xref: /openbmc/linux/net/socket.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90 
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93 
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97 
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100 
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 			      struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 #ifdef CONFIG_COMPAT
124 static long compat_sock_ioctl(struct file *file,
125 			      unsigned int cmd, unsigned long arg);
126 #endif
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 			     int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 				struct pipe_inode_info *pipe, size_t len,
132 				unsigned int flags);
133 
134 #ifdef CONFIG_PROC_FS
135 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136 {
137 	struct socket *sock = f->private_data;
138 
139 	if (sock->ops->show_fdinfo)
140 		sock->ops->show_fdinfo(m, sock);
141 }
142 #else
143 #define sock_show_fdinfo NULL
144 #endif
145 
146 /*
147  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148  *	in the operation structures but are done directly via the socketcall() multiplexor.
149  */
150 
151 static const struct file_operations socket_file_ops = {
152 	.owner =	THIS_MODULE,
153 	.llseek =	no_llseek,
154 	.read_iter =	sock_read_iter,
155 	.write_iter =	sock_write_iter,
156 	.poll =		sock_poll,
157 	.unlocked_ioctl = sock_ioctl,
158 #ifdef CONFIG_COMPAT
159 	.compat_ioctl = compat_sock_ioctl,
160 #endif
161 	.mmap =		sock_mmap,
162 	.release =	sock_close,
163 	.fasync =	sock_fasync,
164 	.sendpage =	sock_sendpage,
165 	.splice_write = generic_splice_sendpage,
166 	.splice_read =	sock_splice_read,
167 	.show_fdinfo =	sock_show_fdinfo,
168 };
169 
170 static const char * const pf_family_names[] = {
171 	[PF_UNSPEC]	= "PF_UNSPEC",
172 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
173 	[PF_INET]	= "PF_INET",
174 	[PF_AX25]	= "PF_AX25",
175 	[PF_IPX]	= "PF_IPX",
176 	[PF_APPLETALK]	= "PF_APPLETALK",
177 	[PF_NETROM]	= "PF_NETROM",
178 	[PF_BRIDGE]	= "PF_BRIDGE",
179 	[PF_ATMPVC]	= "PF_ATMPVC",
180 	[PF_X25]	= "PF_X25",
181 	[PF_INET6]	= "PF_INET6",
182 	[PF_ROSE]	= "PF_ROSE",
183 	[PF_DECnet]	= "PF_DECnet",
184 	[PF_NETBEUI]	= "PF_NETBEUI",
185 	[PF_SECURITY]	= "PF_SECURITY",
186 	[PF_KEY]	= "PF_KEY",
187 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
188 	[PF_PACKET]	= "PF_PACKET",
189 	[PF_ASH]	= "PF_ASH",
190 	[PF_ECONET]	= "PF_ECONET",
191 	[PF_ATMSVC]	= "PF_ATMSVC",
192 	[PF_RDS]	= "PF_RDS",
193 	[PF_SNA]	= "PF_SNA",
194 	[PF_IRDA]	= "PF_IRDA",
195 	[PF_PPPOX]	= "PF_PPPOX",
196 	[PF_WANPIPE]	= "PF_WANPIPE",
197 	[PF_LLC]	= "PF_LLC",
198 	[PF_IB]		= "PF_IB",
199 	[PF_MPLS]	= "PF_MPLS",
200 	[PF_CAN]	= "PF_CAN",
201 	[PF_TIPC]	= "PF_TIPC",
202 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
203 	[PF_IUCV]	= "PF_IUCV",
204 	[PF_RXRPC]	= "PF_RXRPC",
205 	[PF_ISDN]	= "PF_ISDN",
206 	[PF_PHONET]	= "PF_PHONET",
207 	[PF_IEEE802154]	= "PF_IEEE802154",
208 	[PF_CAIF]	= "PF_CAIF",
209 	[PF_ALG]	= "PF_ALG",
210 	[PF_NFC]	= "PF_NFC",
211 	[PF_VSOCK]	= "PF_VSOCK",
212 	[PF_KCM]	= "PF_KCM",
213 	[PF_QIPCRTR]	= "PF_QIPCRTR",
214 	[PF_SMC]	= "PF_SMC",
215 	[PF_XDP]	= "PF_XDP",
216 	[PF_MCTP]	= "PF_MCTP",
217 };
218 
219 /*
220  *	The protocol list. Each protocol is registered in here.
221  */
222 
223 static DEFINE_SPINLOCK(net_family_lock);
224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
225 
226 /*
227  * Support routines.
228  * Move socket addresses back and forth across the kernel/user
229  * divide and look after the messy bits.
230  */
231 
232 /**
233  *	move_addr_to_kernel	-	copy a socket address into kernel space
234  *	@uaddr: Address in user space
235  *	@kaddr: Address in kernel space
236  *	@ulen: Length in user space
237  *
238  *	The address is copied into kernel space. If the provided address is
239  *	too long an error code of -EINVAL is returned. If the copy gives
240  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
241  */
242 
243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244 {
245 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
246 		return -EINVAL;
247 	if (ulen == 0)
248 		return 0;
249 	if (copy_from_user(kaddr, uaddr, ulen))
250 		return -EFAULT;
251 	return audit_sockaddr(ulen, kaddr);
252 }
253 
254 /**
255  *	move_addr_to_user	-	copy an address to user space
256  *	@kaddr: kernel space address
257  *	@klen: length of address in kernel
258  *	@uaddr: user space address
259  *	@ulen: pointer to user length field
260  *
261  *	The value pointed to by ulen on entry is the buffer length available.
262  *	This is overwritten with the buffer space used. -EINVAL is returned
263  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
264  *	is returned if either the buffer or the length field are not
265  *	accessible.
266  *	After copying the data up to the limit the user specifies, the true
267  *	length of the data is written over the length limit the user
268  *	specified. Zero is returned for a success.
269  */
270 
271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272 			     void __user *uaddr, int __user *ulen)
273 {
274 	int err;
275 	int len;
276 
277 	BUG_ON(klen > sizeof(struct sockaddr_storage));
278 	err = get_user(len, ulen);
279 	if (err)
280 		return err;
281 	if (len > klen)
282 		len = klen;
283 	if (len < 0)
284 		return -EINVAL;
285 	if (len) {
286 		if (audit_sockaddr(klen, kaddr))
287 			return -ENOMEM;
288 		if (copy_to_user(uaddr, kaddr, len))
289 			return -EFAULT;
290 	}
291 	/*
292 	 *      "fromlen shall refer to the value before truncation.."
293 	 *                      1003.1g
294 	 */
295 	return __put_user(klen, ulen);
296 }
297 
298 static struct kmem_cache *sock_inode_cachep __ro_after_init;
299 
300 static struct inode *sock_alloc_inode(struct super_block *sb)
301 {
302 	struct socket_alloc *ei;
303 
304 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
305 	if (!ei)
306 		return NULL;
307 	init_waitqueue_head(&ei->socket.wq.wait);
308 	ei->socket.wq.fasync_list = NULL;
309 	ei->socket.wq.flags = 0;
310 
311 	ei->socket.state = SS_UNCONNECTED;
312 	ei->socket.flags = 0;
313 	ei->socket.ops = NULL;
314 	ei->socket.sk = NULL;
315 	ei->socket.file = NULL;
316 
317 	return &ei->vfs_inode;
318 }
319 
320 static void sock_free_inode(struct inode *inode)
321 {
322 	struct socket_alloc *ei;
323 
324 	ei = container_of(inode, struct socket_alloc, vfs_inode);
325 	kmem_cache_free(sock_inode_cachep, ei);
326 }
327 
328 static void init_once(void *foo)
329 {
330 	struct socket_alloc *ei = (struct socket_alloc *)foo;
331 
332 	inode_init_once(&ei->vfs_inode);
333 }
334 
335 static void init_inodecache(void)
336 {
337 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338 					      sizeof(struct socket_alloc),
339 					      0,
340 					      (SLAB_HWCACHE_ALIGN |
341 					       SLAB_RECLAIM_ACCOUNT |
342 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343 					      init_once);
344 	BUG_ON(sock_inode_cachep == NULL);
345 }
346 
347 static const struct super_operations sockfs_ops = {
348 	.alloc_inode	= sock_alloc_inode,
349 	.free_inode	= sock_free_inode,
350 	.statfs		= simple_statfs,
351 };
352 
353 /*
354  * sockfs_dname() is called from d_path().
355  */
356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357 {
358 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
359 				d_inode(dentry)->i_ino);
360 }
361 
362 static const struct dentry_operations sockfs_dentry_operations = {
363 	.d_dname  = sockfs_dname,
364 };
365 
366 static int sockfs_xattr_get(const struct xattr_handler *handler,
367 			    struct dentry *dentry, struct inode *inode,
368 			    const char *suffix, void *value, size_t size)
369 {
370 	if (value) {
371 		if (dentry->d_name.len + 1 > size)
372 			return -ERANGE;
373 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374 	}
375 	return dentry->d_name.len + 1;
376 }
377 
378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381 
382 static const struct xattr_handler sockfs_xattr_handler = {
383 	.name = XATTR_NAME_SOCKPROTONAME,
384 	.get = sockfs_xattr_get,
385 };
386 
387 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388 				     struct user_namespace *mnt_userns,
389 				     struct dentry *dentry, struct inode *inode,
390 				     const char *suffix, const void *value,
391 				     size_t size, int flags)
392 {
393 	/* Handled by LSM. */
394 	return -EAGAIN;
395 }
396 
397 static const struct xattr_handler sockfs_security_xattr_handler = {
398 	.prefix = XATTR_SECURITY_PREFIX,
399 	.set = sockfs_security_xattr_set,
400 };
401 
402 static const struct xattr_handler *sockfs_xattr_handlers[] = {
403 	&sockfs_xattr_handler,
404 	&sockfs_security_xattr_handler,
405 	NULL
406 };
407 
408 static int sockfs_init_fs_context(struct fs_context *fc)
409 {
410 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
411 	if (!ctx)
412 		return -ENOMEM;
413 	ctx->ops = &sockfs_ops;
414 	ctx->dops = &sockfs_dentry_operations;
415 	ctx->xattr = sockfs_xattr_handlers;
416 	return 0;
417 }
418 
419 static struct vfsmount *sock_mnt __read_mostly;
420 
421 static struct file_system_type sock_fs_type = {
422 	.name =		"sockfs",
423 	.init_fs_context = sockfs_init_fs_context,
424 	.kill_sb =	kill_anon_super,
425 };
426 
427 /*
428  *	Obtains the first available file descriptor and sets it up for use.
429  *
430  *	These functions create file structures and maps them to fd space
431  *	of the current process. On success it returns file descriptor
432  *	and file struct implicitly stored in sock->file.
433  *	Note that another thread may close file descriptor before we return
434  *	from this function. We use the fact that now we do not refer
435  *	to socket after mapping. If one day we will need it, this
436  *	function will increment ref. count on file by 1.
437  *
438  *	In any case returned fd MAY BE not valid!
439  *	This race condition is unavoidable
440  *	with shared fd spaces, we cannot solve it inside kernel,
441  *	but we take care of internal coherence yet.
442  */
443 
444 /**
445  *	sock_alloc_file - Bind a &socket to a &file
446  *	@sock: socket
447  *	@flags: file status flags
448  *	@dname: protocol name
449  *
450  *	Returns the &file bound with @sock, implicitly storing it
451  *	in sock->file. If dname is %NULL, sets to "".
452  *	On failure the return is a ERR pointer (see linux/err.h).
453  *	This function uses GFP_KERNEL internally.
454  */
455 
456 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
457 {
458 	struct file *file;
459 
460 	if (!dname)
461 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
462 
463 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
464 				O_RDWR | (flags & O_NONBLOCK),
465 				&socket_file_ops);
466 	if (IS_ERR(file)) {
467 		sock_release(sock);
468 		return file;
469 	}
470 
471 	sock->file = file;
472 	file->private_data = sock;
473 	stream_open(SOCK_INODE(sock), file);
474 	return file;
475 }
476 EXPORT_SYMBOL(sock_alloc_file);
477 
478 static int sock_map_fd(struct socket *sock, int flags)
479 {
480 	struct file *newfile;
481 	int fd = get_unused_fd_flags(flags);
482 	if (unlikely(fd < 0)) {
483 		sock_release(sock);
484 		return fd;
485 	}
486 
487 	newfile = sock_alloc_file(sock, flags, NULL);
488 	if (!IS_ERR(newfile)) {
489 		fd_install(fd, newfile);
490 		return fd;
491 	}
492 
493 	put_unused_fd(fd);
494 	return PTR_ERR(newfile);
495 }
496 
497 /**
498  *	sock_from_file - Return the &socket bounded to @file.
499  *	@file: file
500  *
501  *	On failure returns %NULL.
