xref: /openbmc/linux/net/socket.c (revision 0dd061a6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 
92 #include <linux/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/termios.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109 #include <linux/ptp_clock_kernel.h>
110 #include <trace/events/sock.h>
111 
112 #ifdef CONFIG_NET_RX_BUSY_POLL
113 unsigned int sysctl_net_busy_read __read_mostly;
114 unsigned int sysctl_net_busy_poll __read_mostly;
115 #endif
116 
117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 
121 static int sock_close(struct inode *inode, struct file *file);
122 static __poll_t sock_poll(struct file *file,
123 			      struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 				struct pipe_inode_info *pipe, size_t len,
132 				unsigned int flags);
133 static void sock_splice_eof(struct file *file);
134 
135 #ifdef CONFIG_PROC_FS
136 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
137 {
138 	struct socket *sock = f->private_data;
139 	const struct proto_ops *ops = READ_ONCE(sock->ops);
140 
141 	if (ops->show_fdinfo)
142 		ops->show_fdinfo(m, sock);
143 }
144 #else
145 #define sock_show_fdinfo NULL
146 #endif
147 
148 /*
149  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
150  *	in the operation structures but are done directly via the socketcall() multiplexor.
151  */
152 
153 static const struct file_operations socket_file_ops = {
154 	.owner =	THIS_MODULE,
155 	.llseek =	no_llseek,
156 	.read_iter =	sock_read_iter,
157 	.write_iter =	sock_write_iter,
158 	.poll =		sock_poll,
159 	.unlocked_ioctl = sock_ioctl,
160 #ifdef CONFIG_COMPAT
161 	.compat_ioctl = compat_sock_ioctl,
162 #endif
163 	.mmap =		sock_mmap,
164 	.release =	sock_close,
165 	.fasync =	sock_fasync,
166 	.splice_write = splice_to_socket,
167 	.splice_read =	sock_splice_read,
168 	.splice_eof =	sock_splice_eof,
169 	.show_fdinfo =	sock_show_fdinfo,
170 };
171 
172 static const char * const pf_family_names[] = {
173 	[PF_UNSPEC]	= "PF_UNSPEC",
174 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
175 	[PF_INET]	= "PF_INET",
176 	[PF_AX25]	= "PF_AX25",
177 	[PF_IPX]	= "PF_IPX",
178 	[PF_APPLETALK]	= "PF_APPLETALK",
179 	[PF_NETROM]	= "PF_NETROM",
180 	[PF_BRIDGE]	= "PF_BRIDGE",
181 	[PF_ATMPVC]	= "PF_ATMPVC",
182 	[PF_X25]	= "PF_X25",
183 	[PF_INET6]	= "PF_INET6",
184 	[PF_ROSE]	= "PF_ROSE",
185 	[PF_DECnet]	= "PF_DECnet",
186 	[PF_NETBEUI]	= "PF_NETBEUI",
187 	[PF_SECURITY]	= "PF_SECURITY",
188 	[PF_KEY]	= "PF_KEY",
189 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
190 	[PF_PACKET]	= "PF_PACKET",
191 	[PF_ASH]	= "PF_ASH",
192 	[PF_ECONET]	= "PF_ECONET",
193 	[PF_ATMSVC]	= "PF_ATMSVC",
194 	[PF_RDS]	= "PF_RDS",
195 	[PF_SNA]	= "PF_SNA",
196 	[PF_IRDA]	= "PF_IRDA",
197 	[PF_PPPOX]	= "PF_PPPOX",
198 	[PF_WANPIPE]	= "PF_WANPIPE",
199 	[PF_LLC]	= "PF_LLC",
200 	[PF_IB]		= "PF_IB",
201 	[PF_MPLS]	= "PF_MPLS",
202 	[PF_CAN]	= "PF_CAN",
203 	[PF_TIPC]	= "PF_TIPC",
204 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
205 	[PF_IUCV]	= "PF_IUCV",
206 	[PF_RXRPC]	= "PF_RXRPC",
207 	[PF_ISDN]	= "PF_ISDN",
208 	[PF_PHONET]	= "PF_PHONET",
209 	[PF_IEEE802154]	= "PF_IEEE802154",
210 	[PF_CAIF]	= "PF_CAIF",
211 	[PF_ALG]	= "PF_ALG",
212 	[PF_NFC]	= "PF_NFC",
213 	[PF_VSOCK]	= "PF_VSOCK",
214 	[PF_KCM]	= "PF_KCM",
215 	[PF_QIPCRTR]	= "PF_QIPCRTR",
216 	[PF_SMC]	= "PF_SMC",
217 	[PF_XDP]	= "PF_XDP",
218 	[PF_MCTP]	= "PF_MCTP",
219 };
220 
221 /*
222  *	The protocol list. Each protocol is registered in here.
223  */
224 
225 static DEFINE_SPINLOCK(net_family_lock);
226 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
227 
228 /*
229  * Support routines.
230  * Move socket addresses back and forth across the kernel/user
231  * divide and look after the messy bits.
232  */
233 
234 /**
235  *	move_addr_to_kernel	-	copy a socket address into kernel space
236  *	@uaddr: Address in user space
237  *	@kaddr: Address in kernel space
238  *	@ulen: Length in user space
239  *
240  *	The address is copied into kernel space. If the provided address is
241  *	too long an error code of -EINVAL is returned. If the copy gives
242  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
243  */
244 
245 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
246 {
247 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
248 		return -EINVAL;
249 	if (ulen == 0)
250 		return 0;
251 	if (copy_from_user(kaddr, uaddr, ulen))
252 		return -EFAULT;
253 	return audit_sockaddr(ulen, kaddr);
254 }
255 
256 /**
257  *	move_addr_to_user	-	copy an address to user space
258  *	@kaddr: kernel space address
259  *	@klen: length of address in kernel
260  *	@uaddr: user space address
261  *	@ulen: pointer to user length field
262  *
263  *	The value pointed to by ulen on entry is the buffer length available.
264  *	This is overwritten with the buffer space used. -EINVAL is returned
265  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
266  *	is returned if either the buffer or the length field are not
267  *	accessible.
268  *	After copying the data up to the limit the user specifies, the true
269  *	length of the data is written over the length limit the user
270  *	specified. Zero is returned for a success.
271  */
272 
273 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
274 			     void __user *uaddr, int __user *ulen)
275 {
276 	int err;
277 	int len;
278 
279 	BUG_ON(klen > sizeof(struct sockaddr_storage));
280 	err = get_user(len, ulen);
281 	if (err)
282 		return err;
283 	if (len > klen)
284 		len = klen;
285 	if (len < 0)
286 		return -EINVAL;
287 	if (len) {
288 		if (audit_sockaddr(klen, kaddr))
289 			return -ENOMEM;
290 		if (copy_to_user(uaddr, kaddr, len))
291 			return -EFAULT;
292 	}
293 	/*
294 	 *      "fromlen shall refer to the value before truncation.."
295 	 *                      1003.1g
296 	 */
297 	return __put_user(klen, ulen);
298 }
299 
300 static struct kmem_cache *sock_inode_cachep __ro_after_init;
301 
302 static struct inode *sock_alloc_inode(struct super_block *sb)
303 {
304 	struct socket_alloc *ei;
305 
306 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
307 	if (!ei)
308 		return NULL;
309 	init_waitqueue_head(&ei->socket.wq.wait);
310 	ei->socket.wq.fasync_list = NULL;
311 	ei->socket.wq.flags = 0;
312 
313 	ei->socket.state = SS_UNCONNECTED;
314 	ei->socket.flags = 0;
315 	ei->socket.ops = NULL;
316 	ei->socket.sk = NULL;
317 	ei->socket.file = NULL;
318 
319 	return &ei->vfs_inode;
320 }
321 
322 static void sock_free_inode(struct inode *inode)
323 {
324 	struct socket_alloc *ei;
325 
326 	ei = container_of(inode, struct socket_alloc, vfs_inode);
327 	kmem_cache_free(sock_inode_cachep, ei);
328 }
329 
330 static void init_once(void *foo)
331 {
332 	struct socket_alloc *ei = (struct socket_alloc *)foo;
333 
334 	inode_init_once(&ei->vfs_inode);
335 }
336 
337 static void init_inodecache(void)
338 {
339 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
340 					      sizeof(struct socket_alloc),
341 					      0,
342 					      (SLAB_HWCACHE_ALIGN |
343 					       SLAB_RECLAIM_ACCOUNT |
344 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
345 					      init_once);
346 	BUG_ON(sock_inode_cachep == NULL);
347 }
348 
349 static const struct super_operations sockfs_ops = {
350 	.alloc_inode	= sock_alloc_inode,
351 	.free_inode	= sock_free_inode,
352 	.statfs		= simple_statfs,
353 };
354 
355 /*
356  * sockfs_dname() is called from d_path().
357  */
358 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
359 {
360 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
361 				d_inode(dentry)->i_ino);
362 }
363 
364 static const struct dentry_operations sockfs_dentry_operations = {
365 	.d_dname  = sockfs_dname,
366 };
367 
368 static int sockfs_xattr_get(const struct xattr_handler *handler,
369 			    struct dentry *dentry, struct inode *inode,
370 			    const char *suffix, void *value, size_t size)
371 {
372 	if (value) {
373 		if (dentry->d_name.len + 1 > size)
374 			return -ERANGE;
375 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
376 	}
377 	return dentry->d_name.len + 1;
378 }
379 
380 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
381 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
382 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
383 
384 static const struct xattr_handler sockfs_xattr_handler = {
385 	.name = XATTR_NAME_SOCKPROTONAME,
386 	.get = sockfs_xattr_get,
387 };
388 
389 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
390 				     struct mnt_idmap *idmap,
391 				     struct dentry *dentry, struct inode *inode,
392 				     const char *suffix, const void *value,
393 				     size_t size, int flags)
394 {
395 	/* Handled by LSM. */
396 	return -EAGAIN;
397 }
398 
399 static const struct xattr_handler sockfs_security_xattr_handler = {
400 	.prefix = XATTR_SECURITY_PREFIX,
401 	.set = sockfs_security_xattr_set,
402 };
403 
404 static const struct xattr_handler *sockfs_xattr_handlers[] = {
405 	&sockfs_xattr_handler,
406 	&sockfs_security_xattr_handler,
407 	NULL
408 };
409 
410 static int sockfs_init_fs_context(struct fs_context *fc)
411 {
412 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
413 	if (!ctx)
414 		return -ENOMEM;
415 	ctx->ops = &sockfs_ops;
416 	ctx->dops = &sockfs_dentry_operations;
417 	ctx->xattr = sockfs_xattr_handlers;
418 	return 0;
419 }
420 
421 static struct vfsmount *sock_mnt __read_mostly;
422 
423 static struct file_system_type sock_fs_type = {
424 	.name =		"sockfs",
425 	.init_fs_context = sockfs_init_fs_context,
426 	.kill_sb =	kill_anon_super,
427 };
428 
429 /*
430  *	Obtains the first available file descriptor and sets it up for use.
431  *
432  *	These functions create file structures and maps them to fd space
433  *	of the current process. On success it returns file descriptor
434  *	and file struct implicitly stored in sock->file.
435  *	Note that another thread may close file descriptor before we return
436  *	from this function. We use the fact that now we do not refer
437  *	to socket after mapping. If one day we will need it, this
438  *	function will increment ref. count on file by 1.
439  *
440  *	In any case returned fd MAY BE not valid!
441  *	This race condition is unavoidable
442  *	with shared fd spaces, we cannot solve it inside kernel,
443  *	but we take care of internal coherence yet.
444  */
445 
446 /**
447  *	sock_alloc_file - Bind a &socket to a &file
448  *	@sock: socket
449  *	@flags: file status flags
450  *	@dname: protocol name
451  *
452  *	Returns the &file bound with @sock, implicitly storing it
453  *	in sock->file. If dname is %NULL, sets to "".
454  *
455  *	On failure @sock is released, and an ERR pointer is returned.
456  *
457  *	This function uses GFP_KERNEL internally.
458  */
459 
460 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
461 {
462 	struct file *file;
463 
464 	if (!dname)
465 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
466 
467 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
468 				O_RDWR | (flags & O_NONBLOCK),
469 				&socket_file_ops);
470 	if (IS_ERR(file)) {
471 		sock_release(sock);
472 		return file;
473 	}
474 
475 	file->f_mode |= FMODE_NOWAIT;
476 	sock->file = file;
477 	file->private_data = sock;
478 	stream_open(SOCK_INODE(sock), file);
479 	return file;
480 }
481 EXPORT_SYMBOL(sock_alloc_file);
482 
483 static int sock_map_fd(struct socket *sock, int flags)
484 {
485 	struct file *newfile;
486 	int fd = get_unused_fd_flags(flags);
487 	if (unlikely(fd < 0)) {
488 		sock_release(sock);
489 		return fd;
490 	}
491 
492 	newfile = sock_alloc_file(sock, flags, NULL);
493 	if (!IS_ERR(newfile)) {
494 		fd_install(fd, newfile);
495 		return fd;
496 	}
497 
498 	put_unused_fd(fd);
499 	return PTR_ERR(newfile);
500 }
501 
502 /**
503  *	sock_from_file - Return the &socket bounded to @file.
