *file, struct page *page, 131 int offset, size_t size, loff_t *ppos, int more); 132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 133 struct pipe_inode_info *pipe, size_t len, 134 unsigned int flags); 135 136 /* 137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 138 * in the operation structures but are done directly via the socketcall() multiplexor. 139 */ 140 141 static const struct file_operations socket_file_ops = { 142 .owner = THIS_MODULE, 143 .llseek = no_llseek, 144 .aio_read = sock_aio_read, 145 .aio_write = sock_aio_write, 146 .poll = sock_poll, 147 .unlocked_ioctl = sock_ioctl, 148 #ifdef CONFIG_COMPAT 149 .compat_ioctl = compat_sock_ioctl, 150 #endif 151 .mmap = sock_mmap, 152 .open = sock_no_open, /* special open code to disallow open via /proc */ 153 .release = sock_close, 154 .fasync = sock_fasync, 155 .sendpage = sock_sendpage, 156 .splice_write = generic_splice_sendpage, 157 .splice_read = sock_splice_read, 158 }; 159 160 /* 161 * The protocol list. Each protocol is registered in here. 162 */ 163 164 static DEFINE_SPINLOCK(net_family_lock); 165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 166 167 /* 168 * Statistics counters of the socket lists 169 */ 170 171 static DEFINE_PER_CPU(int, sockets_in_use); 172 173 /* 174 * Support routines. 175 * Move socket addresses back and forth across the kernel/user 176 * divide and look after the messy bits. 177 */ 178 179 /** 180 * move_addr_to_kernel - copy a socket address into kernel space 181 * @uaddr: Address in user space 182 * @kaddr: Address in kernel space 183 * @ulen: Length in user space 184 * 185 * The address is copied into kernel space. If the provided address is 186 * too long an error code of -EINVAL is returned. If the copy gives 187 * invalid addresses -EFAULT is returned. On a success 0 is returned. 188 */ 189 190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 191 { 192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 193 return -EINVAL; 194 if (ulen == 0) 195 return 0; 196 if (copy_from_user(kaddr, uaddr, ulen)) 197 return -EFAULT; 198 return audit_sockaddr(ulen, kaddr); 199 } 200 201 /** 202 * move_addr_to_user - copy an address to user space 203 * @kaddr: kernel space address 204 * @klen: length of address in kernel 205 * @uaddr: user space address 206 * @ulen: pointer to user length field 207 * 208 * The value pointed to by ulen on entry is the buffer length available. 209 * This is overwritten with the buffer space used. -EINVAL is returned 210 * if an overlong buffer is specified or a negative buffer size. -EFAULT 211 * is returned if either the buffer or the length field are not 212 * accessible. 213 * After copying the data up to the limit the user specifies, the true 214 * length of the data is written over the length limit the user 215 * specified. Zero is returned for a success. 216 */ 217 218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 219 void __user *uaddr, int __user *ulen) 220 { 221 int err; 222 int len; 223 224 err = get_user(len, ulen); 225 if (err) 226 return err; 227 if (len > klen) 228 len = klen; 229 if (len < 0 || len > sizeof(struct sockaddr_storage)) 230 return -EINVAL; 231 if (len) { 232 if (audit_sockaddr(klen, kaddr)) 233 return -ENOMEM; 234 if (copy_to_user(uaddr, kaddr, len)) 235 return -EFAULT; 236 } 237 /* 238 * "fromlen shall refer to the value before truncation.." 239 * 1003.1g 240 */ 241 return __put_user(klen, ulen); 242 } 243 244 static struct kmem_cache *sock_inode_cachep __read_mostly; 245 246 static struct inode *sock_alloc_inode(struct super_block *sb) 247 { 248 struct socket_alloc *ei; 249 struct socket_wq *wq; 250 251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 252 if (!ei) 253 return NULL; 254 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 255 if (!wq) { 256 kmem_cache_free(sock_inode_cachep, ei); 257 return NULL; 258 } 259 init_waitqueue_head(&wq->wait); 260 wq->fasync_list = NULL; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static int init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD), 298 init_once); 299 if (sock_inode_cachep == NULL) 300 return -ENOMEM; 301 return 0; 302 } 303 304 static const struct super_operations sockfs_ops = { 305 .alloc_inode = sock_alloc_inode, 306 .destroy_inode = sock_destroy_inode, 307 .statfs = simple_statfs, 308 }; 309 310 /* 311 * sockfs_dname() is called from d_path(). 312 */ 313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 314 { 315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 316 dentry->d_inode->i_ino); 317 } 318 319 static const struct dentry_operations sockfs_dentry_operations = { 320 .d_dname = sockfs_dname, 321 }; 322 323 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 324 int flags, const char *dev_name, void *data) 325 { 326 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 327 &sockfs_dentry_operations, SOCKFS_MAGIC); 328 } 329 330 static struct vfsmount *sock_mnt __read_mostly; 331 332 static struct file_system_type sock_fs_type = { 333 .name = "sockfs", 334 .mount = sockfs_mount, 335 .kill_sb = kill_anon_super, 336 }; 337 338 /* 339 * Obtains the first available file descriptor and sets it up for use. 340 * 341 * These functions create file structures and maps them to fd space 342 * of the current process. On success it returns file descriptor 343 * and file struct implicitly stored in sock->file. 344 * Note that another thread may close file descriptor before we return 345 * from this function. We use the fact that now we do not refer 346 * to socket after mapping. If one day we will need it, this 347 * function will increment ref. count on file by 1. 348 * 349 * In any case returned fd MAY BE not valid! 350 * This race condition is unavoidable 351 * with shared fd spaces, we cannot solve it inside kernel, 352 * but we take care of internal coherence yet. 353 */ 354 355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 356 { 357 struct qstr name = { .name = "" }; 358 struct path path; 359 struct file *file; 360 361 if (dname) { 362 name.name = dname; 363 name.len = strlen(name.name); 364 } else if (sock->sk) { 365 name.name = sock->sk->sk_prot_creator->name; 366 name.len = strlen(name.name); 367 } 368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 369 if (unlikely(!path.dentry)) 370 return ERR_PTR(-ENOMEM); 371 path.mnt = mntget(sock_mnt); 372 373 d_instantiate(path.dentry, SOCK_INODE(sock)); 374 SOCK_INODE(sock)->i_fop = &socket_file_ops; 375 376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 377 &socket_file_ops); 378 if (unlikely(IS_ERR(file))) { 379 /* drop dentry, keep inode */ 380 ihold(path.dentry->d_inode); 381 path_put(&path); 382 return file; 383 } 384 385 sock->file = file; 386 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 387 file->private_data = sock; 388 return file; 389 } 390 EXPORT_SYMBOL(sock_alloc_file); 391 392 static int sock_map_fd(struct socket *sock, int flags) 393 { 394 struct file *newfile; 395 int fd = get_unused_fd_flags(flags); 396 if (unlikely(fd < 0)) 397 return fd; 398 399 newfile = sock_alloc_file(sock, flags, NULL); 400 if (likely(!IS_ERR(newfile))) { 401 fd_install(fd, newfile); 402 return fd; 403 } 404 405 put_unused_fd(fd); 406 return PTR_ERR(newfile); 407 } 408 409 struct socket *sock_from_file(struct file *file, int *err) 410 { 411 if (file->f_op == &socket_file_ops) 412 return file->private_data; /* set in sock_map_fd */ 413 414 *err = -ENOTSOCK; 415 return NULL; 416 } 417 EXPORT_SYMBOL(sock_from_file); 418 419 /** 420 * sockfd_lookup - Go from a file number to its socket slot 421 * @fd: file handle 422 * @err: pointer to an error code return 423 * 424 * The file handle passed in is locked and the socket it is bound 425 * too is returned. If an error occurs the err pointer is overwritten 426 * with a negative errno code and NULL is returned. The function checks 427 * for both invalid handles and passing a handle which is not a socket. 428 * 429 * On a success the socket object pointer is returned. 430 */ 431 432 struct socket *sockfd_lookup(int fd, int *err) 433 { 434 struct file *file; 435 struct socket *sock; 436 437 file = fget(fd); 438 if (!file) { 439 *err = -EBADF; 440 return NULL; 441 } 442 443 sock = sock_from_file(file, err); 444 if (!sock) 445 fput(file); 446 return sock; 447 } 448 EXPORT_SYMBOL(sockfd_lookup); 449 450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 451 { 452 struct file *file; 453 struct socket *sock; 454 455 *err = -EBADF; 456 file = fget_light(fd, fput_needed); 457 if (file) { 458 sock = sock_from_file(file, err); 459 if (sock) 460 return sock; 461 fput_light(file, *fput_needed); 462 } 463 return NULL; 464 } 465 466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 469 static ssize_t sockfs_getxattr(struct dentry *dentry, 470 const char *name, void *value, size_t size) 471 { 472 const char *proto_name; 473 size_t proto_size; 474 int error; 475 476 error = -ENODATA; 477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 478 proto_name = dentry->d_name.name; 479 proto_size = strlen(proto_name); 480 481 if (value) { 482 error = -ERANGE; 483 if (proto_size + 1 > size) 484 goto out; 485 486 strncpy(value, proto_name, proto_size + 1); 487 } 488 error = proto_size + 1; 489 } 490 491 out: 492 return error; 493 } 494 495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 496 size_t size) 497 { 498 ssize_t len; 499 ssize_t used = 0; 500 501 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 502 if (len < 0) 503 return len; 504 used += len; 505 if (buffer) { 506 if (size < used) 507 return -ERANGE; 508 buffer += len; 509 } 510 511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 512 used += len; 513 if (buffer) { 514 if (size < used) 515 return -ERANGE; 516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 517 buffer += len; 518 } 519 520 return used; 521 } 522 523 static const struct inode_operations sockfs_inode_ops = { 524 .getxattr = sockfs_getxattr, 525 .listxattr = sockfs_listxattr, 526 }; 527 528 /** 529 * sock_alloc - allocate a socket 530 * 531 * Allocate a new inode and socket object. The two are bound together 532 * and initialised. The socket is then returned. If we are out of inodes 533 * NULL is returned. 