xref: /openbmc/linux/net/socket.c (revision 07dc3f07)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/config.h>
62 #include <linux/mm.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/init.h>
74 #include <linux/poll.h>
75 #include <linux/cache.h>
76 #include <linux/module.h>
77 #include <linux/highmem.h>
78 #include <linux/divert.h>
79 #include <linux/mount.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/compat.h>
83 #include <linux/kmod.h>
84 #include <linux/audit.h>
85 
86 #ifdef CONFIG_NET_RADIO
87 #include <linux/wireless.h>		/* Note : will define WIRELESS_EXT */
88 #endif	/* CONFIG_NET_RADIO */
89 
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 
95 #include <net/sock.h>
96 #include <linux/netfilter.h>
97 
98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
100 			 size_t size, loff_t pos);
101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
102 			  size_t size, loff_t pos);
103 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
104 
105 static int sock_close(struct inode *inode, struct file *file);
106 static unsigned int sock_poll(struct file *file,
107 			      struct poll_table_struct *wait);
108 static long sock_ioctl(struct file *file,
109 		      unsigned int cmd, unsigned long arg);
110 static int sock_fasync(int fd, struct file *filp, int on);
111 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
112 			  unsigned long count, loff_t *ppos);
113 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
114 			  unsigned long count, loff_t *ppos);
115 static ssize_t sock_sendpage(struct file *file, struct page *page,
116 			     int offset, size_t size, loff_t *ppos, int more);
117 
118 
119 /*
120  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
121  *	in the operation structures but are done directly via the socketcall() multiplexor.
122  */
123 
124 static struct file_operations socket_file_ops = {
125 	.owner =	THIS_MODULE,
126 	.llseek =	no_llseek,
127 	.aio_read =	sock_aio_read,
128 	.aio_write =	sock_aio_write,
129 	.poll =		sock_poll,
130 	.unlocked_ioctl = sock_ioctl,
131 	.mmap =		sock_mmap,
132 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
133 	.release =	sock_close,
134 	.fasync =	sock_fasync,
135 	.readv =	sock_readv,
136 	.writev =	sock_writev,
137 	.sendpage =	sock_sendpage
138 };
139 
140 /*
141  *	The protocol list. Each protocol is registered in here.
142  */
143 
144 static struct net_proto_family *net_families[NPROTO];
145 
146 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
147 static atomic_t net_family_lockct = ATOMIC_INIT(0);
148 static DEFINE_SPINLOCK(net_family_lock);
149 
150 /* The strategy is: modifications net_family vector are short, do not
151    sleep and veeery rare, but read access should be free of any exclusive
152    locks.
153  */
154 
155 static void net_family_write_lock(void)
156 {
157 	spin_lock(&net_family_lock);
158 	while (atomic_read(&net_family_lockct) != 0) {
159 		spin_unlock(&net_family_lock);
160 
161 		yield();
162 
163 		spin_lock(&net_family_lock);
164 	}
165 }
166 
167 static __inline__ void net_family_write_unlock(void)
168 {
169 	spin_unlock(&net_family_lock);
170 }
171 
172 static __inline__ void net_family_read_lock(void)
173 {
174 	atomic_inc(&net_family_lockct);
175 	spin_unlock_wait(&net_family_lock);
176 }
177 
178 static __inline__ void net_family_read_unlock(void)
179 {
180 	atomic_dec(&net_family_lockct);
181 }
182 
183 #else
184 #define net_family_write_lock() do { } while(0)
185 #define net_family_write_unlock() do { } while(0)
186 #define net_family_read_lock() do { } while(0)
187 #define net_family_read_unlock() do { } while(0)
188 #endif
189 
190 
191 /*
192  *	Statistics counters of the socket lists
193  */
194 
195 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
196 
197 /*
198  *	Support routines. Move socket addresses back and forth across the kernel/user
199  *	divide and look after the messy bits.
200  */
201 
202 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
203 					   16 for IP, 16 for IPX,
204 					   24 for IPv6,
205 					   about 80 for AX.25
206 					   must be at least one bigger than
207 					   the AF_UNIX size (see net/unix/af_unix.c
208 					   :unix_mkname()).
209 					 */
210 
211 /**
212  *	move_addr_to_kernel	-	copy a socket address into kernel space
213  *	@uaddr: Address in user space
214  *	@kaddr: Address in kernel space
215  *	@ulen: Length in user space
216  *
217  *	The address is copied into kernel space. If the provided address is
218  *	too long an error code of -EINVAL is returned. If the copy gives
219  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
220  */
221 
222 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
223 {
224 	if(ulen<0||ulen>MAX_SOCK_ADDR)
225 		return -EINVAL;
226 	if(ulen==0)
227 		return 0;
228 	if(copy_from_user(kaddr,uaddr,ulen))
229 		return -EFAULT;
230 	return audit_sockaddr(ulen, kaddr);
231 }
232 
233 /**
234  *	move_addr_to_user	-	copy an address to user space
235  *	@kaddr: kernel space address
236  *	@klen: length of address in kernel
237  *	@uaddr: user space address
238  *	@ulen: pointer to user length field
239  *
240  *	The value pointed to by ulen on entry is the buffer length available.
241  *	This is overwritten with the buffer space used. -EINVAL is returned
242  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
243  *	is returned if either the buffer or the length field are not
244  *	accessible.
245  *	After copying the data up to the limit the user specifies, the true
246  *	length of the data is written over the length limit the user
247  *	specified. Zero is returned for a success.
248  */
249 
250 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
251 {
252 	int err;
253 	int len;
254 
255 	if((err=get_user(len, ulen)))
256 		return err;
257 	if(len>klen)
258 		len=klen;
259 	if(len<0 || len> MAX_SOCK_ADDR)
260 		return -EINVAL;
261 	if(len)
262 	{
263 		if(copy_to_user(uaddr,kaddr,len))
264 			return -EFAULT;
265 	}
266 	/*
267 	 *	"fromlen shall refer to the value before truncation.."
268 	 *			1003.1g
269 	 */
270 	return __put_user(klen, ulen);
271 }
272 
273 #define SOCKFS_MAGIC 0x534F434B
274 
275 static kmem_cache_t * sock_inode_cachep;
276 
277 static struct inode *sock_alloc_inode(struct super_block *sb)
278 {
279 	struct socket_alloc *ei;
280 	ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
281 	if (!ei)
282 		return NULL;
283 	init_waitqueue_head(&ei->socket.wait);
284 
285 	ei->socket.fasync_list = NULL;
286 	ei->socket.state = SS_UNCONNECTED;
287 	ei->socket.flags = 0;
288 	ei->socket.ops = NULL;
289 	ei->socket.sk = NULL;
290 	ei->socket.file = NULL;
291 	ei->socket.flags = 0;
292 
293 	return &ei->vfs_inode;
294 }
295 
296 static void sock_destroy_inode(struct inode *inode)
297 {
298 	kmem_cache_free(sock_inode_cachep,
299 			container_of(inode, struct socket_alloc, vfs_inode));
300 }
301 
302 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
303 {
304 	struct socket_alloc *ei = (struct socket_alloc *) foo;
305 
306 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
307 	    SLAB_CTOR_CONSTRUCTOR)
308 		inode_init_once(&ei->vfs_inode);
309 }
310 
311 static int init_inodecache(void)
312 {
313 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
314 				sizeof(struct socket_alloc),
315 				0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
316 				init_once, NULL);
317 	if (sock_inode_cachep == NULL)
318 		return -ENOMEM;
319 	return 0;
320 }
321 
322 static struct super_operations sockfs_ops = {
323 	.alloc_inode =	sock_alloc_inode,
324 	.destroy_inode =sock_destroy_inode,
325 	.statfs =	simple_statfs,
326 };
327 
328 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
329 	int flags, const char *dev_name, void *data)
330 {
331 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
332 }
333 
334 static struct vfsmount *sock_mnt;
335 
336 static struct file_system_type sock_fs_type = {
337 	.name =		"sockfs",
338 	.get_sb =	sockfs_get_sb,
339 	.kill_sb =	kill_anon_super,
340 };
341 static int sockfs_delete_dentry(struct dentry *dentry)
342 {
343 	return 1;
344 }
345 static struct dentry_operations sockfs_dentry_operations = {
346 	.d_delete =	sockfs_delete_dentry,
347 };
348 
349 /*
350  *	Obtains the first available file descriptor and sets it up for use.
