xref: /openbmc/linux/net/sctp/ulpqueue.c (revision e190bfe5)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  *                 ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING.  If not, write to
25  * the Free Software Foundation, 59 Temple Place - Suite 330,
26  * Boston, MA 02111-1307, USA.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
31  *
32  * Or submit a bug report through the following website:
33  *    http://www.sf.net/projects/lksctp
34  *
35  * Written or modified by:
36  *    Jon Grimm             <jgrimm@us.ibm.com>
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Sridhar Samudrala     <sri@us.ibm.com>
39  *
40  * Any bugs reported given to us we will try to fix... any fixes shared will
41  * be incorporated into the next SCTP release.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/types.h>
46 #include <linux/skbuff.h>
47 #include <net/sock.h>
48 #include <net/sctp/structs.h>
49 #include <net/sctp/sctp.h>
50 #include <net/sctp/sm.h>
51 
52 /* Forward declarations for internal helpers.  */
53 static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
54 					      struct sctp_ulpevent *);
55 static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *,
56 					      struct sctp_ulpevent *);
57 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
58 
59 /* 1st Level Abstractions */
60 
61 /* Initialize a ULP queue from a block of memory.  */
62 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
63 				 struct sctp_association *asoc)
64 {
65 	memset(ulpq, 0, sizeof(struct sctp_ulpq));
66 
67 	ulpq->asoc = asoc;
68 	skb_queue_head_init(&ulpq->reasm);
69 	skb_queue_head_init(&ulpq->lobby);
70 	ulpq->pd_mode  = 0;
71 	ulpq->malloced = 0;
72 
73 	return ulpq;
74 }
75 
76 
77 /* Flush the reassembly and ordering queues.  */
78 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
79 {
80 	struct sk_buff *skb;
81 	struct sctp_ulpevent *event;
82 
83 	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
84 		event = sctp_skb2event(skb);
85 		sctp_ulpevent_free(event);
86 	}
87 
88 	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
89 		event = sctp_skb2event(skb);
90 		sctp_ulpevent_free(event);
91 	}
92 
93 }
94 
95 /* Dispose of a ulpqueue.  */
96 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
97 {
98 	sctp_ulpq_flush(ulpq);
99 	if (ulpq->malloced)
100 		kfree(ulpq);
101 }
102 
103 /* Process an incoming DATA chunk.  */
104 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
105 			gfp_t gfp)
106 {
107 	struct sk_buff_head temp;
108 	sctp_data_chunk_t *hdr;
109 	struct sctp_ulpevent *event;
110 
111 	hdr = (sctp_data_chunk_t *) chunk->chunk_hdr;
112 
113 	/* Create an event from the incoming chunk. */
114 	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
115 	if (!event)
116 		return -ENOMEM;
117 
118 	/* Do reassembly if needed.  */
119 	event = sctp_ulpq_reasm(ulpq, event);
120 
121 	/* Do ordering if needed.  */
122 	if ((event) && (event->msg_flags & MSG_EOR)){
123 		/* Create a temporary list to collect chunks on.  */
124 		skb_queue_head_init(&temp);
125 		__skb_queue_tail(&temp, sctp_event2skb(event));
126 
127 		event = sctp_ulpq_order(ulpq, event);
128 	}
129 
130 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
131 	 * very first SKB on the 'temp' list.
132 	 */
133 	if (event)
134 		sctp_ulpq_tail_event(ulpq, event);
135 
136 	return 0;
137 }
138 
139 /* Add a new event for propagation to the ULP.  */
140 /* Clear the partial delivery mode for this socket.   Note: This
141  * assumes that no association is currently in partial delivery mode.
142  */
143 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
144 {
145 	struct sctp_sock *sp = sctp_sk(sk);
146 
147 	if (atomic_dec_and_test(&sp->pd_mode)) {
148 		/* This means there are no other associations in PD, so
149 		 * we can go ahead and clear out the lobby in one shot
150 		 */
151 		if (!skb_queue_empty(&sp->pd_lobby)) {
152 			struct list_head *list;
153 			sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
154 			list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
155 			INIT_LIST_HEAD(list);
156 			return 1;
157 		}
158 	} else {
159 		/* There are other associations in PD, so we only need to
160 		 * pull stuff out of the lobby that belongs to the
161 		 * associations that is exiting PD (all of its notifications
162 		 * are posted here).