534 */ 535 536 static struct socket *sock_alloc(void) 537 { 538 struct inode *inode; 539 struct socket *sock; 540 541 inode = new_inode_pseudo(sock_mnt->mnt_sb); 542 if (!inode) 543 return NULL; 544 545 sock = SOCKET_I(inode); 546 547 kmemcheck_annotate_bitfield(sock, type); 548 inode->i_ino = get_next_ino(); 549 inode->i_mode = S_IFSOCK | S_IRWXUGO; 550 inode->i_uid = current_fsuid(); 551 inode->i_gid = current_fsgid(); 552 inode->i_op = &sockfs_inode_ops; 553 554 this_cpu_add(sockets_in_use, 1); 555 return sock; 556 } 557 558 /* 559 * In theory you can't get an open on this inode, but /proc provides 560 * a back door. Remember to keep it shut otherwise you'll let the 561 * creepy crawlies in. 562 */ 563 564 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 565 { 566 return -ENXIO; 567 } 568 569 const struct file_operations bad_sock_fops = { 570 .owner = THIS_MODULE, 571 .open = sock_no_open, 572 .llseek = noop_llseek, 573 }; 574 575 /** 576 * sock_release - close a socket 577 * @sock: socket to close 578 * 579 * The socket is released from the protocol stack if it has a release 580 * callback, and the inode is then released if the socket is bound to 581 * an inode not a file. 582 */ 583 584 void sock_release(struct socket *sock) 585 { 586 if (sock->ops) { 587 struct module *owner = sock->ops->owner; 588 589 sock->ops->release(sock); 590 sock->ops = NULL; 591 module_put(owner); 592 } 593 594 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 595 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 596 597 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 598 return; 599 600 this_cpu_sub(sockets_in_use, 1); 601 if (!sock->file) { 602 iput(SOCK_INODE(sock)); 603 return; 604 } 605 sock->file = NULL; 606 } 607 EXPORT_SYMBOL(sock_release); 608 609 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 610 { 611 *tx_flags = 0; 612 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 613 *tx_flags |= SKBTX_HW_TSTAMP; 614 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 615 *tx_flags |= SKBTX_SW_TSTAMP; 616 if (sock_flag(sk, SOCK_WIFI_STATUS)) 617 *tx_flags |= SKBTX_WIFI_STATUS; 618 } 619 EXPORT_SYMBOL(sock_tx_timestamp); 620 621 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 622 struct msghdr *msg, size_t size) 623 { 624 struct sock_iocb *si = kiocb_to_siocb(iocb); 625 626 si->sock = sock; 627 si->scm = NULL; 628 si->msg = msg; 629 si->size = size; 630 631 return sock->ops->sendmsg(iocb, sock, msg, size); 632 } 633 634 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 635 struct msghdr *msg, size_t size) 636 { 637 int err = security_socket_sendmsg(sock, msg, size); 638 639 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 640 } 641 642 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 643 { 644 struct kiocb iocb; 645 struct sock_iocb siocb; 646 int ret; 647 648 init_sync_kiocb(&iocb, NULL); 649 iocb.private = &siocb; 650 ret = __sock_sendmsg(&iocb, sock, msg, size); 651 if (-EIOCBQUEUED == ret) 652 ret = wait_on_sync_kiocb(&iocb); 653 return ret; 654 } 655 EXPORT_SYMBOL(sock_sendmsg); 656 657 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 658 { 659 struct kiocb iocb; 660 struct sock_iocb siocb; 661 int ret; 662 663 init_sync_kiocb(&iocb, NULL); 664 iocb.private = &siocb; 665 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 666 if (-EIOCBQUEUED == ret) 667 ret = wait_on_sync_kiocb(&iocb); 668 return ret; 669 } 670 671 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 672 struct kvec *vec, size_t num, size_t size) 673 { 674 mm_segment_t oldfs = get_fs(); 675 int result; 676 677 set_fs(KERNEL_DS); 678 /* 679 * the following is safe, since for compiler definitions of kvec and 680 * iovec are identical, yielding the same in-core layout and alignment 681 */ 682 msg->msg_iov = (struct iovec *)vec; 683 msg->msg_iovlen = num; 684 result = sock_sendmsg(sock, msg, size); 685 set_fs(oldfs); 686 return result; 687 } 688 EXPORT_SYMBOL(kernel_sendmsg); 689 690 /* 691 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 692 */ 693 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 694 struct sk_buff *skb) 695 { 696 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 697 struct timespec ts[3]; 698 int empty = 1; 699 struct skb_shared_hwtstamps *shhwtstamps = 700 skb_hwtstamps(skb); 701 702 /* Race occurred between timestamp enabling and packet 703 receiving. Fill in the current time for now. */ 704 if (need_software_tstamp && skb->tstamp.tv64 == 0) 705 __net_timestamp(skb); 706 707 if (need_software_tstamp) { 708 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 709 struct timeval tv; 710 skb_get_timestamp(skb, &tv); 711 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 712 sizeof(tv), &tv); 713 } else { 714 skb_get_timestampns(skb, &ts[0]); 715 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 716 sizeof(ts[0]), &ts[0]); 717 } 718 } 719 720 721 memset(ts, 0, sizeof(ts)); 722 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) && 723 ktime_to_timespec_cond(skb->tstamp, ts + 0)) 724 empty = 0; 725 if (shhwtstamps) { 726 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 727 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1)) 728 empty = 0; 729 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 730 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2)) 731 empty = 0; 732 } 733 if (!empty) 734 put_cmsg(msg, SOL_SOCKET, 735 SCM_TIMESTAMPING, sizeof(ts), &ts); 736 } 737 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 738 739 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 740 struct sk_buff *skb) 741 { 742 int ack; 743 744 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 745 return; 746 if (!skb->wifi_acked_valid) 747 return; 748 749 ack = skb->wifi_acked; 750 751 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 752 } 753 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 754 755 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 756 struct sk_buff *skb) 757 { 758 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 759 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 760 sizeof(__u32), &skb->dropcount); 761 } 762 763 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 764 struct sk_buff *skb) 765 { 766 sock_recv_timestamp(msg, sk, skb); 767 sock_recv_drops(msg, sk, skb); 768 } 769 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 770 771 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 772 struct msghdr *msg, size_t size, int flags) 773 { 774 struct sock_iocb *si = kiocb_to_siocb(iocb); 775 776 si->sock = sock; 777 si->scm = NULL; 778 si->msg = msg; 779 si->size = size; 780 si->flags = flags; 781 782 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 783 } 784 785 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 786 struct msghdr *msg, size_t size, int flags) 787 { 788 int err = security_socket_recvmsg(sock, msg, size, flags); 789 790 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 791 } 792 793 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 794 size_t size, int flags) 795 { 796 struct kiocb iocb; 797 struct sock_iocb siocb; 798 int ret; 799 800 init_sync_kiocb(&iocb, NULL); 801 iocb.private = &siocb; 802 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 803 if (-EIOCBQUEUED == ret) 804 ret = wait_on_sync_kiocb(&iocb); 805 return ret; 806 } 807 EXPORT_SYMBOL(sock_recvmsg); 808 809 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 810 size_t size, int flags) 811 { 812 struct kiocb iocb; 813 struct sock_iocb siocb; 814 int ret; 815 816 init_sync_kiocb(&iocb, NULL); 817 iocb.private = &siocb; 818 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 819 if (-EIOCBQUEUED == ret) 820 ret = wait_on_sync_kiocb(&iocb); 821 return ret; 822 } 823 824 /** 825 * kernel_recvmsg - Receive a message from a socket (kernel space) 826 * @sock: The socket to receive the message from 827 * @msg: Received message 828 * @vec: Input s/g array for message data 829 * @num: Size of input s/g array 830 * @size: Number of bytes to read 831 * @flags: Message flags (MSG_DONTWAIT, etc...) 832 * 833 * On return the msg structure contains the scatter/gather array passed in the 834 * vec argument. The array is modified so that it consists of the unfilled 835 * portion of the original array. 836 * 837 * The returned value is the total number of bytes received, or an error. 838 */ 839 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 840 struct kvec *vec, size_t num, size_t size, int flags) 841 { 842 mm_segment_t oldfs = get_fs(); 843 int result; 844 845 set_fs(KERNEL_DS); 846 /* 847 * the following is safe, since for compiler definitions of kvec and 848 * iovec are identical, yielding the same in-core layout and alignment 849 */ 850 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 851 result = sock_recvmsg(sock, msg, size, flags); 852 set_fs(oldfs); 853 return result; 854 } 855 EXPORT_SYMBOL(kernel_recvmsg); 856 857 static ssize_t sock_sendpage(struct file *file, struct page *page, 858 int offset, size_t size, loff_t *ppos, int more) 859 { 860 struct socket *sock; 861 int flags; 862 863 sock = file->private_data; 864 865 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 866 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 867 flags |= more; 868 869 return kernel_sendpage(sock, page, offset, size, flags); 870 } 871 872 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 873 struct pipe_inode_info *pipe, size_t len, 874 unsigned int flags) 875 { 876 struct socket *sock = file->private_data; 877 878 if (unlikely(!sock->ops->splice_read)) 879 return -EINVAL; 880 881 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 882 } 883 884 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 885 struct sock_iocb *siocb) 886 { 887 if (!is_sync_kiocb(iocb)) 888 BUG(); 889 890 siocb->kiocb = iocb; 891 iocb->private = siocb; 892 return siocb; 893 } 894 895 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 896 struct file *file, const struct iovec *iov, 897 unsigned long nr_segs) 898 { 899 struct socket *sock = file->private_data; 900 size_t size = 0; 901 int i; 902 903 for (i = 0; i < nr_segs; i++) 904 size += iov[i].iov_len; 905 906 msg->msg_name = NULL; 907 msg->msg_namelen = 0; 908 msg->msg_control = NULL; 909 msg->msg_controllen = 0; 910 msg->msg_iov = (struct iovec *)iov; 911 msg->msg_iovlen = nr_segs; 912 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 913 914 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 915 } 916 917 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 918 unsigned long nr_segs, loff_t pos) 919 { 920 struct sock_iocb siocb, *x; 921 922 if (pos != 0) 923 return -ESPIPE; 924 925 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 926 return 0; 927 928 929 x = alloc_sock_iocb(iocb, &siocb); 930 if (!x) 931 return -ENOMEM; 932 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 933 } 934 935 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 936 struct file *file, const struct iovec *iov, 937 unsigned long nr_segs) 938 { 939 struct socket *sock = file->private_data; 940 size_t size = 0; 941 int i; 942 943 for (i = 0; i < nr_segs; i++) 944 size += iov[i].iov_len; 945 946 msg->msg_name = NULL; 947 msg->msg_namelen = 0; 948 msg->msg_control = NULL; 949 msg->msg_controllen = 0; 950 msg->msg_iov = (struct iovec *)iov; 951 msg->msg_iovlen = nr_segs; 952 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 953 if (sock->type == SOCK_SEQPACKET) 954 msg->msg_flags |= MSG_EOR; 955 956 return __sock_sendmsg(iocb, sock, msg, size); 957 } 958 959 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 960 unsigned long nr_segs, loff_t pos) 961 { 962 struct sock_iocb siocb, *x; 963 964 if (pos != 0) 965 return -ESPIPE; 966 967 x = alloc_sock_iocb(iocb, &siocb); 968 if (!x) 969 return -ENOMEM; 970 971 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 972 } 973 974 /* 975 * Atomic setting of ioctl hooks to avoid race 976 * with module unload. 