1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 RCU_INIT_POINTER(ei->socket.wq, wq); 261 262 ei->socket.state = SS_UNCONNECTED; 263 ei->socket.flags = 0; 264 ei->socket.ops = NULL; 265 ei->socket.sk = NULL; 266 ei->socket.file = NULL; 267 268 return &ei->vfs_inode; 269 } 270 271 static void sock_destroy_inode(struct inode *inode) 272 { 273 struct socket_alloc *ei; 274 struct socket_wq *wq; 275 276 ei = container_of(inode, struct socket_alloc, vfs_inode); 277 wq = rcu_dereference_protected(ei->socket.wq, 1); 278 kfree_rcu(wq, rcu); 279 kmem_cache_free(sock_inode_cachep, ei); 280 } 281 282 static void init_once(void *foo) 283 { 284 struct socket_alloc *ei = (struct socket_alloc *)foo; 285 286 inode_init_once(&ei->vfs_inode); 287 } 288 289 static int init_inodecache(void) 290 { 291 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 292 sizeof(struct socket_alloc), 293 0, 294 (SLAB_HWCACHE_ALIGN | 295 SLAB_RECLAIM_ACCOUNT | 296 SLAB_MEM_SPREAD), 297 init_once); 298 if (sock_inode_cachep == NULL) 299 return -ENOMEM; 300 return 0; 301 } 302 303 static const struct super_operations sockfs_ops = { 304 .alloc_inode = sock_alloc_inode, 305 .destroy_inode = sock_destroy_inode, 306 .statfs = simple_statfs, 307 }; 308 309 /* 310 * sockfs_dname() is called from d_path(). 311 */ 312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 313 { 314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 315 d_inode(dentry)->i_ino); 316 } 317 318 static const struct dentry_operations sockfs_dentry_operations = { 319 .d_dname = sockfs_dname, 320 }; 321 322 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 323 int flags, const char *dev_name, void *data) 324 { 325 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 326 &sockfs_dentry_operations, SOCKFS_MAGIC); 327 } 328 329 static struct vfsmount *sock_mnt __read_mostly; 330 331 static struct file_system_type sock_fs_type = { 332 .name = "sockfs", 333 .mount = sockfs_mount, 334 .kill_sb = kill_anon_super, 335 }; 336 337 /* 338 * Obtains the first available file descriptor and sets it up for use. 339 * 340 * These functions create file structures and maps them to fd space 341 * of the current process. On success it returns file descriptor 342 * and file struct implicitly stored in sock->file. 343 * Note that another thread may close file descriptor before we return 344 * from this function. We use the fact that now we do not refer 345 * to socket after mapping. If one day we will need it, this 346 * function will increment ref. count on file by 1. 347 * 348 * In any case returned fd MAY BE not valid! 349 * This race condition is unavoidable 350 * with shared fd spaces, we cannot solve it inside kernel, 351 * but we take care of internal coherence yet. 352 */ 353 354 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 355 { 356 struct qstr name = { .name = "" }; 357 struct path path; 358 struct file *file; 359 360 if (dname) { 361 name.name = dname; 362 name.len = strlen(name.name); 363 } else if (sock->sk) { 364 name.name = sock->sk->sk_prot_creator->name; 365 name.len = strlen(name.name); 366 } 367 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 368 if (unlikely(!path.dentry)) 369 return ERR_PTR(-ENOMEM); 370 path.mnt = mntget(sock_mnt); 371 372 d_instantiate(path.dentry, SOCK_INODE(sock)); 373 374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 375 &socket_file_ops); 376 if (unlikely(IS_ERR(file))) { 377 /* drop dentry, keep inode */ 378 ihold(d_inode(path.dentry)); 379 path_put(&path); 380 return file; 381 } 382 383 sock->file = file; 384 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 385 file->private_data = sock; 386 return file; 387 } 388 EXPORT_SYMBOL(sock_alloc_file); 389 390 static int sock_map_fd(struct socket *sock, int flags) 391 { 392 struct file *newfile; 393 int fd = get_unused_fd_flags(flags); 394 if (unlikely(fd < 0)) 395 return fd; 396 397 newfile = sock_alloc_file(sock, flags, NULL); 398 if (likely(!IS_ERR(newfile))) { 399 fd_install(fd, newfile); 400 return fd; 401 } 402 403 put_unused_fd(fd); 404 return PTR_ERR(newfile); 405 } 406 407 struct socket *sock_from_file(struct file *file, int *err) 408 { 409 if (file->f_op == &socket_file_ops) 410 return file->private_data; /* set in sock_map_fd */ 411 412 *err = -ENOTSOCK; 413 return NULL; 414 } 415 EXPORT_SYMBOL(sock_from_file); 416 417 /** 418 * sockfd_lookup - Go from a file number to its socket slot 419 * @fd: file handle 420 * @err: pointer to an error code return 421 * 422 * The file handle passed in is locked and the socket it is bound 423 * too is returned. If an error occurs the err pointer is overwritten 424 * with a negative errno code and NULL is returned. The function checks 425 * for both invalid handles and passing a handle which is not a socket. 426 * 427 * On a success the socket object pointer is returned. 428 */ 429 430 struct socket *sockfd_lookup(int fd, int *err) 431 { 432 struct file *file; 433 struct socket *sock; 434 435 file = fget(fd); 436 if (!file) { 437 *err = -EBADF; 438 return NULL; 439 } 440 441 sock = sock_from_file(file, err); 442 if (!sock) 443 fput(file); 444 return sock; 445 } 446 EXPORT_SYMBOL(sockfd_lookup); 447 448 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 449 { 450 struct fd f = fdget(fd); 451 struct socket *sock; 452 453 *err = -EBADF; 454 if (f.file) { 455 sock = sock_from_file(f.file, err); 456 if (likely(sock)) { 457 *fput_needed = f.flags; 458 return sock; 459 } 460 fdput(f); 461 } 462 return NULL; 463 } 464 465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 468 static ssize_t sockfs_getxattr(struct dentry *dentry, 469 const char *name, void *value, size_t size) 470 { 471 const char *proto_name; 472 size_t proto_size; 473 int error; 474 475 error = -ENODATA; 476 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 477 proto_name = dentry->d_name.name; 478 proto_size = strlen(proto_name); 479 480 if (value) { 481 error = -ERANGE; 482 if (proto_size + 1 > size) 483 goto out; 484 485 strncpy(value, proto_name, proto_size + 1); 486 } 487 error = proto_size + 1; 488 } 489 490 out: 491 return error; 492 } 493 494 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 495 size_t size) 496 { 497 ssize_t len; 498 ssize_t used = 0; 499 500 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 501 if (len < 0) 502 return len; 503 used += len; 504 if (buffer) { 505 if (size < used) 506 return -ERANGE; 507 buffer += len; 508 } 509 510 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 511 used += len; 512 if (buffer) { 513 if (size < used) 514 return -ERANGE; 515 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 516 buffer += len; 517 } 518 519 return used; 520 } 521 522 static const struct inode_operations sockfs_inode_ops = { 523 .getxattr = sockfs_getxattr, 524 .listxattr = sockfs_listxattr, 525 }; 526 527 /** 528 * sock_alloc - allocate a socket 529 * 530 * Allocate a new inode and socket object. The two are bound together 531 * and initialised. The socket is then returned. If we are out of inodes 532 * NULL is returned. 533 */ 534 535 static struct socket *sock_alloc(void) 536 { 537 struct inode *inode; 538 struct socket *sock; 539 540 inode = new_inode_pseudo(sock_mnt->mnt_sb); 541 if (!inode) 542 return NULL; 543 544 sock = SOCKET_I(inode); 545 546 kmemcheck_annotate_bitfield(sock, type); 547 inode->i_ino = get_next_ino(); 548 inode->i_mode = S_IFSOCK | S_IRWXUGO; 549 inode->i_uid = current_fsuid(); 550 inode->i_gid = current_fsgid(); 551 inode->i_op = &sockfs_inode_ops; 552 553 this_cpu_add(sockets_in_use, 1); 554 return sock; 555 } 556 557 /** 558 * sock_release - close a socket 559 * @sock: socket to close 560 * 561 * The socket is released from the protocol stack if it has a release 562 * callback, and the inode is then released if the socket is bound to 563 * an inode not a file. 564 */ 565 566 void sock_release(struct socket *sock) 567 { 568 if (sock->ops) { 569 struct module *owner = sock->ops->owner; 570 571 sock->ops->release(sock); 572 sock->ops = NULL; 573 module_put(owner); 574 } 575 576 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 577 pr_err("%s: fasync list not empty!\n", __func__); 578 579 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 580 return; 581 582 this_cpu_sub(sockets_in_use, 1); 583 if (!sock->file) { 584 iput(SOCK_INODE(sock)); 585 return; 586 } 587 sock->file = NULL; 588 } 589 EXPORT_SYMBOL(sock_release); 590 591 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 592 { 593 u8 flags = *tx_flags; 594 595 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 596 flags |= SKBTX_HW_TSTAMP; 597 598 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 599 flags |= SKBTX_SW_TSTAMP; 600 601 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 602 flags |= SKBTX_SCHED_TSTAMP; 603 604 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 605 flags |= SKBTX_ACK_TSTAMP; 606 607 *tx_flags = flags; 608 } 609 EXPORT_SYMBOL(__sock_tx_timestamp); 610 611 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 612 { 613 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 614 BUG_ON(ret == -EIOCBQUEUED); 615 return ret; 616 } 617 618 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 619 { 620 int err = security_socket_sendmsg(sock, msg, 621 msg_data_left(msg)); 622 623 return err ?: sock_sendmsg_nosec(sock, msg); 624 } 625 EXPORT_SYMBOL(sock_sendmsg); 626 627 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 628 struct kvec *vec, size_t num, size_t size) 629 { 630 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 631 return sock_sendmsg(sock, msg); 632 } 633 EXPORT_SYMBOL(kernel_sendmsg); 634 635 /* 636 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 637 */ 638 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 639 struct sk_buff *skb) 640 { 641 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 642 struct scm_timestamping tss; 643 int empty = 1; 644 struct skb_shared_hwtstamps *shhwtstamps = 645 skb_hwtstamps(skb); 646 647 /* Race occurred between timestamp enabling and packet 648 receiving. Fill in the current time for now. */ 649 if (need_software_tstamp && skb->tstamp.tv64 == 0) 650 __net_timestamp(skb); 651 652 if (need_software_tstamp) { 653 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 