1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001 Intel Corp. 7 * Copyright (c) 2001 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This abstraction carries sctp events to the ULP (sockets). 11 * 12 * Please send any bug reports or fixes you make to the 13 * email address(es): 14 * lksctp developers <linux-sctp@vger.kernel.org> 15 * 16 * Written or modified by: 17 * Jon Grimm <jgrimm@us.ibm.com> 18 * La Monte H.P. Yarroll <piggy@acm.org> 19 * Sridhar Samudrala <sri@us.ibm.com> 20 */ 21 22 #include <linux/slab.h> 23 #include <linux/types.h> 24 #include <linux/skbuff.h> 25 #include <net/sock.h> 26 #include <net/busy_poll.h> 27 #include <net/sctp/structs.h> 28 #include <net/sctp/sctp.h> 29 #include <net/sctp/sm.h> 30 31 /* Forward declarations for internal helpers. */ 32 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 33 struct sctp_ulpevent *); 34 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *, 35 struct sctp_ulpevent *); 36 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 37 38 /* 1st Level Abstractions */ 39 40 /* Initialize a ULP queue from a block of memory. */ 41 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, 42 struct sctp_association *asoc) 43 { 44 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 45 46 ulpq->asoc = asoc; 47 skb_queue_head_init(&ulpq->reasm); 48 skb_queue_head_init(&ulpq->reasm_uo); 49 skb_queue_head_init(&ulpq->lobby); 50 ulpq->pd_mode = 0; 51 52 return ulpq; 53 } 54 55 56 /* Flush the reassembly and ordering queues. */ 57 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 58 { 59 struct sk_buff *skb; 60 struct sctp_ulpevent *event; 61 62 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 63 event = sctp_skb2event(skb); 64 sctp_ulpevent_free(event); 65 } 66 67 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 68 event = sctp_skb2event(skb); 69 sctp_ulpevent_free(event); 70 } 71 72 while ((skb = __skb_dequeue(&ulpq->reasm_uo)) != NULL) { 73 event = sctp_skb2event(skb); 74 sctp_ulpevent_free(event); 75 } 76 } 77 78 /* Dispose of a ulpqueue. */ 79 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 80 { 81 sctp_ulpq_flush(ulpq); 82 } 83 84 /* Process an incoming DATA chunk. */ 85 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 86 gfp_t gfp) 87 { 88 struct sk_buff_head temp; 89 struct sctp_ulpevent *event; 90 int event_eor = 0; 91 92 /* Create an event from the incoming chunk. */ 93 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 94 if (!event) 95 return -ENOMEM; 96 97 event->ssn = ntohs(chunk->subh.data_hdr->ssn); 98 event->ppid = chunk->subh.data_hdr->ppid; 99 100 /* Do reassembly if needed. */ 101 event = sctp_ulpq_reasm(ulpq, event); 102 103 /* Do ordering if needed. */ 104 if (event) { 105 /* Create a temporary list to collect chunks on. */ 106 skb_queue_head_init(&temp); 107 __skb_queue_tail(&temp, sctp_event2skb(event)); 108 109 if (event->msg_flags & MSG_EOR) 110 event = sctp_ulpq_order(ulpq, event); 111 } 112 113 /* Send event to the ULP. 'event' is the sctp_ulpevent for 114 * very first SKB on the 'temp' list. 115 */ 116 if (event) { 117 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 118 sctp_ulpq_tail_event(ulpq, &temp); 119 } 120 121 return event_eor; 122 } 123 124 /* Add a new event for propagation to the ULP. */ 125 /* Clear the partial delivery mode for this socket. Note: This 126 * assumes that no association is currently in partial delivery mode. 127 */ 128 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 129 { 130 struct sctp_sock *sp = sctp_sk(sk); 131 132 if (atomic_dec_and_test(&sp->pd_mode)) { 133 /* This means there are no other associations in PD, so 134 * we can go ahead and clear out the lobby in one shot 135 */ 136 if (!skb_queue_empty(&sp->pd_lobby)) { 137 skb_queue_splice_tail_init(&sp->pd_lobby, 138 &sk->sk_receive_queue); 139 return 1; 140 } 141 } else { 142 /* There are other associations in PD, so we only need to 143 * pull stuff out of the lobby that belongs to the 144 * associations that is exiting PD (all of its notifications 145 * are posted here). 