1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This abstraction carries sctp events to the ULP (sockets). 10 * 11 * This SCTP implementation is free software; 12 * you can redistribute it and/or modify it under the terms of 13 * the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This SCTP implementation is distributed in the hope that it 18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 19 * ************************ 20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * See the GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with GNU CC; see the file COPYING. If not, see 25 * <http://www.gnu.org/licenses/>. 26 * 27 * Please send any bug reports or fixes you make to the 28 * email address(es): 29 * lksctp developers <linux-sctp@vger.kernel.org> 30 * 31 * Written or modified by: 32 * Jon Grimm <jgrimm@us.ibm.com> 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Sridhar Samudrala <sri@us.ibm.com> 35 */ 36 37 #include <linux/slab.h> 38 #include <linux/types.h> 39 #include <linux/skbuff.h> 40 #include <net/sock.h> 41 #include <net/busy_poll.h> 42 #include <net/sctp/structs.h> 43 #include <net/sctp/sctp.h> 44 #include <net/sctp/sm.h> 45 46 /* Forward declarations for internal helpers. */ 47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 48 struct sctp_ulpevent *); 49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *, 50 struct sctp_ulpevent *); 51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 52 53 /* 1st Level Abstractions */ 54 55 /* Initialize a ULP queue from a block of memory. */ 56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, 57 struct sctp_association *asoc) 58 { 59 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 60 61 ulpq->asoc = asoc; 62 skb_queue_head_init(&ulpq->reasm); 63 skb_queue_head_init(&ulpq->lobby); 64 ulpq->pd_mode = 0; 65 66 return ulpq; 67 } 68 69 70 /* Flush the reassembly and ordering queues. */ 71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 72 { 73 struct sk_buff *skb; 74 struct sctp_ulpevent *event; 75 76 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 77 event = sctp_skb2event(skb); 78 sctp_ulpevent_free(event); 79 } 80 81 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 82 event = sctp_skb2event(skb); 83 sctp_ulpevent_free(event); 84 } 85 86 } 87 88 /* Dispose of a ulpqueue. */ 89 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 90 { 91 sctp_ulpq_flush(ulpq); 92 } 93 94 /* Process an incoming DATA chunk. */ 95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 96 gfp_t gfp) 97 { 98 struct sk_buff_head temp; 99 struct sctp_ulpevent *event; 100 int event_eor = 0; 101 102 /* Create an event from the incoming chunk. */ 103 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 104 if (!event) 105 return -ENOMEM; 106 107 /* Do reassembly if needed. */ 108 event = sctp_ulpq_reasm(ulpq, event); 109 110 /* Do ordering if needed. */ 111 if ((event) && (event->msg_flags & MSG_EOR)) { 112 /* Create a temporary list to collect chunks on. */ 113 skb_queue_head_init(&temp); 114 __skb_queue_tail(&temp, sctp_event2skb(event)); 115 116 event = sctp_ulpq_order(ulpq, event); 117 } 118 119 /* Send event to the ULP. 'event' is the sctp_ulpevent for 120 * very first SKB on the 'temp' list. 121 */ 122 if (event) { 123 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 124 sctp_ulpq_tail_event(ulpq, event); 125 } 126 127 return event_eor; 128 } 129 130 /* Add a new event for propagation to the ULP. */ 131 /* Clear the partial delivery mode for this socket. Note: This 132 * assumes that no association is currently in partial delivery mode. 133 */ 134 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 135 { 136 struct sctp_sock *sp = sctp_sk(sk); 137 138 if (atomic_dec_and_test(&sp->pd_mode)) { 139 /* This means there are no other associations in PD, so 140 * we can go ahead and clear out the lobby in one shot 141 */ 142 if (!skb_queue_empty(&sp->pd_lobby)) { 143 skb_queue_splice_tail_init(&sp->pd_lobby, 144 &sk->sk_receive_queue); 145 return 1; 146 } 147 } else { 148 /* There are other associations in PD, so we only need to 149 * pull stuff out of the lobby that belongs to the 150 * associations that is exiting PD (all of its notifications 151 * are posted here). 