1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This abstraction carries sctp events to the ULP (sockets). 10 * 11 * This SCTP implementation is free software; 12 * you can redistribute it and/or modify it under the terms of 13 * the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This SCTP implementation is distributed in the hope that it 18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 19 * ************************ 20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * See the GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with GNU CC; see the file COPYING. If not, see 25 * <http://www.gnu.org/licenses/>. 26 * 27 * Please send any bug reports or fixes you make to the 28 * email address(es): 29 * lksctp developers <linux-sctp@vger.kernel.org> 30 * 31 * Written or modified by: 32 * Jon Grimm <jgrimm@us.ibm.com> 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Sridhar Samudrala <sri@us.ibm.com> 35 */ 36 37 #include <linux/slab.h> 38 #include <linux/types.h> 39 #include <linux/skbuff.h> 40 #include <net/sock.h> 41 #include <net/busy_poll.h> 42 #include <net/sctp/structs.h> 43 #include <net/sctp/sctp.h> 44 #include <net/sctp/sm.h> 45 46 /* Forward declarations for internal helpers. */ 47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 48 struct sctp_ulpevent *); 49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *, 50 struct sctp_ulpevent *); 51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 52 53 /* 1st Level Abstractions */ 54 55 /* Initialize a ULP queue from a block of memory. */ 56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, 57 struct sctp_association *asoc) 58 { 59 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 60 61 ulpq->asoc = asoc; 62 skb_queue_head_init(&ulpq->reasm); 63 skb_queue_head_init(&ulpq->lobby); 64 ulpq->pd_mode = 0; 65 66 return ulpq; 67 } 68 69 70 /* Flush the reassembly and ordering queues. */ 71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 72 { 73 struct sk_buff *skb; 74 struct sctp_ulpevent *event; 75 76 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 77 event = sctp_skb2event(skb); 78 sctp_ulpevent_free(event); 79 } 80 81 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 82 event = sctp_skb2event(skb); 83 sctp_ulpevent_free(event); 84 } 85 86 } 87 88 /* Dispose of a ulpqueue. */ 89 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 90 { 91 sctp_ulpq_flush(ulpq); 92 } 93 94 /* Process an incoming DATA chunk. */ 95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 96 gfp_t gfp) 97 { 98 struct sk_buff_head temp; 99 struct sctp_ulpevent *event; 100 int event_eor = 0; 101 102 /* Create an event from the incoming chunk. */ 103 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 104 if (!event) 105 return -ENOMEM; 106 107 /* Do reassembly if needed. */ 108 event = sctp_ulpq_reasm(ulpq, event); 109 110 /* Do ordering if needed. */ 111 if ((event) && (event->msg_flags & MSG_EOR)) { 112 /* Create a temporary list to collect chunks on. */ 113 skb_queue_head_init(&temp); 114 __skb_queue_tail(&temp, sctp_event2skb(event)); 115 116 event = sctp_ulpq_order(ulpq, event); 117 } 118 119 /* Send event to the ULP. 'event' is the sctp_ulpevent for 120 * very first SKB on the 'temp' list. 121 */ 122 if (event) { 123 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 124 sctp_ulpq_tail_event(ulpq, event); 125 } 126 127 return event_eor; 128 } 129 130 /* Add a new event for propagation to the ULP. */ 131 /* Clear the partial delivery mode for this socket. Note: This 132 * assumes that no association is currently in partial delivery mode. 133 */ 134 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 135 { 136 struct sctp_sock *sp = sctp_sk(sk); 137 138 if (atomic_dec_and_test(&sp->pd_mode)) { 139 /* This means there are no other associations in PD, so 140 * we can go ahead and clear out the lobby in one shot 141 */ 142 if (!skb_queue_empty(&sp->pd_lobby)) { 143 struct list_head *list; 144 sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue); 145 list = (struct list_head *)&sctp_sk(sk)->pd_lobby; 146 INIT_LIST_HEAD(list); 147 return 1; 148 } 149 } else { 150 /* There are other associations in PD, so we only need to 151 * pull stuff out of the lobby that belongs to the 152 * associations that is exiting PD (all of its notifications 153 * are posted here). 