xref: /openbmc/linux/net/socket.c (revision 10f0fc17)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 
96 #include <net/sock.h>
97 #include <linux/netfilter.h>
98 
99 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
100 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
101 			 unsigned long nr_segs, loff_t pos);
102 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
103 			  unsigned long nr_segs, loff_t pos);
104 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
105 
106 static int sock_close(struct inode *inode, struct file *file);
107 static unsigned int sock_poll(struct file *file,
108 			      struct poll_table_struct *wait);
109 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
110 #ifdef CONFIG_COMPAT
111 static long compat_sock_ioctl(struct file *file,
112 			      unsigned int cmd, unsigned long arg);
113 #endif
114 static int sock_fasync(int fd, struct file *filp, int on);
115 static ssize_t sock_sendpage(struct file *file, struct page *page,
116 			     int offset, size_t size, loff_t *ppos, int more);
117 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
118 			        struct pipe_inode_info *pipe, size_t len,
119 				unsigned int flags);
120 
121 /*
122  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123  *	in the operation structures but are done directly via the socketcall() multiplexor.
124  */
125 
126 static const struct file_operations socket_file_ops = {
127 	.owner =	THIS_MODULE,
128 	.llseek =	no_llseek,
129 	.aio_read =	sock_aio_read,
130 	.aio_write =	sock_aio_write,
131 	.poll =		sock_poll,
132 	.unlocked_ioctl = sock_ioctl,
133 #ifdef CONFIG_COMPAT
134 	.compat_ioctl = compat_sock_ioctl,
135 #endif
136 	.mmap =		sock_mmap,
137 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
138 	.release =	sock_close,
139 	.fasync =	sock_fasync,
140 	.sendpage =	sock_sendpage,
141 	.splice_write = generic_splice_sendpage,
142 	.splice_read =	sock_splice_read,
143 };
144 
145 /*
146  *	The protocol list. Each protocol is registered in here.
147  */
148 
149 static DEFINE_SPINLOCK(net_family_lock);
150 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
151 
152 /*
153  *	Statistics counters of the socket lists
154  */
155 
156 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
157 
158 /*
159  * Support routines.
160  * Move socket addresses back and forth across the kernel/user
161  * divide and look after the messy bits.
162  */
163 
164 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
165 					   16 for IP, 16 for IPX,
166 					   24 for IPv6,
167 					   about 80 for AX.25
168 					   must be at least one bigger than
169 					   the AF_UNIX size (see net/unix/af_unix.c
170 					   :unix_mkname()).
171 					 */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
213 		      int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 #define SOCKFS_MAGIC 0x534F434B
239 
240 static struct kmem_cache *sock_inode_cachep __read_mostly;
241 
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 	struct socket_alloc *ei;
245 
246 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 	if (!ei)
248 		return NULL;
249 	init_waitqueue_head(&ei->socket.wait);
250 
251 	ei->socket.fasync_list = NULL;
252 	ei->socket.state = SS_UNCONNECTED;
253 	ei->socket.flags = 0;
254 	ei->socket.ops = NULL;
255 	ei->socket.sk = NULL;
256 	ei->socket.file = NULL;
257 
258 	return &ei->vfs_inode;
259 }
260 
261 static void sock_destroy_inode(struct inode *inode)
262 {
263 	kmem_cache_free(sock_inode_cachep,
264 			container_of(inode, struct socket_alloc, vfs_inode));
265 }
266 
267 static void init_once(void *foo)
268 {
269 	struct socket_alloc *ei = (struct socket_alloc *)foo;
270 
271 	inode_init_once(&ei->vfs_inode);
272 }
273 
274 static int init_inodecache(void)
275 {
276 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
277 					      sizeof(struct socket_alloc),
278 					      0,
279 					      (SLAB_HWCACHE_ALIGN |
280 					       SLAB_RECLAIM_ACCOUNT |
281 					       SLAB_MEM_SPREAD),
282 					      init_once);
283 	if (sock_inode_cachep == NULL)
284 		return -ENOMEM;
285 	return 0;
286 }
287 
288 static struct super_operations sockfs_ops = {
289 	.alloc_inode =	sock_alloc_inode,
290 	.destroy_inode =sock_destroy_inode,
291 	.statfs =	simple_statfs,
292 };
293 
294 static int sockfs_get_sb(struct file_system_type *fs_type,
295 			 int flags, const char *dev_name, void *data,
296 			 struct vfsmount *mnt)
297 {
298 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
299 			     mnt);
300 }
301 
302 static struct vfsmount *sock_mnt __read_mostly;
303 
304 static struct file_system_type sock_fs_type = {
305 	.name =		"sockfs",
306 	.get_sb =	sockfs_get_sb,
307 	.kill_sb =	kill_anon_super,
308 };
309 
310 static int sockfs_delete_dentry(struct dentry *dentry)
311 {
312 	/*
313 	 * At creation time, we pretended this dentry was hashed
314 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
315 	 * At delete time, we restore the truth : not hashed.
316 	 * (so that dput() can proceed correctly)
317 	 */
318 	dentry->d_flags |= DCACHE_UNHASHED;
319 	return 0;
320 }
321 
322 /*
323  * sockfs_dname() is called from d_path().
324  */
325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
326 {
327 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
328 				dentry->d_inode->i_ino);
329 }
330 
331 static struct dentry_operations sockfs_dentry_operations = {
332 	.d_delete = sockfs_delete_dentry,
333 	.d_dname  = sockfs_dname,
334 };
335 
336 /*
337  *	Obtains the first available file descriptor and sets it up for use.
338  *
339  *	These functions create file structures and maps them to fd space
340  *	of the current process. On success it returns file descriptor
341  *	and file struct implicitly stored in sock->file.
342  *	Note that another thread may close file descriptor before we return
343  *	from this function. We use the fact that now we do not refer
344  *	to socket after mapping. If one day we will need it, this
345  *	function will increment ref. count on file by 1.
346  *
347  *	In any case returned fd MAY BE not valid!
348  *	This race condition is unavoidable
349  *	with shared fd spaces, we cannot solve it inside kernel,
350  *	but we take care of internal coherence yet.
351  */
352 
353 static int sock_alloc_fd(struct file **filep, int flags)
354 {
355 	int fd;
356 
357 	fd = get_unused_fd_flags(flags);
358 	if (likely(fd >= 0)) {
359 		struct file *file = get_empty_filp();
360 
361 		*filep = file;
362 		if (unlikely(!file)) {
363 			put_unused_fd(fd);
364 			return -ENFILE;
365 		}
366 	} else
367 		*filep = NULL;
368 	return fd;
369 }
370 
371 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
372 {
373 	struct dentry *dentry;
374 	struct qstr name = { .name = "" };
375 
376 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
377 	if (unlikely(!dentry))
378 		return -ENOMEM;
379 
380 	dentry->d_op = &sockfs_dentry_operations;
381 	/*
382 	 * We dont want to push this dentry into global dentry hash table.
383 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
384 	 * This permits a working /proc/$pid/fd/XXX on sockets
385 	 */
386 	dentry->d_flags &= ~DCACHE_UNHASHED;
387 	d_instantiate(dentry, SOCK_INODE(sock));
388 
389 	sock->file = file;
390 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
391 		  &socket_file_ops);
392 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
393 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
394 	file->f_pos = 0;
395 	file->private_data = sock;
396 
397 	return 0;
398 }
399 
400 int sock_map_fd(struct socket *sock, int flags)
401 {
402 	struct file *newfile;
403 	int fd = sock_alloc_fd(&newfile, flags);
404 
405 	if (likely(fd >= 0)) {
406 		int err = sock_attach_fd(sock, newfile, flags);
407 
408 		if (unlikely(err < 0)) {
409 			put_filp(newfile);
410 			put_unused_fd(fd);
411 			return err;
412 		}
413 		fd_install(fd, newfile);
414 	}
415 	return fd;
416 }
417 
418 static struct socket *sock_from_file(struct file *file, int *err)
419 {
420 	if (file->f_op == &socket_file_ops)
421 		return file->private_data;	/* set in sock_map_fd */
422 
423 	*err = -ENOTSOCK;
424 	return NULL;
425 }
426 
427 /**
428  *	sockfd_lookup	- 	Go from a file number to its socket slot
429  *	@fd: file handle
430  *	@err: pointer to an error code return
431  *
432  *	The file handle passed in is locked and the socket it is bound
433  *	too is returned. If an error occurs the err pointer is overwritten
434  *	with a negative errno code and NULL is returned. The function checks
435  *	for both invalid handles and passing a handle which is not a socket.