152 */ 153 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 154 struct sk_buff *skb, *tmp; 155 struct sctp_ulpevent *event; 156 157 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 158 event = sctp_skb2event(skb); 159 if (event->asoc == asoc) { 160 __skb_unlink(skb, &sp->pd_lobby); 161 __skb_queue_tail(&sk->sk_receive_queue, 162 skb); 163 } 164 } 165 } 166 } 167 168 return 0; 169 } 170 171 /* Set the pd_mode on the socket and ulpq */ 172 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 173 { 174 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 175 176 atomic_inc(&sp->pd_mode); 177 ulpq->pd_mode = 1; 178 } 179 180 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 181 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 182 { 183 ulpq->pd_mode = 0; 184 sctp_ulpq_reasm_drain(ulpq); 185 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 186 } 187 188 /* If the SKB of 'event' is on a list, it is the first such member 189 * of that list. 190 */ 191 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event) 192 { 193 struct sock *sk = ulpq->asoc->base.sk; 194 struct sctp_sock *sp = sctp_sk(sk); 195 struct sk_buff_head *queue, *skb_list; 196 struct sk_buff *skb = sctp_event2skb(event); 197 int clear_pd = 0; 198 199 skb_list = (struct sk_buff_head *) skb->prev; 200 201 /* If the socket is just going to throw this away, do not 202 * even try to deliver it. 203 */ 204 if (sk->sk_shutdown & RCV_SHUTDOWN && 205 (sk->sk_shutdown & SEND_SHUTDOWN || 206 !sctp_ulpevent_is_notification(event))) 207 goto out_free; 208 209 if (!sctp_ulpevent_is_notification(event)) { 210 sk_mark_napi_id(sk, skb); 211 sk_incoming_cpu_update(sk); 212 } 213 /* Check if the user wishes to receive this event. */ 214 if (!sctp_ulpevent_is_enabled(event, &sp->subscribe)) 215 goto out_free; 216 217 /* If we are in partial delivery mode, post to the lobby until 218 * partial delivery is cleared, unless, of course _this_ is 219 * the association the cause of the partial delivery. 220 */ 221 222 if (atomic_read(&sp->pd_mode) == 0) { 223 queue = &sk->sk_receive_queue; 224 } else { 225 if (ulpq->pd_mode) { 226 /* If the association is in partial delivery, we 227 * need to finish delivering the partially processed 228 * packet before passing any other data. This is 229 * because we don't truly support stream interleaving. 230 */ 231 if ((event->msg_flags & MSG_NOTIFICATION) || 232 (SCTP_DATA_NOT_FRAG == 233 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 234 queue = &sp->pd_lobby; 235 else { 236 clear_pd = event->msg_flags & MSG_EOR; 237 queue = &sk->sk_receive_queue; 238 } 239 } else { 240 /* 241 * If fragment interleave is enabled, we 242 * can queue this to the receive queue instead 243 * of the lobby. 244 */ 245 if (sp->frag_interleave) 246 queue = &sk->sk_receive_queue; 247 else 248 queue = &sp->pd_lobby; 249 } 250 } 251 252 /* If we are harvesting multiple skbs they will be 253 * collected on a list. 254 */ 255 if (skb_list) 256 skb_queue_splice_tail_init(skb_list, queue); 257 else 258 __skb_queue_tail(queue, skb); 259 260 /* Did we just complete partial delivery and need to get 261 * rolling again? Move pending data to the receive 262 * queue. 