1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This abstraction carries sctp events to the ULP (sockets). 10 * 11 * This SCTP implementation is free software; 12 * you can redistribute it and/or modify it under the terms of 13 * the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This SCTP implementation is distributed in the hope that it 18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 19 * ************************ 20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * See the GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with GNU CC; see the file COPYING. If not, see 25 * <http://www.gnu.org/licenses/>. 26 * 27 * Please send any bug reports or fixes you make to the 28 * email address(es): 29 * lksctp developers <linux-sctp@vger.kernel.org> 30 * 31 * Written or modified by: 32 * Jon Grimm <jgrimm@us.ibm.com> 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Sridhar Samudrala <sri@us.ibm.com> 35 */ 36 37 #include <linux/slab.h> 38 #include <linux/types.h> 39 #include <linux/skbuff.h> 40 #include <net/sock.h> 41 #include <net/busy_poll.h> 42 #include <net/sctp/structs.h> 43 #include <net/sctp/sctp.h> 44 #include <net/sctp/sm.h> 45 46 /* Forward declarations for internal helpers. */ 47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 48 struct sctp_ulpevent *); 49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *, 50 struct sctp_ulpevent *); 51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 52 53 /* 1st Level Abstractions */ 54 55 /* Initialize a ULP queue from a block of memory. */ 56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, 57 struct sctp_association *asoc) 58 { 59 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 60 61 ulpq->asoc = asoc; 62 skb_queue_head_init(&ulpq->reasm); 63 skb_queue_head_init(&ulpq->lobby); 64 ulpq->pd_mode = 0; 65 66 return ulpq; 67 } 68 69 70 /* Flush the reassembly and ordering queues. */ 71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 72 { 73 struct sk_buff *skb; 74 struct sctp_ulpevent *event; 75 76 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 77 event = sctp_skb2event(skb); 78 sctp_ulpevent_free(event); 79 } 80 81 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 82 event = sctp_skb2event(skb); 83 sctp_ulpevent_free(event); 84 } 85 86 } 87 88 /* Dispose of a ulpqueue. */ 89 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 90 { 91 sctp_ulpq_flush(ulpq); 92 } 93 94 /* Process an incoming DATA chunk. */ 95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 96 gfp_t gfp) 97 { 98 struct sk_buff_head temp; 99 struct sctp_ulpevent *event; 100 int event_eor = 0; 101 102 /* Create an event from the incoming chunk. */ 103 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 104 if (!event) 105 return -ENOMEM; 106 107 /* Do reassembly if needed. */ 108 event = sctp_ulpq_reasm(ulpq, event); 109 110 /* Do ordering if needed. */ 111 if ((event) && (event->msg_flags & MSG_EOR)) { 112 /* Create a temporary list to collect chunks on. */ 113 skb_queue_head_init(&temp); 114 __skb_queue_tail(&temp, sctp_event2skb(event)); 115 116 event = sctp_ulpq_order(ulpq, event); 117 } 118 119 /* Send event to the ULP. 'event' is the sctp_ulpevent for 120 * very first SKB on the 'temp' list. 121 */ 122 if (event) { 123 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 124 sctp_ulpq_tail_event(ulpq, event); 125 } 126 127 return event_eor; 128 } 129 130 /* Add a new event for propagation to the ULP. */ 131 /* Clear the partial delivery mode for this socket. Note: This 132 * assumes that no association is currently in partial delivery mode. 133 */ 134 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 135 { 136 struct sctp_sock *sp = sctp_sk(sk); 137 138 if (atomic_dec_and_test(&sp->pd_mode)) { 139 /* This means there are no other associations in PD, so 140 * we can go ahead and clear out the lobby in one shot 141 */ 142 if (!skb_queue_empty(&sp->pd_lobby)) { 143 struct list_head *list; 144 sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue); 145 list = (struct list_head *)&sctp_sk(sk)->pd_lobby; 146 INIT_LIST_HEAD(list); 147 return 1; 148 } 149 } else { 150 /* There are other associations in PD, so we only need to 151 * pull stuff out of the lobby that belongs to the 152 * associations that is exiting PD (all of its notifications 153 * are posted here). 