154 */ 155 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 156 struct sk_buff *skb, *tmp; 157 struct sctp_ulpevent *event; 158 159 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 160 event = sctp_skb2event(skb); 161 if (event->asoc == asoc) { 162 __skb_unlink(skb, &sp->pd_lobby); 163 __skb_queue_tail(&sk->sk_receive_queue, 164 skb); 165 } 166 } 167 } 168 } 169 170 return 0; 171 } 172 173 /* Set the pd_mode on the socket and ulpq */ 174 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 175 { 176 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 177 178 atomic_inc(&sp->pd_mode); 179 ulpq->pd_mode = 1; 180 } 181 182 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 183 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 184 { 185 ulpq->pd_mode = 0; 186 sctp_ulpq_reasm_drain(ulpq); 187 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 188 } 189 190 /* If the SKB of 'event' is on a list, it is the first such member 191 * of that list. 192 */ 193 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event) 194 { 195 struct sock *sk = ulpq->asoc->base.sk; 196 struct sk_buff_head *queue, *skb_list; 197 struct sk_buff *skb = sctp_event2skb(event); 198 int clear_pd = 0; 199 200 skb_list = (struct sk_buff_head *) skb->prev; 201 202 /* If the socket is just going to throw this away, do not 203 * even try to deliver it. 204 */ 205 if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN)) 206 goto out_free; 207 208 if (!sctp_ulpevent_is_notification(event)) { 209 sk_mark_napi_id(sk, skb); 210 sk_incoming_cpu_update(sk); 211 } 212 /* Check if the user wishes to receive this event. */ 213 if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe)) 214 goto out_free; 215 216 /* If we are in partial delivery mode, post to the lobby until 217 * partial delivery is cleared, unless, of course _this_ is 218 * the association the cause of the partial delivery. 219 */ 220 221 if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) { 222 queue = &sk->sk_receive_queue; 223 } else { 224 if (ulpq->pd_mode) { 225 /* If the association is in partial delivery, we 226 * need to finish delivering the partially processed 227 * packet before passing any other data. This is 228 * because we don't truly support stream interleaving. 229 */ 230 if ((event->msg_flags & MSG_NOTIFICATION) || 231 (SCTP_DATA_NOT_FRAG == 232 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 233 queue = &sctp_sk(sk)->pd_lobby; 234 else { 235 clear_pd = event->msg_flags & MSG_EOR; 236 queue = &sk->sk_receive_queue; 237 } 238 } else { 239 /* 240 * If fragment interleave is enabled, we 241 * can queue this to the receive queue instead 242 * of the lobby. 243 */ 244 if (sctp_sk(sk)->frag_interleave) 245 queue = &sk->sk_receive_queue; 246 else 247 queue = &sctp_sk(sk)->pd_lobby; 248 } 249 } 250 251 /* If we are harvesting multiple skbs they will be 252 * collected on a list. 253 */ 254 if (skb_list) 255 sctp_skb_list_tail(skb_list, queue); 256 else 257 __skb_queue_tail(queue, skb); 258 259 /* Did we just complete partial delivery and need to get 260 * rolling again? Move pending data to the receive 261 * queue. 