654 struct timeval tv; 655 skb_get_timestamp(skb, &tv); 656 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 657 sizeof(tv), &tv); 658 } else { 659 struct timespec ts; 660 skb_get_timestampns(skb, &ts); 661 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 662 sizeof(ts), &ts); 663 } 664 } 665 666 memset(&tss, 0, sizeof(tss)); 667 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 668 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 669 empty = 0; 670 if (shhwtstamps && 671 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 672 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 673 empty = 0; 674 if (!empty) 675 put_cmsg(msg, SOL_SOCKET, 676 SCM_TIMESTAMPING, sizeof(tss), &tss); 677 } 678 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 679 680 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 681 struct sk_buff *skb) 682 { 683 int ack; 684 685 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 686 return; 687 if (!skb->wifi_acked_valid) 688 return; 689 690 ack = skb->wifi_acked; 691 692 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 693 } 694 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 695 696 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 697 struct sk_buff *skb) 698 { 699 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 700 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 701 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 702 } 703 704 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 705 struct sk_buff *skb) 706 { 707 sock_recv_timestamp(msg, sk, skb); 708 sock_recv_drops(msg, sk, skb); 709 } 710 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 711 712 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 713 size_t size, int flags) 714 { 715 return sock->ops->recvmsg(sock, msg, size, flags); 716 } 717 718 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 719 int flags) 720 { 721 int err = security_socket_recvmsg(sock, msg, size, flags); 722 723 return err ?: sock_recvmsg_nosec(sock, msg, size, flags); 724 } 725 EXPORT_SYMBOL(sock_recvmsg); 726 727 /** 728 * kernel_recvmsg - Receive a message from a socket (kernel space) 729 * @sock: The socket to receive the message from 730 * @msg: Received message 731 * @vec: Input s/g array for message data 732 * @num: Size of input s/g array 733 * @size: Number of bytes to read 734 * @flags: Message flags (MSG_DONTWAIT, etc...) 735 * 736 * On return the msg structure contains the scatter/gather array passed in the 737 * vec argument. The array is modified so that it consists of the unfilled 738 * portion of the original array. 739 * 740 * The returned value is the total number of bytes received, or an error. 741 */ 742 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 743 struct kvec *vec, size_t num, size_t size, int flags) 744 { 745 mm_segment_t oldfs = get_fs(); 746 int result; 747 748 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 749 set_fs(KERNEL_DS); 750 result = sock_recvmsg(sock, msg, size, flags); 751 set_fs(oldfs); 752 return result; 753 } 754 EXPORT_SYMBOL(kernel_recvmsg); 755 756 static ssize_t sock_sendpage(struct file *file, struct page *page, 757 int offset, size_t size, loff_t *ppos, int more) 758 { 759 struct socket *sock; 760 int flags; 761 762 sock = file->private_data; 763 764 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 765 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 766 flags |= more; 767 768 return kernel_sendpage(sock, page, offset, size, flags); 769 } 770 771 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 772 struct pipe_inode_info *pipe, size_t len, 773 unsigned int flags) 774 { 775 struct socket *sock = file->private_data; 776 777 if (unlikely(!sock->ops->splice_read)) 778 return -EINVAL; 779 780 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 781 } 782 783 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 784 { 785 struct file *file = iocb->ki_filp; 786 struct socket *sock = file->private_data; 787 struct msghdr msg = {.msg_iter = *to, 788 .msg_iocb = iocb}; 789 ssize_t res; 790 791 if (file->f_flags & O_NONBLOCK) 792 msg.msg_flags = MSG_DONTWAIT; 793 794 if (iocb->ki_pos != 0) 795 return -ESPIPE; 796 797 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 798 return 0; 799 800 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags); 801 *to = msg.msg_iter; 802 return res; 803 } 804 805 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 806 { 807 struct file *file = iocb->ki_filp; 808 struct socket *sock = file->private_data; 809 struct msghdr msg = {.msg_iter = *from, 810 .msg_iocb = iocb}; 811 ssize_t res; 812 813 if (iocb->ki_pos != 0) 814 return -ESPIPE; 815 816 if (file->f_flags & O_NONBLOCK) 817 msg.msg_flags = MSG_DONTWAIT; 818 819 if (sock->type == SOCK_SEQPACKET) 820 msg.msg_flags |= MSG_EOR; 821 822 res = sock_sendmsg(sock, &msg); 823 *from = msg.msg_iter; 824 return res; 825 } 826 827 /* 828 * Atomic setting of ioctl hooks to avoid race 829 * with module unload. 830 */ 831 832 static DEFINE_MUTEX(br_ioctl_mutex); 833 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 834 835 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 836 { 837 mutex_lock(&br_ioctl_mutex); 838 br_ioctl_hook = hook; 839 mutex_unlock(&br_ioctl_mutex); 840 } 841 EXPORT_SYMBOL(brioctl_set); 842 843 static DEFINE_MUTEX(vlan_ioctl_mutex); 844 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 845 846 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 847 { 848 mutex_lock(&vlan_ioctl_mutex); 849 vlan_ioctl_hook = hook; 850 mutex_unlock(&vlan_ioctl_mutex); 851 } 852 EXPORT_SYMBOL(vlan_ioctl_set); 853 854 static DEFINE_MUTEX(dlci_ioctl_mutex); 855 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 856 857 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 858 { 859 mutex_lock(&dlci_ioctl_mutex); 860 dlci_ioctl_hook = hook; 861 mutex_unlock(&dlci_ioctl_mutex); 862 } 863 EXPORT_SYMBOL(dlci_ioctl_set); 864 865 static long sock_do_ioctl(struct net *net, struct socket *sock, 866 unsigned int cmd, unsigned long arg) 867 { 868 int err; 869 void __user *argp = (void __user *)arg; 870 871 err = sock->ops->ioctl(sock, cmd, arg); 872 873 /* 874 * If this ioctl is unknown try to hand it down 875 * to the NIC driver. 876 */ 877 if (err == -ENOIOCTLCMD) 878 err = dev_ioctl(net, cmd, argp); 879 880 return err; 881 } 882 883 /* 884 * With an ioctl, arg may well be a user mode pointer, but we don't know 885 * what to do with it - that's up to the protocol still. 886 */ 887 888 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 889 { 890 struct socket *sock; 891 struct sock *sk; 892 void __user *argp = (void __user *)arg; 893 int pid, err; 894 struct net *net; 895 896 sock = file->private_data; 897 sk = sock->sk; 898 net = sock_net(sk); 899 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 900 err = dev_ioctl(net, cmd, argp); 901 } else 902 #ifdef CONFIG_WEXT_CORE 903 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 904 err = dev_ioctl(net, cmd, argp); 905 } else 906 #endif 907 switch (cmd) { 908 case FIOSETOWN: 909 case SIOCSPGRP: 910 err = -EFAULT; 911 if (get_user(pid, (int __user *)argp)) 912 break; 913 f_setown(sock->file, pid, 1); 914 err = 0; 915 break; 916 case FIOGETOWN: 917 case SIOCGPGRP: 918 err = put_user(f_getown(sock->file), 919 (int __user *)argp); 920 break; 921 case SIOCGIFBR: 922 case SIOCSIFBR: 923 case SIOCBRADDBR: 924 case SIOCBRDELBR: 925 err = -ENOPKG; 926 if (!br_ioctl_hook) 927 request_module("bridge"); 928 929 mutex_lock(&br_ioctl_mutex); 930 if (br_ioctl_hook) 931 err = br_ioctl_hook(net, cmd, argp); 932 mutex_unlock(&br_ioctl_mutex); 933 break; 934 case SIOCGIFVLAN: 935 case SIOCSIFVLAN: 936 err = -ENOPKG; 937 if (!vlan_ioctl_hook) 938 request_module("8021q"); 939 940 mutex_lock(&vlan_ioctl_mutex); 941 if (vlan_ioctl_hook) 942 err = vlan_ioctl_hook(net, argp); 943 mutex_unlock(&vlan_ioctl_mutex); 944 break; 945 case SIOCADDDLCI: 946 case SIOCDELDLCI: 947 err = -ENOPKG; 948 if (!dlci_ioctl_hook) 949 request_module("dlci"); 950 951 mutex_lock(&dlci_ioctl_mutex); 952 if (dlci_ioctl_hook) 953 err = dlci_ioctl_hook(cmd, argp); 954 mutex_unlock(&dlci_ioctl_mutex); 955 break; 956 default: 957 err = sock_do_ioctl(net, sock, cmd, arg); 958 break; 959 } 960 return err; 961 } 962 963 int sock_create_lite(int family, int type, int protocol, struct socket **res) 964 { 965 int err; 966 struct socket *sock = NULL; 967 968 err = security_socket_create(family, type, protocol, 1); 969 if (err) 970 goto out; 971 972 sock = sock_alloc(); 973 if (!sock) { 974 err = -ENOMEM; 975 goto out; 976 } 977 978 sock->type = type; 979 err = security_socket_post_create(sock, family, type, protocol, 1); 980 if (err) 981 goto out_release; 982 983 out: 984 *res = sock; 985 return err; 986 out_release: 987 sock_release(sock); 988 sock = NULL; 989 goto out; 990 } 991 EXPORT_SYMBOL(sock_create_lite); 992 993 /* No kernel lock held - perfect */ 994 static unsigned int sock_poll(struct file *file, poll_table *wait) 995 { 996 unsigned int busy_flag = 0; 997 struct socket *sock; 998 999 /* 1000 * We can't return errors to poll, so it's either yes or no. 1001 */ 1002 sock = file->private_data; 1003 1004 if (sk_can_busy_loop(sock->sk)) { 1005 /* this socket can poll_ll so tell the system call */ 1006 busy_flag = POLL_BUSY_LOOP; 1007 1008 /* once, only if requested by syscall */ 1009 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1010 sk_busy_loop(sock->sk, 1); 1011 } 1012 1013 return busy_flag | sock->ops->poll(file, sock, wait); 1014 } 1015 1016 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1017 { 1018 struct socket *sock = file->private_data; 1019 1020 return sock->ops->mmap(file, sock, vma); 1021 } 1022 1023 static int sock_close(struct inode *inode, struct file *filp) 1024 { 1025 sock_release(SOCKET_I(inode)); 1026 return 0; 1027 } 1028 1029 /* 1030 * Update the socket async list 1031 * 1032 * Fasync_list locking strategy. 1033 * 1034 * 1. fasync_list is modified only under process context socket lock 1035 * i.e. under semaphore. 