146 */ 147 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 148 struct sk_buff *skb, *tmp; 149 struct sctp_ulpevent *event; 150 151 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 152 event = sctp_skb2event(skb); 153 if (event->asoc == asoc) { 154 __skb_unlink(skb, &sp->pd_lobby); 155 __skb_queue_tail(&sk->sk_receive_queue, 156 skb); 157 } 158 } 159 } 160 } 161 162 return 0; 163 } 164 165 /* Set the pd_mode on the socket and ulpq */ 166 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 167 { 168 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 169 170 atomic_inc(&sp->pd_mode); 171 ulpq->pd_mode = 1; 172 } 173 174 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 175 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 176 { 177 ulpq->pd_mode = 0; 178 sctp_ulpq_reasm_drain(ulpq); 179 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 180 } 181 182 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sk_buff_head *skb_list) 183 { 184 struct sock *sk = ulpq->asoc->base.sk; 185 struct sctp_sock *sp = sctp_sk(sk); 186 struct sctp_ulpevent *event; 187 struct sk_buff_head *queue; 188 struct sk_buff *skb; 189 int clear_pd = 0; 190 191 skb = __skb_peek(skb_list); 192 event = sctp_skb2event(skb); 193 194 /* If the socket is just going to throw this away, do not 195 * even try to deliver it. 196 */ 197 if (sk->sk_shutdown & RCV_SHUTDOWN && 198 (sk->sk_shutdown & SEND_SHUTDOWN || 199 !sctp_ulpevent_is_notification(event))) 200 goto out_free; 201 202 if (!sctp_ulpevent_is_notification(event)) { 203 sk_mark_napi_id(sk, skb); 204 sk_incoming_cpu_update(sk); 205 } 206 /* Check if the user wishes to receive this event. */ 207 if (!sctp_ulpevent_is_enabled(event, ulpq->asoc->subscribe)) 208 goto out_free; 209 210 /* If we are in partial delivery mode, post to the lobby until 211 * partial delivery is cleared, unless, of course _this_ is 212 * the association the cause of the partial delivery. 213 */ 214 215 if (atomic_read(&sp->pd_mode) == 0) { 216 queue = &sk->sk_receive_queue; 217 } else { 218 if (ulpq->pd_mode) { 219 /* If the association is in partial delivery, we 220 * need to finish delivering the partially processed 221 * packet before passing any other data. This is 222 * because we don't truly support stream interleaving. 223 */ 224 if ((event->msg_flags & MSG_NOTIFICATION) || 225 (SCTP_DATA_NOT_FRAG == 226 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 227 queue = &sp->pd_lobby; 228 else { 229 clear_pd = event->msg_flags & MSG_EOR; 230 queue = &sk->sk_receive_queue; 231 } 232 } else { 233 /* 234 * If fragment interleave is enabled, we 235 * can queue this to the receive queue instead 236 * of the lobby. 237 */ 238 if (sp->frag_interleave) 239 queue = &sk->sk_receive_queue; 240 else 241 queue = &sp->pd_lobby; 242 } 243 } 244 245 skb_queue_splice_tail_init(skb_list, queue); 246 247 /* Did we just complete partial delivery and need to get 248 * rolling again? Move pending data to the receive 249 * queue. 250 */ 251 if (clear_pd) 252 sctp_ulpq_clear_pd(ulpq); 253 254 if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) { 255 if (!sock_owned_by_user(sk)) 256 sp->data_ready_signalled = 1; 257 sk->sk_data_ready(sk); 258 } 259 return 1; 260 261 out_free: 262 if (skb_list) 263 sctp_queue_purge_ulpevents(skb_list); 264 else 265 sctp_ulpevent_free(event); 266 267 return 0; 268 } 269 270 /* 2nd Level Abstractions */ 271 272 /* Helper function to store chunks that need to be reassembled. */ 273 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 274 struct sctp_ulpevent *event) 275 { 276 struct sk_buff *pos; 277 struct sctp_ulpevent *cevent; 278 __u32 tsn, ctsn; 279 280 tsn = event->tsn; 281 282 /* See if it belongs at the end. */ 283 pos = skb_peek_tail(&ulpq->reasm); 284 if (!pos) { 