263 */ 264 if (clear_pd) 265 sctp_ulpq_clear_pd(ulpq); 266 267 if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) { 268 sp->data_ready_signalled = 1; 269 sk->sk_data_ready(sk); 270 } 271 return 1; 272 273 out_free: 274 if (skb_list) 275 sctp_queue_purge_ulpevents(skb_list); 276 else 277 sctp_ulpevent_free(event); 278 279 return 0; 280 } 281 282 /* 2nd Level Abstractions */ 283 284 /* Helper function to store chunks that need to be reassembled. */ 285 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 286 struct sctp_ulpevent *event) 287 { 288 struct sk_buff *pos; 289 struct sctp_ulpevent *cevent; 290 __u32 tsn, ctsn; 291 292 tsn = event->tsn; 293 294 /* See if it belongs at the end. */ 295 pos = skb_peek_tail(&ulpq->reasm); 296 if (!pos) { 297 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 298 return; 299 } 300 301 /* Short circuit just dropping it at the end. */ 302 cevent = sctp_skb2event(pos); 303 ctsn = cevent->tsn; 304 if (TSN_lt(ctsn, tsn)) { 305 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 306 return; 307 } 308 309 /* Find the right place in this list. We store them by TSN. */ 310 skb_queue_walk(&ulpq->reasm, pos) { 311 cevent = sctp_skb2event(pos); 312 ctsn = cevent->tsn; 313 314 if (TSN_lt(tsn, ctsn)) 315 break; 316 } 317 318 /* Insert before pos. */ 319 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 320 321 } 322 323 /* Helper function to return an event corresponding to the reassembled 324 * datagram. 325 * This routine creates a re-assembled skb given the first and last skb's 326 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 327 * payload was fragmented on the way and ip had to reassemble them. 328 * We add the rest of skb's to the first skb's fraglist. 329 */ 330 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 331 struct sk_buff_head *queue, struct sk_buff *f_frag, 332 struct sk_buff *l_frag) 333 { 334 struct sk_buff *pos; 335 struct sk_buff *new = NULL; 336 struct sctp_ulpevent *event; 337 struct sk_buff *pnext, *last; 338 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 339 340 /* Store the pointer to the 2nd skb */ 341 if (f_frag == l_frag) 342 pos = NULL; 343 else 344 pos = f_frag->next; 345 346 /* Get the last skb in the f_frag's frag_list if present. */ 347 for (last = list; list; last = list, list = list->next) 348 ; 349 350 /* Add the list of remaining fragments to the first fragments 351 * frag_list. 352 */ 353 if (last) 354 last->next = pos; 355 else { 356 if (skb_cloned(f_frag)) { 357 /* This is a cloned skb, we can't just modify 358 * the frag_list. We need a new skb to do that. 359 * Instead of calling skb_unshare(), we'll do it 360 * ourselves since we need to delay the free. 361 */ 362 new = skb_copy(f_frag, GFP_ATOMIC); 363 if (!new) 364 return NULL; /* try again later */ 365 366 sctp_skb_set_owner_r(new, f_frag->sk); 367 368 skb_shinfo(new)->frag_list = pos; 369 } else 370 skb_shinfo(f_frag)->frag_list = pos; 371 } 372 373 /* Remove the first fragment from the reassembly queue. */ 374 __skb_unlink(f_frag, queue); 375 376 /* if we did unshare, then free the old skb and re-assign */ 377 if (new) { 378 kfree_skb(f_frag); 379 f_frag = new; 380 } 381 382 while (pos) { 383 384 pnext = pos->next; 385 386 /* Update the len and data_len fields of the first fragment. */ 387 f_frag->len += pos->len; 388 f_frag->data_len += pos->len; 389 390 /* Remove the fragment from the reassembly queue. */ 391 __skb_unlink(pos, queue); 392 393 /* Break if we have reached the last fragment. */ 394 if (pos == l_frag) 395 break; 396 pos->next = pnext; 397 pos = pnext; 398 } 399 400 event = sctp_skb2event(f_frag); 401 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 402 403 return event; 404 } 405 406 407 /* Helper function to check if an incoming chunk has filled up the last 408 * missing fragment in a SCTP datagram and return the corresponding event. 409 */ 410 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 411 { 412 struct sk_buff *pos; 413 struct sctp_ulpevent *cevent; 414 struct sk_buff *first_frag = NULL; 415 __u32 ctsn, next_tsn; 416 struct sctp_ulpevent *retval = NULL; 417 struct sk_buff *pd_first = NULL; 418 struct sk_buff *pd_last = NULL; 419 size_t pd_len = 0; 420 struct sctp_association *asoc; 421 u32 pd_point; 422 423 /* Initialized to 0 just to avoid compiler warning message. Will 424 * never be used with this value. It is referenced only after it 425 * is set when we find the first fragment of a message. 