xref: /openbmc/linux/net/sctp/ulpqueue.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  *                 ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING.  If not, see
25  * <http://www.gnu.org/licenses/>.
26  *
27  * Please send any bug reports or fixes you make to the
28  * email address(es):
29  *    lksctp developers <linux-sctp@vger.kernel.org>
30  *
31  * Written or modified by:
32  *    Jon Grimm             <jgrimm@us.ibm.com>
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Sridhar Samudrala     <sri@us.ibm.com>
35  */
36 
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/busy_poll.h>
42 #include <net/sctp/structs.h>
43 #include <net/sctp/sctp.h>
44 #include <net/sctp/sm.h>
45 
46 /* Forward declarations for internal helpers.  */
47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
48 					      struct sctp_ulpevent *);
49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *,
50 					      struct sctp_ulpevent *);
51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
52 
53 /* 1st Level Abstractions */
54 
55 /* Initialize a ULP queue from a block of memory.  */
56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
57 				 struct sctp_association *asoc)
58 {
59 	memset(ulpq, 0, sizeof(struct sctp_ulpq));
60 
61 	ulpq->asoc = asoc;
62 	skb_queue_head_init(&ulpq->reasm);
63 	skb_queue_head_init(&ulpq->lobby);
64 	ulpq->pd_mode  = 0;
65 
66 	return ulpq;
67 }
68 
69 
70 /* Flush the reassembly and ordering queues.  */
71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
72 {
73 	struct sk_buff *skb;
74 	struct sctp_ulpevent *event;
75 
76 	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
77 		event = sctp_skb2event(skb);
78 		sctp_ulpevent_free(event);
79 	}
80 
81 	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
82 		event = sctp_skb2event(skb);
83 		sctp_ulpevent_free(event);
84 	}
85 
86 }
87 
88 /* Dispose of a ulpqueue.  */
89 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
90 {
91 	sctp_ulpq_flush(ulpq);
92 }
93 
94 /* Process an incoming DATA chunk.  */
95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
96 			gfp_t gfp)
97 {
98 	struct sk_buff_head temp;
99 	struct sctp_ulpevent *event;
100 	int event_eor = 0;
101 
102 	/* Create an event from the incoming chunk. */
103 	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
104 	if (!event)
105 		return -ENOMEM;
106 
107 	/* Do reassembly if needed.  */
108 	event = sctp_ulpq_reasm(ulpq, event);
109 
110 	/* Do ordering if needed.  */
111 	if ((event) && (event->msg_flags & MSG_EOR)) {
112 		/* Create a temporary list to collect chunks on.  */
113 		skb_queue_head_init(&temp);
114 		__skb_queue_tail(&temp, sctp_event2skb(event));
115 
116 		event = sctp_ulpq_order(ulpq, event);
117 	}
118 
119 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
120 	 * very first SKB on the 'temp' list.
121 	 */
122 	if (event) {
123 		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
124 		sctp_ulpq_tail_event(ulpq, event);
125 	}
126 
127 	return event_eor;
128 }
129 
130 /* Add a new event for propagation to the ULP.  */
131 /* Clear the partial delivery mode for this socket.   Note: This
132  * assumes that no association is currently in partial delivery mode.
133  */
134 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
135 {
136 	struct sctp_sock *sp = sctp_sk(sk);
137 
138 	if (atomic_dec_and_test(&sp->pd_mode)) {
139 		/* This means there are no other associations in PD, so
140 		 * we can go ahead and clear out the lobby in one shot
141 		 */
142 		if (!skb_queue_empty(&sp->pd_lobby)) {
143 			skb_queue_splice_tail_init(&sp->pd_lobby,
144 						   &sk->sk_receive_queue);
145 			return 1;
146 		}
147 	} else {
148 		/* There are other associations in PD, so we only need to
149 		 * pull stuff out of the lobby that belongs to the
150 		 * associations that is exiting PD (all of its notifications
151 		 * are posted here).
152 		 */
153 		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
154 			struct sk_buff *skb, *tmp;
155 			struct sctp_ulpevent *event;
156 
157 			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
158 				event = sctp_skb2event(skb);
159 				if (event->asoc == asoc) {
160 					__skb_unlink(skb, &sp->pd_lobby);
161 					__skb_queue_tail(&sk->sk_receive_queue,
162 							 skb);
163 				}
164 			}
165 		}
166 	}
167 
168 	return 0;
169 }
170 
171 /* Set the pd_mode on the socket and ulpq */
172 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
173 {
174 	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
175 
176 	atomic_inc(&sp->pd_mode);
177 	ulpq->pd_mode = 1;
178 }
179 
180 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
181 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
182 {
183 	ulpq->pd_mode = 0;
184 	sctp_ulpq_reasm_drain(ulpq);
185 	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
186 }
187 
188 /* If the SKB of 'event' is on a list, it is the first such member
189  * of that list.