504  *	@file: file
505  *
506  *	On failure returns %NULL.
507  */
508 
509 struct socket *sock_from_file(struct file *file)
510 {
511 	if (file->f_op == &socket_file_ops)
512 		return file->private_data;	/* set in sock_alloc_file */
513 
514 	return NULL;
515 }
516 EXPORT_SYMBOL(sock_from_file);
517 
518 /**
519  *	sockfd_lookup - Go from a file number to its socket slot
520  *	@fd: file handle
521  *	@err: pointer to an error code return
522  *
523  *	The file handle passed in is locked and the socket it is bound
524  *	to is returned. If an error occurs the err pointer is overwritten
525  *	with a negative errno code and NULL is returned. The function checks
526  *	for both invalid handles and passing a handle which is not a socket.
527  *
528  *	On a success the socket object pointer is returned.
529  */
530 
531 struct socket *sockfd_lookup(int fd, int *err)
532 {
533 	struct file *file;
534 	struct socket *sock;
535 
536 	file = fget(fd);
537 	if (!file) {
538 		*err = -EBADF;
539 		return NULL;
540 	}
541 
542 	sock = sock_from_file(file);
543 	if (!sock) {
544 		*err = -ENOTSOCK;
545 		fput(file);
546 	}
547 	return sock;
548 }
549 EXPORT_SYMBOL(sockfd_lookup);
550 
551 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
552 {
553 	struct fd f = fdget(fd);
554 	struct socket *sock;
555 
556 	*err = -EBADF;
557 	if (f.file) {
558 		sock = sock_from_file(f.file);
559 		if (likely(sock)) {
560 			*fput_needed = f.flags & FDPUT_FPUT;
561 			return sock;
562 		}
563 		*err = -ENOTSOCK;
564 		fdput(f);
565 	}
566 	return NULL;
567 }
568 
569 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
570 				size_t size)
571 {
572 	ssize_t len;
573 	ssize_t used = 0;
574 
575 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
576 	if (len < 0)
577 		return len;
578 	used += len;
579 	if (buffer) {
580 		if (size < used)
581 			return -ERANGE;
582 		buffer += len;
583 	}
584 
585 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
586 	used += len;
587 	if (buffer) {
588 		if (size < used)
589 			return -ERANGE;
590 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
591 		buffer += len;
592 	}
593 
594 	return used;
595 }
596 
597 static int sockfs_setattr(struct mnt_idmap *idmap,
598 			  struct dentry *dentry, struct iattr *iattr)
599 {
600 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
601 
602 	if (!err && (iattr->ia_valid & ATTR_UID)) {
603 		struct socket *sock = SOCKET_I(d_inode(dentry));
604 
605 		if (sock->sk)
606 			sock->sk->sk_uid = iattr->ia_uid;
607 		else
608 			err = -ENOENT;
609 	}
610 
611 	return err;
612 }
613 
614 static const struct inode_operations sockfs_inode_ops = {
615 	.listxattr = sockfs_listxattr,
616 	.setattr = sockfs_setattr,
617 };
618 
619 /**
620  *	sock_alloc - allocate a socket
621  *
622  *	Allocate a new inode and socket object. The two are bound together
623  *	and initialised. The socket is then returned. If we are out of inodes
624  *	NULL is returned. This functions uses GFP_KERNEL internally.
625  */
626 
627 struct socket *sock_alloc(void)
628 {
629 	struct inode *inode;
630 	struct socket *sock;
631 
632 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
633 	if (!inode)
634 		return NULL;
635 
636 	sock = SOCKET_I(inode);
637 
638 	inode->i_ino = get_next_ino();
639 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
640 	inode->i_uid = current_fsuid();
641 	inode->i_gid = current_fsgid();
642 	inode->i_op = &sockfs_inode_ops;
643 
644 	return sock;
645 }
646 EXPORT_SYMBOL(sock_alloc);
647 
648 static void __sock_release(struct socket *sock, struct inode *inode)
649 {
650 	const struct proto_ops *ops = READ_ONCE(sock->ops);
651 
652 	if (ops) {
653 		struct module *owner = ops->owner;
654 
655 		if (inode)
656 			inode_lock(inode);
657 		ops->release(sock);
658 		sock->sk = NULL;
659 		if (inode)
660 			inode_unlock(inode);
661 		sock->ops = NULL;
662 		module_put(owner);
663 	}
664 
665 	if (sock->wq.fasync_list)
666 		pr_err("%s: fasync list not empty!\n", __func__);
667 
668 	if (!sock->file) {
669 		iput(SOCK_INODE(sock));
670 		return;
671 	}
672 	sock->file = NULL;
673 }
674 
675 /**
676  *	sock_release - close a socket
677  *	@sock: socket to close
678  *
679  *	The socket is released from the protocol stack if it has a release
680  *	callback, and the inode is then released if the socket is bound to
681  *	an inode not a file.
682  */
683 void sock_release(struct socket *sock)
684 {
685 	__sock_release(sock, NULL);
686 }
687 EXPORT_SYMBOL(sock_release);
688 
689 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
690 {
691 	u8 flags = *tx_flags;
692 
693 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
694 		flags |= SKBTX_HW_TSTAMP;
695 
696 		/* PTP hardware clocks can provide a free running cycle counter
697 		 * as a time base for virtual clocks. Tell driver to use the
698 		 * free running cycle counter for timestamp if socket is bound
699 		 * to virtual clock.
700 		 */
701 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
702 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
703 	}
704 
705 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
706 		flags |= SKBTX_SW_TSTAMP;
707 
708 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
709 		flags |= SKBTX_SCHED_TSTAMP;
710 
711 	*tx_flags = flags;
712 }
713 EXPORT_SYMBOL(__sock_tx_timestamp);
714 
715 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
716 					   size_t));
717 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
718 					    size_t));
719 
720 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
721 						 int flags)
722 {
723 	trace_sock_send_length(sk, ret, 0);
724 }
725 
726 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
727 {
728 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
729 				     inet_sendmsg, sock, msg,
730 				     msg_data_left(msg));
731 	BUG_ON(ret == -EIOCBQUEUED);
732 
733 	if (trace_sock_send_length_enabled())
734 		call_trace_sock_send_length(sock->sk, ret, 0);
735 	return ret;
736 }
737 
738 /**
739  *	sock_sendmsg - send a message through @sock
740  *	@sock: socket
741  *	@msg: message to send
742  *
743  *	Sends @msg through @sock, passing through LSM.
744  *	Returns the number of bytes sent, or an error code.
745  */
746 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
747 {
748 	int err = security_socket_sendmsg(sock, msg,
749 					  msg_data_left(msg));
750 
751 	return err ?: sock_sendmsg_nosec(sock, msg);
752 }
753 EXPORT_SYMBOL(sock_sendmsg);
754 
755 /**
756  *	kernel_sendmsg - send a message through @sock (kernel-space)
757  *	@sock: socket
758  *	@msg: message header
759  *	@vec: kernel vec
760  *	@num: vec array length
761  *	@size: total message data size
762  *
763  *	Builds the message data with @vec and sends it through @sock.
764  *	Returns the number of bytes sent, or an error code.
765  */
766 
767 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
768 		   struct kvec *vec, size_t num, size_t size)
769 {
770 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
771 	return sock_sendmsg(sock, msg);
772 }
773 EXPORT_SYMBOL(kernel_sendmsg);
774 
775 /**
776  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
777  *	@sk: sock
778  *	@msg: message header
779  *	@vec: output s/g array
780  *	@num: output s/g array length
781  *	@size: total message data size
782  *
783  *	Builds the message data with @vec and sends it through @sock.
784  *	Returns the number of bytes sent, or an error code.
785  *	Caller must hold @sk.
786  */
787 
788 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
789 			  struct kvec *vec, size_t num, size_t size)
790 {
791 	struct socket *sock = sk->sk_socket;
792 	const struct proto_ops *ops = READ_ONCE(sock->ops);
793 
794 	if (!ops->sendmsg_locked)
795 		return sock_no_sendmsg_locked(sk, msg, size);
796 
797 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
798 
799 	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
800 }
801 EXPORT_SYMBOL(kernel_sendmsg_locked);
802 
803 static bool skb_is_err_queue(const struct sk_buff *skb)
804 {
805 	/* pkt_type of skbs enqueued on the error queue are set to
806 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
807 	 * in recvmsg, since skbs received on a local socket will never
808 	 * have a pkt_type of PACKET_OUTGOING.
809 	 */
810 	return skb->pkt_type == PACKET_OUTGOING;
811 }
812 
813 /* On transmit, software and hardware timestamps are returned independently.
814  * As the two skb clones share the hardware timestamp, which may be updated
815  * before the software timestamp is received, a hardware TX timestamp may be
816  * returned only if there is no software TX timestamp. Ignore false software
817  * timestamps, which may be made in the __sock_recv_timestamp() call when the
818  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
819  * hardware timestamp.
820  */
821 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
822 {
823 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
824 }
825 
826 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
827 {
828 	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
829 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
830 	struct net_device *orig_dev;
831 	ktime_t hwtstamp;
832 
833 	rcu_read_lock();
834 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
835 	if (orig_dev) {
836 		*if_index = orig_dev->ifindex;
837 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
838 	} else {
839 		hwtstamp = shhwtstamps->hwtstamp;
840 	}
841 	rcu_read_unlock();
842 
843 	return hwtstamp;
844 }
845 
846 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
847 			   int if_index)
848 {
849 	struct scm_ts_pktinfo ts_pktinfo;
850 	struct net_device *orig_dev;
851 
852 	if (!skb_mac_header_was_set(skb))
853 		return;
854 
855 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
856 
857 	if (!if_index) {
858 		rcu_read_lock();
859 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
860 		if (orig_dev)
861 			if_index = orig_dev->ifindex;
862 		rcu_read_unlock();
863 	}
864 	ts_pktinfo.if_index = if_index;
865 
866 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
867 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
868 		 sizeof(ts_pktinfo), &ts_pktinfo);
869 }
870 
871 /*
872  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
873  */
874 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
875 	struct sk_buff *skb)
876 {
877 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
878 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
879 	struct scm_timestamping_internal tss;
880 
881 	int empty = 1, false_tstamp = 0;
882 	struct skb_shared_hwtstamps *shhwtstamps =
883 		skb_hwtstamps(skb);
884 	int if_index;
885 	ktime_t hwtstamp;
886 
887 	/* Race occurred between timestamp enabling and packet
888 	   receiving.  Fill in the current time for now. */
889 	if (need_software_tstamp && skb->tstamp == 0) {
890 		__net_timestamp(skb);
891 		false_tstamp = 1;
892 	}
893 
894 	if (need_software_tstamp) {
895 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
896 			if (new_tstamp) {
897 				struct __kernel_sock_timeval tv;
898 
899 				skb_get_new_timestamp(skb, &tv);
900 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
901 					 sizeof(tv), &tv);
902 			} else {
903 				struct __kernel_old_timeval tv;
904 
905 				skb_get_timestamp(skb, &tv);
906 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
907 					 sizeof(tv), &tv);
908 			}
909 		} else {
910 			if (new_tstamp) {
911 				struct __kernel_timespec ts;
912 
913 				skb_get_new_timestampns(skb, &ts);
914 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
915 					 sizeof(ts), &ts);
916 			} else {
917 				struct __kernel_old_timespec ts;
918 
919 				skb_get_timestampns(skb, &ts);
920 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
921 					 sizeof(ts), &ts);
922 			}
923 		}
924 	}
925 
926 	memset(&tss, 0, sizeof(tss));
927 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
928 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
929 		empty = 0;
930 	if (shhwtstamps &&
931 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
932 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
933 		if_index = 0;
934 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
935 			hwtstamp = get_timestamp(sk, skb, &if_index);
936 		else
937 			hwtstamp = shhwtstamps->hwtstamp;
938 
939 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
940 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
941 							 sk->sk_bind_phc);
942 
943 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
944 			empty = 0;
945 
946 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
947 			    !skb_is_err_queue(skb))
948 				put_ts_pktinfo(msg, skb, if_index);
949 		}
950 	}
951 	if (!empty) {
952 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
953 			put_cmsg_scm_timestamping64(msg, &tss);
954 		else
955 			put_cmsg_scm_timestamping(msg, &tss);
956 
957 		if (skb_is_err_queue(skb) && skb->len &&
958 		    SKB_EXT_ERR(skb)->opt_stats)
959 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
960 				 skb->len, skb->data);
961 	}
962 }
963 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
964 
965 #ifdef CONFIG_WIRELESS
966 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
967 	struct sk_buff *skb)
968 {
969 	int ack;
970 
971 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
972 		return;
973 	if (!skb->wifi_acked_valid)
974 		return;
975 
976 	ack = skb->wifi_acked;
977 
978 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
979 }
980 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
981 #endif
982 
983 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
984 				   struct sk_buff *skb)
985 {
986 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
987 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
988 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
989 }
990 
991 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
992 			   struct sk_buff *skb)
993 {
994 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
995 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
996 		__u32 mark = skb->mark;
997 
998 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
999 	}
1000 }
1001 
1002 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1003 		       struct sk_buff *skb)
1004 {
1005 	sock_recv_timestamp(msg, sk, skb);
1006 	sock_recv_drops(msg, sk, skb);
1007 	sock_recv_mark(msg, sk, skb);
1008 }
1009 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1010 
1011 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1012 					   size_t, int));
1013 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1014 					    size_t, int));
1015 
1016 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1017 {
1018 	trace_sock_recv_length(sk, ret, flags);
1019 }
1020 
1021 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1022 				     int flags)
1023 {
1024 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1025 				     inet6_recvmsg,
1026 				     inet_recvmsg, sock, msg,
1027 				     msg_data_left(msg), flags);
1028 	if (trace_sock_recv_length_enabled())
1029 		call_trace_sock_recv_length(sock->sk, ret, flags);
1030 	return ret;
1031 }
1032 
1033 /**
1034  *	sock_recvmsg - receive a message from @sock
1035  *	@sock: socket
1036  *	@msg: message to receive
1037  *	@flags: message flags
1038  *
1039  *	Receives @msg from @sock, passing through LSM. Returns the total number
1040  *	of bytes received, or an error.
