1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/config.h> 62 #include <linux/mm.h> 63 #include <linux/smp_lock.h> 64 #include <linux/socket.h> 65 #include <linux/file.h> 66 #include <linux/net.h> 67 #include <linux/interrupt.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/init.h> 74 #include <linux/poll.h> 75 #include <linux/cache.h> 76 #include <linux/module.h> 77 #include <linux/highmem.h> 78 #include <linux/divert.h> 79 #include <linux/mount.h> 80 #include <linux/security.h> 81 #include <linux/syscalls.h> 82 #include <linux/compat.h> 83 #include <linux/kmod.h> 84 #include <linux/audit.h> 85 86 #ifdef CONFIG_NET_RADIO 87 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */ 88 #endif /* CONFIG_NET_RADIO */ 89 90 #include <asm/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 95 #include <net/sock.h> 96 #include <linux/netfilter.h> 97 98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf, 100 size_t size, loff_t pos); 101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf, 102 size_t size, loff_t pos); 103 static int sock_mmap(struct file *file, struct vm_area_struct * vma); 104 105 static int sock_close(struct inode *inode, struct file *file); 106 static unsigned int sock_poll(struct file *file, 107 struct poll_table_struct *wait); 108 static long sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110 static int sock_fasync(int fd, struct file *filp, int on); 111 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 112 unsigned long count, loff_t *ppos); 113 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 114 unsigned long count, loff_t *ppos); 115 static ssize_t sock_sendpage(struct file *file, struct page *page, 116 int offset, size_t size, loff_t *ppos, int more); 117 118 119 /* 120 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 121 * in the operation structures but are done directly via the socketcall() multiplexor. 122 */ 123 124 static struct file_operations socket_file_ops = { 125 .owner = THIS_MODULE, 126 .llseek = no_llseek, 127 .aio_read = sock_aio_read, 128 .aio_write = sock_aio_write, 129 .poll = sock_poll, 130 .unlocked_ioctl = sock_ioctl, 131 .mmap = sock_mmap, 132 .open = sock_no_open, /* special open code to disallow open via /proc */ 133 .release = sock_close, 134 .fasync = sock_fasync, 135 .readv = sock_readv, 136 .writev = sock_writev, 137 .sendpage = sock_sendpage 138 }; 139 140 /* 141 * The protocol list. Each protocol is registered in here. 142 */ 143 144 static struct net_proto_family *net_families[NPROTO]; 145 146 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 147 static atomic_t net_family_lockct = ATOMIC_INIT(0); 148 static DEFINE_SPINLOCK(net_family_lock); 149 150 /* The strategy is: modifications net_family vector are short, do not 151 sleep and veeery rare, but read access should be free of any exclusive 152 locks. 153 */ 154 155 static void net_family_write_lock(void) 156 { 157 spin_lock(&net_family_lock); 158 while (atomic_read(&net_family_lockct) != 0) { 159 spin_unlock(&net_family_lock); 160 161 yield(); 162 163 spin_lock(&net_family_lock); 164 } 165 } 166 167 static __inline__ void net_family_write_unlock(void) 168 { 169 spin_unlock(&net_family_lock); 170 } 171 172 static __inline__ void net_family_read_lock(void) 173 { 174 atomic_inc(&net_family_lockct); 175 spin_unlock_wait(&net_family_lock); 176 } 177 178 static __inline__ void net_family_read_unlock(void) 179 { 180 atomic_dec(&net_family_lockct); 181 } 182 183 #else 184 #define net_family_write_lock() do { } while(0) 185 #define net_family_write_unlock() do { } while(0) 186 #define net_family_read_lock() do { } while(0) 187 #define net_family_read_unlock() do { } while(0) 188 #endif 189 190 191 /* 192 * Statistics counters of the socket lists 193 */ 194 195 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 196 197 /* 198 * Support routines. Move socket addresses back and forth across the kernel/user 199 * divide and look after the messy bits. 200 */ 201 202 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 203 16 for IP, 16 for IPX, 204 24 for IPv6, 205 about 80 for AX.25 206 must be at least one bigger than 207 the AF_UNIX size (see net/unix/af_unix.c 208 :unix_mkname()). 209 */ 210 211 /** 212 * move_addr_to_kernel - copy a socket address into kernel space 213 * @uaddr: Address in user space 214 * @kaddr: Address in kernel space 215 * @ulen: Length in user space 216 * 217 * The address is copied into kernel space. If the provided address is 218 * too long an error code of -EINVAL is returned. If the copy gives 219 * invalid addresses -EFAULT is returned. On a success 0 is returned. 220 */ 221 222 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 223 { 224 if(ulen<0||ulen>MAX_SOCK_ADDR) 225 return -EINVAL; 226 if(ulen==0) 227 return 0; 228 if(copy_from_user(kaddr,uaddr,ulen)) 229 return -EFAULT; 230 return audit_sockaddr(ulen, kaddr); 231 } 232 233 /** 234 * move_addr_to_user - copy an address to user space 235 * @kaddr: kernel space address 236 * @klen: length of address in kernel 237 * @uaddr: user space address 238 * @ulen: pointer to user length field 239 * 240 * The value pointed to by ulen on entry is the buffer length available. 241 * This is overwritten with the buffer space used. -EINVAL is returned 242 * if an overlong buffer is specified or a negative buffer size. -EFAULT 243 * is returned if either the buffer or the length field are not 244 * accessible. 245 * After copying the data up to the limit the user specifies, the true 246 * length of the data is written over the length limit the user 247 * specified. Zero is returned for a success. 248 */ 249 250 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen) 251 { 252 int err; 253 int len; 254 255 if((err=get_user(len, ulen))) 256 return err; 257 if(len>klen) 258 len=klen; 259 if(len<0 || len> MAX_SOCK_ADDR) 260 return -EINVAL; 261 if(len) 262 { 263 if(copy_to_user(uaddr,kaddr,len)) 264 return -EFAULT; 265 } 266 /* 267 * "fromlen shall refer to the value before truncation.." 