1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/net.h> 61 #include <linux/interrupt.h> 62 #include <linux/thread_info.h> 63 #include <linux/rcupdate.h> 64 #include <linux/netdevice.h> 65 #include <linux/proc_fs.h> 66 #include <linux/seq_file.h> 67 #include <linux/mutex.h> 68 #include <linux/if_bridge.h> 69 #include <linux/if_vlan.h> 70 #include <linux/ptp_classify.h> 71 #include <linux/init.h> 72 #include <linux/poll.h> 73 #include <linux/cache.h> 74 #include <linux/module.h> 75 #include <linux/highmem.h> 76 #include <linux/mount.h> 77 #include <linux/pseudo_fs.h> 78 #include <linux/security.h> 79 #include <linux/syscalls.h> 80 #include <linux/compat.h> 81 #include <linux/kmod.h> 82 #include <linux/audit.h> 83 #include <linux/wireless.h> 84 #include <linux/nsproxy.h> 85 #include <linux/magic.h> 86 #include <linux/slab.h> 87 #include <linux/xattr.h> 88 #include <linux/nospec.h> 89 #include <linux/indirect_call_wrapper.h> 90 91 #include <linux/uaccess.h> 92 #include <asm/unistd.h> 93 94 #include <net/compat.h> 95 #include <net/wext.h> 96 #include <net/cls_cgroup.h> 97 98 #include <net/sock.h> 99 #include <linux/netfilter.h> 100 101 #include <linux/if_tun.h> 102 #include <linux/ipv6_route.h> 103 #include <linux/route.h> 104 #include <linux/termios.h> 105 #include <linux/sockios.h> 106 #include <net/busy_poll.h> 107 #include <linux/errqueue.h> 108 #include <linux/ptp_clock_kernel.h> 109 #include <trace/events/sock.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 #ifdef CONFIG_PROC_FS 136 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 137 { 138 struct socket *sock = f->private_data; 139 140 if (sock->ops->show_fdinfo) 141 sock->ops->show_fdinfo(m, sock); 142 } 143 #else 144 #define sock_show_fdinfo NULL 145 #endif 146 147 /* 148 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 149 * in the operation structures but are done directly via the socketcall() multiplexor. 150 */ 151 152 static const struct file_operations socket_file_ops = { 153 .owner = THIS_MODULE, 154 .llseek = no_llseek, 155 .read_iter = sock_read_iter, 156 .write_iter = sock_write_iter, 157 .poll = sock_poll, 158 .unlocked_ioctl = sock_ioctl, 159 #ifdef CONFIG_COMPAT 160 .compat_ioctl = compat_sock_ioctl, 161 #endif 162 .mmap = sock_mmap, 163 .release = sock_close, 164 .fasync = sock_fasync, 165 .sendpage = sock_sendpage, 166 .splice_write = generic_splice_sendpage, 167 .splice_read = sock_splice_read, 168 .show_fdinfo = sock_show_fdinfo, 169 }; 170 171 static const char * const pf_family_names[] = { 172 [PF_UNSPEC] = "PF_UNSPEC", 173 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 174 [PF_INET] = "PF_INET", 175 [PF_AX25] = "PF_AX25", 176 [PF_IPX] = "PF_IPX", 177 [PF_APPLETALK] = "PF_APPLETALK", 178 [PF_NETROM] = "PF_NETROM", 179 [PF_BRIDGE] = "PF_BRIDGE", 180 [PF_ATMPVC] = "PF_ATMPVC", 181 [PF_X25] = "PF_X25", 182 [PF_INET6] = "PF_INET6", 183 [PF_ROSE] = "PF_ROSE", 184 [PF_DECnet] = "PF_DECnet", 185 [PF_NETBEUI] = "PF_NETBEUI", 186 [PF_SECURITY] = "PF_SECURITY", 187 [PF_KEY] = "PF_KEY", 188 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 189 [PF_PACKET] = "PF_PACKET", 190 [PF_ASH] = "PF_ASH", 191 [PF_ECONET] = "PF_ECONET", 192 [PF_ATMSVC] = "PF_ATMSVC", 193 [PF_RDS] = "PF_RDS", 194 [PF_SNA] = "PF_SNA", 195 [PF_IRDA] = "PF_IRDA", 196 [PF_PPPOX] = "PF_PPPOX", 197 [PF_WANPIPE] = "PF_WANPIPE", 198 [PF_LLC] = "PF_LLC", 199 [PF_IB] = "PF_IB", 200 [PF_MPLS] = "PF_MPLS", 201 [PF_CAN] = "PF_CAN", 202 [PF_TIPC] = "PF_TIPC", 203 [PF_BLUETOOTH] = "PF_BLUETOOTH", 204 [PF_IUCV] = "PF_IUCV", 205 [PF_RXRPC] = "PF_RXRPC", 206 [PF_ISDN] = "PF_ISDN", 207 [PF_PHONET] = "PF_PHONET", 208 [PF_IEEE802154] = "PF_IEEE802154", 209 [PF_CAIF] = "PF_CAIF", 210 [PF_ALG] = "PF_ALG", 211 [PF_NFC] = "PF_NFC", 212 [PF_VSOCK] = "PF_VSOCK", 213 [PF_KCM] = "PF_KCM", 214 [PF_QIPCRTR] = "PF_QIPCRTR", 215 [PF_SMC] = "PF_SMC", 216 [PF_XDP] = "PF_XDP", 217 [PF_MCTP] = "PF_MCTP", 218 }; 219 220 /* 221 * The protocol list. Each protocol is registered in here. 222 */ 223 224 static DEFINE_SPINLOCK(net_family_lock); 225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 226 227 /* 228 * Support routines. 229 * Move socket addresses back and forth across the kernel/user 230 * divide and look after the messy bits. 231 */ 232 233 /** 234 * move_addr_to_kernel - copy a socket address into kernel space 235 * @uaddr: Address in user space 236 * @kaddr: Address in kernel space 237 * @ulen: Length in user space 238 * 239 * The address is copied into kernel space. If the provided address is 240 * too long an error code of -EINVAL is returned. If the copy gives 241 * invalid addresses -EFAULT is returned. On a success 0 is returned. 242 */ 243 244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 245 { 246 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 247 return -EINVAL; 248 if (ulen == 0) 249 return 0; 250 if (copy_from_user(kaddr, uaddr, ulen)) 251 return -EFAULT; 252 return audit_sockaddr(ulen, kaddr); 253 } 254 255 /** 256 * move_addr_to_user - copy an address to user space 257 * @kaddr: kernel space address 258 * @klen: length of address in kernel 259 * @uaddr: user space address 260 * @ulen: pointer to user length field 261 * 262 * The value pointed to by ulen on entry is the buffer length available. 263 * This is overwritten with the buffer space used. -EINVAL is returned 264 * if an overlong buffer is specified or a negative buffer size. -EFAULT 265 * is returned if either the buffer or the length field are not 266 * accessible. 267 * After copying the data up to the limit the user specifies, the true 268 * length of the data is written over the length limit the user 269 * specified. Zero is returned for a success. 270 */ 271 272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 273 void __user *uaddr, int __user *ulen) 274 { 275 int err; 276 int len; 277 278 BUG_ON(klen > sizeof(struct sockaddr_storage)); 279 err = get_user(len, ulen); 280 if (err) 281 return err; 282 if (len > klen) 283 len = klen; 284 if (len < 0) 285 return -EINVAL; 286 if (len) { 287 if (audit_sockaddr(klen, kaddr)) 288 return -ENOMEM; 289 if (copy_to_user(uaddr, kaddr, len)) 290 return -EFAULT; 291 } 292 /* 293 * "fromlen shall refer to the value before truncation.." 294 * 1003.1g 295 */ 296 return __put_user(klen, ulen); 297 } 298 299 static struct kmem_cache *sock_inode_cachep __ro_after_init; 300 301 static struct inode *sock_alloc_inode(struct super_block *sb) 302 { 303 struct socket_alloc *ei; 304 305 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 306 if (!ei) 307 return NULL; 308 init_waitqueue_head(&ei->socket.wq.wait); 309 ei->socket.wq.fasync_list = NULL; 310 ei->socket.wq.flags = 0; 311 312 ei->socket.state = SS_UNCONNECTED; 313 ei->socket.flags = 0; 314 ei->socket.ops = NULL; 315 ei->socket.sk = NULL; 316 ei->socket.file = NULL; 317 318 return &ei->vfs_inode; 319 } 320 321 static void sock_free_inode(struct inode *inode) 322 { 323 struct socket_alloc *ei; 324 325 ei = container_of(inode, struct socket_alloc, vfs_inode); 326 kmem_cache_free(sock_inode_cachep, ei); 327 } 328 329 static void init_once(void *foo) 330 { 331 struct socket_alloc *ei = (struct socket_alloc *)foo; 332 333 inode_init_once(&ei->vfs_inode); 334 } 335 336 static void init_inodecache(void) 337 { 338 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 339 sizeof(struct socket_alloc), 340 0, 341 (SLAB_HWCACHE_ALIGN | 342 SLAB_RECLAIM_ACCOUNT | 343 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 344 init_once); 345 BUG_ON(sock_inode_cachep == NULL); 346 } 347 348 static const struct super_operations sockfs_ops = { 349 .alloc_inode = sock_alloc_inode, 350 .free_inode = sock_free_inode, 351 .statfs = simple_statfs, 352 }; 353 354 /* 355 * sockfs_dname() is called from d_path(). 356 */ 357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 358 { 359 return dynamic_dname(buffer, buflen, "socket:[%lu]", 360 d_inode(dentry)->i_ino); 361 } 362 363 static const struct dentry_operations sockfs_dentry_operations = { 364 .d_dname = sockfs_dname, 365 }; 366 367 static int sockfs_xattr_get(const struct xattr_handler *handler, 368 struct dentry *dentry, struct inode *inode, 369 const char *suffix, void *value, size_t size) 370 { 371 if (value) { 372 if (dentry->d_name.len + 1 > size) 373 return -ERANGE; 374 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 375 } 376 return dentry->d_name.len + 1; 377 } 378 379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 382 383 static const struct xattr_handler sockfs_xattr_handler = { 384 .name = XATTR_NAME_SOCKPROTONAME, 385 .get = sockfs_xattr_get, 386 }; 387 388 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 389 struct mnt_idmap *idmap, 390 struct dentry *dentry, struct inode *inode, 391 const char *suffix, const void *value, 392 size_t size, int flags) 393 { 394 /* Handled by LSM. */ 395 return -EAGAIN; 396 } 397 398 static const struct xattr_handler sockfs_security_xattr_handler = { 399 .prefix = XATTR_SECURITY_PREFIX, 400 .set = sockfs_security_xattr_set, 401 }; 402 403 static const struct xattr_handler *sockfs_xattr_handlers[] = { 404 &sockfs_xattr_handler, 405 &sockfs_security_xattr_handler, 406 NULL 407 }; 408 409 static int sockfs_init_fs_context(struct fs_context *fc) 410 { 411 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 412 if (!ctx) 413 return -ENOMEM; 414 ctx->ops = &sockfs_ops; 415 ctx->dops = &sockfs_dentry_operations; 416 ctx->xattr = sockfs_xattr_handlers; 417 return 0; 418 } 419 420 static struct vfsmount *sock_mnt __read_mostly; 421 422 static struct file_system_type sock_fs_type = { 423 .name = "sockfs", 424 .init_fs_context = sockfs_init_fs_context, 425 .kill_sb = kill_anon_super, 426 }; 427 428 /* 429 * Obtains the first available file descriptor and sets it up for use. 430 * 431 * These functions create file structures and maps them to fd space 432 * of the current process. On success it returns file descriptor 433 * and file struct implicitly stored in sock->file. 434 * Note that another thread may close file descriptor before we return 435 * from this function. We use the fact that now we do not refer 436 * to socket after mapping. If one day we will need it, this 437 * function will increment ref. count on file by 1. 438 * 439 * In any case returned fd MAY BE not valid! 440 * This race condition is unavoidable 441 * with shared fd spaces, we cannot solve it inside kernel, 442 * but we take care of internal coherence yet. 443 */ 444 445 /** 446 * sock_alloc_file - Bind a &socket to a &file 447 * @sock: socket 448 * @flags: file status flags 449 * @dname: protocol name 450 * 451 * Returns the &file bound with @sock, implicitly storing it 452 * in sock->file. If dname is %NULL, sets to "". 453 * 454 * On failure @sock is released, and an ERR pointer is returned. 455 * 456 * This function uses GFP_KERNEL internally. 457 */ 458 459 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 460 { 461 struct file *file; 462 463 if (!dname) 464 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 465 466 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 467 O_RDWR | (flags & O_NONBLOCK), 468 &socket_file_ops); 469 if (IS_ERR(file)) { 470 sock_release(sock); 471 return file; 472 } 473 474 sock->file = file; 475 file->private_data = sock; 476 stream_open(SOCK_INODE(sock), file); 477 return file; 478 } 479 EXPORT_SYMBOL(sock_alloc_file); 480 481 static int sock_map_fd(struct socket *sock, int flags) 482 { 483 struct file *newfile; 484 int fd = get_unused_fd_flags(flags); 485 if (unlikely(fd < 0)) { 486 sock_release(sock); 487 return fd; 488 } 489 490 newfile = sock_alloc_file(sock, flags, NULL); 491 if (!IS_ERR(newfile)) { 492 fd_install(fd, newfile); 493 return fd; 494 } 495 496 put_unused_fd(fd); 497 return PTR_ERR(newfile); 498 } 499 500 /** 501 * sock_from_file - Return the &socket bounded to @file. 502 * @file: file 503 * 504 * On failure returns %NULL. 505 */ 506 507 struct socket *sock_from_file(struct file *file) 508 { 509 if (file->f_op == &socket_file_ops) 510 return file->private_data; /* set in sock_alloc_file */ 511 512 return NULL; 513 } 514 EXPORT_SYMBOL(sock_from_file); 515 516 /** 517 * sockfd_lookup - Go from a file number to its socket slot 518 * @fd: file handle 519 * @err: pointer to an error code return 520 * 521 * The file handle passed in is locked and the socket it is bound 522 * to is returned. If an error occurs the err pointer is overwritten 523 * with a negative errno code and NULL is returned. The function checks 524 * for both invalid handles and passing a handle which is not a socket. 