1041  */
1042 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1043 {
1044 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1045 
1046 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1047 }
1048 EXPORT_SYMBOL(sock_recvmsg);
1049 
1050 /**
1051  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1052  *	@sock: The socket to receive the message from
1053  *	@msg: Received message
1054  *	@vec: Input s/g array for message data
1055  *	@num: Size of input s/g array
1056  *	@size: Number of bytes to read
1057  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1058  *
1059  *	On return the msg structure contains the scatter/gather array passed in the
1060  *	vec argument. The array is modified so that it consists of the unfilled
1061  *	portion of the original array.
1062  *
1063  *	The returned value is the total number of bytes received, or an error.
1064  */
1065 
1066 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1067 		   struct kvec *vec, size_t num, size_t size, int flags)
1068 {
1069 	msg->msg_control_is_user = false;
1070 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1071 	return sock_recvmsg(sock, msg, flags);
1072 }
1073 EXPORT_SYMBOL(kernel_recvmsg);
1074 
1075 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1076 				struct pipe_inode_info *pipe, size_t len,
1077 				unsigned int flags)
1078 {
1079 	struct socket *sock = file->private_data;
1080 	const struct proto_ops *ops;
1081 
1082 	ops = READ_ONCE(sock->ops);
1083 	if (unlikely(!ops->splice_read))
1084 		return copy_splice_read(file, ppos, pipe, len, flags);
1085 
1086 	return ops->splice_read(sock, ppos, pipe, len, flags);
1087 }
1088 
1089 static void sock_splice_eof(struct file *file)
1090 {
1091 	struct socket *sock = file->private_data;
1092 	const struct proto_ops *ops;
1093 
1094 	ops = READ_ONCE(sock->ops);
1095 	if (ops->splice_eof)
1096 		ops->splice_eof(sock);
1097 }
1098 
1099 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1100 {
1101 	struct file *file = iocb->ki_filp;
1102 	struct socket *sock = file->private_data;
1103 	struct msghdr msg = {.msg_iter = *to,
1104 			     .msg_iocb = iocb};
1105 	ssize_t res;
1106 
1107 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1108 		msg.msg_flags = MSG_DONTWAIT;
1109 
1110 	if (iocb->ki_pos != 0)
1111 		return -ESPIPE;
1112 
1113 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1114 		return 0;
1115 
1116 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1117 	*to = msg.msg_iter;
1118 	return res;
1119 }
1120 
1121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1122 {
1123 	struct file *file = iocb->ki_filp;
1124 	struct socket *sock = file->private_data;
1125 	struct msghdr msg = {.msg_iter = *from,
1126 			     .msg_iocb = iocb};
1127 	ssize_t res;
1128 
1129 	if (iocb->ki_pos != 0)
1130 		return -ESPIPE;
1131 
1132 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1133 		msg.msg_flags = MSG_DONTWAIT;
1134 
1135 	if (sock->type == SOCK_SEQPACKET)
1136 		msg.msg_flags |= MSG_EOR;
1137 
1138 	res = sock_sendmsg(sock, &msg);
1139 	*from = msg.msg_iter;
1140 	return res;
1141 }
1142 
1143 /*
1144  * Atomic setting of ioctl hooks to avoid race
1145  * with module unload.
1146  */
1147 
1148 static DEFINE_MUTEX(br_ioctl_mutex);
1149 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1150 			    unsigned int cmd, struct ifreq *ifr,
1151 			    void __user *uarg);
1152 
1153 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1154 			     unsigned int cmd, struct ifreq *ifr,
1155 			     void __user *uarg))
1156 {
1157 	mutex_lock(&br_ioctl_mutex);
1158 	br_ioctl_hook = hook;
1159 	mutex_unlock(&br_ioctl_mutex);
1160 }
1161 EXPORT_SYMBOL(brioctl_set);
1162 
1163 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1164 		  struct ifreq *ifr, void __user *uarg)
1165 {
1166 	int err = -ENOPKG;
1167 
1168 	if (!br_ioctl_hook)
1169 		request_module("bridge");
1170 
1171 	mutex_lock(&br_ioctl_mutex);
1172 	if (br_ioctl_hook)
1173 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1174 	mutex_unlock(&br_ioctl_mutex);
1175 
1176 	return err;
1177 }
1178 
1179 static DEFINE_MUTEX(vlan_ioctl_mutex);
1180 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1181 
1182 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1183 {
1184 	mutex_lock(&vlan_ioctl_mutex);
1185 	vlan_ioctl_hook = hook;
1186 	mutex_unlock(&vlan_ioctl_mutex);
1187 }
1188 EXPORT_SYMBOL(vlan_ioctl_set);
1189 
1190 static long sock_do_ioctl(struct net *net, struct socket *sock,
1191 			  unsigned int cmd, unsigned long arg)
1192 {
1193 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1194 	struct ifreq ifr;
1195 	bool need_copyout;
1196 	int err;
1197 	void __user *argp = (void __user *)arg;
1198 	void __user *data;
1199 
1200 	err = ops->ioctl(sock, cmd, arg);
1201 
1202 	/*
1203 	 * If this ioctl is unknown try to hand it down
1204 	 * to the NIC driver.
1205 	 */
1206 	if (err != -ENOIOCTLCMD)
1207 		return err;
1208 
1209 	if (!is_socket_ioctl_cmd(cmd))
1210 		return -ENOTTY;
1211 
1212 	if (get_user_ifreq(&ifr, &data, argp))
1213 		return -EFAULT;
1214 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1215 	if (!err && need_copyout)
1216 		if (put_user_ifreq(&ifr, argp))
1217 			return -EFAULT;
1218 
1219 	return err;
1220 }
1221 
1222 /*
1223  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1224  *	what to do with it - that's up to the protocol still.
1225  */
1226 
1227 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1228 {
1229 	const struct proto_ops  *ops;
1230 	struct socket *sock;
1231 	struct sock *sk;
1232 	void __user *argp = (void __user *)arg;
1233 	int pid, err;
1234 	struct net *net;
1235 
1236 	sock = file->private_data;
1237 	ops = READ_ONCE(sock->ops);
1238 	sk = sock->sk;
1239 	net = sock_net(sk);
1240 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1241 		struct ifreq ifr;
1242 		void __user *data;
1243 		bool need_copyout;
1244 		if (get_user_ifreq(&ifr, &data, argp))
1245 			return -EFAULT;
1246 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1247 		if (!err && need_copyout)
1248 			if (put_user_ifreq(&ifr, argp))
1249 				return -EFAULT;
1250 	} else
1251 #ifdef CONFIG_WEXT_CORE
1252 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1253 		err = wext_handle_ioctl(net, cmd, argp);
1254 	} else
1255 #endif
1256 		switch (cmd) {
1257 		case FIOSETOWN:
1258 		case SIOCSPGRP:
1259 			err = -EFAULT;
1260 			if (get_user(pid, (int __user *)argp))
1261 				break;
1262 			err = f_setown(sock->file, pid, 1);
1263 			break;
1264 		case FIOGETOWN:
1265 		case SIOCGPGRP:
1266 			err = put_user(f_getown(sock->file),
1267 				       (int __user *)argp);
1268 			break;
1269 		case SIOCGIFBR:
1270 		case SIOCSIFBR:
1271 		case SIOCBRADDBR:
1272 		case SIOCBRDELBR:
1273 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1274 			break;
1275 		case SIOCGIFVLAN:
1276 		case SIOCSIFVLAN:
1277 			err = -ENOPKG;
1278 			if (!vlan_ioctl_hook)
1279 				request_module("8021q");
1280 
1281 			mutex_lock(&vlan_ioctl_mutex);
1282 			if (vlan_ioctl_hook)
1283 				err = vlan_ioctl_hook(net, argp);
1284 			mutex_unlock(&vlan_ioctl_mutex);
1285 			break;
1286 		case SIOCGSKNS:
1287 			err = -EPERM;
1288 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1289 				break;
1290 
1291 			err = open_related_ns(&net->ns, get_net_ns);
1292 			break;
1293 		case SIOCGSTAMP_OLD:
1294 		case SIOCGSTAMPNS_OLD:
1295 			if (!ops->gettstamp) {
1296 				err = -ENOIOCTLCMD;
1297 				break;
1298 			}
1299 			err = ops->gettstamp(sock, argp,
1300 					     cmd == SIOCGSTAMP_OLD,
1301 					     !IS_ENABLED(CONFIG_64BIT));
1302 			break;
1303 		case SIOCGSTAMP_NEW:
1304 		case SIOCGSTAMPNS_NEW:
1305 			if (!ops->gettstamp) {
1306 				err = -ENOIOCTLCMD;
1307 				break;
1308 			}
1309 			err = ops->gettstamp(sock, argp,
1310 					     cmd == SIOCGSTAMP_NEW,
1311 					     false);
1312 			break;
1313 
1314 		case SIOCGIFCONF:
1315 			err = dev_ifconf(net, argp);
1316 			break;
1317 
1318 		default:
1319 			err = sock_do_ioctl(net, sock, cmd, arg);
1320 			break;
1321 		}
1322 	return err;
1323 }
1324 
1325 /**
1326  *	sock_create_lite - creates a socket
1327  *	@family: protocol family (AF_INET, ...)
1328  *	@type: communication type (SOCK_STREAM, ...)
1329  *	@protocol: protocol (0, ...)
1330  *	@res: new socket
1331  *
1332  *	Creates a new socket and assigns it to @res, passing through LSM.
1333  *	The new socket initialization is not complete, see kernel_accept().
1334  *	Returns 0 or an error. On failure @res is set to %NULL.
1335  *	This function internally uses GFP_KERNEL.
1336  */
1337 
1338 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1339 {
1340 	int err;
1341 	struct socket *sock = NULL;
1342 
1343 	err = security_socket_create(family, type, protocol, 1);
1344 	if (err)
1345 		goto out;
1346 
1347 	sock = sock_alloc();
1348 	if (!sock) {
1349 		err = -ENOMEM;
1350 		goto out;
1351 	}
1352 
1353 	sock->type = type;
1354 	err = security_socket_post_create(sock, family, type, protocol, 1);
1355 	if (err)
1356 		goto out_release;
1357 
1358 out:
1359 	*res = sock;
1360 	return err;
1361 out_release:
1362 	sock_release(sock);
1363 	sock = NULL;
1364 	goto out;
1365 }
1366 EXPORT_SYMBOL(sock_create_lite);
1367 
1368 /* No kernel lock held - perfect */
1369 static __poll_t sock_poll(struct file *file, poll_table *wait)
1370 {
1371 	struct socket *sock = file->private_data;
1372 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1373 	__poll_t events = poll_requested_events(wait), flag = 0;
1374 
1375 	if (!ops->poll)
1376 		return 0;
1377 
1378 	if (sk_can_busy_loop(sock->sk)) {
1379 		/* poll once if requested by the syscall */
1380 		if (events & POLL_BUSY_LOOP)
1381 			sk_busy_loop(sock->sk, 1);
1382 
1383 		/* if this socket can poll_ll, tell the system call */
1384 		flag = POLL_BUSY_LOOP;
1385 	}
1386 
1387 	return ops->poll(file, sock, wait) | flag;
1388 }
1389 
1390 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1391 {
1392 	struct socket *sock = file->private_data;
1393 
1394 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1395 }
1396 
1397 static int sock_close(struct inode *inode, struct file *filp)
1398 {
1399 	__sock_release(SOCKET_I(inode), inode);
1400 	return 0;
1401 }
1402 
1403 /*
1404  *	Update the socket async list
1405  *
1406  *	Fasync_list locking strategy.
1407  *
1408  *	1. fasync_list is modified only under process context socket lock
1409  *	   i.e. under semaphore.