1036 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1037 * or under socket lock 1038 */ 1039 1040 static int sock_fasync(int fd, struct file *filp, int on) 1041 { 1042 struct socket *sock = filp->private_data; 1043 struct sock *sk = sock->sk; 1044 struct socket_wq *wq; 1045 1046 if (sk == NULL) 1047 return -EINVAL; 1048 1049 lock_sock(sk); 1050 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1051 fasync_helper(fd, filp, on, &wq->fasync_list); 1052 1053 if (!wq->fasync_list) 1054 sock_reset_flag(sk, SOCK_FASYNC); 1055 else 1056 sock_set_flag(sk, SOCK_FASYNC); 1057 1058 release_sock(sk); 1059 return 0; 1060 } 1061 1062 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1063 1064 int sock_wake_async(struct socket *sock, int how, int band) 1065 { 1066 struct socket_wq *wq; 1067 1068 if (!sock) 1069 return -1; 1070 rcu_read_lock(); 1071 wq = rcu_dereference(sock->wq); 1072 if (!wq || !wq->fasync_list) { 1073 rcu_read_unlock(); 1074 return -1; 1075 } 1076 switch (how) { 1077 case SOCK_WAKE_WAITD: 1078 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1079 break; 1080 goto call_kill; 1081 case SOCK_WAKE_SPACE: 1082 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1083 break; 1084 /* fall through */ 1085 case SOCK_WAKE_IO: 1086 call_kill: 1087 kill_fasync(&wq->fasync_list, SIGIO, band); 1088 break; 1089 case SOCK_WAKE_URG: 1090 kill_fasync(&wq->fasync_list, SIGURG, band); 1091 } 1092 rcu_read_unlock(); 1093 return 0; 1094 } 1095 EXPORT_SYMBOL(sock_wake_async); 1096 1097 int __sock_create(struct net *net, int family, int type, int protocol, 1098 struct socket **res, int kern) 1099 { 1100 int err; 1101 struct socket *sock; 1102 const struct net_proto_family *pf; 1103 1104 /* 1105 * Check protocol is in range 1106 */ 1107 if (family < 0 || family >= NPROTO) 1108 return -EAFNOSUPPORT; 1109 if (type < 0 || type >= SOCK_MAX) 1110 return -EINVAL; 1111 1112 /* Compatibility. 1113 1114 This uglymoron is moved from INET layer to here to avoid 1115 deadlock in module load. 1116 */ 1117 if (family == PF_INET && type == SOCK_PACKET) { 1118 static int warned; 1119 if (!warned) { 1120 warned = 1; 1121 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1122 current->comm); 1123 } 1124 family = PF_PACKET; 1125 } 1126 1127 err = security_socket_create(family, type, protocol, kern); 1128 if (err) 1129 return err; 1130 1131 /* 1132 * Allocate the socket and allow the family to set things up. if 1133 * the protocol is 0, the family is instructed to select an appropriate 1134 * default. 1135 */ 1136 sock = sock_alloc(); 1137 if (!sock) { 1138 net_warn_ratelimited("socket: no more sockets\n"); 1139 return -ENFILE; /* Not exactly a match, but its the 1140 closest posix thing */ 1141 } 1142 1143 sock->type = type; 1144 1145 #ifdef CONFIG_MODULES 1146 /* Attempt to load a protocol module if the find failed. 1147 * 1148 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1149 * requested real, full-featured networking support upon configuration. 1150 * Otherwise module support will break! 1151 */ 1152 if (rcu_access_pointer(net_families[family]) == NULL) 1153 request_module("net-pf-%d", family); 1154 #endif 1155 1156 rcu_read_lock(); 1157 pf = rcu_dereference(net_families[family]); 1158 err = -EAFNOSUPPORT; 1159 if (!pf) 1160 goto out_release; 1161 1162 /* 1163 * We will call the ->create function, that possibly is in a loadable 1164 * module, so we have to bump that loadable module refcnt first. 1165 */ 1166 if (!try_module_get(pf->owner)) 1167 goto out_release; 1168 1169 /* Now protected by module ref count */ 1170 rcu_read_unlock(); 1171 1172 err = pf->create(net, sock, protocol, kern); 1173 if (err < 0) 1174 goto out_module_put; 1175 1176 /* 1177 * Now to bump the refcnt of the [loadable] module that owns this 1178 * socket at sock_release time we decrement its refcnt. 1179 */ 1180 if (!try_module_get(sock->ops->owner)) 1181 goto out_module_busy; 1182 1183 /* 1184 * Now that we're done with the ->create function, the [loadable] 1185 * module can have its refcnt decremented 1186 */ 1187 module_put(pf->owner); 1188 err = security_socket_post_create(sock, family, type, protocol, kern); 1189 if (err) 1190 goto out_sock_release; 1191 *res = sock; 1192 1193 return 0; 1194 1195 out_module_busy: 1196 err = -EAFNOSUPPORT; 1197 out_module_put: 1198 sock->ops = NULL; 1199 module_put(pf->owner); 1200 out_sock_release: 1201 sock_release(sock); 1202 return err; 1203 1204 out_release: 1205 rcu_read_unlock(); 1206 goto out_sock_release; 1207 } 1208 EXPORT_SYMBOL(__sock_create); 1209 1210 int sock_create(int family, int type, int protocol, struct socket **res) 1211 { 1212 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1213 } 1214 EXPORT_SYMBOL(sock_create); 1215 1216 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1217 { 1218 return __sock_create(&init_net, family, type, protocol, res, 1); 1219 } 1220 EXPORT_SYMBOL(sock_create_kern); 1221 1222 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1223 { 1224 int retval; 1225 struct socket *sock; 1226 int flags; 1227 1228 /* Check the SOCK_* constants for consistency. */ 1229 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1230 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1231 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1232 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1233 1234 flags = type & ~SOCK_TYPE_MASK; 1235 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1236 return -EINVAL; 1237 type &= SOCK_TYPE_MASK; 1238 1239 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1240 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1241 1242 retval = sock_create(family, type, protocol, &sock); 1243 if (retval < 0) 1244 goto out; 1245 1246 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1247 if (retval < 0) 1248 goto out_release; 1249 1250 out: 1251 /* It may be already another descriptor 8) Not kernel problem. */ 1252 return retval; 1253 1254 out_release: 1255 sock_release(sock); 1256 return retval; 1257 } 1258 1259 /* 1260 * Create a pair of connected sockets. 1261 */ 1262 1263 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1264 int __user *, usockvec) 1265 { 1266 struct socket *sock1, *sock2; 1267 int fd1, fd2, err; 1268 struct file *newfile1, *newfile2; 1269 int flags; 1270 1271 flags = type & ~SOCK_TYPE_MASK; 1272 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1273 return -EINVAL; 1274 type &= SOCK_TYPE_MASK; 1275 1276 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1277 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1278 1279 /* 1280 * Obtain the first socket and check if the underlying protocol 1281 * supports the socketpair call. 1282 */ 1283 1284 err = sock_create(family, type, protocol, &sock1); 1285 if (err < 0) 1286 goto out; 1287 1288 err = sock_create(family, type, protocol, &sock2); 1289 if (err < 0) 1290 goto out_release_1; 1291 1292 err = sock1->ops->socketpair(sock1, sock2); 1293 if (err < 0) 1294 goto out_release_both; 1295 1296 fd1 = get_unused_fd_flags(flags); 1297 if (unlikely(fd1 < 0)) { 1298 err = fd1; 1299 goto out_release_both; 1300 } 1301 1302 fd2 = get_unused_fd_flags(flags); 1303 if (unlikely(fd2 < 0)) { 1304 err = fd2; 1305 goto out_put_unused_1; 1306 } 1307 1308 newfile1 = sock_alloc_file(sock1, flags, NULL); 1309 if (unlikely(IS_ERR(newfile1))) { 1310 err = PTR_ERR(newfile1); 1311 goto out_put_unused_both; 1312 } 1313 1314 newfile2 = sock_alloc_file(sock2, flags, NULL); 1315 if (IS_ERR(newfile2)) { 1316 err = PTR_ERR(newfile2); 1317 goto out_fput_1; 1318 } 1319 1320 err = put_user(fd1, &usockvec[0]); 1321 if (err) 1322 goto out_fput_both; 1323 1324 err = put_user(fd2, &usockvec[1]); 1325 if (err) 1326 goto out_fput_both; 1327 1328 audit_fd_pair(fd1, fd2); 1329 1330 fd_install(fd1, newfile1); 1331 fd_install(fd2, newfile2); 1332 /* fd1 and fd2 may be already another descriptors. 1333 * Not kernel problem. 1334 */ 1335 1336 return 0; 1337 1338 out_fput_both: 1339 fput(newfile2); 1340 fput(newfile1); 1341 put_unused_fd(fd2); 1342 put_unused_fd(fd1); 1343 goto out; 1344 1345 out_fput_1: 1346 fput(newfile1); 1347 put_unused_fd(fd2); 1348 put_unused_fd(fd1); 1349 sock_release(sock2); 1350 goto out; 1351 1352 out_put_unused_both: 1353 put_unused_fd(fd2); 1354 out_put_unused_1: 1355 put_unused_fd(fd1); 1356 out_release_both: 1357 sock_release(sock2); 1358 out_release_1: 1359 sock_release(sock1); 1360 out: 1361 return err; 1362 } 1363 1364 /* 1365 * Bind a name to a socket. Nothing much to do here since it's 1366 * the protocol's responsibility to handle the local address. 1367 * 1368 * We move the socket address to kernel space before we call 1369 * the protocol layer (having also checked the address is ok). 1370 */ 1371 1372 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1373 { 1374 struct socket *sock; 1375 struct sockaddr_storage address; 1376 int err, fput_needed; 1377 1378 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1379 if (sock) { 1380 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1381 if (err >= 0) { 1382 err = security_socket_bind(sock, 1383 (struct sockaddr *)&address, 1384 addrlen); 1385 if (!err) 1386 err = sock->ops->bind(sock, 1387 (struct sockaddr *) 1388 &address, addrlen); 1389 } 1390 fput_light(sock->file, fput_needed); 1391 } 1392 return err; 1393 } 1394 1395 /* 1396 * Perform a listen. Basically, we allow the protocol to do anything 1397 * necessary for a listen, and if that works, we mark the socket as 1398 * ready for listening. 1399 */ 1400 1401 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1402 { 1403 struct socket *sock; 1404 int err, fput_needed; 1405 int somaxconn; 1406 1407 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1408 if (sock) { 1409 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1410 if ((unsigned int)backlog > somaxconn) 1411 backlog = somaxconn; 1412 1413 err = security_socket_listen(sock, backlog); 1414 if (!err) 1415 err = sock->ops->listen(sock, backlog); 1416 1417 fput_light(sock->file, fput_needed); 1418 } 1419 return err; 1420 } 1421 1422 /* 1423 * For accept, we attempt to create a new socket, set up the link 1424 * with the client, wake up the client, then return the new 1425 * connected fd. We collect the address of the connector in kernel 1426 * space and move it to user at the very end. This is unclean because 1427 * we open the socket then return an error. 