525 * 526 * On a success the socket object pointer is returned. 527 */ 528 529 struct socket *sockfd_lookup(int fd, int *err) 530 { 531 struct file *file; 532 struct socket *sock; 533 534 file = fget(fd); 535 if (!file) { 536 *err = -EBADF; 537 return NULL; 538 } 539 540 sock = sock_from_file(file); 541 if (!sock) { 542 *err = -ENOTSOCK; 543 fput(file); 544 } 545 return sock; 546 } 547 EXPORT_SYMBOL(sockfd_lookup); 548 549 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 550 { 551 struct fd f = fdget(fd); 552 struct socket *sock; 553 554 *err = -EBADF; 555 if (f.file) { 556 sock = sock_from_file(f.file); 557 if (likely(sock)) { 558 *fput_needed = f.flags & FDPUT_FPUT; 559 return sock; 560 } 561 *err = -ENOTSOCK; 562 fdput(f); 563 } 564 return NULL; 565 } 566 567 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 568 size_t size) 569 { 570 ssize_t len; 571 ssize_t used = 0; 572 573 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 574 if (len < 0) 575 return len; 576 used += len; 577 if (buffer) { 578 if (size < used) 579 return -ERANGE; 580 buffer += len; 581 } 582 583 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 584 used += len; 585 if (buffer) { 586 if (size < used) 587 return -ERANGE; 588 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 589 buffer += len; 590 } 591 592 return used; 593 } 594 595 static int sockfs_setattr(struct mnt_idmap *idmap, 596 struct dentry *dentry, struct iattr *iattr) 597 { 598 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 599 600 if (!err && (iattr->ia_valid & ATTR_UID)) { 601 struct socket *sock = SOCKET_I(d_inode(dentry)); 602 603 if (sock->sk) 604 sock->sk->sk_uid = iattr->ia_uid; 605 else 606 err = -ENOENT; 607 } 608 609 return err; 610 } 611 612 static const struct inode_operations sockfs_inode_ops = { 613 .listxattr = sockfs_listxattr, 614 .setattr = sockfs_setattr, 615 }; 616 617 /** 618 * sock_alloc - allocate a socket 619 * 620 * Allocate a new inode and socket object. The two are bound together 621 * and initialised. The socket is then returned. If we are out of inodes 622 * NULL is returned. This functions uses GFP_KERNEL internally. 623 */ 624 625 struct socket *sock_alloc(void) 626 { 627 struct inode *inode; 628 struct socket *sock; 629 630 inode = new_inode_pseudo(sock_mnt->mnt_sb); 631 if (!inode) 632 return NULL; 633 634 sock = SOCKET_I(inode); 635 636 inode->i_ino = get_next_ino(); 637 inode->i_mode = S_IFSOCK | S_IRWXUGO; 638 inode->i_uid = current_fsuid(); 639 inode->i_gid = current_fsgid(); 640 inode->i_op = &sockfs_inode_ops; 641 642 return sock; 643 } 644 EXPORT_SYMBOL(sock_alloc); 645 646 static void __sock_release(struct socket *sock, struct inode *inode) 647 { 648 if (sock->ops) { 649 struct module *owner = sock->ops->owner; 650 651 if (inode) 652 inode_lock(inode); 653 sock->ops->release(sock); 654 sock->sk = NULL; 655 if (inode) 656 inode_unlock(inode); 657 sock->ops = NULL; 658 module_put(owner); 659 } 660 661 if (sock->wq.fasync_list) 662 pr_err("%s: fasync list not empty!\n", __func__); 663 664 if (!sock->file) { 665 iput(SOCK_INODE(sock)); 666 return; 667 } 668 sock->file = NULL; 669 } 670 671 /** 672 * sock_release - close a socket 673 * @sock: socket to close 674 * 675 * The socket is released from the protocol stack if it has a release 676 * callback, and the inode is then released if the socket is bound to 677 * an inode not a file. 678 */ 679 void sock_release(struct socket *sock) 680 { 681 __sock_release(sock, NULL); 682 } 683 EXPORT_SYMBOL(sock_release); 684 685 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 686 { 687 u8 flags = *tx_flags; 688 689 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 690 flags |= SKBTX_HW_TSTAMP; 691 692 /* PTP hardware clocks can provide a free running cycle counter 693 * as a time base for virtual clocks. Tell driver to use the 694 * free running cycle counter for timestamp if socket is bound 695 * to virtual clock. 696 */ 697 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 698 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 699 } 700 701 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 702 flags |= SKBTX_SW_TSTAMP; 703 704 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 705 flags |= SKBTX_SCHED_TSTAMP; 706 707 *tx_flags = flags; 708 } 709 EXPORT_SYMBOL(__sock_tx_timestamp); 710 711 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 712 size_t)); 713 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 714 size_t)); 715 716 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 717 int flags) 718 { 719 trace_sock_send_length(sk, ret, 0); 720 } 721 722 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 723 { 724 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 725 inet_sendmsg, sock, msg, 726 msg_data_left(msg)); 727 BUG_ON(ret == -EIOCBQUEUED); 728 729 if (trace_sock_send_length_enabled()) 730 call_trace_sock_send_length(sock->sk, ret, 0); 731 return ret; 732 } 733 734 /** 735 * sock_sendmsg - send a message through @sock 736 * @sock: socket 737 * @msg: message to send 738 * 739 * Sends @msg through @sock, passing through LSM. 740 * Returns the number of bytes sent, or an error code. 741 */ 742 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 743 { 744 int err = security_socket_sendmsg(sock, msg, 745 msg_data_left(msg)); 746 747 return err ?: sock_sendmsg_nosec(sock, msg); 748 } 749 EXPORT_SYMBOL(sock_sendmsg); 750 751 /** 752 * kernel_sendmsg - send a message through @sock (kernel-space) 753 * @sock: socket 754 * @msg: message header 755 * @vec: kernel vec 756 * @num: vec array length 757 * @size: total message data size 758 * 759 * Builds the message data with @vec and sends it through @sock. 760 * Returns the number of bytes sent, or an error code. 761 */ 762 763 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 764 struct kvec *vec, size_t num, size_t size) 765 { 766 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 767 return sock_sendmsg(sock, msg); 768 } 769 EXPORT_SYMBOL(kernel_sendmsg); 770 771 /** 772 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 773 * @sk: sock 774 * @msg: message header 775 * @vec: output s/g array 776 * @num: output s/g array length 777 * @size: total message data size 778 * 779 * Builds the message data with @vec and sends it through @sock. 780 * Returns the number of bytes sent, or an error code. 781 * Caller must hold @sk. 782 */ 783 784 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 785 struct kvec *vec, size_t num, size_t size) 786 { 787 struct socket *sock = sk->sk_socket; 788 789 if (!sock->ops->sendmsg_locked) 790 return sock_no_sendmsg_locked(sk, msg, size); 791 792 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 793 794 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 795 } 796 EXPORT_SYMBOL(kernel_sendmsg_locked); 797 798 static bool skb_is_err_queue(const struct sk_buff *skb) 799 { 800 /* pkt_type of skbs enqueued on the error queue are set to 801 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 802 * in recvmsg, since skbs received on a local socket will never 803 * have a pkt_type of PACKET_OUTGOING. 804 */ 805 return skb->pkt_type == PACKET_OUTGOING; 806 } 807 808 /* On transmit, software and hardware timestamps are returned independently. 809 * As the two skb clones share the hardware timestamp, which may be updated 810 * before the software timestamp is received, a hardware TX timestamp may be 811 * returned only if there is no software TX timestamp. Ignore false software 812 * timestamps, which may be made in the __sock_recv_timestamp() call when the 813 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 814 * hardware timestamp. 815 */ 816 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 817 { 818 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 819 } 820 821 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 822 { 823 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC; 824 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 825 struct net_device *orig_dev; 826 ktime_t hwtstamp; 827 828 rcu_read_lock(); 829 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 830 if (orig_dev) { 831 *if_index = orig_dev->ifindex; 832 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 833 } else { 834 hwtstamp = shhwtstamps->hwtstamp; 835 } 836 rcu_read_unlock(); 837 838 return hwtstamp; 839 } 840 841 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 842 int if_index) 843 { 844 struct scm_ts_pktinfo ts_pktinfo; 845 struct net_device *orig_dev; 846 847 if (!skb_mac_header_was_set(skb)) 848 return; 849 850 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 851 852 if (!if_index) { 853 rcu_read_lock(); 854 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 855 if (orig_dev) 856 if_index = orig_dev->ifindex; 857 rcu_read_unlock(); 858 } 859 ts_pktinfo.if_index = if_index; 860 861 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 862 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 863 sizeof(ts_pktinfo), &ts_pktinfo); 864 } 865 866 /* 867 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 868 */ 869 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 870 struct sk_buff *skb) 871 { 872 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 873 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 874 struct scm_timestamping_internal tss; 875 876 int empty = 1, false_tstamp = 0; 877 struct skb_shared_hwtstamps *shhwtstamps = 878 skb_hwtstamps(skb); 879 int if_index; 880 ktime_t hwtstamp; 881 882 /* Race occurred between timestamp enabling and packet 883 receiving. Fill in the current time for now. */ 884 if (need_software_tstamp && skb->tstamp == 0) { 885 __net_timestamp(skb); 886 false_tstamp = 1; 887 } 888 889 if (need_software_tstamp) { 890 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 891 if (new_tstamp) { 892 struct __kernel_sock_timeval tv; 893 894 skb_get_new_timestamp(skb, &tv); 895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 896 sizeof(tv), &tv); 897 } else { 898 struct __kernel_old_timeval tv; 899 900 skb_get_timestamp(skb, &tv); 901 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 902 sizeof(tv), &tv); 903 } 904 } else { 905 if (new_tstamp) { 906 struct __kernel_timespec ts; 907 908 skb_get_new_timestampns(skb, &ts); 909 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 910 sizeof(ts), &ts); 911 } else { 912 struct __kernel_old_timespec ts; 913 914 skb_get_timestampns(skb, &ts); 915 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 916 sizeof(ts), &ts); 917 } 918 } 919 } 920 921 memset(&tss, 0, sizeof(tss)); 922 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 923 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 924 empty = 0; 925 if (shhwtstamps && 926 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 927 !skb_is_swtx_tstamp(skb, false_tstamp)) { 928 if_index = 0; 929 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 930 hwtstamp = get_timestamp(sk, skb, &if_index); 931 else 932 hwtstamp = shhwtstamps->hwtstamp; 933 934 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 935 hwtstamp = ptp_convert_timestamp(&hwtstamp, 936 sk->sk_bind_phc); 937 938 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 939 empty = 0; 940 941 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 942 !skb_is_err_queue(skb)) 943 put_ts_pktinfo(msg, skb, if_index); 944 } 945 } 946 if (!empty) { 947 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 948 put_cmsg_scm_timestamping64(msg, &tss); 949 else 950 put_cmsg_scm_timestamping(msg, &tss); 951 952 if (skb_is_err_queue(skb) && skb->len && 953 SKB_EXT_ERR(skb)->opt_stats) 954 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 955 skb->len, skb->data); 956 } 957 } 958 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 959 960 #ifdef CONFIG_WIRELESS 961 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 