1410  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1411  *	   or under socket lock
1412  */
1413 
1414 static int sock_fasync(int fd, struct file *filp, int on)
1415 {
1416 	struct socket *sock = filp->private_data;
1417 	struct sock *sk = sock->sk;
1418 	struct socket_wq *wq = &sock->wq;
1419 
1420 	if (sk == NULL)
1421 		return -EINVAL;
1422 
1423 	lock_sock(sk);
1424 	fasync_helper(fd, filp, on, &wq->fasync_list);
1425 
1426 	if (!wq->fasync_list)
1427 		sock_reset_flag(sk, SOCK_FASYNC);
1428 	else
1429 		sock_set_flag(sk, SOCK_FASYNC);
1430 
1431 	release_sock(sk);
1432 	return 0;
1433 }
1434 
1435 /* This function may be called only under rcu_lock */
1436 
1437 int sock_wake_async(struct socket_wq *wq, int how, int band)
1438 {
1439 	if (!wq || !wq->fasync_list)
1440 		return -1;
1441 
1442 	switch (how) {
1443 	case SOCK_WAKE_WAITD:
1444 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1445 			break;
1446 		goto call_kill;
1447 	case SOCK_WAKE_SPACE:
1448 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1449 			break;
1450 		fallthrough;
1451 	case SOCK_WAKE_IO:
1452 call_kill:
1453 		kill_fasync(&wq->fasync_list, SIGIO, band);
1454 		break;
1455 	case SOCK_WAKE_URG:
1456 		kill_fasync(&wq->fasync_list, SIGURG, band);
1457 	}
1458 
1459 	return 0;
1460 }
1461 EXPORT_SYMBOL(sock_wake_async);
1462 
1463 /**
1464  *	__sock_create - creates a socket
1465  *	@net: net namespace
1466  *	@family: protocol family (AF_INET, ...)
1467  *	@type: communication type (SOCK_STREAM, ...)
1468  *	@protocol: protocol (0, ...)
1469  *	@res: new socket
1470  *	@kern: boolean for kernel space sockets
1471  *
1472  *	Creates a new socket and assigns it to @res, passing through LSM.
1473  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1474  *	be set to true if the socket resides in kernel space.
1475  *	This function internally uses GFP_KERNEL.
1476  */
1477 
1478 int __sock_create(struct net *net, int family, int type, int protocol,
1479 			 struct socket **res, int kern)
1480 {
1481 	int err;
1482 	struct socket *sock;
1483 	const struct net_proto_family *pf;
1484 
1485 	/*
1486 	 *      Check protocol is in range
1487 	 */
1488 	if (family < 0 || family >= NPROTO)
1489 		return -EAFNOSUPPORT;
1490 	if (type < 0 || type >= SOCK_MAX)
1491 		return -EINVAL;
1492 
1493 	/* Compatibility.
1494 
1495 	   This uglymoron is moved from INET layer to here to avoid
1496 	   deadlock in module load.
1497 	 */
1498 	if (family == PF_INET && type == SOCK_PACKET) {
1499 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1500 			     current->comm);
1501 		family = PF_PACKET;
1502 	}
1503 
1504 	err = security_socket_create(family, type, protocol, kern);
1505 	if (err)
1506 		return err;
1507 
1508 	/*
1509 	 *	Allocate the socket and allow the family to set things up. if
1510 	 *	the protocol is 0, the family is instructed to select an appropriate
1511 	 *	default.
1512 	 */
1513 	sock = sock_alloc();
1514 	if (!sock) {
1515 		net_warn_ratelimited("socket: no more sockets\n");
1516 		return -ENFILE;	/* Not exactly a match, but its the
1517 				   closest posix thing */
1518 	}
1519 
1520 	sock->type = type;
1521 
1522 #ifdef CONFIG_MODULES
1523 	/* Attempt to load a protocol module if the find failed.
1524 	 *
1525 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1526 	 * requested real, full-featured networking support upon configuration.
1527 	 * Otherwise module support will break!
1528 	 */
1529 	if (rcu_access_pointer(net_families[family]) == NULL)
1530 		request_module("net-pf-%d", family);
1531 #endif
1532 
1533 	rcu_read_lock();
1534 	pf = rcu_dereference(net_families[family]);
1535 	err = -EAFNOSUPPORT;
1536 	if (!pf)
1537 		goto out_release;
1538 
1539 	/*
1540 	 * We will call the ->create function, that possibly is in a loadable
1541 	 * module, so we have to bump that loadable module refcnt first.
1542 	 */
1543 	if (!try_module_get(pf->owner))
1544 		goto out_release;
1545 
1546 	/* Now protected by module ref count */
1547 	rcu_read_unlock();
1548 
1549 	err = pf->create(net, sock, protocol, kern);
1550 	if (err < 0)
1551 		goto out_module_put;
1552 
1553 	/*
1554 	 * Now to bump the refcnt of the [loadable] module that owns this
1555 	 * socket at sock_release time we decrement its refcnt.
1556 	 */
1557 	if (!try_module_get(sock->ops->owner))
1558 		goto out_module_busy;
1559 
1560 	/*
1561 	 * Now that we're done with the ->create function, the [loadable]
1562 	 * module can have its refcnt decremented
1563 	 */
1564 	module_put(pf->owner);
1565 	err = security_socket_post_create(sock, family, type, protocol, kern);
1566 	if (err)
1567 		goto out_sock_release;
1568 	*res = sock;
1569 
1570 	return 0;
1571 
1572 out_module_busy:
1573 	err = -EAFNOSUPPORT;
1574 out_module_put:
1575 	sock->ops = NULL;
1576 	module_put(pf->owner);
1577 out_sock_release:
1578 	sock_release(sock);
1579 	return err;
1580 
1581 out_release:
1582 	rcu_read_unlock();
1583 	goto out_sock_release;
1584 }
1585 EXPORT_SYMBOL(__sock_create);
1586 
1587 /**
1588  *	sock_create - creates a socket
1589  *	@family: protocol family (AF_INET, ...)
1590  *	@type: communication type (SOCK_STREAM, ...)
1591  *	@protocol: protocol (0, ...)
1592  *	@res: new socket
1593  *
1594  *	A wrapper around __sock_create().
1595  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1596  */
1597 
1598 int sock_create(int family, int type, int protocol, struct socket **res)
1599 {
1600 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1601 }
1602 EXPORT_SYMBOL(sock_create);
1603 
1604 /**
1605  *	sock_create_kern - creates a socket (kernel space)
1606  *	@net: net namespace
1607  *	@family: protocol family (AF_INET, ...)
1608  *	@type: communication type (SOCK_STREAM, ...)
1609  *	@protocol: protocol (0, ...)
1610  *	@res: new socket
1611  *
1612  *	A wrapper around __sock_create().
1613  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1614  */
1615 
1616 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1617 {
1618 	return __sock_create(net, family, type, protocol, res, 1);
1619 }
1620 EXPORT_SYMBOL(sock_create_kern);
1621 
1622 static struct socket *__sys_socket_create(int family, int type, int protocol)
1623 {
1624 	struct socket *sock;
1625 	int retval;
1626 
1627 	/* Check the SOCK_* constants for consistency.  */
1628 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1629 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1630 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1631 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1632 
1633 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1634 		return ERR_PTR(-EINVAL);
1635 	type &= SOCK_TYPE_MASK;
1636 
1637 	retval = sock_create(family, type, protocol, &sock);
1638 	if (retval < 0)
1639 		return ERR_PTR(retval);
1640 
1641 	return sock;
1642 }
1643 
1644 struct file *__sys_socket_file(int family, int type, int protocol)
1645 {
1646 	struct socket *sock;
1647 	int flags;
1648 
1649 	sock = __sys_socket_create(family, type, protocol);
1650 	if (IS_ERR(sock))
1651 		return ERR_CAST(sock);
1652 
1653 	flags = type & ~SOCK_TYPE_MASK;
1654 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1655 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1656 
1657 	return sock_alloc_file(sock, flags, NULL);
1658 }
1659 
1660 /*	A hook for bpf progs to attach to and update socket protocol.
1661  *
1662  *	A static noinline declaration here could cause the compiler to
1663  *	optimize away the function. A global noinline declaration will
1664  *	keep the definition, but may optimize away the callsite.
1665  *	Therefore, __weak is needed to ensure that the call is still
1666  *	emitted, by telling the compiler that we don't know what the
1667  *	function might eventually be.
1668  *
1669  *	__diag_* below are needed to dismiss the missing prototype warning.
1670  */
1671 
1672 __diag_push();
1673 __diag_ignore_all("-Wmissing-prototypes",
1674 		  "A fmod_ret entry point for BPF programs");
1675 
1676 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1677 {
1678 	return protocol;
1679 }
1680 
1681 __diag_pop();
1682 
1683 int __sys_socket(int family, int type, int protocol)
1684 {
1685 	struct socket *sock;
1686 	int flags;
1687 
1688 	sock = __sys_socket_create(family, type,
1689 				   update_socket_protocol(family, type, protocol));
1690 	if (IS_ERR(sock))
1691 		return PTR_ERR(sock);
1692 
1693 	flags = type & ~SOCK_TYPE_MASK;
1694 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1695 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1696 
1697 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1698 }
1699 
1700 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1701 {
1702 	return __sys_socket(family, type, protocol);
1703 }
1704 
1705 /*
1706  *	Create a pair of connected sockets.
1707  */
1708 
1709 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1710 {
1711 	struct socket *sock1, *sock2;
1712 	int fd1, fd2, err;
1713 	struct file *newfile1, *newfile2;
1714 	int flags;
1715 
1716 	flags = type & ~SOCK_TYPE_MASK;
1717 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1718 		return -EINVAL;
1719 	type &= SOCK_TYPE_MASK;
1720 
1721 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1722 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1723 
1724 	/*
1725 	 * reserve descriptors and make sure we won't fail
1726 	 * to return them to userland.
1727 	 */
1728 	fd1 = get_unused_fd_flags(flags);
1729 	if (unlikely(fd1 < 0))
1730 		return fd1;
1731 
1732 	fd2 = get_unused_fd_flags(flags);
1733 	if (unlikely(fd2 < 0)) {
1734 		put_unused_fd(fd1);
1735 		return fd2;
1736 	}
1737 
1738 	err = put_user(fd1, &usockvec[0]);
1739 	if (err)
1740 		goto out;
1741 
1742 	err = put_user(fd2, &usockvec[1]);
1743 	if (err)
1744 		goto out;
1745 
1746 	/*
1747 	 * Obtain the first socket and check if the underlying protocol
1748 	 * supports the socketpair call.
1749 	 */
1750 
1751 	err = sock_create(family, type, protocol, &sock1);
1752 	if (unlikely(err < 0))
1753 		goto out;
1754 
1755 	err = sock_create(family, type, protocol, &sock2);
1756 	if (unlikely(err < 0)) {
1757 		sock_release(sock1);
1758 		goto out;
1759 	}
1760 
1761 	err = security_socket_socketpair(sock1, sock2);
1762 	if (unlikely(err)) {
1763 		sock_release(sock2);
1764 		sock_release(sock1);
1765 		goto out;
1766 	}
1767 
1768 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1769 	if (unlikely(err < 0)) {
1770 		sock_release(sock2);
1771 		sock_release(sock1);
1772 		goto out;
1773 	}
1774 
1775 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1776 	if (IS_ERR(newfile1)) {
1777 		err = PTR_ERR(newfile1);
1778 		sock_release(sock2);
1779 		goto out;
1780 	}
1781 
1782 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1783 	if (IS_ERR(newfile2)) {
1784 		err = PTR_ERR(newfile2);
1785 		fput(newfile1);
1786 		goto out;
1787 	}
1788 
1789 	audit_fd_pair(fd1, fd2);
1790 
1791 	fd_install(fd1, newfile1);
1792 	fd_install(fd2, newfile2);
1793 	return 0;
1794 
1795 out:
1796 	put_unused_fd(fd2);
1797 	put_unused_fd(fd1);
1798 	return err;
1799 }
1800 
1801 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1802 		int __user *, usockvec)
1803 {
1804 	return __sys_socketpair(family, type, protocol, usockvec);
1805 }
1806 
1807 /*
1808  *	Bind a name to a socket. Nothing much to do here since it's
1809  *	the protocol's responsibility to handle the local address.
1810  *
1811  *	We move the socket address to kernel space before we call
1812  *	the protocol layer (having also checked the address is ok).
1813  */
1814 
1815 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1816 {
1817 	struct socket *sock;
1818 	struct sockaddr_storage address;
1819 	int err, fput_needed;
1820 
1821 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1822 	if (sock) {
1823 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1824 		if (!err) {
1825 			err = security_socket_bind(sock,
1826 						   (struct sockaddr *)&address,
1827 						   addrlen);
1828 			if (!err)
1829 				err = READ_ONCE(sock->ops)->bind(sock,
1830 						      (struct sockaddr *)
1831 						      &address, addrlen);
1832 		}
1833 		fput_light(sock->file, fput_needed);
1834 	}
1835 	return err;
1836 }
1837 
1838 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1839 {
1840 	return __sys_bind(fd, umyaddr, addrlen);
1841 }
1842 
1843 /*
1844  *	Perform a listen. Basically, we allow the protocol to do anything
1845  *	necessary for a listen, and if that works, we mark the socket as
1846  *	ready for listening.