1428 * 1429 * 1003.1g adds the ability to recvmsg() to query connection pending 1430 * status to recvmsg. We need to add that support in a way thats 1431 * clean when we restucture accept also. 1432 */ 1433 1434 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1435 int __user *, upeer_addrlen, int, flags) 1436 { 1437 struct socket *sock, *newsock; 1438 struct file *newfile; 1439 int err, len, newfd, fput_needed; 1440 struct sockaddr_storage address; 1441 1442 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1443 return -EINVAL; 1444 1445 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1446 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1447 1448 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1449 if (!sock) 1450 goto out; 1451 1452 err = -ENFILE; 1453 newsock = sock_alloc(); 1454 if (!newsock) 1455 goto out_put; 1456 1457 newsock->type = sock->type; 1458 newsock->ops = sock->ops; 1459 1460 /* 1461 * We don't need try_module_get here, as the listening socket (sock) 1462 * has the protocol module (sock->ops->owner) held. 1463 */ 1464 __module_get(newsock->ops->owner); 1465 1466 newfd = get_unused_fd_flags(flags); 1467 if (unlikely(newfd < 0)) { 1468 err = newfd; 1469 sock_release(newsock); 1470 goto out_put; 1471 } 1472 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1473 if (unlikely(IS_ERR(newfile))) { 1474 err = PTR_ERR(newfile); 1475 put_unused_fd(newfd); 1476 sock_release(newsock); 1477 goto out_put; 1478 } 1479 1480 err = security_socket_accept(sock, newsock); 1481 if (err) 1482 goto out_fd; 1483 1484 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1485 if (err < 0) 1486 goto out_fd; 1487 1488 if (upeer_sockaddr) { 1489 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1490 &len, 2) < 0) { 1491 err = -ECONNABORTED; 1492 goto out_fd; 1493 } 1494 err = move_addr_to_user(&address, 1495 len, upeer_sockaddr, upeer_addrlen); 1496 if (err < 0) 1497 goto out_fd; 1498 } 1499 1500 /* File flags are not inherited via accept() unlike another OSes. */ 1501 1502 fd_install(newfd, newfile); 1503 err = newfd; 1504 1505 out_put: 1506 fput_light(sock->file, fput_needed); 1507 out: 1508 return err; 1509 out_fd: 1510 fput(newfile); 1511 put_unused_fd(newfd); 1512 goto out_put; 1513 } 1514 1515 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1516 int __user *, upeer_addrlen) 1517 { 1518 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1519 } 1520 1521 /* 1522 * Attempt to connect to a socket with the server address. The address 1523 * is in user space so we verify it is OK and move it to kernel space. 1524 * 1525 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1526 * break bindings 1527 * 1528 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1529 * other SEQPACKET protocols that take time to connect() as it doesn't 1530 * include the -EINPROGRESS status for such sockets. 1531 */ 1532 1533 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1534 int, addrlen) 1535 { 1536 struct socket *sock; 1537 struct sockaddr_storage address; 1538 int err, fput_needed; 1539 1540 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1541 if (!sock) 1542 goto out; 1543 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1544 if (err < 0) 1545 goto out_put; 1546 1547 err = 1548 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1549 if (err) 1550 goto out_put; 1551 1552 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1553 sock->file->f_flags); 1554 out_put: 1555 fput_light(sock->file, fput_needed); 1556 out: 1557 return err; 1558 } 1559 1560 /* 1561 * Get the local address ('name') of a socket object. Move the obtained 1562 * name to user space. 1563 */ 1564 1565 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1566 int __user *, usockaddr_len) 1567 { 1568 struct socket *sock; 1569 struct sockaddr_storage address; 1570 int len, err, fput_needed; 1571 1572 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1573 if (!sock) 1574 goto out; 1575 1576 err = security_socket_getsockname(sock); 1577 if (err) 1578 goto out_put; 1579 1580 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1581 if (err) 1582 goto out_put; 1583 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1584 1585 out_put: 1586 fput_light(sock->file, fput_needed); 1587 out: 1588 return err; 1589 } 1590 1591 /* 1592 * Get the remote address ('name') of a socket object. Move the obtained 1593 * name to user space. 1594 */ 1595 1596 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1597 int __user *, usockaddr_len) 1598 { 1599 struct socket *sock; 1600 struct sockaddr_storage address; 1601 int len, err, fput_needed; 1602 1603 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1604 if (sock != NULL) { 1605 err = security_socket_getpeername(sock); 1606 if (err) { 1607 fput_light(sock->file, fput_needed); 1608 return err; 1609 } 1610 1611 err = 1612 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1613 1); 1614 if (!err) 1615 err = move_addr_to_user(&address, len, usockaddr, 1616 usockaddr_len); 1617 fput_light(sock->file, fput_needed); 1618 } 1619 return err; 1620 } 1621 1622 /* 1623 * Send a datagram to a given address. We move the address into kernel 1624 * space and check the user space data area is readable before invoking 1625 * the protocol. 1626 */ 1627 1628 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1629 unsigned int, flags, struct sockaddr __user *, addr, 1630 int, addr_len) 1631 { 1632 struct socket *sock; 1633 struct sockaddr_storage address; 1634 int err; 1635 struct msghdr msg; 1636 struct iovec iov; 1637 int fput_needed; 1638 1639 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1640 if (unlikely(err)) 1641 return err; 1642 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1643 if (!sock) 1644 goto out; 1645 1646 msg.msg_name = NULL; 1647 msg.msg_control = NULL; 1648 msg.msg_controllen = 0; 1649 msg.msg_namelen = 0; 1650 if (addr) { 1651 err = move_addr_to_kernel(addr, addr_len, &address); 1652 if (err < 0) 1653 goto out_put; 1654 msg.msg_name = (struct sockaddr *)&address; 1655 msg.msg_namelen = addr_len; 1656 } 1657 if (sock->file->f_flags & O_NONBLOCK) 1658 flags |= MSG_DONTWAIT; 1659 msg.msg_flags = flags; 1660 err = sock_sendmsg(sock, &msg); 1661 1662 out_put: 1663 fput_light(sock->file, fput_needed); 1664 out: 1665 return err; 1666 } 1667 1668 /* 1669 * Send a datagram down a socket. 1670 */ 1671 1672 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1673 unsigned int, flags) 1674 { 1675 return sys_sendto(fd, buff, len, flags, NULL, 0); 1676 } 1677 1678 /* 1679 * Receive a frame from the socket and optionally record the address of the 1680 * sender. We verify the buffers are writable and if needed move the 1681 * sender address from kernel to user space. 1682 */ 1683 1684 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1685 unsigned int, flags, struct sockaddr __user *, addr, 1686 int __user *, addr_len) 1687 { 1688 struct socket *sock; 1689 struct iovec iov; 1690 struct msghdr msg; 1691 struct sockaddr_storage address; 1692 int err, err2; 1693 int fput_needed; 1694 1695 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1696 if (unlikely(err)) 1697 return err; 1698 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1699 if (!sock) 1700 goto out; 1701 1702 msg.msg_control = NULL; 1703 msg.msg_controllen = 0; 1704 /* Save some cycles and don't copy the address if not needed */ 1705 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1706 /* We assume all kernel code knows the size of sockaddr_storage */ 1707 msg.msg_namelen = 0; 1708 if (sock->file->f_flags & O_NONBLOCK) 1709 flags |= MSG_DONTWAIT; 1710 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags); 1711 1712 if (err >= 0 && addr != NULL) { 1713 err2 = move_addr_to_user(&address, 1714 msg.msg_namelen, addr, addr_len); 1715 if (err2 < 0) 1716 err = err2; 1717 } 1718 1719 fput_light(sock->file, fput_needed); 1720 out: 1721 return err; 1722 } 1723 1724 /* 1725 * Receive a datagram from a socket. 1726 */ 1727 1728 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1729 unsigned int, flags) 1730 { 1731 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1732 } 1733 1734 /* 1735 * Set a socket option. Because we don't know the option lengths we have 1736 * to pass the user mode parameter for the protocols to sort out. 1737 */ 1738 1739 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1740 char __user *, optval, int, optlen) 1741 { 1742 int err, fput_needed; 1743 struct socket *sock; 1744 1745 if (optlen < 0) 1746 return -EINVAL; 1747 1748 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1749 if (sock != NULL) { 1750 err = security_socket_setsockopt(sock, level, optname); 1751 if (err) 1752 goto out_put; 1753 1754 if (level == SOL_SOCKET) 1755 err = 1756 sock_setsockopt(sock, level, optname, optval, 1757 optlen); 1758 else 1759 err = 1760 sock->ops->setsockopt(sock, level, optname, optval, 1761 optlen); 1762 out_put: 1763 fput_light(sock->file, fput_needed); 1764 } 1765 return err; 1766 } 1767 1768 /* 1769 * Get a socket option. Because we don't know the option lengths we have 1770 * to pass a user mode parameter for the protocols to sort out. 1771 */ 1772 1773 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1774 char __user *, optval, int __user *, optlen) 1775 { 1776 int err, fput_needed; 1777 struct socket *sock; 1778 1779 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1780 if (sock != NULL) { 1781 err = security_socket_getsockopt(sock, level, optname); 1782 if (err) 1783 goto out_put; 1784 1785 if (level == SOL_SOCKET) 1786 err = 1787 sock_getsockopt(sock, level, optname, optval, 1788 optlen); 1789 else 1790 err = 1791 sock->ops->getsockopt(sock, level, optname, optval, 1792 optlen); 1793 out_put: 1794 fput_light(sock->file, fput_needed); 1795 } 1796 return err; 1797 } 1798 1799 /* 1800 * Shutdown a socket. 1801 */ 1802 1803 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1804 { 1805 int err, fput_needed; 1806 struct socket *sock; 1807 1808 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1809 if (sock != NULL) { 1810 err = security_socket_shutdown(sock, how); 1811 if (!err) 1812 err = sock->ops->shutdown(sock, how); 1813 fput_light(sock->file, fput_needed); 1814 } 1815 return err; 1816 } 1817 1818 /* A couple of helpful macros for getting the address of the 32/64 bit 1819 * fields which are the same type (int / unsigned) on our platforms. 