1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This abstraction carries sctp events to the ULP (sockets). 10 * 11 * This SCTP implementation is free software; 12 * you can redistribute it and/or modify it under the terms of 13 * the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This SCTP implementation is distributed in the hope that it 18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 19 * ************************ 20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * See the GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with GNU CC; see the file COPYING. If not, write to 25 * the Free Software Foundation, 59 Temple Place - Suite 330, 26 * Boston, MA 02111-1307, USA. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <lksctp-developers@lists.sourceforge.net> 31 * 32 * Or submit a bug report through the following website: 33 * http://www.sf.net/projects/lksctp 34 * 35 * Written or modified by: 36 * Jon Grimm <jgrimm@us.ibm.com> 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Sridhar Samudrala <sri@us.ibm.com> 39 * 40 * Any bugs reported given to us we will try to fix... any fixes shared will 41 * be incorporated into the next SCTP release. 42 */ 43 44 #include <linux/slab.h> 45 #include <linux/types.h> 46 #include <linux/skbuff.h> 47 #include <net/sock.h> 48 #include <net/sctp/structs.h> 49 #include <net/sctp/sctp.h> 50 #include <net/sctp/sm.h> 51 52 /* Forward declarations for internal helpers. */ 53 static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 54 struct sctp_ulpevent *); 55 static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *, 56 struct sctp_ulpevent *); 57 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 58 59 /* 1st Level Abstractions */ 60 61 /* Initialize a ULP queue from a block of memory. */ 62 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, 63 struct sctp_association *asoc) 64 { 65 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 66 67 ulpq->asoc = asoc; 68 skb_queue_head_init(&ulpq->reasm); 69 skb_queue_head_init(&ulpq->lobby); 70 ulpq->pd_mode = 0; 71 72 return ulpq; 73 } 74 75 76 /* Flush the reassembly and ordering queues. */ 77 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 78 { 79 struct sk_buff *skb; 80 struct sctp_ulpevent *event; 81 82 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 83 event = sctp_skb2event(skb); 84 sctp_ulpevent_free(event); 85 } 86 87 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 88 event = sctp_skb2event(skb); 89 sctp_ulpevent_free(event); 90 } 91 92 } 93 94 /* Dispose of a ulpqueue. */ 95 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 96 { 97 sctp_ulpq_flush(ulpq); 98 } 99 100 /* Process an incoming DATA chunk. */ 101 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 102 gfp_t gfp) 103 { 104 struct sk_buff_head temp; 105 struct sctp_ulpevent *event; 106 int event_eor = 0; 107 108 /* Create an event from the incoming chunk. */ 109 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 110 if (!event) 111 return -ENOMEM; 112 113 /* Do reassembly if needed. */ 114 event = sctp_ulpq_reasm(ulpq, event); 115 116 /* Do ordering if needed. */ 117 if ((event) && (event->msg_flags & MSG_EOR)){ 118 /* Create a temporary list to collect chunks on. */ 119 skb_queue_head_init(&temp); 120 __skb_queue_tail(&temp, sctp_event2skb(event)); 121 122 event = sctp_ulpq_order(ulpq, event); 123 } 124 125 /* Send event to the ULP. 