xref: /openbmc/linux/net/sctp/ulpqueue.c (revision a06c488d)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  *                 ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING.  If not, see
25  * <http://www.gnu.org/licenses/>.
26  *
27  * Please send any bug reports or fixes you make to the
28  * email address(es):
29  *    lksctp developers <linux-sctp@vger.kernel.org>
30  *
31  * Written or modified by:
32  *    Jon Grimm             <jgrimm@us.ibm.com>
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Sridhar Samudrala     <sri@us.ibm.com>
35  */
36 
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/busy_poll.h>
42 #include <net/sctp/structs.h>
43 #include <net/sctp/sctp.h>
44 #include <net/sctp/sm.h>
45 
46 /* Forward declarations for internal helpers.  */
47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
48 					      struct sctp_ulpevent *);
49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *,
50 					      struct sctp_ulpevent *);
51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
52 
53 /* 1st Level Abstractions */
54 
55 /* Initialize a ULP queue from a block of memory.  */
56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
57 				 struct sctp_association *asoc)
58 {
59 	memset(ulpq, 0, sizeof(struct sctp_ulpq));
60 
61 	ulpq->asoc = asoc;
62 	skb_queue_head_init(&ulpq->reasm);
63 	skb_queue_head_init(&ulpq->lobby);
64 	ulpq->pd_mode  = 0;
65 
66 	return ulpq;
67 }
68 
69 
70 /* Flush the reassembly and ordering queues.  */
71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
72 {
73 	struct sk_buff *skb;
74 	struct sctp_ulpevent *event;
75 
76 	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
77 		event = sctp_skb2event(skb);
78 		sctp_ulpevent_free(event);
79 	}
80 
81 	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
82 		event = sctp_skb2event(skb);
83 		sctp_ulpevent_free(event);
84 	}
85 
86 }
87 
88 /* Dispose of a ulpqueue.  */
89 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
90 {
91 	sctp_ulpq_flush(ulpq);
92 }
93 
94 /* Process an incoming DATA chunk.  */
95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
96 			gfp_t gfp)
97 {
98 	struct sk_buff_head temp;
99 	struct sctp_ulpevent *event;
100 	int event_eor = 0;
101 
102 	/* Create an event from the incoming chunk. */
103 	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
104 	if (!event)
105 		return -ENOMEM;
106 
107 	/* Do reassembly if needed.  */
108 	event = sctp_ulpq_reasm(ulpq, event);
109 
110 	/* Do ordering if needed.  */
111 	if ((event) && (event->msg_flags & MSG_EOR)) {
112 		/* Create a temporary list to collect chunks on.  */
113 		skb_queue_head_init(&temp);
114 		__skb_queue_tail(&temp, sctp_event2skb(event));
115 
116 		event = sctp_ulpq_order(ulpq, event);
117 	}
118 
119 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
120 	 * very first SKB on the 'temp' list.
121 	 */
122 	if (event) {
123 		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
124 		sctp_ulpq_tail_event(ulpq, event);
125 	}
126 
127 	return event_eor;
128 }
129 
130 /* Add a new event for propagation to the ULP.  */
131 /* Clear the partial delivery mode for this socket.   Note: This
132  * assumes that no association is currently in partial delivery mode.
133  */
134 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
135 {
136 	struct sctp_sock *sp = sctp_sk(sk);
137 
138 	if (atomic_dec_and_test(&sp->pd_mode)) {
139 		/* This means there are no other associations in PD, so
140 		 * we can go ahead and clear out the lobby in one shot
141 		 */
142 		if (!skb_queue_empty(&sp->pd_lobby)) {
143 			struct list_head *list;
144 			sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
145 			list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
146 			INIT_LIST_HEAD(list);
147 			return 1;
148 		}
149 	} else {
150 		/* There are other associations in PD, so we only need to
151 		 * pull stuff out of the lobby that belongs to the
152 		 * associations that is exiting PD (all of its notifications
153 		 * are posted here).
154 		 */
155 		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
156 			struct sk_buff *skb, *tmp;
157 			struct sctp_ulpevent *event;
158 
159 			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
160 				event = sctp_skb2event(skb);
161 				if (event->asoc == asoc) {
162 					__skb_unlink(skb, &sp->pd_lobby);
163 					__skb_queue_tail(&sk->sk_receive_queue,
164 							 skb);
165 				}
166 			}
167 		}
168 	}
169 
170 	return 0;
171 }
172 
173 /* Set the pd_mode on the socket and ulpq */
174 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
175 {
176 	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
177 
178 	atomic_inc(&sp->pd_mode);
179 	ulpq->pd_mode = 1;
180 }
181 
182 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
183 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
184 {
185 	ulpq->pd_mode = 0;
186 	sctp_ulpq_reasm_drain(ulpq);
187 	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
188 }
189 
190 /* If the SKB of 'event' is on a list, it is the first such member
191  * of that list.
