xref: /openbmc/linux/net/socket.c (revision 113094f7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/security.h>
77 #include <linux/syscalls.h>
78 #include <linux/compat.h>
79 #include <linux/kmod.h>
80 #include <linux/audit.h>
81 #include <linux/wireless.h>
82 #include <linux/nsproxy.h>
83 #include <linux/magic.h>
84 #include <linux/slab.h>
85 #include <linux/xattr.h>
86 #include <linux/nospec.h>
87 #include <linux/indirect_call_wrapper.h>
88 
89 #include <linux/uaccess.h>
90 #include <asm/unistd.h>
91 
92 #include <net/compat.h>
93 #include <net/wext.h>
94 #include <net/cls_cgroup.h>
95 
96 #include <net/sock.h>
97 #include <linux/netfilter.h>
98 
99 #include <linux/if_tun.h>
100 #include <linux/ipv6_route.h>
101 #include <linux/route.h>
102 #include <linux/sockios.h>
103 #include <net/busy_poll.h>
104 #include <linux/errqueue.h>
105 
106 #ifdef CONFIG_NET_RX_BUSY_POLL
107 unsigned int sysctl_net_busy_read __read_mostly;
108 unsigned int sysctl_net_busy_poll __read_mostly;
109 #endif
110 
111 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
112 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static __poll_t sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.read_iter =	sock_read_iter,
139 	.write_iter =	sock_write_iter,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.release =	sock_close,
147 	.fasync =	sock_fasync,
148 	.sendpage =	sock_sendpage,
149 	.splice_write = generic_splice_sendpage,
150 	.splice_read =	sock_splice_read,
151 };
152 
153 /*
154  *	The protocol list. Each protocol is registered in here.
155  */
156 
157 static DEFINE_SPINLOCK(net_family_lock);
158 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
159 
160 /*
161  * Support routines.
162  * Move socket addresses back and forth across the kernel/user
163  * divide and look after the messy bits.
164  */
165 
166 /**
167  *	move_addr_to_kernel	-	copy a socket address into kernel space
168  *	@uaddr: Address in user space
169  *	@kaddr: Address in kernel space
170  *	@ulen: Length in user space
171  *
172  *	The address is copied into kernel space. If the provided address is
173  *	too long an error code of -EINVAL is returned. If the copy gives
174  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
175  */
176 
177 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
178 {
179 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
180 		return -EINVAL;
181 	if (ulen == 0)
182 		return 0;
183 	if (copy_from_user(kaddr, uaddr, ulen))
184 		return -EFAULT;
185 	return audit_sockaddr(ulen, kaddr);
186 }
187 
188 /**
189  *	move_addr_to_user	-	copy an address to user space
190  *	@kaddr: kernel space address
191  *	@klen: length of address in kernel
192  *	@uaddr: user space address
193  *	@ulen: pointer to user length field
194  *
195  *	The value pointed to by ulen on entry is the buffer length available.
196  *	This is overwritten with the buffer space used. -EINVAL is returned
197  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
198  *	is returned if either the buffer or the length field are not
199  *	accessible.
200  *	After copying the data up to the limit the user specifies, the true
201  *	length of the data is written over the length limit the user
202  *	specified. Zero is returned for a success.
203  */
204 
205 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
206 			     void __user *uaddr, int __user *ulen)
207 {
208 	int err;
209 	int len;
210 
211 	BUG_ON(klen > sizeof(struct sockaddr_storage));
212 	err = get_user(len, ulen);
213 	if (err)
214 		return err;
215 	if (len > klen)
216 		len = klen;
217 	if (len < 0)
218 		return -EINVAL;
219 	if (len) {
220 		if (audit_sockaddr(klen, kaddr))
221 			return -ENOMEM;
222 		if (copy_to_user(uaddr, kaddr, len))
223 			return -EFAULT;
224 	}
225 	/*
226 	 *      "fromlen shall refer to the value before truncation.."
227 	 *                      1003.1g
228 	 */
229 	return __put_user(klen, ulen);
230 }
231 
232 static struct kmem_cache *sock_inode_cachep __ro_after_init;
233 
234 static struct inode *sock_alloc_inode(struct super_block *sb)
235 {
236 	struct socket_alloc *ei;
237 
238 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
239 	if (!ei)
240 		return NULL;
241 	init_waitqueue_head(&ei->socket.wq.wait);
242 	ei->socket.wq.fasync_list = NULL;
243 	ei->socket.wq.flags = 0;
244 
245 	ei->socket.state = SS_UNCONNECTED;
246 	ei->socket.flags = 0;
247 	ei->socket.ops = NULL;
248 	ei->socket.sk = NULL;
249 	ei->socket.file = NULL;
250 
251 	return &ei->vfs_inode;
252 }
253 
254 static void sock_free_inode(struct inode *inode)
255 {
256 	struct socket_alloc *ei;
257 
258 	ei = container_of(inode, struct socket_alloc, vfs_inode);
259 	kmem_cache_free(sock_inode_cachep, ei);
260 }
261 
262 static void init_once(void *foo)
263 {
264 	struct socket_alloc *ei = (struct socket_alloc *)foo;
265 
266 	inode_init_once(&ei->vfs_inode);
267 }
268 
269 static void init_inodecache(void)
270 {
271 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
272 					      sizeof(struct socket_alloc),
273 					      0,
274 					      (SLAB_HWCACHE_ALIGN |
275 					       SLAB_RECLAIM_ACCOUNT |
276 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
277 					      init_once);
278 	BUG_ON(sock_inode_cachep == NULL);
279 }
280 
281 static const struct super_operations sockfs_ops = {
282 	.alloc_inode	= sock_alloc_inode,
283 	.free_inode	= sock_free_inode,
284 	.statfs		= simple_statfs,
285 };
286 
287 /*
288  * sockfs_dname() is called from d_path().
289  */
290 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
291 {
292 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
293 				d_inode(dentry)->i_ino);
294 }
295 
296 static const struct dentry_operations sockfs_dentry_operations = {
297 	.d_dname  = sockfs_dname,
298 };
299 
300 static int sockfs_xattr_get(const struct xattr_handler *handler,
301 			    struct dentry *dentry, struct inode *inode,
302 			    const char *suffix, void *value, size_t size)
303 {
304 	if (value) {
305 		if (dentry->d_name.len + 1 > size)
306 			return -ERANGE;
307 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
308 	}
309 	return dentry->d_name.len + 1;
310 }
311 
312 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
313 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
314 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
315 
316 static const struct xattr_handler sockfs_xattr_handler = {
317 	.name = XATTR_NAME_SOCKPROTONAME,
318 	.get = sockfs_xattr_get,
319 };
320 
321 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
322 				     struct dentry *dentry, struct inode *inode,
323 				     const char *suffix, const void *value,
324 				     size_t size, int flags)
325 {
326 	/* Handled by LSM. */
327 	return -EAGAIN;
328 }
329 
330 static const struct xattr_handler sockfs_security_xattr_handler = {
331 	.prefix = XATTR_SECURITY_PREFIX,
332 	.set = sockfs_security_xattr_set,
333 };
334 
335 static const struct xattr_handler *sockfs_xattr_handlers[] = {
336 	&sockfs_xattr_handler,
337 	&sockfs_security_xattr_handler,
338 	NULL
339 };
340 
341 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
342 			 int flags, const char *dev_name, void *data)
343 {
344 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
345 				  sockfs_xattr_handlers,
346 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
347 }
348 
349 static struct vfsmount *sock_mnt __read_mostly;
350 
351 static struct file_system_type sock_fs_type = {
352 	.name =		"sockfs",
353 	.mount =	sockfs_mount,
354 	.kill_sb =	kill_anon_super,
355 };
356 
357 /*
358  *	Obtains the first available file descriptor and sets it up for use.
359  *
360  *	These functions create file structures and maps them to fd space
361  *	of the current process. On success it returns file descriptor
362  *	and file struct implicitly stored in sock->file.
363  *	Note that another thread may close file descriptor before we return
364  *	from this function. We use the fact that now we do not refer
365  *	to socket after mapping. If one day we will need it, this
366  *	function will increment ref. count on file by 1.
367  *
368  *	In any case returned fd MAY BE not valid!
369  *	This race condition is unavoidable
370  *	with shared fd spaces, we cannot solve it inside kernel,
371  *	but we take care of internal coherence yet.
372  */
373 
374 /**
375  *	sock_alloc_file - Bind a &socket to a &file
376  *	@sock: socket
377  *	@flags: file status flags
378  *	@dname: protocol name
379  *
380  *	Returns the &file bound with @sock, implicitly storing it
381  *	in sock->file. If dname is %NULL, sets to "".
382  *	On failure the return is a ERR pointer (see linux/err.h).
383  *	This function uses GFP_KERNEL internally.
384  */
385 
386 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
387 {
388 	struct file *file;
389 
390 	if (!dname)
391 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
392 
393 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
394 				O_RDWR | (flags & O_NONBLOCK),
395 				&socket_file_ops);
396 	if (IS_ERR(file)) {
397 		sock_release(sock);
398 		return file;
399 	}
400 
401 	sock->file = file;
402 	file->private_data = sock;
403 	return file;
404 }
405 EXPORT_SYMBOL(sock_alloc_file);
406 
407 static int sock_map_fd(struct socket *sock, int flags)
408 {
409 	struct file *newfile;
410 	int fd = get_unused_fd_flags(flags);
411 	if (unlikely(fd < 0)) {
412 		sock_release(sock);
413 		return fd;
414 	}
415 
416 	newfile = sock_alloc_file(sock, flags, NULL);
417 	if (!IS_ERR(newfile)) {
418 		fd_install(fd, newfile);
419 		return fd;
420 	}
421 
422 	put_unused_fd(fd);
423 	return PTR_ERR(newfile);
424 }
425 
426 /**
427  *	sock_from_file - Return the &socket bounded to @file.
428  *	@file: file
429  *	@err: pointer to an error code return
430  *
431  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
432  */
433 
434 struct socket *sock_from_file(struct file *file, int *err)
435 {
436 	if (file->f_op == &socket_file_ops)
437 		return file->private_data;	/* set in sock_map_fd */
438 
439 	*err = -ENOTSOCK;
440 	return NULL;
441 }
442 EXPORT_SYMBOL(sock_from_file);
443 
444 /**
445  *	sockfd_lookup - Go from a file number to its socket slot
446  *	@fd: file handle
447  *	@err: pointer to an error code return
448  *
449  *	The file handle passed in is locked and the socket it is bound
450  *	to is returned. If an error occurs the err pointer is overwritten
451  *	with a negative errno code and NULL is returned. The function checks
452  *	for both invalid handles and passing a handle which is not a socket.
453  *
454  *	On a success the socket object pointer is returned.
455  */
456 
457 struct socket *sockfd_lookup(int fd, int *err)
458 {
459 	struct file *file;
460 	struct socket *sock;
461 
462 	file = fget(fd);
463 	if (!file) {
464 		*err = -EBADF;
465 		return NULL;
466 	}
467 
468 	sock = sock_from_file(file, err);
469 	if (!sock)
470 		fput(file);
471 	return sock;
472 }
473 EXPORT_SYMBOL(sockfd_lookup);
474 
475 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
476 {
477 	struct fd f = fdget(fd);
478 	struct socket *sock;
479 
480 	*err = -EBADF;
481 	if (f.file) {
482 		sock = sock_from_file(f.file, err);
483 		if (likely(sock)) {
484 			*fput_needed = f.flags;
485 			return sock;
486 		}
487 		fdput(f);
488 	}
489 	return NULL;
490 }
491 
492 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
493 				size_t size)
494 {
495 	ssize_t len;
496 	ssize_t used = 0;
497 
498 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
499 	if (len < 0)
500 		return len;
501 	used += len;
502 	if (buffer) {
503 		if (size < used)
504 			return -ERANGE;
505 		buffer += len;
506 	}
507 
508 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
509 	used += len;
510 	if (buffer) {
511 		if (size < used)
512 			return -ERANGE;
513 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
514 		buffer += len;
515 	}
516 
517 	return used;
518 }
519 
520 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
521 {
522 	int err = simple_setattr(dentry, iattr);
523 
524 	if (!err && (iattr->ia_valid & ATTR_UID)) {
525 		struct socket *sock = SOCKET_I(d_inode(dentry));
526 
527 		if (sock->sk)
528 			sock->sk->sk_uid = iattr->ia_uid;
529 		else
530 			err = -ENOENT;
531 	}
532 
533 	return err;
534 }
535 
536 static const struct inode_operations sockfs_inode_ops = {
537 	.listxattr = sockfs_listxattr,
538 	.setattr = sockfs_setattr,
539 };
540 
541 /**
542  *	sock_alloc - allocate a socket
543  *
544  *	Allocate a new inode and socket object. The two are bound together
545  *	and initialised. The socket is then returned. If we are out of inodes
546  *	NULL is returned. This functions uses GFP_KERNEL internally.
547  */
548 
549 struct socket *sock_alloc(void)
550 {
551 	struct inode *inode;
552 	struct socket *sock;
553 
554 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
555 	if (!inode)
556 		return NULL;
557 
558 	sock = SOCKET_I(inode);
559 
560 	inode->i_ino = get_next_ino();
561 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
562 	inode->i_uid = current_fsuid();
563 	inode->i_gid = current_fsgid();
564 	inode->i_op = &sockfs_inode_ops;
565 
566 	return sock;
567 }
568 EXPORT_SYMBOL(sock_alloc);
569 
570 /**
571  *	sock_release - close a socket
572  *	@sock: socket to close
573  *
574  *	The socket is released from the protocol stack if it has a release
575  *	callback, and the inode is then released if the socket is bound to
576  *	an inode not a file.