436  *
437  *	On a success the socket object pointer is returned.
438  */
439 
440 struct socket *sockfd_lookup(int fd, int *err)
441 {
442 	struct file *file;
443 	struct socket *sock;
444 
445 	file = fget(fd);
446 	if (!file) {
447 		*err = -EBADF;
448 		return NULL;
449 	}
450 
451 	sock = sock_from_file(file, err);
452 	if (!sock)
453 		fput(file);
454 	return sock;
455 }
456 
457 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
458 {
459 	struct file *file;
460 	struct socket *sock;
461 
462 	*err = -EBADF;
463 	file = fget_light(fd, fput_needed);
464 	if (file) {
465 		sock = sock_from_file(file, err);
466 		if (sock)
467 			return sock;
468 		fput_light(file, *fput_needed);
469 	}
470 	return NULL;
471 }
472 
473 /**
474  *	sock_alloc	-	allocate a socket
475  *
476  *	Allocate a new inode and socket object. The two are bound together
477  *	and initialised. The socket is then returned. If we are out of inodes
478  *	NULL is returned.
479  */
480 
481 static struct socket *sock_alloc(void)
482 {
483 	struct inode *inode;
484 	struct socket *sock;
485 
486 	inode = new_inode(sock_mnt->mnt_sb);
487 	if (!inode)
488 		return NULL;
489 
490 	sock = SOCKET_I(inode);
491 
492 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
493 	inode->i_uid = current_fsuid();
494 	inode->i_gid = current_fsgid();
495 
496 	get_cpu_var(sockets_in_use)++;
497 	put_cpu_var(sockets_in_use);
498 	return sock;
499 }
500 
501 /*
502  *	In theory you can't get an open on this inode, but /proc provides
503  *	a back door. Remember to keep it shut otherwise you'll let the
504  *	creepy crawlies in.
505  */
506 
507 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
508 {
509 	return -ENXIO;
510 }
511 
512 const struct file_operations bad_sock_fops = {
513 	.owner = THIS_MODULE,
514 	.open = sock_no_open,
515 };
516 
517 /**
518  *	sock_release	-	close a socket
519  *	@sock: socket to close
520  *
521  *	The socket is released from the protocol stack if it has a release
522  *	callback, and the inode is then released if the socket is bound to
523  *	an inode not a file.
524  */
525 
526 void sock_release(struct socket *sock)
527 {
528 	if (sock->ops) {
529 		struct module *owner = sock->ops->owner;
530 
531 		sock->ops->release(sock);
532 		sock->ops = NULL;
533 		module_put(owner);
534 	}
535 
536 	if (sock->fasync_list)
537 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
538 
539 	get_cpu_var(sockets_in_use)--;
540 	put_cpu_var(sockets_in_use);
541 	if (!sock->file) {
542 		iput(SOCK_INODE(sock));
543 		return;
544 	}
545 	sock->file = NULL;
546 }
547 
548 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
549 				 struct msghdr *msg, size_t size)
550 {
551 	struct sock_iocb *si = kiocb_to_siocb(iocb);
552 	int err;
553 
554 	si->sock = sock;
555 	si->scm = NULL;
556 	si->msg = msg;
557 	si->size = size;
558 
559 	err = security_socket_sendmsg(sock, msg, size);
560 	if (err)
561 		return err;
562 
563 	return sock->ops->sendmsg(iocb, sock, msg, size);
564 }
565 
566 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
567 {
568 	struct kiocb iocb;
569 	struct sock_iocb siocb;
570 	int ret;
571 
572 	init_sync_kiocb(&iocb, NULL);
573 	iocb.private = &siocb;
574 	ret = __sock_sendmsg(&iocb, sock, msg, size);
575 	if (-EIOCBQUEUED == ret)
576 		ret = wait_on_sync_kiocb(&iocb);
577 	return ret;
578 }
579 
580 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
581 		   struct kvec *vec, size_t num, size_t size)
582 {
583 	mm_segment_t oldfs = get_fs();
584 	int result;
585 
586 	set_fs(KERNEL_DS);
587 	/*
588 	 * the following is safe, since for compiler definitions of kvec and
589 	 * iovec are identical, yielding the same in-core layout and alignment
590 	 */
591 	msg->msg_iov = (struct iovec *)vec;
592 	msg->msg_iovlen = num;
593 	result = sock_sendmsg(sock, msg, size);
594 	set_fs(oldfs);
595 	return result;
596 }
597 
598 /*
599  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
600  */
601 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
602 	struct sk_buff *skb)
603 {
604 	ktime_t kt = skb->tstamp;
605 
606 	if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
607 		struct timeval tv;
608 		/* Race occurred between timestamp enabling and packet
609 		   receiving.  Fill in the current time for now. */
610 		if (kt.tv64 == 0)
611 			kt = ktime_get_real();
612 		skb->tstamp = kt;
613 		tv = ktime_to_timeval(kt);
614 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
615 	} else {
616 		struct timespec ts;
617 		/* Race occurred between timestamp enabling and packet
618 		   receiving.  Fill in the current time for now. */
619 		if (kt.tv64 == 0)
620 			kt = ktime_get_real();
621 		skb->tstamp = kt;
622 		ts = ktime_to_timespec(kt);
623 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
624 	}
625 }
626 
627 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
628 
629 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
630 				 struct msghdr *msg, size_t size, int flags)
631 {
632 	int err;
633 	struct sock_iocb *si = kiocb_to_siocb(iocb);
634 
635 	si->sock = sock;
636 	si->scm = NULL;
637 	si->msg = msg;
638 	si->size = size;
639 	si->flags = flags;
640 
641 	err = security_socket_recvmsg(sock, msg, size, flags);
642 	if (err)
643 		return err;
644 
645 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
646 }
647 
648 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
649 		 size_t size, int flags)
650 {
651 	struct kiocb iocb;
652 	struct sock_iocb siocb;
653 	int ret;
654 
655 	init_sync_kiocb(&iocb, NULL);
656 	iocb.private = &siocb;
657 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
658 	if (-EIOCBQUEUED == ret)
659 		ret = wait_on_sync_kiocb(&iocb);
660 	return ret;
661 }
662 
663 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
664 		   struct kvec *vec, size_t num, size_t size, int flags)
665 {
666 	mm_segment_t oldfs = get_fs();
667 	int result;
668 
669 	set_fs(KERNEL_DS);
670 	/*
671 	 * the following is safe, since for compiler definitions of kvec and
672 	 * iovec are identical, yielding the same in-core layout and alignment
673 	 */
674 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
675 	result = sock_recvmsg(sock, msg, size, flags);
676 	set_fs(oldfs);
677 	return result;
678 }
679 
680 static void sock_aio_dtor(struct kiocb *iocb)
681 {
682 	kfree(iocb->private);
683 }
684 
685 static ssize_t sock_sendpage(struct file *file, struct page *page,
686 			     int offset, size_t size, loff_t *ppos, int more)
687 {
688 	struct socket *sock;
689 	int flags;
690 
691 	sock = file->private_data;
692 
693 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
694 	if (more)
695 		flags |= MSG_MORE;
696 
697 	return sock->ops->sendpage(sock, page, offset, size, flags);
698 }
699 
700 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
701 			        struct pipe_inode_info *pipe, size_t len,
702 				unsigned int flags)
703 {
704 	struct socket *sock = file->private_data;
705 
706 	if (unlikely(!sock->ops->splice_read))
707 		return -EINVAL;
708 
709 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
710 }
711 
712 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
713 					 struct sock_iocb *siocb)
714 {
715 	if (!is_sync_kiocb(iocb)) {
716 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
717 		if (!siocb)
718 			return NULL;
719 		iocb->ki_dtor = sock_aio_dtor;
720 	}
721 
722 	siocb->kiocb = iocb;
723 	iocb->private = siocb;
724 	return siocb;
725 }
726 
727 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
728 		struct file *file, const struct iovec *iov,
729 		unsigned long nr_segs)
730 {
731 	struct socket *sock = file->private_data;
732 	size_t size = 0;
733 	int i;
734 
735 	for (i = 0; i < nr_segs; i++)
736 		size += iov[i].iov_len;
737 
738 	msg->msg_name = NULL;
739 	msg->msg_namelen = 0;
740 	msg->msg_control = NULL;
741 	msg->msg_controllen = 0;
742 	msg->msg_iov = (struct iovec *)iov;
743 	msg->msg_iovlen = nr_segs;
744 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
745 
746 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
747 }
748 
749 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
750 				unsigned long nr_segs, loff_t pos)
751 {
752 	struct sock_iocb siocb, *x;
753 
754 	if (pos != 0)
755 		return -ESPIPE;
756 
757 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
758 		return 0;
759 
760 
761 	x = alloc_sock_iocb(iocb, &siocb);
762 	if (!x)
763 		return -ENOMEM;
764 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
765 }
766 
767 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
768 			struct file *file, const struct iovec *iov,
769 			unsigned long nr_segs)
770 {
771 	struct socket *sock = file->private_data;
772 	size_t size = 0;
773 	int i;
774 
775 	for (i = 0; i < nr_segs; i++)
776 		size += iov[i].iov_len;
777 
778 	msg->msg_name = NULL;
779 	msg->msg_namelen = 0;
780 	msg->msg_control = NULL;
781 	msg->msg_controllen = 0;
782 	msg->msg_iov = (struct iovec *)iov;
783 	msg->msg_iovlen = nr_segs;
784 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
785 	if (sock->type == SOCK_SEQPACKET)
786 		msg->msg_flags |= MSG_EOR;
787 
788 	return __sock_sendmsg(iocb, sock, msg, size);
789 }
790 
791 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
792 			  unsigned long nr_segs, loff_t pos)
793 {
794 	struct sock_iocb siocb, *x;
795 
796 	if (pos != 0)
797 		return -ESPIPE;
798 
799 	x = alloc_sock_iocb(iocb, &siocb);
800 	if (!x)
801 		return -ENOMEM;
802 
803 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
804 }
805 
806 /*
807  * Atomic setting of ioctl hooks to avoid race
808  * with module unload.
