xref: /openbmc/linux/net/sctp/ulpqueue.c (revision d2999e1b)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  *                 ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING.  If not, see
25  * <http://www.gnu.org/licenses/>.
26  *
27  * Please send any bug reports or fixes you make to the
28  * email address(es):
29  *    lksctp developers <linux-sctp@vger.kernel.org>
30  *
31  * Written or modified by:
32  *    Jon Grimm             <jgrimm@us.ibm.com>
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Sridhar Samudrala     <sri@us.ibm.com>
35  */
36 
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/busy_poll.h>
42 #include <net/sctp/structs.h>
43 #include <net/sctp/sctp.h>
44 #include <net/sctp/sm.h>
45 
46 /* Forward declarations for internal helpers.  */
47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
48 					      struct sctp_ulpevent *);
49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *,
50 					      struct sctp_ulpevent *);
51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
52 
53 /* 1st Level Abstractions */
54 
55 /* Initialize a ULP queue from a block of memory.  */
56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
57 				 struct sctp_association *asoc)
58 {
59 	memset(ulpq, 0, sizeof(struct sctp_ulpq));
60 
61 	ulpq->asoc = asoc;
62 	skb_queue_head_init(&ulpq->reasm);
63 	skb_queue_head_init(&ulpq->lobby);
64 	ulpq->pd_mode  = 0;
65 
66 	return ulpq;
67 }
68 
69 
70 /* Flush the reassembly and ordering queues.  */
71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
72 {
73 	struct sk_buff *skb;
74 	struct sctp_ulpevent *event;
75 
76 	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
77 		event = sctp_skb2event(skb);
78 		sctp_ulpevent_free(event);
79 	}
80 
81 	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
82 		event = sctp_skb2event(skb);
83 		sctp_ulpevent_free(event);
84 	}
85 
86 }
87 
88 /* Dispose of a ulpqueue.  */
89 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
90 {
91 	sctp_ulpq_flush(ulpq);
92 }
93 
94 /* Process an incoming DATA chunk.  */
95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
96 			gfp_t gfp)
97 {
98 	struct sk_buff_head temp;
99 	struct sctp_ulpevent *event;
100 	int event_eor = 0;
101 
102 	/* Create an event from the incoming chunk. */
103 	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
104 	if (!event)
105 		return -ENOMEM;
106 
107 	/* Do reassembly if needed.  */
108 	event = sctp_ulpq_reasm(ulpq, event);
109 
110 	/* Do ordering if needed.  */
111 	if ((event) && (event->msg_flags & MSG_EOR)) {
112 		/* Create a temporary list to collect chunks on.  */
113 		skb_queue_head_init(&temp);
114 		__skb_queue_tail(&temp, sctp_event2skb(event));
115 
116 		event = sctp_ulpq_order(ulpq, event);
117 	}
118 
119 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
120 	 * very first SKB on the 'temp' list.
121 	 */
122 	if (event) {
123 		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
124 		sctp_ulpq_tail_event(ulpq, event);
125 	}
126 
127 	return event_eor;
128 }
129 
130 /* Add a new event for propagation to the ULP.  */
131 /* Clear the partial delivery mode for this socket.   Note: This
132  * assumes that no association is currently in partial delivery mode.
133  */
134 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
135 {
136 	struct sctp_sock *sp = sctp_sk(sk);
137 
138 	if (atomic_dec_and_test(&sp->pd_mode)) {
139 		/* This means there are no other associations in PD, so
140 		 * we can go ahead and clear out the lobby in one shot
141 		 */
142 		if (!skb_queue_empty(&sp->pd_lobby)) {
143 			struct list_head *list;
144 			sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
145 			list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
146 			INIT_LIST_HEAD(list);
147 			return 1;
148 		}
149 	} else {
150 		/* There are other associations in PD, so we only need to
151 		 * pull stuff out of the lobby that belongs to the
152 		 * associations that is exiting PD (all of its notifications
153 		 * are posted here).
154 		 */
155 		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
156 			struct sk_buff *skb, *tmp;
157 			struct sctp_ulpevent *event;
158 
159 			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
160 				event = sctp_skb2event(skb);
161 				if (event->asoc == asoc) {
162 					__skb_unlink(skb, &sp->pd_lobby);
163 					__skb_queue_tail(&sk->sk_receive_queue,
164 							 skb);
165 				}
166 			}
167 		}
168 	}
169 
170 	return 0;
171 }
172 
173 /* Set the pd_mode on the socket and ulpq */
174 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
175 {
176 	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
177 
178 	atomic_inc(&sp->pd_mode);
179 	ulpq->pd_mode = 1;
180 }
181 
182 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
183 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
184 {
185 	ulpq->pd_mode = 0;
186 	sctp_ulpq_reasm_drain(ulpq);
187 	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
188 }
189 
190 /* If the SKB of 'event' is on a list, it is the first such member
191  * of that list.