154 */ 155 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 156 struct sk_buff *skb, *tmp; 157 struct sctp_ulpevent *event; 158 159 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 160 event = sctp_skb2event(skb); 161 if (event->asoc == asoc) { 162 __skb_unlink(skb, &sp->pd_lobby); 163 __skb_queue_tail(&sk->sk_receive_queue, 164 skb); 165 } 166 } 167 } 168 } 169 170 return 0; 171 } 172 173 /* Set the pd_mode on the socket and ulpq */ 174 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 175 { 176 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 177 178 atomic_inc(&sp->pd_mode); 179 ulpq->pd_mode = 1; 180 } 181 182 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 183 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 184 { 185 ulpq->pd_mode = 0; 186 sctp_ulpq_reasm_drain(ulpq); 187 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 188 } 189 190 /* If the SKB of 'event' is on a list, it is the first such member 191 * of that list. 192 */ 193 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event) 194 { 195 struct sock *sk = ulpq->asoc->base.sk; 196 struct sk_buff_head *queue, *skb_list; 197 struct sk_buff *skb = sctp_event2skb(event); 198 int clear_pd = 0; 199 200 skb_list = (struct sk_buff_head *) skb->prev; 201 202 /* If the socket is just going to throw this away, do not 203 * even try to deliver it. 204 */ 205 if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN)) 206 goto out_free; 207 208 if (!sctp_ulpevent_is_notification(event)) 209 sk_mark_napi_id(sk, skb); 210 211 /* Check if the user wishes to receive this event. */ 212 if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe)) 213 goto out_free; 214 215 /* If we are in partial delivery mode, post to the lobby until 216 * partial delivery is cleared, unless, of course _this_ is 217 * the association the cause of the partial delivery. 218 */ 219 220 if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) { 221 queue = &sk->sk_receive_queue; 222 } else { 223 if (ulpq->pd_mode) { 224 /* If the association is in partial delivery, we 225 * need to finish delivering the partially processed 226 * packet before passing any other data. This is 227 * because we don't truly support stream interleaving. 228 */ 229 if ((event->msg_flags & MSG_NOTIFICATION) || 230 (SCTP_DATA_NOT_FRAG == 231 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 232 queue = &sctp_sk(sk)->pd_lobby; 233 else { 234 clear_pd = event->msg_flags & MSG_EOR; 235 queue = &sk->sk_receive_queue; 236 } 237 } else { 238 /* 239 * If fragment interleave is enabled, we 240 * can queue this to the receive queue instead 241 * of the lobby. 242 */ 243 if (sctp_sk(sk)->frag_interleave) 244 queue = &sk->sk_receive_queue; 245 else 246 queue = &sctp_sk(sk)->pd_lobby; 247 } 248 } 249 250 /* If we are harvesting multiple skbs they will be 251 * collected on a list. 252 */ 253 if (skb_list) 254 sctp_skb_list_tail(skb_list, queue); 255 else 256 __skb_queue_tail(queue, skb); 257 258 /* Did we just complete partial delivery and need to get 259 * rolling again? Move pending data to the receive 260 * queue. 