xref: /openbmc/linux/net/sctp/ulpqueue.c (revision 39b6f3aa)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  *                 ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING.  If not, write to
25  * the Free Software Foundation, 59 Temple Place - Suite 330,
26  * Boston, MA 02111-1307, USA.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
31  *
32  * Or submit a bug report through the following website:
33  *    http://www.sf.net/projects/lksctp
34  *
35  * Written or modified by:
36  *    Jon Grimm             <jgrimm@us.ibm.com>
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Sridhar Samudrala     <sri@us.ibm.com>
39  *
40  * Any bugs reported given to us we will try to fix... any fixes shared will
41  * be incorporated into the next SCTP release.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/types.h>
46 #include <linux/skbuff.h>
47 #include <net/sock.h>
48 #include <net/sctp/structs.h>
49 #include <net/sctp/sctp.h>
50 #include <net/sctp/sm.h>
51 
52 /* Forward declarations for internal helpers.  */
53 static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
54 					      struct sctp_ulpevent *);
55 static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *,
56 					      struct sctp_ulpevent *);
57 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
58 
59 /* 1st Level Abstractions */
60 
61 /* Initialize a ULP queue from a block of memory.  */
62 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
63 				 struct sctp_association *asoc)
64 {
65 	memset(ulpq, 0, sizeof(struct sctp_ulpq));
66 
67 	ulpq->asoc = asoc;
68 	skb_queue_head_init(&ulpq->reasm);
69 	skb_queue_head_init(&ulpq->lobby);
70 	ulpq->pd_mode  = 0;
71 
72 	return ulpq;
73 }
74 
75 
76 /* Flush the reassembly and ordering queues.  */
77 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
78 {
79 	struct sk_buff *skb;
80 	struct sctp_ulpevent *event;
81 
82 	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
83 		event = sctp_skb2event(skb);
84 		sctp_ulpevent_free(event);
85 	}
86 
87 	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
88 		event = sctp_skb2event(skb);
89 		sctp_ulpevent_free(event);
90 	}
91 
92 }
93 
94 /* Dispose of a ulpqueue.  */
95 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
96 {
97 	sctp_ulpq_flush(ulpq);
98 }
99 
100 /* Process an incoming DATA chunk.  */
101 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
102 			gfp_t gfp)
103 {
104 	struct sk_buff_head temp;
105 	struct sctp_ulpevent *event;
106 	int event_eor = 0;
107 
108 	/* Create an event from the incoming chunk. */
109 	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
110 	if (!event)
111 		return -ENOMEM;
112 
113 	/* Do reassembly if needed.  */
114 	event = sctp_ulpq_reasm(ulpq, event);
115 
116 	/* Do ordering if needed.  */
117 	if ((event) && (event->msg_flags & MSG_EOR)){
118 		/* Create a temporary list to collect chunks on.  */
119 		skb_queue_head_init(&temp);
120 		__skb_queue_tail(&temp, sctp_event2skb(event));
121 
122 		event = sctp_ulpq_order(ulpq, event);
123 	}
124 
125 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
126 	 * very first SKB on the 'temp' list.
127 	 */
128 	if (event) {
129 		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
130 		sctp_ulpq_tail_event(ulpq, event);
131 	}
132 
133 	return event_eor;
134 }
135 
136 /* Add a new event for propagation to the ULP.  */
137 /* Clear the partial delivery mode for this socket.   Note: This
138  * assumes that no association is currently in partial delivery mode.
139  */
140 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
141 {
142 	struct sctp_sock *sp = sctp_sk(sk);
143 
144 	if (atomic_dec_and_test(&sp->pd_mode)) {
145 		/* This means there are no other associations in PD, so
146 		 * we can go ahead and clear out the lobby in one shot
147 		 */
148 		if (!skb_queue_empty(&sp->pd_lobby)) {
149 			struct list_head *list;
150 			sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
151 			list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
152 			INIT_LIST_HEAD(list);
153 			return 1;
154 		}
155 	} else {
156 		/* There are other associations in PD, so we only need to
157 		 * pull stuff out of the lobby that belongs to the
158 		 * associations that is exiting PD (all of its notifications
159 		 * are posted here).