502  */
503 
504 struct socket *sock_from_file(struct file *file)
505 {
506 	if (file->f_op == &socket_file_ops)
507 		return file->private_data;	/* set in sock_alloc_file */
508 
509 	return NULL;
510 }
511 EXPORT_SYMBOL(sock_from_file);
512 
513 /**
514  *	sockfd_lookup - Go from a file number to its socket slot
515  *	@fd: file handle
516  *	@err: pointer to an error code return
517  *
518  *	The file handle passed in is locked and the socket it is bound
519  *	to is returned. If an error occurs the err pointer is overwritten
520  *	with a negative errno code and NULL is returned. The function checks
521  *	for both invalid handles and passing a handle which is not a socket.
522  *
523  *	On a success the socket object pointer is returned.
524  */
525 
526 struct socket *sockfd_lookup(int fd, int *err)
527 {
528 	struct file *file;
529 	struct socket *sock;
530 
531 	file = fget(fd);
532 	if (!file) {
533 		*err = -EBADF;
534 		return NULL;
535 	}
536 
537 	sock = sock_from_file(file);
538 	if (!sock) {
539 		*err = -ENOTSOCK;
540 		fput(file);
541 	}
542 	return sock;
543 }
544 EXPORT_SYMBOL(sockfd_lookup);
545 
546 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
547 {
548 	struct fd f = fdget(fd);
549 	struct socket *sock;
550 
551 	*err = -EBADF;
552 	if (f.file) {
553 		sock = sock_from_file(f.file);
554 		if (likely(sock)) {
555 			*fput_needed = f.flags & FDPUT_FPUT;
556 			return sock;
557 		}
558 		*err = -ENOTSOCK;
559 		fdput(f);
560 	}
561 	return NULL;
562 }
563 
564 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
565 				size_t size)
566 {
567 	ssize_t len;
568 	ssize_t used = 0;
569 
570 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
571 	if (len < 0)
572 		return len;
573 	used += len;
574 	if (buffer) {
575 		if (size < used)
576 			return -ERANGE;
577 		buffer += len;
578 	}
579 
580 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
581 	used += len;
582 	if (buffer) {
583 		if (size < used)
584 			return -ERANGE;
585 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
586 		buffer += len;
587 	}
588 
589 	return used;
590 }
591 
592 static int sockfs_setattr(struct user_namespace *mnt_userns,
593 			  struct dentry *dentry, struct iattr *iattr)
594 {
595 	int err = simple_setattr(&init_user_ns, dentry, iattr);
596 
597 	if (!err && (iattr->ia_valid & ATTR_UID)) {
598 		struct socket *sock = SOCKET_I(d_inode(dentry));
599 
600 		if (sock->sk)
601 			sock->sk->sk_uid = iattr->ia_uid;
602 		else
603 			err = -ENOENT;
604 	}
605 
606 	return err;
607 }
608 
609 static const struct inode_operations sockfs_inode_ops = {
610 	.listxattr = sockfs_listxattr,
611 	.setattr = sockfs_setattr,
612 };
613 
614 /**
615  *	sock_alloc - allocate a socket
616  *
617  *	Allocate a new inode and socket object. The two are bound together
618  *	and initialised. The socket is then returned. If we are out of inodes
619  *	NULL is returned. This functions uses GFP_KERNEL internally.
620  */
621 
622 struct socket *sock_alloc(void)
623 {
624 	struct inode *inode;
625 	struct socket *sock;
626 
627 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
628 	if (!inode)
629 		return NULL;
630 
631 	sock = SOCKET_I(inode);
632 
633 	inode->i_ino = get_next_ino();
634 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
635 	inode->i_uid = current_fsuid();
636 	inode->i_gid = current_fsgid();
637 	inode->i_op = &sockfs_inode_ops;
638 
639 	return sock;
640 }
641 EXPORT_SYMBOL(sock_alloc);
642 
643 static void __sock_release(struct socket *sock, struct inode *inode)
644 {
645 	if (sock->ops) {
646 		struct module *owner = sock->ops->owner;
647 
648 		if (inode)
649 			inode_lock(inode);
650 		sock->ops->release(sock);
651 		sock->sk = NULL;
652 		if (inode)
653 			inode_unlock(inode);
654 		sock->ops = NULL;
655 		module_put(owner);
656 	}
657 
658 	if (sock->wq.fasync_list)
659 		pr_err("%s: fasync list not empty!\n", __func__);
660 
661 	if (!sock->file) {
662 		iput(SOCK_INODE(sock));
663 		return;
664 	}
665 	sock->file = NULL;
666 }
667 
668 /**
669  *	sock_release - close a socket
670  *	@sock: socket to close
671  *
672  *	The socket is released from the protocol stack if it has a release
673  *	callback, and the inode is then released if the socket is bound to
674  *	an inode not a file.
675  */
676 void sock_release(struct socket *sock)
677 {
678 	__sock_release(sock, NULL);
679 }
680 EXPORT_SYMBOL(sock_release);
681 
682 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
683 {
684 	u8 flags = *tx_flags;
685 
686 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
687 		flags |= SKBTX_HW_TSTAMP;
688 
689 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
690 		flags |= SKBTX_SW_TSTAMP;
691 
692 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
693 		flags |= SKBTX_SCHED_TSTAMP;
694 
695 	*tx_flags = flags;
696 }
697 EXPORT_SYMBOL(__sock_tx_timestamp);
698 
699 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
700 					   size_t));
701 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
702 					    size_t));
703 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
704 {
705 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
706 				     inet_sendmsg, sock, msg,
707 				     msg_data_left(msg));
708 	BUG_ON(ret == -EIOCBQUEUED);
709 	return ret;
710 }
711 
712 /**
713  *	sock_sendmsg - send a message through @sock
714  *	@sock: socket
715  *	@msg: message to send
716  *
717  *	Sends @msg through @sock, passing through LSM.
718  *	Returns the number of bytes sent, or an error code.
719  */
720 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
721 {
722 	int err = security_socket_sendmsg(sock, msg,
723 					  msg_data_left(msg));
724 
725 	return err ?: sock_sendmsg_nosec(sock, msg);
726 }
727 EXPORT_SYMBOL(sock_sendmsg);
728 
729 /**
730  *	kernel_sendmsg - send a message through @sock (kernel-space)
731  *	@sock: socket
732  *	@msg: message header
733  *	@vec: kernel vec
734  *	@num: vec array length
735  *	@size: total message data size
736  *
737  *	Builds the message data with @vec and sends it through @sock.
738  *	Returns the number of bytes sent, or an error code.
739  */
740 
741 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
742 		   struct kvec *vec, size_t num, size_t size)
743 {
744 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
745 	return sock_sendmsg(sock, msg);
746 }
747 EXPORT_SYMBOL(kernel_sendmsg);
748 
749 /**
750  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
751  *	@sk: sock
752  *	@msg: message header
753  *	@vec: output s/g array
754  *	@num: output s/g array length
755  *	@size: total message data size
756  *
757  *	Builds the message data with @vec and sends it through @sock.
758  *	Returns the number of bytes sent, or an error code.
759  *	Caller must hold @sk.
760  */
761 
762 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
763 			  struct kvec *vec, size_t num, size_t size)
764 {
765 	struct socket *sock = sk->sk_socket;
766 
767 	if (!sock->ops->sendmsg_locked)
768 		return sock_no_sendmsg_locked(sk, msg, size);
769 
770 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
771 
772 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
773 }
774 EXPORT_SYMBOL(kernel_sendmsg_locked);
775 
776 static bool skb_is_err_queue(const struct sk_buff *skb)
777 {
778 	/* pkt_type of skbs enqueued on the error queue are set to
779 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
780 	 * in recvmsg, since skbs received on a local socket will never
781 	 * have a pkt_type of PACKET_OUTGOING.
782 	 */
783 	return skb->pkt_type == PACKET_OUTGOING;
784 }
785 
786 /* On transmit, software and hardware timestamps are returned independently.
787  * As the two skb clones share the hardware timestamp, which may be updated
788  * before the software timestamp is received, a hardware TX timestamp may be
789  * returned only if there is no software TX timestamp. Ignore false software
790  * timestamps, which may be made in the __sock_recv_timestamp() call when the
791  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
792  * hardware timestamp.
793  */
794 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
795 {
796 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
797 }
798 
799 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
800 {
801 	struct scm_ts_pktinfo ts_pktinfo;
802 	struct net_device *orig_dev;
803 
804 	if (!skb_mac_header_was_set(skb))
805 		return;
806 
807 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
808 
809 	rcu_read_lock();
810 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
811 	if (orig_dev)
812 		ts_pktinfo.if_index = orig_dev->ifindex;
813 	rcu_read_unlock();
814 
815 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
816 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
817 		 sizeof(ts_pktinfo), &ts_pktinfo);
818 }
819 
820 /*
821  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
822  */
823 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
824 	struct sk_buff *skb)
825 {
826 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
827 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
828 	struct scm_timestamping_internal tss;
829 
830 	int empty = 1, false_tstamp = 0;
831 	struct skb_shared_hwtstamps *shhwtstamps =
832 		skb_hwtstamps(skb);
833 	ktime_t hwtstamp;
834 
835 	/* Race occurred between timestamp enabling and packet
836 	   receiving.  Fill in the current time for now. */
837 	if (need_software_tstamp && skb->tstamp == 0) {
838 		__net_timestamp(skb);
839 		false_tstamp = 1;
840 	}
841 
842 	if (need_software_tstamp) {
843 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
844 			if (new_tstamp) {
845 				struct __kernel_sock_timeval tv;
846 
847 				skb_get_new_timestamp(skb, &tv);
848 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
849 					 sizeof(tv), &tv);
850 			} else {
851 				struct __kernel_old_timeval tv;
852 
853 				skb_get_timestamp(skb, &tv);
854 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
855 					 sizeof(tv), &tv);
856 			}
857 		} else {
858 			if (new_tstamp) {
859 				struct __kernel_timespec ts;
860 
861 				skb_get_new_timestampns(skb, &ts);
862 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
863 					 sizeof(ts), &ts);
864 			} else {
865 				struct __kernel_old_timespec ts;
866 
867 				skb_get_timestampns(skb, &ts);
868 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
869 					 sizeof(ts), &ts);
870 			}
871 		}
872 	}
873 
874 	memset(&tss, 0, sizeof(tss));
875 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
876 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
877 		empty = 0;
878 	if (shhwtstamps &&
879 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
880 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
881 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
882 			hwtstamp = ptp_convert_timestamp(shhwtstamps,
883 							 sk->sk_bind_phc);
884 		else
885 			hwtstamp = shhwtstamps->hwtstamp;
886 
887 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
888 			empty = 0;
889 
890 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
891 			    !skb_is_err_queue(skb))
892 				put_ts_pktinfo(msg, skb);
893 		}
894 	}
895 	if (!empty) {
896 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
897 			put_cmsg_scm_timestamping64(msg, &tss);
898 		else
899 			put_cmsg_scm_timestamping(msg, &tss);
900 
901 		if (skb_is_err_queue(skb) && skb->len &&
902 		    SKB_EXT_ERR(skb)->opt_stats)
903 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
904 				 skb->len, skb->data);
905 	}
906 }
907 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
908 
909 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
910 	struct sk_buff *skb)
911 {
912 	int ack;
913 
914 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
915 		return;
916 	if (!skb->wifi_acked_valid)
917 		return;
918 
919 	ack = skb->wifi_acked;
920 
921 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
922 }
923 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
924 
925 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
926 				   struct sk_buff *skb)
927 {
928 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
929 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
930 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
931 }
932 
933 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
934 	struct sk_buff *skb)
935 {
936 	sock_recv_timestamp(msg, sk, skb);
937 	sock_recv_drops(msg, sk, skb);
938 }
939 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
940 
941 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
942 					   size_t, int));
943 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
944 					    size_t, int));
945 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
946 				     int flags)
947 {
948 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
949 				  inet_recvmsg, sock, msg, msg_data_left(msg),
950 				  flags);
951 }
952 
953 /**
954  *	sock_recvmsg - receive a message from @sock
955  *	@sock: socket
956  *	@msg: message to receive
957  *	@flags: message flags
958  *
959  *	Receives @msg from @sock, passing through LSM. Returns the total number
960  *	of bytes received, or an error.
961  */
962 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
963 {
964 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
965 
966 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
967 }
968 EXPORT_SYMBOL(sock_recvmsg);
969 
970 /**
971  *	kernel_recvmsg - Receive a message from a socket (kernel space)
972  *	@sock: The socket to receive the message from
973  *	@msg: Received message
974  *	@vec: Input s/g array for message data
975  *	@num: Size of input s/g array
976  *	@size: Number of bytes to read
977  *	@flags: Message flags (MSG_DONTWAIT, etc...)
978  *
979  *	On return the msg structure contains the scatter/gather array passed in the
980  *	vec argument. The array is modified so that it consists of the unfilled
981  *	portion of the original array.
982  *
983  *	The returned value is the total number of bytes received, or an error.