163 		 */
164 		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
165 			struct sk_buff *skb, *tmp;
166 			struct sctp_ulpevent *event;
167 
168 			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
169 				event = sctp_skb2event(skb);
170 				if (event->asoc == asoc) {
171 					__skb_unlink(skb, &sp->pd_lobby);
172 					__skb_queue_tail(&sk->sk_receive_queue,
173 							 skb);
174 				}
175 			}
176 		}
177 	}
178 
179 	return 0;
180 }
181 
182 /* Set the pd_mode on the socket and ulpq */
183 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
184 {
185 	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
186 
187 	atomic_inc(&sp->pd_mode);
188 	ulpq->pd_mode = 1;
189 }
190 
191 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
192 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
193 {
194 	ulpq->pd_mode = 0;
195 	sctp_ulpq_reasm_drain(ulpq);
196 	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
197 }
198 
199 /* If the SKB of 'event' is on a list, it is the first such member
200  * of that list.
201  */
202 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
203 {
204 	struct sock *sk = ulpq->asoc->base.sk;
205 	struct sk_buff_head *queue, *skb_list;
206 	struct sk_buff *skb = sctp_event2skb(event);
207 	int clear_pd = 0;
208 
209 	skb_list = (struct sk_buff_head *) skb->prev;
210 
211 	/* If the socket is just going to throw this away, do not
212 	 * even try to deliver it.
213 	 */
214 	if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
215 		goto out_free;
216 
217 	/* Check if the user wishes to receive this event.  */
218 	if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
219 		goto out_free;
220 
221 	/* If we are in partial delivery mode, post to the lobby until
222 	 * partial delivery is cleared, unless, of course _this_ is
223 	 * the association the cause of the partial delivery.
224 	 */
225 
226 	if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
227 		queue = &sk->sk_receive_queue;
228 	} else {
229 		if (ulpq->pd_mode) {
230 			/* If the association is in partial delivery, we
231 			 * need to finish delivering the partially processed
232 			 * packet before passing any other data.  This is
233 			 * because we don't truly support stream interleaving.
234 			 */
235 			if ((event->msg_flags & MSG_NOTIFICATION) ||
236 			    (SCTP_DATA_NOT_FRAG ==
237 				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
238 				queue = &sctp_sk(sk)->pd_lobby;
239 			else {
240 				clear_pd = event->msg_flags & MSG_EOR;
241 				queue = &sk->sk_receive_queue;
242 			}
243 		} else {
244 			/*
245 			 * If fragment interleave is enabled, we
246 			 * can queue this to the recieve queue instead
247 			 * of the lobby.
248 			 */
249 			if (sctp_sk(sk)->frag_interleave)
250 				queue = &sk->sk_receive_queue;
251 			else
252 				queue = &sctp_sk(sk)->pd_lobby;
253 		}
254 	}
255 
256 	/* If we are harvesting multiple skbs they will be
257 	 * collected on a list.
258 	 */
259 	if (skb_list)
260 		sctp_skb_list_tail(skb_list, queue);
261 	else
262 		__skb_queue_tail(queue, skb);
263 
264 	/* Did we just complete partial delivery and need to get
265 	 * rolling again?  Move pending data to the receive
266 	 * queue.
267 	 */
268 	if (clear_pd)
269 		sctp_ulpq_clear_pd(ulpq);
270 
271 	if (queue == &sk->sk_receive_queue)
272 		sk->sk_data_ready(sk, 0);
273 	return 1;
274 
275 out_free:
276 	if (skb_list)
277 		sctp_queue_purge_ulpevents(skb_list);
278 	else
279 		sctp_ulpevent_free(event);
280 
281 	return 0;
282 }
283 
284 /* 2nd Level Abstractions */
285 
286 /* Helper function to store chunks that need to be reassembled.  */
287 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
288 					 struct sctp_ulpevent *event)
289 {
290 	struct sk_buff *pos;
291 	struct sctp_ulpevent *cevent;
292 	__u32 tsn, ctsn;
293 
294 	tsn = event->tsn;
295 
296 	/* See if it belongs at the end. */
297 	pos = skb_peek_tail(&ulpq->reasm);
298 	if (!pos) {
299 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
300 		return;
301 	}
302 
303 	/* Short circuit just dropping it at the end. */
304 	cevent = sctp_skb2event(pos);
305 	ctsn = cevent->tsn;
306 	if (TSN_lt(ctsn, tsn)) {
307 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
308 		return;
309 	}
310 
311 	/* Find the right place in this list. We store them by TSN.  */
312 	skb_queue_walk(&ulpq->reasm, pos) {
313 		cevent = sctp_skb2event(pos);
314 		ctsn = cevent->tsn;
315 
316 		if (TSN_lt(tsn, ctsn))
317 			break;
318 	}
319 
320 	/* Insert before pos. */
321 	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
322 
323 }
324 
325 /* Helper function to return an event corresponding to the reassembled
326  * datagram.