160 		 */
161 		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
162 			struct sk_buff *skb, *tmp;
163 			struct sctp_ulpevent *event;
164 
165 			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
166 				event = sctp_skb2event(skb);
167 				if (event->asoc == asoc) {
168 					__skb_unlink(skb, &sp->pd_lobby);
169 					__skb_queue_tail(&sk->sk_receive_queue,
170 							 skb);
171 				}
172 			}
173 		}
174 	}
175 
176 	return 0;
177 }
178 
179 /* Set the pd_mode on the socket and ulpq */
180 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
181 {
182 	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
183 
184 	atomic_inc(&sp->pd_mode);
185 	ulpq->pd_mode = 1;
186 }
187 
188 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
189 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
190 {
191 	ulpq->pd_mode = 0;
192 	sctp_ulpq_reasm_drain(ulpq);
193 	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
194 }
195 
196 /* If the SKB of 'event' is on a list, it is the first such member
197  * of that list.
198  */
199 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
200 {
201 	struct sock *sk = ulpq->asoc->base.sk;
202 	struct sk_buff_head *queue, *skb_list;
203 	struct sk_buff *skb = sctp_event2skb(event);
204 	int clear_pd = 0;
205 
206 	skb_list = (struct sk_buff_head *) skb->prev;
207 
208 	/* If the socket is just going to throw this away, do not
209 	 * even try to deliver it.
210 	 */
211 	if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
212 		goto out_free;
213 
214 	/* Check if the user wishes to receive this event.  */
215 	if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
216 		goto out_free;
217 
218 	/* If we are in partial delivery mode, post to the lobby until
219 	 * partial delivery is cleared, unless, of course _this_ is
220 	 * the association the cause of the partial delivery.
221 	 */
222 
223 	if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
224 		queue = &sk->sk_receive_queue;
225 	} else {
226 		if (ulpq->pd_mode) {
227 			/* If the association is in partial delivery, we
228 			 * need to finish delivering the partially processed
229 			 * packet before passing any other data.  This is
230 			 * because we don't truly support stream interleaving.
231 			 */
232 			if ((event->msg_flags & MSG_NOTIFICATION) ||
233 			    (SCTP_DATA_NOT_FRAG ==
234 				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
235 				queue = &sctp_sk(sk)->pd_lobby;
236 			else {
237 				clear_pd = event->msg_flags & MSG_EOR;
238 				queue = &sk->sk_receive_queue;
239 			}
240 		} else {
241 			/*
242 			 * If fragment interleave is enabled, we
243 			 * can queue this to the receive queue instead
244 			 * of the lobby.
245 			 */
246 			if (sctp_sk(sk)->frag_interleave)
247 				queue = &sk->sk_receive_queue;
248 			else
249 				queue = &sctp_sk(sk)->pd_lobby;
250 		}
251 	}
252 
253 	/* If we are harvesting multiple skbs they will be
254 	 * collected on a list.
255 	 */
256 	if (skb_list)
257 		sctp_skb_list_tail(skb_list, queue);
258 	else
259 		__skb_queue_tail(queue, skb);
260 
261 	/* Did we just complete partial delivery and need to get
262 	 * rolling again?  Move pending data to the receive
263 	 * queue.
264 	 */
265 	if (clear_pd)
266 		sctp_ulpq_clear_pd(ulpq);
267 
268 	if (queue == &sk->sk_receive_queue)
269 		sk->sk_data_ready(sk, 0);
270 	return 1;
271 
272 out_free:
273 	if (skb_list)
274 		sctp_queue_purge_ulpevents(skb_list);
275 	else
276 		sctp_ulpevent_free(event);
277 
278 	return 0;
279 }
280 
281 /* 2nd Level Abstractions */
282 
283 /* Helper function to store chunks that need to be reassembled.  */
284 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
285 					 struct sctp_ulpevent *event)
286 {
287 	struct sk_buff *pos;
288 	struct sctp_ulpevent *cevent;
289 	__u32 tsn, ctsn;
290 
291 	tsn = event->tsn;
292 
293 	/* See if it belongs at the end. */
294 	pos = skb_peek_tail(&ulpq->reasm);
295 	if (!pos) {
296 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
297 		return;
298 	}
299 
300 	/* Short circuit just dropping it at the end. */
301 	cevent = sctp_skb2event(pos);
302 	ctsn = cevent->tsn;
303 	if (TSN_lt(ctsn, tsn)) {
304 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
305 		return;
306 	}
307 
308 	/* Find the right place in this list. We store them by TSN.  */
309 	skb_queue_walk(&ulpq->reasm, pos) {
310 		cevent = sctp_skb2event(pos);
311 		ctsn = cevent->tsn;
312 
313 		if (TSN_lt(tsn, ctsn))
314 			break;
315 	}
316 
317 	/* Insert before pos. */
318 	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
319 
320 }
321 
322 /* Helper function to return an event corresponding to the reassembled
323  * datagram.