977 */ 978 979 static DEFINE_MUTEX(br_ioctl_mutex); 980 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 981 982 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 983 { 984 mutex_lock(&br_ioctl_mutex); 985 br_ioctl_hook = hook; 986 mutex_unlock(&br_ioctl_mutex); 987 } 988 EXPORT_SYMBOL(brioctl_set); 989 990 static DEFINE_MUTEX(vlan_ioctl_mutex); 991 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 992 993 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 994 { 995 mutex_lock(&vlan_ioctl_mutex); 996 vlan_ioctl_hook = hook; 997 mutex_unlock(&vlan_ioctl_mutex); 998 } 999 EXPORT_SYMBOL(vlan_ioctl_set); 1000 1001 static DEFINE_MUTEX(dlci_ioctl_mutex); 1002 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1003 1004 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1005 { 1006 mutex_lock(&dlci_ioctl_mutex); 1007 dlci_ioctl_hook = hook; 1008 mutex_unlock(&dlci_ioctl_mutex); 1009 } 1010 EXPORT_SYMBOL(dlci_ioctl_set); 1011 1012 static long sock_do_ioctl(struct net *net, struct socket *sock, 1013 unsigned int cmd, unsigned long arg) 1014 { 1015 int err; 1016 void __user *argp = (void __user *)arg; 1017 1018 err = sock->ops->ioctl(sock, cmd, arg); 1019 1020 /* 1021 * If this ioctl is unknown try to hand it down 1022 * to the NIC driver. 1023 */ 1024 if (err == -ENOIOCTLCMD) 1025 err = dev_ioctl(net, cmd, argp); 1026 1027 return err; 1028 } 1029 1030 /* 1031 * With an ioctl, arg may well be a user mode pointer, but we don't know 1032 * what to do with it - that's up to the protocol still. 1033 */ 1034 1035 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1036 { 1037 struct socket *sock; 1038 struct sock *sk; 1039 void __user *argp = (void __user *)arg; 1040 int pid, err; 1041 struct net *net; 1042 1043 sock = file->private_data; 1044 sk = sock->sk; 1045 net = sock_net(sk); 1046 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1047 err = dev_ioctl(net, cmd, argp); 1048 } else 1049 #ifdef CONFIG_WEXT_CORE 1050 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1051 err = dev_ioctl(net, cmd, argp); 1052 } else 1053 #endif 1054 switch (cmd) { 1055 case FIOSETOWN: 1056 case SIOCSPGRP: 1057 err = -EFAULT; 1058 if (get_user(pid, (int __user *)argp)) 1059 break; 1060 err = f_setown(sock->file, pid, 1); 1061 break; 1062 case FIOGETOWN: 1063 case SIOCGPGRP: 1064 err = put_user(f_getown(sock->file), 1065 (int __user *)argp); 1066 break; 1067 case SIOCGIFBR: 1068 case SIOCSIFBR: 1069 case SIOCBRADDBR: 1070 case SIOCBRDELBR: 1071 err = -ENOPKG; 1072 if (!br_ioctl_hook) 1073 request_module("bridge"); 1074 1075 mutex_lock(&br_ioctl_mutex); 1076 if (br_ioctl_hook) 1077 err = br_ioctl_hook(net, cmd, argp); 1078 mutex_unlock(&br_ioctl_mutex); 1079 break; 1080 case SIOCGIFVLAN: 1081 case SIOCSIFVLAN: 1082 err = -ENOPKG; 1083 if (!vlan_ioctl_hook) 1084 request_module("8021q"); 1085 1086 mutex_lock(&vlan_ioctl_mutex); 1087 if (vlan_ioctl_hook) 1088 err = vlan_ioctl_hook(net, argp); 1089 mutex_unlock(&vlan_ioctl_mutex); 1090 break; 1091 case SIOCADDDLCI: 1092 case SIOCDELDLCI: 1093 err = -ENOPKG; 1094 if (!dlci_ioctl_hook) 1095 request_module("dlci"); 1096 1097 mutex_lock(&dlci_ioctl_mutex); 1098 if (dlci_ioctl_hook) 1099 err = dlci_ioctl_hook(cmd, argp); 1100 mutex_unlock(&dlci_ioctl_mutex); 1101 break; 1102 default: 1103 err = sock_do_ioctl(net, sock, cmd, arg); 1104 break; 1105 } 1106 return err; 1107 } 1108 1109 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1110 { 1111 int err; 1112 struct socket *sock = NULL; 1113 1114 err = security_socket_create(family, type, protocol, 1); 1115 if (err) 1116 goto out; 1117 1118 sock = sock_alloc(); 1119 if (!sock) { 1120 err = -ENOMEM; 1121 goto out; 1122 } 1123 1124 sock->type = type; 1125 err = security_socket_post_create(sock, family, type, protocol, 1); 1126 if (err) 1127 goto out_release; 1128 1129 out: 1130 *res = sock; 1131 return err; 1132 out_release: 1133 sock_release(sock); 1134 sock = NULL; 1135 goto out; 1136 } 1137 EXPORT_SYMBOL(sock_create_lite); 1138 1139 /* No kernel lock held - perfect */ 1140 static unsigned int sock_poll(struct file *file, poll_table *wait) 1141 { 1142 unsigned int busy_flag = 0; 1143 struct socket *sock; 1144 1145 /* 1146 * We can't return errors to poll, so it's either yes or no. 1147 */ 1148 sock = file->private_data; 1149 1150 if (sk_can_busy_loop(sock->sk)) { 1151 /* this socket can poll_ll so tell the system call */ 1152 busy_flag = POLL_BUSY_LOOP; 1153 1154 /* once, only if requested by syscall */ 1155 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1156 sk_busy_loop(sock->sk, 1); 1157 } 1158 1159 return busy_flag | sock->ops->poll(file, sock, wait); 1160 } 1161 1162 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1163 { 1164 struct socket *sock = file->private_data; 1165 1166 return sock->ops->mmap(file, sock, vma); 1167 } 1168 1169 static int sock_close(struct inode *inode, struct file *filp) 1170 { 1171 sock_release(SOCKET_I(inode)); 1172 return 0; 1173 } 1174 1175 /* 1176 * Update the socket async list 1177 * 1178 * Fasync_list locking strategy. 1179 * 1180 * 1. fasync_list is modified only under process context socket lock 1181 * i.e. under semaphore. 1182 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1183 * or under socket lock 1184 */ 1185 1186 static int sock_fasync(int fd, struct file *filp, int on) 1187 { 1188 struct socket *sock = filp->private_data; 1189 struct sock *sk = sock->sk; 1190 struct socket_wq *wq; 1191 1192 if (sk == NULL) 1193 return -EINVAL; 1194 1195 lock_sock(sk); 1196 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1197 fasync_helper(fd, filp, on, &wq->fasync_list); 1198 1199 if (!wq->fasync_list) 1200 sock_reset_flag(sk, SOCK_FASYNC); 1201 else 1202 sock_set_flag(sk, SOCK_FASYNC); 1203 1204 release_sock(sk); 1205 return 0; 1206 } 1207 1208 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1209 1210 int sock_wake_async(struct socket *sock, int how, int band) 1211 { 1212 struct socket_wq *wq; 1213 1214 if (!sock) 1215 return -1; 1216 rcu_read_lock(); 1217 wq = rcu_dereference(sock->wq); 1218 if (!wq || !wq->fasync_list) { 1219 rcu_read_unlock(); 1220 return -1; 1221 } 1222 switch (how) { 1223 case SOCK_WAKE_WAITD: 1224 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1225 break; 1226 goto call_kill; 1227 case SOCK_WAKE_SPACE: 1228 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1229 break; 1230 /* fall through */ 1231 case SOCK_WAKE_IO: 1232 call_kill: 1233 kill_fasync(&wq->fasync_list, SIGIO, band); 1234 break; 1235 case SOCK_WAKE_URG: 1236 kill_fasync(&wq->fasync_list, SIGURG, band); 1237 } 1238 rcu_read_unlock(); 1239 return 0; 1240 } 1241 EXPORT_SYMBOL(sock_wake_async); 1242 1243 int __sock_create(struct net *net, int family, int type, int protocol, 1244 struct socket **res, int kern) 1245 { 1246 int err; 1247 struct socket *sock; 1248 const struct net_proto_family *pf; 1249 1250 /* 1251 * Check protocol is in range 1252 */ 1253 if (family < 0 || family >= NPROTO) 1254 return -EAFNOSUPPORT; 1255 if (type < 0 || type >= SOCK_MAX) 1256 return -EINVAL; 1257 1258 /* Compatibility. 1259 1260 This uglymoron is moved from INET layer to here to avoid 1261 deadlock in module load. 1262 */ 1263 if (family == PF_INET && type == SOCK_PACKET) { 1264 static int warned; 1265 if (!warned) { 1266 warned = 1; 1267 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1268 current->comm); 1269 } 1270 family = PF_PACKET; 1271 } 1272 1273 err = security_socket_create(family, type, protocol, kern); 1274 if (err) 1275 return err; 1276 1277 /* 1278 * Allocate the socket and allow the family to set things up. if 1279 * the protocol is 0, the family is instructed to select an appropriate 1280 * default. 1281 */ 1282 sock = sock_alloc(); 1283 if (!sock) { 1284 net_warn_ratelimited("socket: no more sockets\n"); 1285 return -ENFILE; /* Not exactly a match, but its the 1286 closest posix thing */ 1287 } 1288 1289 sock->type = type; 1290 1291 #ifdef CONFIG_MODULES 1292 /* Attempt to load a protocol module if the find failed. 1293 * 1294 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1295 * requested real, full-featured networking support upon configuration. 1296 * Otherwise module support will break! 1297 */ 1298 if (rcu_access_pointer(net_families[family]) == NULL) 1299 request_module("net-pf-%d", family); 1300 #endif 1301 1302 rcu_read_lock(); 1303 pf = rcu_dereference(net_families[family]); 1304 err = -EAFNOSUPPORT; 1305 if (!pf) 1306 goto out_release; 1307 1308 /* 1309 * We will call the ->create function, that possibly is in a loadable 1310 * module, so we have to bump that loadable module refcnt first. 1311 */ 1312 if (!try_module_get(pf->owner)) 1313 goto out_release; 1314 1315 /* Now protected by module ref count */ 1316 rcu_read_unlock(); 1317 1318 err = pf->create(net, sock, protocol, kern); 1319 if (err < 0) 1320 goto out_module_put; 1321 1322 /* 1323 * Now to bump the refcnt of the [loadable] module that owns this 1324 * socket at sock_release time we decrement its refcnt. 1325 */ 1326 if (!try_module_get(sock->ops->owner)) 1327 goto out_module_busy; 1328 1329 /* 1330 * Now that we're done with the ->create function, the [loadable] 1331 * module can have its refcnt decremented 1332 */ 1333 module_put(pf->owner); 1334 err = security_socket_post_create(sock, family, type, protocol, kern); 1335 if (err) 1336 goto out_sock_release; 1337 *res = sock; 1338 1339 return 0; 1340 1341 out_module_busy: 1342 err = -EAFNOSUPPORT; 1343 out_module_put: 1344 sock->ops = NULL; 1345 module_put(pf->owner); 1346 out_sock_release: 1347 sock_release(sock); 1348 return err; 1349 1350 out_release: 1351 rcu_read_unlock(); 1352 goto out_sock_release; 1353 } 1354 EXPORT_SYMBOL(__sock_create); 1355 1356 int sock_create(int family, int type, int protocol, struct socket **res) 1357 { 1358 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1359 } 1360 EXPORT_SYMBOL(sock_create); 1361 1362 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1363 { 1364 return __sock_create(&init_net, family, type, protocol, res, 1); 1365 } 1366 EXPORT_SYMBOL(sock_create_kern); 1367 1368 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1369 { 1370 int retval; 1371 struct socket *sock; 1372 int flags; 1373 1374 /* Check the SOCK_* constants for consistency. */ 1375 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1376 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1377 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1378 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1379 1380 flags = type & ~SOCK_TYPE_MASK; 1381 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1382 return -EINVAL; 1383 type &= SOCK_TYPE_MASK; 1384 1385 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1386 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1387 1388 retval = sock_create(family, type, protocol, &sock); 1389 if (retval < 0) 1390 goto out; 1391 1392 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1393 if (retval < 0) 1394 goto out_release; 1395 1396 out: 1397 /* It may be already another descriptor 8) Not kernel problem. */ 1398 return retval; 1399 1400 out_release: 1401 sock_release(sock); 1402 return retval; 1403 } 1404 1405 /* 1406 * Create a pair of connected sockets. 