984  */
985 
986 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
987 		   struct kvec *vec, size_t num, size_t size, int flags)
988 {
989 	msg->msg_control_is_user = false;
990 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
991 	return sock_recvmsg(sock, msg, flags);
992 }
993 EXPORT_SYMBOL(kernel_recvmsg);
994 
995 static ssize_t sock_sendpage(struct file *file, struct page *page,
996 			     int offset, size_t size, loff_t *ppos, int more)
997 {
998 	struct socket *sock;
999 	int flags;
1000 
1001 	sock = file->private_data;
1002 
1003 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1004 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1005 	flags |= more;
1006 
1007 	return kernel_sendpage(sock, page, offset, size, flags);
1008 }
1009 
1010 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1011 				struct pipe_inode_info *pipe, size_t len,
1012 				unsigned int flags)
1013 {
1014 	struct socket *sock = file->private_data;
1015 
1016 	if (unlikely(!sock->ops->splice_read))
1017 		return generic_file_splice_read(file, ppos, pipe, len, flags);
1018 
1019 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1020 }
1021 
1022 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1023 {
1024 	struct file *file = iocb->ki_filp;
1025 	struct socket *sock = file->private_data;
1026 	struct msghdr msg = {.msg_iter = *to,
1027 			     .msg_iocb = iocb};
1028 	ssize_t res;
1029 
1030 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1031 		msg.msg_flags = MSG_DONTWAIT;
1032 
1033 	if (iocb->ki_pos != 0)
1034 		return -ESPIPE;
1035 
1036 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1037 		return 0;
1038 
1039 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1040 	*to = msg.msg_iter;
1041 	return res;
1042 }
1043 
1044 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1045 {
1046 	struct file *file = iocb->ki_filp;
1047 	struct socket *sock = file->private_data;
1048 	struct msghdr msg = {.msg_iter = *from,
1049 			     .msg_iocb = iocb};
1050 	ssize_t res;
1051 
1052 	if (iocb->ki_pos != 0)
1053 		return -ESPIPE;
1054 
1055 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1056 		msg.msg_flags = MSG_DONTWAIT;
1057 
1058 	if (sock->type == SOCK_SEQPACKET)
1059 		msg.msg_flags |= MSG_EOR;
1060 
1061 	res = sock_sendmsg(sock, &msg);
1062 	*from = msg.msg_iter;
1063 	return res;
1064 }
1065 
1066 /*
1067  * Atomic setting of ioctl hooks to avoid race
1068  * with module unload.
1069  */
1070 
1071 static DEFINE_MUTEX(br_ioctl_mutex);
1072 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1073 			    unsigned int cmd, struct ifreq *ifr,
1074 			    void __user *uarg);
1075 
1076 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1077 			     unsigned int cmd, struct ifreq *ifr,
1078 			     void __user *uarg))
1079 {
1080 	mutex_lock(&br_ioctl_mutex);
1081 	br_ioctl_hook = hook;
1082 	mutex_unlock(&br_ioctl_mutex);
1083 }
1084 EXPORT_SYMBOL(brioctl_set);
1085 
1086 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1087 		  struct ifreq *ifr, void __user *uarg)
1088 {
1089 	int err = -ENOPKG;
1090 
1091 	if (!br_ioctl_hook)
1092 		request_module("bridge");
1093 
1094 	mutex_lock(&br_ioctl_mutex);
1095 	if (br_ioctl_hook)
1096 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1097 	mutex_unlock(&br_ioctl_mutex);
1098 
1099 	return err;
1100 }
1101 
1102 static DEFINE_MUTEX(vlan_ioctl_mutex);
1103 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1104 
1105 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1106 {
1107 	mutex_lock(&vlan_ioctl_mutex);
1108 	vlan_ioctl_hook = hook;
1109 	mutex_unlock(&vlan_ioctl_mutex);
1110 }
1111 EXPORT_SYMBOL(vlan_ioctl_set);
1112 
1113 static long sock_do_ioctl(struct net *net, struct socket *sock,
1114 			  unsigned int cmd, unsigned long arg)
1115 {
1116 	struct ifreq ifr;
1117 	bool need_copyout;
1118 	int err;
1119 	void __user *argp = (void __user *)arg;
1120 	void __user *data;
1121 
1122 	err = sock->ops->ioctl(sock, cmd, arg);
1123 
1124 	/*
1125 	 * If this ioctl is unknown try to hand it down
1126 	 * to the NIC driver.
1127 	 */
1128 	if (err != -ENOIOCTLCMD)
1129 		return err;
1130 
1131 	if (!is_socket_ioctl_cmd(cmd))
1132 		return -ENOTTY;
1133 
1134 	if (get_user_ifreq(&ifr, &data, argp))
1135 		return -EFAULT;
1136 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1137 	if (!err && need_copyout)
1138 		if (put_user_ifreq(&ifr, argp))
1139 			return -EFAULT;
1140 
1141 	return err;
1142 }
1143 
1144 /*
1145  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1146  *	what to do with it - that's up to the protocol still.
1147  */
1148 
1149 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1150 {
1151 	struct socket *sock;
1152 	struct sock *sk;
1153 	void __user *argp = (void __user *)arg;
1154 	int pid, err;
1155 	struct net *net;
1156 
1157 	sock = file->private_data;
1158 	sk = sock->sk;
1159 	net = sock_net(sk);
1160 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1161 		struct ifreq ifr;
1162 		void __user *data;
1163 		bool need_copyout;
1164 		if (get_user_ifreq(&ifr, &data, argp))
1165 			return -EFAULT;
1166 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1167 		if (!err && need_copyout)
1168 			if (put_user_ifreq(&ifr, argp))
1169 				return -EFAULT;
1170 	} else
1171 #ifdef CONFIG_WEXT_CORE
1172 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1173 		err = wext_handle_ioctl(net, cmd, argp);
1174 	} else
1175 #endif
1176 		switch (cmd) {
1177 		case FIOSETOWN:
1178 		case SIOCSPGRP:
1179 			err = -EFAULT;
1180 			if (get_user(pid, (int __user *)argp))
1181 				break;
1182 			err = f_setown(sock->file, pid, 1);
1183 			break;
1184 		case FIOGETOWN:
1185 		case SIOCGPGRP:
1186 			err = put_user(f_getown(sock->file),
1187 				       (int __user *)argp);
1188 			break;
1189 		case SIOCGIFBR:
1190 		case SIOCSIFBR:
1191 		case SIOCBRADDBR:
1192 		case SIOCBRDELBR:
1193 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1194 			break;
1195 		case SIOCGIFVLAN:
1196 		case SIOCSIFVLAN:
1197 			err = -ENOPKG;
1198 			if (!vlan_ioctl_hook)
1199 				request_module("8021q");
1200 
1201 			mutex_lock(&vlan_ioctl_mutex);
1202 			if (vlan_ioctl_hook)
1203 				err = vlan_ioctl_hook(net, argp);
1204 			mutex_unlock(&vlan_ioctl_mutex);
1205 			break;
1206 		case SIOCGSKNS:
1207 			err = -EPERM;
1208 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1209 				break;
1210 
1211 			err = open_related_ns(&net->ns, get_net_ns);
1212 			break;
1213 		case SIOCGSTAMP_OLD:
1214 		case SIOCGSTAMPNS_OLD:
1215 			if (!sock->ops->gettstamp) {
1216 				err = -ENOIOCTLCMD;
1217 				break;
1218 			}
1219 			err = sock->ops->gettstamp(sock, argp,
1220 						   cmd == SIOCGSTAMP_OLD,
1221 						   !IS_ENABLED(CONFIG_64BIT));
1222 			break;
1223 		case SIOCGSTAMP_NEW:
1224 		case SIOCGSTAMPNS_NEW:
1225 			if (!sock->ops->gettstamp) {
1226 				err = -ENOIOCTLCMD;
1227 				break;
1228 			}
1229 			err = sock->ops->gettstamp(sock, argp,
1230 						   cmd == SIOCGSTAMP_NEW,
1231 						   false);
1232 			break;
1233 
1234 		case SIOCGIFCONF:
1235 			err = dev_ifconf(net, argp);
1236 			break;
1237 
1238 		default:
1239 			err = sock_do_ioctl(net, sock, cmd, arg);
1240 			break;
1241 		}
1242 	return err;
1243 }
1244 
1245 /**
1246  *	sock_create_lite - creates a socket
1247  *	@family: protocol family (AF_INET, ...)
1248  *	@type: communication type (SOCK_STREAM, ...)
1249  *	@protocol: protocol (0, ...)
1250  *	@res: new socket
1251  *
1252  *	Creates a new socket and assigns it to @res, passing through LSM.
1253  *	The new socket initialization is not complete, see kernel_accept().
1254  *	Returns 0 or an error. On failure @res is set to %NULL.
1255  *	This function internally uses GFP_KERNEL.
1256  */
1257 
1258 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1259 {
1260 	int err;
1261 	struct socket *sock = NULL;
1262 
1263 	err = security_socket_create(family, type, protocol, 1);
1264 	if (err)
1265 		goto out;
1266 
1267 	sock = sock_alloc();
1268 	if (!sock) {
1269 		err = -ENOMEM;
1270 		goto out;
1271 	}
1272 
1273 	sock->type = type;
1274 	err = security_socket_post_create(sock, family, type, protocol, 1);
1275 	if (err)
1276 		goto out_release;
1277 
1278 out:
1279 	*res = sock;
1280 	return err;
1281 out_release:
1282 	sock_release(sock);
1283 	sock = NULL;
1284 	goto out;
1285 }
1286 EXPORT_SYMBOL(sock_create_lite);
1287 
1288 /* No kernel lock held - perfect */
1289 static __poll_t sock_poll(struct file *file, poll_table *wait)
1290 {
1291 	struct socket *sock = file->private_data;
1292 	__poll_t events = poll_requested_events(wait), flag = 0;
1293 
1294 	if (!sock->ops->poll)
1295 		return 0;
1296 
1297 	if (sk_can_busy_loop(sock->sk)) {
1298 		/* poll once if requested by the syscall */
1299 		if (events & POLL_BUSY_LOOP)
1300 			sk_busy_loop(sock->sk, 1);
1301 
1302 		/* if this socket can poll_ll, tell the system call */
1303 		flag = POLL_BUSY_LOOP;
1304 	}
1305 
1306 	return sock->ops->poll(file, sock, wait) | flag;
1307 }
1308 
1309 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1310 {
1311 	struct socket *sock = file->private_data;
1312 
1313 	return sock->ops->mmap(file, sock, vma);
1314 }
1315 
1316 static int sock_close(struct inode *inode, struct file *filp)
1317 {
1318 	__sock_release(SOCKET_I(inode), inode);
1319 	return 0;
1320 }
1321 
1322 /*
1323  *	Update the socket async list
1324  *
1325  *	Fasync_list locking strategy.
1326  *
1327  *	1. fasync_list is modified only under process context socket lock
1328  *	   i.e. under semaphore.
1329  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1330  *	   or under socket lock
1331  */
1332 
1333 static int sock_fasync(int fd, struct file *filp, int on)
1334 {
1335 	struct socket *sock = filp->private_data;
1336 	struct sock *sk = sock->sk;
1337 	struct socket_wq *wq = &sock->wq;
1338 
1339 	if (sk == NULL)
1340 		return -EINVAL;
1341 
1342 	lock_sock(sk);
1343 	fasync_helper(fd, filp, on, &wq->fasync_list);
1344 
1345 	if (!wq->fasync_list)
1346 		sock_reset_flag(sk, SOCK_FASYNC);
1347 	else
1348 		sock_set_flag(sk, SOCK_FASYNC);
1349 
1350 	release_sock(sk);
1351 	return 0;
1352 }
1353 
1354 /* This function may be called only under rcu_lock */
1355 
1356 int sock_wake_async(struct socket_wq *wq, int how, int band)
1357 {
1358 	if (!wq || !wq->fasync_list)
1359 		return -1;
1360 
1361 	switch (how) {
1362 	case SOCK_WAKE_WAITD:
1363 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1364 			break;
1365 		goto call_kill;
1366 	case SOCK_WAKE_SPACE:
1367 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1368 			break;
1369 		fallthrough;
1370 	case SOCK_WAKE_IO:
1371 call_kill:
1372 		kill_fasync(&wq->fasync_list, SIGIO, band);
1373 		break;
1374 	case SOCK_WAKE_URG:
1375 		kill_fasync(&wq->fasync_list, SIGURG, band);
1376 	}
1377 
1378 	return 0;
1379 }
1380 EXPORT_SYMBOL(sock_wake_async);
1381 
1382 /**
1383  *	__sock_create - creates a socket
1384  *	@net: net namespace
1385  *	@family: protocol family (AF_INET, ...)
1386  *	@type: communication type (SOCK_STREAM, ...)
1387  *	@protocol: protocol (0, ...)
1388  *	@res: new socket
1389  *	@kern: boolean for kernel space sockets
1390  *
1391  *	Creates a new socket and assigns it to @res, passing through LSM.
1392  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1393  *	be set to true if the socket resides in kernel space.
1394  *	This function internally uses GFP_KERNEL.