324  * This routine creates a re-assembled skb given the first and last skb's
325  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
326  * payload was fragmented on the way and ip had to reassemble them.
327  * We add the rest of skb's to the first skb's fraglist.
328  */
329 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
330 	struct sk_buff_head *queue, struct sk_buff *f_frag,
331 	struct sk_buff *l_frag)
332 {
333 	struct sk_buff *pos;
334 	struct sk_buff *new = NULL;
335 	struct sctp_ulpevent *event;
336 	struct sk_buff *pnext, *last;
337 	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
338 
339 	/* Store the pointer to the 2nd skb */
340 	if (f_frag == l_frag)
341 		pos = NULL;
342 	else
343 		pos = f_frag->next;
344 
345 	/* Get the last skb in the f_frag's frag_list if present. */
346 	for (last = list; list; last = list, list = list->next);
347 
348 	/* Add the list of remaining fragments to the first fragments
349 	 * frag_list.
350 	 */
351 	if (last)
352 		last->next = pos;
353 	else {
354 		if (skb_cloned(f_frag)) {
355 			/* This is a cloned skb, we can't just modify
356 			 * the frag_list.  We need a new skb to do that.
357 			 * Instead of calling skb_unshare(), we'll do it
358 			 * ourselves since we need to delay the free.
359 			 */
360 			new = skb_copy(f_frag, GFP_ATOMIC);
361 			if (!new)
362 				return NULL;	/* try again later */
363 
364 			sctp_skb_set_owner_r(new, f_frag->sk);
365 
366 			skb_shinfo(new)->frag_list = pos;
367 		} else
368 			skb_shinfo(f_frag)->frag_list = pos;
369 	}
370 
371 	/* Remove the first fragment from the reassembly queue.  */
372 	__skb_unlink(f_frag, queue);
373 
374 	/* if we did unshare, then free the old skb and re-assign */
375 	if (new) {
376 		kfree_skb(f_frag);
377 		f_frag = new;
378 	}
379 
380 	while (pos) {
381 
382 		pnext = pos->next;
383 
384 		/* Update the len and data_len fields of the first fragment. */
385 		f_frag->len += pos->len;
386 		f_frag->data_len += pos->len;
387 
388 		/* Remove the fragment from the reassembly queue.  */
389 		__skb_unlink(pos, queue);
390 
391 		/* Break if we have reached the last fragment.  */
392 		if (pos == l_frag)
393 			break;
394 		pos->next = pnext;
395 		pos = pnext;
396 	}
397 
398 	event = sctp_skb2event(f_frag);
399 	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
400 
401 	return event;
402 }
403 
404 
405 /* Helper function to check if an incoming chunk has filled up the last
406  * missing fragment in a SCTP datagram and return the corresponding event.
407  */
408 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
409 {
410 	struct sk_buff *pos;
411 	struct sctp_ulpevent *cevent;
412 	struct sk_buff *first_frag = NULL;
413 	__u32 ctsn, next_tsn;
414 	struct sctp_ulpevent *retval = NULL;
415 	struct sk_buff *pd_first = NULL;
416 	struct sk_buff *pd_last = NULL;
417 	size_t pd_len = 0;
418 	struct sctp_association *asoc;
419 	u32 pd_point;
420 
421 	/* Initialized to 0 just to avoid compiler warning message.  Will
422 	 * never be used with this value. It is referenced only after it
423 	 * is set when we find the first fragment of a message.
424 	 */
425 	next_tsn = 0;
426 
427 	/* The chunks are held in the reasm queue sorted by TSN.
428 	 * Walk through the queue sequentially and look for a sequence of
429 	 * fragmented chunks that complete a datagram.
430 	 * 'first_frag' and next_tsn are reset when we find a chunk which
431 	 * is the first fragment of a datagram. Once these 2 fields are set
432 	 * we expect to find the remaining middle fragments and the last
433 	 * fragment in order. If not, first_frag is reset to NULL and we
434 	 * start the next pass when we find another first fragment.
435 	 *
436 	 * There is a potential to do partial delivery if user sets
437 	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
438 	 * to see if can do PD.
439 	 */
440 	skb_queue_walk(&ulpq->reasm, pos) {
441 		cevent = sctp_skb2event(pos);
442 		ctsn = cevent->tsn;
443 
444 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
445 		case SCTP_DATA_FIRST_FRAG:
446 			/* If this "FIRST_FRAG" is the first
447 			 * element in the queue, then count it towards
448 			 * possible PD.