1847  */
1848 
1849 int __sys_listen(int fd, int backlog)
1850 {
1851 	struct socket *sock;
1852 	int err, fput_needed;
1853 	int somaxconn;
1854 
1855 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1856 	if (sock) {
1857 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1858 		if ((unsigned int)backlog > somaxconn)
1859 			backlog = somaxconn;
1860 
1861 		err = security_socket_listen(sock, backlog);
1862 		if (!err)
1863 			err = READ_ONCE(sock->ops)->listen(sock, backlog);
1864 
1865 		fput_light(sock->file, fput_needed);
1866 	}
1867 	return err;
1868 }
1869 
1870 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1871 {
1872 	return __sys_listen(fd, backlog);
1873 }
1874 
1875 struct file *do_accept(struct file *file, unsigned file_flags,
1876 		       struct sockaddr __user *upeer_sockaddr,
1877 		       int __user *upeer_addrlen, int flags)
1878 {
1879 	struct socket *sock, *newsock;
1880 	struct file *newfile;
1881 	int err, len;
1882 	struct sockaddr_storage address;
1883 	const struct proto_ops *ops;
1884 
1885 	sock = sock_from_file(file);
1886 	if (!sock)
1887 		return ERR_PTR(-ENOTSOCK);
1888 
1889 	newsock = sock_alloc();
1890 	if (!newsock)
1891 		return ERR_PTR(-ENFILE);
1892 	ops = READ_ONCE(sock->ops);
1893 
1894 	newsock->type = sock->type;
1895 	newsock->ops = ops;
1896 
1897 	/*
1898 	 * We don't need try_module_get here, as the listening socket (sock)
1899 	 * has the protocol module (sock->ops->owner) held.
1900 	 */
1901 	__module_get(ops->owner);
1902 
1903 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1904 	if (IS_ERR(newfile))
1905 		return newfile;
1906 
1907 	err = security_socket_accept(sock, newsock);
1908 	if (err)
1909 		goto out_fd;
1910 
1911 	err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1912 					false);
1913 	if (err < 0)
1914 		goto out_fd;
1915 
1916 	if (upeer_sockaddr) {
1917 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1918 		if (len < 0) {
1919 			err = -ECONNABORTED;
1920 			goto out_fd;
1921 		}
1922 		err = move_addr_to_user(&address,
1923 					len, upeer_sockaddr, upeer_addrlen);
1924 		if (err < 0)
1925 			goto out_fd;
1926 	}
1927 
1928 	/* File flags are not inherited via accept() unlike another OSes. */
1929 	return newfile;
1930 out_fd:
1931 	fput(newfile);
1932 	return ERR_PTR(err);
1933 }
1934 
1935 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1936 			      int __user *upeer_addrlen, int flags)
1937 {
1938 	struct file *newfile;
1939 	int newfd;
1940 
1941 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1942 		return -EINVAL;
1943 
1944 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1945 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1946 
1947 	newfd = get_unused_fd_flags(flags);
1948 	if (unlikely(newfd < 0))
1949 		return newfd;
1950 
1951 	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1952 			    flags);
1953 	if (IS_ERR(newfile)) {
1954 		put_unused_fd(newfd);
1955 		return PTR_ERR(newfile);
1956 	}
1957 	fd_install(newfd, newfile);
1958 	return newfd;
1959 }
1960 
1961 /*
1962  *	For accept, we attempt to create a new socket, set up the link
1963  *	with the client, wake up the client, then return the new
1964  *	connected fd. We collect the address of the connector in kernel
1965  *	space and move it to user at the very end. This is unclean because
1966  *	we open the socket then return an error.
1967  *
1968  *	1003.1g adds the ability to recvmsg() to query connection pending
1969  *	status to recvmsg. We need to add that support in a way thats
1970  *	clean when we restructure accept also.
1971  */
1972 
1973 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1974 		  int __user *upeer_addrlen, int flags)
1975 {
1976 	int ret = -EBADF;
1977 	struct fd f;
1978 
1979 	f = fdget(fd);
1980 	if (f.file) {
1981 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1982 					 upeer_addrlen, flags);
1983 		fdput(f);
1984 	}
1985 
1986 	return ret;
1987 }
1988 
1989 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1990 		int __user *, upeer_addrlen, int, flags)
1991 {
1992 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1993 }
1994 
1995 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1996 		int __user *, upeer_addrlen)
1997 {
1998 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1999 }
2000 
2001 /*
2002  *	Attempt to connect to a socket with the server address.  The address
2003  *	is in user space so we verify it is OK and move it to kernel space.
2004  *
2005  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2006  *	break bindings
2007  *
2008  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2009  *	other SEQPACKET protocols that take time to connect() as it doesn't
2010  *	include the -EINPROGRESS status for such sockets.
2011  */
2012 
2013 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2014 		       int addrlen, int file_flags)
2015 {
2016 	struct socket *sock;
2017 	int err;
2018 
2019 	sock = sock_from_file(file);
2020 	if (!sock) {
2021 		err = -ENOTSOCK;
2022 		goto out;
2023 	}
2024 
2025 	err =
2026 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2027 	if (err)
2028 		goto out;
2029 
2030 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2031 				addrlen, sock->file->f_flags | file_flags);
2032 out:
2033 	return err;
2034 }
2035 
2036 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2037 {
2038 	int ret = -EBADF;
2039 	struct fd f;
2040 
2041 	f = fdget(fd);
2042 	if (f.file) {
2043 		struct sockaddr_storage address;
2044 
2045 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2046 		if (!ret)
2047 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2048 		fdput(f);
2049 	}
2050 
2051 	return ret;
2052 }
2053 
2054 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2055 		int, addrlen)
2056 {
2057 	return __sys_connect(fd, uservaddr, addrlen);
2058 }
2059 
2060 /*
2061  *	Get the local address ('name') of a socket object. Move the obtained
2062  *	name to user space.
2063  */
2064 
2065 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2066 		      int __user *usockaddr_len)
2067 {
2068 	struct socket *sock;
2069 	struct sockaddr_storage address;
2070 	int err, fput_needed;
2071 
2072 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2073 	if (!sock)
2074 		goto out;
2075 
2076 	err = security_socket_getsockname(sock);
2077 	if (err)
2078 		goto out_put;
2079 
2080 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2081 	if (err < 0)
2082 		goto out_put;
2083 	/* "err" is actually length in this case */
2084 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2085 
2086 out_put:
2087 	fput_light(sock->file, fput_needed);
2088 out:
2089 	return err;
2090 }
2091 
2092 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2093 		int __user *, usockaddr_len)
2094 {
2095 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2096 }
2097 
2098 /*
2099  *	Get the remote address ('name') of a socket object. Move the obtained
2100  *	name to user space.
2101  */
2102 
2103 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2104 		      int __user *usockaddr_len)
2105 {
2106 	struct socket *sock;
2107 	struct sockaddr_storage address;
2108 	int err, fput_needed;
2109 
2110 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2111 	if (sock != NULL) {
2112 		const struct proto_ops *ops = READ_ONCE(sock->ops);
2113 
2114 		err = security_socket_getpeername(sock);
2115 		if (err) {
2116 			fput_light(sock->file, fput_needed);
2117 			return err;
2118 		}
2119 
2120 		err = ops->getname(sock, (struct sockaddr *)&address, 1);
2121 		if (err >= 0)
2122 			/* "err" is actually length in this case */
2123 			err = move_addr_to_user(&address, err, usockaddr,
2124 						usockaddr_len);
2125 		fput_light(sock->file, fput_needed);
2126 	}
2127 	return err;
2128 }
2129 
2130 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2131 		int __user *, usockaddr_len)
2132 {
2133 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2134 }
2135 
2136 /*
2137  *	Send a datagram to a given address. We move the address into kernel
2138  *	space and check the user space data area is readable before invoking
2139  *	the protocol.
2140  */
2141 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2142 		 struct sockaddr __user *addr,  int addr_len)
2143 {
2144 	struct socket *sock;
2145 	struct sockaddr_storage address;
2146 	int err;
2147 	struct msghdr msg;
2148 	struct iovec iov;
2149 	int fput_needed;
2150 
2151 	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2152 	if (unlikely(err))
2153 		return err;
2154 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2155 	if (!sock)
2156 		goto out;
2157 
2158 	msg.msg_name = NULL;
2159 	msg.msg_control = NULL;
2160 	msg.msg_controllen = 0;
2161 	msg.msg_namelen = 0;
2162 	msg.msg_ubuf = NULL;
2163 	if (addr) {
2164 		err = move_addr_to_kernel(addr, addr_len, &address);
2165 		if (err < 0)
2166 			goto out_put;
2167 		msg.msg_name = (struct sockaddr *)&address;
2168 		msg.msg_namelen = addr_len;
2169 	}
2170 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2171 	if (sock->file->f_flags & O_NONBLOCK)
2172 		flags |= MSG_DONTWAIT;
2173 	msg.msg_flags = flags;
2174 	err = sock_sendmsg(sock, &msg);
2175 
2176 out_put:
2177 	fput_light(sock->file, fput_needed);
2178 out:
2179 	return err;
2180 }
2181 
2182 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2183 		unsigned int, flags, struct sockaddr __user *, addr,
2184 		int, addr_len)
2185 {
2186 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2187 }
2188 
2189 /*
2190  *	Send a datagram down a socket.
2191  */
2192 
2193 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2194 		unsigned int, flags)
2195 {
2196 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2197 }
2198 
2199 /*
2200  *	Receive a frame from the socket and optionally record the address of the
2201  *	sender. We verify the buffers are writable and if needed move the
2202  *	sender address from kernel to user space.
2203  */
2204 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2205 		   struct sockaddr __user *addr, int __user *addr_len)
2206 {
2207 	struct sockaddr_storage address;
2208 	struct msghdr msg = {
2209 		/* Save some cycles and don't copy the address if not needed */
2210 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2211 	};
2212 	struct socket *sock;
2213 	struct iovec iov;
2214 	int err, err2;
2215 	int fput_needed;
2216 
2217 	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2218 	if (unlikely(err))
2219 		return err;
2220 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2221 	if (!sock)
2222 		goto out;
2223 
2224 	if (sock->file->f_flags & O_NONBLOCK)
2225 		flags |= MSG_DONTWAIT;
2226 	err = sock_recvmsg(sock, &msg, flags);
2227 
2228 	if (err >= 0 && addr != NULL) {
2229 		err2 = move_addr_to_user(&address,
2230 					 msg.msg_namelen, addr, addr_len);
2231 		if (err2 < 0)
2232 			err = err2;
2233 	}
2234 
2235 	fput_light(sock->file, fput_needed);
2236 out:
2237 	return err;
2238 }
2239 
2240 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2241 		unsigned int, flags, struct sockaddr __user *, addr,
2242 		int __user *, addr_len)
2243 {
2244 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2245 }
2246 
2247 /*
2248  *	Receive a datagram from a socket.
2249  */
2250 
2251 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2252 		unsigned int, flags)
2253 {
2254 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2255 }
2256 
2257 static bool sock_use_custom_sol_socket(const struct socket *sock)
2258 {
2259 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2260 }
2261 
2262 /*
2263  *	Set a socket option. Because we don't know the option lengths we have
2264  *	to pass the user mode parameter for the protocols to sort out.
2265  */
2266 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2267 		int optlen)
2268 {
2269 	sockptr_t optval = USER_SOCKPTR(user_optval);
2270 	const struct proto_ops *ops;
2271 	char *kernel_optval = NULL;
2272 	int err, fput_needed;
2273 	struct socket *sock;
2274 
2275 	if (optlen < 0)
2276 		return -EINVAL;
2277 
2278 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2279 	if (!sock)
2280 		return err;
2281 
2282 	err = security_socket_setsockopt(sock, level, optname);
2283 	if (err)
2284 		goto out_put;
2285 
2286 	if (!in_compat_syscall())
2287 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2288 						     user_optval, &optlen,
2289 						     &kernel_optval);
2290 	if (err < 0)
2291 		goto out_put;
2292 	if (err > 0) {
2293 		err = 0;
2294 		goto out_put;
2295 	}
2296 
2297 	if (kernel_optval)
2298 		optval = KERNEL_SOCKPTR(kernel_optval);
2299 	ops = READ_ONCE(sock->ops);
2300 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2301 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2302 	else if (unlikely(!ops->setsockopt))
2303 		err = -EOPNOTSUPP;
2304 	else
2305 		err = ops->setsockopt(sock, level, optname, optval,
2306 					    optlen);
2307 	kfree(kernel_optval);
2308 out_put:
2309 	fput_light(sock->file, fput_needed);
2310 	return err;
2311 }
2312 
2313 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2314 		char __user *, optval, int, optlen)
2315 {
2316 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2317 }
2318 
2319 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2320 							 int optname));
2321 
2322 /*
2323  *	Get a socket option. Because we don't know the option lengths we have
2324  *	to pass a user mode parameter for the protocols to sort out.