190  */
191 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
192 {
193 	struct sock *sk = ulpq->asoc->base.sk;
194 	struct sctp_sock *sp = sctp_sk(sk);
195 	struct sk_buff_head *queue, *skb_list;
196 	struct sk_buff *skb = sctp_event2skb(event);
197 	int clear_pd = 0;
198 
199 	skb_list = (struct sk_buff_head *) skb->prev;
200 
201 	/* If the socket is just going to throw this away, do not
202 	 * even try to deliver it.
203 	 */
204 	if (sk->sk_shutdown & RCV_SHUTDOWN &&
205 	    (sk->sk_shutdown & SEND_SHUTDOWN ||
206 	     !sctp_ulpevent_is_notification(event)))
207 		goto out_free;
208 
209 	if (!sctp_ulpevent_is_notification(event)) {
210 		sk_mark_napi_id(sk, skb);
211 		sk_incoming_cpu_update(sk);
212 	}
213 	/* Check if the user wishes to receive this event.  */
214 	if (!sctp_ulpevent_is_enabled(event, &sp->subscribe))
215 		goto out_free;
216 
217 	/* If we are in partial delivery mode, post to the lobby until
218 	 * partial delivery is cleared, unless, of course _this_ is
219 	 * the association the cause of the partial delivery.
220 	 */
221 
222 	if (atomic_read(&sp->pd_mode) == 0) {
223 		queue = &sk->sk_receive_queue;
224 	} else {
225 		if (ulpq->pd_mode) {
226 			/* If the association is in partial delivery, we
227 			 * need to finish delivering the partially processed
228 			 * packet before passing any other data.  This is
229 			 * because we don't truly support stream interleaving.
230 			 */
231 			if ((event->msg_flags & MSG_NOTIFICATION) ||
232 			    (SCTP_DATA_NOT_FRAG ==
233 				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
234 				queue = &sp->pd_lobby;
235 			else {
236 				clear_pd = event->msg_flags & MSG_EOR;
237 				queue = &sk->sk_receive_queue;
238 			}
239 		} else {
240 			/*
241 			 * If fragment interleave is enabled, we
242 			 * can queue this to the receive queue instead
243 			 * of the lobby.
244 			 */
245 			if (sp->frag_interleave)
246 				queue = &sk->sk_receive_queue;
247 			else
248 				queue = &sp->pd_lobby;
249 		}
250 	}
251 
252 	/* If we are harvesting multiple skbs they will be
253 	 * collected on a list.
254 	 */
255 	if (skb_list)
256 		skb_queue_splice_tail_init(skb_list, queue);
257 	else
258 		__skb_queue_tail(queue, skb);
259 
260 	/* Did we just complete partial delivery and need to get
261 	 * rolling again?  Move pending data to the receive
262 	 * queue.
263 	 */
264 	if (clear_pd)
265 		sctp_ulpq_clear_pd(ulpq);
266 
267 	if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) {
268 		sp->data_ready_signalled = 1;
269 		sk->sk_data_ready(sk);
270 	}
271 	return 1;
272 
273 out_free:
274 	if (skb_list)
275 		sctp_queue_purge_ulpevents(skb_list);
276 	else
277 		sctp_ulpevent_free(event);
278 
279 	return 0;
280 }
281 
282 /* 2nd Level Abstractions */
283 
284 /* Helper function to store chunks that need to be reassembled.  */
285 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
286 					 struct sctp_ulpevent *event)
287 {
288 	struct sk_buff *pos;
289 	struct sctp_ulpevent *cevent;
290 	__u32 tsn, ctsn;
291 
292 	tsn = event->tsn;
293 
294 	/* See if it belongs at the end. */
295 	pos = skb_peek_tail(&ulpq->reasm);
296 	if (!pos) {
297 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
298 		return;
299 	}
300 
301 	/* Short circuit just dropping it at the end. */
302 	cevent = sctp_skb2event(pos);
303 	ctsn = cevent->tsn;
304 	if (TSN_lt(ctsn, tsn)) {
305 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
306 		return;
307 	}
308 
309 	/* Find the right place in this list. We store them by TSN.  */
310 	skb_queue_walk(&ulpq->reasm, pos) {
311 		cevent = sctp_skb2event(pos);
312 		ctsn = cevent->tsn;
313 
314 		if (TSN_lt(tsn, ctsn))
315 			break;
316 	}
317 
318 	/* Insert before pos. */
319 	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
320 
321 }
322 
323 /* Helper function to return an event corresponding to the reassembled
324  * datagram.