'event' is the sctp_ulpevent for 126 * very first SKB on the 'temp' list. 127 */ 128 if (event) { 129 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 130 sctp_ulpq_tail_event(ulpq, event); 131 } 132 133 return event_eor; 134 } 135 136 /* Add a new event for propagation to the ULP. */ 137 /* Clear the partial delivery mode for this socket. Note: This 138 * assumes that no association is currently in partial delivery mode. 139 */ 140 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 141 { 142 struct sctp_sock *sp = sctp_sk(sk); 143 144 if (atomic_dec_and_test(&sp->pd_mode)) { 145 /* This means there are no other associations in PD, so 146 * we can go ahead and clear out the lobby in one shot 147 */ 148 if (!skb_queue_empty(&sp->pd_lobby)) { 149 struct list_head *list; 150 sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue); 151 list = (struct list_head *)&sctp_sk(sk)->pd_lobby; 152 INIT_LIST_HEAD(list); 153 return 1; 154 } 155 } else { 156 /* There are other associations in PD, so we only need to 157 * pull stuff out of the lobby that belongs to the 158 * associations that is exiting PD (all of its notifications 159 * are posted here). 160 */ 161 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 162 struct sk_buff *skb, *tmp; 163 struct sctp_ulpevent *event; 164 165 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 166 event = sctp_skb2event(skb); 167 if (event->asoc == asoc) { 168 __skb_unlink(skb, &sp->pd_lobby); 169 __skb_queue_tail(&sk->sk_receive_queue, 170 skb); 171 } 172 } 173 } 174 } 175 176 return 0; 177 } 178 179 /* Set the pd_mode on the socket and ulpq */ 180 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 181 { 182 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 183 184 atomic_inc(&sp->pd_mode); 185 ulpq->pd_mode = 1; 186 } 187 188 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 189 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 190 { 191 ulpq->pd_mode = 0; 192 sctp_ulpq_reasm_drain(ulpq); 193 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 194 } 195 196 /* If the SKB of 'event' is on a list, it is the first such member 197 * of that list. 198 */ 199 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event) 200 { 201 struct sock *sk = ulpq->asoc->base.sk; 202 struct sk_buff_head *queue, *skb_list; 203 struct sk_buff *skb = sctp_event2skb(event); 204 int clear_pd = 0; 205 206 skb_list = (struct sk_buff_head *) skb->prev; 207 208 /* If the socket is just going to throw this away, do not 209 * even try to deliver it. 210 */ 211 if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN)) 212 goto out_free; 213 214 /* Check if the user wishes to receive this event. */ 215 if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe)) 216 goto out_free; 217 218 /* If we are in partial delivery mode, post to the lobby until 219 * partial delivery is cleared, unless, of course _this_ is 220 * the association the cause of the partial delivery. 221 */ 222 223 if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) { 224 queue = &sk->sk_receive_queue; 225 } else { 226 if (ulpq->pd_mode) { 227 /* If the association is in partial delivery, we 228 * need to finish delivering the partially processed 229 * packet before passing any other data. This is 230 * because we don't truly support stream interleaving. 231 */ 232 if ((event->msg_flags & MSG_NOTIFICATION) || 233 (SCTP_DATA_NOT_FRAG == 234 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 235 queue = &sctp_sk(sk)->pd_lobby; 236 else { 237 clear_pd = event->msg_flags & MSG_EOR; 238 queue = &sk->sk_receive_queue; 239 } 240 } else { 241 /* 242 * If fragment interleave is enabled, we 243 * can queue this to the receive queue instead 244 * of the lobby. 245 */ 246 if (sctp_sk(sk)->frag_interleave) 247 queue = &sk->sk_receive_queue; 248 else 249 queue = &sctp_sk(sk)->pd_lobby; 250 } 251 } 252 253 /* If we are harvesting multiple skbs they will be 254 * collected on a list. 255 */ 256 if (skb_list) 257 sctp_skb_list_tail(skb_list, queue); 258 else 259 __skb_queue_tail(queue, skb); 260 261 /* Did we just complete partial delivery and need to get 262 * rolling again? Move pending data to the receive 263 * queue. 