426 */ 427 next_tsn = 0; 428 429 /* The chunks are held in the reasm queue sorted by TSN. 430 * Walk through the queue sequentially and look for a sequence of 431 * fragmented chunks that complete a datagram. 432 * 'first_frag' and next_tsn are reset when we find a chunk which 433 * is the first fragment of a datagram. Once these 2 fields are set 434 * we expect to find the remaining middle fragments and the last 435 * fragment in order. If not, first_frag is reset to NULL and we 436 * start the next pass when we find another first fragment. 437 * 438 * There is a potential to do partial delivery if user sets 439 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 440 * to see if can do PD. 441 */ 442 skb_queue_walk(&ulpq->reasm, pos) { 443 cevent = sctp_skb2event(pos); 444 ctsn = cevent->tsn; 445 446 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 447 case SCTP_DATA_FIRST_FRAG: 448 /* If this "FIRST_FRAG" is the first 449 * element in the queue, then count it towards 450 * possible PD. 451 */ 452 if (pos == ulpq->reasm.next) { 453 pd_first = pos; 454 pd_last = pos; 455 pd_len = pos->len; 456 } else { 457 pd_first = NULL; 458 pd_last = NULL; 459 pd_len = 0; 460 } 461 462 first_frag = pos; 463 next_tsn = ctsn + 1; 464 break; 465 466 case SCTP_DATA_MIDDLE_FRAG: 467 if ((first_frag) && (ctsn == next_tsn)) { 468 next_tsn++; 469 if (pd_first) { 470 pd_last = pos; 471 pd_len += pos->len; 472 } 473 } else 474 first_frag = NULL; 475 break; 476 477 case SCTP_DATA_LAST_FRAG: 478 if (first_frag && (ctsn == next_tsn)) 479 goto found; 480 else 481 first_frag = NULL; 482 break; 483 } 484 } 485 486 asoc = ulpq->asoc; 487 if (pd_first) { 488 /* Make sure we can enter partial deliver. 489 * We can trigger partial delivery only if framgent 490 * interleave is set, or the socket is not already 491 * in partial delivery. 492 */ 493 if (!sctp_sk(asoc->base.sk)->frag_interleave && 494 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 495 goto done; 496 497 cevent = sctp_skb2event(pd_first); 498 pd_point = sctp_sk(asoc->base.sk)->pd_point; 499 if (pd_point && pd_point <= pd_len) { 500 retval = sctp_make_reassembled_event(sock_net(asoc->base.sk), 501 &ulpq->reasm, 502 pd_first, 503 pd_last); 504 if (retval) 505 sctp_ulpq_set_pd(ulpq); 506 } 507 } 508 done: 509 return retval; 510 found: 511 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 512 &ulpq->reasm, first_frag, pos); 513 if (retval) 514 retval->msg_flags |= MSG_EOR; 515 goto done; 516 } 517 518 /* Retrieve the next set of fragments of a partial message. */ 519 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 520 { 521 struct sk_buff *pos, *last_frag, *first_frag; 522 struct sctp_ulpevent *cevent; 523 __u32 ctsn, next_tsn; 524 int is_last; 525 struct sctp_ulpevent *retval; 526 527 /* The chunks are held in the reasm queue sorted by TSN. 528 * Walk through the queue sequentially and look for the first 529 * sequence of fragmented chunks. 530 */ 531 532 if (skb_queue_empty(&ulpq->reasm)) 533 return NULL; 534 535 last_frag = first_frag = NULL; 536 retval = NULL; 537 next_tsn = 0; 538 is_last = 0; 539 540 skb_queue_walk(&ulpq->reasm, pos) { 541 cevent = sctp_skb2event(pos); 542 ctsn = cevent->tsn; 543 544 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 545 case SCTP_DATA_FIRST_FRAG: 546 if (!first_frag) 547 return NULL; 548 goto done; 549 case SCTP_DATA_MIDDLE_FRAG: 550 if (!first_frag) { 551 first_frag = pos; 552 next_tsn = ctsn + 1; 553 last_frag = pos; 554 } else if (next_tsn == ctsn) { 555 next_tsn++; 556 last_frag = pos; 557 } else 558 goto done; 559 break; 560 case SCTP_DATA_LAST_FRAG: 561 if (!first_frag) 562 first_frag = pos; 563 else if (ctsn != next_tsn) 564 goto done; 565 last_frag = pos; 566 is_last = 1; 567 goto done; 568 default: 569 return NULL; 570 } 571 } 572 573 /* We have the reassembled event. There is no need to look 574 * further. 