2325  */
2326 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2327 		int __user *optlen)
2328 {
2329 	int max_optlen __maybe_unused;
2330 	const struct proto_ops *ops;
2331 	int err, fput_needed;
2332 	struct socket *sock;
2333 
2334 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2335 	if (!sock)
2336 		return err;
2337 
2338 	err = security_socket_getsockopt(sock, level, optname);
2339 	if (err)
2340 		goto out_put;
2341 
2342 	if (!in_compat_syscall())
2343 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2344 
2345 	ops = READ_ONCE(sock->ops);
2346 	if (level == SOL_SOCKET)
2347 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2348 	else if (unlikely(!ops->getsockopt))
2349 		err = -EOPNOTSUPP;
2350 	else
2351 		err = ops->getsockopt(sock, level, optname, optval,
2352 					    optlen);
2353 
2354 	if (!in_compat_syscall())
2355 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2356 						     optval, optlen, max_optlen,
2357 						     err);
2358 out_put:
2359 	fput_light(sock->file, fput_needed);
2360 	return err;
2361 }
2362 
2363 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2364 		char __user *, optval, int __user *, optlen)
2365 {
2366 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2367 }
2368 
2369 /*
2370  *	Shutdown a socket.
2371  */
2372 
2373 int __sys_shutdown_sock(struct socket *sock, int how)
2374 {
2375 	int err;
2376 
2377 	err = security_socket_shutdown(sock, how);
2378 	if (!err)
2379 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2380 
2381 	return err;
2382 }
2383 
2384 int __sys_shutdown(int fd, int how)
2385 {
2386 	int err, fput_needed;
2387 	struct socket *sock;
2388 
2389 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2390 	if (sock != NULL) {
2391 		err = __sys_shutdown_sock(sock, how);
2392 		fput_light(sock->file, fput_needed);
2393 	}
2394 	return err;
2395 }
2396 
2397 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2398 {
2399 	return __sys_shutdown(fd, how);
2400 }
2401 
2402 /* A couple of helpful macros for getting the address of the 32/64 bit
2403  * fields which are the same type (int / unsigned) on our platforms.
2404  */
2405 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2406 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2407 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2408 
2409 struct used_address {
2410 	struct sockaddr_storage name;
2411 	unsigned int name_len;
2412 };
2413 
2414 int __copy_msghdr(struct msghdr *kmsg,
2415 		  struct user_msghdr *msg,
2416 		  struct sockaddr __user **save_addr)
2417 {
2418 	ssize_t err;
2419 
2420 	kmsg->msg_control_is_user = true;
2421 	kmsg->msg_get_inq = 0;
2422 	kmsg->msg_control_user = msg->msg_control;
2423 	kmsg->msg_controllen = msg->msg_controllen;
2424 	kmsg->msg_flags = msg->msg_flags;
2425 
2426 	kmsg->msg_namelen = msg->msg_namelen;
2427 	if (!msg->msg_name)
2428 		kmsg->msg_namelen = 0;
2429 
2430 	if (kmsg->msg_namelen < 0)
2431 		return -EINVAL;
2432 
2433 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2434 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2435 
2436 	if (save_addr)
2437 		*save_addr = msg->msg_name;
2438 
2439 	if (msg->msg_name && kmsg->msg_namelen) {
2440 		if (!save_addr) {
2441 			err = move_addr_to_kernel(msg->msg_name,
2442 						  kmsg->msg_namelen,
2443 						  kmsg->msg_name);
2444 			if (err < 0)
2445 				return err;
2446 		}
2447 	} else {
2448 		kmsg->msg_name = NULL;
2449 		kmsg->msg_namelen = 0;
2450 	}
2451 
2452 	if (msg->msg_iovlen > UIO_MAXIOV)
2453 		return -EMSGSIZE;
2454 
2455 	kmsg->msg_iocb = NULL;
2456 	kmsg->msg_ubuf = NULL;
2457 	return 0;
2458 }
2459 
2460 static int copy_msghdr_from_user(struct msghdr *kmsg,
2461 				 struct user_msghdr __user *umsg,
2462 				 struct sockaddr __user **save_addr,
2463 				 struct iovec **iov)
2464 {
2465 	struct user_msghdr msg;
2466 	ssize_t err;
2467 
2468 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2469 		return -EFAULT;
2470 
2471 	err = __copy_msghdr(kmsg, &msg, save_addr);
2472 	if (err)
2473 		return err;
2474 
2475 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2476 			    msg.msg_iov, msg.msg_iovlen,
2477 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2478 	return err < 0 ? err : 0;
2479 }
2480 
2481 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2482 			   unsigned int flags, struct used_address *used_address,
2483 			   unsigned int allowed_msghdr_flags)
2484 {
2485 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2486 				__aligned(sizeof(__kernel_size_t));
2487 	/* 20 is size of ipv6_pktinfo */
2488 	unsigned char *ctl_buf = ctl;
2489 	int ctl_len;
2490 	ssize_t err;
2491 
2492 	err = -ENOBUFS;
2493 
2494 	if (msg_sys->msg_controllen > INT_MAX)
2495 		goto out;
2496 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2497 	ctl_len = msg_sys->msg_controllen;
2498 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2499 		err =
2500 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2501 						     sizeof(ctl));
2502 		if (err)
2503 			goto out;
2504 		ctl_buf = msg_sys->msg_control;
2505 		ctl_len = msg_sys->msg_controllen;
2506 	} else if (ctl_len) {
2507 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2508 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2509 		if (ctl_len > sizeof(ctl)) {
2510 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2511 			if (ctl_buf == NULL)
2512 				goto out;
2513 		}
2514 		err = -EFAULT;
2515 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2516 			goto out_freectl;
2517 		msg_sys->msg_control = ctl_buf;
2518 		msg_sys->msg_control_is_user = false;
2519 	}
2520 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2521 	msg_sys->msg_flags = flags;
2522 
2523 	if (sock->file->f_flags & O_NONBLOCK)
2524 		msg_sys->msg_flags |= MSG_DONTWAIT;
2525 	/*
2526 	 * If this is sendmmsg() and current destination address is same as
2527 	 * previously succeeded address, omit asking LSM's decision.
2528 	 * used_address->name_len is initialized to UINT_MAX so that the first
2529 	 * destination address never matches.
2530 	 */
2531 	if (used_address && msg_sys->msg_name &&
2532 	    used_address->name_len == msg_sys->msg_namelen &&
2533 	    !memcmp(&used_address->name, msg_sys->msg_name,
2534 		    used_address->name_len)) {
2535 		err = sock_sendmsg_nosec(sock, msg_sys);
2536 		goto out_freectl;
2537 	}
2538 	err = sock_sendmsg(sock, msg_sys);
2539 	/*
2540 	 * If this is sendmmsg() and sending to current destination address was
2541 	 * successful, remember it.
2542 	 */
2543 	if (used_address && err >= 0) {
2544 		used_address->name_len = msg_sys->msg_namelen;
2545 		if (msg_sys->msg_name)
2546 			memcpy(&used_address->name, msg_sys->msg_name,
2547 			       used_address->name_len);
2548 	}
2549 
2550 out_freectl:
2551 	if (ctl_buf != ctl)
2552 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2553 out:
2554 	return err;
2555 }
2556 
2557 int sendmsg_copy_msghdr(struct msghdr *msg,
2558 			struct user_msghdr __user *umsg, unsigned flags,
2559 			struct iovec **iov)
2560 {
2561 	int err;
2562 
2563 	if (flags & MSG_CMSG_COMPAT) {
2564 		struct compat_msghdr __user *msg_compat;
2565 
2566 		msg_compat = (struct compat_msghdr __user *) umsg;
2567 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2568 	} else {
2569 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2570 	}
2571 	if (err < 0)
2572 		return err;
2573 
2574 	return 0;
2575 }
2576 
2577 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2578 			 struct msghdr *msg_sys, unsigned int flags,
2579 			 struct used_address *used_address,
2580 			 unsigned int allowed_msghdr_flags)
2581 {
2582 	struct sockaddr_storage address;
2583 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2584 	ssize_t err;
2585 
2586 	msg_sys->msg_name = &address;
2587 
2588 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2589 	if (err < 0)
2590 		return err;
2591 
2592 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2593 				allowed_msghdr_flags);
2594 	kfree(iov);
2595 	return err;
2596 }
2597 
2598 /*
2599  *	BSD sendmsg interface
2600  */
2601 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2602 			unsigned int flags)
2603 {
2604 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2605 }
2606 
2607 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2608 		   bool forbid_cmsg_compat)
2609 {
2610 	int fput_needed, err;
2611 	struct msghdr msg_sys;
2612 	struct socket *sock;
2613 
2614 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2615 		return -EINVAL;
2616 
2617 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2618 	if (!sock)
2619 		goto out;
2620 
2621 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2622 
2623 	fput_light(sock->file, fput_needed);
2624 out:
2625 	return err;
2626 }
2627 
2628 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2629 {
2630 	return __sys_sendmsg(fd, msg, flags, true);
2631 }
2632 
2633 /*
2634  *	Linux sendmmsg interface
2635  */
2636 
2637 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2638 		   unsigned int flags, bool forbid_cmsg_compat)
2639 {
2640 	int fput_needed, err, datagrams;
2641 	struct socket *sock;
2642 	struct mmsghdr __user *entry;
2643 	struct compat_mmsghdr __user *compat_entry;
2644 	struct msghdr msg_sys;
2645 	struct used_address used_address;
2646 	unsigned int oflags = flags;
2647 
2648 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2649 		return -EINVAL;
2650 
2651 	if (vlen > UIO_MAXIOV)
2652 		vlen = UIO_MAXIOV;
2653 
2654 	datagrams = 0;
2655 
2656 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2657 	if (!sock)
2658 		return err;
2659 
2660 	used_address.name_len = UINT_MAX;
2661 	entry = mmsg;
2662 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2663 	err = 0;
2664 	flags |= MSG_BATCH;
2665 
2666 	while (datagrams < vlen) {
2667 		if (datagrams == vlen - 1)
2668 			flags = oflags;
2669 
2670 		if (MSG_CMSG_COMPAT & flags) {
2671 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2672 					     &msg_sys, flags, &used_address, MSG_EOR);
2673 			if (err < 0)
2674 				break;
2675 			err = __put_user(err, &compat_entry->msg_len);
2676 			++compat_entry;
2677 		} else {
2678 			err = ___sys_sendmsg(sock,
2679 					     (struct user_msghdr __user *)entry,
2680 					     &msg_sys, flags, &used_address, MSG_EOR);
2681 			if (err < 0)
2682 				break;
2683 			err = put_user(err, &entry->msg_len);
2684 			++entry;
2685 		}
2686 
2687 		if (err)
2688 			break;
2689 		++datagrams;
2690 		if (msg_data_left(&msg_sys))
2691 			break;
2692 		cond_resched();
2693 	}
2694 
2695 	fput_light(sock->file, fput_needed);
2696 
2697 	/* We only return an error if no datagrams were able to be sent */
2698 	if (datagrams != 0)
2699 		return datagrams;
2700 
2701 	return err;
2702 }
2703 
2704 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2705 		unsigned int, vlen, unsigned int, flags)
2706 {
2707 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2708 }
2709 
2710 int recvmsg_copy_msghdr(struct msghdr *msg,
2711 			struct user_msghdr __user *umsg, unsigned flags,
2712 			struct sockaddr __user **uaddr,
2713 			struct iovec **iov)
2714 {
2715 	ssize_t err;
2716 
2717 	if (MSG_CMSG_COMPAT & flags) {
2718 		struct compat_msghdr __user *msg_compat;
2719 
2720 		msg_compat = (struct compat_msghdr __user *) umsg;
2721 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2722 	} else {
2723 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2724 	}
2725 	if (err < 0)
2726 		return err;
2727 
2728 	return 0;
2729 }
2730 
2731 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2732 			   struct user_msghdr __user *msg,
2733 			   struct sockaddr __user *uaddr,
2734 			   unsigned int flags, int nosec)
2735 {
2736 	struct compat_msghdr __user *msg_compat =
2737 					(struct compat_msghdr __user *) msg;
2738 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2739 	struct sockaddr_storage addr;
2740 	unsigned long cmsg_ptr;
2741 	int len;
2742 	ssize_t err;
2743 
2744 	msg_sys->msg_name = &addr;
2745 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2746 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2747 
2748 	/* We assume all kernel code knows the size of sockaddr_storage */
2749 	msg_sys->msg_namelen = 0;
2750 
2751 	if (sock->file->f_flags & O_NONBLOCK)
2752 		flags |= MSG_DONTWAIT;
2753 
2754 	if (unlikely(nosec))
2755 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2756 	else
2757 		err = sock_recvmsg(sock, msg_sys, flags);
2758 
2759 	if (err < 0)
2760 		goto out;
2761 	len = err;
2762 
2763 	if (uaddr != NULL) {
2764 		err = move_addr_to_user(&addr,
2765 					msg_sys->msg_namelen, uaddr,
2766 					uaddr_len);
2767 		if (err < 0)
2768 			goto out;
2769 	}
2770 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2771 			 COMPAT_FLAGS(msg));
2772 	if (err)
2773 		goto out;
2774 	if (MSG_CMSG_COMPAT & flags)
2775 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2776 				 &msg_compat->msg_controllen);
2777 	else
2778 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2779 				 &msg->msg_controllen);
2780 	if (err)
2781 		goto out;
2782 	err = len;
2783 out:
2784 	return err;
2785 }
2786 
2787 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2788 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2789 {
2790 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2791 	/* user mode address pointers */
2792 	struct sockaddr __user *uaddr;
2793 	ssize_t err;
2794 
2795 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2796 	if (err < 0)
2797 		return err;
2798 
2799 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2800 	kfree(iov);
2801 	return err;
2802 }
2803 
2804 /*
2805  *	BSD recvmsg interface
2806  */
2807 
2808 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2809 			struct user_msghdr __user *umsg,
2810 			struct sockaddr __user *uaddr, unsigned int flags)
2811 {
2812 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2813 }
2814 
2815 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2816 		   bool forbid_cmsg_compat)
2817 {
2818 	int fput_needed, err;
2819 	struct msghdr msg_sys;
2820 	struct socket *sock;
2821 
2822 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2823 		return -EINVAL;
2824 
2825 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2826 	if (!sock)
2827 		goto out;
2828 
2829 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2830 
2831 	fput_light(sock->file, fput_needed);
2832 out:
2833 	return err;
2834 }
2835 
2836 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2837 		unsigned int, flags)
2838 {
2839 	return __sys_recvmsg(fd, msg, flags, true);
2840 }
2841 
2842 /*
2843  *     Linux recvmmsg interface
2844  */
2845 
2846 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2847 			  unsigned int vlen, unsigned int flags,
2848 			  struct timespec64 *timeout)
2849 {
2850 	int fput_needed, err, datagrams;
2851 	struct socket *sock;
2852 	struct mmsghdr __user *entry;
2853 	struct compat_mmsghdr __user *compat_entry;
2854 	struct msghdr msg_sys;
2855 	struct timespec64 end_time;
2856 	struct timespec64 timeout64;
2857 
2858 	if (timeout &&
2859 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2860 				    timeout->tv_nsec))
2861 		return -EINVAL;
2862 
2863 	datagrams = 0;
2864 
2865 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2866 	if (!sock)
2867 		return err;
2868 
2869 	if (likely(!(flags & MSG_ERRQUEUE))) {
2870 		err = sock_error(sock->sk);
2871 		if (err) {
2872 			datagrams = err;
2873 			goto out_put;
2874 		}
2875 	}
2876 
2877 	entry = mmsg;
2878 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2879 
2880 	while (datagrams < vlen) {
2881 		/*
2882 		 * No need to ask LSM for more than the first datagram.