325  * This routine creates a re-assembled skb given the first and last skb's
326  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
327  * payload was fragmented on the way and ip had to reassemble them.
328  * We add the rest of skb's to the first skb's fraglist.
329  */
330 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
331 	struct sk_buff_head *queue, struct sk_buff *f_frag,
332 	struct sk_buff *l_frag)
333 {
334 	struct sk_buff *pos;
335 	struct sk_buff *new = NULL;
336 	struct sctp_ulpevent *event;
337 	struct sk_buff *pnext, *last;
338 	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
339 
340 	/* Store the pointer to the 2nd skb */
341 	if (f_frag == l_frag)
342 		pos = NULL;
343 	else
344 		pos = f_frag->next;
345 
346 	/* Get the last skb in the f_frag's frag_list if present. */
347 	for (last = list; list; last = list, list = list->next)
348 		;
349 
350 	/* Add the list of remaining fragments to the first fragments
351 	 * frag_list.
352 	 */
353 	if (last)
354 		last->next = pos;
355 	else {
356 		if (skb_cloned(f_frag)) {
357 			/* This is a cloned skb, we can't just modify
358 			 * the frag_list.  We need a new skb to do that.
359 			 * Instead of calling skb_unshare(), we'll do it
360 			 * ourselves since we need to delay the free.
361 			 */
362 			new = skb_copy(f_frag, GFP_ATOMIC);
363 			if (!new)
364 				return NULL;	/* try again later */
365 
366 			sctp_skb_set_owner_r(new, f_frag->sk);
367 
368 			skb_shinfo(new)->frag_list = pos;
369 		} else
370 			skb_shinfo(f_frag)->frag_list = pos;
371 	}
372 
373 	/* Remove the first fragment from the reassembly queue.  */
374 	__skb_unlink(f_frag, queue);
375 
376 	/* if we did unshare, then free the old skb and re-assign */
377 	if (new) {
378 		kfree_skb(f_frag);
379 		f_frag = new;
380 	}
381 
382 	while (pos) {
383 
384 		pnext = pos->next;
385 
386 		/* Update the len and data_len fields of the first fragment. */
387 		f_frag->len += pos->len;
388 		f_frag->data_len += pos->len;
389 
390 		/* Remove the fragment from the reassembly queue.  */
391 		__skb_unlink(pos, queue);
392 
393 		/* Break if we have reached the last fragment.  */
394 		if (pos == l_frag)
395 			break;
396 		pos->next = pnext;
397 		pos = pnext;
398 	}
399 
400 	event = sctp_skb2event(f_frag);
401 	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
402 
403 	return event;
404 }
405 
406 
407 /* Helper function to check if an incoming chunk has filled up the last
408  * missing fragment in a SCTP datagram and return the corresponding event.
409  */
410 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
411 {
412 	struct sk_buff *pos;
413 	struct sctp_ulpevent *cevent;
414 	struct sk_buff *first_frag = NULL;
415 	__u32 ctsn, next_tsn;
416 	struct sctp_ulpevent *retval = NULL;
417 	struct sk_buff *pd_first = NULL;
418 	struct sk_buff *pd_last = NULL;
419 	size_t pd_len = 0;
420 	struct sctp_association *asoc;
421 	u32 pd_point;
422 
423 	/* Initialized to 0 just to avoid compiler warning message.  Will
424 	 * never be used with this value. It is referenced only after it
425 	 * is set when we find the first fragment of a message.
426 	 */
427 	next_tsn = 0;
428 
429 	/* The chunks are held in the reasm queue sorted by TSN.
430 	 * Walk through the queue sequentially and look for a sequence of
431 	 * fragmented chunks that complete a datagram.
432 	 * 'first_frag' and next_tsn are reset when we find a chunk which
433 	 * is the first fragment of a datagram. Once these 2 fields are set
434 	 * we expect to find the remaining middle fragments and the last
435 	 * fragment in order. If not, first_frag is reset to NULL and we
436 	 * start the next pass when we find another first fragment.
437 	 *
438 	 * There is a potential to do partial delivery if user sets
439 	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
440 	 * to see if can do PD.