192  */
193 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
194 {
195 	struct sock *sk = ulpq->asoc->base.sk;
196 	struct sk_buff_head *queue, *skb_list;
197 	struct sk_buff *skb = sctp_event2skb(event);
198 	int clear_pd = 0;
199 
200 	skb_list = (struct sk_buff_head *) skb->prev;
201 
202 	/* If the socket is just going to throw this away, do not
203 	 * even try to deliver it.
204 	 */
205 	if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
206 		goto out_free;
207 
208 	if (!sctp_ulpevent_is_notification(event)) {
209 		sk_mark_napi_id(sk, skb);
210 		sk_incoming_cpu_update(sk);
211 	}
212 	/* Check if the user wishes to receive this event.  */
213 	if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
214 		goto out_free;
215 
216 	/* If we are in partial delivery mode, post to the lobby until
217 	 * partial delivery is cleared, unless, of course _this_ is
218 	 * the association the cause of the partial delivery.
219 	 */
220 
221 	if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
222 		queue = &sk->sk_receive_queue;
223 	} else {
224 		if (ulpq->pd_mode) {
225 			/* If the association is in partial delivery, we
226 			 * need to finish delivering the partially processed
227 			 * packet before passing any other data.  This is
228 			 * because we don't truly support stream interleaving.
229 			 */
230 			if ((event->msg_flags & MSG_NOTIFICATION) ||
231 			    (SCTP_DATA_NOT_FRAG ==
232 				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
233 				queue = &sctp_sk(sk)->pd_lobby;
234 			else {
235 				clear_pd = event->msg_flags & MSG_EOR;
236 				queue = &sk->sk_receive_queue;
237 			}
238 		} else {
239 			/*
240 			 * If fragment interleave is enabled, we
241 			 * can queue this to the receive queue instead
242 			 * of the lobby.
243 			 */
244 			if (sctp_sk(sk)->frag_interleave)
245 				queue = &sk->sk_receive_queue;
246 			else
247 				queue = &sctp_sk(sk)->pd_lobby;
248 		}
249 	}
250 
251 	/* If we are harvesting multiple skbs they will be
252 	 * collected on a list.
253 	 */
254 	if (skb_list)
255 		sctp_skb_list_tail(skb_list, queue);
256 	else
257 		__skb_queue_tail(queue, skb);
258 
259 	/* Did we just complete partial delivery and need to get
260 	 * rolling again?  Move pending data to the receive
261 	 * queue.
262 	 */
263 	if (clear_pd)
264 		sctp_ulpq_clear_pd(ulpq);
265 
266 	if (queue == &sk->sk_receive_queue)
267 		sk->sk_data_ready(sk);
268 	return 1;
269 
270 out_free:
271 	if (skb_list)
272 		sctp_queue_purge_ulpevents(skb_list);
273 	else
274 		sctp_ulpevent_free(event);
275 
276 	return 0;
277 }
278 
279 /* 2nd Level Abstractions */
280 
281 /* Helper function to store chunks that need to be reassembled.  */
282 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
283 					 struct sctp_ulpevent *event)
284 {
285 	struct sk_buff *pos;
286 	struct sctp_ulpevent *cevent;
287 	__u32 tsn, ctsn;
288 
289 	tsn = event->tsn;
290 
291 	/* See if it belongs at the end. */
292 	pos = skb_peek_tail(&ulpq->reasm);
293 	if (!pos) {
294 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
295 		return;
296 	}
297 
298 	/* Short circuit just dropping it at the end. */
299 	cevent = sctp_skb2event(pos);
300 	ctsn = cevent->tsn;
301 	if (TSN_lt(ctsn, tsn)) {
302 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
303 		return;
304 	}
305 
306 	/* Find the right place in this list. We store them by TSN.  */
307 	skb_queue_walk(&ulpq->reasm, pos) {
308 		cevent = sctp_skb2event(pos);
309 		ctsn = cevent->tsn;
310 
311 		if (TSN_lt(tsn, ctsn))
312 			break;
313 	}
314 
315 	/* Insert before pos. */
316 	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
317 
318 }
319 
320 /* Helper function to return an event corresponding to the reassembled
321  * datagram.