192  */
193 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
194 {
195 	struct sock *sk = ulpq->asoc->base.sk;
196 	struct sk_buff_head *queue, *skb_list;
197 	struct sk_buff *skb = sctp_event2skb(event);
198 	int clear_pd = 0;
199 
200 	skb_list = (struct sk_buff_head *) skb->prev;
201 
202 	/* If the socket is just going to throw this away, do not
203 	 * even try to deliver it.
204 	 */
205 	if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
206 		goto out_free;
207 
208 	if (!sctp_ulpevent_is_notification(event))
209 		sk_mark_napi_id(sk, skb);
210 
211 	/* Check if the user wishes to receive this event.  */
212 	if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
213 		goto out_free;
214 
215 	/* If we are in partial delivery mode, post to the lobby until
216 	 * partial delivery is cleared, unless, of course _this_ is
217 	 * the association the cause of the partial delivery.
218 	 */
219 
220 	if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
221 		queue = &sk->sk_receive_queue;
222 	} else {
223 		if (ulpq->pd_mode) {
224 			/* If the association is in partial delivery, we
225 			 * need to finish delivering the partially processed
226 			 * packet before passing any other data.  This is
227 			 * because we don't truly support stream interleaving.
228 			 */
229 			if ((event->msg_flags & MSG_NOTIFICATION) ||
230 			    (SCTP_DATA_NOT_FRAG ==
231 				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
232 				queue = &sctp_sk(sk)->pd_lobby;
233 			else {
234 				clear_pd = event->msg_flags & MSG_EOR;
235 				queue = &sk->sk_receive_queue;
236 			}
237 		} else {
238 			/*
239 			 * If fragment interleave is enabled, we
240 			 * can queue this to the receive queue instead
241 			 * of the lobby.
242 			 */
243 			if (sctp_sk(sk)->frag_interleave)
244 				queue = &sk->sk_receive_queue;
245 			else
246 				queue = &sctp_sk(sk)->pd_lobby;
247 		}
248 	}
249 
250 	/* If we are harvesting multiple skbs they will be
251 	 * collected on a list.
252 	 */
253 	if (skb_list)
254 		sctp_skb_list_tail(skb_list, queue);
255 	else
256 		__skb_queue_tail(queue, skb);
257 
258 	/* Did we just complete partial delivery and need to get
259 	 * rolling again?  Move pending data to the receive
260 	 * queue.
261 	 */
262 	if (clear_pd)
263 		sctp_ulpq_clear_pd(ulpq);
264 
265 	if (queue == &sk->sk_receive_queue)
266 		sk->sk_data_ready(sk);
267 	return 1;
268 
269 out_free:
270 	if (skb_list)
271 		sctp_queue_purge_ulpevents(skb_list);
272 	else
273 		sctp_ulpevent_free(event);
274 
275 	return 0;
276 }
277 
278 /* 2nd Level Abstractions */
279 
280 /* Helper function to store chunks that need to be reassembled.  */
281 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
282 					 struct sctp_ulpevent *event)
283 {
284 	struct sk_buff *pos;
285 	struct sctp_ulpevent *cevent;
286 	__u32 tsn, ctsn;
287 
288 	tsn = event->tsn;
289 
290 	/* See if it belongs at the end. */
291 	pos = skb_peek_tail(&ulpq->reasm);
292 	if (!pos) {
293 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
294 		return;
295 	}
296 
297 	/* Short circuit just dropping it at the end. */
298 	cevent = sctp_skb2event(pos);
299 	ctsn = cevent->tsn;
300 	if (TSN_lt(ctsn, tsn)) {
301 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
302 		return;
303 	}
304 
305 	/* Find the right place in this list. We store them by TSN.  */
306 	skb_queue_walk(&ulpq->reasm, pos) {
307 		cevent = sctp_skb2event(pos);
308 		ctsn = cevent->tsn;
309 
310 		if (TSN_lt(tsn, ctsn))
311 			break;
312 	}
313 
314 	/* Insert before pos. */
315 	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
316 
317 }
318 
319 /* Helper function to return an event corresponding to the reassembled
320  * datagram.