1407 */ 1408 1409 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1410 int __user *, usockvec) 1411 { 1412 struct socket *sock1, *sock2; 1413 int fd1, fd2, err; 1414 struct file *newfile1, *newfile2; 1415 int flags; 1416 1417 flags = type & ~SOCK_TYPE_MASK; 1418 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1419 return -EINVAL; 1420 type &= SOCK_TYPE_MASK; 1421 1422 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1423 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1424 1425 /* 1426 * Obtain the first socket and check if the underlying protocol 1427 * supports the socketpair call. 1428 */ 1429 1430 err = sock_create(family, type, protocol, &sock1); 1431 if (err < 0) 1432 goto out; 1433 1434 err = sock_create(family, type, protocol, &sock2); 1435 if (err < 0) 1436 goto out_release_1; 1437 1438 err = sock1->ops->socketpair(sock1, sock2); 1439 if (err < 0) 1440 goto out_release_both; 1441 1442 fd1 = get_unused_fd_flags(flags); 1443 if (unlikely(fd1 < 0)) { 1444 err = fd1; 1445 goto out_release_both; 1446 } 1447 fd2 = get_unused_fd_flags(flags); 1448 if (unlikely(fd2 < 0)) { 1449 err = fd2; 1450 put_unused_fd(fd1); 1451 goto out_release_both; 1452 } 1453 1454 newfile1 = sock_alloc_file(sock1, flags, NULL); 1455 if (unlikely(IS_ERR(newfile1))) { 1456 err = PTR_ERR(newfile1); 1457 put_unused_fd(fd1); 1458 put_unused_fd(fd2); 1459 goto out_release_both; 1460 } 1461 1462 newfile2 = sock_alloc_file(sock2, flags, NULL); 1463 if (IS_ERR(newfile2)) { 1464 err = PTR_ERR(newfile2); 1465 fput(newfile1); 1466 put_unused_fd(fd1); 1467 put_unused_fd(fd2); 1468 sock_release(sock2); 1469 goto out; 1470 } 1471 1472 audit_fd_pair(fd1, fd2); 1473 fd_install(fd1, newfile1); 1474 fd_install(fd2, newfile2); 1475 /* fd1 and fd2 may be already another descriptors. 1476 * Not kernel problem. 1477 */ 1478 1479 err = put_user(fd1, &usockvec[0]); 1480 if (!err) 1481 err = put_user(fd2, &usockvec[1]); 1482 if (!err) 1483 return 0; 1484 1485 sys_close(fd2); 1486 sys_close(fd1); 1487 return err; 1488 1489 out_release_both: 1490 sock_release(sock2); 1491 out_release_1: 1492 sock_release(sock1); 1493 out: 1494 return err; 1495 } 1496 1497 /* 1498 * Bind a name to a socket. Nothing much to do here since it's 1499 * the protocol's responsibility to handle the local address. 1500 * 1501 * We move the socket address to kernel space before we call 1502 * the protocol layer (having also checked the address is ok). 1503 */ 1504 1505 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1506 { 1507 struct socket *sock; 1508 struct sockaddr_storage address; 1509 int err, fput_needed; 1510 1511 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1512 if (sock) { 1513 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1514 if (err >= 0) { 1515 err = security_socket_bind(sock, 1516 (struct sockaddr *)&address, 1517 addrlen); 1518 if (!err) 1519 err = sock->ops->bind(sock, 1520 (struct sockaddr *) 1521 &address, addrlen); 1522 } 1523 fput_light(sock->file, fput_needed); 1524 } 1525 return err; 1526 } 1527 1528 /* 1529 * Perform a listen. Basically, we allow the protocol to do anything 1530 * necessary for a listen, and if that works, we mark the socket as 1531 * ready for listening. 1532 */ 1533 1534 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1535 { 1536 struct socket *sock; 1537 int err, fput_needed; 1538 int somaxconn; 1539 1540 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1541 if (sock) { 1542 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1543 if ((unsigned int)backlog > somaxconn) 1544 backlog = somaxconn; 1545 1546 err = security_socket_listen(sock, backlog); 1547 if (!err) 1548 err = sock->ops->listen(sock, backlog); 1549 1550 fput_light(sock->file, fput_needed); 1551 } 1552 return err; 1553 } 1554 1555 /* 1556 * For accept, we attempt to create a new socket, set up the link 1557 * with the client, wake up the client, then return the new 1558 * connected fd. We collect the address of the connector in kernel 1559 * space and move it to user at the very end. This is unclean because 1560 * we open the socket then return an error. 1561 * 1562 * 1003.1g adds the ability to recvmsg() to query connection pending 1563 * status to recvmsg. We need to add that support in a way thats 1564 * clean when we restucture accept also. 1565 */ 1566 1567 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1568 int __user *, upeer_addrlen, int, flags) 1569 { 1570 struct socket *sock, *newsock; 1571 struct file *newfile; 1572 int err, len, newfd, fput_needed; 1573 struct sockaddr_storage address; 1574 1575 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1576 return -EINVAL; 1577 1578 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1579 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1580 1581 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1582 if (!sock) 1583 goto out; 1584 1585 err = -ENFILE; 1586 newsock = sock_alloc(); 1587 if (!newsock) 1588 goto out_put; 1589 1590 newsock->type = sock->type; 1591 newsock->ops = sock->ops; 1592 1593 /* 1594 * We don't need try_module_get here, as the listening socket (sock) 1595 * has the protocol module (sock->ops->owner) held. 1596 */ 1597 __module_get(newsock->ops->owner); 1598 1599 newfd = get_unused_fd_flags(flags); 1600 if (unlikely(newfd < 0)) { 1601 err = newfd; 1602 sock_release(newsock); 1603 goto out_put; 1604 } 1605 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1606 if (unlikely(IS_ERR(newfile))) { 1607 err = PTR_ERR(newfile); 1608 put_unused_fd(newfd); 1609 sock_release(newsock); 1610 goto out_put; 1611 } 1612 1613 err = security_socket_accept(sock, newsock); 1614 if (err) 1615 goto out_fd; 1616 1617 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1618 if (err < 0) 1619 goto out_fd; 1620 1621 if (upeer_sockaddr) { 1622 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1623 &len, 2) < 0) { 1624 err = -ECONNABORTED; 1625 goto out_fd; 1626 } 1627 err = move_addr_to_user(&address, 1628 len, upeer_sockaddr, upeer_addrlen); 1629 if (err < 0) 1630 goto out_fd; 1631 } 1632 1633 /* File flags are not inherited via accept() unlike another OSes. */ 1634 1635 fd_install(newfd, newfile); 1636 err = newfd; 1637 1638 out_put: 1639 fput_light(sock->file, fput_needed); 1640 out: 1641 return err; 1642 out_fd: 1643 fput(newfile); 1644 put_unused_fd(newfd); 1645 goto out_put; 1646 } 1647 1648 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1649 int __user *, upeer_addrlen) 1650 { 1651 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1652 } 1653 1654 /* 1655 * Attempt to connect to a socket with the server address. The address 1656 * is in user space so we verify it is OK and move it to kernel space. 1657 * 1658 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1659 * break bindings 1660 * 1661 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1662 * other SEQPACKET protocols that take time to connect() as it doesn't 1663 * include the -EINPROGRESS status for such sockets. 1664 */ 1665 1666 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1667 int, addrlen) 1668 { 1669 struct socket *sock; 1670 struct sockaddr_storage address; 1671 int err, fput_needed; 1672 1673 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1674 if (!sock) 1675 goto out; 1676 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1677 if (err < 0) 1678 goto out_put; 1679 1680 err = 1681 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1682 if (err) 1683 goto out_put; 1684 1685 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1686 sock->file->f_flags); 1687 out_put: 1688 fput_light(sock->file, fput_needed); 1689 out: 1690 return err; 1691 } 1692 1693 /* 1694 * Get the local address ('name') of a socket object. Move the obtained 1695 * name to user space. 1696 */ 1697 1698 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1699 int __user *, usockaddr_len) 1700 { 1701 struct socket *sock; 1702 struct sockaddr_storage address; 1703 int len, err, fput_needed; 1704 1705 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1706 if (!sock) 1707 goto out; 1708 1709 err = security_socket_getsockname(sock); 1710 if (err) 1711 goto out_put; 1712 1713 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1714 if (err) 1715 goto out_put; 1716 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1717 1718 out_put: 1719 fput_light(sock->file, fput_needed); 1720 out: 1721 return err; 1722 } 1723 1724 /* 1725 * Get the remote address ('name') of a socket object. Move the obtained 1726 * name to user space. 1727 */ 1728 1729 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1730 int __user *, usockaddr_len) 1731 { 1732 struct socket *sock; 1733 struct sockaddr_storage address; 1734 int len, err, fput_needed; 1735 1736 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1737 if (sock != NULL) { 1738 err = security_socket_getpeername(sock); 1739 if (err) { 1740 fput_light(sock->file, fput_needed); 1741 return err; 1742 } 1743 1744 err = 1745 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1746 1); 1747 if (!err) 1748 err = move_addr_to_user(&address, len, usockaddr, 1749 usockaddr_len); 1750 fput_light(sock->file, fput_needed); 1751 } 1752 return err; 1753 } 1754 1755 /* 1756 * Send a datagram to a given address. We move the address into kernel 1757 * space and check the user space data area is readable before invoking 1758 * the protocol. 1759 */ 1760 1761 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1762 unsigned int, flags, struct sockaddr __user *, addr, 1763 int, addr_len) 1764 { 1765 struct socket *sock; 1766 struct sockaddr_storage address; 1767 int err; 1768 struct msghdr msg; 1769 struct iovec iov; 1770 int fput_needed; 1771 1772 if (len > INT_MAX) 1773 len = INT_MAX; 1774 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1775 if (!sock) 1776 goto out; 1777 1778 iov.iov_base = buff; 1779 iov.iov_len = len; 1780 msg.msg_name = NULL; 1781 msg.msg_iov = &iov; 1782 msg.msg_iovlen = 1; 1783 msg.msg_control = NULL; 1784 msg.msg_controllen = 0; 1785 msg.msg_namelen = 0; 1786 if (addr) { 1787 err = move_addr_to_kernel(addr, addr_len, &address); 1788 if (err < 0) 1789 goto out_put; 1790 msg.msg_name = (struct sockaddr *)&address; 1791 msg.msg_namelen = addr_len; 1792 } 1793 if (sock->file->f_flags & O_NONBLOCK) 1794 flags |= MSG_DONTWAIT; 1795 msg.msg_flags = flags; 1796 err = sock_sendmsg(sock, &msg, len); 1797 1798 out_put: 1799 fput_light(sock->file, fput_needed); 1800 out: 1801 return err; 1802 } 1803 1804 /* 1805 * Send a datagram down a socket. 1806 */ 1807 1808 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1809 unsigned int, flags) 1810 { 1811 return sys_sendto(fd, buff, len, flags, NULL, 0); 1812 } 1813 1814 /* 1815 * Receive a frame from the socket and optionally record the address of the 1816 * sender. We verify the buffers are writable and if needed move the 1817 * sender address from kernel to user space. 1818 */ 1819 1820 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1821 unsigned int, flags, struct sockaddr __user *, addr, 1822 int __user *, addr_len) 1823 { 1824 struct socket *sock; 1825 struct iovec iov; 1826 struct msghdr msg; 1827 struct sockaddr_storage address; 1828 int err, err2; 1829 int fput_needed; 1830 1831 if (size > INT_MAX) 1832 size = INT_MAX; 1833 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1834 if (!sock) 1835 goto out; 1836 1837 msg.msg_control = NULL; 1838 msg.msg_controllen = 0; 1839 msg.msg_iovlen = 1; 1840 msg.msg_iov = &iov; 1841 iov.iov_len = size; 1842 iov.iov_base = ubuf; 1843 msg.msg_name = (struct sockaddr *)&address; 1844 msg.msg_namelen = sizeof(address); 1845 if (sock->file->f_flags & O_NONBLOCK) 1846 flags |= MSG_DONTWAIT; 1847 err = sock_recvmsg(sock, &msg, size, flags); 1848 1849 if (err >= 0 && addr != NULL) { 1850 err2 = move_addr_to_user(&address, 1851 msg.msg_namelen, addr, addr_len); 1852 if (err2 < 0) 1853 err = err2; 1854 } 1855 1856 fput_light(sock->file, fput_needed); 1857 out: 1858 return err; 1859 } 1860 1861 /* 1862 * Receive a datagram from a socket. 