268 * 1003.1g 269 */ 270 return __put_user(klen, ulen); 271 } 272 273 #define SOCKFS_MAGIC 0x534F434B 274 275 static kmem_cache_t * sock_inode_cachep; 276 277 static struct inode *sock_alloc_inode(struct super_block *sb) 278 { 279 struct socket_alloc *ei; 280 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL); 281 if (!ei) 282 return NULL; 283 init_waitqueue_head(&ei->socket.wait); 284 285 ei->socket.fasync_list = NULL; 286 ei->socket.state = SS_UNCONNECTED; 287 ei->socket.flags = 0; 288 ei->socket.ops = NULL; 289 ei->socket.sk = NULL; 290 ei->socket.file = NULL; 291 ei->socket.flags = 0; 292 293 return &ei->vfs_inode; 294 } 295 296 static void sock_destroy_inode(struct inode *inode) 297 { 298 kmem_cache_free(sock_inode_cachep, 299 container_of(inode, struct socket_alloc, vfs_inode)); 300 } 301 302 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 303 { 304 struct socket_alloc *ei = (struct socket_alloc *) foo; 305 306 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 307 SLAB_CTOR_CONSTRUCTOR) 308 inode_init_once(&ei->vfs_inode); 309 } 310 311 static int init_inodecache(void) 312 { 313 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 314 sizeof(struct socket_alloc), 315 0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT, 316 init_once, NULL); 317 if (sock_inode_cachep == NULL) 318 return -ENOMEM; 319 return 0; 320 } 321 322 static struct super_operations sockfs_ops = { 323 .alloc_inode = sock_alloc_inode, 324 .destroy_inode =sock_destroy_inode, 325 .statfs = simple_statfs, 326 }; 327 328 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type, 329 int flags, const char *dev_name, void *data) 330 { 331 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC); 332 } 333 334 static struct vfsmount *sock_mnt; 335 336 static struct file_system_type sock_fs_type = { 337 .name = "sockfs", 338 .get_sb = sockfs_get_sb, 339 .kill_sb = kill_anon_super, 340 }; 341 static int sockfs_delete_dentry(struct dentry *dentry) 342 { 343 return 1; 344 } 345 static struct dentry_operations sockfs_dentry_operations = { 346 .d_delete = sockfs_delete_dentry, 347 }; 348 349 /* 350 * Obtains the first available file descriptor and sets it up for use. 351 * 352 * This function creates file structure and maps it to fd space 353 * of current process. On success it returns file descriptor 354 * and file struct implicitly stored in sock->file. 355 * Note that another thread may close file descriptor before we return 356 * from this function. We use the fact that now we do not refer 357 * to socket after mapping. If one day we will need it, this 358 * function will increment ref. count on file by 1. 359 * 360 * In any case returned fd MAY BE not valid! 361 * This race condition is unavoidable 362 * with shared fd spaces, we cannot solve it inside kernel, 363 * but we take care of internal coherence yet. 364 */ 365 366 int sock_map_fd(struct socket *sock) 367 { 368 int fd; 369 struct qstr this; 370 char name[32]; 371 372 /* 373 * Find a file descriptor suitable for return to the user. 374 */ 375 376 fd = get_unused_fd(); 377 if (fd >= 0) { 378 struct file *file = get_empty_filp(); 379 380 if (!file) { 381 put_unused_fd(fd); 382 fd = -ENFILE; 383 goto out; 384 } 385 386 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 387 this.name = name; 388 this.hash = SOCK_INODE(sock)->i_ino; 389 390 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 391 if (!file->f_dentry) { 392 put_filp(file); 393 put_unused_fd(fd); 394 fd = -ENOMEM; 395 goto out; 396 } 397 file->f_dentry->d_op = &sockfs_dentry_operations; 398 d_add(file->f_dentry, SOCK_INODE(sock)); 399 file->f_vfsmnt = mntget(sock_mnt); 400 file->f_mapping = file->f_dentry->d_inode->i_mapping; 401 402 sock->file = file; 403 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 404 file->f_mode = FMODE_READ | FMODE_WRITE; 405 file->f_flags = O_RDWR; 406 file->f_pos = 0; 407 file->private_data = sock; 408 fd_install(fd, file); 409 } 410 411 out: 412 return fd; 413 } 414 415 /** 416 * sockfd_lookup - Go from a file number to its socket slot 417 * @fd: file handle 418 * @err: pointer to an error code return 419 * 420 * The file handle passed in is locked and the socket it is bound 421 * too is returned. If an error occurs the err pointer is overwritten 422 * with a negative errno code and NULL is returned. The function checks 423 * for both invalid handles and passing a handle which is not a socket. 424 * 425 * On a success the socket object pointer is returned. 426 */ 427 428 struct socket *sockfd_lookup(int fd, int *err) 429 { 430 struct file *file; 431 struct inode *inode; 432 struct socket *sock; 433 434 if (!(file = fget(fd))) 435 { 436 *err = -EBADF; 437 return NULL; 438 } 439 440 if (file->f_op == &socket_file_ops) 441 return file->private_data; /* set in sock_map_fd */ 442 443 inode = file->f_dentry->d_inode; 444 if (!S_ISSOCK(inode->i_mode)) { 445 *err = -ENOTSOCK; 446 fput(file); 447 return NULL; 448 } 449 450 sock = SOCKET_I(inode); 451 if (sock->file != file) { 452 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 453 sock->file = file; 454 } 455 return sock; 456 } 457 458 /** 459 * sock_alloc - allocate a socket 460 * 461 * Allocate a new inode and socket object. The two are bound together 462 * and initialised. The socket is then returned. If we are out of inodes 463 * NULL is returned. 464 */ 465 466 static struct socket *sock_alloc(void) 467 { 468 struct inode * inode; 469 struct socket * sock; 470 471 inode = new_inode(sock_mnt->mnt_sb); 472 if (!inode) 473 return NULL; 474 475 sock = SOCKET_I(inode); 476 477 inode->i_mode = S_IFSOCK|S_IRWXUGO; 478 inode->i_uid = current->fsuid; 479 inode->i_gid = current->fsgid; 480 481 get_cpu_var(sockets_in_use)++; 482 put_cpu_var(sockets_in_use); 483 return sock; 484 } 485 486 /* 487 * In theory you can't get an open on this inode, but /proc provides 488 * a back door. Remember to keep it shut otherwise you'll let the 489 * creepy crawlies in. 490 */ 491 492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 493 { 494 return -ENXIO; 495 } 496 497 struct file_operations bad_sock_fops = { 498 .owner = THIS_MODULE, 499 .open = sock_no_open, 500 }; 501 502 /** 503 * sock_release - close a socket 504 * @sock: socket to close 505 * 506 * The socket is released from the protocol stack if it has a release 507 * callback, and the inode is then released if the socket is bound to 508 * an inode not a file. 509 */ 510 511 void sock_release(struct socket *sock) 512 { 513 if (sock->ops) { 514 struct module *owner = sock->ops->owner; 515 516 sock->ops->release(sock); 517 sock->ops = NULL; 518 module_put(owner); 519 } 520 521 if (sock->fasync_list) 522 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 523 524 get_cpu_var(sockets_in_use)--; 525 put_cpu_var(sockets_in_use); 526 if (!sock->file) { 527 iput(SOCK_INODE(sock)); 528 return; 529 } 530 sock->file=NULL; 531 } 532 533 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 534 struct msghdr *msg, size_t size) 535 { 536 struct sock_iocb *si = kiocb_to_siocb(iocb); 537 int err; 538 539 si->sock = sock; 540 si->scm = NULL; 541 si->msg = msg; 542 si->size = size; 543 544 err = security_socket_sendmsg(sock, msg, size); 545 if (err) 546 return err; 547 548 