441 	 */
442 	skb_queue_walk(&ulpq->reasm, pos) {
443 		cevent = sctp_skb2event(pos);
444 		ctsn = cevent->tsn;
445 
446 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
447 		case SCTP_DATA_FIRST_FRAG:
448 			/* If this "FIRST_FRAG" is the first
449 			 * element in the queue, then count it towards
450 			 * possible PD.
451 			 */
452 			if (pos == ulpq->reasm.next) {
453 			    pd_first = pos;
454 			    pd_last = pos;
455 			    pd_len = pos->len;
456 			} else {
457 			    pd_first = NULL;
458 			    pd_last = NULL;
459 			    pd_len = 0;
460 			}
461 
462 			first_frag = pos;
463 			next_tsn = ctsn + 1;
464 			break;
465 
466 		case SCTP_DATA_MIDDLE_FRAG:
467 			if ((first_frag) && (ctsn == next_tsn)) {
468 				next_tsn++;
469 				if (pd_first) {
470 				    pd_last = pos;
471 				    pd_len += pos->len;
472 				}
473 			} else
474 				first_frag = NULL;
475 			break;
476 
477 		case SCTP_DATA_LAST_FRAG:
478 			if (first_frag && (ctsn == next_tsn))
479 				goto found;
480 			else
481 				first_frag = NULL;
482 			break;
483 		}
484 	}
485 
486 	asoc = ulpq->asoc;
487 	if (pd_first) {
488 		/* Make sure we can enter partial deliver.
489 		 * We can trigger partial delivery only if framgent
490 		 * interleave is set, or the socket is not already
491 		 * in  partial delivery.
492 		 */
493 		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
494 		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
495 			goto done;
496 
497 		cevent = sctp_skb2event(pd_first);
498 		pd_point = sctp_sk(asoc->base.sk)->pd_point;
499 		if (pd_point && pd_point <= pd_len) {
500 			retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
501 							     &ulpq->reasm,
502 							     pd_first,
503 							     pd_last);
504 			if (retval)
505 				sctp_ulpq_set_pd(ulpq);
506 		}
507 	}
508 done:
509 	return retval;
510 found:
511 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
512 					     &ulpq->reasm, first_frag, pos);
513 	if (retval)
514 		retval->msg_flags |= MSG_EOR;
515 	goto done;
516 }
517 
518 /* Retrieve the next set of fragments of a partial message. */
519 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
520 {
521 	struct sk_buff *pos, *last_frag, *first_frag;
522 	struct sctp_ulpevent *cevent;
523 	__u32 ctsn, next_tsn;
524 	int is_last;
525 	struct sctp_ulpevent *retval;
526 
527 	/* The chunks are held in the reasm queue sorted by TSN.
528 	 * Walk through the queue sequentially and look for the first
529 	 * sequence of fragmented chunks.
530 	 */
531 
532 	if (skb_queue_empty(&ulpq->reasm))
533 		return NULL;
534 
535 	last_frag = first_frag = NULL;
536 	retval = NULL;
537 	next_tsn = 0;
538 	is_last = 0;
539 
540 	skb_queue_walk(&ulpq->reasm, pos) {
541 		cevent = sctp_skb2event(pos);
542 		ctsn = cevent->tsn;
543 
544 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
545 		case SCTP_DATA_FIRST_FRAG:
546 			if (!first_frag)
547 				return NULL;
548 			goto done;
549 		case SCTP_DATA_MIDDLE_FRAG:
550 			if (!first_frag) {
551 				first_frag = pos;
552 				next_tsn = ctsn + 1;
553 				last_frag = pos;
554 			} else if (next_tsn == ctsn) {
555 				next_tsn++;
556 				last_frag = pos;
557 			} else
558 				goto done;
559 			break;
560 		case SCTP_DATA_LAST_FRAG:
561 			if (!first_frag)
562 				first_frag = pos;
563 			else if (ctsn != next_tsn)
564 				goto done;
565 			last_frag = pos;
566 			is_last = 1;
567 			goto done;
568 		default:
569 			return NULL;
570 		}
571 	}
572 
573 	/* We have the reassembled event. There is no need to look
574 	 * further.
575 	 */
576 done:
577 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
578 					&ulpq->reasm, first_frag, last_frag);
579 	if (retval && is_last)
580 		retval->msg_flags |= MSG_EOR;
581 
582 	return retval;
583 }
584 
585 
586 /* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
587  * need reassembling.