809  */
810 
811 static DEFINE_MUTEX(br_ioctl_mutex);
812 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
813 
814 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
815 {
816 	mutex_lock(&br_ioctl_mutex);
817 	br_ioctl_hook = hook;
818 	mutex_unlock(&br_ioctl_mutex);
819 }
820 
821 EXPORT_SYMBOL(brioctl_set);
822 
823 static DEFINE_MUTEX(vlan_ioctl_mutex);
824 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
825 
826 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
827 {
828 	mutex_lock(&vlan_ioctl_mutex);
829 	vlan_ioctl_hook = hook;
830 	mutex_unlock(&vlan_ioctl_mutex);
831 }
832 
833 EXPORT_SYMBOL(vlan_ioctl_set);
834 
835 static DEFINE_MUTEX(dlci_ioctl_mutex);
836 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
837 
838 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
839 {
840 	mutex_lock(&dlci_ioctl_mutex);
841 	dlci_ioctl_hook = hook;
842 	mutex_unlock(&dlci_ioctl_mutex);
843 }
844 
845 EXPORT_SYMBOL(dlci_ioctl_set);
846 
847 /*
848  *	With an ioctl, arg may well be a user mode pointer, but we don't know
849  *	what to do with it - that's up to the protocol still.
850  */
851 
852 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
853 {
854 	struct socket *sock;
855 	struct sock *sk;
856 	void __user *argp = (void __user *)arg;
857 	int pid, err;
858 	struct net *net;
859 
860 	sock = file->private_data;
861 	sk = sock->sk;
862 	net = sock_net(sk);
863 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
864 		err = dev_ioctl(net, cmd, argp);
865 	} else
866 #ifdef CONFIG_WIRELESS_EXT
867 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
868 		err = dev_ioctl(net, cmd, argp);
869 	} else
870 #endif				/* CONFIG_WIRELESS_EXT */
871 		switch (cmd) {
872 		case FIOSETOWN:
873 		case SIOCSPGRP:
874 			err = -EFAULT;
875 			if (get_user(pid, (int __user *)argp))
876 				break;
877 			err = f_setown(sock->file, pid, 1);
878 			break;
879 		case FIOGETOWN:
880 		case SIOCGPGRP:
881 			err = put_user(f_getown(sock->file),
882 				       (int __user *)argp);
883 			break;
884 		case SIOCGIFBR:
885 		case SIOCSIFBR:
886 		case SIOCBRADDBR:
887 		case SIOCBRDELBR:
888 			err = -ENOPKG;
889 			if (!br_ioctl_hook)
890 				request_module("bridge");
891 
892 			mutex_lock(&br_ioctl_mutex);
893 			if (br_ioctl_hook)
894 				err = br_ioctl_hook(net, cmd, argp);
895 			mutex_unlock(&br_ioctl_mutex);
896 			break;
897 		case SIOCGIFVLAN:
898 		case SIOCSIFVLAN:
899 			err = -ENOPKG;
900 			if (!vlan_ioctl_hook)
901 				request_module("8021q");
902 
903 			mutex_lock(&vlan_ioctl_mutex);
904 			if (vlan_ioctl_hook)
905 				err = vlan_ioctl_hook(net, argp);
906 			mutex_unlock(&vlan_ioctl_mutex);
907 			break;
908 		case SIOCADDDLCI:
909 		case SIOCDELDLCI:
910 			err = -ENOPKG;
911 			if (!dlci_ioctl_hook)
912 				request_module("dlci");
913 
914 			mutex_lock(&dlci_ioctl_mutex);
915 			if (dlci_ioctl_hook)
916 				err = dlci_ioctl_hook(cmd, argp);
917 			mutex_unlock(&dlci_ioctl_mutex);
918 			break;
919 		default:
920 			err = sock->ops->ioctl(sock, cmd, arg);
921 
922 			/*
923 			 * If this ioctl is unknown try to hand it down
924 			 * to the NIC driver.
925 			 */
926 			if (err == -ENOIOCTLCMD)
927 				err = dev_ioctl(net, cmd, argp);
928 			break;
929 		}
930 	return err;
931 }
932 
933 int sock_create_lite(int family, int type, int protocol, struct socket **res)
934 {
935 	int err;
936 	struct socket *sock = NULL;
937 
938 	err = security_socket_create(family, type, protocol, 1);
939 	if (err)
940 		goto out;
941 
942 	sock = sock_alloc();
943 	if (!sock) {
944 		err = -ENOMEM;
945 		goto out;
946 	}
947 
948 	sock->type = type;
949 	err = security_socket_post_create(sock, family, type, protocol, 1);
950 	if (err)
951 		goto out_release;
952 
953 out:
954 	*res = sock;
955 	return err;
956 out_release:
957 	sock_release(sock);
958 	sock = NULL;
959 	goto out;
960 }
961 
962 /* No kernel lock held - perfect */
963 static unsigned int sock_poll(struct file *file, poll_table *wait)
964 {
965 	struct socket *sock;
966 
967 	/*
968 	 *      We can't return errors to poll, so it's either yes or no.
969 	 */
970 	sock = file->private_data;
971 	return sock->ops->poll(file, sock, wait);
972 }
973 
974 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
975 {
976 	struct socket *sock = file->private_data;
977 
978 	return sock->ops->mmap(file, sock, vma);
979 }
980 
981 static int sock_close(struct inode *inode, struct file *filp)
982 {
983 	/*
984 	 *      It was possible the inode is NULL we were
985 	 *      closing an unfinished socket.
986 	 */
987 
988 	if (!inode) {
989 		printk(KERN_DEBUG "sock_close: NULL inode\n");
990 		return 0;
991 	}
992 	sock_release(SOCKET_I(inode));
993 	return 0;
994 }
995 
996 /*
997  *	Update the socket async list
998  *
999  *	Fasync_list locking strategy.
1000  *
1001  *	1. fasync_list is modified only under process context socket lock
1002  *	   i.e. under semaphore.
1003  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1004  *	   or under socket lock.
1005  *	3. fasync_list can be used from softirq context, so that
1006  *	   modification under socket lock have to be enhanced with
1007  *	   write_lock_bh(&sk->sk_callback_lock).