321  * This routine creates a re-assembled skb given the first and last skb's
322  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
323  * payload was fragmented on the way and ip had to reassemble them.
324  * We add the rest of skb's to the first skb's fraglist.
325  */
326 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
327 	struct sk_buff_head *queue, struct sk_buff *f_frag,
328 	struct sk_buff *l_frag)
329 {
330 	struct sk_buff *pos;
331 	struct sk_buff *new = NULL;
332 	struct sctp_ulpevent *event;
333 	struct sk_buff *pnext, *last;
334 	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
335 
336 	/* Store the pointer to the 2nd skb */
337 	if (f_frag == l_frag)
338 		pos = NULL;
339 	else
340 		pos = f_frag->next;
341 
342 	/* Get the last skb in the f_frag's frag_list if present. */
343 	for (last = list; list; last = list, list = list->next)
344 		;
345 
346 	/* Add the list of remaining fragments to the first fragments
347 	 * frag_list.
348 	 */
349 	if (last)
350 		last->next = pos;
351 	else {
352 		if (skb_cloned(f_frag)) {
353 			/* This is a cloned skb, we can't just modify
354 			 * the frag_list.  We need a new skb to do that.
355 			 * Instead of calling skb_unshare(), we'll do it
356 			 * ourselves since we need to delay the free.
357 			 */
358 			new = skb_copy(f_frag, GFP_ATOMIC);
359 			if (!new)
360 				return NULL;	/* try again later */
361 
362 			sctp_skb_set_owner_r(new, f_frag->sk);
363 
364 			skb_shinfo(new)->frag_list = pos;
365 		} else
366 			skb_shinfo(f_frag)->frag_list = pos;
367 	}
368 
369 	/* Remove the first fragment from the reassembly queue.  */
370 	__skb_unlink(f_frag, queue);
371 
372 	/* if we did unshare, then free the old skb and re-assign */
373 	if (new) {
374 		kfree_skb(f_frag);
375 		f_frag = new;
376 	}
377 
378 	while (pos) {
379 
380 		pnext = pos->next;
381 
382 		/* Update the len and data_len fields of the first fragment. */
383 		f_frag->len += pos->len;
384 		f_frag->data_len += pos->len;
385 
386 		/* Remove the fragment from the reassembly queue.  */
387 		__skb_unlink(pos, queue);
388 
389 		/* Break if we have reached the last fragment.  */
390 		if (pos == l_frag)
391 			break;
392 		pos->next = pnext;
393 		pos = pnext;
394 	}
395 
396 	event = sctp_skb2event(f_frag);
397 	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
398 
399 	return event;
400 }
401 
402 
403 /* Helper function to check if an incoming chunk has filled up the last
404  * missing fragment in a SCTP datagram and return the corresponding event.
405  */
406 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
407 {
408 	struct sk_buff *pos;
409 	struct sctp_ulpevent *cevent;
410 	struct sk_buff *first_frag = NULL;
411 	__u32 ctsn, next_tsn;
412 	struct sctp_ulpevent *retval = NULL;
413 	struct sk_buff *pd_first = NULL;
414 	struct sk_buff *pd_last = NULL;
415 	size_t pd_len = 0;
416 	struct sctp_association *asoc;
417 	u32 pd_point;
418 
419 	/* Initialized to 0 just to avoid compiler warning message.  Will
420 	 * never be used with this value. It is referenced only after it
421 	 * is set when we find the first fragment of a message.
422 	 */
423 	next_tsn = 0;
424 
425 	/* The chunks are held in the reasm queue sorted by TSN.
426 	 * Walk through the queue sequentially and look for a sequence of
427 	 * fragmented chunks that complete a datagram.
428 	 * 'first_frag' and next_tsn are reset when we find a chunk which
429 	 * is the first fragment of a datagram. Once these 2 fields are set
430 	 * we expect to find the remaining middle fragments and the last
431 	 * fragment in order. If not, first_frag is reset to NULL and we
432 	 * start the next pass when we find another first fragment.
433 	 *
434 	 * There is a potential to do partial delivery if user sets
435 	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
436 	 * to see if can do PD.
437 	 */
438 	skb_queue_walk(&ulpq->reasm, pos) {
439 		cevent = sctp_skb2event(pos);
440 		ctsn = cevent->tsn;
441 
442 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
443 		case SCTP_DATA_FIRST_FRAG:
444 			/* If this "FIRST_FRAG" is the first
445 			 * element in the queue, then count it towards
446 			 * possible PD.