327  * This routine creates a re-assembled skb given the first and last skb's
328  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
329  * payload was fragmented on the way and ip had to reassemble them.
330  * We add the rest of skb's to the first skb's fraglist.
331  */
332 static struct sctp_ulpevent *sctp_make_reassembled_event(struct sk_buff_head *queue, struct sk_buff *f_frag, struct sk_buff *l_frag)
333 {
334 	struct sk_buff *pos;
335 	struct sk_buff *new = NULL;
336 	struct sctp_ulpevent *event;
337 	struct sk_buff *pnext, *last;
338 	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
339 
340 	/* Store the pointer to the 2nd skb */
341 	if (f_frag == l_frag)
342 		pos = NULL;
343 	else
344 		pos = f_frag->next;
345 
346 	/* Get the last skb in the f_frag's frag_list if present. */
347 	for (last = list; list; last = list, list = list->next);
348 
349 	/* Add the list of remaining fragments to the first fragments
350 	 * frag_list.
351 	 */
352 	if (last)
353 		last->next = pos;
354 	else {
355 		if (skb_cloned(f_frag)) {
356 			/* This is a cloned skb, we can't just modify
357 			 * the frag_list.  We need a new skb to do that.
358 			 * Instead of calling skb_unshare(), we'll do it
359 			 * ourselves since we need to delay the free.
360 			 */
361 			new = skb_copy(f_frag, GFP_ATOMIC);
362 			if (!new)
363 				return NULL;	/* try again later */
364 
365 			sctp_skb_set_owner_r(new, f_frag->sk);
366 
367 			skb_shinfo(new)->frag_list = pos;
368 		} else
369 			skb_shinfo(f_frag)->frag_list = pos;
370 	}
371 
372 	/* Remove the first fragment from the reassembly queue.  */
373 	__skb_unlink(f_frag, queue);
374 
375 	/* if we did unshare, then free the old skb and re-assign */
376 	if (new) {
377 		kfree_skb(f_frag);
378 		f_frag = new;
379 	}
380 
381 	while (pos) {
382 
383 		pnext = pos->next;
384 
385 		/* Update the len and data_len fields of the first fragment. */
386 		f_frag->len += pos->len;
387 		f_frag->data_len += pos->len;
388 
389 		/* Remove the fragment from the reassembly queue.  */
390 		__skb_unlink(pos, queue);
391 
392 		/* Break if we have reached the last fragment.  */
393 		if (pos == l_frag)
394 			break;
395 		pos->next = pnext;
396 		pos = pnext;
397 	}
398 
399 	event = sctp_skb2event(f_frag);
400 	SCTP_INC_STATS(SCTP_MIB_REASMUSRMSGS);
401 
402 	return event;
403 }
404 
405 
406 /* Helper function to check if an incoming chunk has filled up the last
407  * missing fragment in a SCTP datagram and return the corresponding event.
408  */
409 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
410 {
411 	struct sk_buff *pos;
412 	struct sctp_ulpevent *cevent;
413 	struct sk_buff *first_frag = NULL;
414 	__u32 ctsn, next_tsn;
415 	struct sctp_ulpevent *retval = NULL;
416 	struct sk_buff *pd_first = NULL;
417 	struct sk_buff *pd_last = NULL;
418 	size_t pd_len = 0;
419 	struct sctp_association *asoc;
420 	u32 pd_point;
421 
422 	/* Initialized to 0 just to avoid compiler warning message.  Will
423 	 * never be used with this value. It is referenced only after it
424 	 * is set when we find the first fragment of a message.