322  * This routine creates a re-assembled skb given the first and last skb's
323  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
324  * payload was fragmented on the way and ip had to reassemble them.
325  * We add the rest of skb's to the first skb's fraglist.
326  */
327 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
328 	struct sk_buff_head *queue, struct sk_buff *f_frag,
329 	struct sk_buff *l_frag)
330 {
331 	struct sk_buff *pos;
332 	struct sk_buff *new = NULL;
333 	struct sctp_ulpevent *event;
334 	struct sk_buff *pnext, *last;
335 	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
336 
337 	/* Store the pointer to the 2nd skb */
338 	if (f_frag == l_frag)
339 		pos = NULL;
340 	else
341 		pos = f_frag->next;
342 
343 	/* Get the last skb in the f_frag's frag_list if present. */
344 	for (last = list; list; last = list, list = list->next)
345 		;
346 
347 	/* Add the list of remaining fragments to the first fragments
348 	 * frag_list.
349 	 */
350 	if (last)
351 		last->next = pos;
352 	else {
353 		if (skb_cloned(f_frag)) {
354 			/* This is a cloned skb, we can't just modify
355 			 * the frag_list.  We need a new skb to do that.
356 			 * Instead of calling skb_unshare(), we'll do it
357 			 * ourselves since we need to delay the free.
358 			 */
359 			new = skb_copy(f_frag, GFP_ATOMIC);
360 			if (!new)
361 				return NULL;	/* try again later */
362 
363 			sctp_skb_set_owner_r(new, f_frag->sk);
364 
365 			skb_shinfo(new)->frag_list = pos;
366 		} else
367 			skb_shinfo(f_frag)->frag_list = pos;
368 	}
369 
370 	/* Remove the first fragment from the reassembly queue.  */
371 	__skb_unlink(f_frag, queue);
372 
373 	/* if we did unshare, then free the old skb and re-assign */
374 	if (new) {
375 		kfree_skb(f_frag);
376 		f_frag = new;
377 	}
378 
379 	while (pos) {
380 
381 		pnext = pos->next;
382 
383 		/* Update the len and data_len fields of the first fragment. */
384 		f_frag->len += pos->len;
385 		f_frag->data_len += pos->len;
386 
387 		/* Remove the fragment from the reassembly queue.  */
388 		__skb_unlink(pos, queue);
389 
390 		/* Break if we have reached the last fragment.  */
391 		if (pos == l_frag)
392 			break;
393 		pos->next = pnext;
394 		pos = pnext;
395 	}
396 
397 	event = sctp_skb2event(f_frag);
398 	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
399 
400 	return event;
401 }
402 
403 
404 /* Helper function to check if an incoming chunk has filled up the last
405  * missing fragment in a SCTP datagram and return the corresponding event.
406  */
407 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
408 {
409 	struct sk_buff *pos;
410 	struct sctp_ulpevent *cevent;
411 	struct sk_buff *first_frag = NULL;
412 	__u32 ctsn, next_tsn;
413 	struct sctp_ulpevent *retval = NULL;
414 	struct sk_buff *pd_first = NULL;
415 	struct sk_buff *pd_last = NULL;
416 	size_t pd_len = 0;
417 	struct sctp_association *asoc;
418 	u32 pd_point;
419 
420 	/* Initialized to 0 just to avoid compiler warning message.  Will
421 	 * never be used with this value. It is referenced only after it
422 	 * is set when we find the first fragment of a message.
423 	 */
424 	next_tsn = 0;
425 
426 	/* The chunks are held in the reasm queue sorted by TSN.
427 	 * Walk through the queue sequentially and look for a sequence of
428 	 * fragmented chunks that complete a datagram.
429 	 * 'first_frag' and next_tsn are reset when we find a chunk which
430 	 * is the first fragment of a datagram. Once these 2 fields are set
431 	 * we expect to find the remaining middle fragments and the last
432 	 * fragment in order. If not, first_frag is reset to NULL and we
433 	 * start the next pass when we find another first fragment.
434 	 *
435 	 * There is a potential to do partial delivery if user sets
436 	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
437 	 * to see if can do PD.
438 	 */
439 	skb_queue_walk(&ulpq->reasm, pos) {
440 		cevent = sctp_skb2event(pos);
441 		ctsn = cevent->tsn;
442 
443 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
444 		case SCTP_DATA_FIRST_FRAG:
445 			/* If this "FIRST_FRAG" is the first
446 			 * element in the queue, then count it towards
447 			 * possible PD.