262 */ 263 if (clear_pd) 264 sctp_ulpq_clear_pd(ulpq); 265 266 if (queue == &sk->sk_receive_queue) 267 sk->sk_data_ready(sk); 268 return 1; 269 270 out_free: 271 if (skb_list) 272 sctp_queue_purge_ulpevents(skb_list); 273 else 274 sctp_ulpevent_free(event); 275 276 return 0; 277 } 278 279 /* 2nd Level Abstractions */ 280 281 /* Helper function to store chunks that need to be reassembled. */ 282 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 283 struct sctp_ulpevent *event) 284 { 285 struct sk_buff *pos; 286 struct sctp_ulpevent *cevent; 287 __u32 tsn, ctsn; 288 289 tsn = event->tsn; 290 291 /* See if it belongs at the end. */ 292 pos = skb_peek_tail(&ulpq->reasm); 293 if (!pos) { 294 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 295 return; 296 } 297 298 /* Short circuit just dropping it at the end. */ 299 cevent = sctp_skb2event(pos); 300 ctsn = cevent->tsn; 301 if (TSN_lt(ctsn, tsn)) { 302 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 303 return; 304 } 305 306 /* Find the right place in this list. We store them by TSN. */ 307 skb_queue_walk(&ulpq->reasm, pos) { 308 cevent = sctp_skb2event(pos); 309 ctsn = cevent->tsn; 310 311 if (TSN_lt(tsn, ctsn)) 312 break; 313 } 314 315 /* Insert before pos. */ 316 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 317 318 } 319 320 /* Helper function to return an event corresponding to the reassembled 321 * datagram. 322 * This routine creates a re-assembled skb given the first and last skb's 323 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 324 * payload was fragmented on the way and ip had to reassemble them. 325 * We add the rest of skb's to the first skb's fraglist. 326 */ 327 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 328 struct sk_buff_head *queue, struct sk_buff *f_frag, 329 struct sk_buff *l_frag) 330 { 331 struct sk_buff *pos; 332 struct sk_buff *new = NULL; 333 struct sctp_ulpevent *event; 334 struct sk_buff *pnext, *last; 335 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 336 337 /* Store the pointer to the 2nd skb */ 338 if (f_frag == l_frag) 339 pos = NULL; 340 else 341 pos = f_frag->next; 342 343 /* Get the last skb in the f_frag's frag_list if present. */ 344 for (last = list; list; last = list, list = list->next) 345 ; 346 347 /* Add the list of remaining fragments to the first fragments 348 * frag_list. 349 */ 350 if (last) 351 last->next = pos; 352 else { 353 if (skb_cloned(f_frag)) { 354 /* This is a cloned skb, we can't just modify 355 * the frag_list. We need a new skb to do that. 356 * Instead of calling skb_unshare(), we'll do it 357 * ourselves since we need to delay the free. 358 */ 359 new = skb_copy(f_frag, GFP_ATOMIC); 360 if (!new) 361 return NULL; /* try again later */ 362 363 sctp_skb_set_owner_r(new, f_frag->sk); 364 365 skb_shinfo(new)->frag_list = pos; 366 } else 367 skb_shinfo(f_frag)->frag_list = pos; 368 } 369 370 /* Remove the first fragment from the reassembly queue. */ 371 __skb_unlink(f_frag, queue); 372 373 /* if we did unshare, then free the old skb and re-assign */ 374 if (new) { 375 kfree_skb(f_frag); 376 f_frag = new; 377 } 378 379 while (pos) { 380 381 pnext = pos->next; 382 383 /* Update the len and data_len fields of the first fragment. */ 384 f_frag->len += pos->len; 385 f_frag->data_len += pos->len; 386 387 /* Remove the fragment from the reassembly queue. */ 388 __skb_unlink(pos, queue); 389 390 /* Break if we have reached the last fragment. */ 391 if (pos == l_frag) 392 break; 393 pos->next = pnext; 394 pos = pnext; 395 } 396 397 event = sctp_skb2event(f_frag); 398 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 399 400 return event; 401 } 402 403 404 /* Helper function to check if an incoming chunk has filled up the last 405 * missing fragment in a SCTP datagram and return the corresponding event. 406 */ 407 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 408 { 409 struct sk_buff *pos; 410 struct sctp_ulpevent *cevent; 411 struct sk_buff *first_frag = NULL; 412 __u32 ctsn, next_tsn; 413 struct sctp_ulpevent *retval = NULL; 414 struct sk_buff *pd_first = NULL; 415 struct sk_buff *pd_last = NULL; 416 size_t pd_len = 0; 417 struct sctp_association *asoc; 418 u32 pd_point; 419 420 /* Initialized to 0 just to avoid compiler warning message. Will 421 * never be used with this value. It is referenced only after it 422 * is set when we find the first fragment of a message. 