425 	 */
426 	next_tsn = 0;
427 
428 	/* The chunks are held in the reasm queue sorted by TSN.
429 	 * Walk through the queue sequentially and look for a sequence of
430 	 * fragmented chunks that complete a datagram.
431 	 * 'first_frag' and next_tsn are reset when we find a chunk which
432 	 * is the first fragment of a datagram. Once these 2 fields are set
433 	 * we expect to find the remaining middle fragments and the last
434 	 * fragment in order. If not, first_frag is reset to NULL and we
435 	 * start the next pass when we find another first fragment.
436 	 *
437 	 * There is a potential to do partial delivery if user sets
438 	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
439 	 * to see if can do PD.
440 	 */
441 	skb_queue_walk(&ulpq->reasm, pos) {
442 		cevent = sctp_skb2event(pos);
443 		ctsn = cevent->tsn;
444 
445 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
446 		case SCTP_DATA_FIRST_FRAG:
447 			/* If this "FIRST_FRAG" is the first
448 			 * element in the queue, then count it towards
449 			 * possible PD.
450 			 */
451 			if (pos == ulpq->reasm.next) {
452 			    pd_first = pos;
453 			    pd_last = pos;
454 			    pd_len = pos->len;
455 			} else {
456 			    pd_first = NULL;
457 			    pd_last = NULL;
458 			    pd_len = 0;
459 			}
460 
461 			first_frag = pos;
462 			next_tsn = ctsn + 1;
463 			break;
464 
465 		case SCTP_DATA_MIDDLE_FRAG:
466 			if ((first_frag) && (ctsn == next_tsn)) {
467 				next_tsn++;
468 				if (pd_first) {
469 				    pd_last = pos;
470 				    pd_len += pos->len;
471 				}
472 			} else
473 				first_frag = NULL;
474 			break;
475 
476 		case SCTP_DATA_LAST_FRAG:
477 			if (first_frag && (ctsn == next_tsn))
478 				goto found;
479 			else
480 				first_frag = NULL;
481 			break;
482 		}
483 	}
484 
485 	asoc = ulpq->asoc;
486 	if (pd_first) {
487 		/* Make sure we can enter partial deliver.
488 		 * We can trigger partial delivery only if framgent
489 		 * interleave is set, or the socket is not already
490 		 * in  partial delivery.
491 		 */
492 		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
493 		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
494 			goto done;
495 
496 		cevent = sctp_skb2event(pd_first);
497 		pd_point = sctp_sk(asoc->base.sk)->pd_point;
498 		if (pd_point && pd_point <= pd_len) {
499 			retval = sctp_make_reassembled_event(&ulpq->reasm,
500 							     pd_first,
501 							     pd_last);
502 			if (retval)
503 				sctp_ulpq_set_pd(ulpq);
504 		}
505 	}
506 done:
507 	return retval;
508 found:
509 	retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, pos);
510 	if (retval)
511 		retval->msg_flags |= MSG_EOR;
512 	goto done;
513 }
514 
515 /* Retrieve the next set of fragments of a partial message. */
516 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
517 {
518 	struct sk_buff *pos, *last_frag, *first_frag;
519 	struct sctp_ulpevent *cevent;
520 	__u32 ctsn, next_tsn;
521 	int is_last;
522 	struct sctp_ulpevent *retval;
523 
524 	/* The chunks are held in the reasm queue sorted by TSN.
525 	 * Walk through the queue sequentially and look for the first
526 	 * sequence of fragmented chunks.
527 	 */
528 
529 	if (skb_queue_empty(&ulpq->reasm))
530 		return NULL;
531 
532 	last_frag = first_frag = NULL;
533 	retval = NULL;
534 	next_tsn = 0;
535 	is_last = 0;
536 
537 	skb_queue_walk(&ulpq->reasm, pos) {
538 		cevent = sctp_skb2event(pos);
539 		ctsn = cevent->tsn;
540 
541 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
542 		case SCTP_DATA_MIDDLE_FRAG:
543 			if (!first_frag) {
544 				first_frag = pos;
545 				next_tsn = ctsn + 1;
546 				last_frag = pos;
547 			} else if (next_tsn == ctsn)
548 				next_tsn++;
549 			else
550 				goto done;
551 			break;
552 		case SCTP_DATA_LAST_FRAG:
553 			if (!first_frag)
554 				first_frag = pos;
555 			else if (ctsn != next_tsn)
556 				goto done;
557 			last_frag = pos;
558 			is_last = 1;
559 			goto done;
560 		default:
561 			return NULL;
562 		}
563 	}
564 
565 	/* We have the reassembled event. There is no need to look
566 	 * further.