577  */
578 
579 static void __sock_release(struct socket *sock, struct inode *inode)
580 {
581 	if (sock->ops) {
582 		struct module *owner = sock->ops->owner;
583 
584 		if (inode)
585 			inode_lock(inode);
586 		sock->ops->release(sock);
587 		sock->sk = NULL;
588 		if (inode)
589 			inode_unlock(inode);
590 		sock->ops = NULL;
591 		module_put(owner);
592 	}
593 
594 	if (sock->wq.fasync_list)
595 		pr_err("%s: fasync list not empty!\n", __func__);
596 
597 	if (!sock->file) {
598 		iput(SOCK_INODE(sock));
599 		return;
600 	}
601 	sock->file = NULL;
602 }
603 
604 void sock_release(struct socket *sock)
605 {
606 	__sock_release(sock, NULL);
607 }
608 EXPORT_SYMBOL(sock_release);
609 
610 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
611 {
612 	u8 flags = *tx_flags;
613 
614 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
615 		flags |= SKBTX_HW_TSTAMP;
616 
617 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
618 		flags |= SKBTX_SW_TSTAMP;
619 
620 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
621 		flags |= SKBTX_SCHED_TSTAMP;
622 
623 	*tx_flags = flags;
624 }
625 EXPORT_SYMBOL(__sock_tx_timestamp);
626 
627 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
628 					   size_t));
629 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
630 					    size_t));
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
634 				     inet_sendmsg, sock, msg,
635 				     msg_data_left(msg));
636 	BUG_ON(ret == -EIOCBQUEUED);
637 	return ret;
638 }
639 
640 /**
641  *	sock_sendmsg - send a message through @sock
642  *	@sock: socket
643  *	@msg: message to send
644  *
645  *	Sends @msg through @sock, passing through LSM.
646  *	Returns the number of bytes sent, or an error code.
647  */
648 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
649 {
650 	int err = security_socket_sendmsg(sock, msg,
651 					  msg_data_left(msg));
652 
653 	return err ?: sock_sendmsg_nosec(sock, msg);
654 }
655 EXPORT_SYMBOL(sock_sendmsg);
656 
657 /**
658  *	kernel_sendmsg - send a message through @sock (kernel-space)
659  *	@sock: socket
660  *	@msg: message header
661  *	@vec: kernel vec
662  *	@num: vec array length
663  *	@size: total message data size
664  *
665  *	Builds the message data with @vec and sends it through @sock.
666  *	Returns the number of bytes sent, or an error code.
667  */
668 
669 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
670 		   struct kvec *vec, size_t num, size_t size)
671 {
672 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
673 	return sock_sendmsg(sock, msg);
674 }
675 EXPORT_SYMBOL(kernel_sendmsg);
676 
677 /**
678  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
679  *	@sk: sock
680  *	@msg: message header
681  *	@vec: output s/g array
682  *	@num: output s/g array length
683  *	@size: total message data size
684  *
685  *	Builds the message data with @vec and sends it through @sock.
686  *	Returns the number of bytes sent, or an error code.
687  *	Caller must hold @sk.
688  */
689 
690 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
691 			  struct kvec *vec, size_t num, size_t size)
692 {
693 	struct socket *sock = sk->sk_socket;
694 
695 	if (!sock->ops->sendmsg_locked)
696 		return sock_no_sendmsg_locked(sk, msg, size);
697 
698 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
699 
700 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
701 }
702 EXPORT_SYMBOL(kernel_sendmsg_locked);
703 
704 static bool skb_is_err_queue(const struct sk_buff *skb)
705 {
706 	/* pkt_type of skbs enqueued on the error queue are set to
707 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
708 	 * in recvmsg, since skbs received on a local socket will never
709 	 * have a pkt_type of PACKET_OUTGOING.
710 	 */
711 	return skb->pkt_type == PACKET_OUTGOING;
712 }
713 
714 /* On transmit, software and hardware timestamps are returned independently.
715  * As the two skb clones share the hardware timestamp, which may be updated
716  * before the software timestamp is received, a hardware TX timestamp may be
717  * returned only if there is no software TX timestamp. Ignore false software
718  * timestamps, which may be made in the __sock_recv_timestamp() call when the
719  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
720  * hardware timestamp.
721  */
722 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
723 {
724 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
725 }
726 
727 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
728 {
729 	struct scm_ts_pktinfo ts_pktinfo;
730 	struct net_device *orig_dev;
731 
732 	if (!skb_mac_header_was_set(skb))
733 		return;
734 
735 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
736 
737 	rcu_read_lock();
738 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
739 	if (orig_dev)
740 		ts_pktinfo.if_index = orig_dev->ifindex;
741 	rcu_read_unlock();
742 
743 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
744 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
745 		 sizeof(ts_pktinfo), &ts_pktinfo);
746 }
747 
748 /*
749  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
750  */
751 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
752 	struct sk_buff *skb)
753 {
754 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
755 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
756 	struct scm_timestamping_internal tss;
757 
758 	int empty = 1, false_tstamp = 0;
759 	struct skb_shared_hwtstamps *shhwtstamps =
760 		skb_hwtstamps(skb);
761 
762 	/* Race occurred between timestamp enabling and packet
763 	   receiving.  Fill in the current time for now. */
764 	if (need_software_tstamp && skb->tstamp == 0) {
765 		__net_timestamp(skb);
766 		false_tstamp = 1;
767 	}
768 
769 	if (need_software_tstamp) {
770 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
771 			if (new_tstamp) {
772 				struct __kernel_sock_timeval tv;
773 
774 				skb_get_new_timestamp(skb, &tv);
775 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
776 					 sizeof(tv), &tv);
777 			} else {
778 				struct __kernel_old_timeval tv;
779 
780 				skb_get_timestamp(skb, &tv);
781 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
782 					 sizeof(tv), &tv);
783 			}
784 		} else {
785 			if (new_tstamp) {
786 				struct __kernel_timespec ts;
787 
788 				skb_get_new_timestampns(skb, &ts);
789 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
790 					 sizeof(ts), &ts);
791 			} else {
792 				struct timespec ts;
793 
794 				skb_get_timestampns(skb, &ts);
795 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
796 					 sizeof(ts), &ts);
797 			}
798 		}
799 	}
800 
801 	memset(&tss, 0, sizeof(tss));
802 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
803 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
804 		empty = 0;
805 	if (shhwtstamps &&
806 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
807 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
808 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
809 		empty = 0;
810 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
811 		    !skb_is_err_queue(skb))
812 			put_ts_pktinfo(msg, skb);
813 	}
814 	if (!empty) {
815 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
816 			put_cmsg_scm_timestamping64(msg, &tss);
817 		else
818 			put_cmsg_scm_timestamping(msg, &tss);
819 
820 		if (skb_is_err_queue(skb) && skb->len &&
821 		    SKB_EXT_ERR(skb)->opt_stats)
822 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
823 				 skb->len, skb->data);
824 	}
825 }
826 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
827 
828 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
829 	struct sk_buff *skb)
830 {
831 	int ack;
832 
833 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
834 		return;
835 	if (!skb->wifi_acked_valid)
836 		return;
837 
838 	ack = skb->wifi_acked;
839 
840 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
841 }
842 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
843 
844 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
845 				   struct sk_buff *skb)
846 {
847 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
848 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
849 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
850 }
851 
852 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
853 	struct sk_buff *skb)
854 {
855 	sock_recv_timestamp(msg, sk, skb);
856 	sock_recv_drops(msg, sk, skb);
857 }
858 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
859 
860 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
861 					   size_t, int));
862 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
863 					    size_t, int));
864 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
865 				     int flags)
866 {
867 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
868 				  inet_recvmsg, sock, msg, msg_data_left(msg),
869 				  flags);
870 }
871 
872 /**
873  *	sock_recvmsg - receive a message from @sock
874  *	@sock: socket
875  *	@msg: message to receive
876  *	@flags: message flags
877  *
878  *	Receives @msg from @sock, passing through LSM. Returns the total number
879  *	of bytes received, or an error.
880  */
881 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
882 {
883 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
884 
885 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
886 }
887 EXPORT_SYMBOL(sock_recvmsg);
888 
889 /**
890  *	kernel_recvmsg - Receive a message from a socket (kernel space)
891  *	@sock: The socket to receive the message from
892  *	@msg: Received message
893  *	@vec: Input s/g array for message data
894  *	@num: Size of input s/g array
895  *	@size: Number of bytes to read
896  *	@flags: Message flags (MSG_DONTWAIT, etc...)
897  *
898  *	On return the msg structure contains the scatter/gather array passed in the
899  *	vec argument. The array is modified so that it consists of the unfilled
900  *	portion of the original array.
901  *
902  *	The returned value is the total number of bytes received, or an error.
903  */
904 
905 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
906 		   struct kvec *vec, size_t num, size_t size, int flags)
907 {
908 	mm_segment_t oldfs = get_fs();
909 	int result;
910 
911 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
912 	set_fs(KERNEL_DS);
913 	result = sock_recvmsg(sock, msg, flags);
914 	set_fs(oldfs);
915 	return result;
916 }
917 EXPORT_SYMBOL(kernel_recvmsg);
918 
919 static ssize_t sock_sendpage(struct file *file, struct page *page,
920 			     int offset, size_t size, loff_t *ppos, int more)
921 {
922 	struct socket *sock;
923 	int flags;
924 
925 	sock = file->private_data;
926 
927 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
928 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
929 	flags |= more;
930 
931 	return kernel_sendpage(sock, page, offset, size, flags);
932 }
933 
934 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
935 				struct pipe_inode_info *pipe, size_t len,
936 				unsigned int flags)
937 {
938 	struct socket *sock = file->private_data;
939 
940 	if (unlikely(!sock->ops->splice_read))
941 		return generic_file_splice_read(file, ppos, pipe, len, flags);
942 
943 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
944 }
945 
946 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
947 {
948 	struct file *file = iocb->ki_filp;
949 	struct socket *sock = file->private_data;
950 	struct msghdr msg = {.msg_iter = *to,
951 			     .msg_iocb = iocb};
952 	ssize_t res;
953 
954 	if (file->f_flags & O_NONBLOCK)
955 		msg.msg_flags = MSG_DONTWAIT;
956 
957 	if (iocb->ki_pos != 0)
958 		return -ESPIPE;
959 
960 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
961 		return 0;
962 
963 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
964 	*to = msg.msg_iter;
965 	return res;
966 }
967 
968 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
969 {
970 	struct file *file = iocb->ki_filp;
971 	struct socket *sock = file->private_data;
972 	struct msghdr msg = {.msg_iter = *from,
973 			     .msg_iocb = iocb};
974 	ssize_t res;
975 
976 	if (iocb->ki_pos != 0)
977 		return -ESPIPE;
978 
979 	if (file->f_flags & O_NONBLOCK)
980 		msg.msg_flags = MSG_DONTWAIT;
981 
982 	if (sock->type == SOCK_SEQPACKET)
983 		msg.msg_flags |= MSG_EOR;
984 
985 	res = sock_sendmsg(sock, &msg);
986 	*from = msg.msg_iter;
987 	return res;
988 }
989 
990 /*
991  * Atomic setting of ioctl hooks to avoid race
992  * with module unload.
993  */
994 
995 static DEFINE_MUTEX(br_ioctl_mutex);
996 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
997 
998 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
999 {
1000 	mutex_lock(&br_ioctl_mutex);
1001 	br_ioctl_hook = hook;
1002 	mutex_unlock(&br_ioctl_mutex);
1003 }
1004 EXPORT_SYMBOL(brioctl_set);
1005 
1006 static DEFINE_MUTEX(vlan_ioctl_mutex);
1007 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1008 
1009 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1010 {
1011 	mutex_lock(&vlan_ioctl_mutex);
1012 	vlan_ioctl_hook = hook;
1013 	mutex_unlock(&vlan_ioctl_mutex);
1014 }
1015 EXPORT_SYMBOL(vlan_ioctl_set);
1016 
1017 static DEFINE_MUTEX(dlci_ioctl_mutex);
1018 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1019 
1020 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1021 {
1022 	mutex_lock(&dlci_ioctl_mutex);
1023 	dlci_ioctl_hook = hook;
1024 	mutex_unlock(&dlci_ioctl_mutex);
1025 }
1026 EXPORT_SYMBOL(dlci_ioctl_set);
1027 
1028 static long sock_do_ioctl(struct net *net, struct socket *sock,
1029 			  unsigned int cmd, unsigned long arg)
1030 {
1031 	int err;
1032 	void __user *argp = (void __user *)arg;
1033 
1034 	err = sock->ops->ioctl(sock, cmd, arg);
1035 
1036 	/*
1037 	 * If this ioctl is unknown try to hand it down
1038 	 * to the NIC driver.
1039 	 */
1040 	if (err != -ENOIOCTLCMD)
1041 		return err;
1042 
1043 	if (cmd == SIOCGIFCONF) {
1044 		struct ifconf ifc;
1045 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1046 			return -EFAULT;
1047 		rtnl_lock();
1048 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1049 		rtnl_unlock();
1050 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1051 			err = -EFAULT;
1052 	} else {
1053 		struct ifreq ifr;
1054 		bool need_copyout;
1055 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1056 			return -EFAULT;
1057 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1058 		if (!err && need_copyout)
1059 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1060 				return -EFAULT;
1061 	}
1062 	return err;
1063 }
1064 
1065 /*
1066  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1067  *	what to do with it - that's up to the protocol still.