423 */ 424 next_tsn = 0; 425 426 /* The chunks are held in the reasm queue sorted by TSN. 427 * Walk through the queue sequentially and look for a sequence of 428 * fragmented chunks that complete a datagram. 429 * 'first_frag' and next_tsn are reset when we find a chunk which 430 * is the first fragment of a datagram. Once these 2 fields are set 431 * we expect to find the remaining middle fragments and the last 432 * fragment in order. If not, first_frag is reset to NULL and we 433 * start the next pass when we find another first fragment. 434 * 435 * There is a potential to do partial delivery if user sets 436 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 437 * to see if can do PD. 438 */ 439 skb_queue_walk(&ulpq->reasm, pos) { 440 cevent = sctp_skb2event(pos); 441 ctsn = cevent->tsn; 442 443 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 444 case SCTP_DATA_FIRST_FRAG: 445 /* If this "FIRST_FRAG" is the first 446 * element in the queue, then count it towards 447 * possible PD. 448 */ 449 if (pos == ulpq->reasm.next) { 450 pd_first = pos; 451 pd_last = pos; 452 pd_len = pos->len; 453 } else { 454 pd_first = NULL; 455 pd_last = NULL; 456 pd_len = 0; 457 } 458 459 first_frag = pos; 460 next_tsn = ctsn + 1; 461 break; 462 463 case SCTP_DATA_MIDDLE_FRAG: 464 if ((first_frag) && (ctsn == next_tsn)) { 465 next_tsn++; 466 if (pd_first) { 467 pd_last = pos; 468 pd_len += pos->len; 469 } 470 } else 471 first_frag = NULL; 472 break; 473 474 case SCTP_DATA_LAST_FRAG: 475 if (first_frag && (ctsn == next_tsn)) 476 goto found; 477 else 478 first_frag = NULL; 479 break; 480 } 481 } 482 483 asoc = ulpq->asoc; 484 if (pd_first) { 485 /* Make sure we can enter partial deliver. 486 * We can trigger partial delivery only if framgent 487 * interleave is set, or the socket is not already 488 * in partial delivery. 489 */ 490 if (!sctp_sk(asoc->base.sk)->frag_interleave && 491 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 492 goto done; 493 494 cevent = sctp_skb2event(pd_first); 495 pd_point = sctp_sk(asoc->base.sk)->pd_point; 496 if (pd_point && pd_point <= pd_len) { 497 retval = sctp_make_reassembled_event(sock_net(asoc->base.sk), 498 &ulpq->reasm, 499 pd_first, 500 pd_last); 501 if (retval) 502 sctp_ulpq_set_pd(ulpq); 503 } 504 } 505 done: 506 return retval; 507 found: 508 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 509 &ulpq->reasm, first_frag, pos); 510 if (retval) 511 retval->msg_flags |= MSG_EOR; 512 goto done; 513 } 514 515 /* Retrieve the next set of fragments of a partial message. */ 516 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 517 { 518 struct sk_buff *pos, *last_frag, *first_frag; 519 struct sctp_ulpevent *cevent; 520 __u32 ctsn, next_tsn; 521 int is_last; 522 struct sctp_ulpevent *retval; 523 524 /* The chunks are held in the reasm queue sorted by TSN. 525 * Walk through the queue sequentially and look for the first 526 * sequence of fragmented chunks. 527 */ 528 529 if (skb_queue_empty(&ulpq->reasm)) 530 return NULL; 531 532 last_frag = first_frag = NULL; 533 retval = NULL; 534 next_tsn = 0; 535 is_last = 0; 536 537 skb_queue_walk(&ulpq->reasm, pos) { 538 cevent = sctp_skb2event(pos); 539 ctsn = cevent->tsn; 540 541 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 542 case SCTP_DATA_FIRST_FRAG: 543 if (!first_frag) 544 return NULL; 545 goto done; 546 case SCTP_DATA_MIDDLE_FRAG: 547 if (!first_frag) { 548 first_frag = pos; 549 next_tsn = ctsn + 1; 550 last_frag = pos; 551 } else if (next_tsn == ctsn) { 552 next_tsn++; 553 last_frag = pos; 554 } else 555 goto done; 556 break; 557 case SCTP_DATA_LAST_FRAG: 558 if (!first_frag) 559 first_frag = pos; 560 else if (ctsn != next_tsn) 561 goto done; 562 last_frag = pos; 563 is_last = 1; 564 goto done; 565 default: 566 return NULL; 567 } 568 } 569 570 /* We have the reassembled event. There is no need to look 571 * further. 