575 */ 576 done: 577 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 578 &ulpq->reasm, first_frag, last_frag); 579 if (retval && is_last) 580 retval->msg_flags |= MSG_EOR; 581 582 return retval; 583 } 584 585 586 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 587 * need reassembling. 588 */ 589 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 590 struct sctp_ulpevent *event) 591 { 592 struct sctp_ulpevent *retval = NULL; 593 594 /* Check if this is part of a fragmented message. */ 595 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 596 event->msg_flags |= MSG_EOR; 597 return event; 598 } 599 600 sctp_ulpq_store_reasm(ulpq, event); 601 if (!ulpq->pd_mode) 602 retval = sctp_ulpq_retrieve_reassembled(ulpq); 603 else { 604 __u32 ctsn, ctsnap; 605 606 /* Do not even bother unless this is the next tsn to 607 * be delivered. 608 */ 609 ctsn = event->tsn; 610 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 611 if (TSN_lte(ctsn, ctsnap)) 612 retval = sctp_ulpq_retrieve_partial(ulpq); 613 } 614 615 return retval; 616 } 617 618 /* Retrieve the first part (sequential fragments) for partial delivery. */ 619 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 620 { 621 struct sk_buff *pos, *last_frag, *first_frag; 622 struct sctp_ulpevent *cevent; 623 __u32 ctsn, next_tsn; 624 struct sctp_ulpevent *retval; 625 626 /* The chunks are held in the reasm queue sorted by TSN. 627 * Walk through the queue sequentially and look for a sequence of 628 * fragmented chunks that start a datagram. 629 */ 630 631 if (skb_queue_empty(&ulpq->reasm)) 632 return NULL; 633 634 last_frag = first_frag = NULL; 635 retval = NULL; 636 next_tsn = 0; 637 638 skb_queue_walk(&ulpq->reasm, pos) { 639 cevent = sctp_skb2event(pos); 640 ctsn = cevent->tsn; 641 642 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 643 case SCTP_DATA_FIRST_FRAG: 644 if (!first_frag) { 645 first_frag = pos; 646 next_tsn = ctsn + 1; 647 last_frag = pos; 648 } else 649 goto done; 650 break; 651 652 case SCTP_DATA_MIDDLE_FRAG: 653 if (!first_frag) 654 return NULL; 655 if (ctsn == next_tsn) { 656 next_tsn++; 657 last_frag = pos; 658 } else 659 goto done; 660 break; 661 662 case SCTP_DATA_LAST_FRAG: 663 if (!first_frag) 664 return NULL; 665 else 666 goto done; 667 break; 668 669 default: 670 return NULL; 671 } 672 } 673 674 /* We have the reassembled event. There is no need to look 675 * further. 676 */ 677 done: 678 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 679 &ulpq->reasm, first_frag, last_frag); 680 return retval; 681 } 682 683 /* 684 * Flush out stale fragments from the reassembly queue when processing 685 * a Forward TSN. 686 * 687 * RFC 3758, Section 3.6 688 * 689 * After receiving and processing a FORWARD TSN, the data receiver MUST 690 * take cautions in updating its re-assembly queue. The receiver MUST 691 * remove any partially reassembled message, which is still missing one 692 * or more TSNs earlier than or equal to the new cumulative TSN point. 693 * In the event that the receiver has invoked the partial delivery API, 694 * a notification SHOULD also be generated to inform the upper layer API 695 * that the message being partially delivered will NOT be completed. 696 */ 697 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 698 { 699 struct sk_buff *pos, *tmp; 700 struct sctp_ulpevent *event; 701 __u32 tsn; 702 703 if (skb_queue_empty(&ulpq->reasm)) 704 return; 705 706 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 707 event = sctp_skb2event(pos); 708 tsn = event->tsn; 709 710 /* Since the entire message must be abandoned by the 711 * sender (item A3 in Section 3.5, RFC 3758), we can 712 * free all fragments on the list that are less then 713 * or equal to ctsn_point 714 */ 715 if (TSN_lte(tsn, fwd_tsn)) { 716 __skb_unlink(pos, &ulpq->reasm); 717 sctp_ulpevent_free(event); 718 } else 719 break; 720 } 721 } 722 723 /* 724 * Drain the reassembly queue. If we just