1068  */
1069 
1070 /**
1071  *	get_net_ns - increment the refcount of the network namespace
1072  *	@ns: common namespace (net)
1073  *
1074  *	Returns the net's common namespace.
1075  */
1076 
1077 struct ns_common *get_net_ns(struct ns_common *ns)
1078 {
1079 	return &get_net(container_of(ns, struct net, ns))->ns;
1080 }
1081 EXPORT_SYMBOL_GPL(get_net_ns);
1082 
1083 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1084 {
1085 	struct socket *sock;
1086 	struct sock *sk;
1087 	void __user *argp = (void __user *)arg;
1088 	int pid, err;
1089 	struct net *net;
1090 
1091 	sock = file->private_data;
1092 	sk = sock->sk;
1093 	net = sock_net(sk);
1094 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1095 		struct ifreq ifr;
1096 		bool need_copyout;
1097 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1098 			return -EFAULT;
1099 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1100 		if (!err && need_copyout)
1101 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1102 				return -EFAULT;
1103 	} else
1104 #ifdef CONFIG_WEXT_CORE
1105 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1106 		err = wext_handle_ioctl(net, cmd, argp);
1107 	} else
1108 #endif
1109 		switch (cmd) {
1110 		case FIOSETOWN:
1111 		case SIOCSPGRP:
1112 			err = -EFAULT;
1113 			if (get_user(pid, (int __user *)argp))
1114 				break;
1115 			err = f_setown(sock->file, pid, 1);
1116 			break;
1117 		case FIOGETOWN:
1118 		case SIOCGPGRP:
1119 			err = put_user(f_getown(sock->file),
1120 				       (int __user *)argp);
1121 			break;
1122 		case SIOCGIFBR:
1123 		case SIOCSIFBR:
1124 		case SIOCBRADDBR:
1125 		case SIOCBRDELBR:
1126 			err = -ENOPKG;
1127 			if (!br_ioctl_hook)
1128 				request_module("bridge");
1129 
1130 			mutex_lock(&br_ioctl_mutex);
1131 			if (br_ioctl_hook)
1132 				err = br_ioctl_hook(net, cmd, argp);
1133 			mutex_unlock(&br_ioctl_mutex);
1134 			break;
1135 		case SIOCGIFVLAN:
1136 		case SIOCSIFVLAN:
1137 			err = -ENOPKG;
1138 			if (!vlan_ioctl_hook)
1139 				request_module("8021q");
1140 
1141 			mutex_lock(&vlan_ioctl_mutex);
1142 			if (vlan_ioctl_hook)
1143 				err = vlan_ioctl_hook(net, argp);
1144 			mutex_unlock(&vlan_ioctl_mutex);
1145 			break;
1146 		case SIOCADDDLCI:
1147 		case SIOCDELDLCI:
1148 			err = -ENOPKG;
1149 			if (!dlci_ioctl_hook)
1150 				request_module("dlci");
1151 
1152 			mutex_lock(&dlci_ioctl_mutex);
1153 			if (dlci_ioctl_hook)
1154 				err = dlci_ioctl_hook(cmd, argp);
1155 			mutex_unlock(&dlci_ioctl_mutex);
1156 			break;
1157 		case SIOCGSKNS:
1158 			err = -EPERM;
1159 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1160 				break;
1161 
1162 			err = open_related_ns(&net->ns, get_net_ns);
1163 			break;
1164 		case SIOCGSTAMP_OLD:
1165 		case SIOCGSTAMPNS_OLD:
1166 			if (!sock->ops->gettstamp) {
1167 				err = -ENOIOCTLCMD;
1168 				break;
1169 			}
1170 			err = sock->ops->gettstamp(sock, argp,
1171 						   cmd == SIOCGSTAMP_OLD,
1172 						   !IS_ENABLED(CONFIG_64BIT));
1173 			break;
1174 		case SIOCGSTAMP_NEW:
1175 		case SIOCGSTAMPNS_NEW:
1176 			if (!sock->ops->gettstamp) {
1177 				err = -ENOIOCTLCMD;
1178 				break;
1179 			}
1180 			err = sock->ops->gettstamp(sock, argp,
1181 						   cmd == SIOCGSTAMP_NEW,
1182 						   false);
1183 			break;
1184 		default:
1185 			err = sock_do_ioctl(net, sock, cmd, arg);
1186 			break;
1187 		}
1188 	return err;
1189 }
1190 
1191 /**
1192  *	sock_create_lite - creates a socket
1193  *	@family: protocol family (AF_INET, ...)
1194  *	@type: communication type (SOCK_STREAM, ...)
1195  *	@protocol: protocol (0, ...)
1196  *	@res: new socket
1197  *
1198  *	Creates a new socket and assigns it to @res, passing through LSM.
1199  *	The new socket initialization is not complete, see kernel_accept().
1200  *	Returns 0 or an error. On failure @res is set to %NULL.
1201  *	This function internally uses GFP_KERNEL.
1202  */
1203 
1204 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1205 {
1206 	int err;
1207 	struct socket *sock = NULL;
1208 
1209 	err = security_socket_create(family, type, protocol, 1);
1210 	if (err)
1211 		goto out;
1212 
1213 	sock = sock_alloc();
1214 	if (!sock) {
1215 		err = -ENOMEM;
1216 		goto out;
1217 	}
1218 
1219 	sock->type = type;
1220 	err = security_socket_post_create(sock, family, type, protocol, 1);
1221 	if (err)
1222 		goto out_release;
1223 
1224 out:
1225 	*res = sock;
1226 	return err;
1227 out_release:
1228 	sock_release(sock);
1229 	sock = NULL;
1230 	goto out;
1231 }
1232 EXPORT_SYMBOL(sock_create_lite);
1233 
1234 /* No kernel lock held - perfect */
1235 static __poll_t sock_poll(struct file *file, poll_table *wait)
1236 {
1237 	struct socket *sock = file->private_data;
1238 	__poll_t events = poll_requested_events(wait), flag = 0;
1239 
1240 	if (!sock->ops->poll)
1241 		return 0;
1242 
1243 	if (sk_can_busy_loop(sock->sk)) {
1244 		/* poll once if requested by the syscall */
1245 		if (events & POLL_BUSY_LOOP)
1246 			sk_busy_loop(sock->sk, 1);
1247 
1248 		/* if this socket can poll_ll, tell the system call */
1249 		flag = POLL_BUSY_LOOP;
1250 	}
1251 
1252 	return sock->ops->poll(file, sock, wait) | flag;
1253 }
1254 
1255 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1256 {
1257 	struct socket *sock = file->private_data;
1258 
1259 	return sock->ops->mmap(file, sock, vma);
1260 }
1261 
1262 static int sock_close(struct inode *inode, struct file *filp)
1263 {
1264 	__sock_release(SOCKET_I(inode), inode);
1265 	return 0;
1266 }
1267 
1268 /*
1269  *	Update the socket async list
1270  *
1271  *	Fasync_list locking strategy.
1272  *
1273  *	1. fasync_list is modified only under process context socket lock
1274  *	   i.e. under semaphore.
1275  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1276  *	   or under socket lock
1277  */
1278 
1279 static int sock_fasync(int fd, struct file *filp, int on)
1280 {
1281 	struct socket *sock = filp->private_data;
1282 	struct sock *sk = sock->sk;
1283 	struct socket_wq *wq = &sock->wq;
1284 
1285 	if (sk == NULL)
1286 		return -EINVAL;
1287 
1288 	lock_sock(sk);
1289 	fasync_helper(fd, filp, on, &wq->fasync_list);
1290 
1291 	if (!wq->fasync_list)
1292 		sock_reset_flag(sk, SOCK_FASYNC);
1293 	else
1294 		sock_set_flag(sk, SOCK_FASYNC);
1295 
1296 	release_sock(sk);
1297 	return 0;
1298 }
1299 
1300 /* This function may be called only under rcu_lock */
1301 
1302 int sock_wake_async(struct socket_wq *wq, int how, int band)
1303 {
1304 	if (!wq || !wq->fasync_list)
1305 		return -1;
1306 
1307 	switch (how) {
1308 	case SOCK_WAKE_WAITD:
1309 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1310 			break;
1311 		goto call_kill;
1312 	case SOCK_WAKE_SPACE:
1313 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1314 			break;
1315 		/* fall through */
1316 	case SOCK_WAKE_IO:
1317 call_kill:
1318 		kill_fasync(&wq->fasync_list, SIGIO, band);
1319 		break;
1320 	case SOCK_WAKE_URG:
1321 		kill_fasync(&wq->fasync_list, SIGURG, band);
1322 	}
1323 
1324 	return 0;
1325 }
1326 EXPORT_SYMBOL(sock_wake_async);
1327 
1328 /**
1329  *	__sock_create - creates a socket
1330  *	@net: net namespace
1331  *	@family: protocol family (AF_INET, ...)
1332  *	@type: communication type (SOCK_STREAM, ...)
1333  *	@protocol: protocol (0, ...)
1334  *	@res: new socket
1335  *	@kern: boolean for kernel space sockets
1336  *
1337  *	Creates a new socket and assigns it to @res, passing through LSM.
1338  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1339  *	be set to true if the socket resides in kernel space.
1340  *	This function internally uses GFP_KERNEL.
1341  */
1342 
1343 int __sock_create(struct net *net, int family, int type, int protocol,
1344 			 struct socket **res, int kern)
1345 {
1346 	int err;
1347 	struct socket *sock;
1348 	const struct net_proto_family *pf;
1349 
1350 	/*
1351 	 *      Check protocol is in range
1352 	 */
1353 	if (family < 0 || family >= NPROTO)
1354 		return -EAFNOSUPPORT;
1355 	if (type < 0 || type >= SOCK_MAX)
1356 		return -EINVAL;
1357 
1358 	/* Compatibility.
1359 
1360 	   This uglymoron is moved from INET layer to here to avoid
1361 	   deadlock in module load.
1362 	 */
1363 	if (family == PF_INET && type == SOCK_PACKET) {
1364 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1365 			     current->comm);
1366 		family = PF_PACKET;
1367 	}
1368 
1369 	err = security_socket_create(family, type, protocol, kern);
1370 	if (err)
1371 		return err;
1372 
1373 	/*
1374 	 *	Allocate the socket and allow the family to set things up. if
1375 	 *	the protocol is 0, the family is instructed to select an appropriate
1376 	 *	default.
1377 	 */
1378 	sock = sock_alloc();
1379 	if (!sock) {
1380 		net_warn_ratelimited("socket: no more sockets\n");
1381 		return -ENFILE;	/* Not exactly a match, but its the
1382 				   closest posix thing */
1383 	}
1384 
1385 	sock->type = type;
1386 
1387 #ifdef CONFIG_MODULES
1388 	/* Attempt to load a protocol module if the find failed.
1389 	 *
1390 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1391 	 * requested real, full-featured networking support upon configuration.
1392 	 * Otherwise module support will break!
1393 	 */
1394 	if (rcu_access_pointer(net_families[family]) == NULL)
1395 		request_module("net-pf-%d", family);
1396 #endif
1397 
1398 	rcu_read_lock();
1399 	pf = rcu_dereference(net_families[family]);
1400 	err = -EAFNOSUPPORT;
1401 	if (!pf)
1402 		goto out_release;
1403 
1404 	/*
1405 	 * We will call the ->create function, that possibly is in a loadable
1406 	 * module, so we have to bump that loadable module refcnt first.
1407 	 */
1408 	if (!try_module_get(pf->owner))
1409 		goto out_release;
1410 
1411 	/* Now protected by module ref count */
1412 	rcu_read_unlock();
1413 
1414 	err = pf->create(net, sock, protocol, kern);
1415 	if (err < 0)
1416 		goto out_module_put;
1417 
1418 	/*
1419 	 * Now to bump the refcnt of the [loadable] module that owns this
1420 	 * socket at sock_release time we decrement its refcnt.
1421 	 */
1422 	if (!try_module_get(sock->ops->owner))
1423 		goto out_module_busy;
1424 
1425 	/*
1426 	 * Now that we're done with the ->create function, the [loadable]
1427 	 * module can have its refcnt decremented
1428 	 */
1429 	module_put(pf->owner);
1430 	err = security_socket_post_create(sock, family, type, protocol, kern);
1431 	if (err)
1432 		goto out_sock_release;
1433 	*res = sock;
1434 
1435 	return 0;
1436 
1437 out_module_busy:
1438 	err = -EAFNOSUPPORT;
1439 out_module_put:
1440 	sock->ops = NULL;
1441 	module_put(pf->owner);
1442 out_sock_release:
1443 	sock_release(sock);
1444 	return err;
1445 
1446 out_release:
1447 	rcu_read_unlock();
1448 	goto out_sock_release;
1449 }
1450 EXPORT_SYMBOL(__sock_create);
1451 
1452 /**
1453  *	sock_create - creates a socket
1454  *	@family: protocol family (AF_INET, ...)
1455  *	@type: communication type (SOCK_STREAM, ...)
1456  *	@protocol: protocol (0, ...)
1457  *	@res: new socket
1458  *
1459  *	A wrapper around __sock_create().
1460  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1461  */
1462 
1463 int sock_create(int family, int type, int protocol, struct socket **res)
1464 {
1465 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1466 }
1467 EXPORT_SYMBOL(sock_create);
1468 
1469 /**
1470  *	sock_create_kern - creates a socket (kernel space)
1471  *	@net: net namespace
1472  *	@family: protocol family (AF_INET, ...)
