xref: /openbmc/linux/net/sctp/ulpqueue.c (revision f2a89d3b)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  *                 ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING.  If not, see
25  * <http://www.gnu.org/licenses/>.
26  *
27  * Please send any bug reports or fixes you make to the
28  * email address(es):
29  *    lksctp developers <linux-sctp@vger.kernel.org>
30  *
31  * Written or modified by:
32  *    Jon Grimm             <jgrimm@us.ibm.com>
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Sridhar Samudrala     <sri@us.ibm.com>
35  */
36 
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/busy_poll.h>
42 #include <net/sctp/structs.h>
43 #include <net/sctp/sctp.h>
44 #include <net/sctp/sm.h>
45 
46 /* Forward declarations for internal helpers.  */
47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
48 					      struct sctp_ulpevent *);
49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *,
50 					      struct sctp_ulpevent *);
51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
52 
53 /* 1st Level Abstractions */
54 
55 /* Initialize a ULP queue from a block of memory.  */
56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
57 				 struct sctp_association *asoc)
58 {
59 	memset(ulpq, 0, sizeof(struct sctp_ulpq));
60 
61 	ulpq->asoc = asoc;
62 	skb_queue_head_init(&ulpq->reasm);
63 	skb_queue_head_init(&ulpq->lobby);
64 	ulpq->pd_mode  = 0;
65 
66 	return ulpq;
67 }
68 
69 
70 /* Flush the reassembly and ordering queues.  */
71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
72 {
73 	struct sk_buff *skb;
74 	struct sctp_ulpevent *event;
75 
76 	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
77 		event = sctp_skb2event(skb);
78 		sctp_ulpevent_free(event);
79 	}
80 
81 	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
82 		event = sctp_skb2event(skb);
83 		sctp_ulpevent_free(event);
84 	}
85 
86 }
87 
88 /* Dispose of a ulpqueue.  */
89 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
90 {
91 	sctp_ulpq_flush(ulpq);
92 }
93 
94 /* Process an incoming DATA chunk.  */
95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
96 			gfp_t gfp)
97 {
98 	struct sk_buff_head temp;
99 	struct sctp_ulpevent *event;
100 	int event_eor = 0;
101 
102 	/* Create an event from the incoming chunk. */
103 	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
104 	if (!event)
105 		return -ENOMEM;
106 
107 	/* Do reassembly if needed.  */
108 	event = sctp_ulpq_reasm(ulpq, event);
109 
110 	/* Do ordering if needed.  */
111 	if ((event) && (event->msg_flags & MSG_EOR)) {
112 		/* Create a temporary list to collect chunks on.  */
113 		skb_queue_head_init(&temp);
114 		__skb_queue_tail(&temp, sctp_event2skb(event));
115 
116 		event = sctp_ulpq_order(ulpq, event);
117 	}
118 
119 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
120 	 * very first SKB on the 'temp' list.
121 	 */
122 	if (event) {
123 		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
124 		sctp_ulpq_tail_event(ulpq, event);
125 	}
126 
127 	return event_eor;
128 }
129 
130 /* Add a new event for propagation to the ULP.  */
131 /* Clear the partial delivery mode for this socket.   Note: This
132  * assumes that no association is currently in partial delivery mode.
133  */
134 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
135 {
136 	struct sctp_sock *sp = sctp_sk(sk);
137 
138 	if (atomic_dec_and_test(&sp->pd_mode)) {
139 		/* This means there are no other associations in PD, so
140 		 * we can go ahead and clear out the lobby in one shot
141 		 */
142 		if (!skb_queue_empty(&sp->pd_lobby)) {
143 			struct list_head *list;
144 			skb_queue_splice_tail_init(&sp->pd_lobby,
145 						   &sk->sk_receive_queue);
146 			list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
147 			INIT_LIST_HEAD(list);
148 			return 1;
149 		}
150 	} else {
151 		/* There are other associations in PD, so we only need to
152 		 * pull stuff out of the lobby that belongs to the
153 		 * associations that is exiting PD (all of its notifications
154 		 * are posted here).
155 		 */
156 		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
157 			struct sk_buff *skb, *tmp;
158 			struct sctp_ulpevent *event;
159 
160 			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
161 				event = sctp_skb2event(skb);
162 				if (event->asoc == asoc) {
163 					__skb_unlink(skb, &sp->pd_lobby);
164 					__skb_queue_tail(&sk->sk_receive_queue,
165 							 skb);
166 				}
167 			}
168 		}
169 	}
170 
171 	return 0;
172 }
173 
174 /* Set the pd_mode on the socket and ulpq */
175 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
176 {
177 	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
178 
179 	atomic_inc(&sp->pd_mode);
180 	ulpq->pd_mode = 1;
181 }
182 
183 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
184 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
185 {
186 	ulpq->pd_mode = 0;
187 	sctp_ulpq_reasm_drain(ulpq);
188 	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
189 }
190 
191 /* If the SKB of 'event' is on a list, it is the first such member
192  * of that list.