448 			 */
449 			if (pos == ulpq->reasm.next) {
450 			    pd_first = pos;
451 			    pd_last = pos;
452 			    pd_len = pos->len;
453 			} else {
454 			    pd_first = NULL;
455 			    pd_last = NULL;
456 			    pd_len = 0;
457 			}
458 
459 			first_frag = pos;
460 			next_tsn = ctsn + 1;
461 			break;
462 
463 		case SCTP_DATA_MIDDLE_FRAG:
464 			if ((first_frag) && (ctsn == next_tsn)) {
465 				next_tsn++;
466 				if (pd_first) {
467 				    pd_last = pos;
468 				    pd_len += pos->len;
469 				}
470 			} else
471 				first_frag = NULL;
472 			break;
473 
474 		case SCTP_DATA_LAST_FRAG:
475 			if (first_frag && (ctsn == next_tsn))
476 				goto found;
477 			else
478 				first_frag = NULL;
479 			break;
480 		}
481 	}
482 
483 	asoc = ulpq->asoc;
484 	if (pd_first) {
485 		/* Make sure we can enter partial deliver.
486 		 * We can trigger partial delivery only if framgent
487 		 * interleave is set, or the socket is not already
488 		 * in  partial delivery.
489 		 */
490 		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
491 		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
492 			goto done;
493 
494 		cevent = sctp_skb2event(pd_first);
495 		pd_point = sctp_sk(asoc->base.sk)->pd_point;
496 		if (pd_point && pd_point <= pd_len) {
497 			retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
498 							     &ulpq->reasm,
499 							     pd_first,
500 							     pd_last);
501 			if (retval)
502 				sctp_ulpq_set_pd(ulpq);
503 		}
504 	}
505 done:
506 	return retval;
507 found:
508 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
509 					     &ulpq->reasm, first_frag, pos);
510 	if (retval)
511 		retval->msg_flags |= MSG_EOR;
512 	goto done;
513 }
514 
515 /* Retrieve the next set of fragments of a partial message. */
516 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
517 {
518 	struct sk_buff *pos, *last_frag, *first_frag;
519 	struct sctp_ulpevent *cevent;
520 	__u32 ctsn, next_tsn;
521 	int is_last;
522 	struct sctp_ulpevent *retval;
523 
524 	/* The chunks are held in the reasm queue sorted by TSN.
525 	 * Walk through the queue sequentially and look for the first
526 	 * sequence of fragmented chunks.
527 	 */
528 
529 	if (skb_queue_empty(&ulpq->reasm))
530 		return NULL;
531 
532 	last_frag = first_frag = NULL;
533 	retval = NULL;
534 	next_tsn = 0;
535 	is_last = 0;
536 
537 	skb_queue_walk(&ulpq->reasm, pos) {
538 		cevent = sctp_skb2event(pos);
539 		ctsn = cevent->tsn;
540 
541 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
542 		case SCTP_DATA_FIRST_FRAG:
543 			if (!first_frag)
544 				return NULL;
545 			goto done;
546 		case SCTP_DATA_MIDDLE_FRAG:
547 			if (!first_frag) {
548 				first_frag = pos;
549 				next_tsn = ctsn + 1;
550 				last_frag = pos;
551 			} else if (next_tsn == ctsn) {
552 				next_tsn++;
553 				last_frag = pos;
554 			} else
555 				goto done;
556 			break;
557 		case SCTP_DATA_LAST_FRAG:
558 			if (!first_frag)
559 				first_frag = pos;
560 			else if (ctsn != next_tsn)
561 				goto done;
562 			last_frag = pos;
563 			is_last = 1;
564 			goto done;
565 		default:
566 			return NULL;
567 		}
568 	}
569 
570 	/* We have the reassembled event. There is no need to look
571 	 * further.
572 	 */
573 done:
574 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
575 					&ulpq->reasm, first_frag, last_frag);
576 	if (retval && is_last)
577 		retval->msg_flags |= MSG_EOR;
578 
579 	return retval;
580 }
581 
582 
583 /* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
584  * need reassembling.