1473  *	@type: communication type (SOCK_STREAM, ...)
1474  *	@protocol: protocol (0, ...)
1475  *	@res: new socket
1476  *
1477  *	A wrapper around __sock_create().
1478  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1479  */
1480 
1481 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1482 {
1483 	return __sock_create(net, family, type, protocol, res, 1);
1484 }
1485 EXPORT_SYMBOL(sock_create_kern);
1486 
1487 int __sys_socket(int family, int type, int protocol)
1488 {
1489 	int retval;
1490 	struct socket *sock;
1491 	int flags;
1492 
1493 	/* Check the SOCK_* constants for consistency.  */
1494 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1495 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1496 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1497 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1498 
1499 	flags = type & ~SOCK_TYPE_MASK;
1500 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1501 		return -EINVAL;
1502 	type &= SOCK_TYPE_MASK;
1503 
1504 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1505 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1506 
1507 	retval = sock_create(family, type, protocol, &sock);
1508 	if (retval < 0)
1509 		return retval;
1510 
1511 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1512 }
1513 
1514 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1515 {
1516 	return __sys_socket(family, type, protocol);
1517 }
1518 
1519 /*
1520  *	Create a pair of connected sockets.
1521  */
1522 
1523 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1524 {
1525 	struct socket *sock1, *sock2;
1526 	int fd1, fd2, err;
1527 	struct file *newfile1, *newfile2;
1528 	int flags;
1529 
1530 	flags = type & ~SOCK_TYPE_MASK;
1531 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1532 		return -EINVAL;
1533 	type &= SOCK_TYPE_MASK;
1534 
1535 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1536 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1537 
1538 	/*
1539 	 * reserve descriptors and make sure we won't fail
1540 	 * to return them to userland.
1541 	 */
1542 	fd1 = get_unused_fd_flags(flags);
1543 	if (unlikely(fd1 < 0))
1544 		return fd1;
1545 
1546 	fd2 = get_unused_fd_flags(flags);
1547 	if (unlikely(fd2 < 0)) {
1548 		put_unused_fd(fd1);
1549 		return fd2;
1550 	}
1551 
1552 	err = put_user(fd1, &usockvec[0]);
1553 	if (err)
1554 		goto out;
1555 
1556 	err = put_user(fd2, &usockvec[1]);
1557 	if (err)
1558 		goto out;
1559 
1560 	/*
1561 	 * Obtain the first socket and check if the underlying protocol
1562 	 * supports the socketpair call.
1563 	 */
1564 
1565 	err = sock_create(family, type, protocol, &sock1);
1566 	if (unlikely(err < 0))
1567 		goto out;
1568 
1569 	err = sock_create(family, type, protocol, &sock2);
1570 	if (unlikely(err < 0)) {
1571 		sock_release(sock1);
1572 		goto out;
1573 	}
1574 
1575 	err = security_socket_socketpair(sock1, sock2);
1576 	if (unlikely(err)) {
1577 		sock_release(sock2);
1578 		sock_release(sock1);
1579 		goto out;
1580 	}
1581 
1582 	err = sock1->ops->socketpair(sock1, sock2);
1583 	if (unlikely(err < 0)) {
1584 		sock_release(sock2);
1585 		sock_release(sock1);
1586 		goto out;
1587 	}
1588 
1589 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1590 	if (IS_ERR(newfile1)) {
1591 		err = PTR_ERR(newfile1);
1592 		sock_release(sock2);
1593 		goto out;
1594 	}
1595 
1596 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1597 	if (IS_ERR(newfile2)) {
1598 		err = PTR_ERR(newfile2);
1599 		fput(newfile1);
1600 		goto out;
1601 	}
1602 
1603 	audit_fd_pair(fd1, fd2);
1604 
1605 	fd_install(fd1, newfile1);
1606 	fd_install(fd2, newfile2);
1607 	return 0;
1608 
1609 out:
1610 	put_unused_fd(fd2);
1611 	put_unused_fd(fd1);
1612 	return err;
1613 }
1614 
1615 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1616 		int __user *, usockvec)
1617 {
1618 	return __sys_socketpair(family, type, protocol, usockvec);
1619 }
1620 
1621 /*
1622  *	Bind a name to a socket. Nothing much to do here since it's
1623  *	the protocol's responsibility to handle the local address.
1624  *
1625  *	We move the socket address to kernel space before we call
1626  *	the protocol layer (having also checked the address is ok).
1627  */
1628 
1629 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1630 {
1631 	struct socket *sock;
1632 	struct sockaddr_storage address;
1633 	int err, fput_needed;
1634 
1635 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1636 	if (sock) {
1637 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1638 		if (!err) {
1639 			err = security_socket_bind(sock,
1640 						   (struct sockaddr *)&address,
1641 						   addrlen);
1642 			if (!err)
1643 				err = sock->ops->bind(sock,
1644 						      (struct sockaddr *)
1645 						      &address, addrlen);
1646 		}
1647 		fput_light(sock->file, fput_needed);
1648 	}
1649 	return err;
1650 }
1651 
1652 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1653 {
1654 	return __sys_bind(fd, umyaddr, addrlen);
1655 }
1656 
1657 /*
1658  *	Perform a listen. Basically, we allow the protocol to do anything
1659  *	necessary for a listen, and if that works, we mark the socket as
1660  *	ready for listening.
1661  */
1662 
1663 int __sys_listen(int fd, int backlog)
1664 {
1665 	struct socket *sock;
1666 	int err, fput_needed;
1667 	int somaxconn;
1668 
1669 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670 	if (sock) {
1671 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1672 		if ((unsigned int)backlog > somaxconn)
1673 			backlog = somaxconn;
1674 
1675 		err = security_socket_listen(sock, backlog);
1676 		if (!err)
1677 			err = sock->ops->listen(sock, backlog);
1678 
1679 		fput_light(sock->file, fput_needed);
1680 	}
1681 	return err;
1682 }
1683 
1684 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1685 {
1686 	return __sys_listen(fd, backlog);
1687 }
1688 
1689 /*
1690  *	For accept, we attempt to create a new socket, set up the link
1691  *	with the client, wake up the client, then return the new
1692  *	connected fd. We collect the address of the connector in kernel
1693  *	space and move it to user at the very end. This is unclean because
1694  *	we open the socket then return an error.
1695  *
1696  *	1003.1g adds the ability to recvmsg() to query connection pending
1697  *	status to recvmsg. We need to add that support in a way thats
1698  *	clean when we restructure accept also.
1699  */
1700 
1701 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1702 		  int __user *upeer_addrlen, int flags)
1703 {
1704 	struct socket *sock, *newsock;
1705 	struct file *newfile;
1706 	int err, len, newfd, fput_needed;
1707 	struct sockaddr_storage address;
1708 
1709 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1710 		return -EINVAL;
1711 
1712 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1713 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1714 
1715 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1716 	if (!sock)
1717 		goto out;
1718 
1719 	err = -ENFILE;
1720 	newsock = sock_alloc();
1721 	if (!newsock)
1722 		goto out_put;
1723 
1724 	newsock->type = sock->type;
1725 	newsock->ops = sock->ops;
1726 
1727 	/*
1728 	 * We don't need try_module_get here, as the listening socket (sock)
1729 	 * has the protocol module (sock->ops->owner) held.
1730 	 */
1731 	__module_get(newsock->ops->owner);
1732 
1733 	newfd = get_unused_fd_flags(flags);
1734 	if (unlikely(newfd < 0)) {
1735 		err = newfd;
1736 		sock_release(newsock);
1737 		goto out_put;
1738 	}
1739 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1740 	if (IS_ERR(newfile)) {
1741 		err = PTR_ERR(newfile);
1742 		put_unused_fd(newfd);
1743 		goto out_put;
1744 	}
1745 
1746 	err = security_socket_accept(sock, newsock);
1747 	if (err)
1748 		goto out_fd;
1749 
1750 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1751 	if (err < 0)
1752 		goto out_fd;
1753 
1754 	if (upeer_sockaddr) {
1755 		len = newsock->ops->getname(newsock,
1756 					(struct sockaddr *)&address, 2);
1757 		if (len < 0) {
1758 			err = -ECONNABORTED;
1759 			goto out_fd;
1760 		}
1761 		err = move_addr_to_user(&address,
1762 					len, upeer_sockaddr, upeer_addrlen);
1763 		if (err < 0)
1764 			goto out_fd;
1765 	}
1766 
1767 	/* File flags are not inherited via accept() unlike another OSes. */
1768 
1769 	fd_install(newfd, newfile);
1770 	err = newfd;
1771 
1772 out_put:
1773 	fput_light(sock->file, fput_needed);
1774 out:
1775 	return err;
1776 out_fd:
1777 	fput(newfile);
1778 	put_unused_fd(newfd);
1779 	goto out_put;
1780 }
1781 
1782 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1783 		int __user *, upeer_addrlen, int, flags)
1784 {
1785 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1786 }
1787 
1788 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1789 		int __user *, upeer_addrlen)
1790 {
1791 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1792 }
1793 
1794 /*
1795  *	Attempt to connect to a socket with the server address.  The address
1796  *	is in user space so we verify it is OK and move it to kernel space.
1797  *
1798  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1799  *	break bindings
1800  *
1801  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1802  *	other SEQPACKET protocols that take time to connect() as it doesn't
1803  *	include the -EINPROGRESS status for such sockets.
1804  */
1805 
1806 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1807 {
1808 	struct socket *sock;
1809 	struct sockaddr_storage address;
1810 	int err, fput_needed;
1811 
1812 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1813 	if (!sock)
1814 		goto out;
1815 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1816 	if (err < 0)
1817 		goto out_put;
1818 
1819 	err =
1820 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1821 	if (err)
1822 		goto out_put;
1823 
1824 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1825 				 sock->file->f_flags);
1826 out_put:
1827 	fput_light(sock->file, fput_needed);
1828 out:
1829 	return err;
1830 }
1831 
1832 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1833 		int, addrlen)
1834 {
1835 	return __sys_connect(fd, uservaddr, addrlen);
1836 }
1837 
1838 /*
1839  *	Get the local address ('name') of a socket object. Move the obtained
1840  *	name to user space.
1841  */
1842 
1843 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1844 		      int __user *usockaddr_len)
1845 {
1846 	struct socket *sock;
1847 	struct sockaddr_storage address;
1848 	int err, fput_needed;
1849 
1850 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1851 	if (!sock)
1852 		goto out;
1853 
1854 	err = security_socket_getsockname(sock);
1855 	if (err)
1856 		goto out_put;
1857 
1858 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1859 	if (err < 0)
1860 		goto out_put;
1861         /* "err" is actually length in this case */
1862 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1863 
1864 out_put:
1865 	fput_light(sock->file, fput_needed);
1866 out:
1867 	return err;
1868 }
1869 
1870 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1871 		int __user *, usockaddr_len)
1872 {
1873 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1874 }
1875 
1876 /*
1877  *	Get the remote address ('name') of a socket object. Move the obtained
1878  *	name to user space.
1879  */
1880 
1881 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1882 		      int __user *usockaddr_len)
1883 {
1884 	struct socket *sock;
1885 	struct sockaddr_storage address;
1886 	int err, fput_needed;
1887 
1888 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1889 	if (sock != NULL) {
1890 		err = security_socket_getpeername(sock);
1891 		if (err) {
1892 			fput_light(sock->file, fput_needed);
1893 			return err;
1894 		}
1895 
1896 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1897 		if (err >= 0)
1898 			/* "err" is actually length in this case */
1899 			err = move_addr_to_user(&address, err, usockaddr,
1900 						usockaddr_len);
1901 		fput_light(sock->file, fput_needed);
1902 	}
1903 	return err;
1904 }
1905 
1906 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1907 		int __user *, usockaddr_len)
1908 {
1909 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1910 }
1911 
1912 /*
1913  *	Send a datagram to a given address. We move the address into kernel
1914  *	space and check the user space data area is readable before invoking
1915  *	the protocol.
1916  */
1917 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1918 		 struct sockaddr __user *addr,  int addr_len)
1919 {
1920 	struct socket *sock;
1921 	struct sockaddr_storage address;
1922 	int err;
1923 	struct msghdr msg;
1924 	struct iovec iov;
1925 	int fput_needed;
1926 
1927 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1928 	if (unlikely(err))
1929 		return err;
1930 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1931 	if (!sock)
1932 		goto out;
1933 
1934 	msg.msg_name = NULL;
1935 	msg.msg_control = NULL;
1936 	msg.msg_controllen = 0;
1937 	msg.msg_namelen = 0;
1938 	if (addr) {
1939 		err = move_addr_to_kernel(addr, addr_len, &address);
1940 		if (err < 0)
1941 			goto out_put;
1942 		msg.msg_name = (struct sockaddr *)&address;
1943 		msg.msg_namelen = addr_len;
1944 	}
1945 	if (sock->file->f_flags & O_NONBLOCK)
1946 		flags |= MSG_DONTWAIT;
1947 	msg.msg_flags = flags;
1948 	err = sock_sendmsg(sock, &msg);
1949 
1950 out_put:
1951 	fput_light(sock->file, fput_needed);
1952 out:
1953 	return err;
1954 }
1955 
1956 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1957 		unsigned int, flags, struct sockaddr __user *, addr,
1958 		int, addr_len)
1959 {
1960 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1961 }
1962 
1963 /*
1964  *	Send a datagram down a socket.