1820 */ 1821 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1822 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1823 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1824 1825 struct used_address { 1826 struct sockaddr_storage name; 1827 unsigned int name_len; 1828 }; 1829 1830 static int copy_msghdr_from_user(struct msghdr *kmsg, 1831 struct user_msghdr __user *umsg, 1832 struct sockaddr __user **save_addr, 1833 struct iovec **iov) 1834 { 1835 struct sockaddr __user *uaddr; 1836 struct iovec __user *uiov; 1837 size_t nr_segs; 1838 ssize_t err; 1839 1840 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1841 __get_user(uaddr, &umsg->msg_name) || 1842 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1843 __get_user(uiov, &umsg->msg_iov) || 1844 __get_user(nr_segs, &umsg->msg_iovlen) || 1845 __get_user(kmsg->msg_control, &umsg->msg_control) || 1846 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1847 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1848 return -EFAULT; 1849 1850 if (!uaddr) 1851 kmsg->msg_namelen = 0; 1852 1853 if (kmsg->msg_namelen < 0) 1854 return -EINVAL; 1855 1856 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1857 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1858 1859 if (save_addr) 1860 *save_addr = uaddr; 1861 1862 if (uaddr && kmsg->msg_namelen) { 1863 if (!save_addr) { 1864 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1865 kmsg->msg_name); 1866 if (err < 0) 1867 return err; 1868 } 1869 } else { 1870 kmsg->msg_name = NULL; 1871 kmsg->msg_namelen = 0; 1872 } 1873 1874 if (nr_segs > UIO_MAXIOV) 1875 return -EMSGSIZE; 1876 1877 kmsg->msg_iocb = NULL; 1878 1879 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1880 UIO_FASTIOV, iov, &kmsg->msg_iter); 1881 } 1882 1883 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1884 struct msghdr *msg_sys, unsigned int flags, 1885 struct used_address *used_address) 1886 { 1887 struct compat_msghdr __user *msg_compat = 1888 (struct compat_msghdr __user *)msg; 1889 struct sockaddr_storage address; 1890 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1891 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1892 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1893 /* 20 is size of ipv6_pktinfo */ 1894 unsigned char *ctl_buf = ctl; 1895 int ctl_len; 1896 ssize_t err; 1897 1898 msg_sys->msg_name = &address; 1899 1900 if (MSG_CMSG_COMPAT & flags) 1901 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1902 else 1903 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1904 if (err < 0) 1905 return err; 1906 1907 err = -ENOBUFS; 1908 1909 if (msg_sys->msg_controllen > INT_MAX) 1910 goto out_freeiov; 1911 ctl_len = msg_sys->msg_controllen; 1912 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1913 err = 1914 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1915 sizeof(ctl)); 1916 if (err) 1917 goto out_freeiov; 1918 ctl_buf = msg_sys->msg_control; 1919 ctl_len = msg_sys->msg_controllen; 1920 } else if (ctl_len) { 1921 if (ctl_len > sizeof(ctl)) { 1922 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1923 if (ctl_buf == NULL) 1924 goto out_freeiov; 1925 } 1926 err = -EFAULT; 1927 /* 1928 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1929 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1930 * checking falls down on this. 1931 */ 1932 if (copy_from_user(ctl_buf, 1933 (void __user __force *)msg_sys->msg_control, 1934 ctl_len)) 1935 goto out_freectl; 1936 msg_sys->msg_control = ctl_buf; 1937 } 1938 msg_sys->msg_flags = flags; 1939 1940 if (sock->file->f_flags & O_NONBLOCK) 1941 msg_sys->msg_flags |= MSG_DONTWAIT; 1942 /* 1943 * If this is sendmmsg() and current destination address is same as 1944 * previously succeeded address, omit asking LSM's decision. 1945 * used_address->name_len is initialized to UINT_MAX so that the first 1946 * destination address never matches. 1947 */ 1948 if (used_address && msg_sys->msg_name && 1949 used_address->name_len == msg_sys->msg_namelen && 1950 !memcmp(&used_address->name, msg_sys->msg_name, 1951 used_address->name_len)) { 1952 err = sock_sendmsg_nosec(sock, msg_sys); 1953 goto out_freectl; 1954 } 1955 err = sock_sendmsg(sock, msg_sys); 1956 /* 1957 * If this is sendmmsg() and sending to current destination address was 1958 * successful, remember it. 1959 */ 1960 if (used_address && err >= 0) { 1961 used_address->name_len = msg_sys->msg_namelen; 1962 if (msg_sys->msg_name) 1963 memcpy(&used_address->name, msg_sys->msg_name, 1964 used_address->name_len); 1965 } 1966 1967 out_freectl: 1968 if (ctl_buf != ctl) 1969 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1970 out_freeiov: 1971 kfree(iov); 1972 return err; 1973 } 1974 1975 /* 1976 * BSD sendmsg interface 1977 */ 1978 1979 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 1980 { 1981 int fput_needed, err; 1982 struct msghdr msg_sys; 1983 struct socket *sock; 1984 1985 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1986 if (!sock) 1987 goto out; 1988 1989 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 1990 1991 fput_light(sock->file, fput_needed); 1992 out: 1993 return err; 1994 } 1995 1996 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 1997 { 1998 if (flags & MSG_CMSG_COMPAT) 1999 return -EINVAL; 2000 return __sys_sendmsg(fd, msg, flags); 2001 } 2002 2003 /* 2004 * Linux sendmmsg interface 2005 */ 2006 2007 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2008 unsigned int flags) 2009 { 2010 int fput_needed, err, datagrams; 2011 struct socket *sock; 2012 struct mmsghdr __user *entry; 2013 struct compat_mmsghdr __user *compat_entry; 2014 struct msghdr msg_sys; 2015 struct used_address used_address; 2016 2017 if (vlen > UIO_MAXIOV) 2018 vlen = UIO_MAXIOV; 2019 2020 datagrams = 0; 2021 2022 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2023 if (!sock) 2024 return err; 2025 2026 used_address.name_len = UINT_MAX; 2027 entry = mmsg; 2028 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2029 err = 0; 2030 2031 while (datagrams < vlen) { 2032 if (MSG_CMSG_COMPAT & flags) { 2033 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2034 &msg_sys, flags, &used_address); 2035 if (err < 0) 2036 break; 2037 err = __put_user(err, &compat_entry->msg_len); 2038 ++compat_entry; 2039 } else { 2040 err = ___sys_sendmsg(sock, 2041 (struct user_msghdr __user *)entry, 2042 &msg_sys, flags, &used_address); 2043 if (err < 0) 2044 break; 2045 err = put_user(err, &entry->msg_len); 2046 ++entry; 2047 } 2048 2049 if (err) 2050 break; 2051 ++datagrams; 2052 } 2053 2054 fput_light(sock->file, fput_needed); 2055 2056 /* We only return an error if no datagrams were able to be sent */ 2057 if (datagrams != 0) 2058 return datagrams; 2059 2060 return err; 2061 } 2062 2063 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2064 unsigned int, vlen, unsigned int, flags) 2065 { 2066 if (flags & MSG_CMSG_COMPAT) 2067 return -EINVAL; 2068 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2069 } 2070 2071 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2072 struct msghdr *msg_sys, unsigned int flags, int nosec) 2073 { 2074 struct compat_msghdr __user *msg_compat = 2075 (struct compat_msghdr __user *)msg; 2076 struct iovec iovstack[UIO_FASTIOV]; 2077 struct iovec *iov = iovstack; 2078 unsigned long cmsg_ptr; 2079 int total_len, len; 2080 ssize_t err; 2081 2082 /* kernel mode address */ 2083 struct sockaddr_storage addr; 2084 2085 /* user mode address pointers */ 2086 struct sockaddr __user *uaddr; 2087 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2088 2089 msg_sys->msg_name = &addr; 2090 2091 if (MSG_CMSG_COMPAT & flags) 2092 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2093 else 2094 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2095 if (err < 0) 2096 return err; 2097 total_len = iov_iter_count(&msg_sys->msg_iter); 2098 2099 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2100 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2101 2102 /* We assume all kernel code knows the size of sockaddr_storage */ 2103 msg_sys->msg_namelen = 0; 2104 2105 if (sock->file->f_flags & O_NONBLOCK) 2106 flags |= MSG_DONTWAIT; 2107 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2108 total_len, flags); 2109 if (err < 0) 2110 goto out_freeiov; 2111 len = err; 2112 2113 if (uaddr != NULL) { 2114 err = move_addr_to_user(&addr, 2115 msg_sys->msg_namelen, uaddr, 2116 uaddr_len); 2117 if (err < 0) 2118 goto out_freeiov; 2119 } 2120 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2121 COMPAT_FLAGS(msg)); 2122 if (err) 2123 goto out_freeiov; 2124 if (MSG_CMSG_COMPAT & flags) 2125 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2126 &msg_compat->msg_controllen); 2127 else 2128 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2129 &msg->msg_controllen); 2130 if (err) 2131 goto out_freeiov; 2132 err = len; 2133 2134 out_freeiov: 2135 kfree(iov); 2136 return err; 2137 } 2138 2139 /* 2140 * BSD recvmsg interface 2141 */ 2142 2143 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2144 { 2145 int fput_needed, err; 2146 struct msghdr msg_sys; 2147 struct socket *sock; 2148 2149 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2150 if (!sock) 2151 goto out; 2152 2153 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2154 2155 fput_light(sock->file, fput_needed); 2156 out: 2157 return err; 2158 } 2159 2160 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2161 unsigned int, flags) 2162 { 2163 if (flags & MSG_CMSG_COMPAT) 2164 return -EINVAL; 2165 return __sys_recvmsg(fd, msg, flags); 2166 } 2167 2168 /* 2169 * Linux recvmmsg interface 2170 */ 2171 2172 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2173 unsigned int flags, struct timespec *timeout) 2174 { 2175 int fput_needed, err, datagrams; 2176 struct socket *sock; 2177 struct mmsghdr __user *entry; 2178 struct compat_mmsghdr __user *compat_entry; 2179 struct msghdr msg_sys; 2180 struct timespec end_time; 2181 2182 if (timeout && 2183 poll_select_set_timeout(&end_time, timeout->tv_sec, 2184 timeout->tv_nsec)) 2185 return -EINVAL; 2186 2187 datagrams = 0; 2188 2189 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2190 if (!sock) 2191 return err; 2192 2193 err = sock_error(sock->sk); 2194 if (err) 2195 goto out_put; 2196 2197 entry = mmsg; 2198 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2199 2200 while (datagrams < vlen) { 2201 /* 2202 * No need to ask LSM for more than the first datagram. 