264 */ 265 if (clear_pd) 266 sctp_ulpq_clear_pd(ulpq); 267 268 if (queue == &sk->sk_receive_queue) 269 sk->sk_data_ready(sk, 0); 270 return 1; 271 272 out_free: 273 if (skb_list) 274 sctp_queue_purge_ulpevents(skb_list); 275 else 276 sctp_ulpevent_free(event); 277 278 return 0; 279 } 280 281 /* 2nd Level Abstractions */ 282 283 /* Helper function to store chunks that need to be reassembled. */ 284 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 285 struct sctp_ulpevent *event) 286 { 287 struct sk_buff *pos; 288 struct sctp_ulpevent *cevent; 289 __u32 tsn, ctsn; 290 291 tsn = event->tsn; 292 293 /* See if it belongs at the end. */ 294 pos = skb_peek_tail(&ulpq->reasm); 295 if (!pos) { 296 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 297 return; 298 } 299 300 /* Short circuit just dropping it at the end. */ 301 cevent = sctp_skb2event(pos); 302 ctsn = cevent->tsn; 303 if (TSN_lt(ctsn, tsn)) { 304 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 305 return; 306 } 307 308 /* Find the right place in this list. We store them by TSN. */ 309 skb_queue_walk(&ulpq->reasm, pos) { 310 cevent = sctp_skb2event(pos); 311 ctsn = cevent->tsn; 312 313 if (TSN_lt(tsn, ctsn)) 314 break; 315 } 316 317 /* Insert before pos. */ 318 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 319 320 } 321 322 /* Helper function to return an event corresponding to the reassembled 323 * datagram. 324 * This routine creates a re-assembled skb given the first and last skb's 325 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 326 * payload was fragmented on the way and ip had to reassemble them. 327 * We add the rest of skb's to the first skb's fraglist. 328 */ 329 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 330 struct sk_buff_head *queue, struct sk_buff *f_frag, 331 struct sk_buff *l_frag) 332 { 333 struct sk_buff *pos; 334 struct sk_buff *new = NULL; 335 struct sctp_ulpevent *event; 336 struct sk_buff *pnext, *last; 337 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 338 339 /* Store the pointer to the 2nd skb */ 340 if (f_frag == l_frag) 341 pos = NULL; 342 else 343 pos = f_frag->next; 344 345 /* Get the last skb in the f_frag's frag_list if present. */ 346 for (last = list; list; last = list, list = list->next); 347 348 /* Add the list of remaining fragments to the first fragments 349 * frag_list. 350 */ 351 if (last) 352 last->next = pos; 353 else { 354 if (skb_cloned(f_frag)) { 355 /* This is a cloned skb, we can't just modify 356 * the frag_list. We need a new skb to do that. 357 * Instead of calling skb_unshare(), we'll do it 358 * ourselves since we need to delay the free. 359 */ 360 new = skb_copy(f_frag, GFP_ATOMIC); 361 if (!new) 362 return NULL; /* try again later */ 363 364 sctp_skb_set_owner_r(new, f_frag->sk); 365 366 skb_shinfo(new)->frag_list = pos; 367 } else 368 skb_shinfo(f_frag)->frag_list = pos; 369 } 370 371 /* Remove the first fragment from the reassembly queue. */ 372 __skb_unlink(f_frag, queue); 373 374 /* if we did unshare, then free the old skb and re-assign */ 375 if (new) { 376 kfree_skb(f_frag); 377 f_frag = new; 378 } 379 380 while (pos) { 381 382 pnext = pos->next; 383 384 /* Update the len and data_len fields of the first fragment. */ 385 f_frag->len += pos->len; 386 f_frag->data_len += pos->len; 387 388 /* Remove the fragment from the reassembly queue. */ 389 __skb_unlink(pos, queue); 390 391 /* Break if we have reached the last fragment. */ 392 if (pos == l_frag) 393 break; 394 pos->next = pnext; 395 pos = pnext; 396 } 397 398 event = sctp_skb2event(f_frag); 399 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 400 401 return event; 402 } 403 404 405 /* Helper function to check if an incoming chunk has filled up the last 406 * missing fragment in a SCTP datagram and return the corresponding event. 