1863 */ 1864 1865 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1866 unsigned int flags) 1867 { 1868 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1869 } 1870 1871 /* 1872 * Set a socket option. Because we don't know the option lengths we have 1873 * to pass the user mode parameter for the protocols to sort out. 1874 */ 1875 1876 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1877 char __user *, optval, int, optlen) 1878 { 1879 int err, fput_needed; 1880 struct socket *sock; 1881 1882 if (optlen < 0) 1883 return -EINVAL; 1884 1885 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1886 if (sock != NULL) { 1887 err = security_socket_setsockopt(sock, level, optname); 1888 if (err) 1889 goto out_put; 1890 1891 if (level == SOL_SOCKET) 1892 err = 1893 sock_setsockopt(sock, level, optname, optval, 1894 optlen); 1895 else 1896 err = 1897 sock->ops->setsockopt(sock, level, optname, optval, 1898 optlen); 1899 out_put: 1900 fput_light(sock->file, fput_needed); 1901 } 1902 return err; 1903 } 1904 1905 /* 1906 * Get a socket option. Because we don't know the option lengths we have 1907 * to pass a user mode parameter for the protocols to sort out. 1908 */ 1909 1910 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1911 char __user *, optval, int __user *, optlen) 1912 { 1913 int err, fput_needed; 1914 struct socket *sock; 1915 1916 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1917 if (sock != NULL) { 1918 err = security_socket_getsockopt(sock, level, optname); 1919 if (err) 1920 goto out_put; 1921 1922 if (level == SOL_SOCKET) 1923 err = 1924 sock_getsockopt(sock, level, optname, optval, 1925 optlen); 1926 else 1927 err = 1928 sock->ops->getsockopt(sock, level, optname, optval, 1929 optlen); 1930 out_put: 1931 fput_light(sock->file, fput_needed); 1932 } 1933 return err; 1934 } 1935 1936 /* 1937 * Shutdown a socket. 1938 */ 1939 1940 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1941 { 1942 int err, fput_needed; 1943 struct socket *sock; 1944 1945 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1946 if (sock != NULL) { 1947 err = security_socket_shutdown(sock, how); 1948 if (!err) 1949 err = sock->ops->shutdown(sock, how); 1950 fput_light(sock->file, fput_needed); 1951 } 1952 return err; 1953 } 1954 1955 /* A couple of helpful macros for getting the address of the 32/64 bit 1956 * fields which are the same type (int / unsigned) on our platforms. 1957 */ 1958 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1959 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1960 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1961 1962 struct used_address { 1963 struct sockaddr_storage name; 1964 unsigned int name_len; 1965 }; 1966 1967 static int copy_msghdr_from_user(struct msghdr *kmsg, 1968 struct msghdr __user *umsg) 1969 { 1970 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr))) 1971 return -EFAULT; 1972 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1973 return -EINVAL; 1974 return 0; 1975 } 1976 1977 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1978 struct msghdr *msg_sys, unsigned int flags, 1979 struct used_address *used_address) 1980 { 1981 struct compat_msghdr __user *msg_compat = 1982 (struct compat_msghdr __user *)msg; 1983 struct sockaddr_storage address; 1984 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1985 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1986 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1987 /* 20 is size of ipv6_pktinfo */ 1988 unsigned char *ctl_buf = ctl; 1989 int err, ctl_len, total_len; 1990 1991 err = -EFAULT; 1992 if (MSG_CMSG_COMPAT & flags) { 1993 if (get_compat_msghdr(msg_sys, msg_compat)) 1994 return -EFAULT; 1995 } else { 1996 err = copy_msghdr_from_user(msg_sys, msg); 1997 if (err) 1998 return err; 1999 } 2000 2001 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2002 err = -EMSGSIZE; 2003 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2004 goto out; 2005 err = -ENOMEM; 2006 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2007 GFP_KERNEL); 2008 if (!iov) 2009 goto out; 2010 } 2011 2012 /* This will also move the address data into kernel space */ 2013 if (MSG_CMSG_COMPAT & flags) { 2014 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2015 } else 2016 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2017 if (err < 0) 2018 goto out_freeiov; 2019 total_len = err; 2020 2021 err = -ENOBUFS; 2022 2023 if (msg_sys->msg_controllen > INT_MAX) 2024 goto out_freeiov; 2025 ctl_len = msg_sys->msg_controllen; 2026 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2027 err = 2028 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2029 sizeof(ctl)); 2030 if (err) 2031 goto out_freeiov; 2032 ctl_buf = msg_sys->msg_control; 2033 ctl_len = msg_sys->msg_controllen; 2034 } else if (ctl_len) { 2035 if (ctl_len > sizeof(ctl)) { 2036 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2037 if (ctl_buf == NULL) 2038 goto out_freeiov; 2039 } 2040 err = -EFAULT; 2041 /* 2042 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2043 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2044 * checking falls down on this. 2045 */ 2046 if (copy_from_user(ctl_buf, 2047 (void __user __force *)msg_sys->msg_control, 2048 ctl_len)) 2049 goto out_freectl; 2050 msg_sys->msg_control = ctl_buf; 2051 } 2052 msg_sys->msg_flags = flags; 2053 2054 if (sock->file->f_flags & O_NONBLOCK) 2055 msg_sys->msg_flags |= MSG_DONTWAIT; 2056 /* 2057 * If this is sendmmsg() and current destination address is same as 2058 * previously succeeded address, omit asking LSM's decision. 2059 * used_address->name_len is initialized to UINT_MAX so that the first 2060 * destination address never matches. 2061 */ 2062 if (used_address && msg_sys->msg_name && 2063 used_address->name_len == msg_sys->msg_namelen && 2064 !memcmp(&used_address->name, msg_sys->msg_name, 2065 used_address->name_len)) { 2066 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2067 goto out_freectl; 2068 } 2069 err = sock_sendmsg(sock, msg_sys, total_len); 2070 /* 2071 * If this is sendmmsg() and sending to current destination address was 2072 * successful, remember it. 2073 */ 2074 if (used_address && err >= 0) { 2075 used_address->name_len = msg_sys->msg_namelen; 2076 if (msg_sys->msg_name) 2077 memcpy(&used_address->name, msg_sys->msg_name, 2078 used_address->name_len); 2079 } 2080 2081 out_freectl: 2082 if (ctl_buf != ctl) 2083 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2084 out_freeiov: 2085 if (iov != iovstack) 2086 kfree(iov); 2087 out: 2088 return err; 2089 } 2090 2091 /* 2092 * BSD sendmsg interface 2093 */ 2094 2095 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 2096 { 2097 int fput_needed, err; 2098 struct msghdr msg_sys; 2099 struct socket *sock; 2100 2101 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2102 if (!sock) 2103 goto out; 2104 2105 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2106 2107 fput_light(sock->file, fput_needed); 2108 out: 2109 return err; 2110 } 2111 2112 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2113 { 2114 if (flags & MSG_CMSG_COMPAT) 2115 return -EINVAL; 2116 return __sys_sendmsg(fd, msg, flags); 2117 } 2118 2119 /* 2120 * Linux sendmmsg interface 2121 */ 2122 2123 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2124 unsigned int flags) 2125 { 2126 int fput_needed, err, datagrams; 2127 struct socket *sock; 2128 struct mmsghdr __user *entry; 2129 struct compat_mmsghdr __user *compat_entry; 2130 struct msghdr msg_sys; 2131 struct used_address used_address; 2132 2133 if (vlen > UIO_MAXIOV) 2134 vlen = UIO_MAXIOV; 2135 2136 datagrams = 0; 2137 2138 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2139 if (!sock) 2140 return err; 2141 2142 used_address.name_len = UINT_MAX; 2143 entry = mmsg; 2144 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2145 err = 0; 2146 2147 while (datagrams < vlen) { 2148 if (MSG_CMSG_COMPAT & flags) { 2149 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2150 &msg_sys, flags, &used_address); 2151 if (err < 0) 2152 break; 2153 err = __put_user(err, &compat_entry->msg_len); 2154 ++compat_entry; 2155 } else { 2156 err = ___sys_sendmsg(sock, 2157 (struct msghdr __user *)entry, 2158 &msg_sys, flags, &used_address); 2159 if (err < 0) 2160 break; 2161 err = put_user(err, &entry->msg_len); 2162 ++entry; 2163 } 2164 2165 if (err) 2166 break; 2167 ++datagrams; 2168 } 2169 2170 fput_light(sock->file, fput_needed); 2171 2172 /* We only return an error if no datagrams were able to be sent */ 2173 if (datagrams != 0) 2174 return datagrams; 2175 2176 return err; 2177 } 2178 2179 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2180 unsigned int, vlen, unsigned int, flags) 2181 { 2182 if (flags & MSG_CMSG_COMPAT) 2183 return -EINVAL; 2184 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2185 } 2186 2187 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2188 struct msghdr *msg_sys, unsigned int flags, int nosec) 2189 { 2190 struct compat_msghdr __user *msg_compat = 2191 (struct compat_msghdr __user *)msg; 2192 struct iovec iovstack[UIO_FASTIOV]; 2193 struct iovec *iov = iovstack; 2194 unsigned long cmsg_ptr; 2195 int err, total_len, len; 2196 2197 /* kernel mode address */ 2198 struct sockaddr_storage addr; 2199 2200 /* user mode address pointers */ 2201 struct sockaddr __user *uaddr; 2202 int __user *uaddr_len; 2203 2204 if (MSG_CMSG_COMPAT & flags) { 2205 if (get_compat_msghdr(msg_sys, msg_compat)) 2206 return -EFAULT; 2207 } else { 2208 err = copy_msghdr_from_user(msg_sys, msg); 2209 if (err) 2210 return err; 2211 } 2212 2213 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2214 err = -EMSGSIZE; 2215 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2216 goto out; 2217 err = -ENOMEM; 2218 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2219 GFP_KERNEL); 2220 if (!iov) 2221 goto out; 2222 } 2223 2224 /* 2225 * Save the user-mode address (verify_iovec will change the 2226 * kernel msghdr to use the kernel address space) 2227 */ 2228 2229 uaddr = (__force void __user *)msg_sys->msg_name; 2230 uaddr_len = COMPAT_NAMELEN(msg); 2231 if (MSG_CMSG_COMPAT & flags) { 2232 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2233 } else 2234 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2235 if (err < 0) 2236 goto out_freeiov; 2237 total_len = err; 2238 2239 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2240 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2241 2242 if (sock->file->f_flags & O_NONBLOCK) 2243 flags |= MSG_DONTWAIT; 2244 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2245 total_len, flags); 2246 if (err < 0) 2247 goto out_freeiov; 2248 len = err; 2249 2250 if (uaddr != NULL) { 2251 