261 */ 262 if (clear_pd) 263 sctp_ulpq_clear_pd(ulpq); 264 265 if (queue == &sk->sk_receive_queue) 266 sk->sk_data_ready(sk); 267 return 1; 268 269 out_free: 270 if (skb_list) 271 sctp_queue_purge_ulpevents(skb_list); 272 else 273 sctp_ulpevent_free(event); 274 275 return 0; 276 } 277 278 /* 2nd Level Abstractions */ 279 280 /* Helper function to store chunks that need to be reassembled. */ 281 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 282 struct sctp_ulpevent *event) 283 { 284 struct sk_buff *pos; 285 struct sctp_ulpevent *cevent; 286 __u32 tsn, ctsn; 287 288 tsn = event->tsn; 289 290 /* See if it belongs at the end. */ 291 pos = skb_peek_tail(&ulpq->reasm); 292 if (!pos) { 293 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 294 return; 295 } 296 297 /* Short circuit just dropping it at the end. */ 298 cevent = sctp_skb2event(pos); 299 ctsn = cevent->tsn; 300 if (TSN_lt(ctsn, tsn)) { 301 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 302 return; 303 } 304 305 /* Find the right place in this list. We store them by TSN. */ 306 skb_queue_walk(&ulpq->reasm, pos) { 307 cevent = sctp_skb2event(pos); 308 ctsn = cevent->tsn; 309 310 if (TSN_lt(tsn, ctsn)) 311 break; 312 } 313 314 /* Insert before pos. */ 315 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 316 317 } 318 319 /* Helper function to return an event corresponding to the reassembled 320 * datagram. 321 * This routine creates a re-assembled skb given the first and last skb's 322 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 323 * payload was fragmented on the way and ip had to reassemble them. 324 * We add the rest of skb's to the first skb's fraglist. 325 */ 326 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 327 struct sk_buff_head *queue, struct sk_buff *f_frag, 328 struct sk_buff *l_frag) 329 { 330 struct sk_buff *pos; 331 struct sk_buff *new = NULL; 332 struct sctp_ulpevent *event; 333 struct sk_buff *pnext, *last; 334 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 335 336 /* Store the pointer to the 2nd skb */ 337 if (f_frag == l_frag) 338 pos = NULL; 339 else 340 pos = f_frag->next; 341 342 /* Get the last skb in the f_frag's frag_list if present. */ 343 for (last = list; list; last = list, list = list->next) 344 ; 345 346 /* Add the list of remaining fragments to the first fragments 347 * frag_list. 348 */ 349 if (last) 350 last->next = pos; 351 else { 352 if (skb_cloned(f_frag)) { 353 /* This is a cloned skb, we can't just modify 354 * the frag_list. We need a new skb to do that. 355 * Instead of calling skb_unshare(), we'll do it 356 * ourselves since we need to delay the free. 357 */ 358 new = skb_copy(f_frag, GFP_ATOMIC); 359 if (!new) 360 return NULL; /* try again later */ 361 362 sctp_skb_set_owner_r(new, f_frag->sk); 363 364 skb_shinfo(new)->frag_list = pos; 365 } else 366 skb_shinfo(f_frag)->frag_list = pos; 367 } 368 369 /* Remove the first fragment from the reassembly queue. */ 370 __skb_unlink(f_frag, queue); 371 372 /* if we did unshare, then free the old skb and re-assign */ 373 if (new) { 374 kfree_skb(f_frag); 375 f_frag = new; 376 } 377 378 while (pos) { 379 380 pnext = pos->next; 381 382 /* Update the len and data_len fields of the first fragment. */ 383 f_frag->len += pos->len; 384 f_frag->data_len += pos->len; 385 386 /* Remove the fragment from the reassembly queue. */ 387 __skb_unlink(pos, queue); 388 389 /* Break if we have reached the last fragment. */ 390 if (pos == l_frag) 391 break; 392 pos->next = pnext; 393 pos = pnext; 394 } 395 396 event = sctp_skb2event(f_frag); 397 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 398 399 return event; 400 } 401 402 403 /* Helper function to check if an incoming chunk has filled up the last 404 * missing fragment in a SCTP datagram and return the corresponding event. 405 */ 406 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 407 { 408 struct sk_buff *pos; 409 struct sctp_ulpevent *cevent; 410 struct sk_buff *first_frag = NULL; 411 __u32 ctsn, next_tsn; 412 struct sctp_ulpevent *retval = NULL; 413 struct sk_buff *pd_first = NULL; 414 struct sk_buff *pd_last = NULL; 415 size_t pd_len = 0; 416 struct sctp_association *asoc; 417 u32 pd_point; 418 419 /* Initialized to 0 just to avoid compiler warning message. Will 420 * never be used with this value. It is referenced only after it 421 * is set when we find the first fragment of a message. 