cleared parted delivery, it 725 * is possible that the reassembly queue will contain already reassembled 726 * messages. Retrieve any such messages and give them to the user. 727 */ 728 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 729 { 730 struct sctp_ulpevent *event = NULL; 731 struct sk_buff_head temp; 732 733 if (skb_queue_empty(&ulpq->reasm)) 734 return; 735 736 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 737 /* Do ordering if needed. */ 738 if ((event) && (event->msg_flags & MSG_EOR)) { 739 skb_queue_head_init(&temp); 740 __skb_queue_tail(&temp, sctp_event2skb(event)); 741 742 event = sctp_ulpq_order(ulpq, event); 743 } 744 745 /* Send event to the ULP. 'event' is the 746 * sctp_ulpevent for very first SKB on the temp' list. 747 */ 748 if (event) 749 sctp_ulpq_tail_event(ulpq, event); 750 } 751 } 752 753 754 /* Helper function to gather skbs that have possibly become 755 * ordered by an an incoming chunk. 756 */ 757 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 758 struct sctp_ulpevent *event) 759 { 760 struct sk_buff_head *event_list; 761 struct sk_buff *pos, *tmp; 762 struct sctp_ulpevent *cevent; 763 struct sctp_stream *in; 764 __u16 sid, csid, cssn; 765 766 sid = event->stream; 767 in = &ulpq->asoc->ssnmap->in; 768 769 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 770 771 /* We are holding the chunks by stream, by SSN. */ 772 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 773 cevent = (struct sctp_ulpevent *) pos->cb; 774 csid = cevent->stream; 775 cssn = cevent->ssn; 776 777 /* Have we gone too far? */ 778 if (csid > sid) 779 break; 780 781 /* Have we not gone far enough? */ 782 if (csid < sid) 783 continue; 784 785 if (cssn != sctp_ssn_peek(in, sid)) 786 break; 787 788 /* Found it, so mark in the ssnmap. */ 789 sctp_ssn_next(in, sid); 790 791 __skb_unlink(pos, &ulpq->lobby); 792 793 /* Attach all gathered skbs to the event. */ 794 __skb_queue_tail(event_list, pos); 795 } 796 } 797 798 /* Helper function to store chunks needing ordering. */ 799 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 800 struct sctp_ulpevent *event) 801 { 802 struct sk_buff *pos; 803 struct sctp_ulpevent *cevent; 804 __u16 sid, csid; 805 __u16 ssn, cssn; 806 807 pos = skb_peek_tail(&ulpq->lobby); 808 if (!pos) { 809 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 810 return; 811 } 812 813 sid = event->stream; 814 ssn = event->ssn; 815 816 cevent = (struct sctp_ulpevent *) pos->cb; 817 csid = cevent->stream; 818 cssn = cevent->ssn; 819 if (sid > csid) { 820 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 821 return; 822 } 823 824 if ((sid == csid) && SSN_lt(cssn, ssn)) { 825 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 826 return; 827 } 828 829 /* Find the right place in this list. We store them by 830 * stream ID and then by SSN. 831 */ 832 skb_queue_walk(&ulpq->lobby, pos) { 833 cevent = (struct sctp_ulpevent *) pos->cb; 834 csid = cevent->stream; 835 cssn = cevent->ssn; 836 837 if (csid > sid) 838 break; 839 if (csid == sid && SSN_lt(ssn, cssn)) 840 break; 841 } 842 843 844 /* Insert before pos. */ 845 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 846 } 847 848 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 849 struct sctp_ulpevent *event) 850 { 851 __u16 sid, ssn; 852 struct sctp_stream *in; 853 854 /* Check if this message needs ordering. */ 855 if (SCTP_DATA_UNORDERED & event->msg_flags) 856 return event; 857 858 /* Note: The stream ID must be verified before this routine. */ 859 sid = event->stream; 860 ssn = event->ssn; 861 in = &ulpq->asoc->ssnmap->in; 862 863 /* Is this the expected SSN for this stream ID? */ 864 if (ssn != sctp_ssn_peek(in, sid)) { 865 /* We've received something out of order, so find where it 866 * needs to be placed. We order by stream and then by SSN. 867 */ 868 sctp_ulpq_store_ordered(ulpq, event); 869 return NULL; 870 } 871 872 /* Mark that the next chunk has been found. */ 873 sctp_ssn_next(in, sid); 874 875 /* Go find any other chunks that were waiting for 876 * ordering. 