err = move_addr_to_user(&addr, 2252 msg_sys->msg_namelen, uaddr, 2253 uaddr_len); 2254 if (err < 0) 2255 goto out_freeiov; 2256 } 2257 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2258 COMPAT_FLAGS(msg)); 2259 if (err) 2260 goto out_freeiov; 2261 if (MSG_CMSG_COMPAT & flags) 2262 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2263 &msg_compat->msg_controllen); 2264 else 2265 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2266 &msg->msg_controllen); 2267 if (err) 2268 goto out_freeiov; 2269 err = len; 2270 2271 out_freeiov: 2272 if (iov != iovstack) 2273 kfree(iov); 2274 out: 2275 return err; 2276 } 2277 2278 /* 2279 * BSD recvmsg interface 2280 */ 2281 2282 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags) 2283 { 2284 int fput_needed, err; 2285 struct msghdr msg_sys; 2286 struct socket *sock; 2287 2288 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2289 if (!sock) 2290 goto out; 2291 2292 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2293 2294 fput_light(sock->file, fput_needed); 2295 out: 2296 return err; 2297 } 2298 2299 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2300 unsigned int, flags) 2301 { 2302 if (flags & MSG_CMSG_COMPAT) 2303 return -EINVAL; 2304 return __sys_recvmsg(fd, msg, flags); 2305 } 2306 2307 /* 2308 * Linux recvmmsg interface 2309 */ 2310 2311 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2312 unsigned int flags, struct timespec *timeout) 2313 { 2314 int fput_needed, err, datagrams; 2315 struct socket *sock; 2316 struct mmsghdr __user *entry; 2317 struct compat_mmsghdr __user *compat_entry; 2318 struct msghdr msg_sys; 2319 struct timespec end_time; 2320 2321 if (timeout && 2322 poll_select_set_timeout(&end_time, timeout->tv_sec, 2323 timeout->tv_nsec)) 2324 return -EINVAL; 2325 2326 datagrams = 0; 2327 2328 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2329 if (!sock) 2330 return err; 2331 2332 err = sock_error(sock->sk); 2333 if (err) 2334 goto out_put; 2335 2336 entry = mmsg; 2337 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2338 2339 while (datagrams < vlen) { 2340 /* 2341 * No need to ask LSM for more than the first datagram. 2342 */ 2343 if (MSG_CMSG_COMPAT & flags) { 2344 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2345 &msg_sys, flags & ~MSG_WAITFORONE, 2346 datagrams); 2347 if (err < 0) 2348 break; 2349 err = __put_user(err, &compat_entry->msg_len); 2350 ++compat_entry; 2351 } else { 2352 err = ___sys_recvmsg(sock, 2353 (struct msghdr __user *)entry, 2354 &msg_sys, flags & ~MSG_WAITFORONE, 2355 datagrams); 2356 if (err < 0) 2357 break; 2358 err = put_user(err, &entry->msg_len); 2359 ++entry; 2360 } 2361 2362 if (err) 2363 break; 2364 ++datagrams; 2365 2366 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2367 if (flags & MSG_WAITFORONE) 2368 flags |= MSG_DONTWAIT; 2369 2370 if (timeout) { 2371 ktime_get_ts(timeout); 2372 *timeout = timespec_sub(end_time, *timeout); 2373 if (timeout->tv_sec < 0) { 2374 timeout->tv_sec = timeout->tv_nsec = 0; 2375 break; 2376 } 2377 2378 /* Timeout, return less than vlen datagrams */ 2379 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2380 break; 2381 } 2382 2383 /* Out of band data, return right away */ 2384 if (msg_sys.msg_flags & MSG_OOB) 2385 break; 2386 } 2387 2388 out_put: 2389 fput_light(sock->file, fput_needed); 2390 2391 if (err == 0) 2392 return datagrams; 2393 2394 if (datagrams != 0) { 2395 /* 2396 * We may return less entries than requested (vlen) if the 2397 * sock is non block and there aren't enough datagrams... 2398 */ 2399 if (err != -EAGAIN) { 2400 /* 2401 * ... or if recvmsg returns an error after we 2402 * received some datagrams, where we record the 2403 * error to return on the next call or if the 2404 * app asks about it using getsockopt(SO_ERROR). 2405 */ 2406 sock->sk->sk_err = -err; 2407 } 2408 2409 return datagrams; 2410 } 2411 2412 return err; 2413 } 2414 2415 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2416 unsigned int, vlen, unsigned int, flags, 2417 struct timespec __user *, timeout) 2418 { 2419 int datagrams; 2420 struct timespec timeout_sys; 2421 2422 if (flags & MSG_CMSG_COMPAT) 2423 return -EINVAL; 2424 2425 if (!timeout) 2426 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2427 2428 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2429 return -EFAULT; 2430 2431 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2432 2433 if (datagrams > 0 && 2434 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2435 datagrams = -EFAULT; 2436 2437 return datagrams; 2438 } 2439 2440 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2441 /* Argument list sizes for sys_socketcall */ 2442 #define AL(x) ((x) * sizeof(unsigned long)) 2443 static const unsigned char nargs[21] = { 2444 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2445 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2446 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2447 AL(4), AL(5), AL(4) 2448 }; 2449 2450 #undef AL 2451 2452 /* 2453 * System call vectors. 2454 * 2455 * Argument checking cleaned up. Saved 20% in size. 2456 * This function doesn't need to set the kernel lock because 2457 * it is set by the callees. 2458 */ 2459 2460 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2461 { 2462 unsigned long a[AUDITSC_ARGS]; 2463 unsigned long a0, a1; 2464 int err; 2465 unsigned int len; 2466 2467 if (call < 1 || call > SYS_SENDMMSG) 2468 return -EINVAL; 2469 2470 len = nargs[call]; 2471 if (len > sizeof(a)) 2472 return -EINVAL; 2473 2474 /* copy_from_user should be SMP safe. */ 2475 if (copy_from_user(a, args, len)) 2476 return -EFAULT; 2477 2478 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2479 if (err) 2480 return err; 2481 2482 a0 = a[0]; 2483 a1 = a[1]; 2484 2485 switch (call) { 2486 case SYS_SOCKET: 2487 err = sys_socket(a0, a1, a[2]); 2488 break; 2489 case SYS_BIND: 2490 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2491 break; 2492 case SYS_CONNECT: 2493 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2494 break; 2495 case SYS_LISTEN: 2496 err = sys_listen(a0, a1); 2497 break; 2498 case SYS_ACCEPT: 2499 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2500 (int __user *)a[2], 0); 2501 break; 2502 case SYS_GETSOCKNAME: 2503 err = 2504 sys_getsockname(a0, (struct sockaddr __user *)a1, 2505 (int __user *)a[2]); 2506 break; 2507 case SYS_GETPEERNAME: 2508 err = 2509 sys_getpeername(a0, (struct sockaddr __user *)a1, 2510 (int __user *)a[2]); 2511 break; 2512 case SYS_SOCKETPAIR: 2513 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2514 break; 2515 case SYS_SEND: 2516 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2517 break; 2518 case SYS_SENDTO: 2519 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2520 (struct sockaddr __user *)a[4], a[5]); 2521 break; 2522 case SYS_RECV: 2523 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2524 break; 2525 case SYS_RECVFROM: 2526 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2527 (struct sockaddr __user *)a[4], 2528 (int __user *)a[5]); 2529 break; 2530 case SYS_SHUTDOWN: 2531 err = sys_shutdown(a0, a1); 2532 break; 2533 case SYS_SETSOCKOPT: 2534 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2535 break; 2536 case SYS_GETSOCKOPT: 2537 err = 2538 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2539 (int __user *)a[4]); 2540 break; 2541 case SYS_SENDMSG: 2542 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2543 break; 2544 case SYS_SENDMMSG: 2545 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2546 break; 2547 case SYS_RECVMSG: 2548 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2549 break; 2550 case SYS_RECVMMSG: 2551 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2552 (struct timespec __user *)a[4]); 2553 break; 2554 case SYS_ACCEPT4: 2555 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2556 (int __user *)a[2], a[3]); 2557 break; 2558 default: 2559 err = -EINVAL; 2560 break; 2561 } 2562 return err; 2563 } 2564 2565 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2566 2567 /** 2568 * sock_register - add a socket protocol handler 2569 * @ops: description of protocol 2570 * 2571 * This function is called by a protocol handler that wants to 2572 * advertise its address family, and have it linked into the 2573 * socket interface. The value ops->family coresponds to the 2574 * socket system call protocol family. 2575 */ 2576 int sock_register(const struct net_proto_family *ops) 2577 { 2578 int err; 2579 2580 if (ops->family >= NPROTO) { 2581 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2582 NPROTO); 2583 return -ENOBUFS; 2584 } 2585 2586 spin_lock(&net_family_lock); 2587 if (rcu_dereference_protected(net_families[ops->family], 2588 lockdep_is_held(&net_family_lock))) 2589 err = -EEXIST; 2590 else { 2591 rcu_assign_pointer(net_families[ops->family], ops); 2592 err = 0; 2593 } 2594 spin_unlock(&net_family_lock); 2595 2596 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2597 return err; 2598 } 2599 EXPORT_SYMBOL(sock_register); 2600 2601 /** 2602 * sock_unregister - remove a protocol handler 2603 * @family: protocol family to remove 2604 * 2605 * This function is called by a protocol handler that wants to 2606 * remove its address family, and have it unlinked from the 2607 * new socket creation. 2608 * 2609 * If protocol handler is a module, then it can use module reference 2610 * counts to protect against new references. If protocol handler is not 2611 * a module then it needs to provide its own protection in 2612 * the ops->create routine. 2613 */ 2614 void sock_unregister(int family) 2615 { 2616 BUG_ON(family < 0 || family >= NPROTO); 2617 2618 spin_lock(&net_family_lock); 2619 RCU_INIT_POINTER(net_families[family], NULL); 2620 spin_unlock(&net_family_lock); 2621 2622 synchronize_rcu(); 2623 2624 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2625 } 2626 EXPORT_SYMBOL(sock_unregister); 2627 2628 static int __init sock_init(void) 2629 { 2630 int err; 2631 /* 2632 * Initialize the network sysctl infrastructure. 2633 */ 2634 err = net_sysctl_init(); 2635 if (err) 2636 goto out; 2637 2638 /* 2639 * Initialize skbuff SLAB cache 2640 */ 2641 skb_init(); 2642 2643 /* 2644 * Initialize the protocols module. 2645 */ 2646 2647 init_inodecache(); 2648 2649 err = register_filesystem(&sock_fs_type); 2650 if (err) 2651 goto out_fs; 2652 sock_mnt = kern_mount(&sock_fs_type); 2653 if (IS_ERR(sock_mnt)) { 2654 err = PTR_ERR(sock_mnt); 2655 goto out_mount; 2656 } 2657 2658 /* The real protocol initialization is performed in later initcalls. 