585  */
586 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
587 						struct sctp_ulpevent *event)
588 {
589 	struct sctp_ulpevent *retval = NULL;
590 
591 	/* Check if this is part of a fragmented message.  */
592 	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
593 		event->msg_flags |= MSG_EOR;
594 		return event;
595 	}
596 
597 	sctp_ulpq_store_reasm(ulpq, event);
598 	if (!ulpq->pd_mode)
599 		retval = sctp_ulpq_retrieve_reassembled(ulpq);
600 	else {
601 		__u32 ctsn, ctsnap;
602 
603 		/* Do not even bother unless this is the next tsn to
604 		 * be delivered.
605 		 */
606 		ctsn = event->tsn;
607 		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
608 		if (TSN_lte(ctsn, ctsnap))
609 			retval = sctp_ulpq_retrieve_partial(ulpq);
610 	}
611 
612 	return retval;
613 }
614 
615 /* Retrieve the first part (sequential fragments) for partial delivery.  */
616 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
617 {
618 	struct sk_buff *pos, *last_frag, *first_frag;
619 	struct sctp_ulpevent *cevent;
620 	__u32 ctsn, next_tsn;
621 	struct sctp_ulpevent *retval;
622 
623 	/* The chunks are held in the reasm queue sorted by TSN.
624 	 * Walk through the queue sequentially and look for a sequence of
625 	 * fragmented chunks that start a datagram.
626 	 */
627 
628 	if (skb_queue_empty(&ulpq->reasm))
629 		return NULL;
630 
631 	last_frag = first_frag = NULL;
632 	retval = NULL;
633 	next_tsn = 0;
634 
635 	skb_queue_walk(&ulpq->reasm, pos) {
636 		cevent = sctp_skb2event(pos);
637 		ctsn = cevent->tsn;
638 
639 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
640 		case SCTP_DATA_FIRST_FRAG:
641 			if (!first_frag) {
642 				first_frag = pos;
643 				next_tsn = ctsn + 1;
644 				last_frag = pos;
645 			} else
646 				goto done;
647 			break;
648 
649 		case SCTP_DATA_MIDDLE_FRAG:
650 			if (!first_frag)
651 				return NULL;
652 			if (ctsn == next_tsn) {
653 				next_tsn++;
654 				last_frag = pos;
655 			} else
656 				goto done;
657 			break;
658 
659 		case SCTP_DATA_LAST_FRAG:
660 			if (!first_frag)
661 				return NULL;
662 			else
663 				goto done;
664 			break;
665 
666 		default:
667 			return NULL;
668 		}
669 	}
670 
671 	/* We have the reassembled event. There is no need to look
672 	 * further.
673 	 */
674 done:
675 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
676 					&ulpq->reasm, first_frag, last_frag);
677 	return retval;
678 }
679 
680 /*
681  * Flush out stale fragments from the reassembly queue when processing
682  * a Forward TSN.
683  *
684  * RFC 3758, Section 3.6
685  *
686  * After receiving and processing a FORWARD TSN, the data receiver MUST
687  * take cautions in updating its re-assembly queue.  The receiver MUST
688  * remove any partially reassembled message, which is still missing one
689  * or more TSNs earlier than or equal to the new cumulative TSN point.
690  * In the event that the receiver has invoked the partial delivery API,
691  * a notification SHOULD also be generated to inform the upper layer API
692  * that the message being partially delivered will NOT be completed.
693  */
694 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
695 {
696 	struct sk_buff *pos, *tmp;
697 	struct sctp_ulpevent *event;
698 	__u32 tsn;
699 
700 	if (skb_queue_empty(&ulpq->reasm))
701 		return;
702 
703 	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
704 		event = sctp_skb2event(pos);
705 		tsn = event->tsn;
706 
707 		/* Since the entire message must be abandoned by the
708 		 * sender (item A3 in Section 3.5, RFC 3758), we can
709 		 * free all fragments on the list that are less then
710 		 * or equal to ctsn_point
711 		 */
712 		if (TSN_lte(tsn, fwd_tsn)) {
713 			__skb_unlink(pos, &ulpq->reasm);
714 			sctp_ulpevent_free(event);
715 		} else
716 			break;
717 	}
718 }
719 
720 /*
721  * Drain the reassembly queue.  If we just cleared parted delivery, it
722  * is possible that the reassembly queue will contain already reassembled
723  * messages.  Retrieve any such messages and give them to the user.