2203 */ 2204 if (MSG_CMSG_COMPAT & flags) { 2205 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2206 &msg_sys, flags & ~MSG_WAITFORONE, 2207 datagrams); 2208 if (err < 0) 2209 break; 2210 err = __put_user(err, &compat_entry->msg_len); 2211 ++compat_entry; 2212 } else { 2213 err = ___sys_recvmsg(sock, 2214 (struct user_msghdr __user *)entry, 2215 &msg_sys, flags & ~MSG_WAITFORONE, 2216 datagrams); 2217 if (err < 0) 2218 break; 2219 err = put_user(err, &entry->msg_len); 2220 ++entry; 2221 } 2222 2223 if (err) 2224 break; 2225 ++datagrams; 2226 2227 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2228 if (flags & MSG_WAITFORONE) 2229 flags |= MSG_DONTWAIT; 2230 2231 if (timeout) { 2232 ktime_get_ts(timeout); 2233 *timeout = timespec_sub(end_time, *timeout); 2234 if (timeout->tv_sec < 0) { 2235 timeout->tv_sec = timeout->tv_nsec = 0; 2236 break; 2237 } 2238 2239 /* Timeout, return less than vlen datagrams */ 2240 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2241 break; 2242 } 2243 2244 /* Out of band data, return right away */ 2245 if (msg_sys.msg_flags & MSG_OOB) 2246 break; 2247 } 2248 2249 out_put: 2250 fput_light(sock->file, fput_needed); 2251 2252 if (err == 0) 2253 return datagrams; 2254 2255 if (datagrams != 0) { 2256 /* 2257 * We may return less entries than requested (vlen) if the 2258 * sock is non block and there aren't enough datagrams... 2259 */ 2260 if (err != -EAGAIN) { 2261 /* 2262 * ... or if recvmsg returns an error after we 2263 * received some datagrams, where we record the 2264 * error to return on the next call or if the 2265 * app asks about it using getsockopt(SO_ERROR). 2266 */ 2267 sock->sk->sk_err = -err; 2268 } 2269 2270 return datagrams; 2271 } 2272 2273 return err; 2274 } 2275 2276 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2277 unsigned int, vlen, unsigned int, flags, 2278 struct timespec __user *, timeout) 2279 { 2280 int datagrams; 2281 struct timespec timeout_sys; 2282 2283 if (flags & MSG_CMSG_COMPAT) 2284 return -EINVAL; 2285 2286 if (!timeout) 2287 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2288 2289 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2290 return -EFAULT; 2291 2292 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2293 2294 if (datagrams > 0 && 2295 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2296 datagrams = -EFAULT; 2297 2298 return datagrams; 2299 } 2300 2301 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2302 /* Argument list sizes for sys_socketcall */ 2303 #define AL(x) ((x) * sizeof(unsigned long)) 2304 static const unsigned char nargs[21] = { 2305 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2306 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2307 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2308 AL(4), AL(5), AL(4) 2309 }; 2310 2311 #undef AL 2312 2313 /* 2314 * System call vectors. 2315 * 2316 * Argument checking cleaned up. Saved 20% in size. 2317 * This function doesn't need to set the kernel lock because 2318 * it is set by the callees. 2319 */ 2320 2321 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2322 { 2323 unsigned long a[AUDITSC_ARGS]; 2324 unsigned long a0, a1; 2325 int err; 2326 unsigned int len; 2327 2328 if (call < 1 || call > SYS_SENDMMSG) 2329 return -EINVAL; 2330 2331 len = nargs[call]; 2332 if (len > sizeof(a)) 2333 return -EINVAL; 2334 2335 /* copy_from_user should be SMP safe. */ 2336 if (copy_from_user(a, args, len)) 2337 return -EFAULT; 2338 2339 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2340 if (err) 2341 return err; 2342 2343 a0 = a[0]; 2344 a1 = a[1]; 2345 2346 switch (call) { 2347 case SYS_SOCKET: 2348 err = sys_socket(a0, a1, a[2]); 2349 break; 2350 case SYS_BIND: 2351 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2352 break; 2353 case SYS_CONNECT: 2354 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2355 break; 2356 case SYS_LISTEN: 2357 err = sys_listen(a0, a1); 2358 break; 2359 case SYS_ACCEPT: 2360 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2361 (int __user *)a[2], 0); 2362 break; 2363 case SYS_GETSOCKNAME: 2364 err = 2365 sys_getsockname(a0, (struct sockaddr __user *)a1, 2366 (int __user *)a[2]); 2367 break; 2368 case SYS_GETPEERNAME: 2369 err = 2370 sys_getpeername(a0, (struct sockaddr __user *)a1, 2371 (int __user *)a[2]); 2372 break; 2373 case SYS_SOCKETPAIR: 2374 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2375 break; 2376 case SYS_SEND: 2377 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2378 break; 2379 case SYS_SENDTO: 2380 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2381 (struct sockaddr __user *)a[4], a[5]); 2382 break; 2383 case SYS_RECV: 2384 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2385 break; 2386 case SYS_RECVFROM: 2387 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2388 (struct sockaddr __user *)a[4], 2389 (int __user *)a[5]); 2390 break; 2391 case SYS_SHUTDOWN: 2392 err = sys_shutdown(a0, a1); 2393 break; 2394 case SYS_SETSOCKOPT: 2395 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2396 break; 2397 case SYS_GETSOCKOPT: 2398 err = 2399 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2400 (int __user *)a[4]); 2401 break; 2402 case SYS_SENDMSG: 2403 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2404 break; 2405 case SYS_SENDMMSG: 2406 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2407 break; 2408 case SYS_RECVMSG: 2409 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2410 break; 2411 case SYS_RECVMMSG: 2412 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2413 (struct timespec __user *)a[4]); 2414 break; 2415 case SYS_ACCEPT4: 2416 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2417 (int __user *)a[2], a[3]); 2418 break; 2419 default: 2420 err = -EINVAL; 2421 break; 2422 } 2423 return err; 2424 } 2425 2426 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2427 2428 /** 2429 * sock_register - add a socket protocol handler 2430 * @ops: description of protocol 2431 * 2432 * This function is called by a protocol handler that wants to 2433 * advertise its address family, and have it linked into the 2434 * socket interface. The value ops->family corresponds to the 2435 * socket system call protocol family. 2436 */ 2437 int sock_register(const struct net_proto_family *ops) 2438 { 2439 int err; 2440 2441 if (ops->family >= NPROTO) { 2442 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2443 return -ENOBUFS; 2444 } 2445 2446 spin_lock(&net_family_lock); 2447 if (rcu_dereference_protected(net_families[ops->family], 2448 lockdep_is_held(&net_family_lock))) 2449 err = -EEXIST; 2450 else { 2451 rcu_assign_pointer(net_families[ops->family], ops); 2452 err = 0; 2453 } 2454 spin_unlock(&net_family_lock); 2455 2456 pr_info("NET: Registered protocol family %d\n", ops->family); 2457 return err; 2458 } 2459 EXPORT_SYMBOL(sock_register); 2460 2461 /** 2462 * sock_unregister - remove a protocol handler 2463 * @family: protocol family to remove 2464 * 2465 * This function is called by a protocol handler that wants to 2466 * remove its address family, and have it unlinked from the 2467 * new socket creation. 2468 * 2469 * If protocol handler is a module, then it can use module reference 2470 * counts to protect against new references. If protocol handler is not 2471 * a module then it needs to provide its own protection in 2472 * the ops->create routine. 2473 */ 2474 void sock_unregister(int family) 2475 { 2476 BUG_ON(family < 0 || family >= NPROTO); 2477 2478 spin_lock(&net_family_lock); 2479 RCU_INIT_POINTER(net_families[family], NULL); 2480 spin_unlock(&net_family_lock); 2481 2482 synchronize_rcu(); 2483 2484 pr_info("NET: Unregistered protocol family %d\n", family); 2485 } 2486 EXPORT_SYMBOL(sock_unregister); 2487 2488 static int __init sock_init(void) 2489 { 2490 int err; 2491 /* 2492 * Initialize the network sysctl infrastructure. 2493 */ 2494 err = net_sysctl_init(); 2495 if (err) 2496 goto out; 2497 2498 /* 2499 * Initialize skbuff SLAB cache 2500 */ 2501 skb_init(); 2502 2503 /* 2504 * Initialize the protocols module. 2505 */ 2506 2507 init_inodecache(); 2508 2509 err = register_filesystem(&sock_fs_type); 2510 if (err) 2511 goto out_fs; 2512 sock_mnt = kern_mount(&sock_fs_type); 2513 if (IS_ERR(sock_mnt)) { 2514 err = PTR_ERR(sock_mnt); 2515 goto out_mount; 2516 } 2517 2518 /* The real protocol initialization is performed in later initcalls. 