return sock->ops->sendmsg(iocb, sock, msg, size); 549 } 550 551 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 552 { 553 struct kiocb iocb; 554 struct sock_iocb siocb; 555 int ret; 556 557 init_sync_kiocb(&iocb, NULL); 558 iocb.private = &siocb; 559 ret = __sock_sendmsg(&iocb, sock, msg, size); 560 if (-EIOCBQUEUED == ret) 561 ret = wait_on_sync_kiocb(&iocb); 562 return ret; 563 } 564 565 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 566 struct kvec *vec, size_t num, size_t size) 567 { 568 mm_segment_t oldfs = get_fs(); 569 int result; 570 571 set_fs(KERNEL_DS); 572 /* 573 * the following is safe, since for compiler definitions of kvec and 574 * iovec are identical, yielding the same in-core layout and alignment 575 */ 576 msg->msg_iov = (struct iovec *)vec, 577 msg->msg_iovlen = num; 578 result = sock_sendmsg(sock, msg, size); 579 set_fs(oldfs); 580 return result; 581 } 582 583 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 584 struct msghdr *msg, size_t size, int flags) 585 { 586 int err; 587 struct sock_iocb *si = kiocb_to_siocb(iocb); 588 589 si->sock = sock; 590 si->scm = NULL; 591 si->msg = msg; 592 si->size = size; 593 si->flags = flags; 594 595 err = security_socket_recvmsg(sock, msg, size, flags); 596 if (err) 597 return err; 598 599 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 600 } 601 602 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 603 size_t size, int flags) 604 { 605 struct kiocb iocb; 606 struct sock_iocb siocb; 607 int ret; 608 609 init_sync_kiocb(&iocb, NULL); 610 iocb.private = &siocb; 611 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 612 if (-EIOCBQUEUED == ret) 613 ret = wait_on_sync_kiocb(&iocb); 614 return ret; 615 } 616 617 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 618 struct kvec *vec, size_t num, 619 size_t size, int flags) 620 { 621 mm_segment_t oldfs = get_fs(); 622 int result; 623 624 set_fs(KERNEL_DS); 625 /* 626 * the following is safe, since for compiler definitions of kvec and 627 * iovec are identical, yielding the same in-core layout and alignment 628 */ 629 msg->msg_iov = (struct iovec *)vec, 630 msg->msg_iovlen = num; 631 result = sock_recvmsg(sock, msg, size, flags); 632 set_fs(oldfs); 633 return result; 634 } 635 636 static void sock_aio_dtor(struct kiocb *iocb) 637 { 638 kfree(iocb->private); 639 } 640 641 /* 642 * Read data from a socket. ubuf is a user mode pointer. We make sure the user 643 * area ubuf...ubuf+size-1 is writable before asking the protocol. 644 */ 645 646 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf, 647 size_t size, loff_t pos) 648 { 649 struct sock_iocb *x, siocb; 650 struct socket *sock; 651 int flags; 652 653 if (pos != 0) 654 return -ESPIPE; 655 if (size==0) /* Match SYS5 behaviour */ 656 return 0; 657 658 if (is_sync_kiocb(iocb)) 659 x = &siocb; 660 else { 661 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL); 662 if (!x) 663 return -ENOMEM; 664 iocb->ki_dtor = sock_aio_dtor; 665 } 666 iocb->private = x; 667 x->kiocb = iocb; 668 sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode); 669 670 x->async_msg.msg_name = NULL; 671 x->async_msg.msg_namelen = 0; 672 x->async_msg.msg_iov = &x->async_iov; 673 x->async_msg.msg_iovlen = 1; 674 x->async_msg.msg_control = NULL; 675 x->async_msg.msg_controllen = 0; 676 x->async_iov.iov_base = ubuf; 677 x->async_iov.iov_len = size; 678 flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 679 680 return __sock_recvmsg(iocb, sock, &x->async_msg, size, flags); 681 } 682 683 684 /* 685 * Write data to a socket. We verify that the user area ubuf..ubuf+size-1 686 * is readable by the user process. 687 */ 688 689 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf, 690 size_t size, loff_t pos) 691 { 692 struct sock_iocb *x, siocb; 693 struct socket *sock; 694 695 if (pos != 0) 696 return -ESPIPE; 697 if(size==0) /* Match SYS5 behaviour */ 698 return 0; 699 700 if (is_sync_kiocb(iocb)) 701 x = &siocb; 702 else { 703 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL); 704 if (!x) 705 return -ENOMEM; 706 iocb->ki_dtor = sock_aio_dtor; 707 } 708 iocb->private = x; 709 x->kiocb = iocb; 710 sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode); 711 712 x->async_msg.msg_name = NULL; 713 x->async_msg.msg_namelen = 0; 714 x->async_msg.msg_iov = &x->async_iov; 715 x->async_msg.msg_iovlen = 1; 716 x->async_msg.msg_control = NULL; 717 x->async_msg.msg_controllen = 0; 718 x->async_msg.msg_flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 719 if (sock->type == SOCK_SEQPACKET) 720 x->async_msg.msg_flags |= MSG_EOR; 721 x->async_iov.iov_base = (void __user *)ubuf; 722 x->async_iov.iov_len = size; 723 724 return __sock_sendmsg(iocb, sock, &x->async_msg, size); 725 } 726 727 ssize_t sock_sendpage(struct file *file, struct page *page, 728 int offset, size_t size, loff_t *ppos, int more) 729 { 730 struct socket *sock; 731 int flags; 732 733 sock = SOCKET_I(file->f_dentry->d_inode); 734 735 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 736 if (more) 737 flags |= MSG_MORE; 738 739 return sock->ops->sendpage(sock, page, offset, size, flags); 740 } 741 742 static int sock_readv_writev(int type, struct inode * inode, 743 struct file * file, const struct iovec * iov, 744 long count, size_t size) 745 { 746 struct msghdr msg; 747 struct socket *sock; 748 749 sock = SOCKET_I(inode); 750 751 msg.msg_name = NULL; 752 msg.msg_namelen = 0; 753 msg.msg_control = NULL; 754 msg.msg_controllen = 0; 755 msg.msg_iov = (struct iovec *) iov; 756 msg.msg_iovlen = count; 757 msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 758 759 /* read() does a VERIFY_WRITE */ 760 if (type == VERIFY_WRITE) 761 return sock_recvmsg(sock, &msg, size, msg.msg_flags); 762 763 if (sock->type == SOCK_SEQPACKET) 764 msg.msg_flags |= MSG_EOR; 765 766 return sock_sendmsg(sock, &msg, size); 767 } 768 769 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 770 unsigned long count, loff_t *ppos) 771 { 772 size_t tot_len = 0; 773 int i; 774 for (i = 0 ; i < count ; i++) 775 tot_len += vector[i].iov_len; 776 return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode, 777 file, vector, count, tot_len); 778 } 779 780 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 781 unsigned long count, loff_t *ppos) 782 { 783 size_t tot_len = 0; 784 int i; 785 for (i = 0 ; i < count ; i++) 786 tot_len += vector[i].iov_len; 787 return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode, 788 file, vector, count, tot_len); 789 } 790 791 792 /* 793 * Atomic setting of ioctl hooks to avoid race 794 * with module unload. 