1008  *							--ANK (990710)
1009  */
1010 
1011 static int sock_fasync(int fd, struct file *filp, int on)
1012 {
1013 	struct fasync_struct *fa, *fna = NULL, **prev;
1014 	struct socket *sock;
1015 	struct sock *sk;
1016 
1017 	if (on) {
1018 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1019 		if (fna == NULL)
1020 			return -ENOMEM;
1021 	}
1022 
1023 	sock = filp->private_data;
1024 
1025 	sk = sock->sk;
1026 	if (sk == NULL) {
1027 		kfree(fna);
1028 		return -EINVAL;
1029 	}
1030 
1031 	lock_sock(sk);
1032 
1033 	prev = &(sock->fasync_list);
1034 
1035 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1036 		if (fa->fa_file == filp)
1037 			break;
1038 
1039 	if (on) {
1040 		if (fa != NULL) {
1041 			write_lock_bh(&sk->sk_callback_lock);
1042 			fa->fa_fd = fd;
1043 			write_unlock_bh(&sk->sk_callback_lock);
1044 
1045 			kfree(fna);
1046 			goto out;
1047 		}
1048 		fna->fa_file = filp;
1049 		fna->fa_fd = fd;
1050 		fna->magic = FASYNC_MAGIC;
1051 		fna->fa_next = sock->fasync_list;
1052 		write_lock_bh(&sk->sk_callback_lock);
1053 		sock->fasync_list = fna;
1054 		write_unlock_bh(&sk->sk_callback_lock);
1055 	} else {
1056 		if (fa != NULL) {
1057 			write_lock_bh(&sk->sk_callback_lock);
1058 			*prev = fa->fa_next;
1059 			write_unlock_bh(&sk->sk_callback_lock);
1060 			kfree(fa);
1061 		}
1062 	}
1063 
1064 out:
1065 	release_sock(sock->sk);
1066 	return 0;
1067 }
1068 
1069 /* This function may be called only under socket lock or callback_lock */
1070 
1071 int sock_wake_async(struct socket *sock, int how, int band)
1072 {
1073 	if (!sock || !sock->fasync_list)
1074 		return -1;
1075 	switch (how) {
1076 	case SOCK_WAKE_WAITD:
1077 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1078 			break;
1079 		goto call_kill;
1080 	case SOCK_WAKE_SPACE:
1081 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1082 			break;
1083 		/* fall through */
1084 	case SOCK_WAKE_IO:
1085 call_kill:
1086 		__kill_fasync(sock->fasync_list, SIGIO, band);
1087 		break;
1088 	case SOCK_WAKE_URG:
1089 		__kill_fasync(sock->fasync_list, SIGURG, band);
1090 	}
1091 	return 0;
1092 }
1093 
1094 static int __sock_create(struct net *net, int family, int type, int protocol,
1095 			 struct socket **res, int kern)
1096 {
1097 	int err;
1098 	struct socket *sock;
1099 	const struct net_proto_family *pf;
1100 
1101 	/*
1102 	 *      Check protocol is in range
1103 	 */
1104 	if (family < 0 || family >= NPROTO)
1105 		return -EAFNOSUPPORT;
1106 	if (type < 0 || type >= SOCK_MAX)
1107 		return -EINVAL;
1108 
1109 	/* Compatibility.
1110 
1111 	   This uglymoron is moved from INET layer to here to avoid
1112 	   deadlock in module load.
1113 	 */
1114 	if (family == PF_INET && type == SOCK_PACKET) {
1115 		static int warned;
1116 		if (!warned) {
1117 			warned = 1;
1118 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119 			       current->comm);
1120 		}
1121 		family = PF_PACKET;
1122 	}
1123 
1124 	err = security_socket_create(family, type, protocol, kern);
1125 	if (err)
1126 		return err;
1127 
1128 	/*
1129 	 *	Allocate the socket and allow the family to set things up. if
1130 	 *	the protocol is 0, the family is instructed to select an appropriate
1131 	 *	default.
1132 	 */
1133 	sock = sock_alloc();
1134 	if (!sock) {
1135 		if (net_ratelimit())
1136 			printk(KERN_WARNING "socket: no more sockets\n");
1137 		return -ENFILE;	/* Not exactly a match, but its the
1138 				   closest posix thing */
1139 	}
1140 
1141 	sock->type = type;
1142 
1143 #ifdef CONFIG_MODULES
1144 	/* Attempt to load a protocol module if the find failed.
1145 	 *
1146 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1147 	 * requested real, full-featured networking support upon configuration.
1148 	 * Otherwise module support will break!
1149 	 */
1150 	if (net_families[family] == NULL)
1151 		request_module("net-pf-%d", family);
1152 #endif
1153 
1154 	rcu_read_lock();
1155 	pf = rcu_dereference(net_families[family]);
1156 	err = -EAFNOSUPPORT;
1157 	if (!pf)
1158 		goto out_release;
1159 
1160 	/*
1161 	 * We will call the ->create function, that possibly is in a loadable
1162 	 * module, so we have to bump that loadable module refcnt first.
1163 	 */
1164 	if (!try_module_get(pf->owner))
1165 		goto out_release;
1166 
1167 	/* Now protected by module ref count */
1168 	rcu_read_unlock();
1169 
1170 	err = pf->create(net, sock, protocol);
1171 	if (err < 0)
1172 		goto out_module_put;
1173 
1174 	/*
1175 	 * Now to bump the refcnt of the [loadable] module that owns this
1176 	 * socket at sock_release time we decrement its refcnt.
1177 	 */
1178 	if (!try_module_get(sock->ops->owner))
1179 		goto out_module_busy;
1180 
1181 	/*
1182 	 * Now that we're done with the ->create function, the [loadable]
1183 	 * module can have its refcnt decremented
1184 	 */
1185 	module_put(pf->owner);
1186 	err = security_socket_post_create(sock, family, type, protocol, kern);
1187 	if (err)
1188 		goto out_sock_release;
1189 	*res = sock;
1190 
1191 	return 0;
1192 
1193 out_module_busy:
1194 	err = -EAFNOSUPPORT;
1195 out_module_put:
1196 	sock->ops = NULL;
1197 	module_put(pf->owner);
1198 out_sock_release:
1199 	sock_release(sock);
1200 	return err;
1201 
1202 out_release:
1203 	rcu_read_unlock();
1204 	goto out_sock_release;
1205 }
1206 
1207 int sock_create(int family, int type, int protocol, struct socket **res)
1208 {
1209 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1210 }
1211 
1212 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1213 {
1214 	return __sock_create(&init_net, family, type, protocol, res, 1);
1215 }
1216 
1217 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1218 {
1219 	int retval;
1220 	struct socket *sock;
1221 	int flags;
1222 
1223 	/* Check the SOCK_* constants for consistency.  */
1224 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1225 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1226 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1227 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1228 
1229 	flags = type & ~SOCK_TYPE_MASK;
1230 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1231 		return -EINVAL;
1232 	type &= SOCK_TYPE_MASK;
1233 
1234 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1235 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1236 
1237 	retval = sock_create(family, type, protocol, &sock);
1238 	if (retval < 0)
1239 		goto out;
1240 
1241 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1242 	if (retval < 0)
1243 		goto out_release;
1244 
1245 out:
1246 	/* It may be already another descriptor 8) Not kernel problem. */
1247 	return retval;
1248 
1249 out_release:
1250 	sock_release(sock);
1251 	return retval;
1252 }
1253 
1254 /*
1255  *	Create a pair of connected sockets.
1256  */
1257 
1258 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1259 		int __user *, usockvec)
1260 {
1261 	struct socket *sock1, *sock2;
1262 	int fd1, fd2, err;
1263 	struct file *newfile1, *newfile2;
1264 	int flags;
1265 
1266 	flags = type & ~SOCK_TYPE_MASK;
1267 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1268 		return -EINVAL;
1269 	type &= SOCK_TYPE_MASK;
1270 
1271 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1272 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1273 
1274 	/*
1275 	 * Obtain the first socket and check if the underlying protocol
1276 	 * supports the socketpair call.