572 */ 573 done: 574 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 575 &ulpq->reasm, first_frag, last_frag); 576 if (retval && is_last) 577 retval->msg_flags |= MSG_EOR; 578 579 return retval; 580 } 581 582 583 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 584 * need reassembling. 585 */ 586 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 587 struct sctp_ulpevent *event) 588 { 589 struct sctp_ulpevent *retval = NULL; 590 591 /* Check if this is part of a fragmented message. */ 592 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 593 event->msg_flags |= MSG_EOR; 594 return event; 595 } 596 597 sctp_ulpq_store_reasm(ulpq, event); 598 if (!ulpq->pd_mode) 599 retval = sctp_ulpq_retrieve_reassembled(ulpq); 600 else { 601 __u32 ctsn, ctsnap; 602 603 /* Do not even bother unless this is the next tsn to 604 * be delivered. 605 */ 606 ctsn = event->tsn; 607 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 608 if (TSN_lte(ctsn, ctsnap)) 609 retval = sctp_ulpq_retrieve_partial(ulpq); 610 } 611 612 return retval; 613 } 614 615 /* Retrieve the first part (sequential fragments) for partial delivery. */ 616 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 617 { 618 struct sk_buff *pos, *last_frag, *first_frag; 619 struct sctp_ulpevent *cevent; 620 __u32 ctsn, next_tsn; 621 struct sctp_ulpevent *retval; 622 623 /* The chunks are held in the reasm queue sorted by TSN. 624 * Walk through the queue sequentially and look for a sequence of 625 * fragmented chunks that start a datagram. 626 */ 627 628 if (skb_queue_empty(&ulpq->reasm)) 629 return NULL; 630 631 last_frag = first_frag = NULL; 632 retval = NULL; 633 next_tsn = 0; 634 635 skb_queue_walk(&ulpq->reasm, pos) { 636 cevent = sctp_skb2event(pos); 637 ctsn = cevent->tsn; 638 639 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 640 case SCTP_DATA_FIRST_FRAG: 641 if (!first_frag) { 642 first_frag = pos; 643 next_tsn = ctsn + 1; 644 last_frag = pos; 645 } else 646 goto done; 647 break; 648 649 case SCTP_DATA_MIDDLE_FRAG: 650 if (!first_frag) 651 return NULL; 652 if (ctsn == next_tsn) { 653 next_tsn++; 654 last_frag = pos; 655 } else 656 goto done; 657 break; 658 659 case SCTP_DATA_LAST_FRAG: 660 if (!first_frag) 661 return NULL; 662 else 663 goto done; 664 break; 665 666 default: 667 return NULL; 668 } 669 } 670 671 /* We have the reassembled event. There is no need to look 672 * further. 673 */ 674 done: 675 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 676 &ulpq->reasm, first_frag, last_frag); 677 return retval; 678 } 679 680 /* 681 * Flush out stale fragments from the reassembly queue when processing 682 * a Forward TSN. 683 * 684 * RFC 3758, Section 3.6 685 * 686 * After receiving and processing a FORWARD TSN, the data receiver MUST 687 * take cautions in updating its re-assembly queue. The receiver MUST 688 * remove any partially reassembled message, which is still missing one 689 * or more TSNs earlier than or equal to the new cumulative TSN point. 690 * In the event that the receiver has invoked the partial delivery API, 691 * a notification SHOULD also be generated to inform the upper layer API 692 * that the message being partially delivered will NOT be completed. 693 */ 694 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 695 { 696 struct sk_buff *pos, *tmp; 697 struct sctp_ulpevent *event; 698 __u32 tsn; 699 700 if (skb_queue_empty(&ulpq->reasm)) 701 return; 702 703 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 704 event = sctp_skb2event(pos); 705 tsn = event->tsn; 706 707 /* Since the entire message must be abandoned by the 708 * sender (item A3 in Section 3.5, RFC 3758), we can 709 * free all fragments on the list that are less then 710 * or equal to ctsn_point 711 */ 712 if (TSN_lte(tsn, fwd_tsn)) { 713 __skb_unlink(pos, &ulpq->reasm); 714 sctp_ulpevent_free(event); 715 } else 716 break; 717 } 