193  */
194 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
195 {
196 	struct sock *sk = ulpq->asoc->base.sk;
197 	struct sctp_sock *sp = sctp_sk(sk);
198 	struct sk_buff_head *queue, *skb_list;
199 	struct sk_buff *skb = sctp_event2skb(event);
200 	int clear_pd = 0;
201 
202 	skb_list = (struct sk_buff_head *) skb->prev;
203 
204 	/* If the socket is just going to throw this away, do not
205 	 * even try to deliver it.
206 	 */
207 	if (sk->sk_shutdown & RCV_SHUTDOWN &&
208 	    (sk->sk_shutdown & SEND_SHUTDOWN ||
209 	     !sctp_ulpevent_is_notification(event)))
210 		goto out_free;
211 
212 	if (!sctp_ulpevent_is_notification(event)) {
213 		sk_mark_napi_id(sk, skb);
214 		sk_incoming_cpu_update(sk);
215 	}
216 	/* Check if the user wishes to receive this event.  */
217 	if (!sctp_ulpevent_is_enabled(event, &sp->subscribe))
218 		goto out_free;
219 
220 	/* If we are in partial delivery mode, post to the lobby until
221 	 * partial delivery is cleared, unless, of course _this_ is
222 	 * the association the cause of the partial delivery.
223 	 */
224 
225 	if (atomic_read(&sp->pd_mode) == 0) {
226 		queue = &sk->sk_receive_queue;
227 	} else {
228 		if (ulpq->pd_mode) {
229 			/* If the association is in partial delivery, we
230 			 * need to finish delivering the partially processed
231 			 * packet before passing any other data.  This is
232 			 * because we don't truly support stream interleaving.
233 			 */
234 			if ((event->msg_flags & MSG_NOTIFICATION) ||
235 			    (SCTP_DATA_NOT_FRAG ==
236 				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
237 				queue = &sp->pd_lobby;
238 			else {
239 				clear_pd = event->msg_flags & MSG_EOR;
240 				queue = &sk->sk_receive_queue;
241 			}
242 		} else {
243 			/*
244 			 * If fragment interleave is enabled, we
245 			 * can queue this to the receive queue instead
246 			 * of the lobby.
247 			 */
248 			if (sp->frag_interleave)
249 				queue = &sk->sk_receive_queue;
250 			else
251 				queue = &sp->pd_lobby;
252 		}
253 	}
254 
255 	/* If we are harvesting multiple skbs they will be
256 	 * collected on a list.
257 	 */
258 	if (skb_list)
259 		skb_queue_splice_tail_init(skb_list, queue);
260 	else
261 		__skb_queue_tail(queue, skb);
262 
263 	/* Did we just complete partial delivery and need to get
264 	 * rolling again?  Move pending data to the receive
265 	 * queue.
266 	 */
267 	if (clear_pd)
268 		sctp_ulpq_clear_pd(ulpq);
269 
270 	if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) {
271 		sp->data_ready_signalled = 1;
272 		sk->sk_data_ready(sk);
273 	}
274 	return 1;
275 
276 out_free:
277 	if (skb_list)
278 		sctp_queue_purge_ulpevents(skb_list);
279 	else
280 		sctp_ulpevent_free(event);
281 
282 	return 0;
283 }
284 
285 /* 2nd Level Abstractions */
286 
287 /* Helper function to store chunks that need to be reassembled.  */
288 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
289 					 struct sctp_ulpevent *event)
290 {
291 	struct sk_buff *pos;
292 	struct sctp_ulpevent *cevent;
293 	__u32 tsn, ctsn;
294 
295 	tsn = event->tsn;
296 
297 	/* See if it belongs at the end. */
298 	pos = skb_peek_tail(&ulpq->reasm);
299 	if (!pos) {
300 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
301 		return;
302 	}
303 
304 	/* Short circuit just dropping it at the end. */
305 	cevent = sctp_skb2event(pos);
306 	ctsn = cevent->tsn;
307 	if (TSN_lt(ctsn, tsn)) {
308 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
309 		return;
310 	}
311 
312 	/* Find the right place in this list. We store them by TSN.  */
313 	skb_queue_walk(&ulpq->reasm, pos) {
314 		cevent = sctp_skb2event(pos);
315 		ctsn = cevent->tsn;
316 
317 		if (TSN_lt(tsn, ctsn))
318 			break;
319 	}
320 
321 	/* Insert before pos. */
322 	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
323 
324 }
325 
326 /* Helper function to return an event corresponding to the reassembled
327  * datagram.