449 			 */
450 			if (pos == ulpq->reasm.next) {
451 			    pd_first = pos;
452 			    pd_last = pos;
453 			    pd_len = pos->len;
454 			} else {
455 			    pd_first = NULL;
456 			    pd_last = NULL;
457 			    pd_len = 0;
458 			}
459 
460 			first_frag = pos;
461 			next_tsn = ctsn + 1;
462 			break;
463 
464 		case SCTP_DATA_MIDDLE_FRAG:
465 			if ((first_frag) && (ctsn == next_tsn)) {
466 				next_tsn++;
467 				if (pd_first) {
468 				    pd_last = pos;
469 				    pd_len += pos->len;
470 				}
471 			} else
472 				first_frag = NULL;
473 			break;
474 
475 		case SCTP_DATA_LAST_FRAG:
476 			if (first_frag && (ctsn == next_tsn))
477 				goto found;
478 			else
479 				first_frag = NULL;
480 			break;
481 		}
482 	}
483 
484 	asoc = ulpq->asoc;
485 	if (pd_first) {
486 		/* Make sure we can enter partial deliver.
487 		 * We can trigger partial delivery only if framgent
488 		 * interleave is set, or the socket is not already
489 		 * in  partial delivery.
490 		 */
491 		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
492 		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
493 			goto done;
494 
495 		cevent = sctp_skb2event(pd_first);
496 		pd_point = sctp_sk(asoc->base.sk)->pd_point;
497 		if (pd_point && pd_point <= pd_len) {
498 			retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
499 							     &ulpq->reasm,
500 							     pd_first,
501 							     pd_last);
502 			if (retval)
503 				sctp_ulpq_set_pd(ulpq);
504 		}
505 	}
506 done:
507 	return retval;
508 found:
509 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
510 					     &ulpq->reasm, first_frag, pos);
511 	if (retval)
512 		retval->msg_flags |= MSG_EOR;
513 	goto done;
514 }
515 
516 /* Retrieve the next set of fragments of a partial message. */
517 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
518 {
519 	struct sk_buff *pos, *last_frag, *first_frag;
520 	struct sctp_ulpevent *cevent;
521 	__u32 ctsn, next_tsn;
522 	int is_last;
523 	struct sctp_ulpevent *retval;
524 
525 	/* The chunks are held in the reasm queue sorted by TSN.
526 	 * Walk through the queue sequentially and look for the first
527 	 * sequence of fragmented chunks.
528 	 */
529 
530 	if (skb_queue_empty(&ulpq->reasm))
531 		return NULL;
532 
533 	last_frag = first_frag = NULL;
534 	retval = NULL;
535 	next_tsn = 0;
536 	is_last = 0;
537 
538 	skb_queue_walk(&ulpq->reasm, pos) {
539 		cevent = sctp_skb2event(pos);
540 		ctsn = cevent->tsn;
541 
542 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
543 		case SCTP_DATA_FIRST_FRAG:
544 			if (!first_frag)
545 				return NULL;
546 			goto done;
547 		case SCTP_DATA_MIDDLE_FRAG:
548 			if (!first_frag) {
549 				first_frag = pos;
550 				next_tsn = ctsn + 1;
551 				last_frag = pos;
552 			} else if (next_tsn == ctsn) {
553 				next_tsn++;
554 				last_frag = pos;
555 			} else
556 				goto done;
557 			break;
558 		case SCTP_DATA_LAST_FRAG:
559 			if (!first_frag)
560 				first_frag = pos;
561 			else if (ctsn != next_tsn)
562 				goto done;
563 			last_frag = pos;
564 			is_last = 1;
565 			goto done;
566 		default:
567 			return NULL;
568 		}
569 	}
570 
571 	/* We have the reassembled event. There is no need to look
572 	 * further.
573 	 */
574 done:
575 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
576 					&ulpq->reasm, first_frag, last_frag);
577 	if (retval && is_last)
578 		retval->msg_flags |= MSG_EOR;
579 
580 	return retval;
581 }
582 
583 
584 /* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
585  * need reassembling.