351  *
352  *	This function creates file structure and maps it to fd space
353  *	of current process. On success it returns file descriptor
354  *	and file struct implicitly stored in sock->file.
355  *	Note that another thread may close file descriptor before we return
356  *	from this function. We use the fact that now we do not refer
357  *	to socket after mapping. If one day we will need it, this
358  *	function will increment ref. count on file by 1.
359  *
360  *	In any case returned fd MAY BE not valid!
361  *	This race condition is unavoidable
362  *	with shared fd spaces, we cannot solve it inside kernel,
363  *	but we take care of internal coherence yet.
364  */
365 
366 int sock_map_fd(struct socket *sock)
367 {
368 	int fd;
369 	struct qstr this;
370 	char name[32];
371 
372 	/*
373 	 *	Find a file descriptor suitable for return to the user.
374 	 */
375 
376 	fd = get_unused_fd();
377 	if (fd >= 0) {
378 		struct file *file = get_empty_filp();
379 
380 		if (!file) {
381 			put_unused_fd(fd);
382 			fd = -ENFILE;
383 			goto out;
384 		}
385 
386 		this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
387 		this.name = name;
388 		this.hash = SOCK_INODE(sock)->i_ino;
389 
390 		file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
391 		if (!file->f_dentry) {
392 			put_filp(file);
393 			put_unused_fd(fd);
394 			fd = -ENOMEM;
395 			goto out;
396 		}
397 		file->f_dentry->d_op = &sockfs_dentry_operations;
398 		d_add(file->f_dentry, SOCK_INODE(sock));
399 		file->f_vfsmnt = mntget(sock_mnt);
400 		file->f_mapping = file->f_dentry->d_inode->i_mapping;
401 
402 		sock->file = file;
403 		file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
404 		file->f_mode = FMODE_READ | FMODE_WRITE;
405 		file->f_flags = O_RDWR;
406 		file->f_pos = 0;
407 		file->private_data = sock;
408 		fd_install(fd, file);
409 	}
410 
411 out:
412 	return fd;
413 }
414 
415 /**
416  *	sockfd_lookup	- 	Go from a file number to its socket slot
417  *	@fd: file handle
418  *	@err: pointer to an error code return
419  *
420  *	The file handle passed in is locked and the socket it is bound
421  *	too is returned. If an error occurs the err pointer is overwritten
422  *	with a negative errno code and NULL is returned. The function checks
423  *	for both invalid handles and passing a handle which is not a socket.
424  *
425  *	On a success the socket object pointer is returned.
426  */
427 
428 struct socket *sockfd_lookup(int fd, int *err)
429 {
430 	struct file *file;
431 	struct inode *inode;
432 	struct socket *sock;
433 
434 	if (!(file = fget(fd)))
435 	{
436 		*err = -EBADF;
437 		return NULL;
438 	}
439 
440 	if (file->f_op == &socket_file_ops)
441 		return file->private_data;	/* set in sock_map_fd */
442 
443 	inode = file->f_dentry->d_inode;
444 	if (!S_ISSOCK(inode->i_mode)) {
445 		*err = -ENOTSOCK;
446 		fput(file);
447 		return NULL;
448 	}
449 
450 	sock = SOCKET_I(inode);
451 	if (sock->file != file) {
452 		printk(KERN_ERR "socki_lookup: socket file changed!\n");
453 		sock->file = file;
454 	}
455 	return sock;
456 }
457 
458 /**
459  *	sock_alloc	-	allocate a socket
460  *
461  *	Allocate a new inode and socket object. The two are bound together
462  *	and initialised. The socket is then returned. If we are out of inodes
463  *	NULL is returned.
464  */
465 
466 static struct socket *sock_alloc(void)
467 {
468 	struct inode * inode;
469 	struct socket * sock;
470 
471 	inode = new_inode(sock_mnt->mnt_sb);
472 	if (!inode)
473 		return NULL;
474 
475 	sock = SOCKET_I(inode);
476 
477 	inode->i_mode = S_IFSOCK|S_IRWXUGO;
478 	inode->i_uid = current->fsuid;
479 	inode->i_gid = current->fsgid;
480 
481 	get_cpu_var(sockets_in_use)++;
482 	put_cpu_var(sockets_in_use);
483 	return sock;
484 }
485 
486 /*
487  *	In theory you can't get an open on this inode, but /proc provides
488  *	a back door. Remember to keep it shut otherwise you'll let the
489  *	creepy crawlies in.
490  */
491 
492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
493 {
494 	return -ENXIO;
495 }
496 
497 struct file_operations bad_sock_fops = {
498 	.owner = THIS_MODULE,
499 	.open = sock_no_open,
500 };
501 
502 /**
503  *	sock_release	-	close a socket
504  *	@sock: socket to close
505  *
506  *	The socket is released from the protocol stack if it has a release
507  *	callback, and the inode is then released if the socket is bound to
508  *	an inode not a file.