567 	 */
568 done:
569 	retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag);
570 	if (retval && is_last)
571 		retval->msg_flags |= MSG_EOR;
572 
573 	return retval;
574 }
575 
576 
577 /* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
578  * need reassembling.
579  */
580 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
581 						struct sctp_ulpevent *event)
582 {
583 	struct sctp_ulpevent *retval = NULL;
584 
585 	/* Check if this is part of a fragmented message.  */
586 	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
587 		event->msg_flags |= MSG_EOR;
588 		return event;
589 	}
590 
591 	sctp_ulpq_store_reasm(ulpq, event);
592 	if (!ulpq->pd_mode)
593 		retval = sctp_ulpq_retrieve_reassembled(ulpq);
594 	else {
595 		__u32 ctsn, ctsnap;
596 
597 		/* Do not even bother unless this is the next tsn to
598 		 * be delivered.
599 		 */
600 		ctsn = event->tsn;
601 		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
602 		if (TSN_lte(ctsn, ctsnap))
603 			retval = sctp_ulpq_retrieve_partial(ulpq);
604 	}
605 
606 	return retval;
607 }
608 
609 /* Retrieve the first part (sequential fragments) for partial delivery.  */
610 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
611 {
612 	struct sk_buff *pos, *last_frag, *first_frag;
613 	struct sctp_ulpevent *cevent;
614 	__u32 ctsn, next_tsn;
615 	struct sctp_ulpevent *retval;
616 
617 	/* The chunks are held in the reasm queue sorted by TSN.
618 	 * Walk through the queue sequentially and look for a sequence of
619 	 * fragmented chunks that start a datagram.
620 	 */
621 
622 	if (skb_queue_empty(&ulpq->reasm))
623 		return NULL;
624 
625 	last_frag = first_frag = NULL;
626 	retval = NULL;
627 	next_tsn = 0;
628 
629 	skb_queue_walk(&ulpq->reasm, pos) {
630 		cevent = sctp_skb2event(pos);
631 		ctsn = cevent->tsn;
632 
633 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
634 		case SCTP_DATA_FIRST_FRAG:
635 			if (!first_frag) {
636 				first_frag = pos;
637 				next_tsn = ctsn + 1;
638 				last_frag = pos;
639 			} else
640 				goto done;
641 			break;
642 
643 		case SCTP_DATA_MIDDLE_FRAG:
644 			if (!first_frag)
645 				return NULL;
646 			if (ctsn == next_tsn) {
647 				next_tsn++;
648 				last_frag = pos;
649 			} else
650 				goto done;
651 			break;
652 		default:
653 			return NULL;
654 		}
655 	}
656 
657 	/* We have the reassembled event. There is no need to look
658 	 * further.
659 	 */
660 done:
661 	retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag);
662 	return retval;
663 }
664 
665 /*
666  * Flush out stale fragments from the reassembly queue when processing
667  * a Forward TSN.
668  *
669  * RFC 3758, Section 3.6
670  *
671  * After receiving and processing a FORWARD TSN, the data receiver MUST
672  * take cautions in updating its re-assembly queue.  The receiver MUST
673  * remove any partially reassembled message, which is still missing one
674  * or more TSNs earlier than or equal to the new cumulative TSN point.
675  * In the event that the receiver has invoked the partial delivery API,
676  * a notification SHOULD also be generated to inform the upper layer API
677  * that the message being partially delivered will NOT be completed.
678  */
679 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
680 {
681 	struct sk_buff *pos, *tmp;
682 	struct sctp_ulpevent *event;
683 	__u32 tsn;
684 
685 	if (skb_queue_empty(&ulpq->reasm))
686 		return;
687 
688 	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
689 		event = sctp_skb2event(pos);
690 		tsn = event->tsn;
691 
692 		/* Since the entire message must be abandoned by the
693 		 * sender (item A3 in Section 3.5, RFC 3758), we can
694 		 * free all fragments on the list that are less then
695 		 * or equal to ctsn_point
696 		 */
697 		if (TSN_lte(tsn, fwd_tsn)) {
698 			__skb_unlink(pos, &ulpq->reasm);
699 			sctp_ulpevent_free(event);
700 		} else
701 			break;
702 	}
703 }
704 
705 /*
706  * Drain the reassembly queue.  If we just cleared parted delivery, it
707  * is possible that the reassembly queue will contain already reassembled
708  * messages.  Retrieve any such messages and give them to the user.