1395  */
1396 
1397 int __sock_create(struct net *net, int family, int type, int protocol,
1398 			 struct socket **res, int kern)
1399 {
1400 	int err;
1401 	struct socket *sock;
1402 	const struct net_proto_family *pf;
1403 
1404 	/*
1405 	 *      Check protocol is in range
1406 	 */
1407 	if (family < 0 || family >= NPROTO)
1408 		return -EAFNOSUPPORT;
1409 	if (type < 0 || type >= SOCK_MAX)
1410 		return -EINVAL;
1411 
1412 	/* Compatibility.
1413 
1414 	   This uglymoron is moved from INET layer to here to avoid
1415 	   deadlock in module load.
1416 	 */
1417 	if (family == PF_INET && type == SOCK_PACKET) {
1418 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1419 			     current->comm);
1420 		family = PF_PACKET;
1421 	}
1422 
1423 	err = security_socket_create(family, type, protocol, kern);
1424 	if (err)
1425 		return err;
1426 
1427 	/*
1428 	 *	Allocate the socket and allow the family to set things up. if
1429 	 *	the protocol is 0, the family is instructed to select an appropriate
1430 	 *	default.
1431 	 */
1432 	sock = sock_alloc();
1433 	if (!sock) {
1434 		net_warn_ratelimited("socket: no more sockets\n");
1435 		return -ENFILE;	/* Not exactly a match, but its the
1436 				   closest posix thing */
1437 	}
1438 
1439 	sock->type = type;
1440 
1441 #ifdef CONFIG_MODULES
1442 	/* Attempt to load a protocol module if the find failed.
1443 	 *
1444 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1445 	 * requested real, full-featured networking support upon configuration.
1446 	 * Otherwise module support will break!
1447 	 */
1448 	if (rcu_access_pointer(net_families[family]) == NULL)
1449 		request_module("net-pf-%d", family);
1450 #endif
1451 
1452 	rcu_read_lock();
1453 	pf = rcu_dereference(net_families[family]);
1454 	err = -EAFNOSUPPORT;
1455 	if (!pf)
1456 		goto out_release;
1457 
1458 	/*
1459 	 * We will call the ->create function, that possibly is in a loadable
1460 	 * module, so we have to bump that loadable module refcnt first.
1461 	 */
1462 	if (!try_module_get(pf->owner))
1463 		goto out_release;
1464 
1465 	/* Now protected by module ref count */
1466 	rcu_read_unlock();
1467 
1468 	err = pf->create(net, sock, protocol, kern);
1469 	if (err < 0)
1470 		goto out_module_put;
1471 
1472 	/*
1473 	 * Now to bump the refcnt of the [loadable] module that owns this
1474 	 * socket at sock_release time we decrement its refcnt.
1475 	 */
1476 	if (!try_module_get(sock->ops->owner))
1477 		goto out_module_busy;
1478 
1479 	/*
1480 	 * Now that we're done with the ->create function, the [loadable]
1481 	 * module can have its refcnt decremented
1482 	 */
1483 	module_put(pf->owner);
1484 	err = security_socket_post_create(sock, family, type, protocol, kern);
1485 	if (err)
1486 		goto out_sock_release;
1487 	*res = sock;
1488 
1489 	return 0;
1490 
1491 out_module_busy:
1492 	err = -EAFNOSUPPORT;
1493 out_module_put:
1494 	sock->ops = NULL;
1495 	module_put(pf->owner);
1496 out_sock_release:
1497 	sock_release(sock);
1498 	return err;
1499 
1500 out_release:
1501 	rcu_read_unlock();
1502 	goto out_sock_release;
1503 }
1504 EXPORT_SYMBOL(__sock_create);
1505 
1506 /**
1507  *	sock_create - creates a socket
1508  *	@family: protocol family (AF_INET, ...)
1509  *	@type: communication type (SOCK_STREAM, ...)
1510  *	@protocol: protocol (0, ...)
1511  *	@res: new socket
1512  *
1513  *	A wrapper around __sock_create().
1514  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1515  */
1516 
1517 int sock_create(int family, int type, int protocol, struct socket **res)
1518 {
1519 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1520 }
1521 EXPORT_SYMBOL(sock_create);
1522 
1523 /**
1524  *	sock_create_kern - creates a socket (kernel space)
1525  *	@net: net namespace
1526  *	@family: protocol family (AF_INET, ...)
1527  *	@type: communication type (SOCK_STREAM, ...)
1528  *	@protocol: protocol (0, ...)
1529  *	@res: new socket
1530  *
1531  *	A wrapper around __sock_create().
1532  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1533  */
1534 
1535 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1536 {
1537 	return __sock_create(net, family, type, protocol, res, 1);
1538 }
1539 EXPORT_SYMBOL(sock_create_kern);
1540 
1541 static struct socket *__sys_socket_create(int family, int type, int protocol)
1542 {
1543 	struct socket *sock;
1544 	int retval;
1545 
1546 	/* Check the SOCK_* constants for consistency.  */
1547 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1548 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1549 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1550 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1551 
1552 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1553 		return ERR_PTR(-EINVAL);
1554 	type &= SOCK_TYPE_MASK;
1555 
1556 	retval = sock_create(family, type, protocol, &sock);
1557 	if (retval < 0)
1558 		return ERR_PTR(retval);
1559 
1560 	return sock;
1561 }
1562 
1563 struct file *__sys_socket_file(int family, int type, int protocol)
1564 {
1565 	struct socket *sock;
1566 	struct file *file;
1567 	int flags;
1568 
1569 	sock = __sys_socket_create(family, type, protocol);
1570 	if (IS_ERR(sock))
1571 		return ERR_CAST(sock);
1572 
1573 	flags = type & ~SOCK_TYPE_MASK;
1574 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1575 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1576 
1577 	file = sock_alloc_file(sock, flags, NULL);
1578 	if (IS_ERR(file))
1579 		sock_release(sock);
1580 
1581 	return file;
1582 }
1583 
1584 int __sys_socket(int family, int type, int protocol)
1585 {
1586 	struct socket *sock;
1587 	int flags;
1588 
1589 	sock = __sys_socket_create(family, type, protocol);
1590 	if (IS_ERR(sock))
1591 		return PTR_ERR(sock);
1592 
1593 	flags = type & ~SOCK_TYPE_MASK;
1594 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1595 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1596 
1597 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1598 }
1599 
1600 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1601 {
1602 	return __sys_socket(family, type, protocol);
1603 }
1604 
1605 /*
1606  *	Create a pair of connected sockets.
1607  */
1608 
1609 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1610 {
1611 	struct socket *sock1, *sock2;
1612 	int fd1, fd2, err;
1613 	struct file *newfile1, *newfile2;
1614 	int flags;
1615 
1616 	flags = type & ~SOCK_TYPE_MASK;
1617 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1618 		return -EINVAL;
1619 	type &= SOCK_TYPE_MASK;
1620 
1621 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1622 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1623 
1624 	/*
1625 	 * reserve descriptors and make sure we won't fail
1626 	 * to return them to userland.
1627 	 */
1628 	fd1 = get_unused_fd_flags(flags);
1629 	if (unlikely(fd1 < 0))
1630 		return fd1;
1631 
1632 	fd2 = get_unused_fd_flags(flags);
1633 	if (unlikely(fd2 < 0)) {
1634 		put_unused_fd(fd1);
1635 		return fd2;
1636 	}
1637 
1638 	err = put_user(fd1, &usockvec[0]);
1639 	if (err)
1640 		goto out;
1641 
1642 	err = put_user(fd2, &usockvec[1]);
1643 	if (err)
1644 		goto out;
1645 
1646 	/*
1647 	 * Obtain the first socket and check if the underlying protocol
1648 	 * supports the socketpair call.
1649 	 */
1650 
1651 	err = sock_create(family, type, protocol, &sock1);
1652 	if (unlikely(err < 0))
1653 		goto out;
1654 
1655 	err = sock_create(family, type, protocol, &sock2);
1656 	if (unlikely(err < 0)) {
1657 		sock_release(sock1);
1658 		goto out;
1659 	}
1660 
1661 	err = security_socket_socketpair(sock1, sock2);
1662 	if (unlikely(err)) {
1663 		sock_release(sock2);
1664 		sock_release(sock1);
1665 		goto out;
1666 	}
1667 
1668 	err = sock1->ops->socketpair(sock1, sock2);
1669 	if (unlikely(err < 0)) {
1670 		sock_release(sock2);
1671 		sock_release(sock1);
1672 		goto out;
1673 	}
1674 
1675 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1676 	if (IS_ERR(newfile1)) {
1677 		err = PTR_ERR(newfile1);
1678 		sock_release(sock2);
1679 		goto out;
1680 	}
1681 
1682 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1683 	if (IS_ERR(newfile2)) {
1684 		err = PTR_ERR(newfile2);
1685 		fput(newfile1);
1686 		goto out;
1687 	}
1688 
1689 	audit_fd_pair(fd1, fd2);
1690 
1691 	fd_install(fd1, newfile1);
1692 	fd_install(fd2, newfile2);
1693 	return 0;
1694 
1695 out:
1696 	put_unused_fd(fd2);
1697 	put_unused_fd(fd1);
1698 	return err;
1699 }
1700 
1701 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1702 		int __user *, usockvec)
1703 {
1704 	return __sys_socketpair(family, type, protocol, usockvec);
1705 }
1706 
1707 /*
1708  *	Bind a name to a socket. Nothing much to do here since it's
1709  *	the protocol's responsibility to handle the local address.
1710  *
1711  *	We move the socket address to kernel space before we call
1712  *	the protocol layer (having also checked the address is ok).
1713  */
1714 
1715 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1716 {
1717 	struct socket *sock;
1718 	struct sockaddr_storage address;
1719 	int err, fput_needed;
1720 
1721 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1722 	if (sock) {
1723 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1724 		if (!err) {
1725 			err = security_socket_bind(sock,
1726 						   (struct sockaddr *)&address,
1727 						   addrlen);
1728 			if (!err)
1729 				err = sock->ops->bind(sock,
1730 						      (struct sockaddr *)
1731 						      &address, addrlen);
1732 		}
1733 		fput_light(sock->file, fput_needed);
1734 	}
1735 	return err;
1736 }
1737 
1738 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1739 {
1740 	return __sys_bind(fd, umyaddr, addrlen);
1741 }
1742 
1743 /*
1744  *	Perform a listen. Basically, we allow the protocol to do anything
1745  *	necessary for a listen, and if that works, we mark the socket as
1746  *	ready for listening.
1747  */
1748 
1749 int __sys_listen(int fd, int backlog)
1750 {
1751 	struct socket *sock;
1752 	int err, fput_needed;
1753 	int somaxconn;
1754 
1755 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1756 	if (sock) {
1757 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1758 		if ((unsigned int)backlog > somaxconn)
1759 			backlog = somaxconn;
1760 
1761 		err = security_socket_listen(sock, backlog);
1762 		if (!err)
1763 			err = sock->ops->listen(sock, backlog);
1764 
1765 		fput_light(sock->file, fput_needed);
1766 	}
1767 	return err;
1768 }
1769 
1770 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1771 {
1772 	return __sys_listen(fd, backlog);
1773 }
1774 
1775 struct file *do_accept(struct file *file, unsigned file_flags,
1776 		       struct sockaddr __user *upeer_sockaddr,
1777 		       int __user *upeer_addrlen, int flags)
1778 {
1779 	struct socket *sock, *newsock;
1780 	struct file *newfile;
1781 	int err, len;
1782 	struct sockaddr_storage address;
1783 
1784 	sock = sock_from_file(file);
1785 	if (!sock)
1786 		return ERR_PTR(-ENOTSOCK);
1787 
1788 	newsock = sock_alloc();
1789 	if (!newsock)
1790 		return ERR_PTR(-ENFILE);
1791 
1792 	newsock->type = sock->type;
1793 	newsock->ops = sock->ops;
1794 
1795 	/*
1796 	 * We don't need try_module_get here, as the listening socket (sock)
1797 	 * has the protocol module (sock->ops->owner) held.