447 			 */
448 			if (pos == ulpq->reasm.next) {
449 			    pd_first = pos;
450 			    pd_last = pos;
451 			    pd_len = pos->len;
452 			} else {
453 			    pd_first = NULL;
454 			    pd_last = NULL;
455 			    pd_len = 0;
456 			}
457 
458 			first_frag = pos;
459 			next_tsn = ctsn + 1;
460 			break;
461 
462 		case SCTP_DATA_MIDDLE_FRAG:
463 			if ((first_frag) && (ctsn == next_tsn)) {
464 				next_tsn++;
465 				if (pd_first) {
466 				    pd_last = pos;
467 				    pd_len += pos->len;
468 				}
469 			} else
470 				first_frag = NULL;
471 			break;
472 
473 		case SCTP_DATA_LAST_FRAG:
474 			if (first_frag && (ctsn == next_tsn))
475 				goto found;
476 			else
477 				first_frag = NULL;
478 			break;
479 		}
480 	}
481 
482 	asoc = ulpq->asoc;
483 	if (pd_first) {
484 		/* Make sure we can enter partial deliver.
485 		 * We can trigger partial delivery only if framgent
486 		 * interleave is set, or the socket is not already
487 		 * in  partial delivery.
488 		 */
489 		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
490 		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
491 			goto done;
492 
493 		cevent = sctp_skb2event(pd_first);
494 		pd_point = sctp_sk(asoc->base.sk)->pd_point;
495 		if (pd_point && pd_point <= pd_len) {
496 			retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
497 							     &ulpq->reasm,
498 							     pd_first,
499 							     pd_last);
500 			if (retval)
501 				sctp_ulpq_set_pd(ulpq);
502 		}
503 	}
504 done:
505 	return retval;
506 found:
507 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
508 					     &ulpq->reasm, first_frag, pos);
509 	if (retval)
510 		retval->msg_flags |= MSG_EOR;
511 	goto done;
512 }
513 
514 /* Retrieve the next set of fragments of a partial message. */
515 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
516 {
517 	struct sk_buff *pos, *last_frag, *first_frag;
518 	struct sctp_ulpevent *cevent;
519 	__u32 ctsn, next_tsn;
520 	int is_last;
521 	struct sctp_ulpevent *retval;
522 
523 	/* The chunks are held in the reasm queue sorted by TSN.
524 	 * Walk through the queue sequentially and look for the first
525 	 * sequence of fragmented chunks.
526 	 */
527 
528 	if (skb_queue_empty(&ulpq->reasm))
529 		return NULL;
530 
531 	last_frag = first_frag = NULL;
532 	retval = NULL;
533 	next_tsn = 0;
534 	is_last = 0;
535 
536 	skb_queue_walk(&ulpq->reasm, pos) {
537 		cevent = sctp_skb2event(pos);
538 		ctsn = cevent->tsn;
539 
540 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
541 		case SCTP_DATA_FIRST_FRAG:
542 			if (!first_frag)
543 				return NULL;
544 			goto done;
545 		case SCTP_DATA_MIDDLE_FRAG:
546 			if (!first_frag) {
547 				first_frag = pos;
548 				next_tsn = ctsn + 1;
549 				last_frag = pos;
550 			} else if (next_tsn == ctsn) {
551 				next_tsn++;
552 				last_frag = pos;
553 			} else
554 				goto done;
555 			break;
556 		case SCTP_DATA_LAST_FRAG:
557 			if (!first_frag)
558 				first_frag = pos;
559 			else if (ctsn != next_tsn)
560 				goto done;
561 			last_frag = pos;
562 			is_last = 1;
563 			goto done;
564 		default:
565 			return NULL;
566 		}
567 	}
568 
569 	/* We have the reassembled event. There is no need to look
570 	 * further.
571 	 */
572 done:
573 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
574 					&ulpq->reasm, first_frag, last_frag);
575 	if (retval && is_last)
576 		retval->msg_flags |= MSG_EOR;
577 
578 	return retval;
579 }
580 
581 
582 /* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
583  * need reassembling.