709  */
710 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
711 {
712 	struct sctp_ulpevent *event = NULL;
713 	struct sk_buff_head temp;
714 
715 	if (skb_queue_empty(&ulpq->reasm))
716 		return;
717 
718 	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
719 		/* Do ordering if needed.  */
720 		if ((event) && (event->msg_flags & MSG_EOR)){
721 			skb_queue_head_init(&temp);
722 			__skb_queue_tail(&temp, sctp_event2skb(event));
723 
724 			event = sctp_ulpq_order(ulpq, event);
725 		}
726 
727 		/* Send event to the ULP.  'event' is the
728 		 * sctp_ulpevent for  very first SKB on the  temp' list.
729 		 */
730 		if (event)
731 			sctp_ulpq_tail_event(ulpq, event);
732 	}
733 }
734 
735 
736 /* Helper function to gather skbs that have possibly become
737  * ordered by an an incoming chunk.
738  */
739 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
740 					      struct sctp_ulpevent *event)
741 {
742 	struct sk_buff_head *event_list;
743 	struct sk_buff *pos, *tmp;
744 	struct sctp_ulpevent *cevent;
745 	struct sctp_stream *in;
746 	__u16 sid, csid;
747 	__u16 ssn, cssn;
748 
749 	sid = event->stream;
750 	ssn = event->ssn;
751 	in  = &ulpq->asoc->ssnmap->in;
752 
753 	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
754 
755 	/* We are holding the chunks by stream, by SSN.  */
756 	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
757 		cevent = (struct sctp_ulpevent *) pos->cb;
758 		csid = cevent->stream;
759 		cssn = cevent->ssn;
760 
761 		/* Have we gone too far?  */
762 		if (csid > sid)
763 			break;
764 
765 		/* Have we not gone far enough?  */
766 		if (csid < sid)
767 			continue;
768 
769 		if (cssn != sctp_ssn_peek(in, sid))
770 			break;
771 
772 		/* Found it, so mark in the ssnmap. */
773 		sctp_ssn_next(in, sid);
774 
775 		__skb_unlink(pos, &ulpq->lobby);
776 
777 		/* Attach all gathered skbs to the event.  */
778 		__skb_queue_tail(event_list, pos);
779 	}
780 }
781 
782 /* Helper function to store chunks needing ordering.  */
783 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
784 					   struct sctp_ulpevent *event)
785 {
786 	struct sk_buff *pos;
787 	struct sctp_ulpevent *cevent;
788 	__u16 sid, csid;
789 	__u16 ssn, cssn;
790 
791 	pos = skb_peek_tail(&ulpq->lobby);
792 	if (!pos) {
793 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
794 		return;
795 	}
796 
797 	sid = event->stream;
798 	ssn = event->ssn;
799 
800 	cevent = (struct sctp_ulpevent *) pos->cb;
801 	csid = cevent->stream;
802 	cssn = cevent->ssn;
803 	if (sid > csid) {
804 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
805 		return;
806 	}
807 
808 	if ((sid == csid) && SSN_lt(cssn, ssn)) {
809 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
810 		return;
811 	}
812 
813 	/* Find the right place in this list.  We store them by
814 	 * stream ID and then by SSN.
815 	 */
816 	skb_queue_walk(&ulpq->lobby, pos) {
817 		cevent = (struct sctp_ulpevent *) pos->cb;
818 		csid = cevent->stream;
819 		cssn = cevent->ssn;
820 
821 		if (csid > sid)
822 			break;
823 		if (csid == sid && SSN_lt(ssn, cssn))
824 			break;
825 	}
826 
827 
828 	/* Insert before pos. */
829 	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
830 }
831 
832 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
833 					     struct sctp_ulpevent *event)
834 {
835 	__u16 sid, ssn;
836 	struct sctp_stream *in;
837 
838 	/* Check if this message needs ordering.  */
839 	if (SCTP_DATA_UNORDERED & event->msg_flags)
840 		return event;
841 
842 	/* Note: The stream ID must be verified before this routine.  */
843 	sid = event->stream;
844 	ssn = event->ssn;
845 	in  = &ulpq->asoc->ssnmap->in;
846 
847 	/* Is this the expected SSN for this stream ID?  */
848 	if (ssn != sctp_ssn_peek(in, sid)) {
849 		/* We've received something out of order, so find where it
850 		 * needs to be placed.  We order by stream and then by SSN.