509  */
510 
511 void sock_release(struct socket *sock)
512 {
513 	if (sock->ops) {
514 		struct module *owner = sock->ops->owner;
515 
516 		sock->ops->release(sock);
517 		sock->ops = NULL;
518 		module_put(owner);
519 	}
520 
521 	if (sock->fasync_list)
522 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
523 
524 	get_cpu_var(sockets_in_use)--;
525 	put_cpu_var(sockets_in_use);
526 	if (!sock->file) {
527 		iput(SOCK_INODE(sock));
528 		return;
529 	}
530 	sock->file=NULL;
531 }
532 
533 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
534 				 struct msghdr *msg, size_t size)
535 {
536 	struct sock_iocb *si = kiocb_to_siocb(iocb);
537 	int err;
538 
539 	si->sock = sock;
540 	si->scm = NULL;
541 	si->msg = msg;
542 	si->size = size;
543 
544 	err = security_socket_sendmsg(sock, msg, size);
545 	if (err)
546 		return err;
547 
548 	return sock->ops->sendmsg(iocb, sock, msg, size);
549 }
550 
551 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
552 {
553 	struct kiocb iocb;
554 	struct sock_iocb siocb;
555 	int ret;
556 
557 	init_sync_kiocb(&iocb, NULL);
558 	iocb.private = &siocb;
559 	ret = __sock_sendmsg(&iocb, sock, msg, size);
560 	if (-EIOCBQUEUED == ret)
561 		ret = wait_on_sync_kiocb(&iocb);
562 	return ret;
563 }
564 
565 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
566 		   struct kvec *vec, size_t num, size_t size)
567 {
568 	mm_segment_t oldfs = get_fs();
569 	int result;
570 
571 	set_fs(KERNEL_DS);
572 	/*
573 	 * the following is safe, since for compiler definitions of kvec and
574 	 * iovec are identical, yielding the same in-core layout and alignment
575 	 */
576 	msg->msg_iov = (struct iovec *)vec,
577 	msg->msg_iovlen = num;
578 	result = sock_sendmsg(sock, msg, size);
579 	set_fs(oldfs);
580 	return result;
581 }
582 
583 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
584 				 struct msghdr *msg, size_t size, int flags)
585 {
586 	int err;
587 	struct sock_iocb *si = kiocb_to_siocb(iocb);
588 
589 	si->sock = sock;
590 	si->scm = NULL;
591 	si->msg = msg;
592 	si->size = size;
593 	si->flags = flags;
594 
595 	err = security_socket_recvmsg(sock, msg, size, flags);
596 	if (err)
597 		return err;
598 
599 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
600 }
601 
602 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
603 		 size_t size, int flags)
604 {
605 	struct kiocb iocb;
606 	struct sock_iocb siocb;
607 	int ret;
608 
609         init_sync_kiocb(&iocb, NULL);
610 	iocb.private = &siocb;
611 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
612 	if (-EIOCBQUEUED == ret)
613 		ret = wait_on_sync_kiocb(&iocb);
614 	return ret;
615 }
616 
617 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
618 		   struct kvec *vec, size_t num,
619 		   size_t size, int flags)
620 {
621 	mm_segment_t oldfs = get_fs();
622 	int result;
623 
624 	set_fs(KERNEL_DS);
625 	/*
626 	 * the following is safe, since for compiler definitions of kvec and
627 	 * iovec are identical, yielding the same in-core layout and alignment
628 	 */
629 	msg->msg_iov = (struct iovec *)vec,
630 	msg->msg_iovlen = num;
631 	result = sock_recvmsg(sock, msg, size, flags);
632 	set_fs(oldfs);
633 	return result;
634 }
635 
636 static void sock_aio_dtor(struct kiocb *iocb)
637 {
638 	kfree(iocb->private);
639 }
640 
641 /*
642  *	Read data from a socket. ubuf is a user mode pointer. We make sure the user
643  *	area ubuf...ubuf+size-1 is writable before asking the protocol.
644  */
645 
646 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
647 			 size_t size, loff_t pos)
648 {
649 	struct sock_iocb *x, siocb;
650 	struct socket *sock;
651 	int flags;
652 
653 	if (pos != 0)
654 		return -ESPIPE;
655 	if (size==0)		/* Match SYS5 behaviour */
656 		return 0;
657 
658 	if (is_sync_kiocb(iocb))
659 		x = &siocb;
660 	else {
661 		x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
662 		if (!x)
663 			return -ENOMEM;
664 		iocb->ki_dtor = sock_aio_dtor;
665 	}
666 	iocb->private = x;
667 	x->kiocb = iocb;
668 	sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode);
669 
670 	x->async_msg.msg_name = NULL;
671 	x->async_msg.msg_namelen = 0;
672 	x->async_msg.msg_iov = &x->async_iov;
673 	x->async_msg.msg_iovlen = 1;
674 	x->async_msg.msg_control = NULL;
675 	x->async_msg.msg_controllen = 0;
676 	x->async_iov.iov_base = ubuf;
677 	x->async_iov.iov_len = size;
678 	flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
679 
680 	return __sock_recvmsg(iocb, sock, &x->async_msg, size, flags);
681 }
682 
683 
684 /*
685  *	Write data to a socket. We verify that the user area ubuf..ubuf+size-1
686  *	is readable by the user process.
687  */
688 
689 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
690 			  size_t size, loff_t pos)
691 {
692 	struct sock_iocb *x, siocb;
693 	struct socket *sock;
694 
695 	if (pos != 0)
696 		return -ESPIPE;
697 	if(size==0)		/* Match SYS5 behaviour */
698 		return 0;
699 
700 	if (is_sync_kiocb(iocb))
701 		x = &siocb;
702 	else {
703 		x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
704 		if (!x)
705 			return -ENOMEM;
706 		iocb->ki_dtor = sock_aio_dtor;
707 	}
708 	iocb->private = x;
709 	x->kiocb = iocb;
710 	sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode);
711 
712 	x->async_msg.msg_name = NULL;
713 	x->async_msg.msg_namelen = 0;
714 	x->async_msg.msg_iov = &x->async_iov;
715 	x->async_msg.msg_iovlen = 1;
716 	x->async_msg.msg_control = NULL;
717 	x->async_msg.msg_controllen = 0;
718 	x->async_msg.msg_flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
719 	if (sock->type == SOCK_SEQPACKET)
720 		x->async_msg.msg_flags |= MSG_EOR;
721 	x->async_iov.iov_base = (void __user *)ubuf;
722 	x->async_iov.iov_len = size;
723 
724 	return __sock_sendmsg(iocb, sock, &x->async_msg, size);
725 }
726 
727 ssize_t sock_sendpage(struct file *file, struct page *page,
728 		      int offset, size_t size, loff_t *ppos, int more)
729 {
730 	struct socket *sock;
731 	int flags;
732 
733 	sock = SOCKET_I(file->f_dentry->d_inode);
734 
735 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
736 	if (more)
737 		flags |= MSG_MORE;
738 
739 	return sock->ops->sendpage(sock, page, offset, size, flags);
740 }
741 
742 static int sock_readv_writev(int type, struct inode * inode,
743 			     struct file * file, const struct iovec * iov,
744 			     long count, size_t size)
745 {
746 	struct msghdr msg;
747 	struct socket *sock;
748 
749 	sock = SOCKET_I(inode);
750 
751 	msg.msg_name = NULL;
752 	msg.msg_namelen = 0;
753 	msg.msg_control = NULL;
754 	msg.msg_controllen = 0;
755 	msg.msg_iov = (struct iovec *) iov;
756 	msg.msg_iovlen = count;
757 	msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
758 
759 	/* read() does a VERIFY_WRITE */
760 	if (type == VERIFY_WRITE)
761 		return sock_recvmsg(sock, &msg, size, msg.msg_flags);
762 
763 	if (sock->type == SOCK_SEQPACKET)
764 		msg.msg_flags |= MSG_EOR;
765 
766 	return sock_sendmsg(sock, &msg, size);
767 }
768 
769 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
770 			  unsigned long count, loff_t *ppos)
771 {
772 	size_t tot_len = 0;
773 	int i;
774         for (i = 0 ; i < count ; i++)
775                 tot_len += vector[i].iov_len;
776 	return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode,
777 				 file, vector, count, tot_len);
778 }
779 
780 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
781 			   unsigned long count, loff_t *ppos)
782 {
783 	size_t tot_len = 0;
784 	int i;
785         for (i = 0 ; i < count ; i++)
786                 tot_len += vector[i].iov_len;
787 	return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode,
788 				 file, vector, count, tot_len);
789 }
790 
791 
792 /*
793  * Atomic setting of ioctl hooks to avoid race
794  * with module unload.
795  */
796 
797 static DECLARE_MUTEX(br_ioctl_mutex);
798 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
799 
800 void brioctl_set(int (*hook)(unsigned int, void __user *))
801 {
802 	down(&br_ioctl_mutex);
803 	br_ioctl_hook = hook;
804 	up(&br_ioctl_mutex);
805 }
806 EXPORT_SYMBOL(brioctl_set);
807 
808 static DECLARE_MUTEX(vlan_ioctl_mutex);
809 static int (*vlan_ioctl_hook)(void __user *arg);
810 
811 void vlan_ioctl_set(int (*hook)(void __user *))
812 {
813 	down(&vlan_ioctl_mutex);
814 	vlan_ioctl_hook = hook;
815 	up(&vlan_ioctl_mutex);
816 }
817 EXPORT_SYMBOL(vlan_ioctl_set);
818 
819 static DECLARE_MUTEX(dlci_ioctl_mutex);
820 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
821 
822 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
823 {
824 	down(&dlci_ioctl_mutex);
825 	dlci_ioctl_hook = hook;
826 	up(&dlci_ioctl_mutex);
827 }
828 EXPORT_SYMBOL(dlci_ioctl_set);
829 
830 /*
831  *	With an ioctl, arg may well be a user mode pointer, but we don't know
832  *	what to do with it - that's up to the protocol still.