1798 	 */
1799 	__module_get(newsock->ops->owner);
1800 
1801 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1802 	if (IS_ERR(newfile))
1803 		return newfile;
1804 
1805 	err = security_socket_accept(sock, newsock);
1806 	if (err)
1807 		goto out_fd;
1808 
1809 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1810 					false);
1811 	if (err < 0)
1812 		goto out_fd;
1813 
1814 	if (upeer_sockaddr) {
1815 		len = newsock->ops->getname(newsock,
1816 					(struct sockaddr *)&address, 2);
1817 		if (len < 0) {
1818 			err = -ECONNABORTED;
1819 			goto out_fd;
1820 		}
1821 		err = move_addr_to_user(&address,
1822 					len, upeer_sockaddr, upeer_addrlen);
1823 		if (err < 0)
1824 			goto out_fd;
1825 	}
1826 
1827 	/* File flags are not inherited via accept() unlike another OSes. */
1828 	return newfile;
1829 out_fd:
1830 	fput(newfile);
1831 	return ERR_PTR(err);
1832 }
1833 
1834 int __sys_accept4_file(struct file *file, unsigned file_flags,
1835 		       struct sockaddr __user *upeer_sockaddr,
1836 		       int __user *upeer_addrlen, int flags,
1837 		       unsigned long nofile)
1838 {
1839 	struct file *newfile;
1840 	int newfd;
1841 
1842 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1843 		return -EINVAL;
1844 
1845 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1846 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1847 
1848 	newfd = __get_unused_fd_flags(flags, nofile);
1849 	if (unlikely(newfd < 0))
1850 		return newfd;
1851 
1852 	newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1853 			    flags);
1854 	if (IS_ERR(newfile)) {
1855 		put_unused_fd(newfd);
1856 		return PTR_ERR(newfile);
1857 	}
1858 	fd_install(newfd, newfile);
1859 	return newfd;
1860 }
1861 
1862 /*
1863  *	For accept, we attempt to create a new socket, set up the link
1864  *	with the client, wake up the client, then return the new
1865  *	connected fd. We collect the address of the connector in kernel
1866  *	space and move it to user at the very end. This is unclean because
1867  *	we open the socket then return an error.
1868  *
1869  *	1003.1g adds the ability to recvmsg() to query connection pending
1870  *	status to recvmsg. We need to add that support in a way thats
1871  *	clean when we restructure accept also.
1872  */
1873 
1874 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1875 		  int __user *upeer_addrlen, int flags)
1876 {
1877 	int ret = -EBADF;
1878 	struct fd f;
1879 
1880 	f = fdget(fd);
1881 	if (f.file) {
1882 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1883 						upeer_addrlen, flags,
1884 						rlimit(RLIMIT_NOFILE));
1885 		fdput(f);
1886 	}
1887 
1888 	return ret;
1889 }
1890 
1891 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1892 		int __user *, upeer_addrlen, int, flags)
1893 {
1894 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1895 }
1896 
1897 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1898 		int __user *, upeer_addrlen)
1899 {
1900 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1901 }
1902 
1903 /*
1904  *	Attempt to connect to a socket with the server address.  The address
1905  *	is in user space so we verify it is OK and move it to kernel space.
1906  *
1907  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1908  *	break bindings
1909  *
1910  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1911  *	other SEQPACKET protocols that take time to connect() as it doesn't
1912  *	include the -EINPROGRESS status for such sockets.
1913  */
1914 
1915 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1916 		       int addrlen, int file_flags)
1917 {
1918 	struct socket *sock;
1919 	int err;
1920 
1921 	sock = sock_from_file(file);
1922 	if (!sock) {
1923 		err = -ENOTSOCK;
1924 		goto out;
1925 	}
1926 
1927 	err =
1928 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1929 	if (err)
1930 		goto out;
1931 
1932 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1933 				 sock->file->f_flags | file_flags);
1934 out:
1935 	return err;
1936 }
1937 
1938 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1939 {
1940 	int ret = -EBADF;
1941 	struct fd f;
1942 
1943 	f = fdget(fd);
1944 	if (f.file) {
1945 		struct sockaddr_storage address;
1946 
1947 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1948 		if (!ret)
1949 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1950 		fdput(f);
1951 	}
1952 
1953 	return ret;
1954 }
1955 
1956 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1957 		int, addrlen)
1958 {
1959 	return __sys_connect(fd, uservaddr, addrlen);
1960 }
1961 
1962 /*
1963  *	Get the local address ('name') of a socket object. Move the obtained
1964  *	name to user space.
1965  */
1966 
1967 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1968 		      int __user *usockaddr_len)
1969 {
1970 	struct socket *sock;
1971 	struct sockaddr_storage address;
1972 	int err, fput_needed;
1973 
1974 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1975 	if (!sock)
1976 		goto out;
1977 
1978 	err = security_socket_getsockname(sock);
1979 	if (err)
1980 		goto out_put;
1981 
1982 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1983 	if (err < 0)
1984 		goto out_put;
1985 	/* "err" is actually length in this case */
1986 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1987 
1988 out_put:
1989 	fput_light(sock->file, fput_needed);
1990 out:
1991 	return err;
1992 }
1993 
1994 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1995 		int __user *, usockaddr_len)
1996 {
1997 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1998 }
1999 
2000 /*
2001  *	Get the remote address ('name') of a socket object. Move the obtained
2002  *	name to user space.
2003  */
2004 
2005 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2006 		      int __user *usockaddr_len)
2007 {
2008 	struct socket *sock;
2009 	struct sockaddr_storage address;
2010 	int err, fput_needed;
2011 
2012 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2013 	if (sock != NULL) {
2014 		err = security_socket_getpeername(sock);
2015 		if (err) {
2016 			fput_light(sock->file, fput_needed);
2017 			return err;
2018 		}
2019 
2020 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2021 		if (err >= 0)
2022 			/* "err" is actually length in this case */
2023 			err = move_addr_to_user(&address, err, usockaddr,
2024 						usockaddr_len);
2025 		fput_light(sock->file, fput_needed);
2026 	}
2027 	return err;
2028 }
2029 
2030 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2031 		int __user *, usockaddr_len)
2032 {
2033 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2034 }
2035 
2036 /*
2037  *	Send a datagram to a given address. We move the address into kernel
2038  *	space and check the user space data area is readable before invoking
2039  *	the protocol.
2040  */
2041 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2042 		 struct sockaddr __user *addr,  int addr_len)
2043 {
2044 	struct socket *sock;
2045 	struct sockaddr_storage address;
2046 	int err;
2047 	struct msghdr msg;
2048 	struct iovec iov;
2049 	int fput_needed;
2050 
2051 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2052 	if (unlikely(err))
2053 		return err;
2054 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2055 	if (!sock)
2056 		goto out;
2057 
2058 	msg.msg_name = NULL;
2059 	msg.msg_control = NULL;
2060 	msg.msg_controllen = 0;
2061 	msg.msg_namelen = 0;
2062 	if (addr) {
2063 		err = move_addr_to_kernel(addr, addr_len, &address);
2064 		if (err < 0)
2065 			goto out_put;
2066 		msg.msg_name = (struct sockaddr *)&address;
2067 		msg.msg_namelen = addr_len;
2068 	}
2069 	if (sock->file->f_flags & O_NONBLOCK)
2070 		flags |= MSG_DONTWAIT;
2071 	msg.msg_flags = flags;
2072 	err = sock_sendmsg(sock, &msg);
2073 
2074 out_put:
2075 	fput_light(sock->file, fput_needed);
2076 out:
2077 	return err;
2078 }
2079 
2080 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2081 		unsigned int, flags, struct sockaddr __user *, addr,
2082 		int, addr_len)
2083 {
2084 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2085 }
2086 
2087 /*
2088  *	Send a datagram down a socket.
2089  */
2090 
2091 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2092 		unsigned int, flags)
2093 {
2094 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2095 }
2096 
2097 /*
2098  *	Receive a frame from the socket and optionally record the address of the
2099  *	sender. We verify the buffers are writable and if needed move the
2100  *	sender address from kernel to user space.
2101  */
2102 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2103 		   struct sockaddr __user *addr, int __user *addr_len)
2104 {
2105 	struct socket *sock;
2106 	struct iovec iov;
2107 	struct msghdr msg;
2108 	struct sockaddr_storage address;
2109 	int err, err2;
2110 	int fput_needed;
2111 
2112 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2113 	if (unlikely(err))
2114 		return err;
2115 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2116 	if (!sock)
2117 		goto out;
2118 
2119 	msg.msg_control = NULL;
2120 	msg.msg_controllen = 0;
2121 	/* Save some cycles and don't copy the address if not needed */
2122 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2123 	/* We assume all kernel code knows the size of sockaddr_storage */
2124 	msg.msg_namelen = 0;
2125 	msg.msg_iocb = NULL;
2126 	msg.msg_flags = 0;
2127 	if (sock->file->f_flags & O_NONBLOCK)
2128 		flags |= MSG_DONTWAIT;
2129 	err = sock_recvmsg(sock, &msg, flags);
2130 
2131 	if (err >= 0 && addr != NULL) {
2132 		err2 = move_addr_to_user(&address,
2133 					 msg.msg_namelen, addr, addr_len);
2134 		if (err2 < 0)
2135 			err = err2;
2136 	}
2137 
2138 	fput_light(sock->file, fput_needed);
2139 out:
2140 	return err;
2141 }
2142 
2143 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2144 		unsigned int, flags, struct sockaddr __user *, addr,
2145 		int __user *, addr_len)
2146 {
2147 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2148 }
2149 
2150 /*
2151  *	Receive a datagram from a socket.
2152  */
2153 
2154 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2155 		unsigned int, flags)
2156 {
2157 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2158 }
2159 
2160 static bool sock_use_custom_sol_socket(const struct socket *sock)
2161 {
2162 	const struct sock *sk = sock->sk;
2163 
2164 	/* Use sock->ops->setsockopt() for MPTCP */
2165 	return IS_ENABLED(CONFIG_MPTCP) &&
2166 	       sk->sk_protocol == IPPROTO_MPTCP &&
2167 	       sk->sk_type == SOCK_STREAM &&
2168 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2169 }
2170 
2171 /*
2172  *	Set a socket option. Because we don't know the option lengths we have
2173  *	to pass the user mode parameter for the protocols to sort out.
2174  */
2175 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2176 		int optlen)
2177 {
2178 	sockptr_t optval = USER_SOCKPTR(user_optval);
2179 	char *kernel_optval = NULL;
2180 	int err, fput_needed;
2181 	struct socket *sock;
2182 
2183 	if (optlen < 0)
2184 		return -EINVAL;
2185 
2186 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187 	if (!sock)
2188 		return err;
2189 
2190 	err = security_socket_setsockopt(sock, level, optname);
2191 	if (err)
2192 		goto out_put;
2193 
2194 	if (!in_compat_syscall())
2195 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2196 						     user_optval, &optlen,
2197 						     &kernel_optval);
2198 	if (err < 0)
2199 		goto out_put;
2200 	if (err > 0) {
2201 		err = 0;
2202 		goto out_put;
2203 	}
2204 
2205 	if (kernel_optval)
2206 		optval = KERNEL_SOCKPTR(kernel_optval);
2207 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2208 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2209 	else if (unlikely(!sock->ops->setsockopt))
2210 		err = -EOPNOTSUPP;
2211 	else
2212 		err = sock->ops->setsockopt(sock, level, optname, optval,
2213 					    optlen);
2214 	kfree(kernel_optval);
2215 out_put:
2216 	fput_light(sock->file, fput_needed);
2217 	return err;
2218 }
2219 
2220 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2221 		char __user *, optval, int, optlen)
2222 {
2223 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2224 }
2225 
2226 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2227 							 int optname));
2228 
2229 /*
2230  *	Get a socket option. Because we don't know the option lengths we have
2231  *	to pass a user mode parameter for the protocols to sort out.
2232  */
2233 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2234 		int __user *optlen)
2235 {
2236 	int err, fput_needed;
2237 	struct socket *sock;
2238 	int max_optlen;
2239 
2240 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2241 	if (!sock)
2242 		return err;
2243 
2244 	err = security_socket_getsockopt(sock, level, optname);
2245 	if (err)
2246 		goto out_put;
2247 
2248 	if (!in_compat_syscall())
2249 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2250 
2251 	if (level == SOL_SOCKET)
2252 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2253 	else if (unlikely(!sock->ops->getsockopt))
2254 		err = -EOPNOTSUPP;
2255 	else
2256 		err = sock->ops->getsockopt(sock, level, optname, optval,
2257 					    optlen);
2258 
2259 	if (!in_compat_syscall())
2260 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2261 						     optval, optlen, max_optlen,
2262 						     err);
2263 out_put:
2264 	fput_light(sock->file, fput_needed);
2265 	return err;
2266 }
2267 
2268 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2269 		char __user *, optval, int __user *, optlen)
2270 {
2271 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2272 }
2273 
2274 /*
2275  *	Shutdown a socket.
2276  */
2277 
2278 int __sys_shutdown_sock(struct socket *sock, int how)
2279 {
2280 	int err;
2281 
2282 	err = security_socket_shutdown(sock, how);
2283 	if (!err)
2284 		err = sock->ops->shutdown(sock, how);
2285 
2286 	return err;
2287 }
2288 
2289 int __sys_shutdown(int fd, int how)
2290 {
2291 	int err, fput_needed;
2292 	struct socket *sock;
2293 
2294 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2295 	if (sock != NULL) {
2296 		err = __sys_shutdown_sock(sock, how);
2297 		fput_light(sock->file, fput_needed);
2298 	}
2299 	return err;
2300 }
2301 
2302 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2303 {
2304 	return __sys_shutdown(fd, how);
2305 }
2306 
2307 /* A couple of helpful macros for getting the address of the 32/64 bit
2308  * fields which are the same type (int / unsigned) on our platforms.