328  * This routine creates a re-assembled skb given the first and last skb's
329  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
330  * payload was fragmented on the way and ip had to reassemble them.
331  * We add the rest of skb's to the first skb's fraglist.
332  */
333 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
334 	struct sk_buff_head *queue, struct sk_buff *f_frag,
335 	struct sk_buff *l_frag)
336 {
337 	struct sk_buff *pos;
338 	struct sk_buff *new = NULL;
339 	struct sctp_ulpevent *event;
340 	struct sk_buff *pnext, *last;
341 	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
342 
343 	/* Store the pointer to the 2nd skb */
344 	if (f_frag == l_frag)
345 		pos = NULL;
346 	else
347 		pos = f_frag->next;
348 
349 	/* Get the last skb in the f_frag's frag_list if present. */
350 	for (last = list; list; last = list, list = list->next)
351 		;
352 
353 	/* Add the list of remaining fragments to the first fragments
354 	 * frag_list.
355 	 */
356 	if (last)
357 		last->next = pos;
358 	else {
359 		if (skb_cloned(f_frag)) {
360 			/* This is a cloned skb, we can't just modify
361 			 * the frag_list.  We need a new skb to do that.
362 			 * Instead of calling skb_unshare(), we'll do it
363 			 * ourselves since we need to delay the free.
364 			 */
365 			new = skb_copy(f_frag, GFP_ATOMIC);
366 			if (!new)
367 				return NULL;	/* try again later */
368 
369 			sctp_skb_set_owner_r(new, f_frag->sk);
370 
371 			skb_shinfo(new)->frag_list = pos;
372 		} else
373 			skb_shinfo(f_frag)->frag_list = pos;
374 	}
375 
376 	/* Remove the first fragment from the reassembly queue.  */
377 	__skb_unlink(f_frag, queue);
378 
379 	/* if we did unshare, then free the old skb and re-assign */
380 	if (new) {
381 		kfree_skb(f_frag);
382 		f_frag = new;
383 	}
384 
385 	while (pos) {
386 
387 		pnext = pos->next;
388 
389 		/* Update the len and data_len fields of the first fragment. */
390 		f_frag->len += pos->len;
391 		f_frag->data_len += pos->len;
392 
393 		/* Remove the fragment from the reassembly queue.  */
394 		__skb_unlink(pos, queue);
395 
396 		/* Break if we have reached the last fragment.  */
397 		if (pos == l_frag)
398 			break;
399 		pos->next = pnext;
400 		pos = pnext;
401 	}
402 
403 	event = sctp_skb2event(f_frag);
404 	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
405 
406 	return event;
407 }
408 
409 
410 /* Helper function to check if an incoming chunk has filled up the last
411  * missing fragment in a SCTP datagram and return the corresponding event.
412  */
413 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
414 {
415 	struct sk_buff *pos;
416 	struct sctp_ulpevent *cevent;
417 	struct sk_buff *first_frag = NULL;
418 	__u32 ctsn, next_tsn;
419 	struct sctp_ulpevent *retval = NULL;
420 	struct sk_buff *pd_first = NULL;
421 	struct sk_buff *pd_last = NULL;
422 	size_t pd_len = 0;
423 	struct sctp_association *asoc;
424 	u32 pd_point;
425 
426 	/* Initialized to 0 just to avoid compiler warning message.  Will
427 	 * never be used with this value. It is referenced only after it
428 	 * is set when we find the first fragment of a message.
429 	 */
430 	next_tsn = 0;
431 
432 	/* The chunks are held in the reasm queue sorted by TSN.
433 	 * Walk through the queue sequentially and look for a sequence of
434 	 * fragmented chunks that complete a datagram.
435 	 * 'first_frag' and next_tsn are reset when we find a chunk which
436 	 * is the first fragment of a datagram. Once these 2 fields are set
437 	 * we expect to find the remaining middle fragments and the last
438 	 * fragment in order. If not, first_frag is reset to NULL and we
439 	 * start the next pass when we find another first fragment.
440 	 *
441 	 * There is a potential to do partial delivery if user sets
442 	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
443 	 * to see if can do PD.