833  */
834 
835 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
836 {
837 	struct socket *sock;
838 	void __user *argp = (void __user *)arg;
839 	int pid, err;
840 
841 	sock = SOCKET_I(file->f_dentry->d_inode);
842 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
843 		err = dev_ioctl(cmd, argp);
844 	} else
845 #ifdef WIRELESS_EXT
846 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
847 		err = dev_ioctl(cmd, argp);
848 	} else
849 #endif	/* WIRELESS_EXT */
850 	switch (cmd) {
851 		case FIOSETOWN:
852 		case SIOCSPGRP:
853 			err = -EFAULT;
854 			if (get_user(pid, (int __user *)argp))
855 				break;
856 			err = f_setown(sock->file, pid, 1);
857 			break;
858 		case FIOGETOWN:
859 		case SIOCGPGRP:
860 			err = put_user(sock->file->f_owner.pid, (int __user *)argp);
861 			break;
862 		case SIOCGIFBR:
863 		case SIOCSIFBR:
864 		case SIOCBRADDBR:
865 		case SIOCBRDELBR:
866 			err = -ENOPKG;
867 			if (!br_ioctl_hook)
868 				request_module("bridge");
869 
870 			down(&br_ioctl_mutex);
871 			if (br_ioctl_hook)
872 				err = br_ioctl_hook(cmd, argp);
873 			up(&br_ioctl_mutex);
874 			break;
875 		case SIOCGIFVLAN:
876 		case SIOCSIFVLAN:
877 			err = -ENOPKG;
878 			if (!vlan_ioctl_hook)
879 				request_module("8021q");
880 
881 			down(&vlan_ioctl_mutex);
882 			if (vlan_ioctl_hook)
883 				err = vlan_ioctl_hook(argp);
884 			up(&vlan_ioctl_mutex);
885 			break;
886 		case SIOCGIFDIVERT:
887 		case SIOCSIFDIVERT:
888 		/* Convert this to call through a hook */
889 			err = divert_ioctl(cmd, argp);
890 			break;
891 		case SIOCADDDLCI:
892 		case SIOCDELDLCI:
893 			err = -ENOPKG;
894 			if (!dlci_ioctl_hook)
895 				request_module("dlci");
896 
897 			if (dlci_ioctl_hook) {
898 				down(&dlci_ioctl_mutex);
899 				err = dlci_ioctl_hook(cmd, argp);
900 				up(&dlci_ioctl_mutex);
901 			}
902 			break;
903 		default:
904 			err = sock->ops->ioctl(sock, cmd, arg);
905 			break;
906 	}
907 	return err;
908 }
909 
910 int sock_create_lite(int family, int type, int protocol, struct socket **res)
911 {
912 	int err;
913 	struct socket *sock = NULL;
914 
915 	err = security_socket_create(family, type, protocol, 1);
916 	if (err)
917 		goto out;
918 
919 	sock = sock_alloc();
920 	if (!sock) {
921 		err = -ENOMEM;
922 		goto out;
923 	}
924 
925 	security_socket_post_create(sock, family, type, protocol, 1);
926 	sock->type = type;
927 out:
928 	*res = sock;
929 	return err;
930 }
931 
932 /* No kernel lock held - perfect */
933 static unsigned int sock_poll(struct file *file, poll_table * wait)
934 {
935 	struct socket *sock;
936 
937 	/*
938 	 *	We can't return errors to poll, so it's either yes or no.
939 	 */
940 	sock = SOCKET_I(file->f_dentry->d_inode);
941 	return sock->ops->poll(file, sock, wait);
942 }
943 
944 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
945 {
946 	struct socket *sock = SOCKET_I(file->f_dentry->d_inode);
947 
948 	return sock->ops->mmap(file, sock, vma);
949 }
950 
951 int sock_close(struct inode *inode, struct file *filp)
952 {
953 	/*
954 	 *	It was possible the inode is NULL we were
955 	 *	closing an unfinished socket.
956 	 */
957 
958 	if (!inode)
959 	{
960 		printk(KERN_DEBUG "sock_close: NULL inode\n");
961 		return 0;
962 	}
963 	sock_fasync(-1, filp, 0);
964 	sock_release(SOCKET_I(inode));
965 	return 0;
966 }
967 
968 /*
969  *	Update the socket async list
970  *
971  *	Fasync_list locking strategy.
972  *
973  *	1. fasync_list is modified only under process context socket lock
974  *	   i.e. under semaphore.
975  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
976  *	   or under socket lock.
977  *	3. fasync_list can be used from softirq context, so that
978  *	   modification under socket lock have to be enhanced with
979  *	   write_lock_bh(&sk->sk_callback_lock).
980  *							--ANK (990710)
981  */
982 
983 static int sock_fasync(int fd, struct file *filp, int on)
984 {
985 	struct fasync_struct *fa, *fna=NULL, **prev;
986 	struct socket *sock;
987 	struct sock *sk;
988 
989 	if (on)
990 	{
991 		fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
992 		if(fna==NULL)
993 			return -ENOMEM;
994 	}
995 
996 	sock = SOCKET_I(filp->f_dentry->d_inode);
997 
998 	if ((sk=sock->sk) == NULL) {
999 		kfree(fna);
1000 		return -EINVAL;
1001 	}
1002 
1003 	lock_sock(sk);
1004 
1005 	prev=&(sock->fasync_list);
1006 
1007 	for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1008 		if (fa->fa_file==filp)
1009 			break;
1010 
1011 	if(on)
1012 	{
1013 		if(fa!=NULL)
1014 		{
1015 			write_lock_bh(&sk->sk_callback_lock);
1016 			fa->fa_fd=fd;
1017 			write_unlock_bh(&sk->sk_callback_lock);
1018 
1019 			kfree(fna);
1020 			goto out;
1021 		}
1022 		fna->fa_file=filp;
1023 		fna->fa_fd=fd;
1024 		fna->magic=FASYNC_MAGIC;
1025 		fna->fa_next=sock->fasync_list;
1026 		write_lock_bh(&sk->sk_callback_lock);
1027 		sock->fasync_list=fna;
1028 		write_unlock_bh(&sk->sk_callback_lock);
1029 	}
1030 	else
1031 	{
1032 		if (fa!=NULL)
1033 		{
1034 			write_lock_bh(&sk->sk_callback_lock);
1035 			*prev=fa->fa_next;
1036 			write_unlock_bh(&sk->sk_callback_lock);
1037 			kfree(fa);
1038 		}
1039 	}
1040 
1041 out:
1042 	release_sock(sock->sk);
1043 	return 0;
1044 }
1045 
1046 /* This function may be called only under socket lock or callback_lock */
1047 
1048 int sock_wake_async(struct socket *sock, int how, int band)
1049 {
1050 	if (!sock || !sock->fasync_list)
1051 		return -1;
1052 	switch (how)
1053 	{
1054 	case 1:
1055 
1056 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1057 			break;
1058 		goto call_kill;
1059 	case 2:
1060 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1061 			break;
1062 		/* fall through */
1063 	case 0:
1064 	call_kill:
1065 		__kill_fasync(sock->fasync_list, SIGIO, band);
1066 		break;
1067 	case 3:
1068 		__kill_fasync(sock->fasync_list, SIGURG, band);
1069 	}
1070 	return 0;
1071 }
1072 
1073 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1074 {
1075 	int err;
1076 	struct socket *sock;
1077 
1078 	/*
1079 	 *	Check protocol is in range
1080 	 */
1081 	if (family < 0 || family >= NPROTO)
1082 		return -EAFNOSUPPORT;
1083 	if (type < 0 || type >= SOCK_MAX)
1084 		return -EINVAL;
1085 
1086 	/* Compatibility.