1965  */
1966 
1967 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1968 		unsigned int, flags)
1969 {
1970 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1971 }
1972 
1973 /*
1974  *	Receive a frame from the socket and optionally record the address of the
1975  *	sender. We verify the buffers are writable and if needed move the
1976  *	sender address from kernel to user space.
1977  */
1978 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1979 		   struct sockaddr __user *addr, int __user *addr_len)
1980 {
1981 	struct socket *sock;
1982 	struct iovec iov;
1983 	struct msghdr msg;
1984 	struct sockaddr_storage address;
1985 	int err, err2;
1986 	int fput_needed;
1987 
1988 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1989 	if (unlikely(err))
1990 		return err;
1991 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1992 	if (!sock)
1993 		goto out;
1994 
1995 	msg.msg_control = NULL;
1996 	msg.msg_controllen = 0;
1997 	/* Save some cycles and don't copy the address if not needed */
1998 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1999 	/* We assume all kernel code knows the size of sockaddr_storage */
2000 	msg.msg_namelen = 0;
2001 	msg.msg_iocb = NULL;
2002 	msg.msg_flags = 0;
2003 	if (sock->file->f_flags & O_NONBLOCK)
2004 		flags |= MSG_DONTWAIT;
2005 	err = sock_recvmsg(sock, &msg, flags);
2006 
2007 	if (err >= 0 && addr != NULL) {
2008 		err2 = move_addr_to_user(&address,
2009 					 msg.msg_namelen, addr, addr_len);
2010 		if (err2 < 0)
2011 			err = err2;
2012 	}
2013 
2014 	fput_light(sock->file, fput_needed);
2015 out:
2016 	return err;
2017 }
2018 
2019 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2020 		unsigned int, flags, struct sockaddr __user *, addr,
2021 		int __user *, addr_len)
2022 {
2023 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2024 }
2025 
2026 /*
2027  *	Receive a datagram from a socket.
2028  */
2029 
2030 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2031 		unsigned int, flags)
2032 {
2033 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2034 }
2035 
2036 /*
2037  *	Set a socket option. Because we don't know the option lengths we have
2038  *	to pass the user mode parameter for the protocols to sort out.
2039  */
2040 
2041 static int __sys_setsockopt(int fd, int level, int optname,
2042 			    char __user *optval, int optlen)
2043 {
2044 	mm_segment_t oldfs = get_fs();
2045 	char *kernel_optval = NULL;
2046 	int err, fput_needed;
2047 	struct socket *sock;
2048 
2049 	if (optlen < 0)
2050 		return -EINVAL;
2051 
2052 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2053 	if (sock != NULL) {
2054 		err = security_socket_setsockopt(sock, level, optname);
2055 		if (err)
2056 			goto out_put;
2057 
2058 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2059 						     &optname, optval, &optlen,
2060 						     &kernel_optval);
2061 
2062 		if (err < 0) {
2063 			goto out_put;
2064 		} else if (err > 0) {
2065 			err = 0;
2066 			goto out_put;
2067 		}
2068 
2069 		if (kernel_optval) {
2070 			set_fs(KERNEL_DS);
2071 			optval = (char __user __force *)kernel_optval;
2072 		}
2073 
2074 		if (level == SOL_SOCKET)
2075 			err =
2076 			    sock_setsockopt(sock, level, optname, optval,
2077 					    optlen);
2078 		else
2079 			err =
2080 			    sock->ops->setsockopt(sock, level, optname, optval,
2081 						  optlen);
2082 
2083 		if (kernel_optval) {
2084 			set_fs(oldfs);
2085 			kfree(kernel_optval);
2086 		}
2087 out_put:
2088 		fput_light(sock->file, fput_needed);
2089 	}
2090 	return err;
2091 }
2092 
2093 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2094 		char __user *, optval, int, optlen)
2095 {
2096 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2097 }
2098 
2099 /*
2100  *	Get a socket option. Because we don't know the option lengths we have
2101  *	to pass a user mode parameter for the protocols to sort out.
2102  */
2103 
2104 static int __sys_getsockopt(int fd, int level, int optname,
2105 			    char __user *optval, int __user *optlen)
2106 {
2107 	int err, fput_needed;
2108 	struct socket *sock;
2109 	int max_optlen;
2110 
2111 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2112 	if (sock != NULL) {
2113 		err = security_socket_getsockopt(sock, level, optname);
2114 		if (err)
2115 			goto out_put;
2116 
2117 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2118 
2119 		if (level == SOL_SOCKET)
2120 			err =
2121 			    sock_getsockopt(sock, level, optname, optval,
2122 					    optlen);
2123 		else
2124 			err =
2125 			    sock->ops->getsockopt(sock, level, optname, optval,
2126 						  optlen);
2127 
2128 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2129 						     optval, optlen,
2130 						     max_optlen, err);
2131 out_put:
2132 		fput_light(sock->file, fput_needed);
2133 	}
2134 	return err;
2135 }
2136 
2137 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2138 		char __user *, optval, int __user *, optlen)
2139 {
2140 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2141 }
2142 
2143 /*
2144  *	Shutdown a socket.
2145  */
2146 
2147 int __sys_shutdown(int fd, int how)
2148 {
2149 	int err, fput_needed;
2150 	struct socket *sock;
2151 
2152 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2153 	if (sock != NULL) {
2154 		err = security_socket_shutdown(sock, how);
2155 		if (!err)
2156 			err = sock->ops->shutdown(sock, how);
2157 		fput_light(sock->file, fput_needed);
2158 	}
2159 	return err;
2160 }
2161 
2162 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2163 {
2164 	return __sys_shutdown(fd, how);
2165 }
2166 
2167 /* A couple of helpful macros for getting the address of the 32/64 bit
2168  * fields which are the same type (int / unsigned) on our platforms.
2169  */
2170 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2171 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2172 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2173 
2174 struct used_address {
2175 	struct sockaddr_storage name;
2176 	unsigned int name_len;
2177 };
2178 
2179 static int copy_msghdr_from_user(struct msghdr *kmsg,
2180 				 struct user_msghdr __user *umsg,
2181 				 struct sockaddr __user **save_addr,
2182 				 struct iovec **iov)
2183 {
2184 	struct user_msghdr msg;
2185 	ssize_t err;
2186 
2187 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2188 		return -EFAULT;
2189 
2190 	kmsg->msg_control = (void __force *)msg.msg_control;
2191 	kmsg->msg_controllen = msg.msg_controllen;
2192 	kmsg->msg_flags = msg.msg_flags;
2193 
2194 	kmsg->msg_namelen = msg.msg_namelen;
2195 	if (!msg.msg_name)
2196 		kmsg->msg_namelen = 0;
2197 
2198 	if (kmsg->msg_namelen < 0)
2199 		return -EINVAL;
2200 
2201 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2202 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2203 
2204 	if (save_addr)
2205 		*save_addr = msg.msg_name;
2206 
2207 	if (msg.msg_name && kmsg->msg_namelen) {
2208 		if (!save_addr) {
2209 			err = move_addr_to_kernel(msg.msg_name,
2210 						  kmsg->msg_namelen,
2211 						  kmsg->msg_name);
2212 			if (err < 0)
2213 				return err;
2214 		}
2215 	} else {
2216 		kmsg->msg_name = NULL;
2217 		kmsg->msg_namelen = 0;
2218 	}
2219 
2220 	if (msg.msg_iovlen > UIO_MAXIOV)
2221 		return -EMSGSIZE;
2222 
2223 	kmsg->msg_iocb = NULL;
2224 
2225 	err = import_iovec(save_addr ? READ : WRITE,
2226 			    msg.msg_iov, msg.msg_iovlen,
2227 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2228 	return err < 0 ? err : 0;
2229 }
2230 
2231 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2232 			 struct msghdr *msg_sys, unsigned int flags,
2233 			 struct used_address *used_address,
2234 			 unsigned int allowed_msghdr_flags)
2235 {
2236 	struct compat_msghdr __user *msg_compat =
2237 	    (struct compat_msghdr __user *)msg;
2238 	struct sockaddr_storage address;
2239 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2240 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2241 				__aligned(sizeof(__kernel_size_t));
2242 	/* 20 is size of ipv6_pktinfo */
2243 	unsigned char *ctl_buf = ctl;
2244 	int ctl_len;
2245 	ssize_t err;
2246 
2247 	msg_sys->msg_name = &address;
2248 
2249 	if (MSG_CMSG_COMPAT & flags)
2250 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2251 	else
2252 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2253 	if (err < 0)
2254 		return err;
2255 
2256 	err = -ENOBUFS;
2257 
2258 	if (msg_sys->msg_controllen > INT_MAX)
2259 		goto out_freeiov;
2260 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2261 	ctl_len = msg_sys->msg_controllen;
2262 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2263 		err =
2264 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2265 						     sizeof(ctl));
2266 		if (err)
2267 			goto out_freeiov;
2268 		ctl_buf = msg_sys->msg_control;
2269 		ctl_len = msg_sys->msg_controllen;
2270 	} else if (ctl_len) {
2271 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2272 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2273 		if (ctl_len > sizeof(ctl)) {
2274 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2275 			if (ctl_buf == NULL)
2276 				goto out_freeiov;
2277 		}
2278 		err = -EFAULT;
2279 		/*
2280 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2281 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2282 		 * checking falls down on this.
2283 		 */
2284 		if (copy_from_user(ctl_buf,
2285 				   (void __user __force *)msg_sys->msg_control,
2286 				   ctl_len))
2287 			goto out_freectl;
2288 		msg_sys->msg_control = ctl_buf;
2289 	}
2290 	msg_sys->msg_flags = flags;
2291 
2292 	if (sock->file->f_flags & O_NONBLOCK)
2293 		msg_sys->msg_flags |= MSG_DONTWAIT;
2294 	/*
2295 	 * If this is sendmmsg() and current destination address is same as
2296 	 * previously succeeded address, omit asking LSM's decision.
2297 	 * used_address->name_len is initialized to UINT_MAX so that the first
2298 	 * destination address never matches.
2299 	 */
2300 	if (used_address && msg_sys->msg_name &&
2301 	    used_address->name_len == msg_sys->msg_namelen &&
2302 	    !memcmp(&used_address->name, msg_sys->msg_name,
2303 		    used_address->name_len)) {
2304 		err = sock_sendmsg_nosec(sock, msg_sys);
2305 		goto out_freectl;
2306 	}
2307 	err = sock_sendmsg(sock, msg_sys);
2308 	/*
2309 	 * If this is sendmmsg() and sending to current destination address was
2310 	 * successful, remember it.