285 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 286 return; 287 } 288 289 /* Short circuit just dropping it at the end. */ 290 cevent = sctp_skb2event(pos); 291 ctsn = cevent->tsn; 292 if (TSN_lt(ctsn, tsn)) { 293 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 294 return; 295 } 296 297 /* Find the right place in this list. We store them by TSN. */ 298 skb_queue_walk(&ulpq->reasm, pos) { 299 cevent = sctp_skb2event(pos); 300 ctsn = cevent->tsn; 301 302 if (TSN_lt(tsn, ctsn)) 303 break; 304 } 305 306 /* Insert before pos. */ 307 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 308 309 } 310 311 /* Helper function to return an event corresponding to the reassembled 312 * datagram. 313 * This routine creates a re-assembled skb given the first and last skb's 314 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 315 * payload was fragmented on the way and ip had to reassemble them. 316 * We add the rest of skb's to the first skb's fraglist. 317 */ 318 struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 319 struct sk_buff_head *queue, 320 struct sk_buff *f_frag, 321 struct sk_buff *l_frag) 322 { 323 struct sk_buff *pos; 324 struct sk_buff *new = NULL; 325 struct sctp_ulpevent *event; 326 struct sk_buff *pnext, *last; 327 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 328 329 /* Store the pointer to the 2nd skb */ 330 if (f_frag == l_frag) 331 pos = NULL; 332 else 333 pos = f_frag->next; 334 335 /* Get the last skb in the f_frag's frag_list if present. */ 336 for (last = list; list; last = list, list = list->next) 337 ; 338 339 /* Add the list of remaining fragments to the first fragments 340 * frag_list. 341 */ 342 if (last) 343 last->next = pos; 344 else { 345 if (skb_cloned(f_frag)) { 346 /* This is a cloned skb, we can't just modify 347 * the frag_list. We need a new skb to do that. 348 * Instead of calling skb_unshare(), we'll do it 349 * ourselves since we need to delay the free. 350 */ 351 new = skb_copy(f_frag, GFP_ATOMIC); 352 if (!new) 353 return NULL; /* try again later */ 354 355 sctp_skb_set_owner_r(new, f_frag->sk); 356 357 skb_shinfo(new)->frag_list = pos; 358 } else 359 skb_shinfo(f_frag)->frag_list = pos; 360 } 361 362 /* Remove the first fragment from the reassembly queue. */ 363 __skb_unlink(f_frag, queue); 364 365 /* if we did unshare, then free the old skb and re-assign */ 366 if (new) { 367 kfree_skb(f_frag); 368 f_frag = new; 369 } 370 371 while (pos) { 372 373 pnext = pos->next; 374 375 /* Update the len and data_len fields of the first fragment. */ 376 f_frag->len += pos->len; 377 f_frag->data_len += pos->len; 378 379 /* Remove the fragment from the reassembly queue. */ 380 __skb_unlink(pos, queue); 381 382 /* Break if we have reached the last fragment. */ 383 if (pos == l_frag) 384 break; 385 pos->next = pnext; 386 pos = pnext; 387 } 388 389 event = sctp_skb2event(f_frag); 390 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 391 392 return event; 393 } 394 395 396 /* Helper function to check if an incoming chunk has filled up the last 397 * missing fragment in a SCTP datagram and return the corresponding event. 398 */ 399 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 400 { 401 struct sk_buff *pos; 402 struct sctp_ulpevent *cevent; 403 struct sk_buff *first_frag = NULL; 404 __u32 ctsn, next_tsn; 405 struct sctp_ulpevent *retval = NULL; 406 struct sk_buff *pd_first = NULL; 407 struct sk_buff *pd_last = NULL; 408 size_t pd_len = 0; 409 struct sctp_association *asoc; 410 u32 pd_point; 411 412 /* Initialized to 0 just to avoid compiler warning message. Will 413 * never be used with this value. It is referenced only after it 414 * is set when we find the first fragment of a message. 415 */ 416 next_tsn = 0; 417 418 /* The chunks are held in the reasm queue sorted by TSN. 419 * Walk through the queue sequentially and look for a sequence of 420 * fragmented chunks that complete a datagram. 