584  */
585 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
586 						struct sctp_ulpevent *event)
587 {
588 	struct sctp_ulpevent *retval = NULL;
589 
590 	/* Check if this is part of a fragmented message.  */
591 	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
592 		event->msg_flags |= MSG_EOR;
593 		return event;
594 	}
595 
596 	sctp_ulpq_store_reasm(ulpq, event);
597 	if (!ulpq->pd_mode)
598 		retval = sctp_ulpq_retrieve_reassembled(ulpq);
599 	else {
600 		__u32 ctsn, ctsnap;
601 
602 		/* Do not even bother unless this is the next tsn to
603 		 * be delivered.
604 		 */
605 		ctsn = event->tsn;
606 		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
607 		if (TSN_lte(ctsn, ctsnap))
608 			retval = sctp_ulpq_retrieve_partial(ulpq);
609 	}
610 
611 	return retval;
612 }
613 
614 /* Retrieve the first part (sequential fragments) for partial delivery.  */
615 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
616 {
617 	struct sk_buff *pos, *last_frag, *first_frag;
618 	struct sctp_ulpevent *cevent;
619 	__u32 ctsn, next_tsn;
620 	struct sctp_ulpevent *retval;
621 
622 	/* The chunks are held in the reasm queue sorted by TSN.
623 	 * Walk through the queue sequentially and look for a sequence of
624 	 * fragmented chunks that start a datagram.
625 	 */
626 
627 	if (skb_queue_empty(&ulpq->reasm))
628 		return NULL;
629 
630 	last_frag = first_frag = NULL;
631 	retval = NULL;
632 	next_tsn = 0;
633 
634 	skb_queue_walk(&ulpq->reasm, pos) {
635 		cevent = sctp_skb2event(pos);
636 		ctsn = cevent->tsn;
637 
638 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
639 		case SCTP_DATA_FIRST_FRAG:
640 			if (!first_frag) {
641 				first_frag = pos;
642 				next_tsn = ctsn + 1;
643 				last_frag = pos;
644 			} else
645 				goto done;
646 			break;
647 
648 		case SCTP_DATA_MIDDLE_FRAG:
649 			if (!first_frag)
650 				return NULL;
651 			if (ctsn == next_tsn) {
652 				next_tsn++;
653 				last_frag = pos;
654 			} else
655 				goto done;
656 			break;
657 
658 		case SCTP_DATA_LAST_FRAG:
659 			if (!first_frag)
660 				return NULL;
661 			else
662 				goto done;
663 			break;
664 
665 		default:
666 			return NULL;
667 		}
668 	}
669 
670 	/* We have the reassembled event. There is no need to look
671 	 * further.
672 	 */
673 done:
674 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
675 					&ulpq->reasm, first_frag, last_frag);
676 	return retval;
677 }
678 
679 /*
680  * Flush out stale fragments from the reassembly queue when processing
681  * a Forward TSN.
682  *
683  * RFC 3758, Section 3.6
684  *
685  * After receiving and processing a FORWARD TSN, the data receiver MUST
686  * take cautions in updating its re-assembly queue.  The receiver MUST
687  * remove any partially reassembled message, which is still missing one
688  * or more TSNs earlier than or equal to the new cumulative TSN point.
689  * In the event that the receiver has invoked the partial delivery API,
690  * a notification SHOULD also be generated to inform the upper layer API
691  * that the message being partially delivered will NOT be completed.
692  */
693 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
694 {
695 	struct sk_buff *pos, *tmp;
696 	struct sctp_ulpevent *event;
697 	__u32 tsn;
698 
699 	if (skb_queue_empty(&ulpq->reasm))
700 		return;
701 
702 	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
703 		event = sctp_skb2event(pos);
704 		tsn = event->tsn;
705 
706 		/* Since the entire message must be abandoned by the
707 		 * sender (item A3 in Section 3.5, RFC 3758), we can
708 		 * free all fragments on the list that are less then
709 		 * or equal to ctsn_point
710 		 */
711 		if (TSN_lte(tsn, fwd_tsn)) {
712 			__skb_unlink(pos, &ulpq->reasm);
713 			sctp_ulpevent_free(event);
714 		} else
715 			break;
716 	}
717 }
718 
719 /*
720  * Drain the reassembly queue.  If we just cleared parted delivery, it
721  * is possible that the reassembly queue will contain already reassembled
722  * messages.  Retrieve any such messages and give them to the user.
723  */
724 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
725 {
726 	struct sctp_ulpevent *event = NULL;
727 	struct sk_buff_head temp;
728 
729 	if (skb_queue_empty(&ulpq->reasm))
730 		return;
731 
732 	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
733 		/* Do ordering if needed.  */
734 		if ((event) && (event->msg_flags & MSG_EOR)) {
735 			skb_queue_head_init(&temp);
736 			__skb_queue_tail(&temp, sctp_event2skb(event));
737 
738 			event = sctp_ulpq_order(ulpq, event);
739 		}
740 
741 		/* Send event to the ULP.  'event' is the
742 		 * sctp_ulpevent for  very first SKB on the  temp' list.