724  */
725 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
726 {
727 	struct sctp_ulpevent *event = NULL;
728 	struct sk_buff_head temp;
729 
730 	if (skb_queue_empty(&ulpq->reasm))
731 		return;
732 
733 	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
734 		/* Do ordering if needed.  */
735 		if ((event) && (event->msg_flags & MSG_EOR)) {
736 			skb_queue_head_init(&temp);
737 			__skb_queue_tail(&temp, sctp_event2skb(event));
738 
739 			event = sctp_ulpq_order(ulpq, event);
740 		}
741 
742 		/* Send event to the ULP.  'event' is the
743 		 * sctp_ulpevent for  very first SKB on the  temp' list.
744 		 */
745 		if (event)
746 			sctp_ulpq_tail_event(ulpq, event);
747 	}
748 }
749 
750 
751 /* Helper function to gather skbs that have possibly become
752  * ordered by an an incoming chunk.
753  */
754 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
755 					      struct sctp_ulpevent *event)
756 {
757 	struct sk_buff_head *event_list;
758 	struct sk_buff *pos, *tmp;
759 	struct sctp_ulpevent *cevent;
760 	struct sctp_stream *in;
761 	__u16 sid, csid, cssn;
762 
763 	sid = event->stream;
764 	in  = &ulpq->asoc->ssnmap->in;
765 
766 	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
767 
768 	/* We are holding the chunks by stream, by SSN.  */
769 	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
770 		cevent = (struct sctp_ulpevent *) pos->cb;
771 		csid = cevent->stream;
772 		cssn = cevent->ssn;
773 
774 		/* Have we gone too far?  */
775 		if (csid > sid)
776 			break;
777 
778 		/* Have we not gone far enough?  */
779 		if (csid < sid)
780 			continue;
781 
782 		if (cssn != sctp_ssn_peek(in, sid))
783 			break;
784 
785 		/* Found it, so mark in the ssnmap. */
786 		sctp_ssn_next(in, sid);
787 
788 		__skb_unlink(pos, &ulpq->lobby);
789 
790 		/* Attach all gathered skbs to the event.  */
791 		__skb_queue_tail(event_list, pos);
792 	}
793 }
794 
795 /* Helper function to store chunks needing ordering.  */
796 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
797 					   struct sctp_ulpevent *event)
798 {
799 	struct sk_buff *pos;
800 	struct sctp_ulpevent *cevent;
801 	__u16 sid, csid;
802 	__u16 ssn, cssn;
803 
804 	pos = skb_peek_tail(&ulpq->lobby);
805 	if (!pos) {
806 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
807 		return;
808 	}
809 
810 	sid = event->stream;
811 	ssn = event->ssn;
812 
813 	cevent = (struct sctp_ulpevent *) pos->cb;
814 	csid = cevent->stream;
815 	cssn = cevent->ssn;
816 	if (sid > csid) {
817 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
818 		return;
819 	}
820 
821 	if ((sid == csid) && SSN_lt(cssn, ssn)) {
822 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
823 		return;
824 	}
825 
826 	/* Find the right place in this list.  We store them by
827 	 * stream ID and then by SSN.
828 	 */
829 	skb_queue_walk(&ulpq->lobby, pos) {
830 		cevent = (struct sctp_ulpevent *) pos->cb;
831 		csid = cevent->stream;
832 		cssn = cevent->ssn;
833 
834 		if (csid > sid)
835 			break;
836 		if (csid == sid && SSN_lt(ssn, cssn))
837 			break;
838 	}
839 
840 
841 	/* Insert before pos. */
842 	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
843 }
844 
845 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
846 					     struct sctp_ulpevent *event)
847 {
848 	__u16 sid, ssn;
849 	struct sctp_stream *in;
850 
851 	/* Check if this message needs ordering.  */
852 	if (SCTP_DATA_UNORDERED & event->msg_flags)
853 		return event;
854 
855 	/* Note: The stream ID must be verified before this routine.  */
856 	sid = event->stream;
857 	ssn = event->ssn;
858 	in  = &ulpq->asoc->ssnmap->in;
859 
860 	/* Is this the expected SSN for this stream ID?  */
861 	if (ssn != sctp_ssn_peek(in, sid)) {
862 		/* We've received something out of order, so find where it
863 		 * needs to be placed.  We order by stream and then by SSN.
864 		 */
865 		sctp_ulpq_store_ordered(ulpq, event);
866 		return NULL;
867 	}
868 
869 	/* Mark that the next chunk has been found.  */
870 	sctp_ssn_next(in, sid);
871 
872 	/* Go find any other chunks that were waiting for
873 	 * ordering.
874 	 */
875 	sctp_ulpq_retrieve_ordered(ulpq, event);
876 
877 	return event;
878 }
879 
880 /* Helper function to gather skbs that have possibly become
881  * ordered by forward tsn skipping their dependencies.