421 * 'first_frag' and next_tsn are reset when we find a chunk which 422 * is the first fragment of a datagram. Once these 2 fields are set 423 * we expect to find the remaining middle fragments and the last 424 * fragment in order. If not, first_frag is reset to NULL and we 425 * start the next pass when we find another first fragment. 426 * 427 * There is a potential to do partial delivery if user sets 428 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 429 * to see if can do PD. 430 */ 431 skb_queue_walk(&ulpq->reasm, pos) { 432 cevent = sctp_skb2event(pos); 433 ctsn = cevent->tsn; 434 435 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 436 case SCTP_DATA_FIRST_FRAG: 437 /* If this "FIRST_FRAG" is the first 438 * element in the queue, then count it towards 439 * possible PD. 440 */ 441 if (skb_queue_is_first(&ulpq->reasm, pos)) { 442 pd_first = pos; 443 pd_last = pos; 444 pd_len = pos->len; 445 } else { 446 pd_first = NULL; 447 pd_last = NULL; 448 pd_len = 0; 449 } 450 451 first_frag = pos; 452 next_tsn = ctsn + 1; 453 break; 454 455 case SCTP_DATA_MIDDLE_FRAG: 456 if ((first_frag) && (ctsn == next_tsn)) { 457 next_tsn++; 458 if (pd_first) { 459 pd_last = pos; 460 pd_len += pos->len; 461 } 462 } else 463 first_frag = NULL; 464 break; 465 466 case SCTP_DATA_LAST_FRAG: 467 if (first_frag && (ctsn == next_tsn)) 468 goto found; 469 else 470 first_frag = NULL; 471 break; 472 } 473 } 474 475 asoc = ulpq->asoc; 476 if (pd_first) { 477 /* Make sure we can enter partial deliver. 478 * We can trigger partial delivery only if framgent 479 * interleave is set, or the socket is not already 480 * in partial delivery. 481 */ 482 if (!sctp_sk(asoc->base.sk)->frag_interleave && 483 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 484 goto done; 485 486 cevent = sctp_skb2event(pd_first); 487 pd_point = sctp_sk(asoc->base.sk)->pd_point; 488 if (pd_point && pd_point <= pd_len) { 489 retval = sctp_make_reassembled_event(sock_net(asoc->base.sk), 490 &ulpq->reasm, 491 pd_first, 492 pd_last); 493 if (retval) 494 sctp_ulpq_set_pd(ulpq); 495 } 496 } 497 done: 498 return retval; 499 found: 500 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 501 &ulpq->reasm, first_frag, pos); 502 if (retval) 503 retval->msg_flags |= MSG_EOR; 504 goto done; 505 } 506 507 /* Retrieve the next set of fragments of a partial message. */ 508 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 509 { 510 struct sk_buff *pos, *last_frag, *first_frag; 511 struct sctp_ulpevent *cevent; 512 __u32 ctsn, next_tsn; 513 int is_last; 514 struct sctp_ulpevent *retval; 515 516 /* The chunks are held in the reasm queue sorted by TSN. 517 * Walk through the queue sequentially and look for the first 518 * sequence of fragmented chunks. 519 */ 520 521 if (skb_queue_empty(&ulpq->reasm)) 522 return NULL; 523 524 last_frag = first_frag = NULL; 525 retval = NULL; 526 next_tsn = 0; 527 is_last = 0; 528 529 skb_queue_walk(&ulpq->reasm, pos) { 530 cevent = sctp_skb2event(pos); 531 ctsn = cevent->tsn; 532 533 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 534 case SCTP_DATA_FIRST_FRAG: 535 if (!first_frag) 536 return NULL; 537 goto done; 538 case SCTP_DATA_MIDDLE_FRAG: 539 if (!first_frag) { 540 first_frag = pos; 541 next_tsn = ctsn + 1; 542 last_frag = pos; 543 } else if (next_tsn == ctsn) { 544 next_tsn++; 545 last_frag = pos; 546 } else 547 goto done; 548 break; 549 case SCTP_DATA_LAST_FRAG: 550 if (!first_frag) 551 first_frag = pos; 552 else if (ctsn != next_tsn) 553 goto done; 554 last_frag = pos; 555 is_last = 1; 556 goto done; 557 default: 558 return NULL; 559 } 560 } 561 562 /* We have the reassembled event. There is no need to look 563 * further. 564 */ 565 done: 566 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 567 &ulpq->reasm, first_frag, last_frag); 568 if (retval && is_last) 569 retval->msg_flags |= MSG_EOR; 570 571 return retval; 572 } 573 574 575 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 576 * need reassembling. 