851 		 */
852 		sctp_ulpq_store_ordered(ulpq, event);
853 		return NULL;
854 	}
855 
856 	/* Mark that the next chunk has been found.  */
857 	sctp_ssn_next(in, sid);
858 
859 	/* Go find any other chunks that were waiting for
860 	 * ordering.
861 	 */
862 	sctp_ulpq_retrieve_ordered(ulpq, event);
863 
864 	return event;
865 }
866 
867 /* Helper function to gather skbs that have possibly become
868  * ordered by forward tsn skipping their dependencies.
869  */
870 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
871 {
872 	struct sk_buff *pos, *tmp;
873 	struct sctp_ulpevent *cevent;
874 	struct sctp_ulpevent *event;
875 	struct sctp_stream *in;
876 	struct sk_buff_head temp;
877 	struct sk_buff_head *lobby = &ulpq->lobby;
878 	__u16 csid, cssn;
879 
880 	in  = &ulpq->asoc->ssnmap->in;
881 
882 	/* We are holding the chunks by stream, by SSN.  */
883 	skb_queue_head_init(&temp);
884 	event = NULL;
885 	sctp_skb_for_each(pos, lobby, tmp) {
886 		cevent = (struct sctp_ulpevent *) pos->cb;
887 		csid = cevent->stream;
888 		cssn = cevent->ssn;
889 
890 		/* Have we gone too far?  */
891 		if (csid > sid)
892 			break;
893 
894 		/* Have we not gone far enough?  */
895 		if (csid < sid)
896 			continue;
897 
898 		/* see if this ssn has been marked by skipping */
899 		if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
900 			break;
901 
902 		__skb_unlink(pos, lobby);
903 		if (!event)
904 			/* Create a temporary list to collect chunks on.  */
905 			event = sctp_skb2event(pos);
906 
907 		/* Attach all gathered skbs to the event.  */
908 		__skb_queue_tail(&temp, pos);
909 	}
910 
911 	/* If we didn't reap any data, see if the next expected SSN
912 	 * is next on the queue and if so, use that.
913 	 */
914 	if (event == NULL && pos != (struct sk_buff *)lobby) {
915 		cevent = (struct sctp_ulpevent *) pos->cb;
916 		csid = cevent->stream;
917 		cssn = cevent->ssn;
918 
919 		if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
920 			sctp_ssn_next(in, csid);
921 			__skb_unlink(pos, lobby);
922 			__skb_queue_tail(&temp, pos);
923 			event = sctp_skb2event(pos);
924 		}
925 	}
926 
927 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
928 	 * very first SKB on the 'temp' list.
929 	 */
930 	if (event) {
931 		/* see if we have more ordered that we can deliver */
932 		sctp_ulpq_retrieve_ordered(ulpq, event);
933 		sctp_ulpq_tail_event(ulpq, event);
934 	}
935 }
936 
937 /* Skip over an SSN. This is used during the processing of
938  * Forwared TSN chunk to skip over the abandoned ordered data
939  */
940 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
941 {
942 	struct sctp_stream *in;
943 
944 	/* Note: The stream ID must be verified before this routine.  */
945 	in  = &ulpq->asoc->ssnmap->in;
946 
947 	/* Is this an old SSN?  If so ignore. */
948 	if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
949 		return;
950 
951 	/* Mark that we are no longer expecting this SSN or lower. */
952 	sctp_ssn_skip(in, sid, ssn);
953 
954 	/* Go find any other chunks that were waiting for
955 	 * ordering and deliver them if needed.