444 	 */
445 	skb_queue_walk(&ulpq->reasm, pos) {
446 		cevent = sctp_skb2event(pos);
447 		ctsn = cevent->tsn;
448 
449 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
450 		case SCTP_DATA_FIRST_FRAG:
451 			/* If this "FIRST_FRAG" is the first
452 			 * element in the queue, then count it towards
453 			 * possible PD.
454 			 */
455 			if (pos == ulpq->reasm.next) {
456 			    pd_first = pos;
457 			    pd_last = pos;
458 			    pd_len = pos->len;
459 			} else {
460 			    pd_first = NULL;
461 			    pd_last = NULL;
462 			    pd_len = 0;
463 			}
464 
465 			first_frag = pos;
466 			next_tsn = ctsn + 1;
467 			break;
468 
469 		case SCTP_DATA_MIDDLE_FRAG:
470 			if ((first_frag) && (ctsn == next_tsn)) {
471 				next_tsn++;
472 				if (pd_first) {
473 				    pd_last = pos;
474 				    pd_len += pos->len;
475 				}
476 			} else
477 				first_frag = NULL;
478 			break;
479 
480 		case SCTP_DATA_LAST_FRAG:
481 			if (first_frag && (ctsn == next_tsn))
482 				goto found;
483 			else
484 				first_frag = NULL;
485 			break;
486 		}
487 	}
488 
489 	asoc = ulpq->asoc;
490 	if (pd_first) {
491 		/* Make sure we can enter partial deliver.
492 		 * We can trigger partial delivery only if framgent
493 		 * interleave is set, or the socket is not already
494 		 * in  partial delivery.
495 		 */
496 		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
497 		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
498 			goto done;
499 
500 		cevent = sctp_skb2event(pd_first);
501 		pd_point = sctp_sk(asoc->base.sk)->pd_point;
502 		if (pd_point && pd_point <= pd_len) {
503 			retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
504 							     &ulpq->reasm,
505 							     pd_first,
506 							     pd_last);
507 			if (retval)
508 				sctp_ulpq_set_pd(ulpq);
509 		}
510 	}
511 done:
512 	return retval;
513 found:
514 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
515 					     &ulpq->reasm, first_frag, pos);
516 	if (retval)
517 		retval->msg_flags |= MSG_EOR;
518 	goto done;
519 }
520 
521 /* Retrieve the next set of fragments of a partial message. */
522 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
523 {
524 	struct sk_buff *pos, *last_frag, *first_frag;
525 	struct sctp_ulpevent *cevent;
526 	__u32 ctsn, next_tsn;
527 	int is_last;
528 	struct sctp_ulpevent *retval;
529 
530 	/* The chunks are held in the reasm queue sorted by TSN.
531 	 * Walk through the queue sequentially and look for the first
532 	 * sequence of fragmented chunks.
533 	 */
534 
535 	if (skb_queue_empty(&ulpq->reasm))
536 		return NULL;
537 
538 	last_frag = first_frag = NULL;
539 	retval = NULL;
540 	next_tsn = 0;
541 	is_last = 0;
542 
543 	skb_queue_walk(&ulpq->reasm, pos) {
544 		cevent = sctp_skb2event(pos);
545 		ctsn = cevent->tsn;
546 
547 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
548 		case SCTP_DATA_FIRST_FRAG:
549 			if (!first_frag)
550 				return NULL;
551 			goto done;
552 		case SCTP_DATA_MIDDLE_FRAG:
553 			if (!first_frag) {
554 				first_frag = pos;
555 				next_tsn = ctsn + 1;
556 				last_frag = pos;
557 			} else if (next_tsn == ctsn) {
558 				next_tsn++;
559 				last_frag = pos;
560 			} else
561 				goto done;
562 			break;
563 		case SCTP_DATA_LAST_FRAG:
564 			if (!first_frag)
565 				first_frag = pos;
566 			else if (ctsn != next_tsn)
567 				goto done;
568 			last_frag = pos;
569 			is_last = 1;
570 			goto done;
571 		default:
572 			return NULL;
573 		}
574 	}
575 
576 	/* We have the reassembled event. There is no need to look
577 	 * further.
578 	 */
579 done:
580 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
581 					&ulpq->reasm, first_frag, last_frag);
582 	if (retval && is_last)
583 		retval->msg_flags |= MSG_EOR;
584 
585 	return retval;
586 }
587 
588 
589 /* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
590  * need reassembling.