2311 	 */
2312 	if (used_address && err >= 0) {
2313 		used_address->name_len = msg_sys->msg_namelen;
2314 		if (msg_sys->msg_name)
2315 			memcpy(&used_address->name, msg_sys->msg_name,
2316 			       used_address->name_len);
2317 	}
2318 
2319 out_freectl:
2320 	if (ctl_buf != ctl)
2321 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2322 out_freeiov:
2323 	kfree(iov);
2324 	return err;
2325 }
2326 
2327 /*
2328  *	BSD sendmsg interface
2329  */
2330 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2331 			unsigned int flags)
2332 {
2333 	struct msghdr msg_sys;
2334 
2335 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2336 }
2337 
2338 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2339 		   bool forbid_cmsg_compat)
2340 {
2341 	int fput_needed, err;
2342 	struct msghdr msg_sys;
2343 	struct socket *sock;
2344 
2345 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2346 		return -EINVAL;
2347 
2348 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2349 	if (!sock)
2350 		goto out;
2351 
2352 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2353 
2354 	fput_light(sock->file, fput_needed);
2355 out:
2356 	return err;
2357 }
2358 
2359 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2360 {
2361 	return __sys_sendmsg(fd, msg, flags, true);
2362 }
2363 
2364 /*
2365  *	Linux sendmmsg interface
2366  */
2367 
2368 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2369 		   unsigned int flags, bool forbid_cmsg_compat)
2370 {
2371 	int fput_needed, err, datagrams;
2372 	struct socket *sock;
2373 	struct mmsghdr __user *entry;
2374 	struct compat_mmsghdr __user *compat_entry;
2375 	struct msghdr msg_sys;
2376 	struct used_address used_address;
2377 	unsigned int oflags = flags;
2378 
2379 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2380 		return -EINVAL;
2381 
2382 	if (vlen > UIO_MAXIOV)
2383 		vlen = UIO_MAXIOV;
2384 
2385 	datagrams = 0;
2386 
2387 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2388 	if (!sock)
2389 		return err;
2390 
2391 	used_address.name_len = UINT_MAX;
2392 	entry = mmsg;
2393 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2394 	err = 0;
2395 	flags |= MSG_BATCH;
2396 
2397 	while (datagrams < vlen) {
2398 		if (datagrams == vlen - 1)
2399 			flags = oflags;
2400 
2401 		if (MSG_CMSG_COMPAT & flags) {
2402 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2403 					     &msg_sys, flags, &used_address, MSG_EOR);
2404 			if (err < 0)
2405 				break;
2406 			err = __put_user(err, &compat_entry->msg_len);
2407 			++compat_entry;
2408 		} else {
2409 			err = ___sys_sendmsg(sock,
2410 					     (struct user_msghdr __user *)entry,
2411 					     &msg_sys, flags, &used_address, MSG_EOR);
2412 			if (err < 0)
2413 				break;
2414 			err = put_user(err, &entry->msg_len);
2415 			++entry;
2416 		}
2417 
2418 		if (err)
2419 			break;
2420 		++datagrams;
2421 		if (msg_data_left(&msg_sys))
2422 			break;
2423 		cond_resched();
2424 	}
2425 
2426 	fput_light(sock->file, fput_needed);
2427 
2428 	/* We only return an error if no datagrams were able to be sent */
2429 	if (datagrams != 0)
2430 		return datagrams;
2431 
2432 	return err;
2433 }
2434 
2435 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2436 		unsigned int, vlen, unsigned int, flags)
2437 {
2438 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2439 }
2440 
2441 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2442 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2443 {
2444 	struct compat_msghdr __user *msg_compat =
2445 	    (struct compat_msghdr __user *)msg;
2446 	struct iovec iovstack[UIO_FASTIOV];
2447 	struct iovec *iov = iovstack;
2448 	unsigned long cmsg_ptr;
2449 	int len;
2450 	ssize_t err;
2451 
2452 	/* kernel mode address */
2453 	struct sockaddr_storage addr;
2454 
2455 	/* user mode address pointers */
2456 	struct sockaddr __user *uaddr;
2457 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2458 
2459 	msg_sys->msg_name = &addr;
2460 
2461 	if (MSG_CMSG_COMPAT & flags)
2462 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2463 	else
2464 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2465 	if (err < 0)
2466 		return err;
2467 
2468 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2469 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2470 
2471 	/* We assume all kernel code knows the size of sockaddr_storage */
2472 	msg_sys->msg_namelen = 0;
2473 
2474 	if (sock->file->f_flags & O_NONBLOCK)
2475 		flags |= MSG_DONTWAIT;
2476 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2477 	if (err < 0)
2478 		goto out_freeiov;
2479 	len = err;
2480 
2481 	if (uaddr != NULL) {
2482 		err = move_addr_to_user(&addr,
2483 					msg_sys->msg_namelen, uaddr,
2484 					uaddr_len);
2485 		if (err < 0)
2486 			goto out_freeiov;
2487 	}
2488 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2489 			 COMPAT_FLAGS(msg));
2490 	if (err)
2491 		goto out_freeiov;
2492 	if (MSG_CMSG_COMPAT & flags)
2493 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2494 				 &msg_compat->msg_controllen);
2495 	else
2496 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2497 				 &msg->msg_controllen);
2498 	if (err)
2499 		goto out_freeiov;
2500 	err = len;
2501 
2502 out_freeiov:
2503 	kfree(iov);
2504 	return err;
2505 }
2506 
2507 /*
2508  *	BSD recvmsg interface
2509  */
2510 
2511 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2512 			unsigned int flags)
2513 {
2514 	struct msghdr msg_sys;
2515 
2516 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2517 }
2518 
2519 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2520 		   bool forbid_cmsg_compat)
2521 {
2522 	int fput_needed, err;
2523 	struct msghdr msg_sys;
2524 	struct socket *sock;
2525 
2526 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2527 		return -EINVAL;
2528 
2529 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2530 	if (!sock)
2531 		goto out;
2532 
2533 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2534 
2535 	fput_light(sock->file, fput_needed);
2536 out:
2537 	return err;
2538 }
2539 
2540 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2541 		unsigned int, flags)
2542 {
2543 	return __sys_recvmsg(fd, msg, flags, true);
2544 }
2545 
2546 /*
2547  *     Linux recvmmsg interface
2548  */
2549 
2550 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2551 			  unsigned int vlen, unsigned int flags,
2552 			  struct timespec64 *timeout)
2553 {
2554 	int fput_needed, err, datagrams;
2555 	struct socket *sock;
2556 	struct mmsghdr __user *entry;
2557 	struct compat_mmsghdr __user *compat_entry;
2558 	struct msghdr msg_sys;
2559 	struct timespec64 end_time;
2560 	struct timespec64 timeout64;
2561 
2562 	if (timeout &&
2563 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2564 				    timeout->tv_nsec))
2565 		return -EINVAL;
2566 
2567 	datagrams = 0;
2568 
2569 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2570 	if (!sock)
2571 		return err;
2572 
2573 	if (likely(!(flags & MSG_ERRQUEUE))) {
2574 		err = sock_error(sock->sk);
2575 		if (err) {
2576 			datagrams = err;
2577 			goto out_put;
2578 		}
2579 	}
2580 
2581 	entry = mmsg;
2582 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2583 
2584 	while (datagrams < vlen) {
2585 		/*
2586 		 * No need to ask LSM for more than the first datagram.
2587 		 */
2588 		if (MSG_CMSG_COMPAT & flags) {
2589 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2590 					     &msg_sys, flags & ~MSG_WAITFORONE,
2591 					     datagrams);
2592 			if (err < 0)
2593 				break;
2594 			err = __put_user(err, &compat_entry->msg_len);
2595 			++compat_entry;
2596 		} else {
2597 			err = ___sys_recvmsg(sock,
2598 					     (struct user_msghdr __user *)entry,
2599 					     &msg_sys, flags & ~MSG_WAITFORONE,
2600 					     datagrams);
2601 			if (err < 0)
2602 				break;
2603 			err = put_user(err, &entry->msg_len);
2604 			++entry;
2605 		}
2606 
2607 		if (err)
2608 			break;
2609 		++datagrams;
2610 
2611 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2612 		if (flags & MSG_WAITFORONE)
2613 			flags |= MSG_DONTWAIT;
2614 
2615 		if (timeout) {
2616 			ktime_get_ts64(&timeout64);
2617 			*timeout = timespec64_sub(end_time, timeout64);
2618 			if (timeout->tv_sec < 0) {
2619 				timeout->tv_sec = timeout->tv_nsec = 0;
2620 				break;
2621 			}
2622 
2623 			/* Timeout, return less than vlen datagrams */
2624 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2625 				break;
2626 		}
2627 
2628 		/* Out of band data, return right away */
2629 		if (msg_sys.msg_flags & MSG_OOB)
2630 			break;
2631 		cond_resched();
2632 	}
2633 
2634 	if (err == 0)
2635 		goto out_put;
2636 
2637 	if (datagrams == 0) {
2638 		datagrams = err;
2639 		goto out_put;
2640 	}
2641 
2642 	/*
2643 	 * We may return less entries than requested (vlen) if the
2644 	 * sock is non block and there aren't enough datagrams...
2645 	 */
2646 	if (err != -EAGAIN) {
2647 		/*
2648 		 * ... or  if recvmsg returns an error after we
2649 		 * received some datagrams, where we record the
2650 		 * error to return on the next call or if the
2651 		 * app asks about it using getsockopt(SO_ERROR).
2652 		 */
2653 		sock->sk->sk_err = -err;
2654 	}
2655 out_put:
2656 	fput_light(sock->file, fput_needed);
2657 
2658 	return datagrams;
2659 }
2660 
2661 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2662 		   unsigned int vlen, unsigned int flags,
2663 		   struct __kernel_timespec __user *timeout,
2664 		   struct old_timespec32 __user *timeout32)
2665 {
2666 	int datagrams;
2667 	struct timespec64 timeout_sys;
2668 
2669 	if (timeout && get_timespec64(&timeout_sys, timeout))
2670 		return -EFAULT;
2671 
2672 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2673 		return -EFAULT;
2674 
2675 	if (!timeout && !timeout32)
2676 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2677 
2678 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2679 
2680 	if (datagrams <= 0)
2681 		return datagrams;
2682 
2683 	if (timeout && put_timespec64(&timeout_sys, timeout))
2684 		datagrams = -EFAULT;
2685 
2686 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2687 		datagrams = -EFAULT;
2688 
2689 	return datagrams;
2690 }
2691 
2692 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2693 		unsigned int, vlen, unsigned int, flags,
2694 		struct __kernel_timespec __user *, timeout)
2695 {
2696 	if (flags & MSG_CMSG_COMPAT)
2697 		return -EINVAL;
2698 
2699 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2700 }
2701 
2702 #ifdef CONFIG_COMPAT_32BIT_TIME
2703 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2704 		unsigned int, vlen, unsigned int, flags,
2705 		struct old_timespec32 __user *, timeout)
2706 {
2707 	if (flags & MSG_CMSG_COMPAT)
2708 		return -EINVAL;
2709 
2710 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2711 }
2712 #endif
2713 
2714 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2715 /* Argument list sizes for sys_socketcall */
2716 #define AL(x) ((x) * sizeof(unsigned long))
2717 static const unsigned char nargs[21] = {
2718 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2719 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2720 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2721 	AL(4), AL(5), AL(4)
2722 };
2723 
2724 #undef AL
2725 
2726 /*
2727  *	System call vectors.
2728  *
2729  *	Argument checking cleaned up. Saved 20% in size.
2730  *  This function doesn't need to set the kernel lock because
2731  *  it is set by the callees.
2732  */
2733 
2734 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2735 {
2736 	unsigned long a[AUDITSC_ARGS];
2737 	unsigned long a0, a1;
2738 	int err;
2739 	unsigned int len;
2740 
2741 	if (call < 1 || call > SYS_SENDMMSG)
2742 		return -EINVAL;
2743 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2744 
2745 	len = nargs[call];
2746 	if (len > sizeof(a))
2747 		return -EINVAL;
2748 
2749 	/* copy_from_user should be SMP safe. */
2750 	if (copy_from_user(a, args, len))
2751 		return -EFAULT;
2752 
2753 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2754 	if (err)
2755 		return err;
2756 
2757 	a0 = a[0];
2758 	a1 = a[1];
2759 
2760 	switch (call) {
2761 	case SYS_SOCKET:
2762 		err = __sys_socket(a0, a1, a[2]);
2763 		break;
2764 	case SYS_BIND:
2765 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2766 		break;
2767 	case SYS_CONNECT:
2768 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2769 		break;
2770 	case SYS_LISTEN:
2771 		err = __sys_listen(a0, a1);
2772 		break;
2773 	case SYS_ACCEPT:
2774 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2775 				    (int __user *)a[2], 0);
2776 		break;
2777 	case SYS_GETSOCKNAME:
2778 		err =
2779 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2780 				      (int __user *)a[2]);
2781 		break;
2782 	case SYS_GETPEERNAME:
2783 		err =
2784 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2785 				      (int __user *)a[2]);
2786 		break;
2787 	case SYS_SOCKETPAIR:
2788 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2789 		break;
2790 	case SYS_SEND:
2791 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2792 				   NULL, 0);
2793 		break;
2794 	case SYS_SENDTO:
2795 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2796 				   (struct sockaddr __user *)a[4], a[5]);
2797 		break;
2798 	case SYS_RECV:
2799 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2800 				     NULL, NULL);
2801 		break;
2802 	case SYS_RECVFROM:
2803 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2804 				     (struct sockaddr __user *)a[4],
2805 				     (int __user *)a[5]);
2806 		break;
2807 	case SYS_SHUTDOWN:
2808 		err = __sys_shutdown(a0, a1);
2809 		break;
2810 	case SYS_SETSOCKOPT:
2811 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2812 				       a[4]);
2813 		break;
2814 	case SYS_GETSOCKOPT:
2815 		err =
2816 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2817 				     (int __user *)a[4]);
2818 		break;
2819 	case SYS_SENDMSG:
2820 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2821 				    a[2], true);
2822 		break;
2823 	case SYS_SENDMMSG:
2824 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2825 				     a[3], true);
2826 		break;
2827 	case SYS_RECVMSG:
2828 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2829 				    a[2], true);
2830 		break;
2831 	case SYS_RECVMMSG:
2832 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2833 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2834 					     a[2], a[3],
2835 					     (struct __kernel_timespec __user *)a[4],
2836 					     NULL);
2837 		else
2838 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2839 					     a[2], a[3], NULL,
2840 					     (struct old_timespec32 __user *)a[4]);
2841 		break;
2842 	case SYS_ACCEPT4:
2843 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2844 				    (int __user *)a[2], a[3]);
2845 		break;
2846 	default:
2847 		err = -EINVAL;
2848 		break;
2849 	}
2850 	return err;
2851 }
2852 
2853 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2854 
2855 /**
2856  *	sock_register - add a socket protocol handler
2857  *	@ops: description of protocol
2858  *
2859  *	This function is called by a protocol handler that wants to
2860  *	advertise its address family, and have it linked into the
2861  *	socket interface. The value ops->family corresponds to the
2862  *	socket system call protocol family.
2863  */
2864 int sock_register(const struct net_proto_family *ops)
2865 {
2866 	int err;
2867 
2868 	if (ops->family >= NPROTO) {
2869 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2870 		return -ENOBUFS;
2871 	}
2872 
2873 	spin_lock(&net_family_lock);
2874 	if (rcu_dereference_protected(net_families[ops->family],
2875 				      lockdep_is_held(&net_family_lock)))
2876 		err = -EEXIST;
2877 	else {
2878 		rcu_assign_pointer(net_families[ops->family], ops);
2879 		err = 0;
2880 	}
2881 	spin_unlock(&net_family_lock);
2882 
2883 	pr_info("NET: Registered protocol family %d\n", ops->family);
2884 	return err;
2885 }
2886 EXPORT_SYMBOL(sock_register);
2887 
2888 /**
2889  *	sock_unregister - remove a protocol handler
2890  *	@family: protocol family to remove
2891  *
2892  *	This function is called by a protocol handler that wants to
2893  *	remove its address family, and have it unlinked from the
2894  *	new socket creation.
2895  *
2896  *	If protocol handler is a module, then it can use module reference
2897  *	counts to protect against new references. If protocol handler is not
2898  *	a module then it needs to provide its own protection in
2899  *	the ops->create routine.