882  */
883 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
884 {
885 	struct sk_buff *pos, *tmp;
886 	struct sctp_ulpevent *cevent;
887 	struct sctp_ulpevent *event;
888 	struct sctp_stream *in;
889 	struct sk_buff_head temp;
890 	struct sk_buff_head *lobby = &ulpq->lobby;
891 	__u16 csid, cssn;
892 
893 	in  = &ulpq->asoc->ssnmap->in;
894 
895 	/* We are holding the chunks by stream, by SSN.  */
896 	skb_queue_head_init(&temp);
897 	event = NULL;
898 	sctp_skb_for_each(pos, lobby, tmp) {
899 		cevent = (struct sctp_ulpevent *) pos->cb;
900 		csid = cevent->stream;
901 		cssn = cevent->ssn;
902 
903 		/* Have we gone too far?  */
904 		if (csid > sid)
905 			break;
906 
907 		/* Have we not gone far enough?  */
908 		if (csid < sid)
909 			continue;
910 
911 		/* see if this ssn has been marked by skipping */
912 		if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
913 			break;
914 
915 		__skb_unlink(pos, lobby);
916 		if (!event)
917 			/* Create a temporary list to collect chunks on.  */
918 			event = sctp_skb2event(pos);
919 
920 		/* Attach all gathered skbs to the event.  */
921 		__skb_queue_tail(&temp, pos);
922 	}
923 
924 	/* If we didn't reap any data, see if the next expected SSN
925 	 * is next on the queue and if so, use that.
926 	 */
927 	if (event == NULL && pos != (struct sk_buff *)lobby) {
928 		cevent = (struct sctp_ulpevent *) pos->cb;
929 		csid = cevent->stream;
930 		cssn = cevent->ssn;
931 
932 		if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
933 			sctp_ssn_next(in, csid);
934 			__skb_unlink(pos, lobby);
935 			__skb_queue_tail(&temp, pos);
936 			event = sctp_skb2event(pos);
937 		}
938 	}
939 
940 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
941 	 * very first SKB on the 'temp' list.
942 	 */
943 	if (event) {
944 		/* see if we have more ordered that we can deliver */
945 		sctp_ulpq_retrieve_ordered(ulpq, event);
946 		sctp_ulpq_tail_event(ulpq, event);
947 	}
948 }
949 
950 /* Skip over an SSN. This is used during the processing of
951  * Forwared TSN chunk to skip over the abandoned ordered data
952  */
953 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
954 {
955 	struct sctp_stream *in;
956 
957 	/* Note: The stream ID must be verified before this routine.  */
958 	in  = &ulpq->asoc->ssnmap->in;
959 
960 	/* Is this an old SSN?  If so ignore. */
961 	if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
962 		return;
963 
964 	/* Mark that we are no longer expecting this SSN or lower. */
965 	sctp_ssn_skip(in, sid, ssn);
966 
967 	/* Go find any other chunks that were waiting for
968 	 * ordering and deliver them if needed.
969 	 */
970 	sctp_ulpq_reap_ordered(ulpq, sid);
971 }
972 
973 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
974 		struct sk_buff_head *list, __u16 needed)
975 {
976 	__u16 freed = 0;
977 	__u32 tsn, last_tsn;
978 	struct sk_buff *skb, *flist, *last;
979 	struct sctp_ulpevent *event;
980 	struct sctp_tsnmap *tsnmap;
981 
982 	tsnmap = &ulpq->asoc->peer.tsn_map;
983 
984 	while ((skb = skb_peek_tail(list)) != NULL) {
985 		event = sctp_skb2event(skb);
986 		tsn = event->tsn;
987 
988 		/* Don't renege below the Cumulative TSN ACK Point. */
989 		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
990 			break;
991 
992 		/* Events in ordering queue may have multiple fragments
993 		 * corresponding to additional TSNs.  Sum the total
994 		 * freed space; find the last TSN.