1277 	 */
1278 
1279 	err = sock_create(family, type, protocol, &sock1);
1280 	if (err < 0)
1281 		goto out;
1282 
1283 	err = sock_create(family, type, protocol, &sock2);
1284 	if (err < 0)
1285 		goto out_release_1;
1286 
1287 	err = sock1->ops->socketpair(sock1, sock2);
1288 	if (err < 0)
1289 		goto out_release_both;
1290 
1291 	fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1292 	if (unlikely(fd1 < 0)) {
1293 		err = fd1;
1294 		goto out_release_both;
1295 	}
1296 
1297 	fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1298 	if (unlikely(fd2 < 0)) {
1299 		err = fd2;
1300 		put_filp(newfile1);
1301 		put_unused_fd(fd1);
1302 		goto out_release_both;
1303 	}
1304 
1305 	err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1306 	if (unlikely(err < 0)) {
1307 		goto out_fd2;
1308 	}
1309 
1310 	err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1311 	if (unlikely(err < 0)) {
1312 		fput(newfile1);
1313 		goto out_fd1;
1314 	}
1315 
1316 	audit_fd_pair(fd1, fd2);
1317 	fd_install(fd1, newfile1);
1318 	fd_install(fd2, newfile2);
1319 	/* fd1 and fd2 may be already another descriptors.
1320 	 * Not kernel problem.
1321 	 */
1322 
1323 	err = put_user(fd1, &usockvec[0]);
1324 	if (!err)
1325 		err = put_user(fd2, &usockvec[1]);
1326 	if (!err)
1327 		return 0;
1328 
1329 	sys_close(fd2);
1330 	sys_close(fd1);
1331 	return err;
1332 
1333 out_release_both:
1334 	sock_release(sock2);
1335 out_release_1:
1336 	sock_release(sock1);
1337 out:
1338 	return err;
1339 
1340 out_fd2:
1341 	put_filp(newfile1);
1342 	sock_release(sock1);
1343 out_fd1:
1344 	put_filp(newfile2);
1345 	sock_release(sock2);
1346 	put_unused_fd(fd1);
1347 	put_unused_fd(fd2);
1348 	goto out;
1349 }
1350 
1351 /*
1352  *	Bind a name to a socket. Nothing much to do here since it's
1353  *	the protocol's responsibility to handle the local address.
1354  *
1355  *	We move the socket address to kernel space before we call
1356  *	the protocol layer (having also checked the address is ok).
1357  */
1358 
1359 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1360 {
1361 	struct socket *sock;
1362 	struct sockaddr_storage address;
1363 	int err, fput_needed;
1364 
1365 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1366 	if (sock) {
1367 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1368 		if (err >= 0) {
1369 			err = security_socket_bind(sock,
1370 						   (struct sockaddr *)&address,
1371 						   addrlen);
1372 			if (!err)
1373 				err = sock->ops->bind(sock,
1374 						      (struct sockaddr *)
1375 						      &address, addrlen);
1376 		}
1377 		fput_light(sock->file, fput_needed);
1378 	}
1379 	return err;
1380 }
1381 
1382 /*
1383  *	Perform a listen. Basically, we allow the protocol to do anything
1384  *	necessary for a listen, and if that works, we mark the socket as
1385  *	ready for listening.
1386  */
1387 
1388 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1389 {
1390 	struct socket *sock;
1391 	int err, fput_needed;
1392 	int somaxconn;
1393 
1394 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1395 	if (sock) {
1396 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1397 		if ((unsigned)backlog > somaxconn)
1398 			backlog = somaxconn;
1399 
1400 		err = security_socket_listen(sock, backlog);
1401 		if (!err)
1402 			err = sock->ops->listen(sock, backlog);
1403 
1404 		fput_light(sock->file, fput_needed);
1405 	}
1406 	return err;
1407 }
1408 
1409 /*
1410  *	For accept, we attempt to create a new socket, set up the link
1411  *	with the client, wake up the client, then return the new
1412  *	connected fd. We collect the address of the connector in kernel
1413  *	space and move it to user at the very end. This is unclean because
1414  *	we open the socket then return an error.
1415  *
1416  *	1003.1g adds the ability to recvmsg() to query connection pending
1417  *	status to recvmsg. We need to add that support in a way thats
1418  *	clean when we restucture accept also.
1419  */
1420 
1421 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1422 		int __user *, upeer_addrlen, int, flags)
1423 {
1424 	struct socket *sock, *newsock;
1425 	struct file *newfile;
1426 	int err, len, newfd, fput_needed;
1427 	struct sockaddr_storage address;
1428 
1429 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1430 		return -EINVAL;
1431 
1432 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1433 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1434 
1435 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1436 	if (!sock)
1437 		goto out;
1438 
1439 	err = -ENFILE;
1440 	if (!(newsock = sock_alloc()))
1441 		goto out_put;
1442 
1443 	newsock->type = sock->type;
1444 	newsock->ops = sock->ops;
1445 
1446 	/*
1447 	 * We don't need try_module_get here, as the listening socket (sock)
1448 	 * has the protocol module (sock->ops->owner) held.
1449 	 */
1450 	__module_get(newsock->ops->owner);
1451 
1452 	newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1453 	if (unlikely(newfd < 0)) {
1454 		err = newfd;
1455 		sock_release(newsock);
1456 		goto out_put;
1457 	}
1458 
1459 	err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1460 	if (err < 0)
1461 		goto out_fd_simple;
1462 
1463 	err = security_socket_accept(sock, newsock);
1464 	if (err)
1465 		goto out_fd;
1466 
1467 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1468 	if (err < 0)
1469 		goto out_fd;
1470 
1471 	if (upeer_sockaddr) {
1472 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1473 					  &len, 2) < 0) {
1474 			err = -ECONNABORTED;
1475 			goto out_fd;
1476 		}
1477 		err = move_addr_to_user((struct sockaddr *)&address,
1478 					len, upeer_sockaddr, upeer_addrlen);
1479 		if (err < 0)
1480 			goto out_fd;
1481 	}
1482 
1483 	/* File flags are not inherited via accept() unlike another OSes. */
1484 
1485 	fd_install(newfd, newfile);
1486 	err = newfd;
1487 
1488 	security_socket_post_accept(sock, newsock);
1489 
1490 out_put:
1491 	fput_light(sock->file, fput_needed);
1492 out:
1493 	return err;
1494 out_fd_simple:
1495 	sock_release(newsock);
1496 	put_filp(newfile);
1497 	put_unused_fd(newfd);
1498 	goto out_put;
1499 out_fd:
1500 	fput(newfile);
1501 	put_unused_fd(newfd);
1502 	goto out_put;
1503 }
1504 
1505 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1506 		int __user *, upeer_addrlen)
1507 {
1508 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1509 }
1510 
1511 /*
1512  *	Attempt to connect to a socket with the server address.  The address
1513  *	is in user space so we verify it is OK and move it to kernel space.
1514  *
1515  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1516  *	break bindings
1517  *
1518  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1519  *	other SEQPACKET protocols that take time to connect() as it doesn't
1520  *	include the -EINPROGRESS status for such sockets.
1521  */
1522 
1523 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1524 		int, addrlen)
1525 {
1526 	struct socket *sock;
1527 	struct sockaddr_storage address;
1528 	int err, fput_needed;
1529 
1530 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1531 	if (!sock)
1532 		goto out;
1533 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1534 	if (err < 0)
1535 		goto out_put;
1536 
1537 	err =
1538 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1539 	if (err)
1540 		goto out_put;
1541 
1542 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1543 				 sock->file->f_flags);
1544 out_put:
1545 	fput_light(sock->file, fput_needed);
1546 out:
1547 	return err;
1548 }
1549 
1550 /*
1551  *	Get the local address ('name') of a socket object. Move the obtained
1552  *	name to user space.
1553  */
1554 
1555 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1556 		int __user *, usockaddr_len)
1557 {
1558 	struct socket *sock;
1559 	struct sockaddr_storage address;
1560 	int len, err, fput_needed;
1561 
1562 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563 	if (!sock)
1564 		goto out;
1565 
1566 	err = security_socket_getsockname(sock);
1567 	if (err)
1568 		goto out_put;
1569 
1570 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1571 	if (err)
1572 		goto out_put;
1573 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1574 
1575 out_put:
1576 	fput_light(sock->file, fput_needed);
1577 out:
1578 	return err;
1579 }
1580 
1581 /*
1582  *	Get the remote address ('name') of a socket object. Move the obtained
1583  *	name to user space.