586  */
587 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
588 						struct sctp_ulpevent *event)
589 {
590 	struct sctp_ulpevent *retval = NULL;
591 
592 	/* Check if this is part of a fragmented message.  */
593 	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
594 		event->msg_flags |= MSG_EOR;
595 		return event;
596 	}
597 
598 	sctp_ulpq_store_reasm(ulpq, event);
599 	if (!ulpq->pd_mode)
600 		retval = sctp_ulpq_retrieve_reassembled(ulpq);
601 	else {
602 		__u32 ctsn, ctsnap;
603 
604 		/* Do not even bother unless this is the next tsn to
605 		 * be delivered.
606 		 */
607 		ctsn = event->tsn;
608 		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
609 		if (TSN_lte(ctsn, ctsnap))
610 			retval = sctp_ulpq_retrieve_partial(ulpq);
611 	}
612 
613 	return retval;
614 }
615 
616 /* Retrieve the first part (sequential fragments) for partial delivery.  */
617 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
618 {
619 	struct sk_buff *pos, *last_frag, *first_frag;
620 	struct sctp_ulpevent *cevent;
621 	__u32 ctsn, next_tsn;
622 	struct sctp_ulpevent *retval;
623 
624 	/* The chunks are held in the reasm queue sorted by TSN.
625 	 * Walk through the queue sequentially and look for a sequence of
626 	 * fragmented chunks that start a datagram.
627 	 */
628 
629 	if (skb_queue_empty(&ulpq->reasm))
630 		return NULL;
631 
632 	last_frag = first_frag = NULL;
633 	retval = NULL;
634 	next_tsn = 0;
635 
636 	skb_queue_walk(&ulpq->reasm, pos) {
637 		cevent = sctp_skb2event(pos);
638 		ctsn = cevent->tsn;
639 
640 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
641 		case SCTP_DATA_FIRST_FRAG:
642 			if (!first_frag) {
643 				first_frag = pos;
644 				next_tsn = ctsn + 1;
645 				last_frag = pos;
646 			} else
647 				goto done;
648 			break;
649 
650 		case SCTP_DATA_MIDDLE_FRAG:
651 			if (!first_frag)
652 				return NULL;
653 			if (ctsn == next_tsn) {
654 				next_tsn++;
655 				last_frag = pos;
656 			} else
657 				goto done;
658 			break;
659 
660 		case SCTP_DATA_LAST_FRAG:
661 			if (!first_frag)
662 				return NULL;
663 			else
664 				goto done;
665 			break;
666 
667 		default:
668 			return NULL;
669 		}
670 	}
671 
672 	/* We have the reassembled event. There is no need to look
673 	 * further.
674 	 */
675 done:
676 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
677 					&ulpq->reasm, first_frag, last_frag);
678 	return retval;
679 }
680 
681 /*
682  * Flush out stale fragments from the reassembly queue when processing
683  * a Forward TSN.
684  *
685  * RFC 3758, Section 3.6
686  *
687  * After receiving and processing a FORWARD TSN, the data receiver MUST
688  * take cautions in updating its re-assembly queue.  The receiver MUST
689  * remove any partially reassembled message, which is still missing one
690  * or more TSNs earlier than or equal to the new cumulative TSN point.
691  * In the event that the receiver has invoked the partial delivery API,
692  * a notification SHOULD also be generated to inform the upper layer API
693  * that the message being partially delivered will NOT be completed.
694  */
695 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
696 {
697 	struct sk_buff *pos, *tmp;
698 	struct sctp_ulpevent *event;
699 	__u32 tsn;
700 
701 	if (skb_queue_empty(&ulpq->reasm))
702 		return;
703 
704 	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
705 		event = sctp_skb2event(pos);
706 		tsn = event->tsn;
707 
708 		/* Since the entire message must be abandoned by the
709 		 * sender (item A3 in Section 3.5, RFC 3758), we can
710 		 * free all fragments on the list that are less then
711 		 * or equal to ctsn_point
712 		 */
713 		if (TSN_lte(tsn, fwd_tsn)) {
714 			__skb_unlink(pos, &ulpq->reasm);
715 			sctp_ulpevent_free(event);
716 		} else
717 			break;
718 	}
719 }
720 
721 /*
722  * Drain the reassembly queue.  If we just cleared parted delivery, it
723  * is possible that the reassembly queue will contain already reassembled
724  * messages.  Retrieve any such messages and give them to the user.