718 } 719 720 /* 721 * Drain the reassembly queue. If we just cleared parted delivery, it 722 * is possible that the reassembly queue will contain already reassembled 723 * messages. Retrieve any such messages and give them to the user. 724 */ 725 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 726 { 727 struct sctp_ulpevent *event = NULL; 728 struct sk_buff_head temp; 729 730 if (skb_queue_empty(&ulpq->reasm)) 731 return; 732 733 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 734 /* Do ordering if needed. */ 735 if ((event) && (event->msg_flags & MSG_EOR)) { 736 skb_queue_head_init(&temp); 737 __skb_queue_tail(&temp, sctp_event2skb(event)); 738 739 event = sctp_ulpq_order(ulpq, event); 740 } 741 742 /* Send event to the ULP. 'event' is the 743 * sctp_ulpevent for very first SKB on the temp' list. 744 */ 745 if (event) 746 sctp_ulpq_tail_event(ulpq, event); 747 } 748 } 749 750 751 /* Helper function to gather skbs that have possibly become 752 * ordered by an an incoming chunk. 753 */ 754 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 755 struct sctp_ulpevent *event) 756 { 757 struct sk_buff_head *event_list; 758 struct sk_buff *pos, *tmp; 759 struct sctp_ulpevent *cevent; 760 struct sctp_stream *in; 761 __u16 sid, csid, cssn; 762 763 sid = event->stream; 764 in = &ulpq->asoc->ssnmap->in; 765 766 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 767 768 /* We are holding the chunks by stream, by SSN. */ 769 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 770 cevent = (struct sctp_ulpevent *) pos->cb; 771 csid = cevent->stream; 772 cssn = cevent->ssn; 773 774 /* Have we gone too far? */ 775 if (csid > sid) 776 break; 777 778 /* Have we not gone far enough? */ 779 if (csid < sid) 780 continue; 781 782 if (cssn != sctp_ssn_peek(in, sid)) 783 break; 784 785 /* Found it, so mark in the ssnmap. */ 786 sctp_ssn_next(in, sid); 787 788 __skb_unlink(pos, &ulpq->lobby); 789 790 /* Attach all gathered skbs to the event. */ 791 __skb_queue_tail(event_list, pos); 792 } 793 } 794 795 /* Helper function to store chunks needing ordering. */ 796 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 797 struct sctp_ulpevent *event) 798 { 799 struct sk_buff *pos; 800 struct sctp_ulpevent *cevent; 801 __u16 sid, csid; 802 __u16 ssn, cssn; 803 804 pos = skb_peek_tail(&ulpq->lobby); 805 if (!pos) { 806 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 807 return; 808 } 809 810 sid = event->stream; 811 ssn = event->ssn; 812 813 cevent = (struct sctp_ulpevent *) pos->cb; 814 csid = cevent->stream; 815 cssn = cevent->ssn; 816 if (sid > csid) { 817 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 818 return; 819 } 820 821 if ((sid == csid) && SSN_lt(cssn, ssn)) { 822 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 823 return; 824 } 825 826 /* Find the right place in this list. We store them by 827 * stream ID and then by SSN. 828 */ 829 skb_queue_walk(&ulpq->lobby, pos) { 830 cevent = (struct sctp_ulpevent *) pos->cb; 831 csid = cevent->stream; 832 cssn = cevent->ssn; 833 834 if (csid > sid) 835 break; 836 if (csid == sid && SSN_lt(ssn, cssn)) 837 break; 838 } 839 840 841 /* Insert before pos. */ 842 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 843 } 844 845 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 846 struct sctp_ulpevent *event) 847 { 848 __u16 sid, ssn; 849 struct sctp_stream *in; 850 851 /* Check if this message needs ordering. */ 852 if (SCTP_DATA_UNORDERED & event->msg_flags) 853 return event; 854 855 /* Note: The stream ID must be verified before this routine. */ 856 sid = event->stream; 857 ssn = event->ssn; 858 in = &ulpq->asoc->ssnmap->in; 859 860 /* Is this the expected SSN for this stream ID? */ 861 if (ssn != sctp_ssn_peek(in, sid)) { 862 /* We've received something out of order, so find where it 863 * needs to be placed. We order by stream and then by SSN. 864 */ 865 sctp_ulpq_store_ordered(ulpq, event); 866 return NULL; 867 } 868 869 /* Mark that the next chunk has been found. */ 870 sctp_ssn_next(in, sid); 871 872 /* Go find any other chunks that were waiting for 873 * ordering. 