591  */
592 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
593 						struct sctp_ulpevent *event)
594 {
595 	struct sctp_ulpevent *retval = NULL;
596 
597 	/* Check if this is part of a fragmented message.  */
598 	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
599 		event->msg_flags |= MSG_EOR;
600 		return event;
601 	}
602 
603 	sctp_ulpq_store_reasm(ulpq, event);
604 	if (!ulpq->pd_mode)
605 		retval = sctp_ulpq_retrieve_reassembled(ulpq);
606 	else {
607 		__u32 ctsn, ctsnap;
608 
609 		/* Do not even bother unless this is the next tsn to
610 		 * be delivered.
611 		 */
612 		ctsn = event->tsn;
613 		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
614 		if (TSN_lte(ctsn, ctsnap))
615 			retval = sctp_ulpq_retrieve_partial(ulpq);
616 	}
617 
618 	return retval;
619 }
620 
621 /* Retrieve the first part (sequential fragments) for partial delivery.  */
622 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
623 {
624 	struct sk_buff *pos, *last_frag, *first_frag;
625 	struct sctp_ulpevent *cevent;
626 	__u32 ctsn, next_tsn;
627 	struct sctp_ulpevent *retval;
628 
629 	/* The chunks are held in the reasm queue sorted by TSN.
630 	 * Walk through the queue sequentially and look for a sequence of
631 	 * fragmented chunks that start a datagram.
632 	 */
633 
634 	if (skb_queue_empty(&ulpq->reasm))
635 		return NULL;
636 
637 	last_frag = first_frag = NULL;
638 	retval = NULL;
639 	next_tsn = 0;
640 
641 	skb_queue_walk(&ulpq->reasm, pos) {
642 		cevent = sctp_skb2event(pos);
643 		ctsn = cevent->tsn;
644 
645 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
646 		case SCTP_DATA_FIRST_FRAG:
647 			if (!first_frag) {
648 				first_frag = pos;
649 				next_tsn = ctsn + 1;
650 				last_frag = pos;
651 			} else
652 				goto done;
653 			break;
654 
655 		case SCTP_DATA_MIDDLE_FRAG:
656 			if (!first_frag)
657 				return NULL;
658 			if (ctsn == next_tsn) {
659 				next_tsn++;
660 				last_frag = pos;
661 			} else
662 				goto done;
663 			break;
664 
665 		case SCTP_DATA_LAST_FRAG:
666 			if (!first_frag)
667 				return NULL;
668 			else
669 				goto done;
670 			break;
671 
672 		default:
673 			return NULL;
674 		}
675 	}
676 
677 	/* We have the reassembled event. There is no need to look
678 	 * further.
679 	 */
680 done:
681 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
682 					&ulpq->reasm, first_frag, last_frag);
683 	return retval;
684 }
685 
686 /*
687  * Flush out stale fragments from the reassembly queue when processing
688  * a Forward TSN.
689  *
690  * RFC 3758, Section 3.6
691  *
692  * After receiving and processing a FORWARD TSN, the data receiver MUST
693  * take cautions in updating its re-assembly queue.  The receiver MUST
694  * remove any partially reassembled message, which is still missing one
695  * or more TSNs earlier than or equal to the new cumulative TSN point.
696  * In the event that the receiver has invoked the partial delivery API,
697  * a notification SHOULD also be generated to inform the upper layer API
698  * that the message being partially delivered will NOT be completed.
699  */
700 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
701 {
702 	struct sk_buff *pos, *tmp;
703 	struct sctp_ulpevent *event;
704 	__u32 tsn;
705 
706 	if (skb_queue_empty(&ulpq->reasm))
707 		return;
708 
709 	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
710 		event = sctp_skb2event(pos);
711 		tsn = event->tsn;
712 
713 		/* Since the entire message must be abandoned by the
714 		 * sender (item A3 in Section 3.5, RFC 3758), we can
715 		 * free all fragments on the list that are less then
716 		 * or equal to ctsn_point
717 		 */
718 		if (TSN_lte(tsn, fwd_tsn)) {
719 			__skb_unlink(pos, &ulpq->reasm);
720 			sctp_ulpevent_free(event);
721 		} else
722 			break;
723 	}
724 }
725 
726 /*
727  * Drain the reassembly queue.  If we just cleared parted delivery, it
728  * is possible that the reassembly queue will contain already reassembled
729  * messages.  Retrieve any such messages and give them to the user.