725  */
726 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
727 {
728 	struct sctp_ulpevent *event = NULL;
729 	struct sk_buff_head temp;
730 
731 	if (skb_queue_empty(&ulpq->reasm))
732 		return;
733 
734 	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
735 		/* Do ordering if needed.  */
736 		if ((event) && (event->msg_flags & MSG_EOR)){
737 			skb_queue_head_init(&temp);
738 			__skb_queue_tail(&temp, sctp_event2skb(event));
739 
740 			event = sctp_ulpq_order(ulpq, event);
741 		}
742 
743 		/* Send event to the ULP.  'event' is the
744 		 * sctp_ulpevent for  very first SKB on the  temp' list.
745 		 */
746 		if (event)
747 			sctp_ulpq_tail_event(ulpq, event);
748 	}
749 }
750 
751 
752 /* Helper function to gather skbs that have possibly become
753  * ordered by an an incoming chunk.
754  */
755 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
756 					      struct sctp_ulpevent *event)
757 {
758 	struct sk_buff_head *event_list;
759 	struct sk_buff *pos, *tmp;
760 	struct sctp_ulpevent *cevent;
761 	struct sctp_stream *in;
762 	__u16 sid, csid, cssn;
763 
764 	sid = event->stream;
765 	in  = &ulpq->asoc->ssnmap->in;
766 
767 	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
768 
769 	/* We are holding the chunks by stream, by SSN.  */
770 	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
771 		cevent = (struct sctp_ulpevent *) pos->cb;
772 		csid = cevent->stream;
773 		cssn = cevent->ssn;
774 
775 		/* Have we gone too far?  */
776 		if (csid > sid)
777 			break;
778 
779 		/* Have we not gone far enough?  */
780 		if (csid < sid)
781 			continue;
782 
783 		if (cssn != sctp_ssn_peek(in, sid))
784 			break;
785 
786 		/* Found it, so mark in the ssnmap. */
787 		sctp_ssn_next(in, sid);
788 
789 		__skb_unlink(pos, &ulpq->lobby);
790 
791 		/* Attach all gathered skbs to the event.  */
792 		__skb_queue_tail(event_list, pos);
793 	}
794 }
795 
796 /* Helper function to store chunks needing ordering.  */
797 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
798 					   struct sctp_ulpevent *event)
799 {
800 	struct sk_buff *pos;
801 	struct sctp_ulpevent *cevent;
802 	__u16 sid, csid;
803 	__u16 ssn, cssn;
804 
805 	pos = skb_peek_tail(&ulpq->lobby);
806 	if (!pos) {
807 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
808 		return;
809 	}
810 
811 	sid = event->stream;
812 	ssn = event->ssn;
813 
814 	cevent = (struct sctp_ulpevent *) pos->cb;
815 	csid = cevent->stream;
816 	cssn = cevent->ssn;
817 	if (sid > csid) {
818 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
819 		return;
820 	}
821 
822 	if ((sid == csid) && SSN_lt(cssn, ssn)) {
823 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
824 		return;
825 	}
826 
827 	/* Find the right place in this list.  We store them by
828 	 * stream ID and then by SSN.
829 	 */
830 	skb_queue_walk(&ulpq->lobby, pos) {
831 		cevent = (struct sctp_ulpevent *) pos->cb;
832 		csid = cevent->stream;
833 		cssn = cevent->ssn;
834 
835 		if (csid > sid)
836 			break;
837 		if (csid == sid && SSN_lt(ssn, cssn))
838 			break;
839 	}
840 
841 
842 	/* Insert before pos. */
843 	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
844 }
845 
846 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
847 					     struct sctp_ulpevent *event)
848 {
849 	__u16 sid, ssn;
850 	struct sctp_stream *in;
851 
852 	/* Check if this message needs ordering.  */
853 	if (SCTP_DATA_UNORDERED & event->msg_flags)
854 		return event;
855 
856 	/* Note: The stream ID must be verified before this routine.  */
857 	sid = event->stream;
858 	ssn = event->ssn;
859 	in  = &ulpq->asoc->ssnmap->in;
860 
861 	/* Is this the expected SSN for this stream ID?  */
862 	if (ssn != sctp_ssn_peek(in, sid)) {
863 		/* We've received something out of order, so find where it
864 		 * needs to be placed.  We order by stream and then by SSN.
865 		 */
866 		sctp_ulpq_store_ordered(ulpq, event);
867 		return NULL;
868 	}
869 
870 	/* Mark that the next chunk has been found.  */
871 	sctp_ssn_next(in, sid);
872 
873 	/* Go find any other chunks that were waiting for
874 	 * ordering.
875 	 */
876 	sctp_ulpq_retrieve_ordered(ulpq, event);
877 
878 	return event;
879 }
880 
881 /* Helper function to gather skbs that have possibly become
882  * ordered by forward tsn skipping their dependencies.