962 struct sk_buff *skb) 963 { 964 int ack; 965 966 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 967 return; 968 if (!skb->wifi_acked_valid) 969 return; 970 971 ack = skb->wifi_acked; 972 973 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 974 } 975 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 976 #endif 977 978 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 979 struct sk_buff *skb) 980 { 981 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 982 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 983 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 984 } 985 986 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 987 struct sk_buff *skb) 988 { 989 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 990 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 991 __u32 mark = skb->mark; 992 993 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 994 } 995 } 996 997 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 998 struct sk_buff *skb) 999 { 1000 sock_recv_timestamp(msg, sk, skb); 1001 sock_recv_drops(msg, sk, skb); 1002 sock_recv_mark(msg, sk, skb); 1003 } 1004 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1005 1006 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1007 size_t, int)); 1008 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1009 size_t, int)); 1010 1011 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1012 { 1013 trace_sock_recv_length(sk, ret, flags); 1014 } 1015 1016 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1017 int flags) 1018 { 1019 int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 1020 inet_recvmsg, sock, msg, 1021 msg_data_left(msg), flags); 1022 if (trace_sock_recv_length_enabled()) 1023 call_trace_sock_recv_length(sock->sk, ret, flags); 1024 return ret; 1025 } 1026 1027 /** 1028 * sock_recvmsg - receive a message from @sock 1029 * @sock: socket 1030 * @msg: message to receive 1031 * @flags: message flags 1032 * 1033 * Receives @msg from @sock, passing through LSM. Returns the total number 1034 * of bytes received, or an error. 1035 */ 1036 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1037 { 1038 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1039 1040 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1041 } 1042 EXPORT_SYMBOL(sock_recvmsg); 1043 1044 /** 1045 * kernel_recvmsg - Receive a message from a socket (kernel space) 1046 * @sock: The socket to receive the message from 1047 * @msg: Received message 1048 * @vec: Input s/g array for message data 1049 * @num: Size of input s/g array 1050 * @size: Number of bytes to read 1051 * @flags: Message flags (MSG_DONTWAIT, etc...) 1052 * 1053 * On return the msg structure contains the scatter/gather array passed in the 1054 * vec argument. The array is modified so that it consists of the unfilled 1055 * portion of the original array. 1056 * 1057 * The returned value is the total number of bytes received, or an error. 1058 */ 1059 1060 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1061 struct kvec *vec, size_t num, size_t size, int flags) 1062 { 1063 msg->msg_control_is_user = false; 1064 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1065 return sock_recvmsg(sock, msg, flags); 1066 } 1067 EXPORT_SYMBOL(kernel_recvmsg); 1068 1069 static ssize_t sock_sendpage(struct file *file, struct page *page, 1070 int offset, size_t size, loff_t *ppos, int more) 1071 { 1072 struct socket *sock; 1073 int flags; 1074 int ret; 1075 1076 sock = file->private_data; 1077 1078 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 1079 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 1080 flags |= more; 1081 1082 ret = kernel_sendpage(sock, page, offset, size, flags); 1083 1084 if (trace_sock_send_length_enabled()) 1085 call_trace_sock_send_length(sock->sk, ret, 0); 1086 return ret; 1087 } 1088 1089 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1090 struct pipe_inode_info *pipe, size_t len, 1091 unsigned int flags) 1092 { 1093 struct socket *sock = file->private_data; 1094 1095 if (unlikely(!sock->ops->splice_read)) 1096 return generic_file_splice_read(file, ppos, pipe, len, flags); 1097 1098 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1099 } 1100 1101 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1102 { 1103 struct file *file = iocb->ki_filp; 1104 struct socket *sock = file->private_data; 1105 struct msghdr msg = {.msg_iter = *to, 1106 .msg_iocb = iocb}; 1107 ssize_t res; 1108 1109 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1110 msg.msg_flags = MSG_DONTWAIT; 1111 1112 if (iocb->ki_pos != 0) 1113 return -ESPIPE; 1114 1115 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1116 return 0; 1117 1118 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1119 *to = msg.msg_iter; 1120 return res; 1121 } 1122 1123 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1124 { 1125 struct file *file = iocb->ki_filp; 1126 struct socket *sock = file->private_data; 1127 struct msghdr msg = {.msg_iter = *from, 1128 .msg_iocb = iocb}; 1129 ssize_t res; 1130 1131 if (iocb->ki_pos != 0) 1132 return -ESPIPE; 1133 1134 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1135 msg.msg_flags = MSG_DONTWAIT; 1136 1137 if (sock->type == SOCK_SEQPACKET) 1138 msg.msg_flags |= MSG_EOR; 1139 1140 res = sock_sendmsg(sock, &msg); 1141 *from = msg.msg_iter; 1142 return res; 1143 } 1144 1145 /* 1146 * Atomic setting of ioctl hooks to avoid race 1147 * with module unload. 1148 */ 1149 1150 static DEFINE_MUTEX(br_ioctl_mutex); 1151 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1152 unsigned int cmd, struct ifreq *ifr, 1153 void __user *uarg); 1154 1155 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1156 unsigned int cmd, struct ifreq *ifr, 1157 void __user *uarg)) 1158 { 1159 mutex_lock(&br_ioctl_mutex); 1160 br_ioctl_hook = hook; 1161 mutex_unlock(&br_ioctl_mutex); 1162 } 1163 EXPORT_SYMBOL(brioctl_set); 1164 1165 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1166 struct ifreq *ifr, void __user *uarg) 1167 { 1168 int err = -ENOPKG; 1169 1170 if (!br_ioctl_hook) 1171 request_module("bridge"); 1172 1173 mutex_lock(&br_ioctl_mutex); 1174 if (br_ioctl_hook) 1175 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1176 mutex_unlock(&br_ioctl_mutex); 1177 1178 return err; 1179 } 1180 1181 static DEFINE_MUTEX(vlan_ioctl_mutex); 1182 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1183 1184 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1185 { 1186 mutex_lock(&vlan_ioctl_mutex); 1187 vlan_ioctl_hook = hook; 1188 mutex_unlock(&vlan_ioctl_mutex); 1189 } 1190 EXPORT_SYMBOL(vlan_ioctl_set); 1191 1192 static long sock_do_ioctl(struct net *net, struct socket *sock, 1193 unsigned int cmd, unsigned long arg) 1194 { 1195 struct ifreq ifr; 1196 bool need_copyout; 1197 int err; 1198 void __user *argp = (void __user *)arg; 1199 void __user *data; 1200 1201 err = sock->ops->ioctl(sock, cmd, arg); 1202 1203 /* 1204 * If this ioctl is unknown try to hand it down 1205 * to the NIC driver. 1206 */ 1207 if (err != -ENOIOCTLCMD) 1208 return err; 1209 1210 if (!is_socket_ioctl_cmd(cmd)) 1211 return -ENOTTY; 1212 1213 if (get_user_ifreq(&ifr, &data, argp)) 1214 return -EFAULT; 1215 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1216 if (!err && need_copyout) 1217 if (put_user_ifreq(&ifr, argp)) 1218 return -EFAULT; 1219 1220 return err; 1221 } 1222 1223 /* 1224 * With an ioctl, arg may well be a user mode pointer, but we don't know 1225 * what to do with it - that's up to the protocol still. 1226 */ 1227 1228 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1229 { 1230 struct socket *sock; 1231 struct sock *sk; 1232 void __user *argp = (void __user *)arg; 1233 int pid, err; 1234 struct net *net; 1235 1236 sock = file->private_data; 1237 sk = sock->sk; 1238 net = sock_net(sk); 1239 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1240 struct ifreq ifr; 1241 void __user *data; 1242 bool need_copyout; 1243 if (get_user_ifreq(&ifr, &data, argp)) 1244 return -EFAULT; 1245 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1246 if (!err && need_copyout) 1247 if (put_user_ifreq(&ifr, argp)) 1248 return -EFAULT; 1249 } else 1250 #ifdef CONFIG_WEXT_CORE 1251 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1252 err = wext_handle_ioctl(net, cmd, argp); 1253 } else 1254 #endif 1255 switch (cmd) { 1256 case FIOSETOWN: 1257 case SIOCSPGRP: 1258 err = -EFAULT; 1259 if (get_user(pid, (int __user *)argp)) 1260 break; 1261 err = f_setown(sock->file, pid, 1); 1262 break; 1263 case FIOGETOWN: 1264 case SIOCGPGRP: 1265 err = put_user(f_getown(sock->file), 1266 (int __user *)argp); 1267 break; 1268 case SIOCGIFBR: 1269 case SIOCSIFBR: 1270 case SIOCBRADDBR: 1271 case SIOCBRDELBR: 1272 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1273 break; 1274 case SIOCGIFVLAN: 1275 case SIOCSIFVLAN: 1276 err = -ENOPKG; 1277 if (!vlan_ioctl_hook) 1278 request_module("8021q"); 1279 1280 mutex_lock(&vlan_ioctl_mutex); 1281 if (vlan_ioctl_hook) 1282 err = vlan_ioctl_hook(net, argp); 1283 mutex_unlock(&vlan_ioctl_mutex); 1284 break; 1285 case SIOCGSKNS: 1286 err = -EPERM; 1287 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1288 break; 1289 1290 err = open_related_ns(&net->ns, get_net_ns); 1291 break; 1292 case SIOCGSTAMP_OLD: 1293 case SIOCGSTAMPNS_OLD: 1294 if (!sock->ops->gettstamp) { 1295 err = -ENOIOCTLCMD; 1296 break; 1297 } 1298 err = sock->ops->gettstamp(sock, argp, 1299 cmd == SIOCGSTAMP_OLD, 1300 !IS_ENABLED(CONFIG_64BIT)); 1301 break; 1302 case SIOCGSTAMP_NEW: 1303 case SIOCGSTAMPNS_NEW: 1304 if (!sock->ops->gettstamp) { 1305 err = -ENOIOCTLCMD; 1306 break; 1307 } 1308 err = sock->ops->gettstamp(sock, argp, 1309 cmd == SIOCGSTAMP_NEW, 1310 false); 1311 break; 1312 1313 case SIOCGIFCONF: 1314 err = dev_ifconf(net, argp); 1315 break; 1316 1317 default: 1318 err = sock_do_ioctl(net, sock, cmd, arg); 1319 break; 1320 } 1321 return err; 1322 } 1323 1324 /** 1325 * sock_create_lite - creates a socket 1326 * @family: protocol family (AF_INET, ...) 1327 * @type: communication type (SOCK_STREAM, ...) 1328 * @protocol: protocol (0, ...) 1329 * @res: new socket 1330 * 1331 * Creates a new socket and assigns it to @res, passing through LSM. 1332 * The new socket initialization is not complete, see kernel_accept(). 1333 * Returns 0 or an error. On failure @res is set to %NULL. 1334 * This function internally uses GFP_KERNEL. 1335 */ 1336 1337 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1338 { 1339 int err; 1340 struct socket *sock = NULL; 1341 1342 err = security_socket_create(family, type, protocol, 1); 1343 if (err) 1344 goto out; 1345 1346 sock = sock_alloc(); 1347 if (!sock) { 1348 err = -ENOMEM; 1349 goto out; 1350 } 1351 1352 sock->type = type; 1353 err = security_socket_post_create(sock, family, type, protocol, 1); 1354 if (err) 1355 goto out_release; 1356 1357 out: 1358 *res = sock; 1359 return err; 1360 out_release: 1361 sock_release(sock); 1362 sock = NULL; 1363 goto out; 1364 } 1365 EXPORT_SYMBOL(sock_create_lite); 1366 1367 /* No kernel lock held - perfect */ 1368 static __poll_t sock_poll(struct file *file, poll_table *wait) 1369 { 1370 struct socket *sock = file->private_data; 1371 __poll_t events = poll_requested_events(wait), flag = 0; 1372 1373 if (!sock->ops->poll) 1374 return 0; 1375 1376 if (sk_can_busy_loop(sock->sk)) { 1377 /* poll once if requested by the syscall */ 1378 if (events & POLL_BUSY_LOOP) 1379 sk_busy_loop(sock->sk, 1); 1380 1381 /* if this socket can poll_ll, tell the system call */ 1382 flag = POLL_BUSY_LOOP; 1383 } 1384 1385 return sock->ops->poll(file, sock, wait) | flag; 1386 } 1387 1388 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1389 { 1390 struct socket *sock = file->private_data; 1391 1392 return sock->ops->mmap(file, sock, vma); 1393 } 1394 1395 static int sock_close(struct inode *inode, struct file *filp) 1396 { 1397 __sock_release(SOCKET_I(inode), inode); 1398 return 0; 1399 } 1400 1401 /* 1402 * Update the socket async list 1403 * 1404 * Fasync_list locking strategy. 1405 * 1406 * 1. fasync_list is modified only under process context socket lock 1407 * i.e. under semaphore. 