730  */
731 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
732 {
733 	struct sctp_ulpevent *event = NULL;
734 	struct sk_buff_head temp;
735 
736 	if (skb_queue_empty(&ulpq->reasm))
737 		return;
738 
739 	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
740 		/* Do ordering if needed.  */
741 		if ((event) && (event->msg_flags & MSG_EOR)) {
742 			skb_queue_head_init(&temp);
743 			__skb_queue_tail(&temp, sctp_event2skb(event));
744 
745 			event = sctp_ulpq_order(ulpq, event);
746 		}
747 
748 		/* Send event to the ULP.  'event' is the
749 		 * sctp_ulpevent for  very first SKB on the  temp' list.
750 		 */
751 		if (event)
752 			sctp_ulpq_tail_event(ulpq, event);
753 	}
754 }
755 
756 
757 /* Helper function to gather skbs that have possibly become
758  * ordered by an an incoming chunk.
759  */
760 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
761 					      struct sctp_ulpevent *event)
762 {
763 	struct sk_buff_head *event_list;
764 	struct sk_buff *pos, *tmp;
765 	struct sctp_ulpevent *cevent;
766 	struct sctp_stream *in;
767 	__u16 sid, csid, cssn;
768 
769 	sid = event->stream;
770 	in  = &ulpq->asoc->ssnmap->in;
771 
772 	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
773 
774 	/* We are holding the chunks by stream, by SSN.  */
775 	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
776 		cevent = (struct sctp_ulpevent *) pos->cb;
777 		csid = cevent->stream;
778 		cssn = cevent->ssn;
779 
780 		/* Have we gone too far?  */
781 		if (csid > sid)
782 			break;
783 
784 		/* Have we not gone far enough?  */
785 		if (csid < sid)
786 			continue;
787 
788 		if (cssn != sctp_ssn_peek(in, sid))
789 			break;
790 
791 		/* Found it, so mark in the ssnmap. */
792 		sctp_ssn_next(in, sid);
793 
794 		__skb_unlink(pos, &ulpq->lobby);
795 
796 		/* Attach all gathered skbs to the event.  */
797 		__skb_queue_tail(event_list, pos);
798 	}
799 }
800 
801 /* Helper function to store chunks needing ordering.  */
802 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
803 					   struct sctp_ulpevent *event)
804 {
805 	struct sk_buff *pos;
806 	struct sctp_ulpevent *cevent;
807 	__u16 sid, csid;
808 	__u16 ssn, cssn;
809 
810 	pos = skb_peek_tail(&ulpq->lobby);
811 	if (!pos) {
812 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
813 		return;
814 	}
815 
816 	sid = event->stream;
817 	ssn = event->ssn;
818 
819 	cevent = (struct sctp_ulpevent *) pos->cb;
820 	csid = cevent->stream;
821 	cssn = cevent->ssn;
822 	if (sid > csid) {
823 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
824 		return;
825 	}
826 
827 	if ((sid == csid) && SSN_lt(cssn, ssn)) {
828 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
829 		return;
830 	}
831 
832 	/* Find the right place in this list.  We store them by
833 	 * stream ID and then by SSN.
834 	 */
835 	skb_queue_walk(&ulpq->lobby, pos) {
836 		cevent = (struct sctp_ulpevent *) pos->cb;
837 		csid = cevent->stream;
838 		cssn = cevent->ssn;
839 
840 		if (csid > sid)
841 			break;
842 		if (csid == sid && SSN_lt(ssn, cssn))
843 			break;
844 	}
845 
846 
847 	/* Insert before pos. */
848 	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
849 }
850 
851 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
852 					     struct sctp_ulpevent *event)
853 {
854 	__u16 sid, ssn;
855 	struct sctp_stream *in;
856 
857 	/* Check if this message needs ordering.  */
858 	if (SCTP_DATA_UNORDERED & event->msg_flags)
859 		return event;
860 
861 	/* Note: The stream ID must be verified before this routine.  */
862 	sid = event->stream;
863 	ssn = event->ssn;
864 	in  = &ulpq->asoc->ssnmap->in;
865 
866 	/* Is this the expected SSN for this stream ID?  */
867 	if (ssn != sctp_ssn_peek(in, sid)) {
868 		/* We've received something out of order, so find where it
869 		 * needs to be placed.  We order by stream and then by SSN.
870 		 */
871 		sctp_ulpq_store_ordered(ulpq, event);
872 		return NULL;
873 	}
874 
875 	/* Mark that the next chunk has been found.  */
876 	sctp_ssn_next(in, sid);
877 
878 	/* Go find any other chunks that were waiting for
879 	 * ordering.
880 	 */
881 	sctp_ulpq_retrieve_ordered(ulpq, event);
882 
883 	return event;
884 }
885 
886 /* Helper function to gather skbs that have possibly become
887  * ordered by forward tsn skipping their dependencies.