2309  */
2310 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2311 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2312 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2313 
2314 struct used_address {
2315 	struct sockaddr_storage name;
2316 	unsigned int name_len;
2317 };
2318 
2319 int __copy_msghdr_from_user(struct msghdr *kmsg,
2320 			    struct user_msghdr __user *umsg,
2321 			    struct sockaddr __user **save_addr,
2322 			    struct iovec __user **uiov, size_t *nsegs)
2323 {
2324 	struct user_msghdr msg;
2325 	ssize_t err;
2326 
2327 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2328 		return -EFAULT;
2329 
2330 	kmsg->msg_control_is_user = true;
2331 	kmsg->msg_control_user = msg.msg_control;
2332 	kmsg->msg_controllen = msg.msg_controllen;
2333 	kmsg->msg_flags = msg.msg_flags;
2334 
2335 	kmsg->msg_namelen = msg.msg_namelen;
2336 	if (!msg.msg_name)
2337 		kmsg->msg_namelen = 0;
2338 
2339 	if (kmsg->msg_namelen < 0)
2340 		return -EINVAL;
2341 
2342 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2343 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2344 
2345 	if (save_addr)
2346 		*save_addr = msg.msg_name;
2347 
2348 	if (msg.msg_name && kmsg->msg_namelen) {
2349 		if (!save_addr) {
2350 			err = move_addr_to_kernel(msg.msg_name,
2351 						  kmsg->msg_namelen,
2352 						  kmsg->msg_name);
2353 			if (err < 0)
2354 				return err;
2355 		}
2356 	} else {
2357 		kmsg->msg_name = NULL;
2358 		kmsg->msg_namelen = 0;
2359 	}
2360 
2361 	if (msg.msg_iovlen > UIO_MAXIOV)
2362 		return -EMSGSIZE;
2363 
2364 	kmsg->msg_iocb = NULL;
2365 	*uiov = msg.msg_iov;
2366 	*nsegs = msg.msg_iovlen;
2367 	return 0;
2368 }
2369 
2370 static int copy_msghdr_from_user(struct msghdr *kmsg,
2371 				 struct user_msghdr __user *umsg,
2372 				 struct sockaddr __user **save_addr,
2373 				 struct iovec **iov)
2374 {
2375 	struct user_msghdr msg;
2376 	ssize_t err;
2377 
2378 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2379 					&msg.msg_iovlen);
2380 	if (err)
2381 		return err;
2382 
2383 	err = import_iovec(save_addr ? READ : WRITE,
2384 			    msg.msg_iov, msg.msg_iovlen,
2385 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2386 	return err < 0 ? err : 0;
2387 }
2388 
2389 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2390 			   unsigned int flags, struct used_address *used_address,
2391 			   unsigned int allowed_msghdr_flags)
2392 {
2393 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2394 				__aligned(sizeof(__kernel_size_t));
2395 	/* 20 is size of ipv6_pktinfo */
2396 	unsigned char *ctl_buf = ctl;
2397 	int ctl_len;
2398 	ssize_t err;
2399 
2400 	err = -ENOBUFS;
2401 
2402 	if (msg_sys->msg_controllen > INT_MAX)
2403 		goto out;
2404 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2405 	ctl_len = msg_sys->msg_controllen;
2406 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2407 		err =
2408 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2409 						     sizeof(ctl));
2410 		if (err)
2411 			goto out;
2412 		ctl_buf = msg_sys->msg_control;
2413 		ctl_len = msg_sys->msg_controllen;
2414 	} else if (ctl_len) {
2415 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2416 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2417 		if (ctl_len > sizeof(ctl)) {
2418 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2419 			if (ctl_buf == NULL)
2420 				goto out;
2421 		}
2422 		err = -EFAULT;
2423 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2424 			goto out_freectl;
2425 		msg_sys->msg_control = ctl_buf;
2426 		msg_sys->msg_control_is_user = false;
2427 	}
2428 	msg_sys->msg_flags = flags;
2429 
2430 	if (sock->file->f_flags & O_NONBLOCK)
2431 		msg_sys->msg_flags |= MSG_DONTWAIT;
2432 	/*
2433 	 * If this is sendmmsg() and current destination address is same as
2434 	 * previously succeeded address, omit asking LSM's decision.
2435 	 * used_address->name_len is initialized to UINT_MAX so that the first
2436 	 * destination address never matches.
2437 	 */
2438 	if (used_address && msg_sys->msg_name &&
2439 	    used_address->name_len == msg_sys->msg_namelen &&
2440 	    !memcmp(&used_address->name, msg_sys->msg_name,
2441 		    used_address->name_len)) {
2442 		err = sock_sendmsg_nosec(sock, msg_sys);
2443 		goto out_freectl;
2444 	}
2445 	err = sock_sendmsg(sock, msg_sys);
2446 	/*
2447 	 * If this is sendmmsg() and sending to current destination address was
2448 	 * successful, remember it.
2449 	 */
2450 	if (used_address && err >= 0) {
2451 		used_address->name_len = msg_sys->msg_namelen;
2452 		if (msg_sys->msg_name)
2453 			memcpy(&used_address->name, msg_sys->msg_name,
2454 			       used_address->name_len);
2455 	}
2456 
2457 out_freectl:
2458 	if (ctl_buf != ctl)
2459 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2460 out:
2461 	return err;
2462 }
2463 
2464 int sendmsg_copy_msghdr(struct msghdr *msg,
2465 			struct user_msghdr __user *umsg, unsigned flags,
2466 			struct iovec **iov)
2467 {
2468 	int err;
2469 
2470 	if (flags & MSG_CMSG_COMPAT) {
2471 		struct compat_msghdr __user *msg_compat;
2472 
2473 		msg_compat = (struct compat_msghdr __user *) umsg;
2474 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2475 	} else {
2476 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2477 	}
2478 	if (err < 0)
2479 		return err;
2480 
2481 	return 0;
2482 }
2483 
2484 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2485 			 struct msghdr *msg_sys, unsigned int flags,
2486 			 struct used_address *used_address,
2487 			 unsigned int allowed_msghdr_flags)
2488 {
2489 	struct sockaddr_storage address;
2490 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2491 	ssize_t err;
2492 
2493 	msg_sys->msg_name = &address;
2494 
2495 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2496 	if (err < 0)
2497 		return err;
2498 
2499 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2500 				allowed_msghdr_flags);
2501 	kfree(iov);
2502 	return err;
2503 }
2504 
2505 /*
2506  *	BSD sendmsg interface
2507  */
2508 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2509 			unsigned int flags)
2510 {
2511 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2512 }
2513 
2514 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2515 		   bool forbid_cmsg_compat)
2516 {
2517 	int fput_needed, err;
2518 	struct msghdr msg_sys;
2519 	struct socket *sock;
2520 
2521 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2522 		return -EINVAL;
2523 
2524 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2525 	if (!sock)
2526 		goto out;
2527 
2528 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2529 
2530 	fput_light(sock->file, fput_needed);
2531 out:
2532 	return err;
2533 }
2534 
2535 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2536 {
2537 	return __sys_sendmsg(fd, msg, flags, true);
2538 }
2539 
2540 /*
2541  *	Linux sendmmsg interface
2542  */
2543 
2544 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2545 		   unsigned int flags, bool forbid_cmsg_compat)
2546 {
2547 	int fput_needed, err, datagrams;
2548 	struct socket *sock;
2549 	struct mmsghdr __user *entry;
2550 	struct compat_mmsghdr __user *compat_entry;
2551 	struct msghdr msg_sys;
2552 	struct used_address used_address;
2553 	unsigned int oflags = flags;
2554 
2555 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2556 		return -EINVAL;
2557 
2558 	if (vlen > UIO_MAXIOV)
2559 		vlen = UIO_MAXIOV;
2560 
2561 	datagrams = 0;
2562 
2563 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2564 	if (!sock)
2565 		return err;
2566 
2567 	used_address.name_len = UINT_MAX;
2568 	entry = mmsg;
2569 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2570 	err = 0;
2571 	flags |= MSG_BATCH;
2572 
2573 	while (datagrams < vlen) {
2574 		if (datagrams == vlen - 1)
2575 			flags = oflags;
2576 
2577 		if (MSG_CMSG_COMPAT & flags) {
2578 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2579 					     &msg_sys, flags, &used_address, MSG_EOR);
2580 			if (err < 0)
2581 				break;
2582 			err = __put_user(err, &compat_entry->msg_len);
2583 			++compat_entry;
2584 		} else {
2585 			err = ___sys_sendmsg(sock,
2586 					     (struct user_msghdr __user *)entry,
2587 					     &msg_sys, flags, &used_address, MSG_EOR);
2588 			if (err < 0)
2589 				break;
2590 			err = put_user(err, &entry->msg_len);
2591 			++entry;
2592 		}
2593 
2594 		if (err)
2595 			break;
2596 		++datagrams;
2597 		if (msg_data_left(&msg_sys))
2598 			break;
2599 		cond_resched();
2600 	}
2601 
2602 	fput_light(sock->file, fput_needed);
2603 
2604 	/* We only return an error if no datagrams were able to be sent */
2605 	if (datagrams != 0)
2606 		return datagrams;
2607 
2608 	return err;
2609 }
2610 
2611 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2612 		unsigned int, vlen, unsigned int, flags)
2613 {
2614 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2615 }
2616 
2617 int recvmsg_copy_msghdr(struct msghdr *msg,
2618 			struct user_msghdr __user *umsg, unsigned flags,
2619 			struct sockaddr __user **uaddr,
2620 			struct iovec **iov)
2621 {
2622 	ssize_t err;
2623 
2624 	if (MSG_CMSG_COMPAT & flags) {
2625 		struct compat_msghdr __user *msg_compat;
2626 
2627 		msg_compat = (struct compat_msghdr __user *) umsg;
2628 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2629 	} else {
2630 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2631 	}
2632 	if (err < 0)
2633 		return err;
2634 
2635 	return 0;
2636 }
2637 
2638 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2639 			   struct user_msghdr __user *msg,
2640 			   struct sockaddr __user *uaddr,
2641 			   unsigned int flags, int nosec)
2642 {
2643 	struct compat_msghdr __user *msg_compat =
2644 					(struct compat_msghdr __user *) msg;
2645 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2646 	struct sockaddr_storage addr;
2647 	unsigned long cmsg_ptr;
2648 	int len;
2649 	ssize_t err;
2650 
2651 	msg_sys->msg_name = &addr;
2652 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2653 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2654 
2655 	/* We assume all kernel code knows the size of sockaddr_storage */
2656 	msg_sys->msg_namelen = 0;
2657 
2658 	if (sock->file->f_flags & O_NONBLOCK)
2659 		flags |= MSG_DONTWAIT;
2660 
2661 	if (unlikely(nosec))
2662 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2663 	else
2664 		err = sock_recvmsg(sock, msg_sys, flags);
2665 
2666 	if (err < 0)
2667 		goto out;
2668 	len = err;
2669 
2670 	if (uaddr != NULL) {
2671 		err = move_addr_to_user(&addr,
2672 					msg_sys->msg_namelen, uaddr,
2673 					uaddr_len);
2674 		if (err < 0)
2675 			goto out;
2676 	}
2677 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2678 			 COMPAT_FLAGS(msg));
2679 	if (err)
2680 		goto out;
2681 	if (MSG_CMSG_COMPAT & flags)
2682 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2683 				 &msg_compat->msg_controllen);
2684 	else
2685 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2686 				 &msg->msg_controllen);
2687 	if (err)
2688 		goto out;
2689 	err = len;
2690 out:
2691 	return err;
2692 }
2693 
2694 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2695 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2696 {
2697 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2698 	/* user mode address pointers */
2699 	struct sockaddr __user *uaddr;
2700 	ssize_t err;
2701 
2702 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2703 	if (err < 0)
2704 		return err;
2705 
2706 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2707 	kfree(iov);
2708 	return err;
2709 }
2710 
2711 /*
2712  *	BSD recvmsg interface
2713  */
2714 
2715 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2716 			struct user_msghdr __user *umsg,
2717 			struct sockaddr __user *uaddr, unsigned int flags)
2718 {
2719 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2720 }
2721 
2722 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2723 		   bool forbid_cmsg_compat)
2724 {
2725 	int fput_needed, err;
2726 	struct msghdr msg_sys;
2727 	struct socket *sock;
2728 
2729 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2730 		return -EINVAL;
2731 
2732 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2733 	if (!sock)
2734 		goto out;
2735 
2736 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2737 
2738 	fput_light(sock->file, fput_needed);
2739 out:
2740 	return err;
2741 }
2742 
2743 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2744 		unsigned int, flags)
2745 {
2746 	return __sys_recvmsg(fd, msg, flags, true);
2747 }
2748 
2749 /*
2750  *     Linux recvmmsg interface
2751  */
2752 
2753 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2754 			  unsigned int vlen, unsigned int flags,
2755 			  struct timespec64 *timeout)
2756 {
2757 	int fput_needed, err, datagrams;
2758 	struct socket *sock;
2759 	struct mmsghdr __user *entry;
2760 	struct compat_mmsghdr __user *compat_entry;
2761 	struct msghdr msg_sys;
2762 	struct timespec64 end_time;
2763 	struct timespec64 timeout64;
2764 
2765 	if (timeout &&
2766 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2767 				    timeout->tv_nsec))
2768 		return -EINVAL;
2769 
2770 	datagrams = 0;
2771 
2772 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2773 	if (!sock)
2774 		return err;
2775 
2776 	if (likely(!(flags & MSG_ERRQUEUE))) {
2777 		err = sock_error(sock->sk);
2778 		if (err) {
2779 			datagrams = err;
2780 			goto out_put;
2781 		}
2782 	}
2783 
2784 	entry = mmsg;
2785 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2786 
2787 	while (datagrams < vlen) {
2788 		/*
2789 		 * No need to ask LSM for more than the first datagram.