795 */ 796 797 static DECLARE_MUTEX(br_ioctl_mutex); 798 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL; 799 800 void brioctl_set(int (*hook)(unsigned int, void __user *)) 801 { 802 down(&br_ioctl_mutex); 803 br_ioctl_hook = hook; 804 up(&br_ioctl_mutex); 805 } 806 EXPORT_SYMBOL(brioctl_set); 807 808 static DECLARE_MUTEX(vlan_ioctl_mutex); 809 static int (*vlan_ioctl_hook)(void __user *arg); 810 811 void vlan_ioctl_set(int (*hook)(void __user *)) 812 { 813 down(&vlan_ioctl_mutex); 814 vlan_ioctl_hook = hook; 815 up(&vlan_ioctl_mutex); 816 } 817 EXPORT_SYMBOL(vlan_ioctl_set); 818 819 static DECLARE_MUTEX(dlci_ioctl_mutex); 820 static int (*dlci_ioctl_hook)(unsigned int, void __user *); 821 822 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *)) 823 { 824 down(&dlci_ioctl_mutex); 825 dlci_ioctl_hook = hook; 826 up(&dlci_ioctl_mutex); 827 } 828 EXPORT_SYMBOL(dlci_ioctl_set); 829 830 /* 831 * With an ioctl, arg may well be a user mode pointer, but we don't know 832 * what to do with it - that's up to the protocol still. 833 */ 834 835 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 836 { 837 struct socket *sock; 838 void __user *argp = (void __user *)arg; 839 int pid, err; 840 841 sock = SOCKET_I(file->f_dentry->d_inode); 842 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 843 err = dev_ioctl(cmd, argp); 844 } else 845 #ifdef WIRELESS_EXT 846 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 847 err = dev_ioctl(cmd, argp); 848 } else 849 #endif /* WIRELESS_EXT */ 850 switch (cmd) { 851 case FIOSETOWN: 852 case SIOCSPGRP: 853 err = -EFAULT; 854 if (get_user(pid, (int __user *)argp)) 855 break; 856 err = f_setown(sock->file, pid, 1); 857 break; 858 case FIOGETOWN: 859 case SIOCGPGRP: 860 err = put_user(sock->file->f_owner.pid, (int __user *)argp); 861 break; 862 case SIOCGIFBR: 863 case SIOCSIFBR: 864 case SIOCBRADDBR: 865 case SIOCBRDELBR: 866 err = -ENOPKG; 867 if (!br_ioctl_hook) 868 request_module("bridge"); 869 870 down(&br_ioctl_mutex); 871 if (br_ioctl_hook) 872 err = br_ioctl_hook(cmd, argp); 873 up(&br_ioctl_mutex); 874 break; 875 case SIOCGIFVLAN: 876 case SIOCSIFVLAN: 877 err = -ENOPKG; 878 if (!vlan_ioctl_hook) 879 request_module("8021q"); 880 881 down(&vlan_ioctl_mutex); 882 if (vlan_ioctl_hook) 883 err = vlan_ioctl_hook(argp); 884 up(&vlan_ioctl_mutex); 885 break; 886 case SIOCGIFDIVERT: 887 case SIOCSIFDIVERT: 888 /* Convert this to call through a hook */ 889 err = divert_ioctl(cmd, argp); 890 break; 891 case SIOCADDDLCI: 892 case SIOCDELDLCI: 893 err = -ENOPKG; 894 if (!dlci_ioctl_hook) 895 request_module("dlci"); 896 897 if (dlci_ioctl_hook) { 898 down(&dlci_ioctl_mutex); 899 err = dlci_ioctl_hook(cmd, argp); 900 up(&dlci_ioctl_mutex); 901 } 902 break; 903 default: 904 err = sock->ops->ioctl(sock, cmd, arg); 905 break; 906 } 907 return err; 908 } 909 910 int sock_create_lite(int family, int type, int protocol, struct socket **res) 911 { 912 int err; 913 struct socket *sock = NULL; 914 915 err = security_socket_create(family, type, protocol, 1); 916 if (err) 917 goto out; 918 919 sock = sock_alloc(); 920 if (!sock) { 921 err = -ENOMEM; 922 goto out; 923 } 924 925 security_socket_post_create(sock, family, type, protocol, 1); 926 sock->type = type; 927 out: 928 *res = sock; 929 return err; 930 } 931 932 /* No kernel lock held - perfect */ 933 static unsigned int sock_poll(struct file *file, poll_table * wait) 934 { 935 struct socket *sock; 936 937 /* 938 * We can't return errors to poll, so it's either yes or no. 939 */ 940 sock = SOCKET_I(file->f_dentry->d_inode); 941 return sock->ops->poll(file, sock, wait); 942 } 943 944 static int sock_mmap(struct file * file, struct vm_area_struct * vma) 945 { 946 struct socket *sock = SOCKET_I(file->f_dentry->d_inode); 947 948 return sock->ops->mmap(file, sock, vma); 949 } 950 951 int sock_close(struct inode *inode, struct file *filp) 952 { 953 /* 954 * It was possible the inode is NULL we were 955 * closing an unfinished socket. 956 */ 957 958 if (!inode) 959 { 960 printk(KERN_DEBUG "sock_close: NULL inode\n"); 961 return 0; 962 } 963 sock_fasync(-1, filp, 0); 964 sock_release(SOCKET_I(inode)); 965 return 0; 966 } 967 968 /* 969 * Update the socket async list 970 * 971 * Fasync_list locking strategy. 972 * 973 * 1. fasync_list is modified only under process context socket lock 974 * i.e. under semaphore. 975 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 976 * or under socket lock. 977 * 3. fasync_list can be used from softirq context, so that 978 * modification under socket lock have to be enhanced with 979 * write_lock_bh(&sk->sk_callback_lock). 980 * --ANK (990710) 981 */ 982 983 static int sock_fasync(int fd, struct file *filp, int on) 984 { 985 struct fasync_struct *fa, *fna=NULL, **prev; 986 struct socket *sock; 987 struct sock *sk; 988 989 if (on) 990 { 991 fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 992 if(fna==NULL) 993 return -ENOMEM; 994 } 995 996 sock = SOCKET_I(filp->f_dentry->d_inode); 997 998 if ((sk=sock->sk) == NULL) { 999 kfree(fna); 1000 return -EINVAL; 1001 } 1002 1003 lock_sock(sk); 1004 1005 prev=&(sock->fasync_list); 1006 1007 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) 1008 if (fa->fa_file==filp) 1009 break; 1010 1011 if(on) 1012 { 1013 if(fa!=NULL) 1014 { 1015 write_lock_bh(&sk->sk_callback_lock); 1016 fa->fa_fd=fd; 1017 write_unlock_bh(&sk->sk_callback_lock); 1018 1019 kfree(fna); 1020 goto out; 1021 } 1022 fna->fa_file=filp; 1023 fna->fa_fd=fd; 1024 fna->magic=FASYNC_MAGIC; 1025 fna->fa_next=sock->fasync_list; 1026 write_lock_bh(&sk->sk_callback_lock); 1027 sock->fasync_list=fna; 1028 write_unlock_bh(&sk->sk_callback_lock); 1029 } 1030 else 1031 { 1032 if (fa!=NULL) 1033 { 1034 write_lock_bh(&sk->sk_callback_lock); 1035 *prev=fa->fa_next; 1036 write_unlock_bh(&sk->sk_callback_lock); 1037 kfree(fa); 1038 } 1039 } 1040 1041 out: 1042 release_sock(sock->sk); 1043 return 0; 1044 } 1045 1046 /* This function may be called only under socket lock or callback_lock */ 1047 1048 int sock_wake_async(struct socket *sock, int how, int band) 1049 { 1050 if (!sock || !sock->fasync_list) 1051 return -1; 1052 switch (how) 1053 { 1054 case 1: 1055 1056 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1057 break; 1058 goto call_kill; 1059 case 2: 1060 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1061 break; 1062 /* fall through */ 1063 case 0: 1064 call_kill: 1065 __kill_fasync(sock->fasync_list, SIGIO, band); 1066 break; 1067 case 3: 1068 __kill_fasync(sock->fasync_list, SIGURG, band); 1069 } 1070 return 0; 1071 } 1072 1073 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern) 1074 { 1075 int err; 1076 struct socket *sock; 1077 1078 /* 1079 * Check protocol is in range 1080 */ 1081 if (family < 0 || family >= NPROTO) 1082 return -EAFNOSUPPORT; 1083 if (type < 0 || type >= SOCK_MAX) 1084 return -EINVAL; 1085 1086 /* Compatibility. 