1087 
1088 	   This uglymoron is moved from INET layer to here to avoid
1089 	   deadlock in module load.
1090 	 */
1091 	if (family == PF_INET && type == SOCK_PACKET) {
1092 		static int warned;
1093 		if (!warned) {
1094 			warned = 1;
1095 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1096 		}
1097 		family = PF_PACKET;
1098 	}
1099 
1100 	err = security_socket_create(family, type, protocol, kern);
1101 	if (err)
1102 		return err;
1103 
1104 #if defined(CONFIG_KMOD)
1105 	/* Attempt to load a protocol module if the find failed.
1106 	 *
1107 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1108 	 * requested real, full-featured networking support upon configuration.
1109 	 * Otherwise module support will break!
1110 	 */
1111 	if (net_families[family]==NULL)
1112 	{
1113 		request_module("net-pf-%d",family);
1114 	}
1115 #endif
1116 
1117 	net_family_read_lock();
1118 	if (net_families[family] == NULL) {
1119 		err = -EAFNOSUPPORT;
1120 		goto out;
1121 	}
1122 
1123 /*
1124  *	Allocate the socket and allow the family to set things up. if
1125  *	the protocol is 0, the family is instructed to select an appropriate
1126  *	default.
1127  */
1128 
1129 	if (!(sock = sock_alloc())) {
1130 		printk(KERN_WARNING "socket: no more sockets\n");
1131 		err = -ENFILE;		/* Not exactly a match, but its the
1132 					   closest posix thing */
1133 		goto out;
1134 	}
1135 
1136 	sock->type  = type;
1137 
1138 	/*
1139 	 * We will call the ->create function, that possibly is in a loadable
1140 	 * module, so we have to bump that loadable module refcnt first.
1141 	 */
1142 	err = -EAFNOSUPPORT;
1143 	if (!try_module_get(net_families[family]->owner))
1144 		goto out_release;
1145 
1146 	if ((err = net_families[family]->create(sock, protocol)) < 0)
1147 		goto out_module_put;
1148 	/*
1149 	 * Now to bump the refcnt of the [loadable] module that owns this
1150 	 * socket at sock_release time we decrement its refcnt.
1151 	 */
1152 	if (!try_module_get(sock->ops->owner)) {
1153 		sock->ops = NULL;
1154 		goto out_module_put;
1155 	}
1156 	/*
1157 	 * Now that we're done with the ->create function, the [loadable]
1158 	 * module can have its refcnt decremented
1159 	 */
1160 	module_put(net_families[family]->owner);
1161 	*res = sock;
1162 	security_socket_post_create(sock, family, type, protocol, kern);
1163 
1164 out:
1165 	net_family_read_unlock();
1166 	return err;
1167 out_module_put:
1168 	module_put(net_families[family]->owner);
1169 out_release:
1170 	sock_release(sock);
1171 	goto out;
1172 }
1173 
1174 int sock_create(int family, int type, int protocol, struct socket **res)
1175 {
1176 	return __sock_create(family, type, protocol, res, 0);
1177 }
1178 
1179 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1180 {
1181 	return __sock_create(family, type, protocol, res, 1);
1182 }
1183 
1184 asmlinkage long sys_socket(int family, int type, int protocol)
1185 {
1186 	int retval;
1187 	struct socket *sock;
1188 
1189 	retval = sock_create(family, type, protocol, &sock);
1190 	if (retval < 0)
1191 		goto out;
1192 
1193 	retval = sock_map_fd(sock);
1194 	if (retval < 0)
1195 		goto out_release;
1196 
1197 out:
1198 	/* It may be already another descriptor 8) Not kernel problem. */
1199 	return retval;
1200 
1201 out_release:
1202 	sock_release(sock);
1203 	return retval;
1204 }
1205 
1206 /*
1207  *	Create a pair of connected sockets.
1208  */
1209 
1210 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1211 {
1212 	struct socket *sock1, *sock2;
1213 	int fd1, fd2, err;
1214 
1215 	/*
1216 	 * Obtain the first socket and check if the underlying protocol
1217 	 * supports the socketpair call.
1218 	 */
1219 
1220 	err = sock_create(family, type, protocol, &sock1);
1221 	if (err < 0)
1222 		goto out;
1223 
1224 	err = sock_create(family, type, protocol, &sock2);
1225 	if (err < 0)
1226 		goto out_release_1;
1227 
1228 	err = sock1->ops->socketpair(sock1, sock2);
1229 	if (err < 0)
1230 		goto out_release_both;
1231 
1232 	fd1 = fd2 = -1;
1233 
1234 	err = sock_map_fd(sock1);
1235 	if (err < 0)
1236 		goto out_release_both;
1237 	fd1 = err;
1238 
1239 	err = sock_map_fd(sock2);
1240 	if (err < 0)
1241 		goto out_close_1;
1242 	fd2 = err;
1243 
1244 	/* fd1 and fd2 may be already another descriptors.
1245 	 * Not kernel problem.
1246 	 */
1247 
1248 	err = put_user(fd1, &usockvec[0]);
1249 	if (!err)
1250 		err = put_user(fd2, &usockvec[1]);
1251 	if (!err)
1252 		return 0;
1253 
1254 	sys_close(fd2);
1255 	sys_close(fd1);
1256 	return err;
1257 
1258 out_close_1:
1259         sock_release(sock2);
1260 	sys_close(fd1);
1261 	return err;
1262 
1263 out_release_both:
1264         sock_release(sock2);
1265 out_release_1:
1266         sock_release(sock1);
1267 out:
1268 	return err;
1269 }
1270 
1271 
1272 /*
1273  *	Bind a name to a socket. Nothing much to do here since it's
1274  *	the protocol's responsibility to handle the local address.
1275  *
1276  *	We move the socket address to kernel space before we call
1277  *	the protocol layer (having also checked the address is ok).
1278  */
1279 
1280 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1281 {
1282 	struct socket *sock;
1283 	char address[MAX_SOCK_ADDR];
1284 	int err;
1285 
1286 	if((sock = sockfd_lookup(fd,&err))!=NULL)
1287 	{
1288 		if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1289 			err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1290 			if (err) {
1291 				sockfd_put(sock);
1292 				return err;
1293 			}
1294 			err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1295 		}
1296 		sockfd_put(sock);
1297 	}
1298 	return err;
1299 }
1300 
1301 
1302 /*
1303  *	Perform a listen. Basically, we allow the protocol to do anything
1304  *	necessary for a listen, and if that works, we mark the socket as
1305  *	ready for listening.