407 */ 408 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 409 { 410 struct sk_buff *pos; 411 struct sctp_ulpevent *cevent; 412 struct sk_buff *first_frag = NULL; 413 __u32 ctsn, next_tsn; 414 struct sctp_ulpevent *retval = NULL; 415 struct sk_buff *pd_first = NULL; 416 struct sk_buff *pd_last = NULL; 417 size_t pd_len = 0; 418 struct sctp_association *asoc; 419 u32 pd_point; 420 421 /* Initialized to 0 just to avoid compiler warning message. Will 422 * never be used with this value. It is referenced only after it 423 * is set when we find the first fragment of a message. 424 */ 425 next_tsn = 0; 426 427 /* The chunks are held in the reasm queue sorted by TSN. 428 * Walk through the queue sequentially and look for a sequence of 429 * fragmented chunks that complete a datagram. 430 * 'first_frag' and next_tsn are reset when we find a chunk which 431 * is the first fragment of a datagram. Once these 2 fields are set 432 * we expect to find the remaining middle fragments and the last 433 * fragment in order. If not, first_frag is reset to NULL and we 434 * start the next pass when we find another first fragment. 435 * 436 * There is a potential to do partial delivery if user sets 437 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 438 * to see if can do PD. 439 */ 440 skb_queue_walk(&ulpq->reasm, pos) { 441 cevent = sctp_skb2event(pos); 442 ctsn = cevent->tsn; 443 444 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 445 case SCTP_DATA_FIRST_FRAG: 446 /* If this "FIRST_FRAG" is the first 447 * element in the queue, then count it towards 448 * possible PD. 449 */ 450 if (pos == ulpq->reasm.next) { 451 pd_first = pos; 452 pd_last = pos; 453 pd_len = pos->len; 454 } else { 455 pd_first = NULL; 456 pd_last = NULL; 457 pd_len = 0; 458 } 459 460 first_frag = pos; 461 next_tsn = ctsn + 1; 462 break; 463 464 case SCTP_DATA_MIDDLE_FRAG: 465 if ((first_frag) && (ctsn == next_tsn)) { 466 next_tsn++; 467 if (pd_first) { 468 pd_last = pos; 469 pd_len += pos->len; 470 } 471 } else 472 first_frag = NULL; 473 break; 474 475 case SCTP_DATA_LAST_FRAG: 476 if (first_frag && (ctsn == next_tsn)) 477 goto found; 478 else 479 first_frag = NULL; 480 break; 481 } 482 } 483 484 asoc = ulpq->asoc; 485 if (pd_first) { 486 /* Make sure we can enter partial deliver. 487 * We can trigger partial delivery only if framgent 488 * interleave is set, or the socket is not already 489 * in partial delivery. 490 */ 491 if (!sctp_sk(asoc->base.sk)->frag_interleave && 492 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 493 goto done; 494 495 cevent = sctp_skb2event(pd_first); 496 pd_point = sctp_sk(asoc->base.sk)->pd_point; 497 if (pd_point && pd_point <= pd_len) { 498 retval = sctp_make_reassembled_event(sock_net(asoc->base.sk), 499 &ulpq->reasm, 500 pd_first, 501 pd_last); 502 if (retval) 503 sctp_ulpq_set_pd(ulpq); 504 } 505 } 506 done: 507 return retval; 508 found: 509 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 510 &ulpq->reasm, first_frag, pos); 511 if (retval) 512 retval->msg_flags |= MSG_EOR; 513 goto done; 514 } 515 516 /* Retrieve the next set of fragments of a partial message. */ 517 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 518 { 519 struct sk_buff *pos, *last_frag, *first_frag; 520 struct sctp_ulpevent *cevent; 521 __u32 ctsn, next_tsn; 522 int is_last; 523 struct sctp_ulpevent *retval; 524 525 /* The chunks are held in the reasm queue sorted by TSN. 526 * Walk through the queue sequentially and look for the first 527 * sequence of fragmented chunks. 528 */ 529 530 if (skb_queue_empty(&ulpq->reasm)) 531 return NULL; 532 533 last_frag = first_frag = NULL; 534 retval = NULL; 535 next_tsn = 0; 536 is_last = 0; 537 538 skb_queue_walk(&ulpq->reasm, pos) { 539 cevent = sctp_skb2event(pos); 540 ctsn = cevent->tsn; 541 542 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 543 case SCTP_DATA_FIRST_FRAG: 544 if (!first_frag) 545 return NULL; 546 goto done; 547 case SCTP_DATA_MIDDLE_FRAG: 548 if (!first_frag) { 549 first_frag = pos; 550 next_tsn = ctsn + 1; 551 last_frag = pos; 552 } else if (next_tsn == ctsn) { 553 next_tsn++; 554 last_frag = pos; 555 } else 556 goto done; 557 break; 558 case SCTP_DATA_LAST_FRAG: 559 if (!first_frag) 560 first_frag = pos; 561 else if (ctsn != next_tsn) 562 goto done; 563 last_frag = pos; 564 is_last = 1; 565 goto done; 566 default: 567 return NULL; 568 } 569 } 570 571 /* We have the reassembled event. There is no need to look 572 * further. 