1087 1088 This uglymoron is moved from INET layer to here to avoid 1089 deadlock in module load. 1090 */ 1091 if (family == PF_INET && type == SOCK_PACKET) { 1092 static int warned; 1093 if (!warned) { 1094 warned = 1; 1095 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); 1096 } 1097 family = PF_PACKET; 1098 } 1099 1100 err = security_socket_create(family, type, protocol, kern); 1101 if (err) 1102 return err; 1103 1104 #if defined(CONFIG_KMOD) 1105 /* Attempt to load a protocol module if the find failed. 1106 * 1107 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1108 * requested real, full-featured networking support upon configuration. 1109 * Otherwise module support will break! 1110 */ 1111 if (net_families[family]==NULL) 1112 { 1113 request_module("net-pf-%d",family); 1114 } 1115 #endif 1116 1117 net_family_read_lock(); 1118 if (net_families[family] == NULL) { 1119 err = -EAFNOSUPPORT; 1120 goto out; 1121 } 1122 1123 /* 1124 * Allocate the socket and allow the family to set things up. if 1125 * the protocol is 0, the family is instructed to select an appropriate 1126 * default. 1127 */ 1128 1129 if (!(sock = sock_alloc())) { 1130 printk(KERN_WARNING "socket: no more sockets\n"); 1131 err = -ENFILE; /* Not exactly a match, but its the 1132 closest posix thing */ 1133 goto out; 1134 } 1135 1136 sock->type = type; 1137 1138 /* 1139 * We will call the ->create function, that possibly is in a loadable 1140 * module, so we have to bump that loadable module refcnt first. 1141 */ 1142 err = -EAFNOSUPPORT; 1143 if (!try_module_get(net_families[family]->owner)) 1144 goto out_release; 1145 1146 if ((err = net_families[family]->create(sock, protocol)) < 0) 1147 goto out_module_put; 1148 /* 1149 * Now to bump the refcnt of the [loadable] module that owns this 1150 * socket at sock_release time we decrement its refcnt. 1151 */ 1152 if (!try_module_get(sock->ops->owner)) { 1153 sock->ops = NULL; 1154 goto out_module_put; 1155 } 1156 /* 1157 * Now that we're done with the ->create function, the [loadable] 1158 * module can have its refcnt decremented 1159 */ 1160 module_put(net_families[family]->owner); 1161 *res = sock; 1162 security_socket_post_create(sock, family, type, protocol, kern); 1163 1164 out: 1165 net_family_read_unlock(); 1166 return err; 1167 out_module_put: 1168 module_put(net_families[family]->owner); 1169 out_release: 1170 sock_release(sock); 1171 goto out; 1172 } 1173 1174 int sock_create(int family, int type, int protocol, struct socket **res) 1175 { 1176 return __sock_create(family, type, protocol, res, 0); 1177 } 1178 1179 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1180 { 1181 return __sock_create(family, type, protocol, res, 1); 1182 } 1183 1184 asmlinkage long sys_socket(int family, int type, int protocol) 1185 { 1186 int retval; 1187 struct socket *sock; 1188 1189 retval = sock_create(family, type, protocol, &sock); 1190 if (retval < 0) 1191 goto out; 1192 1193 retval = sock_map_fd(sock); 1194 if (retval < 0) 1195 goto out_release; 1196 1197 out: 1198 /* It may be already another descriptor 8) Not kernel problem. */ 1199 return retval; 1200 1201 out_release: 1202 sock_release(sock); 1203 return retval; 1204 } 1205 1206 /* 1207 * Create a pair of connected sockets. 1208 */ 1209 1210 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1211 { 1212 struct socket *sock1, *sock2; 1213 int fd1, fd2, err; 1214 1215 /* 1216 * Obtain the first socket and check if the underlying protocol 1217 * supports the socketpair call. 1218 */ 1219 1220 err = sock_create(family, type, protocol, &sock1); 1221 if (err < 0) 1222 goto out; 1223 1224 err = sock_create(family, type, protocol, &sock2); 1225 if (err < 0) 1226 goto out_release_1; 1227 1228 err = sock1->ops->socketpair(sock1, sock2); 1229 if (err < 0) 1230 goto out_release_both; 1231 1232 fd1 = fd2 = -1; 1233 1234 err = sock_map_fd(sock1); 1235 if (err < 0) 1236 goto out_release_both; 1237 fd1 = err; 1238 1239 err = sock_map_fd(sock2); 1240 if (err < 0) 1241 goto out_close_1; 1242 fd2 = err; 1243 1244 /* fd1 and fd2 may be already another descriptors. 1245 * Not kernel problem. 1246 */ 1247 1248 err = put_user(fd1, &usockvec[0]); 1249 if (!err) 1250 err = put_user(fd2, &usockvec[1]); 1251 if (!err) 1252 return 0; 1253 1254 sys_close(fd2); 1255 sys_close(fd1); 1256 return err; 1257 1258 out_close_1: 1259 sock_release(sock2); 1260 sys_close(fd1); 1261 return err; 1262 1263 out_release_both: 1264 sock_release(sock2); 1265 out_release_1: 1266 sock_release(sock1); 1267 out: 1268 return err; 1269 } 1270 1271 1272 /* 1273 * Bind a name to a socket. Nothing much to do here since it's 1274 * the protocol's responsibility to handle the local address. 1275 * 1276 * We move the socket address to kernel space before we call 1277 * the protocol layer (having also checked the address is ok). 1278 */ 1279 1280 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1281 { 1282 struct socket *sock; 1283 char address[MAX_SOCK_ADDR]; 1284 int err; 1285 1286 if((sock = sockfd_lookup(fd,&err))!=NULL) 1287 { 1288 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) { 1289 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); 1290 if (err) { 1291 sockfd_put(sock); 1292 return err; 1293 } 1294 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen); 1295 } 1296 sockfd_put(sock); 1297 } 1298 return err; 1299 } 1300 1301 1302 /* 1303 * Perform a listen. Basically, we allow the protocol to do anything 1304 * necessary for a listen, and if that works, we mark the socket as 1305 * ready for listening. 1306 */ 1307 1308 int sysctl_somaxconn = SOMAXCONN; 1309 1310 asmlinkage long sys_listen(int fd, int backlog) 1311 { 1312 struct socket *sock; 1313 int err; 1314 1315 if ((sock = sockfd_lookup(fd, &err)) != NULL) { 1316 if ((unsigned) backlog > sysctl_somaxconn) 1317 backlog = sysctl_somaxconn; 1318 1319 err = security_socket_listen(sock, backlog); 1320 if (err) { 1321 sockfd_put(sock); 1322 return err; 1323 } 1324 1325 err=sock->ops->listen(sock, backlog); 1326 sockfd_put(sock); 1327 } 1328 return err; 1329 } 1330 1331 1332 /* 1333 * For accept, we attempt to create a new socket, set up the link 1334 * with the client, wake up the client, then return the new 1335 * connected fd. We collect the address of the connector in kernel 1336 * space and move it to user at the very end. This is unclean because 1337 * we open the socket then return an error. 