1408 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1409 * or under socket lock 1410 */ 1411 1412 static int sock_fasync(int fd, struct file *filp, int on) 1413 { 1414 struct socket *sock = filp->private_data; 1415 struct sock *sk = sock->sk; 1416 struct socket_wq *wq = &sock->wq; 1417 1418 if (sk == NULL) 1419 return -EINVAL; 1420 1421 lock_sock(sk); 1422 fasync_helper(fd, filp, on, &wq->fasync_list); 1423 1424 if (!wq->fasync_list) 1425 sock_reset_flag(sk, SOCK_FASYNC); 1426 else 1427 sock_set_flag(sk, SOCK_FASYNC); 1428 1429 release_sock(sk); 1430 return 0; 1431 } 1432 1433 /* This function may be called only under rcu_lock */ 1434 1435 int sock_wake_async(struct socket_wq *wq, int how, int band) 1436 { 1437 if (!wq || !wq->fasync_list) 1438 return -1; 1439 1440 switch (how) { 1441 case SOCK_WAKE_WAITD: 1442 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1443 break; 1444 goto call_kill; 1445 case SOCK_WAKE_SPACE: 1446 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1447 break; 1448 fallthrough; 1449 case SOCK_WAKE_IO: 1450 call_kill: 1451 kill_fasync(&wq->fasync_list, SIGIO, band); 1452 break; 1453 case SOCK_WAKE_URG: 1454 kill_fasync(&wq->fasync_list, SIGURG, band); 1455 } 1456 1457 return 0; 1458 } 1459 EXPORT_SYMBOL(sock_wake_async); 1460 1461 /** 1462 * __sock_create - creates a socket 1463 * @net: net namespace 1464 * @family: protocol family (AF_INET, ...) 1465 * @type: communication type (SOCK_STREAM, ...) 1466 * @protocol: protocol (0, ...) 1467 * @res: new socket 1468 * @kern: boolean for kernel space sockets 1469 * 1470 * Creates a new socket and assigns it to @res, passing through LSM. 1471 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1472 * be set to true if the socket resides in kernel space. 1473 * This function internally uses GFP_KERNEL. 1474 */ 1475 1476 int __sock_create(struct net *net, int family, int type, int protocol, 1477 struct socket **res, int kern) 1478 { 1479 int err; 1480 struct socket *sock; 1481 const struct net_proto_family *pf; 1482 1483 /* 1484 * Check protocol is in range 1485 */ 1486 if (family < 0 || family >= NPROTO) 1487 return -EAFNOSUPPORT; 1488 if (type < 0 || type >= SOCK_MAX) 1489 return -EINVAL; 1490 1491 /* Compatibility. 1492 1493 This uglymoron is moved from INET layer to here to avoid 1494 deadlock in module load. 1495 */ 1496 if (family == PF_INET && type == SOCK_PACKET) { 1497 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1498 current->comm); 1499 family = PF_PACKET; 1500 } 1501 1502 err = security_socket_create(family, type, protocol, kern); 1503 if (err) 1504 return err; 1505 1506 /* 1507 * Allocate the socket and allow the family to set things up. if 1508 * the protocol is 0, the family is instructed to select an appropriate 1509 * default. 1510 */ 1511 sock = sock_alloc(); 1512 if (!sock) { 1513 net_warn_ratelimited("socket: no more sockets\n"); 1514 return -ENFILE; /* Not exactly a match, but its the 1515 closest posix thing */ 1516 } 1517 1518 sock->type = type; 1519 1520 #ifdef CONFIG_MODULES 1521 /* Attempt to load a protocol module if the find failed. 1522 * 1523 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1524 * requested real, full-featured networking support upon configuration. 1525 * Otherwise module support will break! 1526 */ 1527 if (rcu_access_pointer(net_families[family]) == NULL) 1528 request_module("net-pf-%d", family); 1529 #endif 1530 1531 rcu_read_lock(); 1532 pf = rcu_dereference(net_families[family]); 1533 err = -EAFNOSUPPORT; 1534 if (!pf) 1535 goto out_release; 1536 1537 /* 1538 * We will call the ->create function, that possibly is in a loadable 1539 * module, so we have to bump that loadable module refcnt first. 1540 */ 1541 if (!try_module_get(pf->owner)) 1542 goto out_release; 1543 1544 /* Now protected by module ref count */ 1545 rcu_read_unlock(); 1546 1547 err = pf->create(net, sock, protocol, kern); 1548 if (err < 0) 1549 goto out_module_put; 1550 1551 /* 1552 * Now to bump the refcnt of the [loadable] module that owns this 1553 * socket at sock_release time we decrement its refcnt. 1554 */ 1555 if (!try_module_get(sock->ops->owner)) 1556 goto out_module_busy; 1557 1558 /* 1559 * Now that we're done with the ->create function, the [loadable] 1560 * module can have its refcnt decremented 1561 */ 1562 module_put(pf->owner); 1563 err = security_socket_post_create(sock, family, type, protocol, kern); 1564 if (err) 1565 goto out_sock_release; 1566 *res = sock; 1567 1568 return 0; 1569 1570 out_module_busy: 1571 err = -EAFNOSUPPORT; 1572 out_module_put: 1573 sock->ops = NULL; 1574 module_put(pf->owner); 1575 out_sock_release: 1576 sock_release(sock); 1577 return err; 1578 1579 out_release: 1580 rcu_read_unlock(); 1581 goto out_sock_release; 1582 } 1583 EXPORT_SYMBOL(__sock_create); 1584 1585 /** 1586 * sock_create - creates a socket 1587 * @family: protocol family (AF_INET, ...) 1588 * @type: communication type (SOCK_STREAM, ...) 1589 * @protocol: protocol (0, ...) 1590 * @res: new socket 1591 * 1592 * A wrapper around __sock_create(). 1593 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1594 */ 1595 1596 int sock_create(int family, int type, int protocol, struct socket **res) 1597 { 1598 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1599 } 1600 EXPORT_SYMBOL(sock_create); 1601 1602 /** 1603 * sock_create_kern - creates a socket (kernel space) 1604 * @net: net namespace 1605 * @family: protocol family (AF_INET, ...) 1606 * @type: communication type (SOCK_STREAM, ...) 1607 * @protocol: protocol (0, ...) 1608 * @res: new socket 1609 * 1610 * A wrapper around __sock_create(). 1611 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1612 */ 1613 1614 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1615 { 1616 return __sock_create(net, family, type, protocol, res, 1); 1617 } 1618 EXPORT_SYMBOL(sock_create_kern); 1619 1620 static struct socket *__sys_socket_create(int family, int type, int protocol) 1621 { 1622 struct socket *sock; 1623 int retval; 1624 1625 /* Check the SOCK_* constants for consistency. */ 1626 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1627 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1628 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1629 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1630 1631 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1632 return ERR_PTR(-EINVAL); 1633 type &= SOCK_TYPE_MASK; 1634 1635 retval = sock_create(family, type, protocol, &sock); 1636 if (retval < 0) 1637 return ERR_PTR(retval); 1638 1639 return sock; 1640 } 1641 1642 struct file *__sys_socket_file(int family, int type, int protocol) 1643 { 1644 struct socket *sock; 1645 int flags; 1646 1647 sock = __sys_socket_create(family, type, protocol); 1648 if (IS_ERR(sock)) 1649 return ERR_CAST(sock); 1650 1651 flags = type & ~SOCK_TYPE_MASK; 1652 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1653 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1654 1655 return sock_alloc_file(sock, flags, NULL); 1656 } 1657 1658 int __sys_socket(int family, int type, int protocol) 1659 { 1660 struct socket *sock; 1661 int flags; 1662 1663 sock = __sys_socket_create(family, type, protocol); 1664 if (IS_ERR(sock)) 1665 return PTR_ERR(sock); 1666 1667 flags = type & ~SOCK_TYPE_MASK; 1668 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1669 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1670 1671 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1672 } 1673 1674 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1675 { 1676 return __sys_socket(family, type, protocol); 1677 } 1678 1679 /* 1680 * Create a pair of connected sockets. 1681 */ 1682 1683 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1684 { 1685 struct socket *sock1, *sock2; 1686 int fd1, fd2, err; 1687 struct file *newfile1, *newfile2; 1688 int flags; 1689 1690 flags = type & ~SOCK_TYPE_MASK; 1691 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1692 return -EINVAL; 1693 type &= SOCK_TYPE_MASK; 1694 1695 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1696 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1697 1698 /* 1699 * reserve descriptors and make sure we won't fail 1700 * to return them to userland. 1701 */ 1702 fd1 = get_unused_fd_flags(flags); 1703 if (unlikely(fd1 < 0)) 1704 return fd1; 1705 1706 fd2 = get_unused_fd_flags(flags); 1707 if (unlikely(fd2 < 0)) { 1708 put_unused_fd(fd1); 1709 return fd2; 1710 } 1711 1712 err = put_user(fd1, &usockvec[0]); 1713 if (err) 1714 goto out; 1715 1716 err = put_user(fd2, &usockvec[1]); 1717 if (err) 1718 goto out; 1719 1720 /* 1721 * Obtain the first socket and check if the underlying protocol 1722 * supports the socketpair call. 1723 */ 1724 1725 err = sock_create(family, type, protocol, &sock1); 1726 if (unlikely(err < 0)) 1727 goto out; 1728 1729 err = sock_create(family, type, protocol, &sock2); 1730 if (unlikely(err < 0)) { 1731 sock_release(sock1); 1732 goto out; 1733 } 1734 1735 err = security_socket_socketpair(sock1, sock2); 1736 if (unlikely(err)) { 1737 sock_release(sock2); 1738 sock_release(sock1); 1739 goto out; 1740 } 1741 1742 err = sock1->ops->socketpair(sock1, sock2); 1743 if (unlikely(err < 0)) { 1744 sock_release(sock2); 1745 sock_release(sock1); 1746 goto out; 1747 } 1748 1749 newfile1 = sock_alloc_file(sock1, flags, NULL); 1750 if (IS_ERR(newfile1)) { 1751 err = PTR_ERR(newfile1); 1752 sock_release(sock2); 1753 goto out; 1754 } 1755 1756 newfile2 = sock_alloc_file(sock2, flags, NULL); 1757 if (IS_ERR(newfile2)) { 1758 err = PTR_ERR(newfile2); 1759 fput(newfile1); 1760 goto out; 1761 } 1762 1763 audit_fd_pair(fd1, fd2); 1764 1765 fd_install(fd1, newfile1); 1766 fd_install(fd2, newfile2); 1767 return 0; 1768 1769 out: 1770 put_unused_fd(fd2); 1771 put_unused_fd(fd1); 1772 return err; 1773 } 1774 1775 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1776 int __user *, usockvec) 1777 { 1778 return __sys_socketpair(family, type, protocol, usockvec); 1779 } 1780 1781 /* 1782 * Bind a name to a socket. Nothing much to do here since it's 1783 * the protocol's responsibility to handle the local address. 1784 * 1785 * We move the socket address to kernel space before we call 1786 * the protocol layer (having also checked the address is ok). 1787 */ 1788 1789 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1790 { 1791 struct socket *sock; 1792 struct sockaddr_storage address; 1793 int err, fput_needed; 1794 1795 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1796 if (sock) { 1797 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1798 if (!err) { 1799 err = security_socket_bind(sock, 1800 (struct sockaddr *)&address, 1801 addrlen); 1802 if (!err) 1803 err = sock->ops->bind(sock, 1804 (struct sockaddr *) 1805 &address, addrlen); 1806 } 1807 fput_light(sock->file, fput_needed); 1808 } 1809 return err; 1810 } 1811 1812 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1813 { 1814 return __sys_bind(fd, umyaddr, addrlen); 1815 } 1816 1817 /* 1818 * Perform a listen. Basically, we allow the protocol to do anything 1819 * necessary for a listen, and if that works, we mark the socket as 1820 * ready for listening. 