588  */
589 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
590 						struct sctp_ulpevent *event)
591 {
592 	struct sctp_ulpevent *retval = NULL;
593 
594 	/* Check if this is part of a fragmented message.  */
595 	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
596 		event->msg_flags |= MSG_EOR;
597 		return event;
598 	}
599 
600 	sctp_ulpq_store_reasm(ulpq, event);
601 	if (!ulpq->pd_mode)
602 		retval = sctp_ulpq_retrieve_reassembled(ulpq);
603 	else {
604 		__u32 ctsn, ctsnap;
605 
606 		/* Do not even bother unless this is the next tsn to
607 		 * be delivered.
608 		 */
609 		ctsn = event->tsn;
610 		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
611 		if (TSN_lte(ctsn, ctsnap))
612 			retval = sctp_ulpq_retrieve_partial(ulpq);
613 	}
614 
615 	return retval;
616 }
617 
618 /* Retrieve the first part (sequential fragments) for partial delivery.  */
619 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
620 {
621 	struct sk_buff *pos, *last_frag, *first_frag;
622 	struct sctp_ulpevent *cevent;
623 	__u32 ctsn, next_tsn;
624 	struct sctp_ulpevent *retval;
625 
626 	/* The chunks are held in the reasm queue sorted by TSN.
627 	 * Walk through the queue sequentially and look for a sequence of
628 	 * fragmented chunks that start a datagram.
629 	 */
630 
631 	if (skb_queue_empty(&ulpq->reasm))
632 		return NULL;
633 
634 	last_frag = first_frag = NULL;
635 	retval = NULL;
636 	next_tsn = 0;
637 
638 	skb_queue_walk(&ulpq->reasm, pos) {
639 		cevent = sctp_skb2event(pos);
640 		ctsn = cevent->tsn;
641 
642 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
643 		case SCTP_DATA_FIRST_FRAG:
644 			if (!first_frag) {
645 				first_frag = pos;
646 				next_tsn = ctsn + 1;
647 				last_frag = pos;
648 			} else
649 				goto done;
650 			break;
651 
652 		case SCTP_DATA_MIDDLE_FRAG:
653 			if (!first_frag)
654 				return NULL;
655 			if (ctsn == next_tsn) {
656 				next_tsn++;
657 				last_frag = pos;
658 			} else
659 				goto done;
660 			break;
661 
662 		case SCTP_DATA_LAST_FRAG:
663 			if (!first_frag)
664 				return NULL;
665 			else
666 				goto done;
667 			break;
668 
669 		default:
670 			return NULL;
671 		}
672 	}
673 
674 	/* We have the reassembled event. There is no need to look
675 	 * further.
676 	 */
677 done:
678 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
679 					&ulpq->reasm, first_frag, last_frag);
680 	return retval;
681 }
682 
683 /*
684  * Flush out stale fragments from the reassembly queue when processing
685  * a Forward TSN.
686  *
687  * RFC 3758, Section 3.6
688  *
689  * After receiving and processing a FORWARD TSN, the data receiver MUST
690  * take cautions in updating its re-assembly queue.  The receiver MUST
691  * remove any partially reassembled message, which is still missing one
692  * or more TSNs earlier than or equal to the new cumulative TSN point.
693  * In the event that the receiver has invoked the partial delivery API,
694  * a notification SHOULD also be generated to inform the upper layer API
695  * that the message being partially delivered will NOT be completed.
696  */
697 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
698 {
699 	struct sk_buff *pos, *tmp;
700 	struct sctp_ulpevent *event;
701 	__u32 tsn;
702 
703 	if (skb_queue_empty(&ulpq->reasm))
704 		return;
705 
706 	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
707 		event = sctp_skb2event(pos);
708 		tsn = event->tsn;
709 
710 		/* Since the entire message must be abandoned by the
711 		 * sender (item A3 in Section 3.5, RFC 3758), we can
712 		 * free all fragments on the list that are less then
713 		 * or equal to ctsn_point
714 		 */
715 		if (TSN_lte(tsn, fwd_tsn)) {
716 			__skb_unlink(pos, &ulpq->reasm);
717 			sctp_ulpevent_free(event);
718 		} else
719 			break;
720 	}
721 }
722 
723 /*
724  * Drain the reassembly queue.  If we just cleared parted delivery, it
725  * is possible that the reassembly queue will contain already reassembled
726  * messages.  Retrieve any such messages and give them to the user.
727  */
728 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
729 {
730 	struct sctp_ulpevent *event = NULL;
731 	struct sk_buff_head temp;
732 
733 	if (skb_queue_empty(&ulpq->reasm))
734 		return;
735 
736 	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
737 		/* Do ordering if needed.  */
738 		if ((event) && (event->msg_flags & MSG_EOR)) {
739 			skb_queue_head_init(&temp);
740 			__skb_queue_tail(&temp, sctp_event2skb(event));
741 
742 			event = sctp_ulpq_order(ulpq, event);
743 		}
744 
745 		/* Send event to the ULP.  'event' is the
746 		 * sctp_ulpevent for  very first SKB on the  temp' list.