877 */ 878 sctp_ulpq_retrieve_ordered(ulpq, event); 879 880 return event; 881 } 882 883 /* Helper function to gather skbs that have possibly become 884 * ordered by forward tsn skipping their dependencies. 885 */ 886 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 887 { 888 struct sk_buff *pos, *tmp; 889 struct sctp_ulpevent *cevent; 890 struct sctp_ulpevent *event; 891 struct sctp_stream *in; 892 struct sk_buff_head temp; 893 struct sk_buff_head *lobby = &ulpq->lobby; 894 __u16 csid, cssn; 895 896 in = &ulpq->asoc->ssnmap->in; 897 898 /* We are holding the chunks by stream, by SSN. */ 899 skb_queue_head_init(&temp); 900 event = NULL; 901 sctp_skb_for_each(pos, lobby, tmp) { 902 cevent = (struct sctp_ulpevent *) pos->cb; 903 csid = cevent->stream; 904 cssn = cevent->ssn; 905 906 /* Have we gone too far? */ 907 if (csid > sid) 908 break; 909 910 /* Have we not gone far enough? */ 911 if (csid < sid) 912 continue; 913 914 /* see if this ssn has been marked by skipping */ 915 if (!SSN_lt(cssn, sctp_ssn_peek(in, csid))) 916 break; 917 918 __skb_unlink(pos, lobby); 919 if (!event) 920 /* Create a temporary list to collect chunks on. */ 921 event = sctp_skb2event(pos); 922 923 /* Attach all gathered skbs to the event. */ 924 __skb_queue_tail(&temp, pos); 925 } 926 927 /* If we didn't reap any data, see if the next expected SSN 928 * is next on the queue and if so, use that. 929 */ 930 if (event == NULL && pos != (struct sk_buff *)lobby) { 931 cevent = (struct sctp_ulpevent *) pos->cb; 932 csid = cevent->stream; 933 cssn = cevent->ssn; 934 935 if (csid == sid && cssn == sctp_ssn_peek(in, csid)) { 936 sctp_ssn_next(in, csid); 937 __skb_unlink(pos, lobby); 938 __skb_queue_tail(&temp, pos); 939 event = sctp_skb2event(pos); 940 } 941 } 942 943 /* Send event to the ULP. 'event' is the sctp_ulpevent for 944 * very first SKB on the 'temp' list. 945 */ 946 if (event) { 947 /* see if we have more ordered that we can deliver */ 948 sctp_ulpq_retrieve_ordered(ulpq, event); 949 sctp_ulpq_tail_event(ulpq, event); 950 } 951 } 952 953 /* Skip over an SSN. This is used during the processing of 954 * Forwared TSN chunk to skip over the abandoned ordered data 955 */ 956 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 957 { 958 struct sctp_stream *in; 959 960 /* Note: The stream ID must be verified before this routine. */ 961 in = &ulpq->asoc->ssnmap->in; 962 963 /* Is this an old SSN? If so ignore. */ 964 if (SSN_lt(ssn, sctp_ssn_peek(in, sid))) 965 return; 966 967 /* Mark that we are no longer expecting this SSN or lower. */ 968 sctp_ssn_skip(in, sid, ssn); 969 970 /* Go find any other chunks that were waiting for 971 * ordering and deliver them if needed. 972 */ 973 sctp_ulpq_reap_ordered(ulpq, sid); 974 } 975 976 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, 977 struct sk_buff_head *list, __u16 needed) 978 { 979 __u16 freed = 0; 980 __u32 tsn, last_tsn; 981 struct sk_buff *skb, *flist, *last; 982 struct sctp_ulpevent *event; 983 struct sctp_tsnmap *tsnmap; 984 985 tsnmap = &ulpq->asoc->peer.tsn_map; 986 987 while ((skb = skb_peek_tail(list)) != NULL) { 988 event = sctp_skb2event(skb); 989 tsn = event->tsn; 990 991 /* Don't renege below the Cumulative TSN ACK Point. */ 992 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 993 break; 994 995 /* Events in ordering queue may have multiple fragments 996 * corresponding to additional TSNs. Sum the total 997 * freed space; find the last TSN. 998 */ 999 freed += skb_headlen(skb); 1000 flist = skb_shinfo(skb)->frag_list; 1001 for (last = flist; flist; flist = flist->next) { 1002 last = flist; 1003 freed += skb_headlen(last); 1004 } 1005 if (last) 1006 last_tsn = sctp_skb2event(last)->tsn; 1007 else 1008 last_tsn = tsn; 1009 1010 /* Unlink the event, then renege all applicable TSNs. */ 1011 __skb_unlink(skb, list); 1012 