2519 */ 2520 2521 #ifdef CONFIG_NETFILTER 2522 err = netfilter_init(); 2523 if (err) 2524 goto out; 2525 #endif 2526 2527 ptp_classifier_init(); 2528 2529 out: 2530 return err; 2531 2532 out_mount: 2533 unregister_filesystem(&sock_fs_type); 2534 out_fs: 2535 goto out; 2536 } 2537 2538 core_initcall(sock_init); /* early initcall */ 2539 2540 #ifdef CONFIG_PROC_FS 2541 void socket_seq_show(struct seq_file *seq) 2542 { 2543 int cpu; 2544 int counter = 0; 2545 2546 for_each_possible_cpu(cpu) 2547 counter += per_cpu(sockets_in_use, cpu); 2548 2549 /* It can be negative, by the way. 8) */ 2550 if (counter < 0) 2551 counter = 0; 2552 2553 seq_printf(seq, "sockets: used %d\n", counter); 2554 } 2555 #endif /* CONFIG_PROC_FS */ 2556 2557 #ifdef CONFIG_COMPAT 2558 static int do_siocgstamp(struct net *net, struct socket *sock, 2559 unsigned int cmd, void __user *up) 2560 { 2561 mm_segment_t old_fs = get_fs(); 2562 struct timeval ktv; 2563 int err; 2564 2565 set_fs(KERNEL_DS); 2566 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2567 set_fs(old_fs); 2568 if (!err) 2569 err = compat_put_timeval(&ktv, up); 2570 2571 return err; 2572 } 2573 2574 static int do_siocgstampns(struct net *net, struct socket *sock, 2575 unsigned int cmd, void __user *up) 2576 { 2577 mm_segment_t old_fs = get_fs(); 2578 struct timespec kts; 2579 int err; 2580 2581 set_fs(KERNEL_DS); 2582 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2583 set_fs(old_fs); 2584 if (!err) 2585 err = compat_put_timespec(&kts, up); 2586 2587 return err; 2588 } 2589 2590 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2591 { 2592 struct ifreq __user *uifr; 2593 int err; 2594 2595 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2596 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2597 return -EFAULT; 2598 2599 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2600 if (err) 2601 return err; 2602 2603 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2604 return -EFAULT; 2605 2606 return 0; 2607 } 2608 2609 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2610 { 2611 struct compat_ifconf ifc32; 2612 struct ifconf ifc; 2613 struct ifconf __user *uifc; 2614 struct compat_ifreq __user *ifr32; 2615 struct ifreq __user *ifr; 2616 unsigned int i, j; 2617 int err; 2618 2619 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2620 return -EFAULT; 2621 2622 memset(&ifc, 0, sizeof(ifc)); 2623 if (ifc32.ifcbuf == 0) { 2624 ifc32.ifc_len = 0; 2625 ifc.ifc_len = 0; 2626 ifc.ifc_req = NULL; 2627 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2628 } else { 2629 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2630 sizeof(struct ifreq); 2631 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2632 ifc.ifc_len = len; 2633 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2634 ifr32 = compat_ptr(ifc32.ifcbuf); 2635 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2636 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2637 return -EFAULT; 2638 ifr++; 2639 ifr32++; 2640 } 2641 } 2642 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2643 return -EFAULT; 2644 2645 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2646 if (err) 2647 return err; 2648 2649 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2650 return -EFAULT; 2651 2652 ifr = ifc.ifc_req; 2653 ifr32 = compat_ptr(ifc32.ifcbuf); 2654 for (i = 0, j = 0; 2655 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2656 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2657 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2658 return -EFAULT; 2659 ifr32++; 2660 ifr++; 2661 } 2662 2663 if (ifc32.ifcbuf == 0) { 2664 /* Translate from 64-bit structure multiple to 2665 * a 32-bit one. 2666 */ 2667 i = ifc.ifc_len; 2668 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2669 ifc32.ifc_len = i; 2670 } else { 2671 ifc32.ifc_len = i; 2672 } 2673 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2674 return -EFAULT; 2675 2676 return 0; 2677 } 2678 2679 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2680 { 2681 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2682 bool convert_in = false, convert_out = false; 2683 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2684 struct ethtool_rxnfc __user *rxnfc; 2685 struct ifreq __user *ifr; 2686 u32 rule_cnt = 0, actual_rule_cnt; 2687 u32 ethcmd; 2688 u32 data; 2689 int ret; 2690 2691 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2692 return -EFAULT; 2693 2694 compat_rxnfc = compat_ptr(data); 2695 2696 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2697 return -EFAULT; 2698 2699 /* Most ethtool structures are defined without padding. 2700 * Unfortunately struct ethtool_rxnfc is an exception. 2701 */ 2702 switch (ethcmd) { 2703 default: 2704 break; 2705 case ETHTOOL_GRXCLSRLALL: 2706 /* Buffer size is variable */ 2707 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2708 return -EFAULT; 2709 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2710 return -ENOMEM; 2711 buf_size += rule_cnt * sizeof(u32); 2712 /* fall through */ 2713 case ETHTOOL_GRXRINGS: 2714 case ETHTOOL_GRXCLSRLCNT: 2715 case ETHTOOL_GRXCLSRULE: 2716 case ETHTOOL_SRXCLSRLINS: 2717 convert_out = true; 2718 /* fall through */ 2719 case ETHTOOL_SRXCLSRLDEL: 2720 buf_size += sizeof(struct ethtool_rxnfc); 2721 convert_in = true; 2722 break; 2723 } 2724 2725 ifr = compat_alloc_user_space(buf_size); 2726 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2727 2728 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2729 return -EFAULT; 2730 2731 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2732 &ifr->ifr_ifru.ifru_data)) 2733 return -EFAULT; 2734 2735 if (convert_in) { 2736 /* We expect there to be holes between fs.m_ext and 2737 * fs.ring_cookie and at the end of fs, but nowhere else. 2738 */ 2739 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2740 sizeof(compat_rxnfc->fs.m_ext) != 2741 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2742 sizeof(rxnfc->fs.m_ext)); 2743 BUILD_BUG_ON( 2744 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2745 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2746 offsetof(struct ethtool_rxnfc, fs.location) - 2747 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2748 2749 if (copy_in_user(rxnfc, compat_rxnfc, 2750 (void __user *)(&rxnfc->fs.m_ext + 1) - 2751 (void __user *)rxnfc) || 2752 copy_in_user(&rxnfc->fs.ring_cookie, 2753 &compat_rxnfc->fs.ring_cookie, 2754 (void __user *)(&rxnfc->fs.location + 1) - 2755 (void __user *)&rxnfc->fs.ring_cookie) || 2756 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2757 sizeof(rxnfc->rule_cnt))) 2758 return -EFAULT; 2759 } 2760 2761 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2762 if (ret) 2763 return ret; 2764 2765 if (convert_out) { 2766 if (copy_in_user(compat_rxnfc, rxnfc, 2767 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2768 (const void __user *)rxnfc) || 2769 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2770 &rxnfc->fs.ring_cookie, 2771 (const void __user *)(&rxnfc->fs.location + 1) - 2772 (const void __user *)&rxnfc->fs.ring_cookie) || 2773 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2774 sizeof(rxnfc->rule_cnt))) 2775 return -EFAULT; 2776 2777 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2778 /* As an optimisation, we only copy the actual 2779 * number of rules that the underlying 2780 * function returned. Since Mallory might 2781 * change the rule count in user memory, we 2782 * check that it is less than the rule count 2783 * originally given (as the user buffer size), 2784 * which has been range-checked. 2785 */ 2786 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2787 return -EFAULT; 2788 if (actual_rule_cnt < rule_cnt) 2789 rule_cnt = actual_rule_cnt; 2790 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2791 &rxnfc->rule_locs[0], 2792 rule_cnt * sizeof(u32))) 2793 return -EFAULT; 2794 } 2795 } 2796 2797 return 0; 2798 } 2799 2800 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2801 { 2802 void __user *uptr; 2803 compat_uptr_t uptr32; 2804 struct ifreq __user *uifr; 2805 2806 uifr = compat_alloc_user_space(sizeof(*uifr)); 2807 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2808 return -EFAULT; 2809 2810 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2811 return -EFAULT; 2812 2813 uptr = compat_ptr(uptr32); 2814 2815 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2816 return -EFAULT; 2817 2818 return dev_ioctl(net, SIOCWANDEV, uifr); 2819 } 2820 2821 static int bond_ioctl(struct net *net, unsigned int cmd, 2822 struct compat_ifreq __user *ifr32) 2823 { 2824 struct ifreq kifr; 2825 mm_segment_t old_fs; 2826 int err; 2827 2828 switch (cmd) { 2829 case SIOCBONDENSLAVE: 2830 case SIOCBONDRELEASE: 2831 case SIOCBONDSETHWADDR: 2832 case SIOCBONDCHANGEACTIVE: 2833 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2834 return -EFAULT; 2835 2836 old_fs = get_fs(); 2837 set_fs(KERNEL_DS); 2838 err = dev_ioctl(net, cmd, 2839 (struct ifreq __user __force *) &kifr); 2840 set_fs(old_fs); 2841 2842 return err; 2843 default: 2844 return -ENOIOCTLCMD; 2845 } 2846 } 2847 2848 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2849 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2850 struct compat_ifreq __user *u_ifreq32) 2851 { 2852 struct ifreq __user *u_ifreq64; 2853 char tmp_buf[IFNAMSIZ]; 2854 void __user *data64; 2855 u32 data32; 2856 2857 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2858 IFNAMSIZ)) 2859 return -EFAULT; 2860 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2861 return -EFAULT; 2862 data64 = compat_ptr(data32); 2863 2864 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2865 2866 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2867 IFNAMSIZ)) 2868 return -EFAULT; 2869 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2870 return -EFAULT; 2871 2872 return dev_ioctl(net, cmd, u_ifreq64); 2873 } 2874 2875 static int dev_ifsioc(struct net *net, struct socket *sock, 2876 unsigned int cmd, struct compat_ifreq __user *uifr32) 2877 { 2878 struct ifreq __user *uifr; 2879 int err; 2880 2881 uifr = compat_alloc_user_space(sizeof(*uifr)); 2882 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2883 return -EFAULT; 2884 2885 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2886 2887 if (!err) { 2888 switch (cmd) { 2889 case SIOCGIFFLAGS: 2890 case SIOCGIFMETRIC: 2891 case SIOCGIFMTU: 2892 case SIOCGIFMEM: 2893 case SIOCGIFHWADDR: 2894 case SIOCGIFINDEX: 2895 case SIOCGIFADDR: 2896 case SIOCGIFBRDADDR: 2897 case SIOCGIFDSTADDR: 2898 case SIOCGIFNETMASK: 2899 case SIOCGIFPFLAGS: 2900 case SIOCGIFTXQLEN: 2901 case SIOCGMIIPHY: 2902 case SIOCGMIIREG: 2903 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2904 err = -EFAULT; 2905 break; 2906 } 2907 } 2908 return err; 2909 } 2910 2911 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2912 struct compat_ifreq __user *uifr32) 2913 { 2914 struct ifreq ifr; 2915 struct compat_ifmap __user *uifmap32; 2916 mm_segment_t old_fs; 2917 int err; 2918 2919 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2920 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2921 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2922 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2923 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2924 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2925 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2926 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2927 if (err) 2928 return -EFAULT; 2929 2930 old_fs = get_fs(); 2931 set_fs(KERNEL_DS); 2932 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2933 set_fs(old_fs); 2934 2935 if (cmd == SIOCGIFMAP && !err) { 2936 