2659 */ 2660 2661 #ifdef CONFIG_NETFILTER 2662 err = netfilter_init(); 2663 if (err) 2664 goto out; 2665 #endif 2666 2667 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2668 skb_timestamping_init(); 2669 #endif 2670 2671 out: 2672 return err; 2673 2674 out_mount: 2675 unregister_filesystem(&sock_fs_type); 2676 out_fs: 2677 goto out; 2678 } 2679 2680 core_initcall(sock_init); /* early initcall */ 2681 2682 #ifdef CONFIG_PROC_FS 2683 void socket_seq_show(struct seq_file *seq) 2684 { 2685 int cpu; 2686 int counter = 0; 2687 2688 for_each_possible_cpu(cpu) 2689 counter += per_cpu(sockets_in_use, cpu); 2690 2691 /* It can be negative, by the way. 8) */ 2692 if (counter < 0) 2693 counter = 0; 2694 2695 seq_printf(seq, "sockets: used %d\n", counter); 2696 } 2697 #endif /* CONFIG_PROC_FS */ 2698 2699 #ifdef CONFIG_COMPAT 2700 static int do_siocgstamp(struct net *net, struct socket *sock, 2701 unsigned int cmd, void __user *up) 2702 { 2703 mm_segment_t old_fs = get_fs(); 2704 struct timeval ktv; 2705 int err; 2706 2707 set_fs(KERNEL_DS); 2708 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2709 set_fs(old_fs); 2710 if (!err) 2711 err = compat_put_timeval(&ktv, up); 2712 2713 return err; 2714 } 2715 2716 static int do_siocgstampns(struct net *net, struct socket *sock, 2717 unsigned int cmd, void __user *up) 2718 { 2719 mm_segment_t old_fs = get_fs(); 2720 struct timespec kts; 2721 int err; 2722 2723 set_fs(KERNEL_DS); 2724 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2725 set_fs(old_fs); 2726 if (!err) 2727 err = compat_put_timespec(&kts, up); 2728 2729 return err; 2730 } 2731 2732 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2733 { 2734 struct ifreq __user *uifr; 2735 int err; 2736 2737 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2738 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2739 return -EFAULT; 2740 2741 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2742 if (err) 2743 return err; 2744 2745 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2746 return -EFAULT; 2747 2748 return 0; 2749 } 2750 2751 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2752 { 2753 struct compat_ifconf ifc32; 2754 struct ifconf ifc; 2755 struct ifconf __user *uifc; 2756 struct compat_ifreq __user *ifr32; 2757 struct ifreq __user *ifr; 2758 unsigned int i, j; 2759 int err; 2760 2761 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2762 return -EFAULT; 2763 2764 memset(&ifc, 0, sizeof(ifc)); 2765 if (ifc32.ifcbuf == 0) { 2766 ifc32.ifc_len = 0; 2767 ifc.ifc_len = 0; 2768 ifc.ifc_req = NULL; 2769 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2770 } else { 2771 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2772 sizeof(struct ifreq); 2773 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2774 ifc.ifc_len = len; 2775 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2776 ifr32 = compat_ptr(ifc32.ifcbuf); 2777 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2778 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2779 return -EFAULT; 2780 ifr++; 2781 ifr32++; 2782 } 2783 } 2784 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2785 return -EFAULT; 2786 2787 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2788 if (err) 2789 return err; 2790 2791 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2792 return -EFAULT; 2793 2794 ifr = ifc.ifc_req; 2795 ifr32 = compat_ptr(ifc32.ifcbuf); 2796 for (i = 0, j = 0; 2797 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2798 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2799 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2800 return -EFAULT; 2801 ifr32++; 2802 ifr++; 2803 } 2804 2805 if (ifc32.ifcbuf == 0) { 2806 /* Translate from 64-bit structure multiple to 2807 * a 32-bit one. 2808 */ 2809 i = ifc.ifc_len; 2810 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2811 ifc32.ifc_len = i; 2812 } else { 2813 ifc32.ifc_len = i; 2814 } 2815 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2816 return -EFAULT; 2817 2818 return 0; 2819 } 2820 2821 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2822 { 2823 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2824 bool convert_in = false, convert_out = false; 2825 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2826 struct ethtool_rxnfc __user *rxnfc; 2827 struct ifreq __user *ifr; 2828 u32 rule_cnt = 0, actual_rule_cnt; 2829 u32 ethcmd; 2830 u32 data; 2831 int ret; 2832 2833 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2834 return -EFAULT; 2835 2836 compat_rxnfc = compat_ptr(data); 2837 2838 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2839 return -EFAULT; 2840 2841 /* Most ethtool structures are defined without padding. 2842 * Unfortunately struct ethtool_rxnfc is an exception. 2843 */ 2844 switch (ethcmd) { 2845 default: 2846 break; 2847 case ETHTOOL_GRXCLSRLALL: 2848 /* Buffer size is variable */ 2849 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2850 return -EFAULT; 2851 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2852 return -ENOMEM; 2853 buf_size += rule_cnt * sizeof(u32); 2854 /* fall through */ 2855 case ETHTOOL_GRXRINGS: 2856 case ETHTOOL_GRXCLSRLCNT: 2857 case ETHTOOL_GRXCLSRULE: 2858 case ETHTOOL_SRXCLSRLINS: 2859 convert_out = true; 2860 /* fall through */ 2861 case ETHTOOL_SRXCLSRLDEL: 2862 buf_size += sizeof(struct ethtool_rxnfc); 2863 convert_in = true; 2864 break; 2865 } 2866 2867 ifr = compat_alloc_user_space(buf_size); 2868 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2869 2870 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2871 return -EFAULT; 2872 2873 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2874 &ifr->ifr_ifru.ifru_data)) 2875 return -EFAULT; 2876 2877 if (convert_in) { 2878 /* We expect there to be holes between fs.m_ext and 2879 * fs.ring_cookie and at the end of fs, but nowhere else. 2880 */ 2881 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2882 sizeof(compat_rxnfc->fs.m_ext) != 2883 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2884 sizeof(rxnfc->fs.m_ext)); 2885 BUILD_BUG_ON( 2886 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2887 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2888 offsetof(struct ethtool_rxnfc, fs.location) - 2889 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2890 2891 if (copy_in_user(rxnfc, compat_rxnfc, 2892 (void __user *)(&rxnfc->fs.m_ext + 1) - 2893 (void __user *)rxnfc) || 2894 copy_in_user(&rxnfc->fs.ring_cookie, 2895 &compat_rxnfc->fs.ring_cookie, 2896 (void __user *)(&rxnfc->fs.location + 1) - 2897 (void __user *)&rxnfc->fs.ring_cookie) || 2898 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2899 sizeof(rxnfc->rule_cnt))) 2900 return -EFAULT; 2901 } 2902 2903 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2904 if (ret) 2905 return ret; 2906 2907 if (convert_out) { 2908 if (copy_in_user(compat_rxnfc, rxnfc, 2909 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2910 (const void __user *)rxnfc) || 2911 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2912 &rxnfc->fs.ring_cookie, 2913 (const void __user *)(&rxnfc->fs.location + 1) - 2914 (const void __user *)&rxnfc->fs.ring_cookie) || 2915 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2916 sizeof(rxnfc->rule_cnt))) 2917 return -EFAULT; 2918 2919 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2920 /* As an optimisation, we only copy the actual 2921 * number of rules that the underlying 2922 * function returned. Since Mallory might 2923 * change the rule count in user memory, we 2924 * check that it is less than the rule count 2925 * originally given (as the user buffer size), 2926 * which has been range-checked. 2927 */ 2928 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2929 return -EFAULT; 2930 if (actual_rule_cnt < rule_cnt) 2931 rule_cnt = actual_rule_cnt; 2932 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2933 &rxnfc->rule_locs[0], 2934 rule_cnt * sizeof(u32))) 2935 return -EFAULT; 2936 } 2937 } 2938 2939 return 0; 2940 } 2941 2942 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2943 { 2944 void __user *uptr; 2945 compat_uptr_t uptr32; 2946 struct ifreq __user *uifr; 2947 2948 uifr = compat_alloc_user_space(sizeof(*uifr)); 2949 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2950 return -EFAULT; 2951 2952 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2953 return -EFAULT; 2954 2955 uptr = compat_ptr(uptr32); 2956 2957 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2958 return -EFAULT; 2959 2960 return dev_ioctl(net, SIOCWANDEV, uifr); 2961 } 2962 2963 static int bond_ioctl(struct net *net, unsigned int cmd, 2964 struct compat_ifreq __user *ifr32) 2965 { 2966 struct ifreq kifr; 2967 struct ifreq __user *uifr; 2968 mm_segment_t old_fs; 2969 int err; 2970 u32 data; 2971 void __user *datap; 2972 2973 switch (cmd) { 2974 case SIOCBONDENSLAVE: 2975 case SIOCBONDRELEASE: 2976 case SIOCBONDSETHWADDR: 2977 case SIOCBONDCHANGEACTIVE: 2978 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2979 return -EFAULT; 2980 2981 old_fs = get_fs(); 2982 set_fs(KERNEL_DS); 2983 err = dev_ioctl(net, cmd, 2984 (struct ifreq __user __force *) &kifr); 2985 set_fs(old_fs); 2986 2987 return err; 2988 case SIOCBONDSLAVEINFOQUERY: 2989 case SIOCBONDINFOQUERY: 2990 uifr = compat_alloc_user_space(sizeof(*uifr)); 2991 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2992 return -EFAULT; 2993 2994 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2995 return -EFAULT; 2996 2997 datap = compat_ptr(data); 2998 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2999 return -EFAULT; 3000 3001 return dev_ioctl(net, cmd, uifr); 3002 default: 3003 return -ENOIOCTLCMD; 3004 } 3005 } 3006 3007 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 3008 struct compat_ifreq __user *u_ifreq32) 3009 { 3010 struct ifreq __user *u_ifreq64; 3011 char tmp_buf[IFNAMSIZ]; 3012 void __user *data64; 3013 u32 data32; 3014 3015 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 3016 IFNAMSIZ)) 3017 return -EFAULT; 3018 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 3019 return -EFAULT; 3020 data64 = compat_ptr(data32); 3021 3022 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 3023 3024 /* Don't check these user accesses, just let that get trapped 3025 * in the ioctl handler instead. 