743 		 */
744 		if (event)
745 			sctp_ulpq_tail_event(ulpq, event);
746 	}
747 }
748 
749 
750 /* Helper function to gather skbs that have possibly become
751  * ordered by an an incoming chunk.
752  */
753 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
754 					      struct sctp_ulpevent *event)
755 {
756 	struct sk_buff_head *event_list;
757 	struct sk_buff *pos, *tmp;
758 	struct sctp_ulpevent *cevent;
759 	struct sctp_stream *in;
760 	__u16 sid, csid, cssn;
761 
762 	sid = event->stream;
763 	in  = &ulpq->asoc->ssnmap->in;
764 
765 	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
766 
767 	/* We are holding the chunks by stream, by SSN.  */
768 	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
769 		cevent = (struct sctp_ulpevent *) pos->cb;
770 		csid = cevent->stream;
771 		cssn = cevent->ssn;
772 
773 		/* Have we gone too far?  */
774 		if (csid > sid)
775 			break;
776 
777 		/* Have we not gone far enough?  */
778 		if (csid < sid)
779 			continue;
780 
781 		if (cssn != sctp_ssn_peek(in, sid))
782 			break;
783 
784 		/* Found it, so mark in the ssnmap. */
785 		sctp_ssn_next(in, sid);
786 
787 		__skb_unlink(pos, &ulpq->lobby);
788 
789 		/* Attach all gathered skbs to the event.  */
790 		__skb_queue_tail(event_list, pos);
791 	}
792 }
793 
794 /* Helper function to store chunks needing ordering.  */
795 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
796 					   struct sctp_ulpevent *event)
797 {
798 	struct sk_buff *pos;
799 	struct sctp_ulpevent *cevent;
800 	__u16 sid, csid;
801 	__u16 ssn, cssn;
802 
803 	pos = skb_peek_tail(&ulpq->lobby);
804 	if (!pos) {
805 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
806 		return;
807 	}
808 
809 	sid = event->stream;
810 	ssn = event->ssn;
811 
812 	cevent = (struct sctp_ulpevent *) pos->cb;
813 	csid = cevent->stream;
814 	cssn = cevent->ssn;
815 	if (sid > csid) {
816 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
817 		return;
818 	}
819 
820 	if ((sid == csid) && SSN_lt(cssn, ssn)) {
821 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
822 		return;
823 	}
824 
825 	/* Find the right place in this list.  We store them by
826 	 * stream ID and then by SSN.
827 	 */
828 	skb_queue_walk(&ulpq->lobby, pos) {
829 		cevent = (struct sctp_ulpevent *) pos->cb;
830 		csid = cevent->stream;
831 		cssn = cevent->ssn;
832 
833 		if (csid > sid)
834 			break;
835 		if (csid == sid && SSN_lt(ssn, cssn))
836 			break;
837 	}
838 
839 
840 	/* Insert before pos. */
841 	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
842 }
843 
844 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
845 					     struct sctp_ulpevent *event)
846 {
847 	__u16 sid, ssn;
848 	struct sctp_stream *in;
849 
850 	/* Check if this message needs ordering.  */
851 	if (SCTP_DATA_UNORDERED & event->msg_flags)
852 		return event;
853 
854 	/* Note: The stream ID must be verified before this routine.  */
855 	sid = event->stream;
856 	ssn = event->ssn;
857 	in  = &ulpq->asoc->ssnmap->in;
858 
859 	/* Is this the expected SSN for this stream ID?  */
860 	if (ssn != sctp_ssn_peek(in, sid)) {
861 		/* We've received something out of order, so find where it
862 		 * needs to be placed.  We order by stream and then by SSN.
863 		 */
864 		sctp_ulpq_store_ordered(ulpq, event);
865 		return NULL;
866 	}
867 
868 	/* Mark that the next chunk has been found.  */
869 	sctp_ssn_next(in, sid);
870 
871 	/* Go find any other chunks that were waiting for
872 	 * ordering.
873 	 */
874 	sctp_ulpq_retrieve_ordered(ulpq, event);
875 
876 	return event;
877 }
878 
879 /* Helper function to gather skbs that have possibly become
880  * ordered by forward tsn skipping their dependencies.