1584  */
1585 
1586 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1587 		int __user *, usockaddr_len)
1588 {
1589 	struct socket *sock;
1590 	struct sockaddr_storage address;
1591 	int len, err, fput_needed;
1592 
1593 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1594 	if (sock != NULL) {
1595 		err = security_socket_getpeername(sock);
1596 		if (err) {
1597 			fput_light(sock->file, fput_needed);
1598 			return err;
1599 		}
1600 
1601 		err =
1602 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1603 				       1);
1604 		if (!err)
1605 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1606 						usockaddr_len);
1607 		fput_light(sock->file, fput_needed);
1608 	}
1609 	return err;
1610 }
1611 
1612 /*
1613  *	Send a datagram to a given address. We move the address into kernel
1614  *	space and check the user space data area is readable before invoking
1615  *	the protocol.
1616  */
1617 
1618 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1619 		unsigned, flags, struct sockaddr __user *, addr,
1620 		int, addr_len)
1621 {
1622 	struct socket *sock;
1623 	struct sockaddr_storage address;
1624 	int err;
1625 	struct msghdr msg;
1626 	struct iovec iov;
1627 	int fput_needed;
1628 
1629 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1630 	if (!sock)
1631 		goto out;
1632 
1633 	iov.iov_base = buff;
1634 	iov.iov_len = len;
1635 	msg.msg_name = NULL;
1636 	msg.msg_iov = &iov;
1637 	msg.msg_iovlen = 1;
1638 	msg.msg_control = NULL;
1639 	msg.msg_controllen = 0;
1640 	msg.msg_namelen = 0;
1641 	if (addr) {
1642 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1643 		if (err < 0)
1644 			goto out_put;
1645 		msg.msg_name = (struct sockaddr *)&address;
1646 		msg.msg_namelen = addr_len;
1647 	}
1648 	if (sock->file->f_flags & O_NONBLOCK)
1649 		flags |= MSG_DONTWAIT;
1650 	msg.msg_flags = flags;
1651 	err = sock_sendmsg(sock, &msg, len);
1652 
1653 out_put:
1654 	fput_light(sock->file, fput_needed);
1655 out:
1656 	return err;
1657 }
1658 
1659 /*
1660  *	Send a datagram down a socket.
1661  */
1662 
1663 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1664 		unsigned, flags)
1665 {
1666 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1667 }
1668 
1669 /*
1670  *	Receive a frame from the socket and optionally record the address of the
1671  *	sender. We verify the buffers are writable and if needed move the
1672  *	sender address from kernel to user space.
1673  */
1674 
1675 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1676 		unsigned, flags, struct sockaddr __user *, addr,
1677 		int __user *, addr_len)
1678 {
1679 	struct socket *sock;
1680 	struct iovec iov;
1681 	struct msghdr msg;
1682 	struct sockaddr_storage address;
1683 	int err, err2;
1684 	int fput_needed;
1685 
1686 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687 	if (!sock)
1688 		goto out;
1689 
1690 	msg.msg_control = NULL;
1691 	msg.msg_controllen = 0;
1692 	msg.msg_iovlen = 1;
1693 	msg.msg_iov = &iov;
1694 	iov.iov_len = size;
1695 	iov.iov_base = ubuf;
1696 	msg.msg_name = (struct sockaddr *)&address;
1697 	msg.msg_namelen = sizeof(address);
1698 	if (sock->file->f_flags & O_NONBLOCK)
1699 		flags |= MSG_DONTWAIT;
1700 	err = sock_recvmsg(sock, &msg, size, flags);
1701 
1702 	if (err >= 0 && addr != NULL) {
1703 		err2 = move_addr_to_user((struct sockaddr *)&address,
1704 					 msg.msg_namelen, addr, addr_len);
1705 		if (err2 < 0)
1706 			err = err2;
1707 	}
1708 
1709 	fput_light(sock->file, fput_needed);
1710 out:
1711 	return err;
1712 }
1713 
1714 /*
1715  *	Receive a datagram from a socket.
1716  */
1717 
1718 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1719 			 unsigned flags)
1720 {
1721 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1722 }
1723 
1724 /*
1725  *	Set a socket option. Because we don't know the option lengths we have
1726  *	to pass the user mode parameter for the protocols to sort out.
1727  */
1728 
1729 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1730 		char __user *, optval, int, optlen)
1731 {
1732 	int err, fput_needed;
1733 	struct socket *sock;
1734 
1735 	if (optlen < 0)
1736 		return -EINVAL;
1737 
1738 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1739 	if (sock != NULL) {
1740 		err = security_socket_setsockopt(sock, level, optname);
1741 		if (err)
1742 			goto out_put;
1743 
1744 		if (level == SOL_SOCKET)
1745 			err =
1746 			    sock_setsockopt(sock, level, optname, optval,
1747 					    optlen);
1748 		else
1749 			err =
1750 			    sock->ops->setsockopt(sock, level, optname, optval,
1751 						  optlen);
1752 out_put:
1753 		fput_light(sock->file, fput_needed);
1754 	}
1755 	return err;
1756 }
1757 
1758 /*
1759  *	Get a socket option. Because we don't know the option lengths we have
1760  *	to pass a user mode parameter for the protocols to sort out.
1761  */
1762 
1763 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1764 		char __user *, optval, int __user *, optlen)
1765 {
1766 	int err, fput_needed;
1767 	struct socket *sock;
1768 
1769 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1770 	if (sock != NULL) {
1771 		err = security_socket_getsockopt(sock, level, optname);
1772 		if (err)
1773 			goto out_put;
1774 
1775 		if (level == SOL_SOCKET)
1776 			err =
1777 			    sock_getsockopt(sock, level, optname, optval,
1778 					    optlen);
1779 		else
1780 			err =
1781 			    sock->ops->getsockopt(sock, level, optname, optval,
1782 						  optlen);
1783 out_put:
1784 		fput_light(sock->file, fput_needed);
1785 	}
1786 	return err;
1787 }
1788 
1789 /*
1790  *	Shutdown a socket.
1791  */
1792 
1793 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1794 {
1795 	int err, fput_needed;
1796 	struct socket *sock;
1797 
1798 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1799 	if (sock != NULL) {
1800 		err = security_socket_shutdown(sock, how);
1801 		if (!err)
1802 			err = sock->ops->shutdown(sock, how);
1803 		fput_light(sock->file, fput_needed);
1804 	}
1805 	return err;
1806 }
1807 
1808 /* A couple of helpful macros for getting the address of the 32/64 bit
1809  * fields which are the same type (int / unsigned) on our platforms.
1810  */
1811 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1812 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1813 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1814 
1815 /*
1816  *	BSD sendmsg interface
1817  */
1818 
1819 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1820 {
1821 	struct compat_msghdr __user *msg_compat =
1822 	    (struct compat_msghdr __user *)msg;
1823 	struct socket *sock;
1824 	struct sockaddr_storage address;
1825 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1826 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1827 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1828 	/* 20 is size of ipv6_pktinfo */
1829 	unsigned char *ctl_buf = ctl;
1830 	struct msghdr msg_sys;
1831 	int err, ctl_len, iov_size, total_len;
1832 	int fput_needed;
1833 
1834 	err = -EFAULT;
1835 	if (MSG_CMSG_COMPAT & flags) {
1836 		if (get_compat_msghdr(&msg_sys, msg_compat))
1837 			return -EFAULT;
1838 	}
1839 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1840 		return -EFAULT;
1841 
1842 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1843 	if (!sock)
1844 		goto out;
1845 
1846 	/* do not move before msg_sys is valid */
1847 	err = -EMSGSIZE;
1848 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1849 		goto out_put;
1850 
1851 	/* Check whether to allocate the iovec area */
1852 	err = -ENOMEM;
1853 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1854 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1855 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1856 		if (!iov)
1857 			goto out_put;
1858 	}
1859 
1860 	/* This will also move the address data into kernel space */
1861 	if (MSG_CMSG_COMPAT & flags) {
1862 		err = verify_compat_iovec(&msg_sys, iov,
1863 					  (struct sockaddr *)&address,
1864 					  VERIFY_READ);
1865 	} else
1866 		err = verify_iovec(&msg_sys, iov,
1867 				   (struct sockaddr *)&address,
1868 				   VERIFY_READ);
1869 	if (err < 0)
1870 		goto out_freeiov;
1871 	total_len = err;
1872 
1873 	err = -ENOBUFS;
1874 
1875 	if (msg_sys.msg_controllen > INT_MAX)
1876 		goto out_freeiov;
1877 	ctl_len = msg_sys.msg_controllen;
1878 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1879 		err =
1880 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1881 						     sizeof(ctl));
1882 		if (err)
1883 			goto out_freeiov;
1884 		ctl_buf = msg_sys.msg_control;
1885 		ctl_len = msg_sys.msg_controllen;
1886 	} else if (ctl_len) {
1887 		if (ctl_len > sizeof(ctl)) {
1888 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1889 			if (ctl_buf == NULL)
1890 				goto out_freeiov;
1891 		}
1892 		err = -EFAULT;
1893 		/*
1894 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1895 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1896 		 * checking falls down on this.