888  */
889 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
890 {
891 	struct sk_buff *pos, *tmp;
892 	struct sctp_ulpevent *cevent;
893 	struct sctp_ulpevent *event;
894 	struct sctp_stream *in;
895 	struct sk_buff_head temp;
896 	struct sk_buff_head *lobby = &ulpq->lobby;
897 	__u16 csid, cssn;
898 
899 	in  = &ulpq->asoc->ssnmap->in;
900 
901 	/* We are holding the chunks by stream, by SSN.  */
902 	skb_queue_head_init(&temp);
903 	event = NULL;
904 	sctp_skb_for_each(pos, lobby, tmp) {
905 		cevent = (struct sctp_ulpevent *) pos->cb;
906 		csid = cevent->stream;
907 		cssn = cevent->ssn;
908 
909 		/* Have we gone too far?  */
910 		if (csid > sid)
911 			break;
912 
913 		/* Have we not gone far enough?  */
914 		if (csid < sid)
915 			continue;
916 
917 		/* see if this ssn has been marked by skipping */
918 		if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
919 			break;
920 
921 		__skb_unlink(pos, lobby);
922 		if (!event)
923 			/* Create a temporary list to collect chunks on.  */
924 			event = sctp_skb2event(pos);
925 
926 		/* Attach all gathered skbs to the event.  */
927 		__skb_queue_tail(&temp, pos);
928 	}
929 
930 	/* If we didn't reap any data, see if the next expected SSN
931 	 * is next on the queue and if so, use that.
932 	 */
933 	if (event == NULL && pos != (struct sk_buff *)lobby) {
934 		cevent = (struct sctp_ulpevent *) pos->cb;
935 		csid = cevent->stream;
936 		cssn = cevent->ssn;
937 
938 		if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
939 			sctp_ssn_next(in, csid);
940 			__skb_unlink(pos, lobby);
941 			__skb_queue_tail(&temp, pos);
942 			event = sctp_skb2event(pos);
943 		}
944 	}
945 
946 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
947 	 * very first SKB on the 'temp' list.
948 	 */
949 	if (event) {
950 		/* see if we have more ordered that we can deliver */
951 		sctp_ulpq_retrieve_ordered(ulpq, event);
952 		sctp_ulpq_tail_event(ulpq, event);
953 	}
954 }
955 
956 /* Skip over an SSN. This is used during the processing of
957  * Forwared TSN chunk to skip over the abandoned ordered data
958  */
959 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
960 {
961 	struct sctp_stream *in;
962 
963 	/* Note: The stream ID must be verified before this routine.  */
964 	in  = &ulpq->asoc->ssnmap->in;
965 
966 	/* Is this an old SSN?  If so ignore. */
967 	if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
968 		return;
969 
970 	/* Mark that we are no longer expecting this SSN or lower. */
971 	sctp_ssn_skip(in, sid, ssn);
972 
973 	/* Go find any other chunks that were waiting for
974 	 * ordering and deliver them if needed.
975 	 */
976 	sctp_ulpq_reap_ordered(ulpq, sid);
977 }
978 
979 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
980 		struct sk_buff_head *list, __u16 needed)
981 {
982 	__u16 freed = 0;
983 	__u32 tsn, last_tsn;
984 	struct sk_buff *skb, *flist, *last;
985 	struct sctp_ulpevent *event;
986 	struct sctp_tsnmap *tsnmap;
987 
988 	tsnmap = &ulpq->asoc->peer.tsn_map;
989 
990 	while ((skb = skb_peek_tail(list)) != NULL) {
991 		event = sctp_skb2event(skb);
992 		tsn = event->tsn;
993 
994 		/* Don't renege below the Cumulative TSN ACK Point. */
995 		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
996 			break;
997 
998 		/* Events in ordering queue may have multiple fragments
999 		 * corresponding to additional TSNs.  Sum the total
1000 		 * freed space; find the last TSN.