577 */ 578 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 579 struct sctp_ulpevent *event) 580 { 581 struct sctp_ulpevent *retval = NULL; 582 583 /* Check if this is part of a fragmented message. */ 584 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 585 event->msg_flags |= MSG_EOR; 586 return event; 587 } 588 589 sctp_ulpq_store_reasm(ulpq, event); 590 if (!ulpq->pd_mode) 591 retval = sctp_ulpq_retrieve_reassembled(ulpq); 592 else { 593 __u32 ctsn, ctsnap; 594 595 /* Do not even bother unless this is the next tsn to 596 * be delivered. 597 */ 598 ctsn = event->tsn; 599 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 600 if (TSN_lte(ctsn, ctsnap)) 601 retval = sctp_ulpq_retrieve_partial(ulpq); 602 } 603 604 return retval; 605 } 606 607 /* Retrieve the first part (sequential fragments) for partial delivery. */ 608 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 609 { 610 struct sk_buff *pos, *last_frag, *first_frag; 611 struct sctp_ulpevent *cevent; 612 __u32 ctsn, next_tsn; 613 struct sctp_ulpevent *retval; 614 615 /* The chunks are held in the reasm queue sorted by TSN. 616 * Walk through the queue sequentially and look for a sequence of 617 * fragmented chunks that start a datagram. 618 */ 619 620 if (skb_queue_empty(&ulpq->reasm)) 621 return NULL; 622 623 last_frag = first_frag = NULL; 624 retval = NULL; 625 next_tsn = 0; 626 627 skb_queue_walk(&ulpq->reasm, pos) { 628 cevent = sctp_skb2event(pos); 629 ctsn = cevent->tsn; 630 631 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 632 case SCTP_DATA_FIRST_FRAG: 633 if (!first_frag) { 634 first_frag = pos; 635 next_tsn = ctsn + 1; 636 last_frag = pos; 637 } else 638 goto done; 639 break; 640 641 case SCTP_DATA_MIDDLE_FRAG: 642 if (!first_frag) 643 return NULL; 644 if (ctsn == next_tsn) { 645 next_tsn++; 646 last_frag = pos; 647 } else 648 goto done; 649 break; 650 651 case SCTP_DATA_LAST_FRAG: 652 if (!first_frag) 653 return NULL; 654 else 655 goto done; 656 break; 657 658 default: 659 return NULL; 660 } 661 } 662 663 /* We have the reassembled event. There is no need to look 664 * further. 665 */ 666 done: 667 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 668 &ulpq->reasm, first_frag, last_frag); 669 return retval; 670 } 671 672 /* 673 * Flush out stale fragments from the reassembly queue when processing 674 * a Forward TSN. 675 * 676 * RFC 3758, Section 3.6 677 * 678 * After receiving and processing a FORWARD TSN, the data receiver MUST 679 * take cautions in updating its re-assembly queue. The receiver MUST 680 * remove any partially reassembled message, which is still missing one 681 * or more TSNs earlier than or equal to the new cumulative TSN point. 682 * In the event that the receiver has invoked the partial delivery API, 683 * a notification SHOULD also be generated to inform the upper layer API 684 * that the message being partially delivered will NOT be completed. 685 */ 686 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 687 { 688 struct sk_buff *pos, *tmp; 689 struct sctp_ulpevent *event; 690 __u32 tsn; 691 692 if (skb_queue_empty(&ulpq->reasm)) 693 return; 694 695 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 696 event = sctp_skb2event(pos); 697 tsn = event->tsn; 698 699 /* Since the entire message must be abandoned by the 700 * sender (item A3 in Section 3.5, RFC 3758), we can 701 * free all fragments on the list that are less then 702 * or equal to ctsn_point 703 */ 704 if (TSN_lte(tsn, fwd_tsn)) { 705 __skb_unlink(pos, &ulpq->reasm); 706 sctp_ulpevent_free(event); 707 } else 708 break; 709 } 710 } 711 712 /* 713 * Drain the reassembly queue. If we just cleared parted delivery, it 714 * is possible that the reassembly queue will contain already reassembled 715 * messages. Retrieve any such messages and give them to the user. 716 */ 717 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 718 { 719 struct sctp_ulpevent *event = NULL; 720 721 if (skb_queue_empty(&ulpq->reasm)) 722 return; 723 724 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 725 struct sk_buff_head temp; 726 727 skb_queue_head_init(&temp); 728 __skb_queue_tail(&temp, sctp_event2skb(event)); 729 730 /* Do ordering if needed. */ 731 if (event->msg_flags & MSG_EOR) 732 event = sctp_ulpq_order(ulpq, event); 733 734 /* Send event to the ULP. 