2883 		 */
2884 		if (MSG_CMSG_COMPAT & flags) {
2885 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2886 					     &msg_sys, flags & ~MSG_WAITFORONE,
2887 					     datagrams);
2888 			if (err < 0)
2889 				break;
2890 			err = __put_user(err, &compat_entry->msg_len);
2891 			++compat_entry;
2892 		} else {
2893 			err = ___sys_recvmsg(sock,
2894 					     (struct user_msghdr __user *)entry,
2895 					     &msg_sys, flags & ~MSG_WAITFORONE,
2896 					     datagrams);
2897 			if (err < 0)
2898 				break;
2899 			err = put_user(err, &entry->msg_len);
2900 			++entry;
2901 		}
2902 
2903 		if (err)
2904 			break;
2905 		++datagrams;
2906 
2907 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2908 		if (flags & MSG_WAITFORONE)
2909 			flags |= MSG_DONTWAIT;
2910 
2911 		if (timeout) {
2912 			ktime_get_ts64(&timeout64);
2913 			*timeout = timespec64_sub(end_time, timeout64);
2914 			if (timeout->tv_sec < 0) {
2915 				timeout->tv_sec = timeout->tv_nsec = 0;
2916 				break;
2917 			}
2918 
2919 			/* Timeout, return less than vlen datagrams */
2920 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2921 				break;
2922 		}
2923 
2924 		/* Out of band data, return right away */
2925 		if (msg_sys.msg_flags & MSG_OOB)
2926 			break;
2927 		cond_resched();
2928 	}
2929 
2930 	if (err == 0)
2931 		goto out_put;
2932 
2933 	if (datagrams == 0) {
2934 		datagrams = err;
2935 		goto out_put;
2936 	}
2937 
2938 	/*
2939 	 * We may return less entries than requested (vlen) if the
2940 	 * sock is non block and there aren't enough datagrams...
2941 	 */
2942 	if (err != -EAGAIN) {
2943 		/*
2944 		 * ... or  if recvmsg returns an error after we
2945 		 * received some datagrams, where we record the
2946 		 * error to return on the next call or if the
2947 		 * app asks about it using getsockopt(SO_ERROR).
2948 		 */
2949 		WRITE_ONCE(sock->sk->sk_err, -err);
2950 	}
2951 out_put:
2952 	fput_light(sock->file, fput_needed);
2953 
2954 	return datagrams;
2955 }
2956 
2957 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2958 		   unsigned int vlen, unsigned int flags,
2959 		   struct __kernel_timespec __user *timeout,
2960 		   struct old_timespec32 __user *timeout32)
2961 {
2962 	int datagrams;
2963 	struct timespec64 timeout_sys;
2964 
2965 	if (timeout && get_timespec64(&timeout_sys, timeout))
2966 		return -EFAULT;
2967 
2968 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2969 		return -EFAULT;
2970 
2971 	if (!timeout && !timeout32)
2972 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2973 
2974 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2975 
2976 	if (datagrams <= 0)
2977 		return datagrams;
2978 
2979 	if (timeout && put_timespec64(&timeout_sys, timeout))
2980 		datagrams = -EFAULT;
2981 
2982 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2983 		datagrams = -EFAULT;
2984 
2985 	return datagrams;
2986 }
2987 
2988 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2989 		unsigned int, vlen, unsigned int, flags,
2990 		struct __kernel_timespec __user *, timeout)
2991 {
2992 	if (flags & MSG_CMSG_COMPAT)
2993 		return -EINVAL;
2994 
2995 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2996 }
2997 
2998 #ifdef CONFIG_COMPAT_32BIT_TIME
2999 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3000 		unsigned int, vlen, unsigned int, flags,
3001 		struct old_timespec32 __user *, timeout)
3002 {
3003 	if (flags & MSG_CMSG_COMPAT)
3004 		return -EINVAL;
3005 
3006 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3007 }
3008 #endif
3009 
3010 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3011 /* Argument list sizes for sys_socketcall */
3012 #define AL(x) ((x) * sizeof(unsigned long))
3013 static const unsigned char nargs[21] = {
3014 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3015 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3016 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3017 	AL(4), AL(5), AL(4)
3018 };
3019 
3020 #undef AL
3021 
3022 /*
3023  *	System call vectors.
3024  *
3025  *	Argument checking cleaned up. Saved 20% in size.
3026  *  This function doesn't need to set the kernel lock because
3027  *  it is set by the callees.
3028  */
3029 
3030 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3031 {
3032 	unsigned long a[AUDITSC_ARGS];
3033 	unsigned long a0, a1;
3034 	int err;
3035 	unsigned int len;
3036 
3037 	if (call < 1 || call > SYS_SENDMMSG)
3038 		return -EINVAL;
3039 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3040 
3041 	len = nargs[call];
3042 	if (len > sizeof(a))
3043 		return -EINVAL;
3044 
3045 	/* copy_from_user should be SMP safe. */
3046 	if (copy_from_user(a, args, len))
3047 		return -EFAULT;
3048 
3049 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3050 	if (err)
3051 		return err;
3052 
3053 	a0 = a[0];
3054 	a1 = a[1];
3055 
3056 	switch (call) {
3057 	case SYS_SOCKET:
3058 		err = __sys_socket(a0, a1, a[2]);
3059 		break;
3060 	case SYS_BIND:
3061 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3062 		break;
3063 	case SYS_CONNECT:
3064 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3065 		break;
3066 	case SYS_LISTEN:
3067 		err = __sys_listen(a0, a1);
3068 		break;
3069 	case SYS_ACCEPT:
3070 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3071 				    (int __user *)a[2], 0);
3072 		break;
3073 	case SYS_GETSOCKNAME:
3074 		err =
3075 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3076 				      (int __user *)a[2]);
3077 		break;
3078 	case SYS_GETPEERNAME:
3079 		err =
3080 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3081 				      (int __user *)a[2]);
3082 		break;
3083 	case SYS_SOCKETPAIR:
3084 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3085 		break;
3086 	case SYS_SEND:
3087 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3088 				   NULL, 0);
3089 		break;
3090 	case SYS_SENDTO:
3091 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3092 				   (struct sockaddr __user *)a[4], a[5]);
3093 		break;
3094 	case SYS_RECV:
3095 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3096 				     NULL, NULL);
3097 		break;
3098 	case SYS_RECVFROM:
3099 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3100 				     (struct sockaddr __user *)a[4],
3101 				     (int __user *)a[5]);
3102 		break;
3103 	case SYS_SHUTDOWN:
3104 		err = __sys_shutdown(a0, a1);
3105 		break;
3106 	case SYS_SETSOCKOPT:
3107 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3108 				       a[4]);
3109 		break;
3110 	case SYS_GETSOCKOPT:
3111 		err =
3112 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3113 				     (int __user *)a[4]);
3114 		break;
3115 	case SYS_SENDMSG:
3116 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3117 				    a[2], true);
3118 		break;
3119 	case SYS_SENDMMSG:
3120 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3121 				     a[3], true);
3122 		break;
3123 	case SYS_RECVMSG:
3124 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3125 				    a[2], true);
3126 		break;
3127 	case SYS_RECVMMSG:
3128 		if (IS_ENABLED(CONFIG_64BIT))
3129 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3130 					     a[2], a[3],
3131 					     (struct __kernel_timespec __user *)a[4],
3132 					     NULL);
3133 		else
3134 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3135 					     a[2], a[3], NULL,
3136 					     (struct old_timespec32 __user *)a[4]);
3137 		break;
3138 	case SYS_ACCEPT4:
3139 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3140 				    (int __user *)a[2], a[3]);
3141 		break;
3142 	default:
3143 		err = -EINVAL;
3144 		break;
3145 	}
3146 	return err;
3147 }
3148 
3149 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3150 
3151 /**
3152  *	sock_register - add a socket protocol handler
3153  *	@ops: description of protocol
3154  *
3155  *	This function is called by a protocol handler that wants to
3156  *	advertise its address family, and have it linked into the
3157  *	socket interface. The value ops->family corresponds to the
3158  *	socket system call protocol family.
3159  */
3160 int sock_register(const struct net_proto_family *ops)
3161 {
3162 	int err;
3163 
3164 	if (ops->family >= NPROTO) {
3165 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3166 		return -ENOBUFS;
3167 	}
3168 
3169 	spin_lock(&net_family_lock);
3170 	if (rcu_dereference_protected(net_families[ops->family],
3171 				      lockdep_is_held(&net_family_lock)))
3172 		err = -EEXIST;
3173 	else {
3174 		rcu_assign_pointer(net_families[ops->family], ops);
3175 		err = 0;
3176 	}
3177 	spin_unlock(&net_family_lock);
3178 
3179 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3180 	return err;
3181 }
3182 EXPORT_SYMBOL(sock_register);
3183 
3184 /**
3185  *	sock_unregister - remove a protocol handler
3186  *	@family: protocol family to remove
3187  *
3188  *	This function is called by a protocol handler that wants to
3189  *	remove its address family, and have it unlinked from the
3190  *	new socket creation.
3191  *
3192  *	If protocol handler is a module, then it can use module reference
3193  *	counts to protect against new references. If protocol handler is not
3194  *	a module then it needs to provide its own protection in
3195  *	the ops->create routine.
3196  */
3197 void sock_unregister(int family)
3198 {
3199 	BUG_ON(family < 0 || family >= NPROTO);
3200 
3201 	spin_lock(&net_family_lock);
3202 	RCU_INIT_POINTER(net_families[family], NULL);
3203 	spin_unlock(&net_family_lock);
3204 
3205 	synchronize_rcu();
3206 
3207 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3208 }
3209 EXPORT_SYMBOL(sock_unregister);
3210 
3211 bool sock_is_registered(int family)
3212 {
3213 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3214 }
3215 
3216 static int __init sock_init(void)
3217 {
3218 	int err;
3219 	/*
3220 	 *      Initialize the network sysctl infrastructure.
3221 	 */
3222 	err = net_sysctl_init();
3223 	if (err)
3224 		goto out;
3225 
3226 	/*
3227 	 *      Initialize skbuff SLAB cache
3228 	 */
3229 	skb_init();
3230 
3231 	/*
3232 	 *      Initialize the protocols module.
3233 	 */
3234 
3235 	init_inodecache();
3236 
3237 	err = register_filesystem(&sock_fs_type);
3238 	if (err)
3239 		goto out;
3240 	sock_mnt = kern_mount(&sock_fs_type);
3241 	if (IS_ERR(sock_mnt)) {
3242 		err = PTR_ERR(sock_mnt);
3243 		goto out_mount;
3244 	}
3245 
3246 	/* The real protocol initialization is performed in later initcalls.