747 		 */
748 		if (event)
749 			sctp_ulpq_tail_event(ulpq, event);
750 	}
751 }
752 
753 
754 /* Helper function to gather skbs that have possibly become
755  * ordered by an an incoming chunk.
756  */
757 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
758 					      struct sctp_ulpevent *event)
759 {
760 	struct sk_buff_head *event_list;
761 	struct sk_buff *pos, *tmp;
762 	struct sctp_ulpevent *cevent;
763 	struct sctp_stream *stream;
764 	__u16 sid, csid, cssn;
765 
766 	sid = event->stream;
767 	stream  = ulpq->asoc->stream;
768 
769 	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
770 
771 	/* We are holding the chunks by stream, by SSN.  */
772 	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
773 		cevent = (struct sctp_ulpevent *) pos->cb;
774 		csid = cevent->stream;
775 		cssn = cevent->ssn;
776 
777 		/* Have we gone too far?  */
778 		if (csid > sid)
779 			break;
780 
781 		/* Have we not gone far enough?  */
782 		if (csid < sid)
783 			continue;
784 
785 		if (cssn != sctp_ssn_peek(stream, in, sid))
786 			break;
787 
788 		/* Found it, so mark in the stream. */
789 		sctp_ssn_next(stream, in, sid);
790 
791 		__skb_unlink(pos, &ulpq->lobby);
792 
793 		/* Attach all gathered skbs to the event.  */
794 		__skb_queue_tail(event_list, pos);
795 	}
796 }
797 
798 /* Helper function to store chunks needing ordering.  */
799 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
800 					   struct sctp_ulpevent *event)
801 {
802 	struct sk_buff *pos;
803 	struct sctp_ulpevent *cevent;
804 	__u16 sid, csid;
805 	__u16 ssn, cssn;
806 
807 	pos = skb_peek_tail(&ulpq->lobby);
808 	if (!pos) {
809 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
810 		return;
811 	}
812 
813 	sid = event->stream;
814 	ssn = event->ssn;
815 
816 	cevent = (struct sctp_ulpevent *) pos->cb;
817 	csid = cevent->stream;
818 	cssn = cevent->ssn;
819 	if (sid > csid) {
820 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
821 		return;
822 	}
823 
824 	if ((sid == csid) && SSN_lt(cssn, ssn)) {
825 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
826 		return;
827 	}
828 
829 	/* Find the right place in this list.  We store them by
830 	 * stream ID and then by SSN.
831 	 */
832 	skb_queue_walk(&ulpq->lobby, pos) {
833 		cevent = (struct sctp_ulpevent *) pos->cb;
834 		csid = cevent->stream;
835 		cssn = cevent->ssn;
836 
837 		if (csid > sid)
838 			break;
839 		if (csid == sid && SSN_lt(ssn, cssn))
840 			break;
841 	}
842 
843 
844 	/* Insert before pos. */
845 	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
846 }
847 
848 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
849 					     struct sctp_ulpevent *event)
850 {
851 	__u16 sid, ssn;
852 	struct sctp_stream *stream;
853 
854 	/* Check if this message needs ordering.  */
855 	if (SCTP_DATA_UNORDERED & event->msg_flags)
856 		return event;
857 
858 	/* Note: The stream ID must be verified before this routine.  */
859 	sid = event->stream;
860 	ssn = event->ssn;
861 	stream  = ulpq->asoc->stream;
862 
863 	/* Is this the expected SSN for this stream ID?  */
864 	if (ssn != sctp_ssn_peek(stream, in, sid)) {
865 		/* We've received something out of order, so find where it
866 		 * needs to be placed.  We order by stream and then by SSN.
867 		 */
868 		sctp_ulpq_store_ordered(ulpq, event);
869 		return NULL;
870 	}
871 
872 	/* Mark that the next chunk has been found.  */
873 	sctp_ssn_next(stream, in, sid);
874 
875 	/* Go find any other chunks that were waiting for
876 	 * ordering.
877 	 */
878 	sctp_ulpq_retrieve_ordered(ulpq, event);
879 
880 	return event;
881 }
882 
883 /* Helper function to gather skbs that have possibly become
884  * ordered by forward tsn skipping their dependencies.