'event' is the 735 * sctp_ulpevent for very first SKB on the temp' list. 736 */ 737 if (event) 738 sctp_ulpq_tail_event(ulpq, &temp); 739 } 740 } 741 742 743 /* Helper function to gather skbs that have possibly become 744 * ordered by an an incoming chunk. 745 */ 746 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 747 struct sctp_ulpevent *event) 748 { 749 struct sk_buff_head *event_list; 750 struct sk_buff *pos, *tmp; 751 struct sctp_ulpevent *cevent; 752 struct sctp_stream *stream; 753 __u16 sid, csid, cssn; 754 755 sid = event->stream; 756 stream = &ulpq->asoc->stream; 757 758 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 759 760 /* We are holding the chunks by stream, by SSN. */ 761 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 762 cevent = (struct sctp_ulpevent *) pos->cb; 763 csid = cevent->stream; 764 cssn = cevent->ssn; 765 766 /* Have we gone too far? */ 767 if (csid > sid) 768 break; 769 770 /* Have we not gone far enough? */ 771 if (csid < sid) 772 continue; 773 774 if (cssn != sctp_ssn_peek(stream, in, sid)) 775 break; 776 777 /* Found it, so mark in the stream. */ 778 sctp_ssn_next(stream, in, sid); 779 780 __skb_unlink(pos, &ulpq->lobby); 781 782 /* Attach all gathered skbs to the event. */ 783 __skb_queue_tail(event_list, pos); 784 } 785 } 786 787 /* Helper function to store chunks needing ordering. */ 788 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 789 struct sctp_ulpevent *event) 790 { 791 struct sk_buff *pos; 792 struct sctp_ulpevent *cevent; 793 __u16 sid, csid; 794 __u16 ssn, cssn; 795 796 pos = skb_peek_tail(&ulpq->lobby); 797 if (!pos) { 798 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 799 return; 800 } 801 802 sid = event->stream; 803 ssn = event->ssn; 804 805 cevent = (struct sctp_ulpevent *) pos->cb; 806 csid = cevent->stream; 807 cssn = cevent->ssn; 808 if (sid > csid) { 809 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 810 return; 811 } 812 813 if ((sid == csid) && SSN_lt(cssn, ssn)) { 814 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 815 return; 816 } 817 818 /* Find the right place in this list. We store them by 819 * stream ID and then by SSN. 820 */ 821 skb_queue_walk(&ulpq->lobby, pos) { 822 cevent = (struct sctp_ulpevent *) pos->cb; 823 csid = cevent->stream; 824 cssn = cevent->ssn; 825 826 if (csid > sid) 827 break; 828 if (csid == sid && SSN_lt(ssn, cssn)) 829 break; 830 } 831 832 833 /* Insert before pos. */ 834 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 835 } 836 837 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 838 struct sctp_ulpevent *event) 839 { 840 __u16 sid, ssn; 841 struct sctp_stream *stream; 842 843 /* Check if this message needs ordering. */ 844 if (event->msg_flags & SCTP_DATA_UNORDERED) 845 return event; 846 847 /* Note: The stream ID must be verified before this routine. */ 848 sid = event->stream; 849 ssn = event->ssn; 850 stream = &ulpq->asoc->stream; 851 852 /* Is this the expected SSN for this stream ID? */ 853 if (ssn != sctp_ssn_peek(stream, in, sid)) { 854 /* We've received something out of order, so find where it 855 * needs to be placed. We order by stream and then by SSN. 856 */ 857 sctp_ulpq_store_ordered(ulpq, event); 858 return NULL; 859 } 860 861 /* Mark that the next chunk has been found. */ 862 sctp_ssn_next(stream, in, sid); 863 864 /* Go find any other chunks that were waiting for 865 * ordering. 