3247 	 */
3248 
3249 #ifdef CONFIG_NETFILTER
3250 	err = netfilter_init();
3251 	if (err)
3252 		goto out;
3253 #endif
3254 
3255 	ptp_classifier_init();
3256 
3257 out:
3258 	return err;
3259 
3260 out_mount:
3261 	unregister_filesystem(&sock_fs_type);
3262 	goto out;
3263 }
3264 
3265 core_initcall(sock_init);	/* early initcall */
3266 
3267 #ifdef CONFIG_PROC_FS
3268 void socket_seq_show(struct seq_file *seq)
3269 {
3270 	seq_printf(seq, "sockets: used %d\n",
3271 		   sock_inuse_get(seq->private));
3272 }
3273 #endif				/* CONFIG_PROC_FS */
3274 
3275 /* Handle the fact that while struct ifreq has the same *layout* on
3276  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3277  * which are handled elsewhere, it still has different *size* due to
3278  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3279  * resulting in struct ifreq being 32 and 40 bytes respectively).
3280  * As a result, if the struct happens to be at the end of a page and
3281  * the next page isn't readable/writable, we get a fault. To prevent
3282  * that, copy back and forth to the full size.
3283  */
3284 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3285 {
3286 	if (in_compat_syscall()) {
3287 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3288 
3289 		memset(ifr, 0, sizeof(*ifr));
3290 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3291 			return -EFAULT;
3292 
3293 		if (ifrdata)
3294 			*ifrdata = compat_ptr(ifr32->ifr_data);
3295 
3296 		return 0;
3297 	}
3298 
3299 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3300 		return -EFAULT;
3301 
3302 	if (ifrdata)
3303 		*ifrdata = ifr->ifr_data;
3304 
3305 	return 0;
3306 }
3307 EXPORT_SYMBOL(get_user_ifreq);
3308 
3309 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3310 {
3311 	size_t size = sizeof(*ifr);
3312 
3313 	if (in_compat_syscall())
3314 		size = sizeof(struct compat_ifreq);
3315 
3316 	if (copy_to_user(arg, ifr, size))
3317 		return -EFAULT;
3318 
3319 	return 0;
3320 }
3321 EXPORT_SYMBOL(put_user_ifreq);
3322 
3323 #ifdef CONFIG_COMPAT
3324 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3325 {
3326 	compat_uptr_t uptr32;
3327 	struct ifreq ifr;
3328 	void __user *saved;
3329 	int err;
3330 
3331 	if (get_user_ifreq(&ifr, NULL, uifr32))
3332 		return -EFAULT;
3333 
3334 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3335 		return -EFAULT;
3336 
3337 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3338 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3339 
3340 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3341 	if (!err) {
3342 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3343 		if (put_user_ifreq(&ifr, uifr32))
3344 			err = -EFAULT;
3345 	}
3346 	return err;
3347 }
3348 
3349 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3350 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3351 				 struct compat_ifreq __user *u_ifreq32)
3352 {
3353 	struct ifreq ifreq;
3354 	void __user *data;
3355 
3356 	if (!is_socket_ioctl_cmd(cmd))
3357 		return -ENOTTY;
3358 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3359 		return -EFAULT;
3360 	ifreq.ifr_data = data;
3361 
3362 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3363 }
3364 
3365 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3366 			 unsigned int cmd, unsigned long arg)
3367 {
3368 	void __user *argp = compat_ptr(arg);
3369 	struct sock *sk = sock->sk;
3370 	struct net *net = sock_net(sk);
3371 	const struct proto_ops *ops;
3372 
3373 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3374 		return sock_ioctl(file, cmd, (unsigned long)argp);
3375 
3376 	switch (cmd) {
3377 	case SIOCWANDEV:
3378 		return compat_siocwandev(net, argp);
3379 	case SIOCGSTAMP_OLD:
3380 	case SIOCGSTAMPNS_OLD:
3381 		ops = READ_ONCE(sock->ops);
3382 		if (!ops->gettstamp)
3383 			return -ENOIOCTLCMD;
3384 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3385 				      !COMPAT_USE_64BIT_TIME);
3386 
3387 	case SIOCETHTOOL:
3388 	case SIOCBONDSLAVEINFOQUERY:
3389 	case SIOCBONDINFOQUERY:
3390 	case SIOCSHWTSTAMP:
3391 	case SIOCGHWTSTAMP:
3392 		return compat_ifr_data_ioctl(net, cmd, argp);
3393 
3394 	case FIOSETOWN:
3395 	case SIOCSPGRP:
3396 	case FIOGETOWN:
3397 	case SIOCGPGRP:
3398 	case SIOCBRADDBR:
3399 	case SIOCBRDELBR:
3400 	case SIOCGIFVLAN:
3401 	case SIOCSIFVLAN:
3402 	case SIOCGSKNS:
3403 	case SIOCGSTAMP_NEW:
3404 	case SIOCGSTAMPNS_NEW:
3405 	case SIOCGIFCONF:
3406 	case SIOCSIFBR:
3407 	case SIOCGIFBR:
3408 		return sock_ioctl(file, cmd, arg);
3409 
3410 	case SIOCGIFFLAGS:
3411 	case SIOCSIFFLAGS:
3412 	case SIOCGIFMAP:
3413 	case SIOCSIFMAP:
3414 	case SIOCGIFMETRIC:
3415 	case SIOCSIFMETRIC:
3416 	case SIOCGIFMTU:
3417 	case SIOCSIFMTU:
3418 	case SIOCGIFMEM:
3419 	case SIOCSIFMEM:
3420 	case SIOCGIFHWADDR:
3421 	case SIOCSIFHWADDR:
3422 	case SIOCADDMULTI:
3423 	case SIOCDELMULTI:
3424 	case SIOCGIFINDEX:
3425 	case SIOCGIFADDR:
3426 	case SIOCSIFADDR:
3427 	case SIOCSIFHWBROADCAST:
3428 	case SIOCDIFADDR:
3429 	case SIOCGIFBRDADDR:
3430 	case SIOCSIFBRDADDR:
3431 	case SIOCGIFDSTADDR:
3432 	case SIOCSIFDSTADDR:
3433 	case SIOCGIFNETMASK:
3434 	case SIOCSIFNETMASK:
3435 	case SIOCSIFPFLAGS:
3436 	case SIOCGIFPFLAGS:
3437 	case SIOCGIFTXQLEN:
3438 	case SIOCSIFTXQLEN:
3439 	case SIOCBRADDIF:
3440 	case SIOCBRDELIF:
3441 	case SIOCGIFNAME:
3442 	case SIOCSIFNAME:
3443 	case SIOCGMIIPHY:
3444 	case SIOCGMIIREG:
3445 	case SIOCSMIIREG:
3446 	case SIOCBONDENSLAVE:
3447 	case SIOCBONDRELEASE:
3448 	case SIOCBONDSETHWADDR:
3449 	case SIOCBONDCHANGEACTIVE:
3450 	case SIOCSARP:
3451 	case SIOCGARP:
3452 	case SIOCDARP:
3453 	case SIOCOUTQ:
3454 	case SIOCOUTQNSD:
3455 	case SIOCATMARK:
3456 		return sock_do_ioctl(net, sock, cmd, arg);
3457 	}
3458 
3459 	return -ENOIOCTLCMD;
3460 }
3461 
3462 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3463 			      unsigned long arg)
3464 {
3465 	struct socket *sock = file->private_data;
3466 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3467 	int ret = -ENOIOCTLCMD;
3468 	struct sock *sk;
3469 	struct net *net;
3470 
3471 	sk = sock->sk;
3472 	net = sock_net(sk);
3473 
3474 	if (ops->compat_ioctl)
3475 		ret = ops->compat_ioctl(sock, cmd, arg);
3476 
3477 	if (ret == -ENOIOCTLCMD &&
3478 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3479 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3480 
3481 	if (ret == -ENOIOCTLCMD)
3482 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3483 
3484 	return ret;
3485 }
3486 #endif
3487 
3488 /**
3489  *	kernel_bind - bind an address to a socket (kernel space)
3490  *	@sock: socket
3491  *	@addr: address
3492  *	@addrlen: length of address
3493  *
3494  *	Returns 0 or an error.
3495  */
3496 
3497 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3498 {
3499 	return READ_ONCE(sock->ops)->bind(sock, addr, addrlen);
3500 }
3501 EXPORT_SYMBOL(kernel_bind);
3502 
3503 /**
3504  *	kernel_listen - move socket to listening state (kernel space)
3505  *	@sock: socket
3506  *	@backlog: pending connections queue size
3507  *
3508  *	Returns 0 or an error.
3509  */
3510 
3511 int kernel_listen(struct socket *sock, int backlog)
3512 {
3513 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3514 }
3515 EXPORT_SYMBOL(kernel_listen);
3516 
3517 /**
3518  *	kernel_accept - accept a connection (kernel space)
3519  *	@sock: listening socket
3520  *	@newsock: new connected socket
3521  *	@flags: flags
3522  *
3523  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3524  *	If it fails, @newsock is guaranteed to be %NULL.
3525  *	Returns 0 or an error.
3526  */
3527 
3528 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3529 {
3530 	struct sock *sk = sock->sk;
3531 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3532 	int err;
3533 
3534 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3535 			       newsock);
3536 	if (err < 0)
3537 		goto done;
3538 
3539 	err = ops->accept(sock, *newsock, flags, true);
3540 	if (err < 0) {
3541 		sock_release(*newsock);
3542 		*newsock = NULL;
3543 		goto done;
3544 	}
3545 
3546 	(*newsock)->ops = ops;
3547 	__module_get(ops->owner);
3548 
3549 done:
3550 	return err;
3551 }
3552 EXPORT_SYMBOL(kernel_accept);
3553 
3554 /**
3555  *	kernel_connect - connect a socket (kernel space)
3556  *	@sock: socket
3557  *	@addr: address
3558  *	@addrlen: address length
3559  *	@flags: flags (O_NONBLOCK, ...)
3560  *
3561  *	For datagram sockets, @addr is the address to which datagrams are sent
3562  *	by default, and the only address from which datagrams are received.
3563  *	For stream sockets, attempts to connect to @addr.
3564  *	Returns 0 or an error code.
3565  */
3566 
3567 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3568 		   int flags)
3569 {
3570 	return READ_ONCE(sock->ops)->connect(sock, addr, addrlen, flags);
3571 }
3572 EXPORT_SYMBOL(kernel_connect);
3573 
3574 /**
3575  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3576  *	@sock: socket
3577  *	@addr: address holder
3578  *
3579  * 	Fills the @addr pointer with the address which the socket is bound.
3580  *	Returns the length of the address in bytes or an error code.
3581  */
3582 
3583 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3584 {
3585 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3586 }
3587 EXPORT_SYMBOL(kernel_getsockname);
3588 
3589 /**
3590  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3591  *	@sock: socket
3592  *	@addr: address holder
3593  *
3594  * 	Fills the @addr pointer with the address which the socket is connected.
3595  *	Returns the length of the address in bytes or an error code.
3596  */
3597 
3598 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3599 {
3600 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3601 }
3602 EXPORT_SYMBOL(kernel_getpeername);
3603 
3604 /**
3605  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3606  *	@sock: socket
3607  *	@how: connection part
3608  *
3609  *	Returns 0 or an error.
3610  */
3611 
3612 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3613 {
3614 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3615 }
3616 EXPORT_SYMBOL(kernel_sock_shutdown);
3617 
3618 /**
3619  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3620  *	@sk: socket
3621  *
3622  *	This routine returns the IP overhead imposed by a socket i.e.
3623  *	the length of the underlying IP header, depending on whether
3624  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3625  *	on at the socket. Assumes that the caller has a lock on the socket.
3626  */
3627 
3628 u32 kernel_sock_ip_overhead(struct sock *sk)
3629 {
3630 	struct inet_sock *inet;
3631 	struct ip_options_rcu *opt;
3632 	u32 overhead = 0;
3633 #if IS_ENABLED(CONFIG_IPV6)
3634 	struct ipv6_pinfo *np;
3635 	struct ipv6_txoptions *optv6 = NULL;
3636 #endif /* IS_ENABLED(CONFIG_IPV6) */
3637 
3638 	if (!sk)
3639 		return overhead;
3640 
3641 	switch (sk->sk_family) {
3642 	case AF_INET:
3643 		inet = inet_sk(sk);
3644 		overhead += sizeof(struct iphdr);
3645 		opt = rcu_dereference_protected(inet->inet_opt,
3646 						sock_owned_by_user(sk));
3647 		if (opt)
3648 			overhead += opt->opt.optlen;
3649 		return overhead;
3650 #if IS_ENABLED(CONFIG_IPV6)
3651 	case AF_INET6:
3652 		np = inet6_sk(sk);
3653 		overhead += sizeof(struct ipv6hdr);
3654 		if (np)
3655 			optv6 = rcu_dereference_protected(np->opt,
3656 							  sock_owned_by_user(sk));
3657 		if (optv6)
3658 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3659 		return overhead;
3660 #endif /* IS_ENABLED(CONFIG_IPV6) */
3661 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3662 		return overhead;
3663 	}
3664 }
3665 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3666