885  */
886 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
887 {
888 	struct sk_buff *pos, *tmp;
889 	struct sctp_ulpevent *cevent;
890 	struct sctp_ulpevent *event;
891 	struct sctp_stream *stream;
892 	struct sk_buff_head temp;
893 	struct sk_buff_head *lobby = &ulpq->lobby;
894 	__u16 csid, cssn;
895 
896 	stream = ulpq->asoc->stream;
897 
898 	/* We are holding the chunks by stream, by SSN.  */
899 	skb_queue_head_init(&temp);
900 	event = NULL;
901 	sctp_skb_for_each(pos, lobby, tmp) {
902 		cevent = (struct sctp_ulpevent *) pos->cb;
903 		csid = cevent->stream;
904 		cssn = cevent->ssn;
905 
906 		/* Have we gone too far?  */
907 		if (csid > sid)
908 			break;
909 
910 		/* Have we not gone far enough?  */
911 		if (csid < sid)
912 			continue;
913 
914 		/* see if this ssn has been marked by skipping */
915 		if (!SSN_lt(cssn, sctp_ssn_peek(stream, in, csid)))
916 			break;
917 
918 		__skb_unlink(pos, lobby);
919 		if (!event)
920 			/* Create a temporary list to collect chunks on.  */
921 			event = sctp_skb2event(pos);
922 
923 		/* Attach all gathered skbs to the event.  */
924 		__skb_queue_tail(&temp, pos);
925 	}
926 
927 	/* If we didn't reap any data, see if the next expected SSN
928 	 * is next on the queue and if so, use that.
929 	 */
930 	if (event == NULL && pos != (struct sk_buff *)lobby) {
931 		cevent = (struct sctp_ulpevent *) pos->cb;
932 		csid = cevent->stream;
933 		cssn = cevent->ssn;
934 
935 		if (csid == sid && cssn == sctp_ssn_peek(stream, in, csid)) {
936 			sctp_ssn_next(stream, in, csid);
937 			__skb_unlink(pos, lobby);
938 			__skb_queue_tail(&temp, pos);
939 			event = sctp_skb2event(pos);
940 		}
941 	}
942 
943 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
944 	 * very first SKB on the 'temp' list.
945 	 */
946 	if (event) {
947 		/* see if we have more ordered that we can deliver */
948 		sctp_ulpq_retrieve_ordered(ulpq, event);
949 		sctp_ulpq_tail_event(ulpq, event);
950 	}
951 }
952 
953 /* Skip over an SSN. This is used during the processing of
954  * Forwared TSN chunk to skip over the abandoned ordered data
955  */
956 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
957 {
958 	struct sctp_stream *stream;
959 
960 	/* Note: The stream ID must be verified before this routine.  */
961 	stream  = ulpq->asoc->stream;
962 
963 	/* Is this an old SSN?  If so ignore. */
964 	if (SSN_lt(ssn, sctp_ssn_peek(stream, in, sid)))
965 		return;
966 
967 	/* Mark that we are no longer expecting this SSN or lower. */
968 	sctp_ssn_skip(stream, in, sid, ssn);
969 
970 	/* Go find any other chunks that were waiting for
971 	 * ordering and deliver them if needed.
972 	 */
973 	sctp_ulpq_reap_ordered(ulpq, sid);
974 }
975 
976 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
977 		struct sk_buff_head *list, __u16 needed)
978 {
979 	__u16 freed = 0;
980 	__u32 tsn, last_tsn;
981 	struct sk_buff *skb, *flist, *last;
982 	struct sctp_ulpevent *event;
983 	struct sctp_tsnmap *tsnmap;
984 
985 	tsnmap = &ulpq->asoc->peer.tsn_map;
986 
987 	while ((skb = skb_peek_tail(list)) != NULL) {
988 		event = sctp_skb2event(skb);
989 		tsn = event->tsn;
990 
991 		/* Don't renege below the Cumulative TSN ACK Point. */
992 		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
993 			break;
994 
995 		/* Events in ordering queue may have multiple fragments
996 		 * corresponding to additional TSNs.  Sum the total
997 		 * freed space; find the last TSN.