881  */
882 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
883 {
884 	struct sk_buff *pos, *tmp;
885 	struct sctp_ulpevent *cevent;
886 	struct sctp_ulpevent *event;
887 	struct sctp_stream *in;
888 	struct sk_buff_head temp;
889 	struct sk_buff_head *lobby = &ulpq->lobby;
890 	__u16 csid, cssn;
891 
892 	in  = &ulpq->asoc->ssnmap->in;
893 
894 	/* We are holding the chunks by stream, by SSN.  */
895 	skb_queue_head_init(&temp);
896 	event = NULL;
897 	sctp_skb_for_each(pos, lobby, tmp) {
898 		cevent = (struct sctp_ulpevent *) pos->cb;
899 		csid = cevent->stream;
900 		cssn = cevent->ssn;
901 
902 		/* Have we gone too far?  */
903 		if (csid > sid)
904 			break;
905 
906 		/* Have we not gone far enough?  */
907 		if (csid < sid)
908 			continue;
909 
910 		/* see if this ssn has been marked by skipping */
911 		if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
912 			break;
913 
914 		__skb_unlink(pos, lobby);
915 		if (!event)
916 			/* Create a temporary list to collect chunks on.  */
917 			event = sctp_skb2event(pos);
918 
919 		/* Attach all gathered skbs to the event.  */
920 		__skb_queue_tail(&temp, pos);
921 	}
922 
923 	/* If we didn't reap any data, see if the next expected SSN
924 	 * is next on the queue and if so, use that.
925 	 */
926 	if (event == NULL && pos != (struct sk_buff *)lobby) {
927 		cevent = (struct sctp_ulpevent *) pos->cb;
928 		csid = cevent->stream;
929 		cssn = cevent->ssn;
930 
931 		if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
932 			sctp_ssn_next(in, csid);
933 			__skb_unlink(pos, lobby);
934 			__skb_queue_tail(&temp, pos);
935 			event = sctp_skb2event(pos);
936 		}
937 	}
938 
939 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
940 	 * very first SKB on the 'temp' list.
941 	 */
942 	if (event) {
943 		/* see if we have more ordered that we can deliver */
944 		sctp_ulpq_retrieve_ordered(ulpq, event);
945 		sctp_ulpq_tail_event(ulpq, event);
946 	}
947 }
948 
949 /* Skip over an SSN. This is used during the processing of
950  * Forwared TSN chunk to skip over the abandoned ordered data
951  */
952 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
953 {
954 	struct sctp_stream *in;
955 
956 	/* Note: The stream ID must be verified before this routine.  */
957 	in  = &ulpq->asoc->ssnmap->in;
958 
959 	/* Is this an old SSN?  If so ignore. */
960 	if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
961 		return;
962 
963 	/* Mark that we are no longer expecting this SSN or lower. */
964 	sctp_ssn_skip(in, sid, ssn);
965 
966 	/* Go find any other chunks that were waiting for
967 	 * ordering and deliver them if needed.
968 	 */
969 	sctp_ulpq_reap_ordered(ulpq, sid);
970 }
971 
972 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
973 		struct sk_buff_head *list, __u16 needed)
974 {
975 	__u16 freed = 0;
976 	__u32 tsn, last_tsn;
977 	struct sk_buff *skb, *flist, *last;
978 	struct sctp_ulpevent *event;
979 	struct sctp_tsnmap *tsnmap;
980 
981 	tsnmap = &ulpq->asoc->peer.tsn_map;
982 
983 	while ((skb = skb_peek_tail(list)) != NULL) {
984 		event = sctp_skb2event(skb);
985 		tsn = event->tsn;
986 
987 		/* Don't renege below the Cumulative TSN ACK Point. */
988 		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
989 			break;
990 
991 		/* Events in ordering queue may have multiple fragments
992 		 * corresponding to additional TSNs.  Sum the total
993 		 * freed space; find the last TSN.