1306  */
1307 
1308 int sysctl_somaxconn = SOMAXCONN;
1309 
1310 asmlinkage long sys_listen(int fd, int backlog)
1311 {
1312 	struct socket *sock;
1313 	int err;
1314 
1315 	if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1316 		if ((unsigned) backlog > sysctl_somaxconn)
1317 			backlog = sysctl_somaxconn;
1318 
1319 		err = security_socket_listen(sock, backlog);
1320 		if (err) {
1321 			sockfd_put(sock);
1322 			return err;
1323 		}
1324 
1325 		err=sock->ops->listen(sock, backlog);
1326 		sockfd_put(sock);
1327 	}
1328 	return err;
1329 }
1330 
1331 
1332 /*
1333  *	For accept, we attempt to create a new socket, set up the link
1334  *	with the client, wake up the client, then return the new
1335  *	connected fd. We collect the address of the connector in kernel
1336  *	space and move it to user at the very end. This is unclean because
1337  *	we open the socket then return an error.
1338  *
1339  *	1003.1g adds the ability to recvmsg() to query connection pending
1340  *	status to recvmsg. We need to add that support in a way thats
1341  *	clean when we restucture accept also.
1342  */
1343 
1344 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1345 {
1346 	struct socket *sock, *newsock;
1347 	int err, len;
1348 	char address[MAX_SOCK_ADDR];
1349 
1350 	sock = sockfd_lookup(fd, &err);
1351 	if (!sock)
1352 		goto out;
1353 
1354 	err = -ENFILE;
1355 	if (!(newsock = sock_alloc()))
1356 		goto out_put;
1357 
1358 	newsock->type = sock->type;
1359 	newsock->ops = sock->ops;
1360 
1361 	err = security_socket_accept(sock, newsock);
1362 	if (err)
1363 		goto out_release;
1364 
1365 	/*
1366 	 * We don't need try_module_get here, as the listening socket (sock)
1367 	 * has the protocol module (sock->ops->owner) held.
1368 	 */
1369 	__module_get(newsock->ops->owner);
1370 
1371 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1372 	if (err < 0)
1373 		goto out_release;
1374 
1375 	if (upeer_sockaddr) {
1376 		if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1377 			err = -ECONNABORTED;
1378 			goto out_release;
1379 		}
1380 		err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1381 		if (err < 0)
1382 			goto out_release;
1383 	}
1384 
1385 	/* File flags are not inherited via accept() unlike another OSes. */
1386 
1387 	if ((err = sock_map_fd(newsock)) < 0)
1388 		goto out_release;
1389 
1390 	security_socket_post_accept(sock, newsock);
1391 
1392 out_put:
1393 	sockfd_put(sock);
1394 out:
1395 	return err;
1396 out_release:
1397 	sock_release(newsock);
1398 	goto out_put;
1399 }
1400 
1401 
1402 /*
1403  *	Attempt to connect to a socket with the server address.  The address
1404  *	is in user space so we verify it is OK and move it to kernel space.
1405  *
1406  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1407  *	break bindings
1408  *
1409  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1410  *	other SEQPACKET protocols that take time to connect() as it doesn't
1411  *	include the -EINPROGRESS status for such sockets.
1412  */
1413 
1414 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1415 {
1416 	struct socket *sock;
1417 	char address[MAX_SOCK_ADDR];
1418 	int err;
1419 
1420 	sock = sockfd_lookup(fd, &err);
1421 	if (!sock)
1422 		goto out;
1423 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1424 	if (err < 0)
1425 		goto out_put;
1426 
1427 	err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1428 	if (err)
1429 		goto out_put;
1430 
1431 	err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1432 				 sock->file->f_flags);
1433 out_put:
1434 	sockfd_put(sock);
1435 out:
1436 	return err;
1437 }
1438 
1439 /*
1440  *	Get the local address ('name') of a socket object. Move the obtained
1441  *	name to user space.
1442  */
1443 
1444 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1445 {
1446 	struct socket *sock;
1447 	char address[MAX_SOCK_ADDR];
1448 	int len, err;
1449 
1450 	sock = sockfd_lookup(fd, &err);
1451 	if (!sock)
1452 		goto out;
1453 
1454 	err = security_socket_getsockname(sock);
1455 	if (err)
1456 		goto out_put;
1457 
1458 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1459 	if (err)
1460 		goto out_put;
1461 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1462 
1463 out_put:
1464 	sockfd_put(sock);
1465 out:
1466 	return err;
1467 }
1468 
1469 /*
1470  *	Get the remote address ('name') of a socket object. Move the obtained
1471  *	name to user space.
1472  */
1473 
1474 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1475 {
1476 	struct socket *sock;
1477 	char address[MAX_SOCK_ADDR];
1478 	int len, err;
1479 
1480 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1481 	{
1482 		err = security_socket_getpeername(sock);
1483 		if (err) {
1484 			sockfd_put(sock);
1485 			return err;
1486 		}
1487 
1488 		err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1489 		if (!err)
1490 			err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1491 		sockfd_put(sock);
1492 	}
1493 	return err;
1494 }
1495 
1496 /*
1497  *	Send a datagram to a given address. We move the address into kernel
1498  *	space and check the user space data area is readable before invoking
1499  *	the protocol.
1500  */
1501 
1502 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1503 			   struct sockaddr __user *addr, int addr_len)
1504 {
1505 	struct socket *sock;
1506 	char address[MAX_SOCK_ADDR];
1507 	int err;
1508 	struct msghdr msg;
1509 	struct iovec iov;
1510 
1511 	sock = sockfd_lookup(fd, &err);
1512 	if (!sock)
1513 		goto out;
1514 	iov.iov_base=buff;
1515 	iov.iov_len=len;
1516 	msg.msg_name=NULL;
1517 	msg.msg_iov=&iov;
1518 	msg.msg_iovlen=1;
1519 	msg.msg_control=NULL;
1520 	msg.msg_controllen=0;
1521 	msg.msg_namelen=0;
1522 	if(addr)
1523 	{
1524 		err = move_addr_to_kernel(addr, addr_len, address);
1525 		if (err < 0)
1526 			goto out_put;
1527 		msg.msg_name=address;
1528 		msg.msg_namelen=addr_len;
1529 	}
1530 	if (sock->file->f_flags & O_NONBLOCK)
1531 		flags |= MSG_DONTWAIT;
1532 	msg.msg_flags = flags;
1533 	err = sock_sendmsg(sock, &msg, len);
1534 
1535 out_put:
1536 	sockfd_put(sock);
1537 out:
1538 	return err;
1539 }
1540 
1541 /*
1542  *	Send a datagram down a socket.
1543  */
1544 
1545 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1546 {
1547 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1548 }
1549 
1550 /*
1551  *	Receive a frame from the socket and optionally record the address of the
1552  *	sender. We verify the buffers are writable and if needed move the
1553  *	sender address from kernel to user space.
1554  */
1555 
1556 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1557 			     struct sockaddr __user *addr, int __user *addr_len)
1558 {
1559 	struct socket *sock;
1560 	struct iovec iov;
1561 	struct msghdr msg;
1562 	char address[MAX_SOCK_ADDR];
1563 	int err,err2;
1564 
1565 	sock = sockfd_lookup(fd, &err);
1566 	if (!sock)
1567 		goto out;
1568 
1569 	msg.msg_control=NULL;
1570 	msg.msg_controllen=0;
1571 	msg.msg_iovlen=1;
1572 	msg.msg_iov=&iov;
1573 	iov.iov_len=size;
1574 	iov.iov_base=ubuf;
1575 	msg.msg_name=address;
1576 	msg.msg_namelen=MAX_SOCK_ADDR;
1577 	if (sock->file->f_flags & O_NONBLOCK)
1578 		flags |= MSG_DONTWAIT;
1579 	err=sock_recvmsg(sock, &msg, size, flags);
1580 
1581 	if(err >= 0 && addr != NULL)
1582 	{
1583 		err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1584 		if(err2<0)
1585 			err=err2;
1586 	}
1587 	sockfd_put(sock);
1588 out:
1589 	return err;
1590 }
1591 
1592 /*
1593  *	Receive a datagram from a socket.