1821 */ 1822 1823 int __sys_listen(int fd, int backlog) 1824 { 1825 struct socket *sock; 1826 int err, fput_needed; 1827 int somaxconn; 1828 1829 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1830 if (sock) { 1831 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1832 if ((unsigned int)backlog > somaxconn) 1833 backlog = somaxconn; 1834 1835 err = security_socket_listen(sock, backlog); 1836 if (!err) 1837 err = sock->ops->listen(sock, backlog); 1838 1839 fput_light(sock->file, fput_needed); 1840 } 1841 return err; 1842 } 1843 1844 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1845 { 1846 return __sys_listen(fd, backlog); 1847 } 1848 1849 struct file *do_accept(struct file *file, unsigned file_flags, 1850 struct sockaddr __user *upeer_sockaddr, 1851 int __user *upeer_addrlen, int flags) 1852 { 1853 struct socket *sock, *newsock; 1854 struct file *newfile; 1855 int err, len; 1856 struct sockaddr_storage address; 1857 1858 sock = sock_from_file(file); 1859 if (!sock) 1860 return ERR_PTR(-ENOTSOCK); 1861 1862 newsock = sock_alloc(); 1863 if (!newsock) 1864 return ERR_PTR(-ENFILE); 1865 1866 newsock->type = sock->type; 1867 newsock->ops = sock->ops; 1868 1869 /* 1870 * We don't need try_module_get here, as the listening socket (sock) 1871 * has the protocol module (sock->ops->owner) held. 1872 */ 1873 __module_get(newsock->ops->owner); 1874 1875 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1876 if (IS_ERR(newfile)) 1877 return newfile; 1878 1879 err = security_socket_accept(sock, newsock); 1880 if (err) 1881 goto out_fd; 1882 1883 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1884 false); 1885 if (err < 0) 1886 goto out_fd; 1887 1888 if (upeer_sockaddr) { 1889 len = newsock->ops->getname(newsock, 1890 (struct sockaddr *)&address, 2); 1891 if (len < 0) { 1892 err = -ECONNABORTED; 1893 goto out_fd; 1894 } 1895 err = move_addr_to_user(&address, 1896 len, upeer_sockaddr, upeer_addrlen); 1897 if (err < 0) 1898 goto out_fd; 1899 } 1900 1901 /* File flags are not inherited via accept() unlike another OSes. */ 1902 return newfile; 1903 out_fd: 1904 fput(newfile); 1905 return ERR_PTR(err); 1906 } 1907 1908 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1909 int __user *upeer_addrlen, int flags) 1910 { 1911 struct file *newfile; 1912 int newfd; 1913 1914 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1915 return -EINVAL; 1916 1917 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1918 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1919 1920 newfd = get_unused_fd_flags(flags); 1921 if (unlikely(newfd < 0)) 1922 return newfd; 1923 1924 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1925 flags); 1926 if (IS_ERR(newfile)) { 1927 put_unused_fd(newfd); 1928 return PTR_ERR(newfile); 1929 } 1930 fd_install(newfd, newfile); 1931 return newfd; 1932 } 1933 1934 /* 1935 * For accept, we attempt to create a new socket, set up the link 1936 * with the client, wake up the client, then return the new 1937 * connected fd. We collect the address of the connector in kernel 1938 * space and move it to user at the very end. This is unclean because 1939 * we open the socket then return an error. 1940 * 1941 * 1003.1g adds the ability to recvmsg() to query connection pending 1942 * status to recvmsg. We need to add that support in a way thats 1943 * clean when we restructure accept also. 1944 */ 1945 1946 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1947 int __user *upeer_addrlen, int flags) 1948 { 1949 int ret = -EBADF; 1950 struct fd f; 1951 1952 f = fdget(fd); 1953 if (f.file) { 1954 ret = __sys_accept4_file(f.file, upeer_sockaddr, 1955 upeer_addrlen, flags); 1956 fdput(f); 1957 } 1958 1959 return ret; 1960 } 1961 1962 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1963 int __user *, upeer_addrlen, int, flags) 1964 { 1965 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1966 } 1967 1968 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1969 int __user *, upeer_addrlen) 1970 { 1971 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1972 } 1973 1974 /* 1975 * Attempt to connect to a socket with the server address. The address 1976 * is in user space so we verify it is OK and move it to kernel space. 1977 * 1978 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1979 * break bindings 1980 * 1981 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1982 * other SEQPACKET protocols that take time to connect() as it doesn't 1983 * include the -EINPROGRESS status for such sockets. 1984 */ 1985 1986 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1987 int addrlen, int file_flags) 1988 { 1989 struct socket *sock; 1990 int err; 1991 1992 sock = sock_from_file(file); 1993 if (!sock) { 1994 err = -ENOTSOCK; 1995 goto out; 1996 } 1997 1998 err = 1999 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2000 if (err) 2001 goto out; 2002 2003 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 2004 sock->file->f_flags | file_flags); 2005 out: 2006 return err; 2007 } 2008 2009 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2010 { 2011 int ret = -EBADF; 2012 struct fd f; 2013 2014 f = fdget(fd); 2015 if (f.file) { 2016 struct sockaddr_storage address; 2017 2018 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2019 if (!ret) 2020 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2021 fdput(f); 2022 } 2023 2024 return ret; 2025 } 2026 2027 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2028 int, addrlen) 2029 { 2030 return __sys_connect(fd, uservaddr, addrlen); 2031 } 2032 2033 /* 2034 * Get the local address ('name') of a socket object. Move the obtained 2035 * name to user space. 2036 */ 2037 2038 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2039 int __user *usockaddr_len) 2040 { 2041 struct socket *sock; 2042 struct sockaddr_storage address; 2043 int err, fput_needed; 2044 2045 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2046 if (!sock) 2047 goto out; 2048 2049 err = security_socket_getsockname(sock); 2050 if (err) 2051 goto out_put; 2052 2053 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 2054 if (err < 0) 2055 goto out_put; 2056 /* "err" is actually length in this case */ 2057 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2058 2059 out_put: 2060 fput_light(sock->file, fput_needed); 2061 out: 2062 return err; 2063 } 2064 2065 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2066 int __user *, usockaddr_len) 2067 { 2068 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2069 } 2070 2071 /* 2072 * Get the remote address ('name') of a socket object. Move the obtained 2073 * name to user space. 2074 */ 2075 2076 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2077 int __user *usockaddr_len) 2078 { 2079 struct socket *sock; 2080 struct sockaddr_storage address; 2081 int err, fput_needed; 2082 2083 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2084 if (sock != NULL) { 2085 err = security_socket_getpeername(sock); 2086 if (err) { 2087 fput_light(sock->file, fput_needed); 2088 return err; 2089 } 2090 2091 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 2092 if (err >= 0) 2093 /* "err" is actually length in this case */ 2094 err = move_addr_to_user(&address, err, usockaddr, 2095 usockaddr_len); 2096 fput_light(sock->file, fput_needed); 2097 } 2098 return err; 2099 } 2100 2101 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2102 int __user *, usockaddr_len) 2103 { 2104 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2105 } 2106 2107 /* 2108 * Send a datagram to a given address. We move the address into kernel 2109 * space and check the user space data area is readable before invoking 2110 * the protocol. 2111 */ 2112 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2113 struct sockaddr __user *addr, int addr_len) 2114 { 2115 struct socket *sock; 2116 struct sockaddr_storage address; 2117 int err; 2118 struct msghdr msg; 2119 struct iovec iov; 2120 int fput_needed; 2121 2122 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2123 if (unlikely(err)) 2124 return err; 2125 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2126 if (!sock) 2127 goto out; 2128 2129 msg.msg_name = NULL; 2130 msg.msg_control = NULL; 2131 msg.msg_controllen = 0; 2132 msg.msg_namelen = 0; 2133 msg.msg_ubuf = NULL; 2134 if (addr) { 2135 err = move_addr_to_kernel(addr, addr_len, &address); 2136 if (err < 0) 2137 goto out_put; 2138 msg.msg_name = (struct sockaddr *)&address; 2139 msg.msg_namelen = addr_len; 2140 } 2141 if (sock->file->f_flags & O_NONBLOCK) 2142 flags |= MSG_DONTWAIT; 2143 msg.msg_flags = flags; 2144 err = sock_sendmsg(sock, &msg); 2145 2146 out_put: 2147 fput_light(sock->file, fput_needed); 2148 out: 2149 return err; 2150 } 2151 2152 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2153 unsigned int, flags, struct sockaddr __user *, addr, 2154 int, addr_len) 2155 { 2156 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2157 } 2158 2159 /* 2160 * Send a datagram down a socket. 2161 */ 2162 2163 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2164 unsigned int, flags) 2165 { 2166 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2167 } 2168 2169 /* 2170 * Receive a frame from the socket and optionally record the address of the 2171 * sender. We verify the buffers are writable and if needed move the 2172 * sender address from kernel to user space. 2173 */ 2174 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2175 struct sockaddr __user *addr, int __user *addr_len) 2176 { 2177 struct sockaddr_storage address; 2178 struct msghdr msg = { 2179 /* Save some cycles and don't copy the address if not needed */ 2180 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2181 }; 2182 struct socket *sock; 2183 struct iovec iov; 2184 int err, err2; 2185 int fput_needed; 2186 2187 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2188 if (unlikely(err)) 2189 return err; 2190 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2191 if (!sock) 2192 goto out; 2193 2194 if (sock->file->f_flags & O_NONBLOCK) 2195 flags |= MSG_DONTWAIT; 2196 err = sock_recvmsg(sock, &msg, flags); 2197 2198 if (err >= 0 && addr != NULL) { 2199 err2 = move_addr_to_user(&address, 2200 msg.msg_namelen, addr, addr_len); 2201 if (err2 < 0) 2202 err = err2; 2203 } 2204 2205 fput_light(sock->file, fput_needed); 2206 out: 2207 return err; 2208 } 2209 2210 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2211 unsigned int, flags, struct sockaddr __user *, addr, 2212 int __user *, addr_len) 2213 { 2214 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2215 } 2216 2217 /* 2218 * Receive a datagram from a socket. 2219 */ 2220 2221 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2222 unsigned int, flags) 2223 { 2224 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2225 } 2226 2227 static bool sock_use_custom_sol_socket(const struct socket *sock) 2228 { 2229 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2230 } 2231 2232 /* 2233 * Set a socket option. Because we don't know the option lengths we have 2234 * to pass the user mode parameter for the protocols to sort out. 2235 */ 2236 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2237 int optlen) 2238 { 2239 sockptr_t optval = USER_SOCKPTR(user_optval); 2240 char *kernel_optval = NULL; 2241 int err, fput_needed; 2242 struct socket *sock; 2243 2244 if (optlen < 0) 2245 return -EINVAL; 2246 2247 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2248 if (!sock) 2249 return err; 2250 2251 err = security_socket_setsockopt(sock, level, optname); 2252 if (err) 2253 goto out_put; 2254 2255 if (!in_compat_syscall()) 2256 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2257 user_optval, &optlen, 2258 &kernel_optval); 2259 if (err < 0) 2260 goto out_put; 2261 if (err > 0) { 2262 err = 0; 2263 goto out_put; 2264 } 2265 2266 if (kernel_optval) 2267 optval = KERNEL_SOCKPTR(kernel_optval); 2268 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2269 err = sock_setsockopt(sock, level, optname, optval, optlen); 2270 else if (unlikely(!sock->ops->setsockopt)) 2271 err = -EOPNOTSUPP; 2272 else 2273 err = sock->ops->setsockopt(sock, level, optname, optval, 2274 optlen); 2275 kfree(kernel_optval); 2276 out_put: 2277 fput_light(sock->file, fput_needed); 2278 return err; 2279 } 2280 2281 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2282 char __user *, optval, int, optlen) 2283 { 2284 return __sys_setsockopt(fd, level, optname, optval, optlen); 2285 } 2286 2287 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2288 int optname)); 2289 2290 /* 2291 * Get a socket option. Because we don't know the option lengths we have 2292 * to pass a user mode parameter for the protocols to sort out. 2293 */ 2294 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2295 int __user *optlen) 2296 { 2297 int max_optlen __maybe_unused; 2298 int err, fput_needed; 2299 struct socket *sock; 2300 2301 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2302 if (!sock) 2303 return err; 2304 2305 err = security_socket_getsockopt(sock, level, optname); 2306 if (err) 2307 goto out_put; 2308 2309 if (!in_compat_syscall()) 2310 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2311 2312 if (level == SOL_SOCKET) 2313 err = sock_getsockopt(sock, level, optname, optval, optlen); 2314 else if (unlikely(!sock->ops->getsockopt)) 2315 err = -EOPNOTSUPP; 2316 else 2317 err = sock->ops->getsockopt(sock, level, optname, optval, 2318 optlen); 2319 2320 if (!in_compat_syscall()) 2321 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2322 optval, optlen, max_optlen, 2323 err); 2324 out_put: 2325 fput_light(sock->file, fput_needed); 2326 return err; 2327 } 2328 2329 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2330 char __user *, optval, int __user *, optlen) 2331 { 2332 return __sys_getsockopt(fd, level, optname, optval, optlen); 2333 } 2334 2335 /* 2336 * Shutdown a socket. 