2790 		 */
2791 		if (MSG_CMSG_COMPAT & flags) {
2792 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2793 					     &msg_sys, flags & ~MSG_WAITFORONE,
2794 					     datagrams);
2795 			if (err < 0)
2796 				break;
2797 			err = __put_user(err, &compat_entry->msg_len);
2798 			++compat_entry;
2799 		} else {
2800 			err = ___sys_recvmsg(sock,
2801 					     (struct user_msghdr __user *)entry,
2802 					     &msg_sys, flags & ~MSG_WAITFORONE,
2803 					     datagrams);
2804 			if (err < 0)
2805 				break;
2806 			err = put_user(err, &entry->msg_len);
2807 			++entry;
2808 		}
2809 
2810 		if (err)
2811 			break;
2812 		++datagrams;
2813 
2814 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2815 		if (flags & MSG_WAITFORONE)
2816 			flags |= MSG_DONTWAIT;
2817 
2818 		if (timeout) {
2819 			ktime_get_ts64(&timeout64);
2820 			*timeout = timespec64_sub(end_time, timeout64);
2821 			if (timeout->tv_sec < 0) {
2822 				timeout->tv_sec = timeout->tv_nsec = 0;
2823 				break;
2824 			}
2825 
2826 			/* Timeout, return less than vlen datagrams */
2827 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2828 				break;
2829 		}
2830 
2831 		/* Out of band data, return right away */
2832 		if (msg_sys.msg_flags & MSG_OOB)
2833 			break;
2834 		cond_resched();
2835 	}
2836 
2837 	if (err == 0)
2838 		goto out_put;
2839 
2840 	if (datagrams == 0) {
2841 		datagrams = err;
2842 		goto out_put;
2843 	}
2844 
2845 	/*
2846 	 * We may return less entries than requested (vlen) if the
2847 	 * sock is non block and there aren't enough datagrams...
2848 	 */
2849 	if (err != -EAGAIN) {
2850 		/*
2851 		 * ... or  if recvmsg returns an error after we
2852 		 * received some datagrams, where we record the
2853 		 * error to return on the next call or if the
2854 		 * app asks about it using getsockopt(SO_ERROR).
2855 		 */
2856 		sock->sk->sk_err = -err;
2857 	}
2858 out_put:
2859 	fput_light(sock->file, fput_needed);
2860 
2861 	return datagrams;
2862 }
2863 
2864 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2865 		   unsigned int vlen, unsigned int flags,
2866 		   struct __kernel_timespec __user *timeout,
2867 		   struct old_timespec32 __user *timeout32)
2868 {
2869 	int datagrams;
2870 	struct timespec64 timeout_sys;
2871 
2872 	if (timeout && get_timespec64(&timeout_sys, timeout))
2873 		return -EFAULT;
2874 
2875 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2876 		return -EFAULT;
2877 
2878 	if (!timeout && !timeout32)
2879 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2880 
2881 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2882 
2883 	if (datagrams <= 0)
2884 		return datagrams;
2885 
2886 	if (timeout && put_timespec64(&timeout_sys, timeout))
2887 		datagrams = -EFAULT;
2888 
2889 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2890 		datagrams = -EFAULT;
2891 
2892 	return datagrams;
2893 }
2894 
2895 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2896 		unsigned int, vlen, unsigned int, flags,
2897 		struct __kernel_timespec __user *, timeout)
2898 {
2899 	if (flags & MSG_CMSG_COMPAT)
2900 		return -EINVAL;
2901 
2902 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2903 }
2904 
2905 #ifdef CONFIG_COMPAT_32BIT_TIME
2906 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2907 		unsigned int, vlen, unsigned int, flags,
2908 		struct old_timespec32 __user *, timeout)
2909 {
2910 	if (flags & MSG_CMSG_COMPAT)
2911 		return -EINVAL;
2912 
2913 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2914 }
2915 #endif
2916 
2917 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2918 /* Argument list sizes for sys_socketcall */
2919 #define AL(x) ((x) * sizeof(unsigned long))
2920 static const unsigned char nargs[21] = {
2921 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2922 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2923 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2924 	AL(4), AL(5), AL(4)
2925 };
2926 
2927 #undef AL
2928 
2929 /*
2930  *	System call vectors.
2931  *
2932  *	Argument checking cleaned up. Saved 20% in size.
2933  *  This function doesn't need to set the kernel lock because
2934  *  it is set by the callees.
2935  */
2936 
2937 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2938 {
2939 	unsigned long a[AUDITSC_ARGS];
2940 	unsigned long a0, a1;
2941 	int err;
2942 	unsigned int len;
2943 
2944 	if (call < 1 || call > SYS_SENDMMSG)
2945 		return -EINVAL;
2946 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2947 
2948 	len = nargs[call];
2949 	if (len > sizeof(a))
2950 		return -EINVAL;
2951 
2952 	/* copy_from_user should be SMP safe. */
2953 	if (copy_from_user(a, args, len))
2954 		return -EFAULT;
2955 
2956 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2957 	if (err)
2958 		return err;
2959 
2960 	a0 = a[0];
2961 	a1 = a[1];
2962 
2963 	switch (call) {
2964 	case SYS_SOCKET:
2965 		err = __sys_socket(a0, a1, a[2]);
2966 		break;
2967 	case SYS_BIND:
2968 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2969 		break;
2970 	case SYS_CONNECT:
2971 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2972 		break;
2973 	case SYS_LISTEN:
2974 		err = __sys_listen(a0, a1);
2975 		break;
2976 	case SYS_ACCEPT:
2977 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2978 				    (int __user *)a[2], 0);
2979 		break;
2980 	case SYS_GETSOCKNAME:
2981 		err =
2982 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2983 				      (int __user *)a[2]);
2984 		break;
2985 	case SYS_GETPEERNAME:
2986 		err =
2987 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2988 				      (int __user *)a[2]);
2989 		break;
2990 	case SYS_SOCKETPAIR:
2991 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2992 		break;
2993 	case SYS_SEND:
2994 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2995 				   NULL, 0);
2996 		break;
2997 	case SYS_SENDTO:
2998 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2999 				   (struct sockaddr __user *)a[4], a[5]);
3000 		break;
3001 	case SYS_RECV:
3002 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3003 				     NULL, NULL);
3004 		break;
3005 	case SYS_RECVFROM:
3006 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3007 				     (struct sockaddr __user *)a[4],
3008 				     (int __user *)a[5]);
3009 		break;
3010 	case SYS_SHUTDOWN:
3011 		err = __sys_shutdown(a0, a1);
3012 		break;
3013 	case SYS_SETSOCKOPT:
3014 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3015 				       a[4]);
3016 		break;
3017 	case SYS_GETSOCKOPT:
3018 		err =
3019 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3020 				     (int __user *)a[4]);
3021 		break;
3022 	case SYS_SENDMSG:
3023 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3024 				    a[2], true);
3025 		break;
3026 	case SYS_SENDMMSG:
3027 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3028 				     a[3], true);
3029 		break;
3030 	case SYS_RECVMSG:
3031 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3032 				    a[2], true);
3033 		break;
3034 	case SYS_RECVMMSG:
3035 		if (IS_ENABLED(CONFIG_64BIT))
3036 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3037 					     a[2], a[3],
3038 					     (struct __kernel_timespec __user *)a[4],
3039 					     NULL);
3040 		else
3041 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3042 					     a[2], a[3], NULL,
3043 					     (struct old_timespec32 __user *)a[4]);
3044 		break;
3045 	case SYS_ACCEPT4:
3046 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3047 				    (int __user *)a[2], a[3]);
3048 		break;
3049 	default:
3050 		err = -EINVAL;
3051 		break;
3052 	}
3053 	return err;
3054 }
3055 
3056 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3057 
3058 /**
3059  *	sock_register - add a socket protocol handler
3060  *	@ops: description of protocol
3061  *
3062  *	This function is called by a protocol handler that wants to
3063  *	advertise its address family, and have it linked into the
3064  *	socket interface. The value ops->family corresponds to the
3065  *	socket system call protocol family.
3066  */
3067 int sock_register(const struct net_proto_family *ops)
3068 {
3069 	int err;
3070 
3071 	if (ops->family >= NPROTO) {
3072 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3073 		return -ENOBUFS;
3074 	}
3075 
3076 	spin_lock(&net_family_lock);
3077 	if (rcu_dereference_protected(net_families[ops->family],
3078 				      lockdep_is_held(&net_family_lock)))
3079 		err = -EEXIST;
3080 	else {
3081 		rcu_assign_pointer(net_families[ops->family], ops);
3082 		err = 0;
3083 	}
3084 	spin_unlock(&net_family_lock);
3085 
3086 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3087 	return err;
3088 }
3089 EXPORT_SYMBOL(sock_register);
3090 
3091 /**
3092  *	sock_unregister - remove a protocol handler
3093  *	@family: protocol family to remove
3094  *
3095  *	This function is called by a protocol handler that wants to
3096  *	remove its address family, and have it unlinked from the
3097  *	new socket creation.
3098  *
3099  *	If protocol handler is a module, then it can use module reference
3100  *	counts to protect against new references. If protocol handler is not
3101  *	a module then it needs to provide its own protection in
3102  *	the ops->create routine.
3103  */
3104 void sock_unregister(int family)
3105 {
3106 	BUG_ON(family < 0 || family >= NPROTO);
3107 
3108 	spin_lock(&net_family_lock);
3109 	RCU_INIT_POINTER(net_families[family], NULL);
3110 	spin_unlock(&net_family_lock);
3111 
3112 	synchronize_rcu();
3113 
3114 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3115 }
3116 EXPORT_SYMBOL(sock_unregister);
3117 
3118 bool sock_is_registered(int family)
3119 {
3120 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3121 }
3122 
3123 static int __init sock_init(void)
3124 {
3125 	int err;
3126 	/*
3127 	 *      Initialize the network sysctl infrastructure.
3128 	 */
3129 	err = net_sysctl_init();
3130 	if (err)
3131 		goto out;
3132 
3133 	/*
3134 	 *      Initialize skbuff SLAB cache
3135 	 */
3136 	skb_init();
3137 
3138 	/*
3139 	 *      Initialize the protocols module.
3140 	 */
3141 
3142 	init_inodecache();
3143 
3144 	err = register_filesystem(&sock_fs_type);
3145 	if (err)
3146 		goto out;
3147 	sock_mnt = kern_mount(&sock_fs_type);
3148 	if (IS_ERR(sock_mnt)) {
3149 		err = PTR_ERR(sock_mnt);
3150 		goto out_mount;
3151 	}
3152 
3153 	/* The real protocol initialization is performed in later initcalls.
3154 	 */
3155 
3156 #ifdef CONFIG_NETFILTER
3157 	err = netfilter_init();
3158 	if (err)
3159 		goto out;
3160 #endif
3161 
3162 	ptp_classifier_init();
3163 
3164 out:
3165 	return err;
3166 
3167 out_mount:
3168 	unregister_filesystem(&sock_fs_type);
3169 	goto out;
3170 }
3171 
3172 core_initcall(sock_init);	/* early initcall */
3173 
3174 #ifdef CONFIG_PROC_FS
3175 void socket_seq_show(struct seq_file *seq)
3176 {
3177 	seq_printf(seq, "sockets: used %d\n",
3178 		   sock_inuse_get(seq->private));
3179 }
3180 #endif				/* CONFIG_PROC_FS */
3181 
3182 /* Handle the fact that while struct ifreq has the same *layout* on
3183  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3184  * which are handled elsewhere, it still has different *size* due to
3185  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3186  * resulting in struct ifreq being 32 and 40 bytes respectively).
3187  * As a result, if the struct happens to be at the end of a page and
3188  * the next page isn't readable/writable, we get a fault. To prevent
3189  * that, copy back and forth to the full size.