1594  */
1595 
1596 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1597 {
1598 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1599 }
1600 
1601 /*
1602  *	Set a socket option. Because we don't know the option lengths we have
1603  *	to pass the user mode parameter for the protocols to sort out.
1604  */
1605 
1606 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1607 {
1608 	int err;
1609 	struct socket *sock;
1610 
1611 	if (optlen < 0)
1612 		return -EINVAL;
1613 
1614 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1615 	{
1616 		err = security_socket_setsockopt(sock,level,optname);
1617 		if (err) {
1618 			sockfd_put(sock);
1619 			return err;
1620 		}
1621 
1622 		if (level == SOL_SOCKET)
1623 			err=sock_setsockopt(sock,level,optname,optval,optlen);
1624 		else
1625 			err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1626 		sockfd_put(sock);
1627 	}
1628 	return err;
1629 }
1630 
1631 /*
1632  *	Get a socket option. Because we don't know the option lengths we have
1633  *	to pass a user mode parameter for the protocols to sort out.
1634  */
1635 
1636 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1637 {
1638 	int err;
1639 	struct socket *sock;
1640 
1641 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1642 	{
1643 		err = security_socket_getsockopt(sock, level,
1644 							   optname);
1645 		if (err) {
1646 			sockfd_put(sock);
1647 			return err;
1648 		}
1649 
1650 		if (level == SOL_SOCKET)
1651 			err=sock_getsockopt(sock,level,optname,optval,optlen);
1652 		else
1653 			err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1654 		sockfd_put(sock);
1655 	}
1656 	return err;
1657 }
1658 
1659 
1660 /*
1661  *	Shutdown a socket.
1662  */
1663 
1664 asmlinkage long sys_shutdown(int fd, int how)
1665 {
1666 	int err;
1667 	struct socket *sock;
1668 
1669 	if ((sock = sockfd_lookup(fd, &err))!=NULL)
1670 	{
1671 		err = security_socket_shutdown(sock, how);
1672 		if (err) {
1673 			sockfd_put(sock);
1674 			return err;
1675 		}
1676 
1677 		err=sock->ops->shutdown(sock, how);
1678 		sockfd_put(sock);
1679 	}
1680 	return err;
1681 }
1682 
1683 /* A couple of helpful macros for getting the address of the 32/64 bit
1684  * fields which are the same type (int / unsigned) on our platforms.
1685  */
1686 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1687 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1688 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1689 
1690 
1691 /*
1692  *	BSD sendmsg interface
1693  */
1694 
1695 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1696 {
1697 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1698 	struct socket *sock;
1699 	char address[MAX_SOCK_ADDR];
1700 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1701 	unsigned char ctl[sizeof(struct cmsghdr) + 20];	/* 20 is size of ipv6_pktinfo */
1702 	unsigned char *ctl_buf = ctl;
1703 	struct msghdr msg_sys;
1704 	int err, ctl_len, iov_size, total_len;
1705 
1706 	err = -EFAULT;
1707 	if (MSG_CMSG_COMPAT & flags) {
1708 		if (get_compat_msghdr(&msg_sys, msg_compat))
1709 			return -EFAULT;
1710 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1711 		return -EFAULT;
1712 
1713 	sock = sockfd_lookup(fd, &err);
1714 	if (!sock)
1715 		goto out;
1716 
1717 	/* do not move before msg_sys is valid */
1718 	err = -EMSGSIZE;
1719 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1720 		goto out_put;
1721 
1722 	/* Check whether to allocate the iovec area*/
1723 	err = -ENOMEM;
1724 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1725 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1726 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1727 		if (!iov)
1728 			goto out_put;
1729 	}
1730 
1731 	/* This will also move the address data into kernel space */
1732 	if (MSG_CMSG_COMPAT & flags) {
1733 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1734 	} else
1735 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1736 	if (err < 0)
1737 		goto out_freeiov;
1738 	total_len = err;
1739 
1740 	err = -ENOBUFS;
1741 
1742 	if (msg_sys.msg_controllen > INT_MAX)
1743 		goto out_freeiov;
1744 	ctl_len = msg_sys.msg_controllen;
1745 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1746 		err = cmsghdr_from_user_compat_to_kern(&msg_sys, ctl, sizeof(ctl));
1747 		if (err)
1748 			goto out_freeiov;
1749 		ctl_buf = msg_sys.msg_control;
1750 	} else if (ctl_len) {
1751 		if (ctl_len > sizeof(ctl))
1752 		{
1753 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1754 			if (ctl_buf == NULL)
1755 				goto out_freeiov;
1756 		}
1757 		err = -EFAULT;
1758 		/*
1759 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1760 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1761 		 * checking falls down on this.
1762 		 */
1763 		if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1764 			goto out_freectl;
1765 		msg_sys.msg_control = ctl_buf;
1766 	}
1767 	msg_sys.msg_flags = flags;
1768 
1769 	if (sock->file->f_flags & O_NONBLOCK)
1770 		msg_sys.msg_flags |= MSG_DONTWAIT;
1771 	err = sock_sendmsg(sock, &msg_sys, total_len);
1772 
1773 out_freectl:
1774 	if (ctl_buf != ctl)
1775 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1776 out_freeiov:
1777 	if (iov != iovstack)
1778 		sock_kfree_s(sock->sk, iov, iov_size);
1779 out_put:
1780 	sockfd_put(sock);
1781 out:
1782 	return err;
1783 }
1784 
1785 /*
1786  *	BSD recvmsg interface
1787  */
1788 
1789 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1790 {
1791 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1792 	struct socket *sock;
1793 	struct iovec iovstack[UIO_FASTIOV];
1794 	struct iovec *iov=iovstack;
1795 	struct msghdr msg_sys;
1796 	unsigned long cmsg_ptr;
1797 	int err, iov_size, total_len, len;
1798 
1799 	/* kernel mode address */
1800 	char addr[MAX_SOCK_ADDR];
1801 
1802 	/* user mode address pointers */
1803 	struct sockaddr __user *uaddr;
1804 	int __user *uaddr_len;
1805 
1806 	if (MSG_CMSG_COMPAT & flags) {
1807 		if (get_compat_msghdr(&msg_sys, msg_compat))
1808 			return -EFAULT;
1809 	} else
1810 		if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1811 			return -EFAULT;
1812 
1813 	sock = sockfd_lookup(fd, &err);
1814 	if (!sock)
1815 		goto out;
1816 
1817 	err = -EMSGSIZE;
1818 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1819 		goto out_put;
1820 
1821 	/* Check whether to allocate the iovec area*/
1822 	err = -ENOMEM;
1823 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1824 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1825 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1826 		if (!iov)
1827 			goto out_put;
1828 	}
1829 
1830 	/*
1831 	 *	Save the user-mode address (verify_iovec will change the
1832 	 *	kernel msghdr to use the kernel address space)
1833 	 */
1834 
1835 	uaddr = (void __user *) msg_sys.msg_name;
1836 	uaddr_len = COMPAT_NAMELEN(msg);
1837 	if (MSG_CMSG_COMPAT & flags) {
1838 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1839 	} else
1840 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1841 	if (err < 0)
1842 		goto out_freeiov;
1843 	total_len=err;
1844 
1845 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1846 	msg_sys.msg_flags = 0;
1847 	if (MSG_CMSG_COMPAT & flags)
1848 		msg_sys.msg_flags = MSG_CMSG_COMPAT;
1849 
1850 	if (sock->file->f_flags & O_NONBLOCK)
1851 		flags |= MSG_DONTWAIT;
1852 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1853 	if (err < 0)
1854 		goto out_freeiov;
1855 	len = err;
1856 
1857 	if (uaddr != NULL) {
1858 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1859 		if (err < 0)
1860 			goto out_freeiov;
1861 	}
1862 	err = __put_user(msg_sys.msg_flags, COMPAT_FLAGS(msg));
1863 	if (err)
1864 		goto out_freeiov;
1865 	if (MSG_CMSG_COMPAT & flags)
1866 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1867 				 &msg_compat->msg_controllen);
1868 	else
1869 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1870 				 &msg->msg_controllen);
1871 	if (err)
1872 		goto out_freeiov;
1873 	err = len;
1874 
1875 out_freeiov:
1876 	if (iov != iovstack)
1877 		sock_kfree_s(sock->sk, iov, iov_size);
1878 out_put:
1879 	sockfd_put(sock);
1880 out:
1881 	return err;
1882 }
1883 
1884 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1885 
1886 /* Argument list sizes for sys_socketcall */
1887 #define AL(x) ((x) * sizeof(unsigned long))
1888 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1889 				AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1890 				AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1891 #undef AL
1892 
1893 /*
1894  *	System call vectors.