1897 		 */
1898 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1899 				   ctl_len))
1900 			goto out_freectl;
1901 		msg_sys.msg_control = ctl_buf;
1902 	}
1903 	msg_sys.msg_flags = flags;
1904 
1905 	if (sock->file->f_flags & O_NONBLOCK)
1906 		msg_sys.msg_flags |= MSG_DONTWAIT;
1907 	err = sock_sendmsg(sock, &msg_sys, total_len);
1908 
1909 out_freectl:
1910 	if (ctl_buf != ctl)
1911 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1912 out_freeiov:
1913 	if (iov != iovstack)
1914 		sock_kfree_s(sock->sk, iov, iov_size);
1915 out_put:
1916 	fput_light(sock->file, fput_needed);
1917 out:
1918 	return err;
1919 }
1920 
1921 /*
1922  *	BSD recvmsg interface
1923  */
1924 
1925 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
1926 		unsigned int, flags)
1927 {
1928 	struct compat_msghdr __user *msg_compat =
1929 	    (struct compat_msghdr __user *)msg;
1930 	struct socket *sock;
1931 	struct iovec iovstack[UIO_FASTIOV];
1932 	struct iovec *iov = iovstack;
1933 	struct msghdr msg_sys;
1934 	unsigned long cmsg_ptr;
1935 	int err, iov_size, total_len, len;
1936 	int fput_needed;
1937 
1938 	/* kernel mode address */
1939 	struct sockaddr_storage addr;
1940 
1941 	/* user mode address pointers */
1942 	struct sockaddr __user *uaddr;
1943 	int __user *uaddr_len;
1944 
1945 	if (MSG_CMSG_COMPAT & flags) {
1946 		if (get_compat_msghdr(&msg_sys, msg_compat))
1947 			return -EFAULT;
1948 	}
1949 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1950 		return -EFAULT;
1951 
1952 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1953 	if (!sock)
1954 		goto out;
1955 
1956 	err = -EMSGSIZE;
1957 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1958 		goto out_put;
1959 
1960 	/* Check whether to allocate the iovec area */
1961 	err = -ENOMEM;
1962 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1963 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1964 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1965 		if (!iov)
1966 			goto out_put;
1967 	}
1968 
1969 	/*
1970 	 *      Save the user-mode address (verify_iovec will change the
1971 	 *      kernel msghdr to use the kernel address space)
1972 	 */
1973 
1974 	uaddr = (__force void __user *)msg_sys.msg_name;
1975 	uaddr_len = COMPAT_NAMELEN(msg);
1976 	if (MSG_CMSG_COMPAT & flags) {
1977 		err = verify_compat_iovec(&msg_sys, iov,
1978 					  (struct sockaddr *)&addr,
1979 					  VERIFY_WRITE);
1980 	} else
1981 		err = verify_iovec(&msg_sys, iov,
1982 				   (struct sockaddr *)&addr,
1983 				   VERIFY_WRITE);
1984 	if (err < 0)
1985 		goto out_freeiov;
1986 	total_len = err;
1987 
1988 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1989 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1990 
1991 	if (sock->file->f_flags & O_NONBLOCK)
1992 		flags |= MSG_DONTWAIT;
1993 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1994 	if (err < 0)
1995 		goto out_freeiov;
1996 	len = err;
1997 
1998 	if (uaddr != NULL) {
1999 		err = move_addr_to_user((struct sockaddr *)&addr,
2000 					msg_sys.msg_namelen, uaddr,
2001 					uaddr_len);
2002 		if (err < 0)
2003 			goto out_freeiov;
2004 	}
2005 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2006 			 COMPAT_FLAGS(msg));
2007 	if (err)
2008 		goto out_freeiov;
2009 	if (MSG_CMSG_COMPAT & flags)
2010 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2011 				 &msg_compat->msg_controllen);
2012 	else
2013 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2014 				 &msg->msg_controllen);
2015 	if (err)
2016 		goto out_freeiov;
2017 	err = len;
2018 
2019 out_freeiov:
2020 	if (iov != iovstack)
2021 		sock_kfree_s(sock->sk, iov, iov_size);
2022 out_put:
2023 	fput_light(sock->file, fput_needed);
2024 out:
2025 	return err;
2026 }
2027 
2028 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2029 
2030 /* Argument list sizes for sys_socketcall */
2031 #define AL(x) ((x) * sizeof(unsigned long))
2032 static const unsigned char nargs[19]={
2033 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2034 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2035 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2036 	AL(4)
2037 };
2038 
2039 #undef AL
2040 
2041 /*
2042  *	System call vectors.
2043  *
2044  *	Argument checking cleaned up. Saved 20% in size.
2045  *  This function doesn't need to set the kernel lock because
2046  *  it is set by the callees.
2047  */
2048 
2049 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2050 {
2051 	unsigned long a[6];
2052 	unsigned long a0, a1;
2053 	int err;
2054 
2055 	if (call < 1 || call > SYS_ACCEPT4)
2056 		return -EINVAL;
2057 
2058 	/* copy_from_user should be SMP safe. */
2059 	if (copy_from_user(a, args, nargs[call]))
2060 		return -EFAULT;
2061 
2062 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2063 
2064 	a0 = a[0];
2065 	a1 = a[1];
2066 
2067 	switch (call) {
2068 	case SYS_SOCKET:
2069 		err = sys_socket(a0, a1, a[2]);
2070 		break;
2071 	case SYS_BIND:
2072 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2073 		break;
2074 	case SYS_CONNECT:
2075 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2076 		break;
2077 	case SYS_LISTEN:
2078 		err = sys_listen(a0, a1);
2079 		break;
2080 	case SYS_ACCEPT:
2081 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2082 				  (int __user *)a[2], 0);
2083 		break;
2084 	case SYS_GETSOCKNAME:
2085 		err =
2086 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2087 				    (int __user *)a[2]);
2088 		break;
2089 	case SYS_GETPEERNAME:
2090 		err =
2091 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2092 				    (int __user *)a[2]);
2093 		break;
2094 	case SYS_SOCKETPAIR:
2095 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2096 		break;
2097 	case SYS_SEND:
2098 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2099 		break;
2100 	case SYS_SENDTO:
2101 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2102 				 (struct sockaddr __user *)a[4], a[5]);
2103 		break;
2104 	case SYS_RECV:
2105 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2106 		break;
2107 	case SYS_RECVFROM:
2108 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2109 				   (struct sockaddr __user *)a[4],
2110 				   (int __user *)a[5]);
2111 		break;
2112 	case SYS_SHUTDOWN:
2113 		err = sys_shutdown(a0, a1);
2114 		break;
2115 	case SYS_SETSOCKOPT:
2116 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2117 		break;
2118 	case SYS_GETSOCKOPT:
2119 		err =
2120 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2121 				   (int __user *)a[4]);
2122 		break;
2123 	case SYS_SENDMSG:
2124 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2125 		break;
2126 	case SYS_RECVMSG:
2127 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2128 		break;
2129 	case SYS_ACCEPT4:
2130 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2131 				  (int __user *)a[2], a[3]);
2132 		break;
2133 	default:
2134 		err = -EINVAL;
2135 		break;
2136 	}
2137 	return err;
2138 }
2139 
2140 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2141 
2142 /**
2143  *	sock_register - add a socket protocol handler
2144  *	@ops: description of protocol
2145  *
2146  *	This function is called by a protocol handler that wants to
2147  *	advertise its address family, and have it linked into the
2148  *	socket interface. The value ops->family coresponds to the
2149  *	socket system call protocol family.