998 		 */
999 		freed += skb_headlen(skb);
1000 		flist = skb_shinfo(skb)->frag_list;
1001 		for (last = flist; flist; flist = flist->next) {
1002 			last = flist;
1003 			freed += skb_headlen(last);
1004 		}
1005 		if (last)
1006 			last_tsn = sctp_skb2event(last)->tsn;
1007 		else
1008 			last_tsn = tsn;
1009 
1010 		/* Unlink the event, then renege all applicable TSNs. */
1011 		__skb_unlink(skb, list);
1012 		sctp_ulpevent_free(event);
1013 		while (TSN_lte(tsn, last_tsn)) {
1014 			sctp_tsnmap_renege(tsnmap, tsn);
1015 			tsn++;
1016 		}
1017 		if (freed >= needed)
1018 			return freed;
1019 	}
1020 
1021 	return freed;
1022 }
1023 
1024 /* Renege 'needed' bytes from the ordering queue. */
1025 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1026 {
1027 	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1028 }
1029 
1030 /* Renege 'needed' bytes from the reassembly queue. */
1031 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1032 {
1033 	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1034 }
1035 
1036 /* Partial deliver the first message as there is pressure on rwnd. */
1037 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
1038 				gfp_t gfp)
1039 {
1040 	struct sctp_ulpevent *event;
1041 	struct sctp_association *asoc;
1042 	struct sctp_sock *sp;
1043 	__u32 ctsn;
1044 	struct sk_buff *skb;
1045 
1046 	asoc = ulpq->asoc;
1047 	sp = sctp_sk(asoc->base.sk);
1048 
1049 	/* If the association is already in Partial Delivery mode
1050 	 * we have nothing to do.
1051 	 */
1052 	if (ulpq->pd_mode)
1053 		return;
1054 
1055 	/* Data must be at or below the Cumulative TSN ACK Point to
1056 	 * start partial delivery.
1057 	 */
1058 	skb = skb_peek(&asoc->ulpq.reasm);
1059 	if (skb != NULL) {
1060 		ctsn = sctp_skb2event(skb)->tsn;
1061 		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1062 			return;
1063 	}
1064 
1065 	/* If the user enabled fragment interleave socket option,
1066 	 * multiple associations can enter partial delivery.
1067 	 * Otherwise, we can only enter partial delivery if the
1068 	 * socket is not in partial deliver mode.
1069 	 */
1070 	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1071 		/* Is partial delivery possible?  */
1072 		event = sctp_ulpq_retrieve_first(ulpq);
1073 		/* Send event to the ULP.   */
1074 		if (event) {
1075 			sctp_ulpq_tail_event(ulpq, event);
1076 			sctp_ulpq_set_pd(ulpq);
1077 			return;
1078 		}
1079 	}
1080 }
1081 
1082 /* Renege some packets to make room for an incoming chunk.  */
1083 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1084 		      gfp_t gfp)
1085 {
1086 	struct sctp_association *asoc;
1087 	__u16 needed, freed;
1088 
1089 	asoc = ulpq->asoc;
1090 
1091 	if (chunk) {
1092 		needed = ntohs(chunk->chunk_hdr->length);
1093 		needed -= sizeof(sctp_data_chunk_t);
1094 	} else
1095 		needed = SCTP_DEFAULT_MAXWINDOW;
1096 
1097 	freed = 0;
1098 
1099 	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1100 		freed = sctp_ulpq_renege_order(ulpq, needed);
1101 		if (freed < needed) {
1102 			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1103 		}
1104 	}
1105 	/* If able to free enough room, accept this chunk. */
1106 	if (chunk && (freed >= needed)) {
1107 		int retval;
1108 		retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1109 		/*
1110 		 * Enter partial delivery if chunk has not been
1111 		 * delivered; otherwise, drain the reassembly queue.
1112 		 */
1113 		if (retval <= 0)
1114 			sctp_ulpq_partial_delivery(ulpq, gfp);
1115 		else if (retval == 1)
1116 			sctp_ulpq_reasm_drain(ulpq);
1117 	}
1118 
1119 	sk_mem_reclaim(asoc->base.sk);
1120 }
1121 
1122 
1123 
1124 /* Notify the application if an association is aborted and in
1125  * partial delivery mode.  Send up any pending received messages.
1126  */
1127 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1128 {
1129 	struct sctp_ulpevent *ev = NULL;
1130 	struct sock *sk;
1131 	struct sctp_sock *sp;
1132 
1133 	if (!ulpq->pd_mode)
1134 		return;
1135 
1136 	sk = ulpq->asoc->base.sk;
1137 	sp = sctp_sk(sk);
1138 	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1139 				       &sctp_sk(sk)->subscribe))
1140 		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1141 					      SCTP_PARTIAL_DELIVERY_ABORTED,
1142 					      gfp);
1143 	if (ev)
1144 		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1145 
1146 	/* If there is data waiting, send it up the socket now. */
1147 	if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) {
1148 		sp->data_ready_signalled = 1;
1149 		sk->sk_data_ready(sk);
1150 	}
1151 }
1152