3190  */
3191 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3192 {
3193 	if (in_compat_syscall()) {
3194 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3195 
3196 		memset(ifr, 0, sizeof(*ifr));
3197 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3198 			return -EFAULT;
3199 
3200 		if (ifrdata)
3201 			*ifrdata = compat_ptr(ifr32->ifr_data);
3202 
3203 		return 0;
3204 	}
3205 
3206 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3207 		return -EFAULT;
3208 
3209 	if (ifrdata)
3210 		*ifrdata = ifr->ifr_data;
3211 
3212 	return 0;
3213 }
3214 EXPORT_SYMBOL(get_user_ifreq);
3215 
3216 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3217 {
3218 	size_t size = sizeof(*ifr);
3219 
3220 	if (in_compat_syscall())
3221 		size = sizeof(struct compat_ifreq);
3222 
3223 	if (copy_to_user(arg, ifr, size))
3224 		return -EFAULT;
3225 
3226 	return 0;
3227 }
3228 EXPORT_SYMBOL(put_user_ifreq);
3229 
3230 #ifdef CONFIG_COMPAT
3231 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3232 {
3233 	compat_uptr_t uptr32;
3234 	struct ifreq ifr;
3235 	void __user *saved;
3236 	int err;
3237 
3238 	if (get_user_ifreq(&ifr, NULL, uifr32))
3239 		return -EFAULT;
3240 
3241 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3242 		return -EFAULT;
3243 
3244 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3245 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3246 
3247 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3248 	if (!err) {
3249 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3250 		if (put_user_ifreq(&ifr, uifr32))
3251 			err = -EFAULT;
3252 	}
3253 	return err;
3254 }
3255 
3256 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3257 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3258 				 struct compat_ifreq __user *u_ifreq32)
3259 {
3260 	struct ifreq ifreq;
3261 	void __user *data;
3262 
3263 	if (!is_socket_ioctl_cmd(cmd))
3264 		return -ENOTTY;
3265 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3266 		return -EFAULT;
3267 	ifreq.ifr_data = data;
3268 
3269 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3270 }
3271 
3272 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3273 			 unsigned int cmd, unsigned long arg)
3274 {
3275 	void __user *argp = compat_ptr(arg);
3276 	struct sock *sk = sock->sk;
3277 	struct net *net = sock_net(sk);
3278 
3279 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3280 		return sock_ioctl(file, cmd, (unsigned long)argp);
3281 
3282 	switch (cmd) {
3283 	case SIOCWANDEV:
3284 		return compat_siocwandev(net, argp);
3285 	case SIOCGSTAMP_OLD:
3286 	case SIOCGSTAMPNS_OLD:
3287 		if (!sock->ops->gettstamp)
3288 			return -ENOIOCTLCMD;
3289 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3290 					    !COMPAT_USE_64BIT_TIME);
3291 
3292 	case SIOCETHTOOL:
3293 	case SIOCBONDSLAVEINFOQUERY:
3294 	case SIOCBONDINFOQUERY:
3295 	case SIOCSHWTSTAMP:
3296 	case SIOCGHWTSTAMP:
3297 		return compat_ifr_data_ioctl(net, cmd, argp);
3298 
3299 	case FIOSETOWN:
3300 	case SIOCSPGRP:
3301 	case FIOGETOWN:
3302 	case SIOCGPGRP:
3303 	case SIOCBRADDBR:
3304 	case SIOCBRDELBR:
3305 	case SIOCGIFVLAN:
3306 	case SIOCSIFVLAN:
3307 	case SIOCGSKNS:
3308 	case SIOCGSTAMP_NEW:
3309 	case SIOCGSTAMPNS_NEW:
3310 	case SIOCGIFCONF:
3311 	case SIOCSIFBR:
3312 	case SIOCGIFBR:
3313 		return sock_ioctl(file, cmd, arg);
3314 
3315 	case SIOCGIFFLAGS:
3316 	case SIOCSIFFLAGS:
3317 	case SIOCGIFMAP:
3318 	case SIOCSIFMAP:
3319 	case SIOCGIFMETRIC:
3320 	case SIOCSIFMETRIC:
3321 	case SIOCGIFMTU:
3322 	case SIOCSIFMTU:
3323 	case SIOCGIFMEM:
3324 	case SIOCSIFMEM:
3325 	case SIOCGIFHWADDR:
3326 	case SIOCSIFHWADDR:
3327 	case SIOCADDMULTI:
3328 	case SIOCDELMULTI:
3329 	case SIOCGIFINDEX:
3330 	case SIOCGIFADDR:
3331 	case SIOCSIFADDR:
3332 	case SIOCSIFHWBROADCAST:
3333 	case SIOCDIFADDR:
3334 	case SIOCGIFBRDADDR:
3335 	case SIOCSIFBRDADDR:
3336 	case SIOCGIFDSTADDR:
3337 	case SIOCSIFDSTADDR:
3338 	case SIOCGIFNETMASK:
3339 	case SIOCSIFNETMASK:
3340 	case SIOCSIFPFLAGS:
3341 	case SIOCGIFPFLAGS:
3342 	case SIOCGIFTXQLEN:
3343 	case SIOCSIFTXQLEN:
3344 	case SIOCBRADDIF:
3345 	case SIOCBRDELIF:
3346 	case SIOCGIFNAME:
3347 	case SIOCSIFNAME:
3348 	case SIOCGMIIPHY:
3349 	case SIOCGMIIREG:
3350 	case SIOCSMIIREG:
3351 	case SIOCBONDENSLAVE:
3352 	case SIOCBONDRELEASE:
3353 	case SIOCBONDSETHWADDR:
3354 	case SIOCBONDCHANGEACTIVE:
3355 	case SIOCSARP:
3356 	case SIOCGARP:
3357 	case SIOCDARP:
3358 	case SIOCOUTQ:
3359 	case SIOCOUTQNSD:
3360 	case SIOCATMARK:
3361 		return sock_do_ioctl(net, sock, cmd, arg);
3362 	}
3363 
3364 	return -ENOIOCTLCMD;
3365 }
3366 
3367 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3368 			      unsigned long arg)
3369 {
3370 	struct socket *sock = file->private_data;
3371 	int ret = -ENOIOCTLCMD;
3372 	struct sock *sk;
3373 	struct net *net;
3374 
3375 	sk = sock->sk;
3376 	net = sock_net(sk);
3377 
3378 	if (sock->ops->compat_ioctl)
3379 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3380 
3381 	if (ret == -ENOIOCTLCMD &&
3382 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3383 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3384 
3385 	if (ret == -ENOIOCTLCMD)
3386 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3387 
3388 	return ret;
3389 }
3390 #endif
3391 
3392 /**
3393  *	kernel_bind - bind an address to a socket (kernel space)
3394  *	@sock: socket
3395  *	@addr: address
3396  *	@addrlen: length of address
3397  *
3398  *	Returns 0 or an error.
3399  */
3400 
3401 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3402 {
3403 	return sock->ops->bind(sock, addr, addrlen);
3404 }
3405 EXPORT_SYMBOL(kernel_bind);
3406 
3407 /**
3408  *	kernel_listen - move socket to listening state (kernel space)
3409  *	@sock: socket
3410  *	@backlog: pending connections queue size
3411  *
3412  *	Returns 0 or an error.
3413  */
3414 
3415 int kernel_listen(struct socket *sock, int backlog)
3416 {
3417 	return sock->ops->listen(sock, backlog);
3418 }
3419 EXPORT_SYMBOL(kernel_listen);
3420 
3421 /**
3422  *	kernel_accept - accept a connection (kernel space)
3423  *	@sock: listening socket
3424  *	@newsock: new connected socket
3425  *	@flags: flags
3426  *
3427  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3428  *	If it fails, @newsock is guaranteed to be %NULL.
3429  *	Returns 0 or an error.
3430  */
3431 
3432 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3433 {
3434 	struct sock *sk = sock->sk;
3435 	int err;
3436 
3437 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3438 			       newsock);
3439 	if (err < 0)
3440 		goto done;
3441 
3442 	err = sock->ops->accept(sock, *newsock, flags, true);
3443 	if (err < 0) {
3444 		sock_release(*newsock);
3445 		*newsock = NULL;
3446 		goto done;
3447 	}
3448 
3449 	(*newsock)->ops = sock->ops;
3450 	__module_get((*newsock)->ops->owner);
3451 
3452 done:
3453 	return err;
3454 }
3455 EXPORT_SYMBOL(kernel_accept);
3456 
3457 /**
3458  *	kernel_connect - connect a socket (kernel space)
3459  *	@sock: socket
3460  *	@addr: address
3461  *	@addrlen: address length
3462  *	@flags: flags (O_NONBLOCK, ...)
3463  *
3464  *	For datagram sockets, @addr is the address to which datagrams are sent
3465  *	by default, and the only address from which datagrams are received.
3466  *	For stream sockets, attempts to connect to @addr.
3467  *	Returns 0 or an error code.
3468  */
3469 
3470 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3471 		   int flags)
3472 {
3473 	return sock->ops->connect(sock, addr, addrlen, flags);
3474 }
3475 EXPORT_SYMBOL(kernel_connect);
3476 
3477 /**
3478  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3479  *	@sock: socket
3480  *	@addr: address holder
3481  *
3482  * 	Fills the @addr pointer with the address which the socket is bound.
3483  *	Returns the length of the address in bytes or an error code.
3484  */
3485 
3486 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3487 {
3488 	return sock->ops->getname(sock, addr, 0);
3489 }
3490 EXPORT_SYMBOL(kernel_getsockname);
3491 
3492 /**
3493  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3494  *	@sock: socket
3495  *	@addr: address holder
3496  *
3497  * 	Fills the @addr pointer with the address which the socket is connected.
3498  *	Returns the length of the address in bytes or an error code.
3499  */
3500 
3501 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3502 {
3503 	return sock->ops->getname(sock, addr, 1);
3504 }
3505 EXPORT_SYMBOL(kernel_getpeername);
3506 
3507 /**
3508  *	kernel_sendpage - send a &page through a socket (kernel space)
3509  *	@sock: socket
3510  *	@page: page
3511  *	@offset: page offset
3512  *	@size: total size in bytes
3513  *	@flags: flags (MSG_DONTWAIT, ...)
3514  *
3515  *	Returns the total amount sent in bytes or an error.
3516  */
3517 
3518 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3519 		    size_t size, int flags)
3520 {
3521 	if (sock->ops->sendpage) {
3522 		/* Warn in case the improper page to zero-copy send */
3523 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3524 		return sock->ops->sendpage(sock, page, offset, size, flags);
3525 	}
3526 	return sock_no_sendpage(sock, page, offset, size, flags);
3527 }
3528 EXPORT_SYMBOL(kernel_sendpage);
3529 
3530 /**
3531  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3532  *	@sk: sock
3533  *	@page: page
3534  *	@offset: page offset
3535  *	@size: total size in bytes
3536  *	@flags: flags (MSG_DONTWAIT, ...)
3537  *
3538  *	Returns the total amount sent in bytes or an error.
3539  *	Caller must hold @sk.
3540  */
3541 
3542 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3543 			   size_t size, int flags)
3544 {
3545 	struct socket *sock = sk->sk_socket;
3546 
3547 	if (sock->ops->sendpage_locked)
3548 		return sock->ops->sendpage_locked(sk, page, offset, size,
3549 						  flags);
3550 
3551 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3552 }
3553 EXPORT_SYMBOL(kernel_sendpage_locked);
3554 
3555 /**
3556  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3557  *	@sock: socket
3558  *	@how: connection part
3559  *
3560  *	Returns 0 or an error.
3561  */
3562 
3563 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3564 {
3565 	return sock->ops->shutdown(sock, how);
3566 }
3567 EXPORT_SYMBOL(kernel_sock_shutdown);
3568 
3569 /**
3570  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3571  *	@sk: socket
3572  *
3573  *	This routine returns the IP overhead imposed by a socket i.e.
3574  *	the length of the underlying IP header, depending on whether
3575  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3576  *	on at the socket. Assumes that the caller has a lock on the socket.
3577  */
3578 
3579 u32 kernel_sock_ip_overhead(struct sock *sk)
3580 {
3581 	struct inet_sock *inet;
3582 	struct ip_options_rcu *opt;
3583 	u32 overhead = 0;
3584 #if IS_ENABLED(CONFIG_IPV6)
3585 	struct ipv6_pinfo *np;
3586 	struct ipv6_txoptions *optv6 = NULL;
3587 #endif /* IS_ENABLED(CONFIG_IPV6) */
3588 
3589 	if (!sk)
3590 		return overhead;
3591 
3592 	switch (sk->sk_family) {
3593 	case AF_INET:
3594 		inet = inet_sk(sk);
3595 		overhead += sizeof(struct iphdr);
3596 		opt = rcu_dereference_protected(inet->inet_opt,
3597 						sock_owned_by_user(sk));
3598 		if (opt)
3599 			overhead += opt->opt.optlen;
3600 		return overhead;
3601 #if IS_ENABLED(CONFIG_IPV6)
3602 	case AF_INET6:
3603 		np = inet6_sk(sk);
3604 		overhead += sizeof(struct ipv6hdr);
3605 		if (np)
3606 			optv6 = rcu_dereference_protected(np->opt,
3607 							  sock_owned_by_user(sk));
3608 		if (optv6)
3609 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3610 		return overhead;
3611 #endif /* IS_ENABLED(CONFIG_IPV6) */
3612 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3613 		return overhead;
3614 	}
3615 }
3616 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3617