2337 */ 2338 2339 int __sys_shutdown_sock(struct socket *sock, int how) 2340 { 2341 int err; 2342 2343 err = security_socket_shutdown(sock, how); 2344 if (!err) 2345 err = sock->ops->shutdown(sock, how); 2346 2347 return err; 2348 } 2349 2350 int __sys_shutdown(int fd, int how) 2351 { 2352 int err, fput_needed; 2353 struct socket *sock; 2354 2355 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2356 if (sock != NULL) { 2357 err = __sys_shutdown_sock(sock, how); 2358 fput_light(sock->file, fput_needed); 2359 } 2360 return err; 2361 } 2362 2363 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2364 { 2365 return __sys_shutdown(fd, how); 2366 } 2367 2368 /* A couple of helpful macros for getting the address of the 32/64 bit 2369 * fields which are the same type (int / unsigned) on our platforms. 2370 */ 2371 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2372 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2373 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2374 2375 struct used_address { 2376 struct sockaddr_storage name; 2377 unsigned int name_len; 2378 }; 2379 2380 int __copy_msghdr(struct msghdr *kmsg, 2381 struct user_msghdr *msg, 2382 struct sockaddr __user **save_addr) 2383 { 2384 ssize_t err; 2385 2386 kmsg->msg_control_is_user = true; 2387 kmsg->msg_get_inq = 0; 2388 kmsg->msg_control_user = msg->msg_control; 2389 kmsg->msg_controllen = msg->msg_controllen; 2390 kmsg->msg_flags = msg->msg_flags; 2391 2392 kmsg->msg_namelen = msg->msg_namelen; 2393 if (!msg->msg_name) 2394 kmsg->msg_namelen = 0; 2395 2396 if (kmsg->msg_namelen < 0) 2397 return -EINVAL; 2398 2399 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2400 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2401 2402 if (save_addr) 2403 *save_addr = msg->msg_name; 2404 2405 if (msg->msg_name && kmsg->msg_namelen) { 2406 if (!save_addr) { 2407 err = move_addr_to_kernel(msg->msg_name, 2408 kmsg->msg_namelen, 2409 kmsg->msg_name); 2410 if (err < 0) 2411 return err; 2412 } 2413 } else { 2414 kmsg->msg_name = NULL; 2415 kmsg->msg_namelen = 0; 2416 } 2417 2418 if (msg->msg_iovlen > UIO_MAXIOV) 2419 return -EMSGSIZE; 2420 2421 kmsg->msg_iocb = NULL; 2422 kmsg->msg_ubuf = NULL; 2423 return 0; 2424 } 2425 2426 static int copy_msghdr_from_user(struct msghdr *kmsg, 2427 struct user_msghdr __user *umsg, 2428 struct sockaddr __user **save_addr, 2429 struct iovec **iov) 2430 { 2431 struct user_msghdr msg; 2432 ssize_t err; 2433 2434 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2435 return -EFAULT; 2436 2437 err = __copy_msghdr(kmsg, &msg, save_addr); 2438 if (err) 2439 return err; 2440 2441 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2442 msg.msg_iov, msg.msg_iovlen, 2443 UIO_FASTIOV, iov, &kmsg->msg_iter); 2444 return err < 0 ? err : 0; 2445 } 2446 2447 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2448 unsigned int flags, struct used_address *used_address, 2449 unsigned int allowed_msghdr_flags) 2450 { 2451 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2452 __aligned(sizeof(__kernel_size_t)); 2453 /* 20 is size of ipv6_pktinfo */ 2454 unsigned char *ctl_buf = ctl; 2455 int ctl_len; 2456 ssize_t err; 2457 2458 err = -ENOBUFS; 2459 2460 if (msg_sys->msg_controllen > INT_MAX) 2461 goto out; 2462 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2463 ctl_len = msg_sys->msg_controllen; 2464 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2465 err = 2466 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2467 sizeof(ctl)); 2468 if (err) 2469 goto out; 2470 ctl_buf = msg_sys->msg_control; 2471 ctl_len = msg_sys->msg_controllen; 2472 } else if (ctl_len) { 2473 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2474 CMSG_ALIGN(sizeof(struct cmsghdr))); 2475 if (ctl_len > sizeof(ctl)) { 2476 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2477 if (ctl_buf == NULL) 2478 goto out; 2479 } 2480 err = -EFAULT; 2481 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2482 goto out_freectl; 2483 msg_sys->msg_control = ctl_buf; 2484 msg_sys->msg_control_is_user = false; 2485 } 2486 msg_sys->msg_flags = flags; 2487 2488 if (sock->file->f_flags & O_NONBLOCK) 2489 msg_sys->msg_flags |= MSG_DONTWAIT; 2490 /* 2491 * If this is sendmmsg() and current destination address is same as 2492 * previously succeeded address, omit asking LSM's decision. 2493 * used_address->name_len is initialized to UINT_MAX so that the first 2494 * destination address never matches. 2495 */ 2496 if (used_address && msg_sys->msg_name && 2497 used_address->name_len == msg_sys->msg_namelen && 2498 !memcmp(&used_address->name, msg_sys->msg_name, 2499 used_address->name_len)) { 2500 err = sock_sendmsg_nosec(sock, msg_sys); 2501 goto out_freectl; 2502 } 2503 err = sock_sendmsg(sock, msg_sys); 2504 /* 2505 * If this is sendmmsg() and sending to current destination address was 2506 * successful, remember it. 2507 */ 2508 if (used_address && err >= 0) { 2509 used_address->name_len = msg_sys->msg_namelen; 2510 if (msg_sys->msg_name) 2511 memcpy(&used_address->name, msg_sys->msg_name, 2512 used_address->name_len); 2513 } 2514 2515 out_freectl: 2516 if (ctl_buf != ctl) 2517 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2518 out: 2519 return err; 2520 } 2521 2522 int sendmsg_copy_msghdr(struct msghdr *msg, 2523 struct user_msghdr __user *umsg, unsigned flags, 2524 struct iovec **iov) 2525 { 2526 int err; 2527 2528 if (flags & MSG_CMSG_COMPAT) { 2529 struct compat_msghdr __user *msg_compat; 2530 2531 msg_compat = (struct compat_msghdr __user *) umsg; 2532 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2533 } else { 2534 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2535 } 2536 if (err < 0) 2537 return err; 2538 2539 return 0; 2540 } 2541 2542 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2543 struct msghdr *msg_sys, unsigned int flags, 2544 struct used_address *used_address, 2545 unsigned int allowed_msghdr_flags) 2546 { 2547 struct sockaddr_storage address; 2548 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2549 ssize_t err; 2550 2551 msg_sys->msg_name = &address; 2552 2553 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2554 if (err < 0) 2555 return err; 2556 2557 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2558 allowed_msghdr_flags); 2559 kfree(iov); 2560 return err; 2561 } 2562 2563 /* 2564 * BSD sendmsg interface 2565 */ 2566 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2567 unsigned int flags) 2568 { 2569 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2570 } 2571 2572 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2573 bool forbid_cmsg_compat) 2574 { 2575 int fput_needed, err; 2576 struct msghdr msg_sys; 2577 struct socket *sock; 2578 2579 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2580 return -EINVAL; 2581 2582 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2583 if (!sock) 2584 goto out; 2585 2586 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2587 2588 fput_light(sock->file, fput_needed); 2589 out: 2590 return err; 2591 } 2592 2593 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2594 { 2595 return __sys_sendmsg(fd, msg, flags, true); 2596 } 2597 2598 /* 2599 * Linux sendmmsg interface 2600 */ 2601 2602 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2603 unsigned int flags, bool forbid_cmsg_compat) 2604 { 2605 int fput_needed, err, datagrams; 2606 struct socket *sock; 2607 struct mmsghdr __user *entry; 2608 struct compat_mmsghdr __user *compat_entry; 2609 struct msghdr msg_sys; 2610 struct used_address used_address; 2611 unsigned int oflags = flags; 2612 2613 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2614 return -EINVAL; 2615 2616 if (vlen > UIO_MAXIOV) 2617 vlen = UIO_MAXIOV; 2618 2619 datagrams = 0; 2620 2621 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2622 if (!sock) 2623 return err; 2624 2625 used_address.name_len = UINT_MAX; 2626 entry = mmsg; 2627 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2628 err = 0; 2629 flags |= MSG_BATCH; 2630 2631 while (datagrams < vlen) { 2632 if (datagrams == vlen - 1) 2633 flags = oflags; 2634 2635 if (MSG_CMSG_COMPAT & flags) { 2636 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2637 &msg_sys, flags, &used_address, MSG_EOR); 2638 if (err < 0) 2639 break; 2640 err = __put_user(err, &compat_entry->msg_len); 2641 ++compat_entry; 2642 } else { 2643 err = ___sys_sendmsg(sock, 2644 (struct user_msghdr __user *)entry, 2645 &msg_sys, flags, &used_address, MSG_EOR); 2646 if (err < 0) 2647 break; 2648 err = put_user(err, &entry->msg_len); 2649 ++entry; 2650 } 2651 2652 if (err) 2653 break; 2654 ++datagrams; 2655 if (msg_data_left(&msg_sys)) 2656 break; 2657 cond_resched(); 2658 } 2659 2660 fput_light(sock->file, fput_needed); 2661 2662 /* We only return an error if no datagrams were able to be sent */ 2663 if (datagrams != 0) 2664 return datagrams; 2665 2666 return err; 2667 } 2668 2669 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2670 unsigned int, vlen, unsigned int, flags) 2671 { 2672 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2673 } 2674 2675 int recvmsg_copy_msghdr(struct msghdr *msg, 2676 struct user_msghdr __user *umsg, unsigned flags, 2677 struct sockaddr __user **uaddr, 2678 struct iovec **iov) 2679 { 2680 ssize_t err; 2681 2682 if (MSG_CMSG_COMPAT & flags) { 2683 struct compat_msghdr __user *msg_compat; 2684 2685 msg_compat = (struct compat_msghdr __user *) umsg; 2686 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2687 } else { 2688 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2689 } 2690 if (err < 0) 2691 return err; 2692 2693 return 0; 2694 } 2695 2696 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2697 struct user_msghdr __user *msg, 2698 struct sockaddr __user *uaddr, 2699 unsigned int flags, int nosec) 2700 { 2701 struct compat_msghdr __user *msg_compat = 2702 (struct compat_msghdr __user *) msg; 2703 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2704 struct sockaddr_storage addr; 2705 unsigned long cmsg_ptr; 2706 int len; 2707 ssize_t err; 2708 2709 msg_sys->msg_name = &addr; 2710 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2711 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2712 2713 /* We assume all kernel code knows the size of sockaddr_storage */ 2714 msg_sys->msg_namelen = 0; 2715 2716 if (sock->file->f_flags & O_NONBLOCK) 2717 flags |= MSG_DONTWAIT; 2718 2719 if (unlikely(nosec)) 2720 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2721 else 2722 err = sock_recvmsg(sock, msg_sys, flags); 2723 2724 if (err < 0) 2725 goto out; 2726 len = err; 2727 2728 if (uaddr != NULL) { 2729 err = move_addr_to_user(&addr, 2730 msg_sys->msg_namelen, uaddr, 2731 uaddr_len); 2732 if (err < 0) 2733 goto out; 2734 } 2735 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2736 COMPAT_FLAGS(msg)); 2737 if (err) 2738 goto out; 2739 if (MSG_CMSG_COMPAT & flags) 2740 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2741 &msg_compat->msg_controllen); 2742 else 2743 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2744 &msg->msg_controllen); 2745 if (err) 2746 goto out; 2747 err = len; 2748 out: 2749 return err; 2750 } 2751 2752 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2753 struct msghdr *msg_sys, unsigned int flags, int nosec) 2754 { 2755 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2756 /* user mode address pointers */ 2757 struct sockaddr __user *uaddr; 2758 ssize_t err; 2759 2760 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2761 if (err < 0) 2762 return err; 2763 2764 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2765 kfree(iov); 2766 return err; 2767 } 2768 2769 /* 2770 * BSD recvmsg interface 2771 */ 2772 2773 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2774 struct user_msghdr __user *umsg, 2775 struct sockaddr __user *uaddr, unsigned int flags) 2776 { 2777 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2778 } 2779 2780 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2781 bool forbid_cmsg_compat) 2782 { 2783 int fput_needed, err; 2784 struct msghdr msg_sys; 2785 struct socket *sock; 2786 2787 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2788 return -EINVAL; 2789 2790 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2791 if (!sock) 2792 goto out; 2793 2794 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2795 2796 fput_light(sock->file, fput_needed); 2797 out: 2798 return err; 2799 } 2800 2801 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2802 unsigned int, flags) 2803 { 2804 return __sys_recvmsg(fd, msg, flags, true); 2805 } 2806 2807 /* 2808 * Linux recvmmsg interface 2809 */ 2810 2811 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2812 unsigned int vlen, unsigned int flags, 2813 struct timespec64 *timeout) 2814 { 2815 int fput_needed, err, datagrams; 2816 struct socket *sock; 2817 struct mmsghdr __user *entry; 2818 struct compat_mmsghdr __user *compat_entry; 2819 struct msghdr msg_sys; 2820 struct timespec64 end_time; 2821 struct timespec64 timeout64; 2822 2823 if (timeout && 2824 poll_select_set_timeout(&end_time, timeout->tv_sec, 2825 timeout->tv_nsec)) 2826 return -EINVAL; 2827 2828 datagrams = 0; 2829 2830 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2831 if (!sock) 2832 return err; 2833 2834 if (likely(!