1338 * 1339 * 1003.1g adds the ability to recvmsg() to query connection pending 1340 * status to recvmsg. We need to add that support in a way thats 1341 * clean when we restucture accept also. 1342 */ 1343 1344 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen) 1345 { 1346 struct socket *sock, *newsock; 1347 int err, len; 1348 char address[MAX_SOCK_ADDR]; 1349 1350 sock = sockfd_lookup(fd, &err); 1351 if (!sock) 1352 goto out; 1353 1354 err = -ENFILE; 1355 if (!(newsock = sock_alloc())) 1356 goto out_put; 1357 1358 newsock->type = sock->type; 1359 newsock->ops = sock->ops; 1360 1361 err = security_socket_accept(sock, newsock); 1362 if (err) 1363 goto out_release; 1364 1365 /* 1366 * We don't need try_module_get here, as the listening socket (sock) 1367 * has the protocol module (sock->ops->owner) held. 1368 */ 1369 __module_get(newsock->ops->owner); 1370 1371 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1372 if (err < 0) 1373 goto out_release; 1374 1375 if (upeer_sockaddr) { 1376 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) { 1377 err = -ECONNABORTED; 1378 goto out_release; 1379 } 1380 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen); 1381 if (err < 0) 1382 goto out_release; 1383 } 1384 1385 /* File flags are not inherited via accept() unlike another OSes. */ 1386 1387 if ((err = sock_map_fd(newsock)) < 0) 1388 goto out_release; 1389 1390 security_socket_post_accept(sock, newsock); 1391 1392 out_put: 1393 sockfd_put(sock); 1394 out: 1395 return err; 1396 out_release: 1397 sock_release(newsock); 1398 goto out_put; 1399 } 1400 1401 1402 /* 1403 * Attempt to connect to a socket with the server address. The address 1404 * is in user space so we verify it is OK and move it to kernel space. 1405 * 1406 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1407 * break bindings 1408 * 1409 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1410 * other SEQPACKET protocols that take time to connect() as it doesn't 1411 * include the -EINPROGRESS status for such sockets. 1412 */ 1413 1414 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1415 { 1416 struct socket *sock; 1417 char address[MAX_SOCK_ADDR]; 1418 int err; 1419 1420 sock = sockfd_lookup(fd, &err); 1421 if (!sock) 1422 goto out; 1423 err = move_addr_to_kernel(uservaddr, addrlen, address); 1424 if (err < 0) 1425 goto out_put; 1426 1427 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1428 if (err) 1429 goto out_put; 1430 1431 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen, 1432 sock->file->f_flags); 1433 out_put: 1434 sockfd_put(sock); 1435 out: 1436 return err; 1437 } 1438 1439 /* 1440 * Get the local address ('name') of a socket object. Move the obtained 1441 * name to user space. 1442 */ 1443 1444 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1445 { 1446 struct socket *sock; 1447 char address[MAX_SOCK_ADDR]; 1448 int len, err; 1449 1450 sock = sockfd_lookup(fd, &err); 1451 if (!sock) 1452 goto out; 1453 1454 err = security_socket_getsockname(sock); 1455 if (err) 1456 goto out_put; 1457 1458 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1459 if (err) 1460 goto out_put; 1461 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1462 1463 out_put: 1464 sockfd_put(sock); 1465 out: 1466 return err; 1467 } 1468 1469 /* 1470 * Get the remote address ('name') of a socket object. Move the obtained 1471 * name to user space. 1472 */ 1473 1474 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1475 { 1476 struct socket *sock; 1477 char address[MAX_SOCK_ADDR]; 1478 int len, err; 1479 1480 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1481 { 1482 err = security_socket_getpeername(sock); 1483 if (err) { 1484 sockfd_put(sock); 1485 return err; 1486 } 1487 1488 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); 1489 if (!err) 1490 err=move_addr_to_user(address,len, usockaddr, usockaddr_len); 1491 sockfd_put(sock); 1492 } 1493 return err; 1494 } 1495 1496 /* 1497 * Send a datagram to a given address. We move the address into kernel 1498 * space and check the user space data area is readable before invoking 1499 * the protocol. 1500 */ 1501 1502 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags, 1503 struct sockaddr __user *addr, int addr_len) 1504 { 1505 struct socket *sock; 1506 char address[MAX_SOCK_ADDR]; 1507 int err; 1508 struct msghdr msg; 1509 struct iovec iov; 1510 1511 sock = sockfd_lookup(fd, &err); 1512 if (!sock) 1513 goto out; 1514 iov.iov_base=buff; 1515 iov.iov_len=len; 1516 msg.msg_name=NULL; 1517 msg.msg_iov=&iov; 1518 msg.msg_iovlen=1; 1519 msg.msg_control=NULL; 1520 msg.msg_controllen=0; 1521 msg.msg_namelen=0; 1522 if(addr) 1523 { 1524 err = move_addr_to_kernel(addr, addr_len, address); 1525 if (err < 0) 1526 goto out_put; 1527 msg.msg_name=address; 1528 msg.msg_namelen=addr_len; 1529 } 1530 if (sock->file->f_flags & O_NONBLOCK) 1531 flags |= MSG_DONTWAIT; 1532 msg.msg_flags = flags; 1533 err = sock_sendmsg(sock, &msg, len); 1534 1535 out_put: 1536 sockfd_put(sock); 1537 out: 1538 return err; 1539 } 1540 1541 /* 1542 * Send a datagram down a socket. 1543 */ 1544 1545 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags) 1546 { 1547 return sys_sendto(fd, buff, len, flags, NULL, 0); 1548 } 1549 1550 /* 1551 * Receive a frame from the socket and optionally record the address of the 1552 * sender. We verify the buffers are writable and if needed move the 1553 * sender address from kernel to user space. 1554 */ 1555 1556 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags, 1557 struct sockaddr __user *addr, int __user *addr_len) 1558 { 1559 struct socket *sock; 1560 struct iovec iov; 1561 struct msghdr msg; 1562 char address[MAX_SOCK_ADDR]; 1563 int err,err2; 1564 1565 sock = sockfd_lookup(fd, &err); 1566 if (!sock) 1567 goto out; 1568 1569 msg.msg_control=NULL; 1570 msg.msg_controllen=0; 1571 msg.msg_iovlen=1; 1572 msg.msg_iov=&iov; 1573 iov.iov_len=size; 1574 iov.iov_base=ubuf; 1575 msg.msg_name=address; 1576 msg.msg_namelen=MAX_SOCK_ADDR; 1577 if (sock->file->f_flags & O_NONBLOCK) 1578 flags |= MSG_DONTWAIT; 1579 err=sock_recvmsg(sock, &msg, size, flags); 1580 1581 if(err >= 0 && addr != NULL) 1582 { 1583 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1584 if(err2<0) 1585 err=err2; 1586 } 1587 sockfd_put(sock); 1588 out: 1589 return err; 1590 } 1591 1592 /* 1593 * Receive a datagram from a socket. 