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2937 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2938 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2939 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2940 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2941 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2942 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2943 if (err) 2944 err = -EFAULT; 2945 } 2946 return err; 2947 } 2948 2949 struct rtentry32 { 2950 u32 rt_pad1; 2951 struct sockaddr rt_dst; /* target address */ 2952 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2953 struct sockaddr rt_genmask; /* target network mask (IP) */ 2954 unsigned short rt_flags; 2955 short rt_pad2; 2956 u32 rt_pad3; 2957 unsigned char rt_tos; 2958 unsigned char rt_class; 2959 short rt_pad4; 2960 short rt_metric; /* +1 for binary compatibility! */ 2961 /* char * */ u32 rt_dev; /* forcing the device at add */ 2962 u32 rt_mtu; /* per route MTU/Window */ 2963 u32 rt_window; /* Window clamping */ 2964 unsigned short rt_irtt; /* Initial RTT */ 2965 }; 2966 2967 struct in6_rtmsg32 { 2968 struct in6_addr rtmsg_dst; 2969 struct in6_addr rtmsg_src; 2970 struct in6_addr rtmsg_gateway; 2971 u32 rtmsg_type; 2972 u16 rtmsg_dst_len; 2973 u16 rtmsg_src_len; 2974 u32 rtmsg_metric; 2975 u32 rtmsg_info; 2976 u32 rtmsg_flags; 2977 s32 rtmsg_ifindex; 2978 }; 2979 2980 static int routing_ioctl(struct net *net, struct socket *sock, 2981 unsigned int cmd, void __user *argp) 2982 { 2983 int ret; 2984 void *r = NULL; 2985 struct in6_rtmsg r6; 2986 struct rtentry r4; 2987 char devname[16]; 2988 u32 rtdev; 2989 mm_segment_t old_fs = get_fs(); 2990 2991 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2992 struct in6_rtmsg32 __user *ur6 = argp; 2993 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2994 3 * sizeof(struct in6_addr)); 2995 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2996 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2997 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2998 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2999 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3000 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3001 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3002 3003 r = (void *) &r6; 3004 } else { /* ipv4 */ 3005 struct rtentry32 __user *ur4 = argp; 3006 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3007 3 * sizeof(struct sockaddr)); 3008 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3009 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3010 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3011 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3012 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3013 ret |= get_user(rtdev, &(ur4->rt_dev)); 3014 if (rtdev) { 3015 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3016 r4.rt_dev = (char __user __force *)devname; 3017 devname[15] = 0; 3018 } else 3019 r4.rt_dev = NULL; 3020 3021 r = (void *) &r4; 3022 } 3023 3024 if (ret) { 3025 ret = -EFAULT; 3026 goto out; 3027 } 3028 3029 set_fs(KERNEL_DS); 3030 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3031 set_fs(old_fs); 3032 3033 out: 3034 return ret; 3035 } 3036 3037 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3038 * for some operations; this forces use of the newer bridge-utils that 3039 * use compatible ioctls 3040 */ 3041 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3042 { 3043 compat_ulong_t tmp; 3044 3045 if (get_user(tmp, argp)) 3046 return -EFAULT; 3047 if (tmp == BRCTL_GET_VERSION) 3048 return BRCTL_VERSION + 1; 3049 return -EINVAL; 3050 } 3051 3052 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3053 unsigned int cmd, unsigned long arg) 3054 { 3055 void __user *argp = compat_ptr(arg); 3056 struct sock *sk = sock->sk; 3057 struct net *net = sock_net(sk); 3058 3059 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3060 return compat_ifr_data_ioctl(net, cmd, argp); 3061 3062 switch (cmd) { 3063 case SIOCSIFBR: 3064 case SIOCGIFBR: 3065 return old_bridge_ioctl(argp); 3066 case SIOCGIFNAME: 3067 return dev_ifname32(net, argp); 3068 case SIOCGIFCONF: 3069 return dev_ifconf(net, argp); 3070 case SIOCETHTOOL: 3071 return ethtool_ioctl(net, argp); 3072 case SIOCWANDEV: 3073 return compat_siocwandev(net, argp); 3074 case SIOCGIFMAP: 3075 case SIOCSIFMAP: 3076 return compat_sioc_ifmap(net, cmd, argp); 3077 case SIOCBONDENSLAVE: 3078 case SIOCBONDRELEASE: 3079 case SIOCBONDSETHWADDR: 3080 case SIOCBONDCHANGEACTIVE: 3081 return bond_ioctl(net, cmd, argp); 3082 case SIOCADDRT: 3083 case SIOCDELRT: 3084 return routing_ioctl(net, sock, cmd, argp); 3085 case SIOCGSTAMP: 3086 return do_siocgstamp(net, sock, cmd, argp); 3087 case SIOCGSTAMPNS: 3088 return do_siocgstampns(net, sock, cmd, argp); 3089 case SIOCBONDSLAVEINFOQUERY: 3090 case SIOCBONDINFOQUERY: 3091 case SIOCSHWTSTAMP: 3092 case SIOCGHWTSTAMP: 3093 return compat_ifr_data_ioctl(net, cmd, argp); 3094 3095 case FIOSETOWN: 3096 case SIOCSPGRP: 3097 case FIOGETOWN: 3098 case SIOCGPGRP: 3099 case SIOCBRADDBR: 3100 case SIOCBRDELBR: 3101 case SIOCGIFVLAN: 3102 case SIOCSIFVLAN: 3103 case SIOCADDDLCI: 3104 case SIOCDELDLCI: 3105 return sock_ioctl(file, cmd, arg); 3106 3107 case SIOCGIFFLAGS: 3108 case SIOCSIFFLAGS: 3109 case SIOCGIFMETRIC: 3110 case SIOCSIFMETRIC: 3111 case SIOCGIFMTU: 3112 case SIOCSIFMTU: 3113 case SIOCGIFMEM: 3114 case SIOCSIFMEM: 3115 case SIOCGIFHWADDR: 3116 case SIOCSIFHWADDR: 3117 case SIOCADDMULTI: 3118 case SIOCDELMULTI: 3119 case SIOCGIFINDEX: 3120 case SIOCGIFADDR: 3121 case SIOCSIFADDR: 3122 case SIOCSIFHWBROADCAST: 3123 case SIOCDIFADDR: 3124 case SIOCGIFBRDADDR: 3125 case SIOCSIFBRDADDR: 3126 case SIOCGIFDSTADDR: 3127 case SIOCSIFDSTADDR: 3128 case SIOCGIFNETMASK: 3129 case SIOCSIFNETMASK: 3130 case SIOCSIFPFLAGS: 3131 case SIOCGIFPFLAGS: 3132 case SIOCGIFTXQLEN: 3133 case SIOCSIFTXQLEN: 3134 case SIOCBRADDIF: 3135 case SIOCBRDELIF: 3136 case SIOCSIFNAME: 3137 case SIOCGMIIPHY: 3138 case SIOCGMIIREG: 3139 case SIOCSMIIREG: 3140 return dev_ifsioc(net, sock, cmd, argp); 3141 3142 case SIOCSARP: 3143 case SIOCGARP: 3144 case SIOCDARP: 3145 case SIOCATMARK: 3146 return sock_do_ioctl(net, sock, cmd, arg); 3147 } 3148 3149 return -ENOIOCTLCMD; 3150 } 3151 3152 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3153 unsigned long arg) 3154 { 3155 struct socket *sock = file->private_data; 3156 int ret = -ENOIOCTLCMD; 3157 struct sock *sk; 3158 struct net *net; 3159 3160 sk = sock->sk; 3161 net = sock_net(sk); 3162 3163 if (sock->ops->compat_ioctl) 3164 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3165 3166 if (ret == -ENOIOCTLCMD && 3167 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3168 ret = compat_wext_handle_ioctl(net, cmd, arg); 3169 3170 if (ret == -ENOIOCTLCMD) 3171 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3172 3173 return ret; 3174 } 3175 #endif 3176 3177 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3178 { 3179 return sock->ops->bind(sock, addr, addrlen); 3180 } 3181 EXPORT_SYMBOL(kernel_bind); 3182 3183 int kernel_listen(struct socket *sock, int backlog) 3184 { 3185 return sock->ops->listen(sock, backlog); 3186 } 3187 EXPORT_SYMBOL(kernel_listen); 3188 3189 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3190 { 3191 struct sock *sk = sock->sk; 3192 int err; 3193 3194 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3195 newsock); 3196 if (err < 0) 3197 goto done; 3198 3199 err = sock->ops->accept(sock, *newsock, flags); 3200 if (err < 0) { 3201 sock_release(*newsock); 3202 *newsock = NULL; 3203 goto done; 3204 } 3205 3206 (*newsock)->ops = sock->ops; 3207 __module_get((*newsock)->ops->owner); 3208 3209 done: 3210 return err; 3211 } 3212 EXPORT_SYMBOL(kernel_accept); 3213 3214 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3215 int flags) 3216 { 3217 return sock->ops->connect(sock, addr, addrlen, flags); 3218 } 3219 EXPORT_SYMBOL(kernel_connect); 3220 3221 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3222 int *addrlen) 3223 { 3224 return sock->ops->getname(sock, addr, addrlen, 0); 3225 } 3226 EXPORT_SYMBOL(kernel_getsockname); 3227 3228 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3229 int *addrlen) 3230 { 3231 return sock->ops->getname(sock, addr, addrlen, 1); 3232 } 3233 EXPORT_SYMBOL(kernel_getpeername); 3234 3235 int kernel_getsockopt(struct socket *sock, int level, int optname, 3236 char *optval, int *optlen) 3237 { 3238 mm_segment_t oldfs = get_fs(); 3239 char __user *uoptval; 3240 int __user *uoptlen; 3241 int err; 3242 3243 uoptval = (char __user __force *) optval; 3244 uoptlen = (int __user __force *) optlen; 3245 3246 set_fs(KERNEL_DS); 3247 if (level == SOL_SOCKET) 3248 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3249 else 3250 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3251 uoptlen); 3252 set_fs(oldfs); 3253 return err; 3254 } 3255 EXPORT_SYMBOL(kernel_getsockopt); 3256 3257 int kernel_setsockopt(struct socket *sock, int level, int optname, 3258 char *optval, unsigned int optlen) 3259 { 3260 mm_segment_t oldfs = get_fs(); 3261 char __user *uoptval; 3262 int err; 3263 3264 uoptval = (char __user __force *) optval; 3265 3266 set_fs(KERNEL_DS); 3267 if (level == SOL_SOCKET) 3268 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3269 else 3270 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3271 optlen); 3272 set_fs(oldfs); 3273 return err; 3274 } 3275 EXPORT_SYMBOL(kernel_setsockopt); 3276 3277 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3278 size_t size, int flags) 3279 { 3280 if (sock->ops->sendpage) 3281 return sock->ops->sendpage(sock, page, offset, size, flags); 3282 3283 return sock_no_sendpage(sock, page, offset, size, flags); 3284 } 3285 EXPORT_SYMBOL(kernel_sendpage); 3286 3287 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3288 { 3289 mm_segment_t oldfs = get_fs(); 3290 int err; 3291 3292 set_fs(KERNEL_DS); 3293 err = sock->ops->ioctl(sock, cmd, arg); 3294 set_fs(oldfs); 3295 3296 return err; 3297 } 3298 EXPORT_SYMBOL(kernel_sock_ioctl); 3299 3300 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3301 { 3302 return sock->ops->shutdown(sock, how); 3303 } 3304 EXPORT_SYMBOL(kernel_sock_shutdown); 3305