874 */ 875 sctp_ulpq_retrieve_ordered(ulpq, event); 876 877 return event; 878 } 879 880 /* Helper function to gather skbs that have possibly become 881 * ordered by forward tsn skipping their dependencies. 882 */ 883 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 884 { 885 struct sk_buff *pos, *tmp; 886 struct sctp_ulpevent *cevent; 887 struct sctp_ulpevent *event; 888 struct sctp_stream *in; 889 struct sk_buff_head temp; 890 struct sk_buff_head *lobby = &ulpq->lobby; 891 __u16 csid, cssn; 892 893 in = &ulpq->asoc->ssnmap->in; 894 895 /* We are holding the chunks by stream, by SSN. */ 896 skb_queue_head_init(&temp); 897 event = NULL; 898 sctp_skb_for_each(pos, lobby, tmp) { 899 cevent = (struct sctp_ulpevent *) pos->cb; 900 csid = cevent->stream; 901 cssn = cevent->ssn; 902 903 /* Have we gone too far? */ 904 if (csid > sid) 905 break; 906 907 /* Have we not gone far enough? */ 908 if (csid < sid) 909 continue; 910 911 /* see if this ssn has been marked by skipping */ 912 if (!SSN_lt(cssn, sctp_ssn_peek(in, csid))) 913 break; 914 915 __skb_unlink(pos, lobby); 916 if (!event) 917 /* Create a temporary list to collect chunks on. */ 918 event = sctp_skb2event(pos); 919 920 /* Attach all gathered skbs to the event. */ 921 __skb_queue_tail(&temp, pos); 922 } 923 924 /* If we didn't reap any data, see if the next expected SSN 925 * is next on the queue and if so, use that. 926 */ 927 if (event == NULL && pos != (struct sk_buff *)lobby) { 928 cevent = (struct sctp_ulpevent *) pos->cb; 929 csid = cevent->stream; 930 cssn = cevent->ssn; 931 932 if (csid == sid && cssn == sctp_ssn_peek(in, csid)) { 933 sctp_ssn_next(in, csid); 934 __skb_unlink(pos, lobby); 935 __skb_queue_tail(&temp, pos); 936 event = sctp_skb2event(pos); 937 } 938 } 939 940 /* Send event to the ULP. 'event' is the sctp_ulpevent for 941 * very first SKB on the 'temp' list. 942 */ 943 if (event) { 944 /* see if we have more ordered that we can deliver */ 945 sctp_ulpq_retrieve_ordered(ulpq, event); 946 sctp_ulpq_tail_event(ulpq, event); 947 } 948 } 949 950 /* Skip over an SSN. This is used during the processing of 951 * Forwared TSN chunk to skip over the abandoned ordered data 952 */ 953 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 954 { 955 struct sctp_stream *in; 956 957 /* Note: The stream ID must be verified before this routine. */ 958 in = &ulpq->asoc->ssnmap->in; 959 960 /* Is this an old SSN? If so ignore. */ 961 if (SSN_lt(ssn, sctp_ssn_peek(in, sid))) 962 return; 963 964 /* Mark that we are no longer expecting this SSN or lower. */ 965 sctp_ssn_skip(in, sid, ssn); 966 967 /* Go find any other chunks that were waiting for 968 * ordering and deliver them if needed. 969 */ 970 sctp_ulpq_reap_ordered(ulpq, sid); 971 } 972 973 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, 974 struct sk_buff_head *list, __u16 needed) 975 { 976 __u16 freed = 0; 977 __u32 tsn, last_tsn; 978 struct sk_buff *skb, *flist, *last; 979 struct sctp_ulpevent *event; 980 struct sctp_tsnmap *tsnmap; 981 982 tsnmap = &ulpq->asoc->peer.tsn_map; 983 984 while ((skb = skb_peek_tail(list)) != NULL) { 985 event = sctp_skb2event(skb); 986 tsn = event->tsn; 987 988 /* Don't renege below the Cumulative TSN ACK Point. */ 989 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 990 break; 991 992 /* Events in ordering queue may have multiple fragments 993 * corresponding to additional TSNs. Sum the total 994 * freed space; find the last TSN. 995 */ 996 freed += skb_headlen(skb); 997 flist = skb_shinfo(skb)->frag_list; 998 for (last = flist; flist; flist = flist->next) { 999 last = flist; 1000 freed += skb_headlen(last); 1001 } 1002 if (last) 1003 last_tsn = sctp_skb2event(last)->tsn; 1004 else 1005 last_tsn = tsn; 1006 1007 /* Unlink the event, then renege all applicable TSNs. */ 1008 __skb_unlink(skb, list); 1009 sctp_ulpevent_free(event); 1010 while (TSN_lte(tsn, last_tsn)) { 1011 sctp_tsnmap_renege(tsnmap, tsn); 1012 tsn++; 1013 } 1014 if (freed >= needed) 1015 return freed; 1016 } 1017 1018 return freed; 1019 } 1020 1021 /* Renege 'needed' bytes from the ordering queue. */ 1022 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1023 { 1024 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1025 } 1026 1027 /* Renege 'needed' bytes from the reassembly queue. */ 1028 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1029 { 1030 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1031 } 1032 1033 /* Partial deliver the first message as there is pressure on rwnd. */ 1034 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1035 gfp_t gfp) 1036 { 1037 struct sctp_ulpevent *event; 1038 struct sctp_association *asoc; 1039 struct sctp_sock *sp; 1040 __u32 ctsn; 1041 struct sk_buff *skb; 1042 1043 asoc = ulpq->asoc; 1044 sp = sctp_sk(asoc->base.sk); 1045 1046 /* If the association is already in Partial Delivery mode 1047 * we have nothing to do. 1048 */ 1049 if (ulpq->pd_mode) 1050 return; 1051 1052 /* Data must be at or below the Cumulative TSN ACK Point to 1053 * start partial delivery. 1054 */ 1055 skb = skb_peek(&asoc->ulpq.reasm); 1056 if (skb != NULL) { 1057 ctsn = sctp_skb2event(skb)->tsn; 1058 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1059 return; 1060 } 1061 1062 /* If the user enabled fragment interleave socket option, 1063 * multiple associations can enter partial delivery. 1064 * Otherwise, we can only enter partial delivery if the 1065 * socket is not in partial deliver mode. 1066 */ 1067 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1068 /* Is partial delivery possible? */ 1069 event = sctp_ulpq_retrieve_first(ulpq); 1070 /* Send event to the ULP. */ 1071 if (event) { 1072 sctp_ulpq_tail_event(ulpq, event); 1073 sctp_ulpq_set_pd(ulpq); 1074 return; 1075 } 1076 } 1077 } 1078 1079 /* Renege some packets to make room for an incoming chunk. */ 1080 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1081 gfp_t gfp) 1082 { 1083 struct sctp_association *asoc; 1084 __u16 needed, freed; 1085 1086 asoc = ulpq->asoc; 1087 1088 if (chunk) { 1089 needed = ntohs(chunk->chunk_hdr->length); 1090 needed -= sizeof(sctp_data_chunk_t); 1091 } else 1092 needed = SCTP_DEFAULT_MAXWINDOW; 1093 1094 freed = 0; 1095 1096 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1097 freed = sctp_ulpq_renege_order(ulpq, needed); 1098 if (freed < needed) { 1099 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1100 } 1101 } 1102 /* If able to free enough room, accept this chunk. */ 1103 if (chunk && (freed >= needed)) { 1104 int retval; 1105 retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1106 /* 1107 * Enter partial delivery if chunk has not been 1108 * delivered; otherwise, drain the reassembly queue. 1109 */ 1110 if (retval <= 0) 1111 sctp_ulpq_partial_delivery(ulpq, gfp); 1112 else if (retval == 1) 1113 sctp_ulpq_reasm_drain(ulpq); 1114 } 1115 1116 sk_mem_reclaim(asoc->base.sk); 1117 } 1118 1119 1120 1121 /* Notify the application if an association is aborted and in 1122 * partial delivery mode. Send up any pending received messages. 1123 */ 1124 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1125 { 1126 struct sctp_ulpevent *ev = NULL; 1127 struct sock *sk; 1128 1129 if (!ulpq->pd_mode) 1130 return; 1131 1132 sk = ulpq->asoc->base.sk; 1133 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT, 1134 &sctp_sk(sk)->subscribe)) 1135 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1136 SCTP_PARTIAL_DELIVERY_ABORTED, 1137 gfp); 1138 if (ev) 1139 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1140 1141 /* If there is data waiting, send it up the socket now. */ 1142 if (sctp_ulpq_clear_pd(ulpq) || ev) 1143 sk->sk_data_ready(sk); 1144 } 1145