1594 */ 1595 1596 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags) 1597 { 1598 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1599 } 1600 1601 /* 1602 * Set a socket option. Because we don't know the option lengths we have 1603 * to pass the user mode parameter for the protocols to sort out. 1604 */ 1605 1606 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen) 1607 { 1608 int err; 1609 struct socket *sock; 1610 1611 if (optlen < 0) 1612 return -EINVAL; 1613 1614 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1615 { 1616 err = security_socket_setsockopt(sock,level,optname); 1617 if (err) { 1618 sockfd_put(sock); 1619 return err; 1620 } 1621 1622 if (level == SOL_SOCKET) 1623 err=sock_setsockopt(sock,level,optname,optval,optlen); 1624 else 1625 err=sock->ops->setsockopt(sock, level, optname, optval, optlen); 1626 sockfd_put(sock); 1627 } 1628 return err; 1629 } 1630 1631 /* 1632 * Get a socket option. Because we don't know the option lengths we have 1633 * to pass a user mode parameter for the protocols to sort out. 1634 */ 1635 1636 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) 1637 { 1638 int err; 1639 struct socket *sock; 1640 1641 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1642 { 1643 err = security_socket_getsockopt(sock, level, 1644 optname); 1645 if (err) { 1646 sockfd_put(sock); 1647 return err; 1648 } 1649 1650 if (level == SOL_SOCKET) 1651 err=sock_getsockopt(sock,level,optname,optval,optlen); 1652 else 1653 err=sock->ops->getsockopt(sock, level, optname, optval, optlen); 1654 sockfd_put(sock); 1655 } 1656 return err; 1657 } 1658 1659 1660 /* 1661 * Shutdown a socket. 1662 */ 1663 1664 asmlinkage long sys_shutdown(int fd, int how) 1665 { 1666 int err; 1667 struct socket *sock; 1668 1669 if ((sock = sockfd_lookup(fd, &err))!=NULL) 1670 { 1671 err = security_socket_shutdown(sock, how); 1672 if (err) { 1673 sockfd_put(sock); 1674 return err; 1675 } 1676 1677 err=sock->ops->shutdown(sock, how); 1678 sockfd_put(sock); 1679 } 1680 return err; 1681 } 1682 1683 /* A couple of helpful macros for getting the address of the 32/64 bit 1684 * fields which are the same type (int / unsigned) on our platforms. 1685 */ 1686 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1687 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1688 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1689 1690 1691 /* 1692 * BSD sendmsg interface 1693 */ 1694 1695 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1696 { 1697 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1698 struct socket *sock; 1699 char address[MAX_SOCK_ADDR]; 1700 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1701 unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */ 1702 unsigned char *ctl_buf = ctl; 1703 struct msghdr msg_sys; 1704 int err, ctl_len, iov_size, total_len; 1705 1706 err = -EFAULT; 1707 if (MSG_CMSG_COMPAT & flags) { 1708 if (get_compat_msghdr(&msg_sys, msg_compat)) 1709 return -EFAULT; 1710 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1711 return -EFAULT; 1712 1713 sock = sockfd_lookup(fd, &err); 1714 if (!sock) 1715 goto out; 1716 1717 /* do not move before msg_sys is valid */ 1718 err = -EMSGSIZE; 1719 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1720 goto out_put; 1721 1722 /* Check whether to allocate the iovec area*/ 1723 err = -ENOMEM; 1724 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1725 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1726 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1727 if (!iov) 1728 goto out_put; 1729 } 1730 1731 /* This will also move the address data into kernel space */ 1732 if (MSG_CMSG_COMPAT & flags) { 1733 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1734 } else 1735 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1736 if (err < 0) 1737 goto out_freeiov; 1738 total_len = err; 1739 1740 err = -ENOBUFS; 1741 1742 if (msg_sys.msg_controllen > INT_MAX) 1743 goto out_freeiov; 1744 ctl_len = msg_sys.msg_controllen; 1745 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1746 err = cmsghdr_from_user_compat_to_kern(&msg_sys, ctl, sizeof(ctl)); 1747 if (err) 1748 goto out_freeiov; 1749 ctl_buf = msg_sys.msg_control; 1750 } else if (ctl_len) { 1751 if (ctl_len > sizeof(ctl)) 1752 { 1753 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1754 if (ctl_buf == NULL) 1755 goto out_freeiov; 1756 } 1757 err = -EFAULT; 1758 /* 1759 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1760 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1761 * checking falls down on this. 1762 */ 1763 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len)) 1764 goto out_freectl; 1765 msg_sys.msg_control = ctl_buf; 1766 } 1767 msg_sys.msg_flags = flags; 1768 1769 if (sock->file->f_flags & O_NONBLOCK) 1770 msg_sys.msg_flags |= MSG_DONTWAIT; 1771 err = sock_sendmsg(sock, &msg_sys, total_len); 1772 1773 out_freectl: 1774 if (ctl_buf != ctl) 1775 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1776 out_freeiov: 1777 if (iov != iovstack) 1778 sock_kfree_s(sock->sk, iov, iov_size); 1779 out_put: 1780 sockfd_put(sock); 1781 out: 1782 return err; 1783 } 1784 1785 /* 1786 * BSD recvmsg interface 1787 */ 1788 1789 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags) 1790 { 1791 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1792 struct socket *sock; 1793 struct iovec iovstack[UIO_FASTIOV]; 1794 struct iovec *iov=iovstack; 1795 struct msghdr msg_sys; 1796 unsigned long cmsg_ptr; 1797 int err, iov_size, total_len, len; 1798 1799 /* kernel mode address */ 1800 char addr[MAX_SOCK_ADDR]; 1801 1802 /* user mode address pointers */ 1803 struct sockaddr __user *uaddr; 1804 int __user *uaddr_len; 1805 1806 if (MSG_CMSG_COMPAT & flags) { 1807 if (get_compat_msghdr(&msg_sys, msg_compat)) 1808 return -EFAULT; 1809 } else 1810 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) 1811 return -EFAULT; 1812 1813 sock = sockfd_lookup(fd, &err); 1814 if (!sock) 1815 goto out; 1816 1817 err = -EMSGSIZE; 1818 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1819 goto out_put; 1820 1821 /* Check whether to allocate the iovec area*/ 1822 err = -ENOMEM; 1823 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1824 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1825 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1826 if (!iov) 1827 goto out_put; 1828 } 1829 1830 /* 1831 * Save the user-mode address (verify_iovec will change the 1832 * kernel msghdr to use the kernel address space) 1833 */ 1834 1835 uaddr = (void __user *) msg_sys.msg_name; 1836 uaddr_len = COMPAT_NAMELEN(msg); 1837 if (MSG_CMSG_COMPAT & flags) { 1838 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1839 } else 1840 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1841 if (err < 0) 1842 goto out_freeiov; 1843 total_len=err; 1844 1845 