1895  *
1896  *	Argument checking cleaned up. Saved 20% in size.
1897  *  This function doesn't need to set the kernel lock because
1898  *  it is set by the callees.
1899  */
1900 
1901 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1902 {
1903 	unsigned long a[6];
1904 	unsigned long a0,a1;
1905 	int err;
1906 
1907 	if(call<1||call>SYS_RECVMSG)
1908 		return -EINVAL;
1909 
1910 	/* copy_from_user should be SMP safe. */
1911 	if (copy_from_user(a, args, nargs[call]))
1912 		return -EFAULT;
1913 
1914 	err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1915 	if (err)
1916 		return err;
1917 
1918 	a0=a[0];
1919 	a1=a[1];
1920 
1921 	switch(call)
1922 	{
1923 		case SYS_SOCKET:
1924 			err = sys_socket(a0,a1,a[2]);
1925 			break;
1926 		case SYS_BIND:
1927 			err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1928 			break;
1929 		case SYS_CONNECT:
1930 			err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1931 			break;
1932 		case SYS_LISTEN:
1933 			err = sys_listen(a0,a1);
1934 			break;
1935 		case SYS_ACCEPT:
1936 			err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1937 			break;
1938 		case SYS_GETSOCKNAME:
1939 			err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1940 			break;
1941 		case SYS_GETPEERNAME:
1942 			err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
1943 			break;
1944 		case SYS_SOCKETPAIR:
1945 			err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
1946 			break;
1947 		case SYS_SEND:
1948 			err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1949 			break;
1950 		case SYS_SENDTO:
1951 			err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
1952 					 (struct sockaddr __user *)a[4], a[5]);
1953 			break;
1954 		case SYS_RECV:
1955 			err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
1956 			break;
1957 		case SYS_RECVFROM:
1958 			err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
1959 					   (struct sockaddr __user *)a[4], (int __user *)a[5]);
1960 			break;
1961 		case SYS_SHUTDOWN:
1962 			err = sys_shutdown(a0,a1);
1963 			break;
1964 		case SYS_SETSOCKOPT:
1965 			err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
1966 			break;
1967 		case SYS_GETSOCKOPT:
1968 			err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
1969 			break;
1970 		case SYS_SENDMSG:
1971 			err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
1972 			break;
1973 		case SYS_RECVMSG:
1974 			err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
1975 			break;
1976 		default:
1977 			err = -EINVAL;
1978 			break;
1979 	}
1980 	return err;
1981 }
1982 
1983 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
1984 
1985 /*
1986  *	This function is called by a protocol handler that wants to
1987  *	advertise its address family, and have it linked into the
1988  *	SOCKET module.
1989  */
1990 
1991 int sock_register(struct net_proto_family *ops)
1992 {
1993 	int err;
1994 
1995 	if (ops->family >= NPROTO) {
1996 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
1997 		return -ENOBUFS;
1998 	}
1999 	net_family_write_lock();
2000 	err = -EEXIST;
2001 	if (net_families[ops->family] == NULL) {
2002 		net_families[ops->family]=ops;
2003 		err = 0;
2004 	}
2005 	net_family_write_unlock();
2006 	printk(KERN_INFO "NET: Registered protocol family %d\n",
2007 	       ops->family);
2008 	return err;
2009 }
2010 
2011 /*
2012  *	This function is called by a protocol handler that wants to
2013  *	remove its address family, and have it unlinked from the
2014  *	SOCKET module.
2015  */
2016 
2017 int sock_unregister(int family)
2018 {
2019 	if (family < 0 || family >= NPROTO)
2020 		return -1;
2021 
2022 	net_family_write_lock();
2023 	net_families[family]=NULL;
2024 	net_family_write_unlock();
2025 	printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2026 	       family);
2027 	return 0;
2028 }
2029 
2030 
2031 extern void sk_init(void);
2032 
2033 void __init sock_init(void)
2034 {
2035 	/*
2036 	 *	Initialize sock SLAB cache.
2037 	 */
2038 
2039 	sk_init();
2040 
2041 #ifdef SLAB_SKB
2042 	/*
2043 	 *	Initialize skbuff SLAB cache
2044 	 */
2045 	skb_init();
2046 #endif
2047 
2048 	/*
2049 	 *	Initialize the protocols module.
2050 	 */
2051 
2052 	init_inodecache();
2053 	register_filesystem(&sock_fs_type);
2054 	sock_mnt = kern_mount(&sock_fs_type);
2055 	/* The real protocol initialization is performed when
2056 	 *  do_initcalls is run.
2057 	 */
2058 
2059 #ifdef CONFIG_NETFILTER
2060 	netfilter_init();
2061 #endif
2062 }
2063 
2064 #ifdef CONFIG_PROC_FS
2065 void socket_seq_show(struct seq_file *seq)
2066 {
2067 	int cpu;
2068 	int counter = 0;
2069 
2070 	for (cpu = 0; cpu < NR_CPUS; cpu++)
2071 		counter += per_cpu(sockets_in_use, cpu);
2072 
2073 	/* It can be negative, by the way. 8) */
2074 	if (counter < 0)
2075 		counter = 0;
2076 
2077 	seq_printf(seq, "sockets: used %d\n", counter);
2078 }
2079 #endif /* CONFIG_PROC_FS */
2080 
2081 /* ABI emulation layers need these two */
2082 EXPORT_SYMBOL(move_addr_to_kernel);
2083 EXPORT_SYMBOL(move_addr_to_user);
2084 EXPORT_SYMBOL(sock_create);
2085 EXPORT_SYMBOL(sock_create_kern);
2086 EXPORT_SYMBOL(sock_create_lite);
2087 EXPORT_SYMBOL(sock_map_fd);
2088 EXPORT_SYMBOL(sock_recvmsg);
2089 EXPORT_SYMBOL(sock_register);
2090 EXPORT_SYMBOL(sock_release);
2091 EXPORT_SYMBOL(sock_sendmsg);
2092 EXPORT_SYMBOL(sock_unregister);
2093 EXPORT_SYMBOL(sock_wake_async);
2094 EXPORT_SYMBOL(sockfd_lookup);
2095 EXPORT_SYMBOL(kernel_sendmsg);
2096 EXPORT_SYMBOL(kernel_recvmsg);
2097