1001 		 */
1002 		freed += skb_headlen(skb);
1003 		flist = skb_shinfo(skb)->frag_list;
1004 		for (last = flist; flist; flist = flist->next) {
1005 			last = flist;
1006 			freed += skb_headlen(last);
1007 		}
1008 		if (last)
1009 			last_tsn = sctp_skb2event(last)->tsn;
1010 		else
1011 			last_tsn = tsn;
1012 
1013 		/* Unlink the event, then renege all applicable TSNs. */
1014 		__skb_unlink(skb, list);
1015 		sctp_ulpevent_free(event);
1016 		while (TSN_lte(tsn, last_tsn)) {
1017 			sctp_tsnmap_renege(tsnmap, tsn);
1018 			tsn++;
1019 		}
1020 		if (freed >= needed)
1021 			return freed;
1022 	}
1023 
1024 	return freed;
1025 }
1026 
1027 /* Renege 'needed' bytes from the ordering queue. */
1028 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1029 {
1030 	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1031 }
1032 
1033 /* Renege 'needed' bytes from the reassembly queue. */
1034 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1035 {
1036 	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1037 }
1038 
1039 /* Partial deliver the first message as there is pressure on rwnd. */
1040 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
1041 				gfp_t gfp)
1042 {
1043 	struct sctp_ulpevent *event;
1044 	struct sctp_association *asoc;
1045 	struct sctp_sock *sp;
1046 	__u32 ctsn;
1047 	struct sk_buff *skb;
1048 
1049 	asoc = ulpq->asoc;
1050 	sp = sctp_sk(asoc->base.sk);
1051 
1052 	/* If the association is already in Partial Delivery mode
1053 	 * we have nothing to do.
1054 	 */
1055 	if (ulpq->pd_mode)
1056 		return;
1057 
1058 	/* Data must be at or below the Cumulative TSN ACK Point to
1059 	 * start partial delivery.
1060 	 */
1061 	skb = skb_peek(&asoc->ulpq.reasm);
1062 	if (skb != NULL) {
1063 		ctsn = sctp_skb2event(skb)->tsn;
1064 		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1065 			return;
1066 	}
1067 
1068 	/* If the user enabled fragment interleave socket option,
1069 	 * multiple associations can enter partial delivery.
1070 	 * Otherwise, we can only enter partial delivery if the
1071 	 * socket is not in partial deliver mode.
1072 	 */
1073 	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1074 		/* Is partial delivery possible?  */
1075 		event = sctp_ulpq_retrieve_first(ulpq);
1076 		/* Send event to the ULP.   */
1077 		if (event) {
1078 			sctp_ulpq_tail_event(ulpq, event);
1079 			sctp_ulpq_set_pd(ulpq);
1080 			return;
1081 		}
1082 	}
1083 }
1084 
1085 /* Renege some packets to make room for an incoming chunk.  */
1086 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1087 		      gfp_t gfp)
1088 {
1089 	struct sctp_association *asoc;
1090 	__u16 needed, freed;
1091 
1092 	asoc = ulpq->asoc;
1093 
1094 	if (chunk) {
1095 		needed = ntohs(chunk->chunk_hdr->length);
1096 		needed -= sizeof(sctp_data_chunk_t);
1097 	} else
1098 		needed = SCTP_DEFAULT_MAXWINDOW;
1099 
1100 	freed = 0;
1101 
1102 	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1103 		freed = sctp_ulpq_renege_order(ulpq, needed);
1104 		if (freed < needed) {
1105 			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1106 		}
1107 	}
1108 	/* If able to free enough room, accept this chunk. */
1109 	if (chunk && (freed >= needed)) {
1110 		int retval;
1111 		retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1112 		/*
1113 		 * Enter partial delivery if chunk has not been
1114 		 * delivered; otherwise, drain the reassembly queue.
1115 		 */
1116 		if (retval <= 0)
1117 			sctp_ulpq_partial_delivery(ulpq, gfp);
1118 		else if (retval == 1)
1119 			sctp_ulpq_reasm_drain(ulpq);
1120 	}
1121 
1122 	sk_mem_reclaim(asoc->base.sk);
1123 }
1124 
1125 
1126 
1127 /* Notify the application if an association is aborted and in
1128  * partial delivery mode.  Send up any pending received messages.
1129  */
1130 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1131 {
1132 	struct sctp_ulpevent *ev = NULL;
1133 	struct sock *sk;
1134 	struct sctp_sock *sp;
1135 
1136 	if (!ulpq->pd_mode)
1137 		return;
1138 
1139 	sk = ulpq->asoc->base.sk;
1140 	sp = sctp_sk(sk);
1141 	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1142 				       &sctp_sk(sk)->subscribe))
1143 		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1144 					      SCTP_PARTIAL_DELIVERY_ABORTED,
1145 					      gfp);
1146 	if (ev)
1147 		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1148 
1149 	/* If there is data waiting, send it up the socket now. */
1150 	if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) {
1151 		sp->data_ready_signalled = 1;
1152 		sk->sk_data_ready(sk);
1153 	}
1154 }
1155