3026 */ 3027 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3028 IFNAMSIZ)) 3029 return -EFAULT; 3030 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3031 return -EFAULT; 3032 3033 return dev_ioctl(net, cmd, u_ifreq64); 3034 } 3035 3036 static int dev_ifsioc(struct net *net, struct socket *sock, 3037 unsigned int cmd, struct compat_ifreq __user *uifr32) 3038 { 3039 struct ifreq __user *uifr; 3040 int err; 3041 3042 uifr = compat_alloc_user_space(sizeof(*uifr)); 3043 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3044 return -EFAULT; 3045 3046 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3047 3048 if (!err) { 3049 switch (cmd) { 3050 case SIOCGIFFLAGS: 3051 case SIOCGIFMETRIC: 3052 case SIOCGIFMTU: 3053 case SIOCGIFMEM: 3054 case SIOCGIFHWADDR: 3055 case SIOCGIFINDEX: 3056 case SIOCGIFADDR: 3057 case SIOCGIFBRDADDR: 3058 case SIOCGIFDSTADDR: 3059 case SIOCGIFNETMASK: 3060 case SIOCGIFPFLAGS: 3061 case SIOCGIFTXQLEN: 3062 case SIOCGMIIPHY: 3063 case SIOCGMIIREG: 3064 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3065 err = -EFAULT; 3066 break; 3067 } 3068 } 3069 return err; 3070 } 3071 3072 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3073 struct compat_ifreq __user *uifr32) 3074 { 3075 struct ifreq ifr; 3076 struct compat_ifmap __user *uifmap32; 3077 mm_segment_t old_fs; 3078 int err; 3079 3080 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3081 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3082 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3083 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3084 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3085 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3086 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3087 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3088 if (err) 3089 return -EFAULT; 3090 3091 old_fs = get_fs(); 3092 set_fs(KERNEL_DS); 3093 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3094 set_fs(old_fs); 3095 3096 if (cmd == SIOCGIFMAP && !err) { 3097 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3098 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3099 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3100 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3101 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3102 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3103 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3104 if (err) 3105 err = -EFAULT; 3106 } 3107 return err; 3108 } 3109 3110 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 3111 { 3112 void __user *uptr; 3113 compat_uptr_t uptr32; 3114 struct ifreq __user *uifr; 3115 3116 uifr = compat_alloc_user_space(sizeof(*uifr)); 3117 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 3118 return -EFAULT; 3119 3120 if (get_user(uptr32, &uifr32->ifr_data)) 3121 return -EFAULT; 3122 3123 uptr = compat_ptr(uptr32); 3124 3125 if (put_user(uptr, &uifr->ifr_data)) 3126 return -EFAULT; 3127 3128 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 3129 } 3130 3131 struct rtentry32 { 3132 u32 rt_pad1; 3133 struct sockaddr rt_dst; /* target address */ 3134 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3135 struct sockaddr rt_genmask; /* target network mask (IP) */ 3136 unsigned short rt_flags; 3137 short rt_pad2; 3138 u32 rt_pad3; 3139 unsigned char rt_tos; 3140 unsigned char rt_class; 3141 short rt_pad4; 3142 short rt_metric; /* +1 for binary compatibility! */ 3143 /* char * */ u32 rt_dev; /* forcing the device at add */ 3144 u32 rt_mtu; /* per route MTU/Window */ 3145 u32 rt_window; /* Window clamping */ 3146 unsigned short rt_irtt; /* Initial RTT */ 3147 }; 3148 3149 struct in6_rtmsg32 { 3150 struct in6_addr rtmsg_dst; 3151 struct in6_addr rtmsg_src; 3152 struct in6_addr rtmsg_gateway; 3153 u32 rtmsg_type; 3154 u16 rtmsg_dst_len; 3155 u16 rtmsg_src_len; 3156 u32 rtmsg_metric; 3157 u32 rtmsg_info; 3158 u32 rtmsg_flags; 3159 s32 rtmsg_ifindex; 3160 }; 3161 3162 static int routing_ioctl(struct net *net, struct socket *sock, 3163 unsigned int cmd, void __user *argp) 3164 { 3165 int ret; 3166 void *r = NULL; 3167 struct in6_rtmsg r6; 3168 struct rtentry r4; 3169 char devname[16]; 3170 u32 rtdev; 3171 mm_segment_t old_fs = get_fs(); 3172 3173 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3174 struct in6_rtmsg32 __user *ur6 = argp; 3175 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3176 3 * sizeof(struct in6_addr)); 3177 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3178 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3179 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3180 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3181 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3182 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3183 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3184 3185 r = (void *) &r6; 3186 } else { /* ipv4 */ 3187 struct rtentry32 __user *ur4 = argp; 3188 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3189 3 * sizeof(struct sockaddr)); 3190 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3191 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3192 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3193 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3194 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3195 ret |= get_user(rtdev, &(ur4->rt_dev)); 3196 if (rtdev) { 3197 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3198 r4.rt_dev = (char __user __force *)devname; 3199 devname[15] = 0; 3200 } else 3201 r4.rt_dev = NULL; 3202 3203 r = (void *) &r4; 3204 } 3205 3206 if (ret) { 3207 ret = -EFAULT; 3208 goto out; 3209 } 3210 3211 set_fs(KERNEL_DS); 3212 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3213 set_fs(old_fs); 3214 3215 out: 3216 return ret; 3217 } 3218 3219 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3220 * for some operations; this forces use of the newer bridge-utils that 3221 * use compatible ioctls 3222 */ 3223 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3224 { 3225 compat_ulong_t tmp; 3226 3227 if (get_user(tmp, argp)) 3228 return -EFAULT; 3229 if (tmp == BRCTL_GET_VERSION) 3230 return BRCTL_VERSION + 1; 3231 return -EINVAL; 3232 } 3233 3234 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3235 unsigned int cmd, unsigned long arg) 3236 { 3237 void __user *argp = compat_ptr(arg); 3238 struct sock *sk = sock->sk; 3239 struct net *net = sock_net(sk); 3240 3241 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3242 return siocdevprivate_ioctl(net, cmd, argp); 3243 3244 switch (cmd) { 3245 case SIOCSIFBR: 3246 case SIOCGIFBR: 3247 return old_bridge_ioctl(argp); 3248 case SIOCGIFNAME: 3249 return dev_ifname32(net, argp); 3250 case SIOCGIFCONF: 3251 return dev_ifconf(net, argp); 3252 case SIOCETHTOOL: 3253 return ethtool_ioctl(net, argp); 3254 case SIOCWANDEV: 3255 return compat_siocwandev(net, argp); 3256 case SIOCGIFMAP: 3257 case SIOCSIFMAP: 3258 return compat_sioc_ifmap(net, cmd, argp); 3259 case SIOCBONDENSLAVE: 3260 case SIOCBONDRELEASE: 3261 case SIOCBONDSETHWADDR: 3262 case SIOCBONDSLAVEINFOQUERY: 3263 case SIOCBONDINFOQUERY: 3264 case SIOCBONDCHANGEACTIVE: 3265 return bond_ioctl(net, cmd, argp); 3266 case SIOCADDRT: 3267 case SIOCDELRT: 3268 return routing_ioctl(net, sock, cmd, argp); 3269 case SIOCGSTAMP: 3270 return do_siocgstamp(net, sock, cmd, argp); 3271 case SIOCGSTAMPNS: 3272 return do_siocgstampns(net, sock, cmd, argp); 3273 case SIOCSHWTSTAMP: 3274 return compat_siocshwtstamp(net, argp); 3275 3276 case FIOSETOWN: 3277 case SIOCSPGRP: 3278 case FIOGETOWN: 3279 case SIOCGPGRP: 3280 case SIOCBRADDBR: 3281 case SIOCBRDELBR: 3282 case SIOCGIFVLAN: 3283 case SIOCSIFVLAN: 3284 case SIOCADDDLCI: 3285 case SIOCDELDLCI: 3286 return sock_ioctl(file, cmd, arg); 3287 3288 case SIOCGIFFLAGS: 3289 case SIOCSIFFLAGS: 3290 case SIOCGIFMETRIC: 3291 case SIOCSIFMETRIC: 3292 case SIOCGIFMTU: 3293 case SIOCSIFMTU: 3294 case SIOCGIFMEM: 3295 case SIOCSIFMEM: 3296 case SIOCGIFHWADDR: 3297 case SIOCSIFHWADDR: 3298 case SIOCADDMULTI: 3299 case SIOCDELMULTI: 3300 case SIOCGIFINDEX: 3301 case SIOCGIFADDR: 3302 case SIOCSIFADDR: 3303 case SIOCSIFHWBROADCAST: 3304 case SIOCDIFADDR: 3305 case SIOCGIFBRDADDR: 3306 case SIOCSIFBRDADDR: 3307 case SIOCGIFDSTADDR: 3308 case SIOCSIFDSTADDR: 3309 case SIOCGIFNETMASK: 3310 case SIOCSIFNETMASK: 3311 case SIOCSIFPFLAGS: 3312 case SIOCGIFPFLAGS: 3313 case SIOCGIFTXQLEN: 3314 case SIOCSIFTXQLEN: 3315 case SIOCBRADDIF: 3316 case SIOCBRDELIF: 3317 case SIOCSIFNAME: 3318 case SIOCGMIIPHY: 3319 case SIOCGMIIREG: 3320 case SIOCSMIIREG: 3321 return dev_ifsioc(net, sock, cmd, argp); 3322 3323 case SIOCSARP: 3324 case SIOCGARP: 3325 case SIOCDARP: 3326 case SIOCATMARK: 3327 return sock_do_ioctl(net, sock, cmd, arg); 3328 } 3329 3330 return -ENOIOCTLCMD; 3331 } 3332 3333 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3334 unsigned long arg) 3335 { 3336 struct socket *sock = file->private_data; 3337 int ret = -ENOIOCTLCMD; 3338 struct sock *sk; 3339 struct net *net; 3340 3341 sk = sock->sk; 3342 net = sock_net(sk); 3343 3344 if (sock->ops->compat_ioctl) 3345 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3346 3347 if (ret == -ENOIOCTLCMD && 3348 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3349 ret = compat_wext_handle_ioctl(net, cmd, arg); 3350 3351 if (ret == -ENOIOCTLCMD) 3352 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3353 3354 return ret; 3355 } 3356 #endif 3357 3358 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3359 { 3360 return sock->ops->bind(sock, addr, addrlen); 3361 } 3362 EXPORT_SYMBOL(kernel_bind); 3363 3364 int kernel_listen(struct socket *sock, int backlog) 3365 { 3366 return sock->ops->listen(sock, backlog); 3367 } 3368 EXPORT_SYMBOL(kernel_listen); 3369 3370 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3371 { 3372 struct sock *sk = sock->sk; 3373 int err; 3374 3375 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3376 newsock); 3377 if (err < 0) 3378 goto done; 3379 3380 err = sock->ops->accept(sock, *newsock, flags); 3381 if (err < 0) { 3382 sock_release(*newsock); 3383 *newsock = NULL; 3384 goto done; 3385 } 3386 3387 (*newsock)->ops = sock->ops; 3388 __module_get((*newsock)->ops->owner); 3389 3390 done: 3391 return err; 3392 } 3393 EXPORT_SYMBOL(kernel_accept); 3394 3395 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3396 int flags) 3397 { 3398 return sock->ops->connect(sock, addr, addrlen, flags); 3399 } 3400 EXPORT_SYMBOL(kernel_connect); 3401 3402 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3403 int *addrlen) 3404 { 3405 return sock->ops->getname(sock, addr, addrlen, 0); 3406 } 3407 EXPORT_SYMBOL(kernel_getsockname); 3408 3409 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3410 int *addrlen) 3411 { 3412 return sock->ops->getname(sock, addr, addrlen, 1); 3413 } 3414 EXPORT_SYMBOL(kernel_getpeername); 3415 3416 int kernel_getsockopt(struct socket *sock, int level, int optname, 3417 char *optval, int *optlen) 3418 { 3419 mm_segment_t oldfs = get_fs(); 3420 char __user *uoptval; 3421 int __user *uoptlen; 3422 int err; 3423 3424 uoptval = (char __user __force *) optval; 3425 uoptlen = (int __user __force *) optlen; 3426 3427 set_fs(KERNEL_DS); 3428 if (level == SOL_SOCKET) 3429 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3430 else 3431 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3432 uoptlen); 3433 set_fs(oldfs); 3434 return err; 3435 } 3436 EXPORT_SYMBOL(kernel_getsockopt); 3437 3438 int kernel_setsockopt(struct socket *sock, int level, int optname, 3439 char *optval, unsigned int optlen) 3440 { 3441 mm_segment_t oldfs = get_fs(); 3442 char __user *uoptval; 3443 int err; 3444 3445 uoptval = (char __user __force *) optval; 3446 3447 set_fs(KERNEL_DS); 3448 if (level == SOL_SOCKET) 3449 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3450 else 3451 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3452 optlen); 3453 set_fs(oldfs); 3454 return err; 3455 } 3456 EXPORT_SYMBOL(kernel_setsockopt); 3457 3458 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3459 size_t size, int flags) 3460 { 3461 if (sock->ops->sendpage) 3462 return sock->ops->sendpage(sock, page, offset, size, flags); 3463 3464 return sock_no_sendpage(sock, page, offset, size, flags); 3465 } 3466 EXPORT_SYMBOL(kernel_sendpage); 3467 3468 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3469 { 3470 mm_segment_t oldfs = get_fs(); 3471 int err; 3472 3473 set_fs(KERNEL_DS); 3474 err = sock->ops->ioctl(sock, cmd, arg); 3475 set_fs(oldfs); 3476 3477 return err; 3478 } 3479 EXPORT_SYMBOL(kernel_sock_ioctl); 3480 3481 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3482 { 3483 return sock->ops->shutdown(sock, how); 3484 } 3485 EXPORT_SYMBOL(kernel_sock_shutdown); 3486