(flags & MSG_ERRQUEUE))) { 2835 err = sock_error(sock->sk); 2836 if (err) { 2837 datagrams = err; 2838 goto out_put; 2839 } 2840 } 2841 2842 entry = mmsg; 2843 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2844 2845 while (datagrams < vlen) { 2846 /* 2847 * No need to ask LSM for more than the first datagram. 2848 */ 2849 if (MSG_CMSG_COMPAT & flags) { 2850 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2851 &msg_sys, flags & ~MSG_WAITFORONE, 2852 datagrams); 2853 if (err < 0) 2854 break; 2855 err = __put_user(err, &compat_entry->msg_len); 2856 ++compat_entry; 2857 } else { 2858 err = ___sys_recvmsg(sock, 2859 (struct user_msghdr __user *)entry, 2860 &msg_sys, flags & ~MSG_WAITFORONE, 2861 datagrams); 2862 if (err < 0) 2863 break; 2864 err = put_user(err, &entry->msg_len); 2865 ++entry; 2866 } 2867 2868 if (err) 2869 break; 2870 ++datagrams; 2871 2872 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2873 if (flags & MSG_WAITFORONE) 2874 flags |= MSG_DONTWAIT; 2875 2876 if (timeout) { 2877 ktime_get_ts64(&timeout64); 2878 *timeout = timespec64_sub(end_time, timeout64); 2879 if (timeout->tv_sec < 0) { 2880 timeout->tv_sec = timeout->tv_nsec = 0; 2881 break; 2882 } 2883 2884 /* Timeout, return less than vlen datagrams */ 2885 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2886 break; 2887 } 2888 2889 /* Out of band data, return right away */ 2890 if (msg_sys.msg_flags & MSG_OOB) 2891 break; 2892 cond_resched(); 2893 } 2894 2895 if (err == 0) 2896 goto out_put; 2897 2898 if (datagrams == 0) { 2899 datagrams = err; 2900 goto out_put; 2901 } 2902 2903 /* 2904 * We may return less entries than requested (vlen) if the 2905 * sock is non block and there aren't enough datagrams... 2906 */ 2907 if (err != -EAGAIN) { 2908 /* 2909 * ... or if recvmsg returns an error after we 2910 * received some datagrams, where we record the 2911 * error to return on the next call or if the 2912 * app asks about it using getsockopt(SO_ERROR). 2913 */ 2914 WRITE_ONCE(sock->sk->sk_err, -err); 2915 } 2916 out_put: 2917 fput_light(sock->file, fput_needed); 2918 2919 return datagrams; 2920 } 2921 2922 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2923 unsigned int vlen, unsigned int flags, 2924 struct __kernel_timespec __user *timeout, 2925 struct old_timespec32 __user *timeout32) 2926 { 2927 int datagrams; 2928 struct timespec64 timeout_sys; 2929 2930 if (timeout && get_timespec64(&timeout_sys, timeout)) 2931 return -EFAULT; 2932 2933 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2934 return -EFAULT; 2935 2936 if (!timeout && !timeout32) 2937 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2938 2939 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2940 2941 if (datagrams <= 0) 2942 return datagrams; 2943 2944 if (timeout && put_timespec64(&timeout_sys, timeout)) 2945 datagrams = -EFAULT; 2946 2947 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2948 datagrams = -EFAULT; 2949 2950 return datagrams; 2951 } 2952 2953 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2954 unsigned int, vlen, unsigned int, flags, 2955 struct __kernel_timespec __user *, timeout) 2956 { 2957 if (flags & MSG_CMSG_COMPAT) 2958 return -EINVAL; 2959 2960 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2961 } 2962 2963 #ifdef CONFIG_COMPAT_32BIT_TIME 2964 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2965 unsigned int, vlen, unsigned int, flags, 2966 struct old_timespec32 __user *, timeout) 2967 { 2968 if (flags & MSG_CMSG_COMPAT) 2969 return -EINVAL; 2970 2971 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2972 } 2973 #endif 2974 2975 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2976 /* Argument list sizes for sys_socketcall */ 2977 #define AL(x) ((x) * sizeof(unsigned long)) 2978 static const unsigned char nargs[21] = { 2979 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2980 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2981 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2982 AL(4), AL(5), AL(4) 2983 }; 2984 2985 #undef AL 2986 2987 /* 2988 * System call vectors. 2989 * 2990 * Argument checking cleaned up. Saved 20% in size. 2991 * This function doesn't need to set the kernel lock because 2992 * it is set by the callees. 2993 */ 2994 2995 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2996 { 2997 unsigned long a[AUDITSC_ARGS]; 2998 unsigned long a0, a1; 2999 int err; 3000 unsigned int len; 3001 3002 if (call < 1 || call > SYS_SENDMMSG) 3003 return -EINVAL; 3004 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3005 3006 len = nargs[call]; 3007 if (len > sizeof(a)) 3008 return -EINVAL; 3009 3010 /* copy_from_user should be SMP safe. */ 3011 if (copy_from_user(a, args, len)) 3012 return -EFAULT; 3013 3014 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3015 if (err) 3016 return err; 3017 3018 a0 = a[0]; 3019 a1 = a[1]; 3020 3021 switch (call) { 3022 case SYS_SOCKET: 3023 err = __sys_socket(a0, a1, a[2]); 3024 break; 3025 case SYS_BIND: 3026 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3027 break; 3028 case SYS_CONNECT: 3029 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3030 break; 3031 case SYS_LISTEN: 3032 err = __sys_listen(a0, a1); 3033 break; 3034 case SYS_ACCEPT: 3035 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3036 (int __user *)a[2], 0); 3037 break; 3038 case SYS_GETSOCKNAME: 3039 err = 3040 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3041 (int __user *)a[2]); 3042 break; 3043 case SYS_GETPEERNAME: 3044 err = 3045 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3046 (int __user *)a[2]); 3047 break; 3048 case SYS_SOCKETPAIR: 3049 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3050 break; 3051 case SYS_SEND: 3052 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3053 NULL, 0); 3054 break; 3055 case SYS_SENDTO: 3056 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3057 (struct sockaddr __user *)a[4], a[5]); 3058 break; 3059 case SYS_RECV: 3060 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3061 NULL, NULL); 3062 break; 3063 case SYS_RECVFROM: 3064 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3065 (struct sockaddr __user *)a[4], 3066 (int __user *)a[5]); 3067 break; 3068 case SYS_SHUTDOWN: 3069 err = __sys_shutdown(a0, a1); 3070 break; 3071 case SYS_SETSOCKOPT: 3072 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3073 a[4]); 3074 break; 3075 case SYS_GETSOCKOPT: 3076 err = 3077 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3078 (int __user *)a[4]); 3079 break; 3080 case SYS_SENDMSG: 3081 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3082 a[2], true); 3083 break; 3084 case SYS_SENDMMSG: 3085 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3086 a[3], true); 3087 break; 3088 case SYS_RECVMSG: 3089 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3090 a[2], true); 3091 break; 3092 case SYS_RECVMMSG: 3093 if (IS_ENABLED(CONFIG_64BIT)) 3094 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3095 a[2], a[3], 3096 (struct __kernel_timespec __user *)a[4], 3097 NULL); 3098 else 3099 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3100 a[2], a[3], NULL, 3101 (struct old_timespec32 __user *)a[4]); 3102 break; 3103 case SYS_ACCEPT4: 3104 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3105 (int __user *)a[2], a[3]); 3106 break; 3107 default: 3108 err = -EINVAL; 3109 break; 3110 } 3111 return err; 3112 } 3113 3114 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3115 3116 /** 3117 * sock_register - add a socket protocol handler 3118 * @ops: description of protocol 3119 * 3120 * This function is called by a protocol handler that wants to 3121 * advertise its address family, and have it linked into the 3122 * socket interface. The value ops->family corresponds to the 3123 * socket system call protocol family. 3124 */ 3125 int sock_register(const struct net_proto_family *ops) 3126 { 3127 int err; 3128 3129 if (ops->family >= NPROTO) { 3130 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3131 return -ENOBUFS; 3132 } 3133 3134 spin_lock(&net_family_lock); 3135 if (rcu_dereference_protected(net_families[ops->family], 3136 lockdep_is_held(&net_family_lock))) 3137 err = -EEXIST; 3138 else { 3139 rcu_assign_pointer(net_families[ops->family], ops); 3140 err = 0; 3141 } 3142 spin_unlock(&net_family_lock); 3143 3144 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3145 return err; 3146 } 3147 EXPORT_SYMBOL(sock_register); 3148 3149 /** 3150 * sock_unregister - remove a protocol handler 3151 * @family: protocol family to remove 3152 * 3153 * This function is called by a protocol handler that wants to 3154 * remove its address family, and have it unlinked from the 3155 * new socket creation. 3156 * 3157 * If protocol handler is a module, then it can use module reference 3158 * counts to protect against new references. If protocol handler is not 3159 * a module then it needs to provide its own protection in 3160 * the ops->create routine. 3161 */ 3162 void sock_unregister(int family) 3163 { 3164 BUG_ON(family < 0 || family >= NPROTO); 3165 3166 spin_lock(&net_family_lock); 3167 RCU_INIT_POINTER(net_families[family], NULL); 3168 spin_unlock(&net_family_lock); 3169 3170 synchronize_rcu(); 3171 3172 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3173 } 3174 EXPORT_SYMBOL(sock_unregister); 3175 3176 bool sock_is_registered(int family) 3177 { 3178 return family < NPROTO && rcu_access_pointer(net_families[family]); 3179 } 3180 3181 static int __init sock_init(void) 3182 { 3183 int err; 3184 /* 3185 * Initialize the network sysctl infrastructure. 3186 */ 3187 err = net_sysctl_init(); 3188 if (err) 3189 goto out; 3190 3191 /* 3192 * Initialize skbuff SLAB cache 3193 */ 3194 skb_init(); 3195 3196 /* 3197 * Initialize the protocols module. 3198 */ 3199 3200 init_inodecache(); 3201 3202 err = register_filesystem(&sock_fs_type); 3203 if (err) 3204 goto out; 3205 sock_mnt = kern_mount(&sock_fs_type); 3206 if (IS_ERR(sock_mnt)) { 3207 err = PTR_ERR(sock_mnt); 3208 goto out_mount; 3209 } 3210 3211 /* The real protocol initialization is performed in later initcalls. 