883  */
884 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
885 {
886 	struct sk_buff *pos, *tmp;
887 	struct sctp_ulpevent *cevent;
888 	struct sctp_ulpevent *event;
889 	struct sctp_stream *in;
890 	struct sk_buff_head temp;
891 	struct sk_buff_head *lobby = &ulpq->lobby;
892 	__u16 csid, cssn;
893 
894 	in  = &ulpq->asoc->ssnmap->in;
895 
896 	/* We are holding the chunks by stream, by SSN.  */
897 	skb_queue_head_init(&temp);
898 	event = NULL;
899 	sctp_skb_for_each(pos, lobby, tmp) {
900 		cevent = (struct sctp_ulpevent *) pos->cb;
901 		csid = cevent->stream;
902 		cssn = cevent->ssn;
903 
904 		/* Have we gone too far?  */
905 		if (csid > sid)
906 			break;
907 
908 		/* Have we not gone far enough?  */
909 		if (csid < sid)
910 			continue;
911 
912 		/* see if this ssn has been marked by skipping */
913 		if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
914 			break;
915 
916 		__skb_unlink(pos, lobby);
917 		if (!event)
918 			/* Create a temporary list to collect chunks on.  */
919 			event = sctp_skb2event(pos);
920 
921 		/* Attach all gathered skbs to the event.  */
922 		__skb_queue_tail(&temp, pos);
923 	}
924 
925 	/* If we didn't reap any data, see if the next expected SSN
926 	 * is next on the queue and if so, use that.
927 	 */
928 	if (event == NULL && pos != (struct sk_buff *)lobby) {
929 		cevent = (struct sctp_ulpevent *) pos->cb;
930 		csid = cevent->stream;
931 		cssn = cevent->ssn;
932 
933 		if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
934 			sctp_ssn_next(in, csid);
935 			__skb_unlink(pos, lobby);
936 			__skb_queue_tail(&temp, pos);
937 			event = sctp_skb2event(pos);
938 		}
939 	}
940 
941 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
942 	 * very first SKB on the 'temp' list.
943 	 */
944 	if (event) {
945 		/* see if we have more ordered that we can deliver */
946 		sctp_ulpq_retrieve_ordered(ulpq, event);
947 		sctp_ulpq_tail_event(ulpq, event);
948 	}
949 }
950 
951 /* Skip over an SSN. This is used during the processing of
952  * Forwared TSN chunk to skip over the abandoned ordered data
953  */
954 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
955 {
956 	struct sctp_stream *in;
957 
958 	/* Note: The stream ID must be verified before this routine.  */
959 	in  = &ulpq->asoc->ssnmap->in;
960 
961 	/* Is this an old SSN?  If so ignore. */
962 	if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
963 		return;
964 
965 	/* Mark that we are no longer expecting this SSN or lower. */
966 	sctp_ssn_skip(in, sid, ssn);
967 
968 	/* Go find any other chunks that were waiting for
969 	 * ordering and deliver them if needed.
970 	 */
971 	sctp_ulpq_reap_ordered(ulpq, sid);
972 }
973 
974 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
975 		struct sk_buff_head *list, __u16 needed)
976 {
977 	__u16 freed = 0;
978 	__u32 tsn, last_tsn;
979 	struct sk_buff *skb, *flist, *last;
980 	struct sctp_ulpevent *event;
981 	struct sctp_tsnmap *tsnmap;
982 
983 	tsnmap = &ulpq->asoc->peer.tsn_map;
984 
985 	while ((skb = skb_peek_tail(list)) != NULL) {
986 		event = sctp_skb2event(skb);
987 		tsn = event->tsn;
988 
989 		/* Don't renege below the Cumulative TSN ACK Point. */
990 		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
991 			break;
992 
993 		/* Events in ordering queue may have multiple fragments
994 		 * corresponding to additional TSNs.  Sum the total
995 		 * freed space; find the last TSN.