422 */ 423 next_tsn = 0; 424 425 /* The chunks are held in the reasm queue sorted by TSN. 426 * Walk through the queue sequentially and look for a sequence of 427 * fragmented chunks that complete a datagram. 428 * 'first_frag' and next_tsn are reset when we find a chunk which 429 * is the first fragment of a datagram. Once these 2 fields are set 430 * we expect to find the remaining middle fragments and the last 431 * fragment in order. If not, first_frag is reset to NULL and we 432 * start the next pass when we find another first fragment. 433 * 434 * There is a potential to do partial delivery if user sets 435 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 436 * to see if can do PD. 437 */ 438 skb_queue_walk(&ulpq->reasm, pos) { 439 cevent = sctp_skb2event(pos); 440 ctsn = cevent->tsn; 441 442 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 443 case SCTP_DATA_FIRST_FRAG: 444 /* If this "FIRST_FRAG" is the first 445 * element in the queue, then count it towards 446 * possible PD. 447 */ 448 if (pos == ulpq->reasm.next) { 449 pd_first = pos; 450 pd_last = pos; 451 pd_len = pos->len; 452 } else { 453 pd_first = NULL; 454 pd_last = NULL; 455 pd_len = 0; 456 } 457 458 first_frag = pos; 459 next_tsn = ctsn + 1; 460 break; 461 462 case SCTP_DATA_MIDDLE_FRAG: 463 if ((first_frag) && (ctsn == next_tsn)) { 464 next_tsn++; 465 if (pd_first) { 466 pd_last = pos; 467 pd_len += pos->len; 468 } 469 } else 470 first_frag = NULL; 471 break; 472 473 case SCTP_DATA_LAST_FRAG: 474 if (first_frag && (ctsn == next_tsn)) 475 goto found; 476 else 477 first_frag = NULL; 478 break; 479 } 480 } 481 482 asoc = ulpq->asoc; 483 if (pd_first) { 484 /* Make sure we can enter partial deliver. 485 * We can trigger partial delivery only if framgent 486 * interleave is set, or the socket is not already 487 * in partial delivery. 488 */ 489 if (!sctp_sk(asoc->base.sk)->frag_interleave && 490 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 491 goto done; 492 493 cevent = sctp_skb2event(pd_first); 494 pd_point = sctp_sk(asoc->base.sk)->pd_point; 495 if (pd_point && pd_point <= pd_len) { 496 retval = sctp_make_reassembled_event(sock_net(asoc->base.sk), 497 &ulpq->reasm, 498 pd_first, 499 pd_last); 500 if (retval) 501 sctp_ulpq_set_pd(ulpq); 502 } 503 } 504 done: 505 return retval; 506 found: 507 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 508 &ulpq->reasm, first_frag, pos); 509 if (retval) 510 retval->msg_flags |= MSG_EOR; 511 goto done; 512 } 513 514 /* Retrieve the next set of fragments of a partial message. */ 515 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 516 { 517 struct sk_buff *pos, *last_frag, *first_frag; 518 struct sctp_ulpevent *cevent; 519 __u32 ctsn, next_tsn; 520 int is_last; 521 struct sctp_ulpevent *retval; 522 523 /* The chunks are held in the reasm queue sorted by TSN. 524 * Walk through the queue sequentially and look for the first 525 * sequence of fragmented chunks. 526 */ 527 528 if (skb_queue_empty(&ulpq->reasm)) 529 return NULL; 530 531 last_frag = first_frag = NULL; 532 retval = NULL; 533 next_tsn = 0; 534 is_last = 0; 535 536 skb_queue_walk(&ulpq->reasm, pos) { 537 cevent = sctp_skb2event(pos); 538 ctsn = cevent->tsn; 539 540 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 541 case SCTP_DATA_FIRST_FRAG: 542 if (!first_frag) 543 return NULL; 544 goto done; 545 case SCTP_DATA_MIDDLE_FRAG: 546 if (!first_frag) { 547 first_frag = pos; 548 next_tsn = ctsn + 1; 549 last_frag = pos; 550 } else if (next_tsn == ctsn) { 551 next_tsn++; 552 last_frag = pos; 553 } else 554 goto done; 555 break; 556 case SCTP_DATA_LAST_FRAG: 557 if (!first_frag) 558 first_frag = pos; 559 else if (ctsn != next_tsn) 560 goto done; 561 last_frag = pos; 562 is_last = 1; 563 goto done; 564 default: 565 return NULL; 566 } 567 } 568 569 /* We have the reassembled event. There is no need to look 570 * further. 