956 	 */
957 	sctp_ulpq_reap_ordered(ulpq, sid);
958 }
959 
960 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
961 		struct sk_buff_head *list, __u16 needed)
962 {
963 	__u16 freed = 0;
964 	__u32 tsn;
965 	struct sk_buff *skb;
966 	struct sctp_ulpevent *event;
967 	struct sctp_tsnmap *tsnmap;
968 
969 	tsnmap = &ulpq->asoc->peer.tsn_map;
970 
971 	while ((skb = __skb_dequeue_tail(list)) != NULL) {
972 		freed += skb_headlen(skb);
973 		event = sctp_skb2event(skb);
974 		tsn = event->tsn;
975 
976 		sctp_ulpevent_free(event);
977 		sctp_tsnmap_renege(tsnmap, tsn);
978 		if (freed >= needed)
979 			return freed;
980 	}
981 
982 	return freed;
983 }
984 
985 /* Renege 'needed' bytes from the ordering queue. */
986 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
987 {
988 	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
989 }
990 
991 /* Renege 'needed' bytes from the reassembly queue. */
992 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
993 {
994 	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
995 }
996 
997 /* Partial deliver the first message as there is pressure on rwnd. */
998 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
999 				struct sctp_chunk *chunk,
1000 				gfp_t gfp)
1001 {
1002 	struct sctp_ulpevent *event;
1003 	struct sctp_association *asoc;
1004 	struct sctp_sock *sp;
1005 
1006 	asoc = ulpq->asoc;
1007 	sp = sctp_sk(asoc->base.sk);
1008 
1009 	/* If the association is already in Partial Delivery mode
1010 	 * we have noting to do.
1011 	 */
1012 	if (ulpq->pd_mode)
1013 		return;
1014 
1015 	/* If the user enabled fragment interleave socket option,
1016 	 * multiple associations can enter partial delivery.
1017 	 * Otherwise, we can only enter partial delivery if the
1018 	 * socket is not in partial deliver mode.
1019 	 */
1020 	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1021 		/* Is partial delivery possible?  */
1022 		event = sctp_ulpq_retrieve_first(ulpq);
1023 		/* Send event to the ULP.   */
1024 		if (event) {
1025 			sctp_ulpq_tail_event(ulpq, event);
1026 			sctp_ulpq_set_pd(ulpq);
1027 			return;
1028 		}
1029 	}
1030 }
1031 
1032 /* Renege some packets to make room for an incoming chunk.  */
1033 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1034 		      gfp_t gfp)
1035 {
1036 	struct sctp_association *asoc;
1037 	__u16 needed, freed;
1038 
1039 	asoc = ulpq->asoc;
1040 
1041 	if (chunk) {
1042 		needed = ntohs(chunk->chunk_hdr->length);
1043 		needed -= sizeof(sctp_data_chunk_t);
1044 	} else
1045 		needed = SCTP_DEFAULT_MAXWINDOW;
1046 
1047 	freed = 0;
1048 
1049 	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1050 		freed = sctp_ulpq_renege_order(ulpq, needed);
1051 		if (freed < needed) {
1052 			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1053 		}
1054 	}
1055 	/* If able to free enough room, accept this chunk. */
1056 	if (chunk && (freed >= needed)) {
1057 		__u32 tsn;
1058 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1059 		sctp_tsnmap_mark(&asoc->peer.tsn_map, tsn);
1060 		sctp_ulpq_tail_data(ulpq, chunk, gfp);
1061 
1062 		sctp_ulpq_partial_delivery(ulpq, chunk, gfp);
1063 	}
1064 
1065 	sk_mem_reclaim(asoc->base.sk);
1066 }
1067 
1068 
1069 
1070 /* Notify the application if an association is aborted and in
1071  * partial delivery mode.  Send up any pending received messages.
1072  */
1073 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1074 {
1075 	struct sctp_ulpevent *ev = NULL;
1076 	struct sock *sk;
1077 
1078 	if (!ulpq->pd_mode)
1079 		return;
1080 
1081 	sk = ulpq->asoc->base.sk;
1082 	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1083 				       &sctp_sk(sk)->subscribe))
1084 		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1085 					      SCTP_PARTIAL_DELIVERY_ABORTED,
1086 					      gfp);
1087 	if (ev)
1088 		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1089 
1090 	/* If there is data waiting, send it up the socket now. */
1091 	if (sctp_ulpq_clear_pd(ulpq) || ev)
1092 		sk->sk_data_ready(sk, 0);
1093 }
1094