2900  */
2901 void sock_unregister(int family)
2902 {
2903 	BUG_ON(family < 0 || family >= NPROTO);
2904 
2905 	spin_lock(&net_family_lock);
2906 	RCU_INIT_POINTER(net_families[family], NULL);
2907 	spin_unlock(&net_family_lock);
2908 
2909 	synchronize_rcu();
2910 
2911 	pr_info("NET: Unregistered protocol family %d\n", family);
2912 }
2913 EXPORT_SYMBOL(sock_unregister);
2914 
2915 bool sock_is_registered(int family)
2916 {
2917 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2918 }
2919 
2920 static int __init sock_init(void)
2921 {
2922 	int err;
2923 	/*
2924 	 *      Initialize the network sysctl infrastructure.
2925 	 */
2926 	err = net_sysctl_init();
2927 	if (err)
2928 		goto out;
2929 
2930 	/*
2931 	 *      Initialize skbuff SLAB cache
2932 	 */
2933 	skb_init();
2934 
2935 	/*
2936 	 *      Initialize the protocols module.
2937 	 */
2938 
2939 	init_inodecache();
2940 
2941 	err = register_filesystem(&sock_fs_type);
2942 	if (err)
2943 		goto out_fs;
2944 	sock_mnt = kern_mount(&sock_fs_type);
2945 	if (IS_ERR(sock_mnt)) {
2946 		err = PTR_ERR(sock_mnt);
2947 		goto out_mount;
2948 	}
2949 
2950 	/* The real protocol initialization is performed in later initcalls.
2951 	 */
2952 
2953 #ifdef CONFIG_NETFILTER
2954 	err = netfilter_init();
2955 	if (err)
2956 		goto out;
2957 #endif
2958 
2959 	ptp_classifier_init();
2960 
2961 out:
2962 	return err;
2963 
2964 out_mount:
2965 	unregister_filesystem(&sock_fs_type);
2966 out_fs:
2967 	goto out;
2968 }
2969 
2970 core_initcall(sock_init);	/* early initcall */
2971 
2972 #ifdef CONFIG_PROC_FS
2973 void socket_seq_show(struct seq_file *seq)
2974 {
2975 	seq_printf(seq, "sockets: used %d\n",
2976 		   sock_inuse_get(seq->private));
2977 }
2978 #endif				/* CONFIG_PROC_FS */
2979 
2980 #ifdef CONFIG_COMPAT
2981 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2982 {
2983 	struct compat_ifconf ifc32;
2984 	struct ifconf ifc;
2985 	int err;
2986 
2987 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2988 		return -EFAULT;
2989 
2990 	ifc.ifc_len = ifc32.ifc_len;
2991 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2992 
2993 	rtnl_lock();
2994 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2995 	rtnl_unlock();
2996 	if (err)
2997 		return err;
2998 
2999 	ifc32.ifc_len = ifc.ifc_len;
3000 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3001 		return -EFAULT;
3002 
3003 	return 0;
3004 }
3005 
3006 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3007 {
3008 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3009 	bool convert_in = false, convert_out = false;
3010 	size_t buf_size = 0;
3011 	struct ethtool_rxnfc __user *rxnfc = NULL;
3012 	struct ifreq ifr;
3013 	u32 rule_cnt = 0, actual_rule_cnt;
3014 	u32 ethcmd;
3015 	u32 data;
3016 	int ret;
3017 
3018 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3019 		return -EFAULT;
3020 
3021 	compat_rxnfc = compat_ptr(data);
3022 
3023 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3024 		return -EFAULT;
3025 
3026 	/* Most ethtool structures are defined without padding.
3027 	 * Unfortunately struct ethtool_rxnfc is an exception.
3028 	 */
3029 	switch (ethcmd) {
3030 	default:
3031 		break;
3032 	case ETHTOOL_GRXCLSRLALL:
3033 		/* Buffer size is variable */
3034 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3035 			return -EFAULT;
3036 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3037 			return -ENOMEM;
3038 		buf_size += rule_cnt * sizeof(u32);
3039 		/* fall through */
3040 	case ETHTOOL_GRXRINGS:
3041 	case ETHTOOL_GRXCLSRLCNT:
3042 	case ETHTOOL_GRXCLSRULE:
3043 	case ETHTOOL_SRXCLSRLINS:
3044 		convert_out = true;
3045 		/* fall through */
3046 	case ETHTOOL_SRXCLSRLDEL:
3047 		buf_size += sizeof(struct ethtool_rxnfc);
3048 		convert_in = true;
3049 		rxnfc = compat_alloc_user_space(buf_size);
3050 		break;
3051 	}
3052 
3053 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3054 		return -EFAULT;
3055 
3056 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3057 
3058 	if (convert_in) {
3059 		/* We expect there to be holes between fs.m_ext and
3060 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3061 		 */
3062 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3063 			     sizeof(compat_rxnfc->fs.m_ext) !=
3064 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3065 			     sizeof(rxnfc->fs.m_ext));
3066 		BUILD_BUG_ON(
3067 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3068 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3069 			offsetof(struct ethtool_rxnfc, fs.location) -
3070 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3071 
3072 		if (copy_in_user(rxnfc, compat_rxnfc,
3073 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3074 				 (void __user *)rxnfc) ||
3075 		    copy_in_user(&rxnfc->fs.ring_cookie,
3076 				 &compat_rxnfc->fs.ring_cookie,
3077 				 (void __user *)(&rxnfc->fs.location + 1) -
3078 				 (void __user *)&rxnfc->fs.ring_cookie))
3079 			return -EFAULT;
3080 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3081 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3082 				return -EFAULT;
3083 		} else if (copy_in_user(&rxnfc->rule_cnt,
3084 					&compat_rxnfc->rule_cnt,
3085 					sizeof(rxnfc->rule_cnt)))
3086 			return -EFAULT;
3087 	}
3088 
3089 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3090 	if (ret)
3091 		return ret;
3092 
3093 	if (convert_out) {
3094 		if (copy_in_user(compat_rxnfc, rxnfc,
3095 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3096 				 (const void __user *)rxnfc) ||
3097 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3098 				 &rxnfc->fs.ring_cookie,
3099 				 (const void __user *)(&rxnfc->fs.location + 1) -
3100 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3101 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3102 				 sizeof(rxnfc->rule_cnt)))
3103 			return -EFAULT;
3104 
3105 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3106 			/* As an optimisation, we only copy the actual
3107 			 * number of rules that the underlying
3108 			 * function returned.  Since Mallory might
3109 			 * change the rule count in user memory, we
3110 			 * check that it is less than the rule count
3111 			 * originally given (as the user buffer size),
3112 			 * which has been range-checked.
3113 			 */
3114 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3115 				return -EFAULT;
3116 			if (actual_rule_cnt < rule_cnt)
3117 				rule_cnt = actual_rule_cnt;
3118 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3119 					 &rxnfc->rule_locs[0],
3120 					 rule_cnt * sizeof(u32)))
3121 				return -EFAULT;
3122 		}
3123 	}
3124 
3125 	return 0;
3126 }
3127 
3128 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3129 {
3130 	compat_uptr_t uptr32;
3131 	struct ifreq ifr;
3132 	void __user *saved;
3133 	int err;
3134 
3135 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3136 		return -EFAULT;
3137 
3138 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3139 		return -EFAULT;
3140 
3141 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3142 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3143 
3144 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3145 	if (!err) {
3146 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3147 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3148 			err = -EFAULT;
3149 	}
3150 	return err;
3151 }
3152 
3153 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3154 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3155 				 struct compat_ifreq __user *u_ifreq32)
3156 {
3157 	struct ifreq ifreq;
3158 	u32 data32;
3159 
3160 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3161 		return -EFAULT;
3162 	if (get_user(data32, &u_ifreq32->ifr_data))
3163 		return -EFAULT;
3164 	ifreq.ifr_data = compat_ptr(data32);
3165 
3166 	return dev_ioctl(net, cmd, &ifreq, NULL);
3167 }
3168 
3169 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3170 			      unsigned int cmd,
3171 			      struct compat_ifreq __user *uifr32)
3172 {
3173 	struct ifreq __user *uifr;
3174 	int err;
3175 
3176 	/* Handle the fact that while struct ifreq has the same *layout* on
3177 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3178 	 * which are handled elsewhere, it still has different *size* due to
3179 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3180 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3181 	 * As a result, if the struct happens to be at the end of a page and
3182 	 * the next page isn't readable/writable, we get a fault. To prevent
3183 	 * that, copy back and forth to the full size.
3184 	 */
3185 
3186 	uifr = compat_alloc_user_space(sizeof(*uifr));
3187 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3188 		return -EFAULT;
3189 
3190 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3191 
3192 	if (!err) {
3193 		switch (cmd) {
3194 		case SIOCGIFFLAGS:
3195 		case SIOCGIFMETRIC:
3196 		case SIOCGIFMTU:
3197 		case SIOCGIFMEM:
3198 		case SIOCGIFHWADDR:
3199 		case SIOCGIFINDEX:
3200 		case SIOCGIFADDR:
3201 		case SIOCGIFBRDADDR:
3202 		case SIOCGIFDSTADDR:
3203 		case SIOCGIFNETMASK:
3204 		case SIOCGIFPFLAGS:
3205 		case SIOCGIFTXQLEN:
3206 		case SIOCGMIIPHY:
3207 		case SIOCGMIIREG:
3208 		case SIOCGIFNAME:
3209 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3210 				err = -EFAULT;
3211 			break;
3212 		}
3213 	}
3214 	return err;
3215 }
3216 
3217 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3218 			struct compat_ifreq __user *uifr32)
3219 {
3220 	struct ifreq ifr;
3221 	struct compat_ifmap __user *uifmap32;
3222 	int err;
3223 
3224 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3225 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3226 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3227 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3228 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3229 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3230 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3231 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3232 	if (err)
3233 		return -EFAULT;
3234 
3235 	err = dev_ioctl(net, cmd, &ifr, NULL);
3236 
3237 	if (cmd == SIOCGIFMAP && !err) {
3238 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3239 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3240 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3241 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3242 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3243 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3244 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3245 		if (err)
3246 			err = -EFAULT;
3247 	}
3248 	return err;
3249 }
3250 
3251 struct rtentry32 {
3252 	u32		rt_pad1;
3253 	struct sockaddr rt_dst;         /* target address               */
3254 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3255 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3256 	unsigned short	rt_flags;
3257 	short		rt_pad2;
3258 	u32		rt_pad3;
3259 	unsigned char	rt_tos;
3260 	unsigned char	rt_class;
3261 	short		rt_pad4;
3262 	short		rt_metric;      /* +1 for binary compatibility! */
3263 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3264 	u32		rt_mtu;         /* per route MTU/Window         */
3265 	u32		rt_window;      /* Window clamping              */
3266 	unsigned short  rt_irtt;        /* Initial RTT                  */
3267 };
3268 
3269 struct in6_rtmsg32 {
3270 	struct in6_addr		rtmsg_dst;
3271 	struct in6_addr		rtmsg_src;
3272 	struct in6_addr		rtmsg_gateway;
3273 	u32			rtmsg_type;
3274 	u16			rtmsg_dst_len;
3275 	u16			rtmsg_src_len;
3276 	u32			rtmsg_metric;
3277 	u32			rtmsg_info;
3278 	u32			rtmsg_flags;
3279 	s32			rtmsg_ifindex;
3280 };
3281 
3282 static int routing_ioctl(struct net *net, struct socket *sock,
3283 			 unsigned int cmd, void __user *argp)
3284 {
3285 	int ret;
3286 	void *r = NULL;
3287 	struct in6_rtmsg r6;
3288 	struct rtentry r4;
3289 	char devname[16];
3290 	u32 rtdev;
3291 	mm_segment_t old_fs = get_fs();
3292 
3293 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3294 		struct in6_rtmsg32 __user *ur6 = argp;
3295 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3296 			3 * sizeof(struct in6_addr));
3297 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3298 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3299 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3300 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3301 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3302 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3303 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3304 
3305 		r = (void *) &r6;
3306 	} else { /* ipv4 */
3307 		struct rtentry32 __user *ur4 = argp;
3308 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3309 					3 * sizeof(struct sockaddr));