996 		 */
997 		freed += skb_headlen(skb);
998 		flist = skb_shinfo(skb)->frag_list;
999 		for (last = flist; flist; flist = flist->next) {
1000 			last = flist;
1001 			freed += skb_headlen(last);
1002 		}
1003 		if (last)
1004 			last_tsn = sctp_skb2event(last)->tsn;
1005 		else
1006 			last_tsn = tsn;
1007 
1008 		/* Unlink the event, then renege all applicable TSNs. */
1009 		__skb_unlink(skb, list);
1010 		sctp_ulpevent_free(event);
1011 		while (TSN_lte(tsn, last_tsn)) {
1012 			sctp_tsnmap_renege(tsnmap, tsn);
1013 			tsn++;
1014 		}
1015 		if (freed >= needed)
1016 			return freed;
1017 	}
1018 
1019 	return freed;
1020 }
1021 
1022 /* Renege 'needed' bytes from the ordering queue. */
1023 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1024 {
1025 	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1026 }
1027 
1028 /* Renege 'needed' bytes from the reassembly queue. */
1029 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1030 {
1031 	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1032 }
1033 
1034 /* Partial deliver the first message as there is pressure on rwnd. */
1035 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
1036 				gfp_t gfp)
1037 {
1038 	struct sctp_ulpevent *event;
1039 	struct sctp_association *asoc;
1040 	struct sctp_sock *sp;
1041 	__u32 ctsn;
1042 	struct sk_buff *skb;
1043 
1044 	asoc = ulpq->asoc;
1045 	sp = sctp_sk(asoc->base.sk);
1046 
1047 	/* If the association is already in Partial Delivery mode
1048 	 * we have nothing to do.
1049 	 */
1050 	if (ulpq->pd_mode)
1051 		return;
1052 
1053 	/* Data must be at or below the Cumulative TSN ACK Point to
1054 	 * start partial delivery.
1055 	 */
1056 	skb = skb_peek(&asoc->ulpq.reasm);
1057 	if (skb != NULL) {
1058 		ctsn = sctp_skb2event(skb)->tsn;
1059 		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1060 			return;
1061 	}
1062 
1063 	/* If the user enabled fragment interleave socket option,
1064 	 * multiple associations can enter partial delivery.
1065 	 * Otherwise, we can only enter partial delivery if the
1066 	 * socket is not in partial deliver mode.
1067 	 */
1068 	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1069 		/* Is partial delivery possible?  */
1070 		event = sctp_ulpq_retrieve_first(ulpq);
1071 		/* Send event to the ULP.   */
1072 		if (event) {
1073 			sctp_ulpq_tail_event(ulpq, event);
1074 			sctp_ulpq_set_pd(ulpq);
1075 			return;
1076 		}
1077 	}
1078 }
1079 
1080 /* Renege some packets to make room for an incoming chunk.  */
1081 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1082 		      gfp_t gfp)
1083 {
1084 	struct sctp_association *asoc;
1085 	__u16 needed, freed;
1086 
1087 	asoc = ulpq->asoc;
1088 
1089 	if (chunk) {
1090 		needed = ntohs(chunk->chunk_hdr->length);
1091 		needed -= sizeof(sctp_data_chunk_t);
1092 	} else
1093 		needed = SCTP_DEFAULT_MAXWINDOW;
1094 
1095 	freed = 0;
1096 
1097 	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1098 		freed = sctp_ulpq_renege_order(ulpq, needed);
1099 		if (freed < needed) {
1100 			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1101 		}
1102 	}
1103 	/* If able to free enough room, accept this chunk. */
1104 	if (chunk && (freed >= needed)) {
1105 		int retval;
1106 		retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1107 		/*
1108 		 * Enter partial delivery if chunk has not been
1109 		 * delivered; otherwise, drain the reassembly queue.
1110 		 */
1111 		if (retval <= 0)
1112 			sctp_ulpq_partial_delivery(ulpq, gfp);
1113 		else if (retval == 1)
1114 			sctp_ulpq_reasm_drain(ulpq);
1115 	}
1116 
1117 	sk_mem_reclaim(asoc->base.sk);
1118 }
1119 
1120 
1121 
1122 /* Notify the application if an association is aborted and in
1123  * partial delivery mode.  Send up any pending received messages.
1124  */
1125 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1126 {
1127 	struct sctp_ulpevent *ev = NULL;
1128 	struct sock *sk;
1129 
1130 	if (!ulpq->pd_mode)
1131 		return;
1132 
1133 	sk = ulpq->asoc->base.sk;
1134 	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1135 				       &sctp_sk(sk)->subscribe))
1136 		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1137 					      SCTP_PARTIAL_DELIVERY_ABORTED,
1138 					      gfp);
1139 	if (ev)
1140 		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1141 
1142 	/* If there is data waiting, send it up the socket now. */
1143 	if (sctp_ulpq_clear_pd(ulpq) || ev)
1144 		sk->sk_data_ready(sk, 0);
1145 }
1146