571 */ 572 done: 573 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 574 &ulpq->reasm, first_frag, last_frag); 575 if (retval && is_last) 576 retval->msg_flags |= MSG_EOR; 577 578 return retval; 579 } 580 581 582 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 583 * need reassembling. 584 */ 585 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 586 struct sctp_ulpevent *event) 587 { 588 struct sctp_ulpevent *retval = NULL; 589 590 /* Check if this is part of a fragmented message. */ 591 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 592 event->msg_flags |= MSG_EOR; 593 return event; 594 } 595 596 sctp_ulpq_store_reasm(ulpq, event); 597 if (!ulpq->pd_mode) 598 retval = sctp_ulpq_retrieve_reassembled(ulpq); 599 else { 600 __u32 ctsn, ctsnap; 601 602 /* Do not even bother unless this is the next tsn to 603 * be delivered. 604 */ 605 ctsn = event->tsn; 606 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 607 if (TSN_lte(ctsn, ctsnap)) 608 retval = sctp_ulpq_retrieve_partial(ulpq); 609 } 610 611 return retval; 612 } 613 614 /* Retrieve the first part (sequential fragments) for partial delivery. */ 615 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 616 { 617 struct sk_buff *pos, *last_frag, *first_frag; 618 struct sctp_ulpevent *cevent; 619 __u32 ctsn, next_tsn; 620 struct sctp_ulpevent *retval; 621 622 /* The chunks are held in the reasm queue sorted by TSN. 623 * Walk through the queue sequentially and look for a sequence of 624 * fragmented chunks that start a datagram. 625 */ 626 627 if (skb_queue_empty(&ulpq->reasm)) 628 return NULL; 629 630 last_frag = first_frag = NULL; 631 retval = NULL; 632 next_tsn = 0; 633 634 skb_queue_walk(&ulpq->reasm, pos) { 635 cevent = sctp_skb2event(pos); 636 ctsn = cevent->tsn; 637 638 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 639 case SCTP_DATA_FIRST_FRAG: 640 if (!first_frag) { 641 first_frag = pos; 642 next_tsn = ctsn + 1; 643 last_frag = pos; 644 } else 645 goto done; 646 break; 647 648 case SCTP_DATA_MIDDLE_FRAG: 649 if (!first_frag) 650 return NULL; 651 if (ctsn == next_tsn) { 652 next_tsn++; 653 last_frag = pos; 654 } else 655 goto done; 656 break; 657 658 case SCTP_DATA_LAST_FRAG: 659 if (!first_frag) 660 return NULL; 661 else 662 goto done; 663 break; 664 665 default: 666 return NULL; 667 } 668 } 669 670 /* We have the reassembled event. There is no need to look 671 * further. 672 */ 673 done: 674 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 675 &ulpq->reasm, first_frag, last_frag); 676 return retval; 677 } 678 679 /* 680 * Flush out stale fragments from the reassembly queue when processing 681 * a Forward TSN. 682 * 683 * RFC 3758, Section 3.6 684 * 685 * After receiving and processing a FORWARD TSN, the data receiver MUST 686 * take cautions in updating its re-assembly queue. The receiver MUST 687 * remove any partially reassembled message, which is still missing one 688 * or more TSNs earlier than or equal to the new cumulative TSN point. 689 * In the event that the receiver has invoked the partial delivery API, 690 * a notification SHOULD also be generated to inform the upper layer API 691 * that the message being partially delivered will NOT be completed. 692 */ 693 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 694 { 695 struct sk_buff *pos, *tmp; 696 struct sctp_ulpevent *event; 697 __u32 tsn; 698 699 if (skb_queue_empty(&ulpq->reasm)) 700 return; 701 702 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 703 event = sctp_skb2event(pos); 704 tsn = event->tsn; 705 706 /* Since the entire message must be abandoned by the 707 * sender (item A3 in Section 3.5, RFC 3758), we can 708 * free all fragments on the list that are less then 709 * or equal to ctsn_point 710 */ 711 if (TSN_lte(tsn, fwd_tsn)) { 712 __skb_unlink(pos, &ulpq->reasm); 713 sctp_ulpevent_free(event); 714 } else 715 break; 716 } 717 } 718 719 /* 720 * Drain the reassembly queue. If we just cleared parted delivery, it 721 * is possible that the reassembly queue will contain already reassembled 722 * messages. Retrieve any such messages and give them to the user. 723 */ 724 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 725 { 726 struct sctp_ulpevent *event = NULL; 727 struct sk_buff_head temp; 728 729 if (skb_queue_empty(&ulpq->reasm)) 730 return; 731 732 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 733 /* Do ordering if needed. */ 734 if ((event) && (event->msg_flags & MSG_EOR)) { 735 skb_queue_head_init(&temp); 736 __skb_queue_tail(&temp, sctp_event2skb(event)); 737 738 event = sctp_ulpq_order(ulpq, event); 739 } 740 741 /* Send event to the ULP. 'event' is the 742 * sctp_ulpevent for very first SKB on the temp' list. 743 */ 744 if (event) 745 sctp_ulpq_tail_event(ulpq, event); 746 } 747 } 748 749 750 /* Helper function to gather skbs that have possibly become 751 * ordered by an an incoming chunk. 752 */ 753 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 754 struct sctp_ulpevent *event) 755 { 756 struct sk_buff_head *event_list; 757 struct sk_buff *pos, *tmp; 758 struct sctp_ulpevent *cevent; 759 struct sctp_stream *in; 760 __u16 sid, csid, cssn; 761 762 sid = event->stream; 763 in = &ulpq->asoc->ssnmap->in; 764 765 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 766 767 /* We are holding the chunks by stream, by SSN. */ 768 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 769 cevent = (struct sctp_ulpevent *) pos->cb; 770 csid = cevent->stream; 771 cssn = cevent->ssn; 772 773 /* Have we gone too far? */ 774 if (csid > sid) 775 break; 776 777 /* Have we not gone far enough? */ 778 if (csid < sid) 779 continue; 780 781 if (cssn != sctp_ssn_peek(in, sid)) 782 break; 783 784 /* Found it, so mark in the ssnmap. */ 785 sctp_ssn_next(in, sid); 786 787 __skb_unlink(pos, &ulpq->lobby); 788 789 /* Attach all gathered skbs to the event. */ 790 __skb_queue_tail(event_list, pos); 791 } 792 } 793 794 /* Helper function to store chunks needing ordering. */ 795 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 796 struct sctp_ulpevent *event) 797 { 798 struct sk_buff *pos; 799 struct sctp_ulpevent *cevent; 800 __u16 sid, csid; 801 __u16 ssn, cssn; 802 803 pos = skb_peek_tail(&ulpq->lobby); 804 if (!pos) { 805 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 806 return; 807 } 808 809 sid = event->stream; 810 ssn = event->ssn; 811 812 cevent = (struct sctp_ulpevent *) pos->cb; 813 csid = cevent->stream; 814 cssn = cevent->ssn; 815 if (sid > csid) { 816 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 817 return; 818 } 819 820 if ((sid == csid) && SSN_lt(cssn, ssn)) { 821 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 822 return; 823 } 824 825 /* Find the right place in this list. We store them by 826 * stream ID and then by SSN. 827 */ 828 skb_queue_walk(&ulpq->lobby, pos) { 829 cevent = (struct sctp_ulpevent *) pos->cb; 830 csid = cevent->stream; 831 cssn = cevent->ssn; 832 833 if (csid > sid) 834 break; 835 if (csid == sid && SSN_lt(ssn, cssn)) 836 break; 837 } 838 839 840 /* Insert before pos. */ 841 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 842 } 843 844 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 845 struct sctp_ulpevent *event) 846 { 847 __u16 sid, ssn; 848 struct sctp_stream *in; 849 850 /* Check if this message needs ordering. */ 851 if (SCTP_DATA_UNORDERED & event->msg_flags) 852 return event; 853 854 /* Note: The stream ID must be verified before this routine. */ 855 sid = event->stream; 856 ssn = event->ssn; 857 in = &ulpq->asoc->ssnmap->in; 858 859 /* Is this the expected SSN for this stream ID? */ 860 if (ssn != sctp_ssn_peek(in, sid)) { 861 /* We've received something out of order, so find where it 862 * needs to be placed. We order by stream and then by SSN. 863 */ 864 sctp_ulpq_store_ordered(ulpq, event); 865 return NULL; 866 } 867 868 /* Mark that the next chunk has been found. */ 869 sctp_ssn_next(in, sid); 870 871 /* Go find any other chunks that were waiting for 872 * ordering. 