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1846 msg_sys.msg_flags = 0; 1847 if (MSG_CMSG_COMPAT & flags) 1848 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1849 1850 if (sock->file->f_flags & O_NONBLOCK) 1851 flags |= MSG_DONTWAIT; 1852 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1853 if (err < 0) 1854 goto out_freeiov; 1855 len = err; 1856 1857 if (uaddr != NULL) { 1858 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); 1859 if (err < 0) 1860 goto out_freeiov; 1861 } 1862 err = __put_user(msg_sys.msg_flags, COMPAT_FLAGS(msg)); 1863 if (err) 1864 goto out_freeiov; 1865 if (MSG_CMSG_COMPAT & flags) 1866 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1867 &msg_compat->msg_controllen); 1868 else 1869 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1870 &msg->msg_controllen); 1871 if (err) 1872 goto out_freeiov; 1873 err = len; 1874 1875 out_freeiov: 1876 if (iov != iovstack) 1877 sock_kfree_s(sock->sk, iov, iov_size); 1878 out_put: 1879 sockfd_put(sock); 1880 out: 1881 return err; 1882 } 1883 1884 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1885 1886 /* Argument list sizes for sys_socketcall */ 1887 #define AL(x) ((x) * sizeof(unsigned long)) 1888 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1889 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1890 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; 1891 #undef AL 1892 1893 /* 1894 * System call vectors. 1895 * 1896 * Argument checking cleaned up. Saved 20% in size. 1897 * This function doesn't need to set the kernel lock because 1898 * it is set by the callees. 1899 */ 1900 1901 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1902 { 1903 unsigned long a[6]; 1904 unsigned long a0,a1; 1905 int err; 1906 1907 if(call<1||call>SYS_RECVMSG) 1908 return -EINVAL; 1909 1910 /* copy_from_user should be SMP safe. */ 1911 if (copy_from_user(a, args, nargs[call])) 1912 return -EFAULT; 1913 1914 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a); 1915 if (err) 1916 return err; 1917 1918 a0=a[0]; 1919 a1=a[1]; 1920 1921 switch(call) 1922 { 1923 case SYS_SOCKET: 1924 err = sys_socket(a0,a1,a[2]); 1925 break; 1926 case SYS_BIND: 1927 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]); 1928 break; 1929 case SYS_CONNECT: 1930 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 1931 break; 1932 case SYS_LISTEN: 1933 err = sys_listen(a0,a1); 1934 break; 1935 case SYS_ACCEPT: 1936 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1937 break; 1938 case SYS_GETSOCKNAME: 1939 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 1940 break; 1941 case SYS_GETPEERNAME: 1942 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); 1943 break; 1944 case SYS_SOCKETPAIR: 1945 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]); 1946 break; 1947 case SYS_SEND: 1948 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 1949 break; 1950 case SYS_SENDTO: 1951 err = sys_sendto(a0,(void __user *)a1, a[2], a[3], 1952 (struct sockaddr __user *)a[4], a[5]); 1953 break; 1954 case SYS_RECV: 1955 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 1956 break; 1957 case SYS_RECVFROM: 1958 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 1959 (struct sockaddr __user *)a[4], (int __user *)a[5]); 1960 break; 1961 case SYS_SHUTDOWN: 1962 err = sys_shutdown(a0,a1); 1963 break; 1964 case SYS_SETSOCKOPT: 1965 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 1966 break; 1967 case SYS_GETSOCKOPT: 1968 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); 1969 break; 1970 case SYS_SENDMSG: 1971 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]); 1972 break; 1973 case SYS_RECVMSG: 1974 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]); 1975 break; 1976 default: 1977 err = -EINVAL; 1978 break; 1979 } 1980 return err; 1981 } 1982 1983 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 1984 1985 /* 1986 * This function is called by a protocol handler that wants to 1987 * advertise its address family, and have it linked into the 1988 * SOCKET module. 1989 */ 1990 1991 int sock_register(struct net_proto_family *ops) 1992 { 1993 int err; 1994 1995 if (ops->family >= NPROTO) { 1996 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 1997 return -ENOBUFS; 1998 } 1999 net_family_write_lock(); 2000 err = -EEXIST; 2001 if (net_families[ops->family] == NULL) { 2002 net_families[ops->family]=ops; 2003 err = 0; 2004 } 2005 net_family_write_unlock(); 2006 printk(KERN_INFO "NET: Registered protocol family %d\n", 2007 ops->family); 2008 return err; 2009 } 2010 2011 /* 2012 * This function is called by a protocol handler that wants to 2013 * remove its address family, and have it unlinked from the 2014 * SOCKET module. 2015 */ 2016 2017 int sock_unregister(int family) 2018 { 2019 if (family < 0 || family >= NPROTO) 2020 return -1; 2021 2022 net_family_write_lock(); 2023 net_families[family]=NULL; 2024 net_family_write_unlock(); 2025 printk(KERN_INFO "NET: Unregistered protocol family %d\n", 2026 family); 2027 return 0; 2028 } 2029 2030 2031 extern void sk_init(void); 2032 2033 void __init sock_init(void) 2034 { 2035 /* 2036 * Initialize sock SLAB cache. 2037 */ 2038 2039 sk_init(); 2040 2041 #ifdef SLAB_SKB 2042 /* 2043 * Initialize skbuff SLAB cache 2044 */ 2045 skb_init(); 2046 #endif 2047 2048 /* 2049 * Initialize the protocols module. 2050 */ 2051 2052 init_inodecache(); 2053 register_filesystem(&sock_fs_type); 2054 sock_mnt = kern_mount(&sock_fs_type); 2055 /* The real protocol initialization is performed when 2056 * do_initcalls is run. 2057 */ 2058 2059 #ifdef CONFIG_NETFILTER 2060 netfilter_init(); 2061 #endif 2062 } 2063 2064 #ifdef CONFIG_PROC_FS 2065 void socket_seq_show(struct seq_file *seq) 2066 { 2067 int cpu; 2068 int counter = 0; 2069 2070 for (cpu = 0; cpu < NR_CPUS; cpu++) 2071 counter += per_cpu(sockets_in_use, cpu); 2072 2073 /* It can be negative, by the way. 8) */ 2074 if (counter < 0) 2075 counter = 0; 2076 2077 seq_printf(seq, "sockets: used %d\n", counter); 2078 } 2079 #endif /* CONFIG_PROC_FS */ 2080 2081 /* ABI emulation layers need these two */ 2082 EXPORT_SYMBOL(move_addr_to_kernel); 2083 EXPORT_SYMBOL(move_addr_to_user); 2084 EXPORT_SYMBOL(sock_create); 2085 EXPORT_SYMBOL(sock_create_kern); 2086 EXPORT_SYMBOL(sock_create_lite); 2087 EXPORT_SYMBOL(sock_map_fd); 2088 EXPORT_SYMBOL(sock_recvmsg); 2089 EXPORT_SYMBOL(sock_register); 2090 EXPORT_SYMBOL(sock_release); 2091 EXPORT_SYMBOL(sock_sendmsg); 2092 EXPORT_SYMBOL(sock_unregister); 2093 EXPORT_SYMBOL(sock_wake_async); 2094 EXPORT_SYMBOL(sockfd_lookup); 2095 EXPORT_SYMBOL(kernel_sendmsg); 2096 EXPORT_SYMBOL(kernel_recvmsg); 2097