995 		 */
996 		freed += skb_headlen(skb);
997 		flist = skb_shinfo(skb)->frag_list;
998 		for (last = flist; flist; flist = flist->next) {
999 			last = flist;
1000 			freed += skb_headlen(last);
1001 		}
1002 		if (last)
1003 			last_tsn = sctp_skb2event(last)->tsn;
1004 		else
1005 			last_tsn = tsn;
1006 
1007 		/* Unlink the event, then renege all applicable TSNs. */
1008 		__skb_unlink(skb, list);
1009 		sctp_ulpevent_free(event);
1010 		while (TSN_lte(tsn, last_tsn)) {
1011 			sctp_tsnmap_renege(tsnmap, tsn);
1012 			tsn++;
1013 		}
1014 		if (freed >= needed)
1015 			return freed;
1016 	}
1017 
1018 	return freed;
1019 }
1020 
1021 /* Renege 'needed' bytes from the ordering queue. */
1022 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1023 {
1024 	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1025 }
1026 
1027 /* Renege 'needed' bytes from the reassembly queue. */
1028 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1029 {
1030 	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1031 }
1032 
1033 /* Partial deliver the first message as there is pressure on rwnd. */
1034 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
1035 				gfp_t gfp)
1036 {
1037 	struct sctp_ulpevent *event;
1038 	struct sctp_association *asoc;
1039 	struct sctp_sock *sp;
1040 	__u32 ctsn;
1041 	struct sk_buff *skb;
1042 
1043 	asoc = ulpq->asoc;
1044 	sp = sctp_sk(asoc->base.sk);
1045 
1046 	/* If the association is already in Partial Delivery mode
1047 	 * we have nothing to do.
1048 	 */
1049 	if (ulpq->pd_mode)
1050 		return;
1051 
1052 	/* Data must be at or below the Cumulative TSN ACK Point to
1053 	 * start partial delivery.
1054 	 */
1055 	skb = skb_peek(&asoc->ulpq.reasm);
1056 	if (skb != NULL) {
1057 		ctsn = sctp_skb2event(skb)->tsn;
1058 		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1059 			return;
1060 	}
1061 
1062 	/* If the user enabled fragment interleave socket option,
1063 	 * multiple associations can enter partial delivery.
1064 	 * Otherwise, we can only enter partial delivery if the
1065 	 * socket is not in partial deliver mode.
1066 	 */
1067 	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1068 		/* Is partial delivery possible?  */
1069 		event = sctp_ulpq_retrieve_first(ulpq);
1070 		/* Send event to the ULP.   */
1071 		if (event) {
1072 			sctp_ulpq_tail_event(ulpq, event);
1073 			sctp_ulpq_set_pd(ulpq);
1074 			return;
1075 		}
1076 	}
1077 }
1078 
1079 /* Renege some packets to make room for an incoming chunk.  */
1080 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1081 		      gfp_t gfp)
1082 {
1083 	struct sctp_association *asoc;
1084 	__u16 needed, freed;
1085 
1086 	asoc = ulpq->asoc;
1087 
1088 	if (chunk) {
1089 		needed = ntohs(chunk->chunk_hdr->length);
1090 		needed -= sizeof(sctp_data_chunk_t);
1091 	} else
1092 		needed = SCTP_DEFAULT_MAXWINDOW;
1093 
1094 	freed = 0;
1095 
1096 	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1097 		freed = sctp_ulpq_renege_order(ulpq, needed);
1098 		if (freed < needed) {
1099 			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1100 		}
1101 	}
1102 	/* If able to free enough room, accept this chunk. */
1103 	if (chunk && (freed >= needed)) {
1104 		int retval;
1105 		retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1106 		/*
1107 		 * Enter partial delivery if chunk has not been
1108 		 * delivered; otherwise, drain the reassembly queue.
1109 		 */
1110 		if (retval <= 0)
1111 			sctp_ulpq_partial_delivery(ulpq, gfp);
1112 		else if (retval == 1)
1113 			sctp_ulpq_reasm_drain(ulpq);
1114 	}
1115 
1116 	sk_mem_reclaim(asoc->base.sk);
1117 }
1118 
1119 
1120 
1121 /* Notify the application if an association is aborted and in
1122  * partial delivery mode.  Send up any pending received messages.
1123  */
1124 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1125 {
1126 	struct sctp_ulpevent *ev = NULL;
1127 	struct sock *sk;
1128 
1129 	if (!ulpq->pd_mode)
1130 		return;
1131 
1132 	sk = ulpq->asoc->base.sk;
1133 	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1134 				       &sctp_sk(sk)->subscribe))
1135 		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1136 					      SCTP_PARTIAL_DELIVERY_ABORTED,
1137 					      gfp);
1138 	if (ev)
1139 		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1140 
1141 	/* If there is data waiting, send it up the socket now. */
1142 	if (sctp_ulpq_clear_pd(ulpq) || ev)
1143 		sk->sk_data_ready(sk);
1144 }
1145