873 */ 874 sctp_ulpq_retrieve_ordered(ulpq, event); 875 876 return event; 877 } 878 879 /* Helper function to gather skbs that have possibly become 880 * ordered by forward tsn skipping their dependencies. 881 */ 882 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 883 { 884 struct sk_buff *pos, *tmp; 885 struct sctp_ulpevent *cevent; 886 struct sctp_ulpevent *event; 887 struct sctp_stream *in; 888 struct sk_buff_head temp; 889 struct sk_buff_head *lobby = &ulpq->lobby; 890 __u16 csid, cssn; 891 892 in = &ulpq->asoc->ssnmap->in; 893 894 /* We are holding the chunks by stream, by SSN. */ 895 skb_queue_head_init(&temp); 896 event = NULL; 897 sctp_skb_for_each(pos, lobby, tmp) { 898 cevent = (struct sctp_ulpevent *) pos->cb; 899 csid = cevent->stream; 900 cssn = cevent->ssn; 901 902 /* Have we gone too far? */ 903 if (csid > sid) 904 break; 905 906 /* Have we not gone far enough? */ 907 if (csid < sid) 908 continue; 909 910 /* see if this ssn has been marked by skipping */ 911 if (!SSN_lt(cssn, sctp_ssn_peek(in, csid))) 912 break; 913 914 __skb_unlink(pos, lobby); 915 if (!event) 916 /* Create a temporary list to collect chunks on. */ 917 event = sctp_skb2event(pos); 918 919 /* Attach all gathered skbs to the event. */ 920 __skb_queue_tail(&temp, pos); 921 } 922 923 /* If we didn't reap any data, see if the next expected SSN 924 * is next on the queue and if so, use that. 925 */ 926 if (event == NULL && pos != (struct sk_buff *)lobby) { 927 cevent = (struct sctp_ulpevent *) pos->cb; 928 csid = cevent->stream; 929 cssn = cevent->ssn; 930 931 if (csid == sid && cssn == sctp_ssn_peek(in, csid)) { 932 sctp_ssn_next(in, csid); 933 __skb_unlink(pos, lobby); 934 __skb_queue_tail(&temp, pos); 935 event = sctp_skb2event(pos); 936 } 937 } 938 939 /* Send event to the ULP. 'event' is the sctp_ulpevent for 940 * very first SKB on the 'temp' list. 941 */ 942 if (event) { 943 /* see if we have more ordered that we can deliver */ 944 sctp_ulpq_retrieve_ordered(ulpq, event); 945 sctp_ulpq_tail_event(ulpq, event); 946 } 947 } 948 949 /* Skip over an SSN. This is used during the processing of 950 * Forwared TSN chunk to skip over the abandoned ordered data 951 */ 952 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 953 { 954 struct sctp_stream *in; 955 956 /* Note: The stream ID must be verified before this routine. */ 957 in = &ulpq->asoc->ssnmap->in; 958 959 /* Is this an old SSN? If so ignore. */ 960 if (SSN_lt(ssn, sctp_ssn_peek(in, sid))) 961 return; 962 963 /* Mark that we are no longer expecting this SSN or lower. */ 964 sctp_ssn_skip(in, sid, ssn); 965 966 /* Go find any other chunks that were waiting for 967 * ordering and deliver them if needed. 968 */ 969 sctp_ulpq_reap_ordered(ulpq, sid); 970 } 971 972 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, 973 struct sk_buff_head *list, __u16 needed) 974 { 975 __u16 freed = 0; 976 __u32 tsn, last_tsn; 977 struct sk_buff *skb, *flist, *last; 978 struct sctp_ulpevent *event; 979 struct sctp_tsnmap *tsnmap; 980 981 tsnmap = &ulpq->asoc->peer.tsn_map; 982 983 while ((skb = skb_peek_tail(list)) != NULL) { 984 event = sctp_skb2event(skb); 985 tsn = event->tsn; 986 987 /* Don't renege below the Cumulative TSN ACK Point. */ 988 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 989 break; 990 991 /* Events in ordering queue may have multiple fragments 992 * corresponding to additional TSNs. Sum the total 993 * freed space; find the last TSN. 994 */ 995 freed += skb_headlen(skb); 996 flist = skb_shinfo(skb)->frag_list; 997 for (last = flist; flist; flist = flist->next) { 998 last = flist; 999 freed += skb_headlen(last); 1000 } 1001 if (last) 1002 last_tsn = sctp_skb2event(last)->tsn; 1003 else 1004 last_tsn = tsn; 1005 1006 /* Unlink the event, then renege all applicable TSNs. */ 1007 __skb_unlink(skb, list); 1008 sctp_ulpevent_free(event); 1009 while (TSN_lte(tsn, last_tsn)) { 1010 sctp_tsnmap_renege(tsnmap, tsn); 1011 tsn++; 1012 } 1013 if (freed >= needed) 1014 return freed; 1015 } 1016 1017 return freed; 1018 } 1019 1020 /* Renege 'needed' bytes from the ordering queue. */ 1021 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1022 { 1023 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1024 } 1025 1026 /* Renege 'needed' bytes from the reassembly queue. */ 1027 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1028 { 1029 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1030 } 1031 1032 /* Partial deliver the first message as there is pressure on rwnd. */ 1033 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1034 gfp_t gfp) 1035 { 1036 struct sctp_ulpevent *event; 1037 struct sctp_association *asoc; 1038 struct sctp_sock *sp; 1039 __u32 ctsn; 1040 struct sk_buff *skb; 1041 1042 asoc = ulpq->asoc; 1043 sp = sctp_sk(asoc->base.sk); 1044 1045 /* If the association is already in Partial Delivery mode 1046 * we have nothing to do. 1047 */ 1048 if (ulpq->pd_mode) 1049 return; 1050 1051 /* Data must be at or below the Cumulative TSN ACK Point to 1052 * start partial delivery. 1053 */ 1054 skb = skb_peek(&asoc->ulpq.reasm); 1055 if (skb != NULL) { 1056 ctsn = sctp_skb2event(skb)->tsn; 1057 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1058 return; 1059 } 1060 1061 /* If the user enabled fragment interleave socket option, 1062 * multiple associations can enter partial delivery. 1063 * Otherwise, we can only enter partial delivery if the 1064 * socket is not in partial deliver mode. 1065 */ 1066 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1067 /* Is partial delivery possible? */ 1068 event = sctp_ulpq_retrieve_first(ulpq); 1069 /* Send event to the ULP. */ 1070 if (event) { 1071 sctp_ulpq_tail_event(ulpq, event); 1072 sctp_ulpq_set_pd(ulpq); 1073 return; 1074 } 1075 } 1076 } 1077 1078 /* Renege some packets to make room for an incoming chunk. */ 1079 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1080 gfp_t gfp) 1081 { 1082 struct sctp_association *asoc; 1083 __u16 needed, freed; 1084 1085 asoc = ulpq->asoc; 1086 1087 if (chunk) { 1088 needed = ntohs(chunk->chunk_hdr->length); 1089 needed -= sizeof(sctp_data_chunk_t); 1090 } else 1091 needed = SCTP_DEFAULT_MAXWINDOW; 1092 1093 freed = 0; 1094 1095 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1096 freed = sctp_ulpq_renege_order(ulpq, needed); 1097 if (freed < needed) { 1098 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1099 } 1100 } 1101 /* If able to free enough room, accept this chunk. */ 1102 if (chunk && (freed >= needed)) { 1103 int retval; 1104 retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1105 /* 1106 * Enter partial delivery if chunk has not been 1107 * delivered; otherwise, drain the reassembly queue. 1108 */ 1109 if (retval <= 0) 1110 sctp_ulpq_partial_delivery(ulpq, gfp); 1111 else if (retval == 1) 1112 sctp_ulpq_reasm_drain(ulpq); 1113 } 1114 1115 sk_mem_reclaim(asoc->base.sk); 1116 } 1117 1118 1119 1120 /* Notify the application if an association is aborted and in 1121 * partial delivery mode. Send up any pending received messages. 1122 */ 1123 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1124 { 1125 struct sctp_ulpevent *ev = NULL; 1126 struct sock *sk; 1127 1128 if (!ulpq->pd_mode) 1129 return; 1130 1131 sk = ulpq->asoc->base.sk; 1132 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT, 1133 &sctp_sk(sk)->subscribe)) 1134 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1135 SCTP_PARTIAL_DELIVERY_ABORTED, 1136 gfp); 1137 if (ev) 1138 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1139 1140 /* If there is data waiting, send it up the socket now. */ 1141 if (sctp_ulpq_clear_pd(ulpq) || ev) 1142 sk->sk_data_ready(sk); 1143 } 1144