3310 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3311 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3312 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3313 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3314 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3315 		ret |= get_user(rtdev, &(ur4->rt_dev));
3316 		if (rtdev) {
3317 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3318 			r4.rt_dev = (char __user __force *)devname;
3319 			devname[15] = 0;
3320 		} else
3321 			r4.rt_dev = NULL;
3322 
3323 		r = (void *) &r4;
3324 	}
3325 
3326 	if (ret) {
3327 		ret = -EFAULT;
3328 		goto out;
3329 	}
3330 
3331 	set_fs(KERNEL_DS);
3332 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3333 	set_fs(old_fs);
3334 
3335 out:
3336 	return ret;
3337 }
3338 
3339 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3340  * for some operations; this forces use of the newer bridge-utils that
3341  * use compatible ioctls
3342  */
3343 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3344 {
3345 	compat_ulong_t tmp;
3346 
3347 	if (get_user(tmp, argp))
3348 		return -EFAULT;
3349 	if (tmp == BRCTL_GET_VERSION)
3350 		return BRCTL_VERSION + 1;
3351 	return -EINVAL;
3352 }
3353 
3354 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3355 			 unsigned int cmd, unsigned long arg)
3356 {
3357 	void __user *argp = compat_ptr(arg);
3358 	struct sock *sk = sock->sk;
3359 	struct net *net = sock_net(sk);
3360 
3361 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3362 		return compat_ifr_data_ioctl(net, cmd, argp);
3363 
3364 	switch (cmd) {
3365 	case SIOCSIFBR:
3366 	case SIOCGIFBR:
3367 		return old_bridge_ioctl(argp);
3368 	case SIOCGIFCONF:
3369 		return compat_dev_ifconf(net, argp);
3370 	case SIOCETHTOOL:
3371 		return ethtool_ioctl(net, argp);
3372 	case SIOCWANDEV:
3373 		return compat_siocwandev(net, argp);
3374 	case SIOCGIFMAP:
3375 	case SIOCSIFMAP:
3376 		return compat_sioc_ifmap(net, cmd, argp);
3377 	case SIOCADDRT:
3378 	case SIOCDELRT:
3379 		return routing_ioctl(net, sock, cmd, argp);
3380 	case SIOCGSTAMP_OLD:
3381 	case SIOCGSTAMPNS_OLD:
3382 		if (!sock->ops->gettstamp)
3383 			return -ENOIOCTLCMD;
3384 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3385 					    !COMPAT_USE_64BIT_TIME);
3386 
3387 	case SIOCBONDSLAVEINFOQUERY:
3388 	case SIOCBONDINFOQUERY:
3389 	case SIOCSHWTSTAMP:
3390 	case SIOCGHWTSTAMP:
3391 		return compat_ifr_data_ioctl(net, cmd, argp);
3392 
3393 	case FIOSETOWN:
3394 	case SIOCSPGRP:
3395 	case FIOGETOWN:
3396 	case SIOCGPGRP:
3397 	case SIOCBRADDBR:
3398 	case SIOCBRDELBR:
3399 	case SIOCGIFVLAN:
3400 	case SIOCSIFVLAN:
3401 	case SIOCADDDLCI:
3402 	case SIOCDELDLCI:
3403 	case SIOCGSKNS:
3404 	case SIOCGSTAMP_NEW:
3405 	case SIOCGSTAMPNS_NEW:
3406 		return sock_ioctl(file, cmd, arg);
3407 
3408 	case SIOCGIFFLAGS:
3409 	case SIOCSIFFLAGS:
3410 	case SIOCGIFMETRIC:
3411 	case SIOCSIFMETRIC:
3412 	case SIOCGIFMTU:
3413 	case SIOCSIFMTU:
3414 	case SIOCGIFMEM:
3415 	case SIOCSIFMEM:
3416 	case SIOCGIFHWADDR:
3417 	case SIOCSIFHWADDR:
3418 	case SIOCADDMULTI:
3419 	case SIOCDELMULTI:
3420 	case SIOCGIFINDEX:
3421 	case SIOCGIFADDR:
3422 	case SIOCSIFADDR:
3423 	case SIOCSIFHWBROADCAST:
3424 	case SIOCDIFADDR:
3425 	case SIOCGIFBRDADDR:
3426 	case SIOCSIFBRDADDR:
3427 	case SIOCGIFDSTADDR:
3428 	case SIOCSIFDSTADDR:
3429 	case SIOCGIFNETMASK:
3430 	case SIOCSIFNETMASK:
3431 	case SIOCSIFPFLAGS:
3432 	case SIOCGIFPFLAGS:
3433 	case SIOCGIFTXQLEN:
3434 	case SIOCSIFTXQLEN:
3435 	case SIOCBRADDIF:
3436 	case SIOCBRDELIF:
3437 	case SIOCGIFNAME:
3438 	case SIOCSIFNAME:
3439 	case SIOCGMIIPHY:
3440 	case SIOCGMIIREG:
3441 	case SIOCSMIIREG:
3442 	case SIOCBONDENSLAVE:
3443 	case SIOCBONDRELEASE:
3444 	case SIOCBONDSETHWADDR:
3445 	case SIOCBONDCHANGEACTIVE:
3446 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3447 
3448 	case SIOCSARP:
3449 	case SIOCGARP:
3450 	case SIOCDARP:
3451 	case SIOCATMARK:
3452 		return sock_do_ioctl(net, sock, cmd, arg);
3453 	}
3454 
3455 	return -ENOIOCTLCMD;
3456 }
3457 
3458 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3459 			      unsigned long arg)
3460 {
3461 	struct socket *sock = file->private_data;
3462 	int ret = -ENOIOCTLCMD;
3463 	struct sock *sk;
3464 	struct net *net;
3465 
3466 	sk = sock->sk;
3467 	net = sock_net(sk);
3468 
3469 	if (sock->ops->compat_ioctl)
3470 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3471 
3472 	if (ret == -ENOIOCTLCMD &&
3473 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3474 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3475 
3476 	if (ret == -ENOIOCTLCMD)
3477 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3478 
3479 	return ret;
3480 }
3481 #endif
3482 
3483 /**
3484  *	kernel_bind - bind an address to a socket (kernel space)
3485  *	@sock: socket
3486  *	@addr: address
3487  *	@addrlen: length of address
3488  *
3489  *	Returns 0 or an error.
3490  */
3491 
3492 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3493 {
3494 	return sock->ops->bind(sock, addr, addrlen);
3495 }
3496 EXPORT_SYMBOL(kernel_bind);
3497 
3498 /**
3499  *	kernel_listen - move socket to listening state (kernel space)
3500  *	@sock: socket
3501  *	@backlog: pending connections queue size
3502  *
3503  *	Returns 0 or an error.
3504  */
3505 
3506 int kernel_listen(struct socket *sock, int backlog)
3507 {
3508 	return sock->ops->listen(sock, backlog);
3509 }
3510 EXPORT_SYMBOL(kernel_listen);
3511 
3512 /**
3513  *	kernel_accept - accept a connection (kernel space)
3514  *	@sock: listening socket
3515  *	@newsock: new connected socket
3516  *	@flags: flags
3517  *
3518  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3519  *	If it fails, @newsock is guaranteed to be %NULL.
3520  *	Returns 0 or an error.
3521  */
3522 
3523 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3524 {
3525 	struct sock *sk = sock->sk;
3526 	int err;
3527 
3528 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3529 			       newsock);
3530 	if (err < 0)
3531 		goto done;
3532 
3533 	err = sock->ops->accept(sock, *newsock, flags, true);
3534 	if (err < 0) {
3535 		sock_release(*newsock);
3536 		*newsock = NULL;
3537 		goto done;
3538 	}
3539 
3540 	(*newsock)->ops = sock->ops;
3541 	__module_get((*newsock)->ops->owner);
3542 
3543 done:
3544 	return err;
3545 }
3546 EXPORT_SYMBOL(kernel_accept);
3547 
3548 /**
3549  *	kernel_connect - connect a socket (kernel space)
3550  *	@sock: socket
3551  *	@addr: address
3552  *	@addrlen: address length
3553  *	@flags: flags (O_NONBLOCK, ...)
3554  *
3555  *	For datagram sockets, @addr is the addres to which datagrams are sent
3556  *	by default, and the only address from which datagrams are received.
3557  *	For stream sockets, attempts to connect to @addr.
3558  *	Returns 0 or an error code.
3559  */
3560 
3561 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3562 		   int flags)
3563 {
3564 	return sock->ops->connect(sock, addr, addrlen, flags);
3565 }
3566 EXPORT_SYMBOL(kernel_connect);
3567 
3568 /**
3569  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3570  *	@sock: socket
3571  *	@addr: address holder
3572  *
3573  * 	Fills the @addr pointer with the address which the socket is bound.
3574  *	Returns 0 or an error code.
3575  */
3576 
3577 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3578 {
3579 	return sock->ops->getname(sock, addr, 0);
3580 }
3581 EXPORT_SYMBOL(kernel_getsockname);
3582 
3583 /**
3584  *	kernel_peername - get the address which the socket is connected (kernel space)
3585  *	@sock: socket
3586  *	@addr: address holder
3587  *
3588  * 	Fills the @addr pointer with the address which the socket is connected.
3589  *	Returns 0 or an error code.
3590  */
3591 
3592 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3593 {
3594 	return sock->ops->getname(sock, addr, 1);
3595 }
3596 EXPORT_SYMBOL(kernel_getpeername);
3597 
3598 /**
3599  *	kernel_getsockopt - get a socket option (kernel space)
3600  *	@sock: socket
3601  *	@level: API level (SOL_SOCKET, ...)
3602  *	@optname: option tag
3603  *	@optval: option value
3604  *	@optlen: option length
3605  *
3606  *	Assigns the option length to @optlen.
3607  *	Returns 0 or an error.
3608  */
3609 
3610 int kernel_getsockopt(struct socket *sock, int level, int optname,
3611 			char *optval, int *optlen)
3612 {
3613 	mm_segment_t oldfs = get_fs();
3614 	char __user *uoptval;
3615 	int __user *uoptlen;
3616 	int err;
3617 
3618 	uoptval = (char __user __force *) optval;
3619 	uoptlen = (int __user __force *) optlen;
3620 
3621 	set_fs(KERNEL_DS);
3622 	if (level == SOL_SOCKET)
3623 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3624 	else
3625 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3626 					    uoptlen);
3627 	set_fs(oldfs);
3628 	return err;
3629 }
3630 EXPORT_SYMBOL(kernel_getsockopt);
3631 
3632 /**
3633  *	kernel_setsockopt - set a socket option (kernel space)
3634  *	@sock: socket
3635  *	@level: API level (SOL_SOCKET, ...)
3636  *	@optname: option tag
3637  *	@optval: option value
3638  *	@optlen: option length
3639  *
3640  *	Returns 0 or an error.
3641  */
3642 
3643 int kernel_setsockopt(struct socket *sock, int level, int optname,
3644 			char *optval, unsigned int optlen)
3645 {
3646 	mm_segment_t oldfs = get_fs();
3647 	char __user *uoptval;
3648 	int err;
3649 
3650 	uoptval = (char __user __force *) optval;
3651 
3652 	set_fs(KERNEL_DS);
3653 	if (level == SOL_SOCKET)
3654 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3655 	else
3656 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3657 					    optlen);
3658 	set_fs(oldfs);
3659 	return err;
3660 }
3661 EXPORT_SYMBOL(kernel_setsockopt);
3662 
3663 /**
3664  *	kernel_sendpage - send a &page through a socket (kernel space)
3665  *	@sock: socket
3666  *	@page: page
3667  *	@offset: page offset
3668  *	@size: total size in bytes
3669  *	@flags: flags (MSG_DONTWAIT, ...)
3670  *
3671  *	Returns the total amount sent in bytes or an error.
3672  */
3673 
3674 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3675 		    size_t size, int flags)
3676 {
3677 	if (sock->ops->sendpage)
3678 		return sock->ops->sendpage(sock, page, offset, size, flags);
3679 
3680 	return sock_no_sendpage(sock, page, offset, size, flags);
3681 }
3682 EXPORT_SYMBOL(kernel_sendpage);
3683 
3684 /**
3685  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3686  *	@sk: sock
3687  *	@page: page
3688  *	@offset: page offset
3689  *	@size: total size in bytes
3690  *	@flags: flags (MSG_DONTWAIT, ...)
3691  *
3692  *	Returns the total amount sent in bytes or an error.
3693  *	Caller must hold @sk.
3694  */
3695 
3696 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3697 			   size_t size, int flags)
3698 {
3699 	struct socket *sock = sk->sk_socket;
3700 
3701 	if (sock->ops->sendpage_locked)
3702 		return sock->ops->sendpage_locked(sk, page, offset, size,
3703 						  flags);
3704 
3705 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3706 }
3707 EXPORT_SYMBOL(kernel_sendpage_locked);
3708 
3709 /**
3710  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3711  *	@sock: socket
3712  *	@how: connection part
3713  *
3714  *	Returns 0 or an error.
3715  */
3716 
3717 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3718 {
3719 	return sock->ops->shutdown(sock, how);
3720 }
3721 EXPORT_SYMBOL(kernel_sock_shutdown);
3722 
3723 /**
3724  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3725  *	@sk: socket
3726  *
3727  *	This routine returns the IP overhead imposed by a socket i.e.
3728  *	the length of the underlying IP header, depending on whether
3729  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3730  *	on at the socket. Assumes that the caller has a lock on the socket.
3731  */
3732 
3733 u32 kernel_sock_ip_overhead(struct sock *sk)
3734 {
3735 	struct inet_sock *inet;
3736 	struct ip_options_rcu *opt;
3737 	u32 overhead = 0;
3738 #if IS_ENABLED(CONFIG_IPV6)
3739 	struct ipv6_pinfo *np;
3740 	struct ipv6_txoptions *optv6 = NULL;
3741 #endif /* IS_ENABLED(CONFIG_IPV6) */
3742 
3743 	if (!sk)
3744 		return overhead;
3745 
3746 	switch (sk->sk_family) {
3747 	case AF_INET:
3748 		inet = inet_sk(sk);
3749 		overhead += sizeof(struct iphdr);
3750 		opt = rcu_dereference_protected(inet->inet_opt,
3751 						sock_owned_by_user(sk));
3752 		if (opt)
3753 			overhead += opt->opt.optlen;
3754 		return overhead;
3755 #if IS_ENABLED(CONFIG_IPV6)
3756 	case AF_INET6:
3757 		np = inet6_sk(sk);
3758 		overhead += sizeof(struct ipv6hdr);
3759 		if (np)
3760 			optv6 = rcu_dereference_protected(np->opt,
3761 							  sock_owned_by_user(sk));
3762 		if (optv6)
3763 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3764 		return overhead;
3765 #endif /* IS_ENABLED(CONFIG_IPV6) */
3766 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3767 		return overhead;
3768 	}
3769 }
3770 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3771