2150  */
2151 int sock_register(const struct net_proto_family *ops)
2152 {
2153 	int err;
2154 
2155 	if (ops->family >= NPROTO) {
2156 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2157 		       NPROTO);
2158 		return -ENOBUFS;
2159 	}
2160 
2161 	spin_lock(&net_family_lock);
2162 	if (net_families[ops->family])
2163 		err = -EEXIST;
2164 	else {
2165 		net_families[ops->family] = ops;
2166 		err = 0;
2167 	}
2168 	spin_unlock(&net_family_lock);
2169 
2170 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2171 	return err;
2172 }
2173 
2174 /**
2175  *	sock_unregister - remove a protocol handler
2176  *	@family: protocol family to remove
2177  *
2178  *	This function is called by a protocol handler that wants to
2179  *	remove its address family, and have it unlinked from the
2180  *	new socket creation.
2181  *
2182  *	If protocol handler is a module, then it can use module reference
2183  *	counts to protect against new references. If protocol handler is not
2184  *	a module then it needs to provide its own protection in
2185  *	the ops->create routine.
2186  */
2187 void sock_unregister(int family)
2188 {
2189 	BUG_ON(family < 0 || family >= NPROTO);
2190 
2191 	spin_lock(&net_family_lock);
2192 	net_families[family] = NULL;
2193 	spin_unlock(&net_family_lock);
2194 
2195 	synchronize_rcu();
2196 
2197 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2198 }
2199 
2200 static int __init sock_init(void)
2201 {
2202 	/*
2203 	 *      Initialize sock SLAB cache.
2204 	 */
2205 
2206 	sk_init();
2207 
2208 	/*
2209 	 *      Initialize skbuff SLAB cache
2210 	 */
2211 	skb_init();
2212 
2213 	/*
2214 	 *      Initialize the protocols module.
2215 	 */
2216 
2217 	init_inodecache();
2218 	register_filesystem(&sock_fs_type);
2219 	sock_mnt = kern_mount(&sock_fs_type);
2220 
2221 	/* The real protocol initialization is performed in later initcalls.
2222 	 */
2223 
2224 #ifdef CONFIG_NETFILTER
2225 	netfilter_init();
2226 #endif
2227 
2228 	return 0;
2229 }
2230 
2231 core_initcall(sock_init);	/* early initcall */
2232 
2233 #ifdef CONFIG_PROC_FS
2234 void socket_seq_show(struct seq_file *seq)
2235 {
2236 	int cpu;
2237 	int counter = 0;
2238 
2239 	for_each_possible_cpu(cpu)
2240 	    counter += per_cpu(sockets_in_use, cpu);
2241 
2242 	/* It can be negative, by the way. 8) */
2243 	if (counter < 0)
2244 		counter = 0;
2245 
2246 	seq_printf(seq, "sockets: used %d\n", counter);
2247 }
2248 #endif				/* CONFIG_PROC_FS */
2249 
2250 #ifdef CONFIG_COMPAT
2251 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2252 			      unsigned long arg)
2253 {
2254 	struct socket *sock = file->private_data;
2255 	int ret = -ENOIOCTLCMD;
2256 	struct sock *sk;
2257 	struct net *net;
2258 
2259 	sk = sock->sk;
2260 	net = sock_net(sk);
2261 
2262 	if (sock->ops->compat_ioctl)
2263 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2264 
2265 	if (ret == -ENOIOCTLCMD &&
2266 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2267 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2268 
2269 	return ret;
2270 }
2271 #endif
2272 
2273 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2274 {
2275 	return sock->ops->bind(sock, addr, addrlen);
2276 }
2277 
2278 int kernel_listen(struct socket *sock, int backlog)
2279 {
2280 	return sock->ops->listen(sock, backlog);
2281 }
2282 
2283 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2284 {
2285 	struct sock *sk = sock->sk;
2286 	int err;
2287 
2288 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2289 			       newsock);
2290 	if (err < 0)
2291 		goto done;
2292 
2293 	err = sock->ops->accept(sock, *newsock, flags);
2294 	if (err < 0) {
2295 		sock_release(*newsock);
2296 		*newsock = NULL;
2297 		goto done;
2298 	}
2299 
2300 	(*newsock)->ops = sock->ops;
2301 	__module_get((*newsock)->ops->owner);
2302 
2303 done:
2304 	return err;
2305 }
2306 
2307 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2308 		   int flags)
2309 {
2310 	return sock->ops->connect(sock, addr, addrlen, flags);
2311 }
2312 
2313 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2314 			 int *addrlen)
2315 {
2316 	return sock->ops->getname(sock, addr, addrlen, 0);
2317 }
2318 
2319 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2320 			 int *addrlen)
2321 {
2322 	return sock->ops->getname(sock, addr, addrlen, 1);
2323 }
2324 
2325 int kernel_getsockopt(struct socket *sock, int level, int optname,
2326 			char *optval, int *optlen)
2327 {
2328 	mm_segment_t oldfs = get_fs();
2329 	int err;
2330 
2331 	set_fs(KERNEL_DS);
2332 	if (level == SOL_SOCKET)
2333 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2334 	else
2335 		err = sock->ops->getsockopt(sock, level, optname, optval,
2336 					    optlen);
2337 	set_fs(oldfs);
2338 	return err;
2339 }
2340 
2341 int kernel_setsockopt(struct socket *sock, int level, int optname,
2342 			char *optval, int optlen)
2343 {
2344 	mm_segment_t oldfs = get_fs();
2345 	int err;
2346 
2347 	set_fs(KERNEL_DS);
2348 	if (level == SOL_SOCKET)
2349 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2350 	else
2351 		err = sock->ops->setsockopt(sock, level, optname, optval,
2352 					    optlen);
2353 	set_fs(oldfs);
2354 	return err;
2355 }
2356 
2357 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2358 		    size_t size, int flags)
2359 {
2360 	if (sock->ops->sendpage)
2361 		return sock->ops->sendpage(sock, page, offset, size, flags);
2362 
2363 	return sock_no_sendpage(sock, page, offset, size, flags);
2364 }
2365 
2366 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2367 {
2368 	mm_segment_t oldfs = get_fs();
2369 	int err;
2370 
2371 	set_fs(KERNEL_DS);
2372 	err = sock->ops->ioctl(sock, cmd, arg);
2373 	set_fs(oldfs);
2374 
2375 	return err;
2376 }
2377 
2378 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2379 {
2380 	return sock->ops->shutdown(sock, how);
2381 }
2382 
2383 EXPORT_SYMBOL(sock_create);
2384 EXPORT_SYMBOL(sock_create_kern);
2385 EXPORT_SYMBOL(sock_create_lite);
2386 EXPORT_SYMBOL(sock_map_fd);
2387 EXPORT_SYMBOL(sock_recvmsg);
2388 EXPORT_SYMBOL(sock_register);
2389 EXPORT_SYMBOL(sock_release);
2390 EXPORT_SYMBOL(sock_sendmsg);
2391 EXPORT_SYMBOL(sock_unregister);
2392 EXPORT_SYMBOL(sock_wake_async);
2393 EXPORT_SYMBOL(sockfd_lookup);
2394 EXPORT_SYMBOL(kernel_sendmsg);
2395 EXPORT_SYMBOL(kernel_recvmsg);
2396 EXPORT_SYMBOL(kernel_bind);
2397 EXPORT_SYMBOL(kernel_listen);
2398 EXPORT_SYMBOL(kernel_accept);
2399 EXPORT_SYMBOL(kernel_connect);
2400 EXPORT_SYMBOL(kernel_getsockname);
2401 EXPORT_SYMBOL(kernel_getpeername);
2402 EXPORT_SYMBOL(kernel_getsockopt);
2403 EXPORT_SYMBOL(kernel_setsockopt);
2404 EXPORT_SYMBOL(kernel_sendpage);
2405 EXPORT_SYMBOL(kernel_sock_ioctl);
2406 EXPORT_SYMBOL(kernel_sock_shutdown);
2407