866 */ 867 sctp_ulpq_retrieve_ordered(ulpq, event); 868 869 return event; 870 } 871 872 /* Helper function to gather skbs that have possibly become 873 * ordered by forward tsn skipping their dependencies. 874 */ 875 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 876 { 877 struct sk_buff *pos, *tmp; 878 struct sctp_ulpevent *cevent; 879 struct sctp_ulpevent *event; 880 struct sctp_stream *stream; 881 struct sk_buff_head temp; 882 struct sk_buff_head *lobby = &ulpq->lobby; 883 __u16 csid, cssn; 884 885 stream = &ulpq->asoc->stream; 886 887 /* We are holding the chunks by stream, by SSN. */ 888 skb_queue_head_init(&temp); 889 event = NULL; 890 sctp_skb_for_each(pos, lobby, tmp) { 891 cevent = (struct sctp_ulpevent *) pos->cb; 892 csid = cevent->stream; 893 cssn = cevent->ssn; 894 895 /* Have we gone too far? */ 896 if (csid > sid) 897 break; 898 899 /* Have we not gone far enough? */ 900 if (csid < sid) 901 continue; 902 903 /* see if this ssn has been marked by skipping */ 904 if (!SSN_lt(cssn, sctp_ssn_peek(stream, in, csid))) 905 break; 906 907 __skb_unlink(pos, lobby); 908 if (!event) 909 /* Create a temporary list to collect chunks on. */ 910 event = sctp_skb2event(pos); 911 912 /* Attach all gathered skbs to the event. */ 913 __skb_queue_tail(&temp, pos); 914 } 915 916 /* If we didn't reap any data, see if the next expected SSN 917 * is next on the queue and if so, use that. 918 */ 919 if (event == NULL && pos != (struct sk_buff *)lobby) { 920 cevent = (struct sctp_ulpevent *) pos->cb; 921 csid = cevent->stream; 922 cssn = cevent->ssn; 923 924 if (csid == sid && cssn == sctp_ssn_peek(stream, in, csid)) { 925 sctp_ssn_next(stream, in, csid); 926 __skb_unlink(pos, lobby); 927 __skb_queue_tail(&temp, pos); 928 event = sctp_skb2event(pos); 929 } 930 } 931 932 /* Send event to the ULP. 'event' is the sctp_ulpevent for 933 * very first SKB on the 'temp' list. 934 */ 935 if (event) { 936 /* see if we have more ordered that we can deliver */ 937 sctp_ulpq_retrieve_ordered(ulpq, event); 938 sctp_ulpq_tail_event(ulpq, &temp); 939 } 940 } 941 942 /* Skip over an SSN. This is used during the processing of 943 * Forwared TSN chunk to skip over the abandoned ordered data 944 */ 945 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 946 { 947 struct sctp_stream *stream; 948 949 /* Note: The stream ID must be verified before this routine. */ 950 stream = &ulpq->asoc->stream; 951 952 /* Is this an old SSN? If so ignore. */ 953 if (SSN_lt(ssn, sctp_ssn_peek(stream, in, sid))) 954 return; 955 956 /* Mark that we are no longer expecting this SSN or lower. */ 957 sctp_ssn_skip(stream, in, sid, ssn); 958 959 /* Go find any other chunks that were waiting for 960 * ordering and deliver them if needed. 961 */ 962 sctp_ulpq_reap_ordered(ulpq, sid); 963 } 964 965 __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, struct sk_buff_head *list, 966 __u16 needed) 967 { 968 __u16 freed = 0; 969 __u32 tsn, last_tsn; 970 struct sk_buff *skb, *flist, *last; 971 struct sctp_ulpevent *event; 972 struct sctp_tsnmap *tsnmap; 973 974 tsnmap = &ulpq->asoc->peer.tsn_map; 975 976 while ((skb = skb_peek_tail(list)) != NULL) { 977 event = sctp_skb2event(skb); 978 tsn = event->tsn; 979 980 /* Don't renege below the Cumulative TSN ACK Point. */ 981 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 982 break; 983 984 /* Events in ordering queue may have multiple fragments 985 * corresponding to additional TSNs. Sum the total 986 * freed space; find the last TSN. 987 */ 988 freed += skb_headlen(skb); 989 flist = skb_shinfo(skb)->frag_list; 990 for (last = flist; flist; flist = flist->next) { 991 last = flist; 992 freed += skb_headlen(last); 993 } 994 if (last) 995 last_tsn = sctp_skb2event(last)->tsn; 996 else 997 last_tsn = tsn; 998 999 /* Unlink the event, then renege all applicable TSNs. */ 1000 __skb_unlink(skb, list); 1001 sctp_ulpevent_free(event); 1002 while (TSN_lte(tsn, last_tsn)) { 1003 sctp_tsnmap_renege(tsnmap, tsn); 