994 		 */
995 		freed += skb_headlen(skb);
996 		flist = skb_shinfo(skb)->frag_list;
997 		for (last = flist; flist; flist = flist->next) {
998 			last = flist;
999 			freed += skb_headlen(last);
1000 		}
1001 		if (last)
1002 			last_tsn = sctp_skb2event(last)->tsn;
1003 		else
1004 			last_tsn = tsn;
1005 
1006 		/* Unlink the event, then renege all applicable TSNs. */
1007 		__skb_unlink(skb, list);
1008 		sctp_ulpevent_free(event);
1009 		while (TSN_lte(tsn, last_tsn)) {
1010 			sctp_tsnmap_renege(tsnmap, tsn);
1011 			tsn++;
1012 		}
1013 		if (freed >= needed)
1014 			return freed;
1015 	}
1016 
1017 	return freed;
1018 }
1019 
1020 /* Renege 'needed' bytes from the ordering queue. */
1021 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1022 {
1023 	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1024 }
1025 
1026 /* Renege 'needed' bytes from the reassembly queue. */
1027 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1028 {
1029 	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1030 }
1031 
1032 /* Partial deliver the first message as there is pressure on rwnd. */
1033 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
1034 				gfp_t gfp)
1035 {
1036 	struct sctp_ulpevent *event;
1037 	struct sctp_association *asoc;
1038 	struct sctp_sock *sp;
1039 	__u32 ctsn;
1040 	struct sk_buff *skb;
1041 
1042 	asoc = ulpq->asoc;
1043 	sp = sctp_sk(asoc->base.sk);
1044 
1045 	/* If the association is already in Partial Delivery mode
1046 	 * we have nothing to do.
1047 	 */
1048 	if (ulpq->pd_mode)
1049 		return;
1050 
1051 	/* Data must be at or below the Cumulative TSN ACK Point to
1052 	 * start partial delivery.
1053 	 */
1054 	skb = skb_peek(&asoc->ulpq.reasm);
1055 	if (skb != NULL) {
1056 		ctsn = sctp_skb2event(skb)->tsn;
1057 		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1058 			return;
1059 	}
1060 
1061 	/* If the user enabled fragment interleave socket option,
1062 	 * multiple associations can enter partial delivery.
1063 	 * Otherwise, we can only enter partial delivery if the
1064 	 * socket is not in partial deliver mode.
1065 	 */
1066 	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1067 		/* Is partial delivery possible?  */
1068 		event = sctp_ulpq_retrieve_first(ulpq);
1069 		/* Send event to the ULP.   */
1070 		if (event) {
1071 			sctp_ulpq_tail_event(ulpq, event);
1072 			sctp_ulpq_set_pd(ulpq);
1073 			return;
1074 		}
1075 	}
1076 }
1077 
1078 /* Renege some packets to make room for an incoming chunk.  */
1079 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1080 		      gfp_t gfp)
1081 {
1082 	struct sctp_association *asoc;
1083 	__u16 needed, freed;
1084 
1085 	asoc = ulpq->asoc;
1086 
1087 	if (chunk) {
1088 		needed = ntohs(chunk->chunk_hdr->length);
1089 		needed -= sizeof(sctp_data_chunk_t);
1090 	} else
1091 		needed = SCTP_DEFAULT_MAXWINDOW;
1092 
1093 	freed = 0;
1094 
1095 	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1096 		freed = sctp_ulpq_renege_order(ulpq, needed);
1097 		if (freed < needed) {
1098 			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1099 		}
1100 	}
1101 	/* If able to free enough room, accept this chunk. */
1102 	if (chunk && (freed >= needed)) {
1103 		int retval;
1104 		retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1105 		/*
1106 		 * Enter partial delivery if chunk has not been
1107 		 * delivered; otherwise, drain the reassembly queue.
1108 		 */
1109 		if (retval <= 0)
1110 			sctp_ulpq_partial_delivery(ulpq, gfp);
1111 		else if (retval == 1)
1112 			sctp_ulpq_reasm_drain(ulpq);
1113 	}
1114 
1115 	sk_mem_reclaim(asoc->base.sk);
1116 }
1117 
1118 
1119 
1120 /* Notify the application if an association is aborted and in
1121  * partial delivery mode.  Send up any pending received messages.
1122  */
1123 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1124 {
1125 	struct sctp_ulpevent *ev = NULL;
1126 	struct sock *sk;
1127 
1128 	if (!ulpq->pd_mode)
1129 		return;
1130 
1131 	sk = ulpq->asoc->base.sk;
1132 	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1133 				       &sctp_sk(sk)->subscribe))
1134 		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1135 					      SCTP_PARTIAL_DELIVERY_ABORTED,
1136 					      gfp);
1137 	if (ev)
1138 		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1139 
1140 	/* If there is data waiting, send it up the socket now. */
1141 	if (sctp_ulpq_clear_pd(ulpq) || ev)
1142 		sk->sk_data_ready(sk);
1143 }
1144