sctp_ulpevent_free(event); 1013 while (TSN_lte(tsn, last_tsn)) { 1014 sctp_tsnmap_renege(tsnmap, tsn); 1015 tsn++; 1016 } 1017 if (freed >= needed) 1018 return freed; 1019 } 1020 1021 return freed; 1022 } 1023 1024 /* Renege 'needed' bytes from the ordering queue. */ 1025 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1026 { 1027 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1028 } 1029 1030 /* Renege 'needed' bytes from the reassembly queue. */ 1031 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1032 { 1033 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1034 } 1035 1036 /* Partial deliver the first message as there is pressure on rwnd. */ 1037 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1038 gfp_t gfp) 1039 { 1040 struct sctp_ulpevent *event; 1041 struct sctp_association *asoc; 1042 struct sctp_sock *sp; 1043 __u32 ctsn; 1044 struct sk_buff *skb; 1045 1046 asoc = ulpq->asoc; 1047 sp = sctp_sk(asoc->base.sk); 1048 1049 /* If the association is already in Partial Delivery mode 1050 * we have nothing to do. 1051 */ 1052 if (ulpq->pd_mode) 1053 return; 1054 1055 /* Data must be at or below the Cumulative TSN ACK Point to 1056 * start partial delivery. 1057 */ 1058 skb = skb_peek(&asoc->ulpq.reasm); 1059 if (skb != NULL) { 1060 ctsn = sctp_skb2event(skb)->tsn; 1061 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1062 return; 1063 } 1064 1065 /* If the user enabled fragment interleave socket option, 1066 * multiple associations can enter partial delivery. 1067 * Otherwise, we can only enter partial delivery if the 1068 * socket is not in partial deliver mode. 1069 */ 1070 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1071 /* Is partial delivery possible? */ 1072 event = sctp_ulpq_retrieve_first(ulpq); 1073 /* Send event to the ULP. */ 1074 if (event) { 1075 sctp_ulpq_tail_event(ulpq, event); 1076 sctp_ulpq_set_pd(ulpq); 1077 return; 1078 } 1079 } 1080 } 1081 1082 /* Renege some packets to make room for an incoming chunk. */ 1083 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1084 gfp_t gfp) 1085 { 1086 struct sctp_association *asoc; 1087 __u16 needed, freed; 1088 1089 asoc = ulpq->asoc; 1090 1091 if (chunk) { 1092 needed = ntohs(chunk->chunk_hdr->length); 1093 needed -= sizeof(sctp_data_chunk_t); 1094 } else 1095 needed = SCTP_DEFAULT_MAXWINDOW; 1096 1097 freed = 0; 1098 1099 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1100 freed = sctp_ulpq_renege_order(ulpq, needed); 1101 if (freed < needed) { 1102 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1103 } 1104 } 1105 /* If able to free enough room, accept this chunk. */ 1106 if (chunk && (freed >= needed)) { 1107 int retval; 1108 retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1109 /* 1110 * Enter partial delivery if chunk has not been 1111 * delivered; otherwise, drain the reassembly queue. 1112 */ 1113 if (retval <= 0) 1114 sctp_ulpq_partial_delivery(ulpq, gfp); 1115 else if (retval == 1) 1116 sctp_ulpq_reasm_drain(ulpq); 1117 } 1118 1119 sk_mem_reclaim(asoc->base.sk); 1120 } 1121 1122 1123 1124 /* Notify the application if an association is aborted and in 1125 * partial delivery mode. Send up any pending received messages. 1126 */ 1127 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1128 { 1129 struct sctp_ulpevent *ev = NULL; 1130 struct sock *sk; 1131 struct sctp_sock *sp; 1132 1133 if (!ulpq->pd_mode) 1134 return; 1135 1136 sk = ulpq->asoc->base.sk; 1137 sp = sctp_sk(sk); 1138 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT, 1139 &sctp_sk(sk)->subscribe)) 1140 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1141 SCTP_PARTIAL_DELIVERY_ABORTED, 1142 gfp); 1143 if (ev) 1144 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1145 1146 /* If there is data waiting, send it up the socket now. */ 1147 if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) { 1148 sp->data_ready_signalled = 1; 1149 sk->sk_data_ready(sk); 1150 } 1151 } 1152