1004 tsn++; 1005 } 1006 if (freed >= needed) 1007 return freed; 1008 } 1009 1010 return freed; 1011 } 1012 1013 /* Renege 'needed' bytes from the ordering queue. */ 1014 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1015 { 1016 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1017 } 1018 1019 /* Renege 'needed' bytes from the reassembly queue. */ 1020 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1021 { 1022 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1023 } 1024 1025 /* Partial deliver the first message as there is pressure on rwnd. */ 1026 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1027 gfp_t gfp) 1028 { 1029 struct sctp_ulpevent *event; 1030 struct sctp_association *asoc; 1031 struct sctp_sock *sp; 1032 __u32 ctsn; 1033 struct sk_buff *skb; 1034 1035 asoc = ulpq->asoc; 1036 sp = sctp_sk(asoc->base.sk); 1037 1038 /* If the association is already in Partial Delivery mode 1039 * we have nothing to do. 1040 */ 1041 if (ulpq->pd_mode) 1042 return; 1043 1044 /* Data must be at or below the Cumulative TSN ACK Point to 1045 * start partial delivery. 1046 */ 1047 skb = skb_peek(&asoc->ulpq.reasm); 1048 if (skb != NULL) { 1049 ctsn = sctp_skb2event(skb)->tsn; 1050 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1051 return; 1052 } 1053 1054 /* If the user enabled fragment interleave socket option, 1055 * multiple associations can enter partial delivery. 1056 * Otherwise, we can only enter partial delivery if the 1057 * socket is not in partial deliver mode. 1058 */ 1059 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1060 /* Is partial delivery possible? */ 1061 event = sctp_ulpq_retrieve_first(ulpq); 1062 /* Send event to the ULP. */ 1063 if (event) { 1064 struct sk_buff_head temp; 1065 1066 skb_queue_head_init(&temp); 1067 __skb_queue_tail(&temp, sctp_event2skb(event)); 1068 sctp_ulpq_tail_event(ulpq, &temp); 1069 sctp_ulpq_set_pd(ulpq); 1070 return; 1071 } 1072 } 1073 } 1074 1075 /* Renege some packets to make room for an incoming chunk. */ 1076 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1077 gfp_t gfp) 1078 { 1079 struct sctp_association *asoc = ulpq->asoc; 1080 __u32 freed = 0; 1081 __u16 needed; 1082 1083 needed = ntohs(chunk->chunk_hdr->length) - 1084 sizeof(struct sctp_data_chunk); 1085 1086 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1087 freed = sctp_ulpq_renege_order(ulpq, needed); 1088 if (freed < needed) 1089 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1090 } 1091 /* If able to free enough room, accept this chunk. */ 1092 if (sk_rmem_schedule(asoc->base.sk, chunk->skb, needed) && 1093 freed >= needed) { 1094 int retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1095 /* 1096 * Enter partial delivery if chunk has not been 1097 * delivered; otherwise, drain the reassembly queue. 1098 */ 1099 if (retval <= 0) 1100 sctp_ulpq_partial_delivery(ulpq, gfp); 1101 else if (retval == 1) 1102 sctp_ulpq_reasm_drain(ulpq); 1103 } 1104 1105 sk_mem_reclaim(asoc->base.sk); 1106 } 1107 1108 1109 1110 /* Notify the application if an association is aborted and in 1111 * partial delivery mode. Send up any pending received messages. 1112 */ 1113 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1114 { 1115 struct sctp_ulpevent *ev = NULL; 1116 struct sctp_sock *sp; 1117 struct sock *sk; 1118 1119 if (!ulpq->pd_mode) 1120 return; 1121 1122 sk = ulpq->asoc->base.sk; 1123 sp = sctp_sk(sk); 1124 if (sctp_ulpevent_type_enabled(ulpq->asoc->subscribe, 1125 SCTP_PARTIAL_DELIVERY_EVENT)) 1126 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1127 SCTP_PARTIAL_DELIVERY_ABORTED, 1128 0, 0, 0, gfp); 1129 if (ev) 1130 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1131 1132 /* If there is data waiting, send it up the socket now. */ 1133 if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) { 1134 sp->data_ready_signalled = 1; 1135 sk->sk_data_ready(sk); 1136 } 1137 } 1138