3212 */ 3213 3214 #ifdef CONFIG_NETFILTER 3215 err = netfilter_init(); 3216 if (err) 3217 goto out; 3218 #endif 3219 3220 ptp_classifier_init(); 3221 3222 out: 3223 return err; 3224 3225 out_mount: 3226 unregister_filesystem(&sock_fs_type); 3227 goto out; 3228 } 3229 3230 core_initcall(sock_init); /* early initcall */ 3231 3232 #ifdef CONFIG_PROC_FS 3233 void socket_seq_show(struct seq_file *seq) 3234 { 3235 seq_printf(seq, "sockets: used %d\n", 3236 sock_inuse_get(seq->private)); 3237 } 3238 #endif /* CONFIG_PROC_FS */ 3239 3240 /* Handle the fact that while struct ifreq has the same *layout* on 3241 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3242 * which are handled elsewhere, it still has different *size* due to 3243 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3244 * resulting in struct ifreq being 32 and 40 bytes respectively). 3245 * As a result, if the struct happens to be at the end of a page and 3246 * the next page isn't readable/writable, we get a fault. To prevent 3247 * that, copy back and forth to the full size. 3248 */ 3249 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3250 { 3251 if (in_compat_syscall()) { 3252 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3253 3254 memset(ifr, 0, sizeof(*ifr)); 3255 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3256 return -EFAULT; 3257 3258 if (ifrdata) 3259 *ifrdata = compat_ptr(ifr32->ifr_data); 3260 3261 return 0; 3262 } 3263 3264 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3265 return -EFAULT; 3266 3267 if (ifrdata) 3268 *ifrdata = ifr->ifr_data; 3269 3270 return 0; 3271 } 3272 EXPORT_SYMBOL(get_user_ifreq); 3273 3274 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3275 { 3276 size_t size = sizeof(*ifr); 3277 3278 if (in_compat_syscall()) 3279 size = sizeof(struct compat_ifreq); 3280 3281 if (copy_to_user(arg, ifr, size)) 3282 return -EFAULT; 3283 3284 return 0; 3285 } 3286 EXPORT_SYMBOL(put_user_ifreq); 3287 3288 #ifdef CONFIG_COMPAT 3289 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3290 { 3291 compat_uptr_t uptr32; 3292 struct ifreq ifr; 3293 void __user *saved; 3294 int err; 3295 3296 if (get_user_ifreq(&ifr, NULL, uifr32)) 3297 return -EFAULT; 3298 3299 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3300 return -EFAULT; 3301 3302 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3303 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3304 3305 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3306 if (!err) { 3307 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3308 if (put_user_ifreq(&ifr, uifr32)) 3309 err = -EFAULT; 3310 } 3311 return err; 3312 } 3313 3314 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3315 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3316 struct compat_ifreq __user *u_ifreq32) 3317 { 3318 struct ifreq ifreq; 3319 void __user *data; 3320 3321 if (!is_socket_ioctl_cmd(cmd)) 3322 return -ENOTTY; 3323 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3324 return -EFAULT; 3325 ifreq.ifr_data = data; 3326 3327 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3328 } 3329 3330 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3331 unsigned int cmd, unsigned long arg) 3332 { 3333 void __user *argp = compat_ptr(arg); 3334 struct sock *sk = sock->sk; 3335 struct net *net = sock_net(sk); 3336 3337 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3338 return sock_ioctl(file, cmd, (unsigned long)argp); 3339 3340 switch (cmd) { 3341 case SIOCWANDEV: 3342 return compat_siocwandev(net, argp); 3343 case SIOCGSTAMP_OLD: 3344 case SIOCGSTAMPNS_OLD: 3345 if (!sock->ops->gettstamp) 3346 return -ENOIOCTLCMD; 3347 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3348 !COMPAT_USE_64BIT_TIME); 3349 3350 case SIOCETHTOOL: 3351 case SIOCBONDSLAVEINFOQUERY: 3352 case SIOCBONDINFOQUERY: 3353 case SIOCSHWTSTAMP: 3354 case SIOCGHWTSTAMP: 3355 return compat_ifr_data_ioctl(net, cmd, argp); 3356 3357 case FIOSETOWN: 3358 case SIOCSPGRP: 3359 case FIOGETOWN: 3360 case SIOCGPGRP: 3361 case SIOCBRADDBR: 3362 case SIOCBRDELBR: 3363 case SIOCGIFVLAN: 3364 case SIOCSIFVLAN: 3365 case SIOCGSKNS: 3366 case SIOCGSTAMP_NEW: 3367 case SIOCGSTAMPNS_NEW: 3368 case SIOCGIFCONF: 3369 case SIOCSIFBR: 3370 case SIOCGIFBR: 3371 return sock_ioctl(file, cmd, arg); 3372 3373 case SIOCGIFFLAGS: 3374 case SIOCSIFFLAGS: 3375 case SIOCGIFMAP: 3376 case SIOCSIFMAP: 3377 case SIOCGIFMETRIC: 3378 case SIOCSIFMETRIC: 3379 case SIOCGIFMTU: 3380 case SIOCSIFMTU: 3381 case SIOCGIFMEM: 3382 case SIOCSIFMEM: 3383 case SIOCGIFHWADDR: 3384 case SIOCSIFHWADDR: 3385 case SIOCADDMULTI: 3386 case SIOCDELMULTI: 3387 case SIOCGIFINDEX: 3388 case SIOCGIFADDR: 3389 case SIOCSIFADDR: 3390 case SIOCSIFHWBROADCAST: 3391 case SIOCDIFADDR: 3392 case SIOCGIFBRDADDR: 3393 case SIOCSIFBRDADDR: 3394 case SIOCGIFDSTADDR: 3395 case SIOCSIFDSTADDR: 3396 case SIOCGIFNETMASK: 3397 case SIOCSIFNETMASK: 3398 case SIOCSIFPFLAGS: 3399 case SIOCGIFPFLAGS: 3400 case SIOCGIFTXQLEN: 3401 case SIOCSIFTXQLEN: 3402 case SIOCBRADDIF: 3403 case SIOCBRDELIF: 3404 case SIOCGIFNAME: 3405 case SIOCSIFNAME: 3406 case SIOCGMIIPHY: 3407 case SIOCGMIIREG: 3408 case SIOCSMIIREG: 3409 case SIOCBONDENSLAVE: 3410 case SIOCBONDRELEASE: 3411 case SIOCBONDSETHWADDR: 3412 case SIOCBONDCHANGEACTIVE: 3413 case SIOCSARP: 3414 case SIOCGARP: 3415 case SIOCDARP: 3416 case SIOCOUTQ: 3417 case SIOCOUTQNSD: 3418 case SIOCATMARK: 3419 return sock_do_ioctl(net, sock, cmd, arg); 3420 } 3421 3422 return -ENOIOCTLCMD; 3423 } 3424 3425 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3426 unsigned long arg) 3427 { 3428 struct socket *sock = file->private_data; 3429 int ret = -ENOIOCTLCMD; 3430 struct sock *sk; 3431 struct net *net; 3432 3433 sk = sock->sk; 3434 net = sock_net(sk); 3435 3436 if (sock->ops->compat_ioctl) 3437 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3438 3439 if (ret == -ENOIOCTLCMD && 3440 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3441 ret = compat_wext_handle_ioctl(net, cmd, arg); 3442 3443 if (ret == -ENOIOCTLCMD) 3444 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3445 3446 return ret; 3447 } 3448 #endif 3449 3450 /** 3451 * kernel_bind - bind an address to a socket (kernel space) 3452 * @sock: socket 3453 * @addr: address 3454 * @addrlen: length of address 3455 * 3456 * Returns 0 or an error. 3457 */ 3458 3459 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3460 { 3461 return sock->ops->bind(sock, addr, addrlen); 3462 } 3463 EXPORT_SYMBOL(kernel_bind); 3464 3465 /** 3466 * kernel_listen - move socket to listening state (kernel space) 3467 * @sock: socket 3468 * @backlog: pending connections queue size 3469 * 3470 * Returns 0 or an error. 3471 */ 3472 3473 int kernel_listen(struct socket *sock, int backlog) 3474 { 3475 return sock->ops->listen(sock, backlog); 3476 } 3477 EXPORT_SYMBOL(kernel_listen); 3478 3479 /** 3480 * kernel_accept - accept a connection (kernel space) 3481 * @sock: listening socket 3482 * @newsock: new connected socket 3483 * @flags: flags 3484 * 3485 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3486 * If it fails, @newsock is guaranteed to be %NULL. 3487 * Returns 0 or an error. 3488 */ 3489 3490 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3491 { 3492 struct sock *sk = sock->sk; 3493 int err; 3494 3495 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3496 newsock); 3497 if (err < 0) 3498 goto done; 3499 3500 err = sock->ops->accept(sock, *newsock, flags, true); 3501 if (err < 0) { 3502 sock_release(*newsock); 3503 *newsock = NULL; 3504 goto done; 3505 } 3506 3507 (*newsock)->ops = sock->ops; 3508 __module_get((*newsock)->ops->owner); 3509 3510 done: 3511 return err; 3512 } 3513 EXPORT_SYMBOL(kernel_accept); 3514 3515 /** 3516 * kernel_connect - connect a socket (kernel space) 3517 * @sock: socket 3518 * @addr: address 3519 * @addrlen: address length 3520 * @flags: flags (O_NONBLOCK, ...) 3521 * 3522 * For datagram sockets, @addr is the address to which datagrams are sent 3523 * by default, and the only address from which datagrams are received. 3524 * For stream sockets, attempts to connect to @addr. 3525 * Returns 0 or an error code. 3526 */ 3527 3528 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3529 int flags) 3530 { 3531 return sock->ops->connect(sock, addr, addrlen, flags); 3532 } 3533 EXPORT_SYMBOL(kernel_connect); 3534 3535 /** 3536 * kernel_getsockname - get the address which the socket is bound (kernel space) 3537 * @sock: socket 3538 * @addr: address holder 3539 * 3540 * Fills the @addr pointer with the address which the socket is bound. 3541 * Returns the length of the address in bytes or an error code. 3542 */ 3543 3544 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3545 { 3546 return sock->ops->getname(sock, addr, 0); 3547 } 3548 EXPORT_SYMBOL(kernel_getsockname); 3549 3550 /** 3551 * kernel_getpeername - get the address which the socket is connected (kernel space) 3552 * @sock: socket 3553 * @addr: address holder 3554 * 3555 * Fills the @addr pointer with the address which the socket is connected. 3556 * Returns the length of the address in bytes or an error code. 3557 */ 3558 3559 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3560 { 3561 return sock->ops->getname(sock, addr, 1); 3562 } 3563 EXPORT_SYMBOL(kernel_getpeername); 3564 3565 /** 3566 * kernel_sendpage - send a &page through a socket (kernel space) 3567 * @sock: socket 3568 * @page: page 3569 * @offset: page offset 3570 * @size: total size in bytes 3571 * @flags: flags (MSG_DONTWAIT, ...) 3572 * 3573 * Returns the total amount sent in bytes or an error. 3574 */ 3575 3576 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3577 size_t size, int flags) 3578 { 3579 if (sock->ops->sendpage) { 3580 /* Warn in case the improper page to zero-copy send */ 3581 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3582 return sock->ops->sendpage(sock, page, offset, size, flags); 3583 } 3584 return sock_no_sendpage(sock, page, offset, size, flags); 3585 } 3586 EXPORT_SYMBOL(kernel_sendpage); 3587 3588 /** 3589 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3590 * @sk: sock 3591 * @page: page 3592 * @offset: page offset 3593 * @size: total size in bytes 3594 * @flags: flags (MSG_DONTWAIT, ...) 3595 * 3596 * Returns the total amount sent in bytes or an error. 3597 * Caller must hold @sk. 3598 */ 3599 3600 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3601 size_t size, int flags) 3602 { 3603 struct socket *sock = sk->sk_socket; 3604 3605 if (sock->ops->sendpage_locked) 3606 return sock->ops->sendpage_locked(sk, page, offset, size, 3607 flags); 3608 3609 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3610 } 3611 EXPORT_SYMBOL(kernel_sendpage_locked); 3612 3613 /** 3614 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3615 * @sock: socket 3616 * @how: connection part 3617 * 3618 * Returns 0 or an error. 3619 */ 3620 3621 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3622 { 3623 return sock->ops->shutdown(sock, how); 3624 } 3625 EXPORT_SYMBOL(kernel_sock_shutdown); 3626 3627 /** 3628 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3629 * @sk: socket 3630 * 3631 * This routine returns the IP overhead imposed by a socket i.e. 3632 * the length of the underlying IP header, depending on whether 3633 * this is an IPv4 or IPv6 socket and the length from IP options turned 3634 * on at the socket. Assumes that the caller has a lock on the socket. 3635 */ 3636 3637 u32 kernel_sock_ip_overhead(struct sock *sk) 3638 { 3639 struct inet_sock *inet; 3640 struct ip_options_rcu *opt; 3641 u32 overhead = 0; 3642 #if IS_ENABLED(CONFIG_IPV6) 3643 struct ipv6_pinfo *np; 3644 struct ipv6_txoptions *optv6 = NULL; 3645 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3646 3647 if (!sk) 3648 return overhead; 3649 3650 switch (sk->sk_family) { 3651 case AF_INET: 3652 inet = inet_sk(sk); 3653 overhead += sizeof(struct iphdr); 3654 opt = rcu_dereference_protected(inet->inet_opt, 3655 sock_owned_by_user(sk)); 3656 if (opt) 3657 overhead += opt->opt.optlen; 3658 return overhead; 3659 #if IS_ENABLED(CONFIG_IPV6) 3660 case AF_INET6: 3661 np = inet6_sk(sk); 3662 overhead += sizeof(struct ipv6hdr); 3663 if (np) 3664 optv6 = rcu_dereference_protected(np->opt, 3665 sock_owned_by_user(sk)); 3666 if (optv6) 3667 overhead += (optv6->opt_flen + optv6->opt_nflen); 3668 return overhead; 3669 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3670 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3671 return overhead; 3672 } 3673 } 3674 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3675