573 */ 574 done: 575 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 576 &ulpq->reasm, first_frag, last_frag); 577 if (retval && is_last) 578 retval->msg_flags |= MSG_EOR; 579 580 return retval; 581 } 582 583 584 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 585 * need reassembling. 586 */ 587 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 588 struct sctp_ulpevent *event) 589 { 590 struct sctp_ulpevent *retval = NULL; 591 592 /* Check if this is part of a fragmented message. */ 593 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 594 event->msg_flags |= MSG_EOR; 595 return event; 596 } 597 598 sctp_ulpq_store_reasm(ulpq, event); 599 if (!ulpq->pd_mode) 600 retval = sctp_ulpq_retrieve_reassembled(ulpq); 601 else { 602 __u32 ctsn, ctsnap; 603 604 /* Do not even bother unless this is the next tsn to 605 * be delivered. 606 */ 607 ctsn = event->tsn; 608 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 609 if (TSN_lte(ctsn, ctsnap)) 610 retval = sctp_ulpq_retrieve_partial(ulpq); 611 } 612 613 return retval; 614 } 615 616 /* Retrieve the first part (sequential fragments) for partial delivery. */ 617 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 618 { 619 struct sk_buff *pos, *last_frag, *first_frag; 620 struct sctp_ulpevent *cevent; 621 __u32 ctsn, next_tsn; 622 struct sctp_ulpevent *retval; 623 624 /* The chunks are held in the reasm queue sorted by TSN. 625 * Walk through the queue sequentially and look for a sequence of 626 * fragmented chunks that start a datagram. 627 */ 628 629 if (skb_queue_empty(&ulpq->reasm)) 630 return NULL; 631 632 last_frag = first_frag = NULL; 633 retval = NULL; 634 next_tsn = 0; 635 636 skb_queue_walk(&ulpq->reasm, pos) { 637 cevent = sctp_skb2event(pos); 638 ctsn = cevent->tsn; 639 640 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 641 case SCTP_DATA_FIRST_FRAG: 642 if (!first_frag) { 643 first_frag = pos; 644 next_tsn = ctsn + 1; 645 last_frag = pos; 646 } else 647 goto done; 648 break; 649 650 case SCTP_DATA_MIDDLE_FRAG: 651 if (!first_frag) 652 return NULL; 653 if (ctsn == next_tsn) { 654 next_tsn++; 655 last_frag = pos; 656 } else 657 goto done; 658 break; 659 660 case SCTP_DATA_LAST_FRAG: 661 if (!first_frag) 662 return NULL; 663 else 664 goto done; 665 break; 666 667 default: 668 return NULL; 669 } 670 } 671 672 /* We have the reassembled event. There is no need to look 673 * further. 674 */ 675 done: 676 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 677 &ulpq->reasm, first_frag, last_frag); 678 return retval; 679 } 680 681 /* 682 * Flush out stale fragments from the reassembly queue when processing 683 * a Forward TSN. 684 * 685 * RFC 3758, Section 3.6 686 * 687 * After receiving and processing a FORWARD TSN, the data receiver MUST 688 * take cautions in updating its re-assembly queue. The receiver MUST 689 * remove any partially reassembled message, which is still missing one 690 * or more TSNs earlier than or equal to the new cumulative TSN point. 691 * In the event that the receiver has invoked the partial delivery API, 692 * a notification SHOULD also be generated to inform the upper layer API 693 * that the message being partially delivered will NOT be completed. 694 */ 695 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 696 { 697 struct sk_buff *pos, *tmp; 698 struct sctp_ulpevent *event; 699 __u32 tsn; 700 701 if (skb_queue_empty(&ulpq->reasm)) 702 return; 703 704 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 705 event = sctp_skb2event(pos); 706 tsn = event->tsn; 707 708 /* Since the entire message must be abandoned by the 709 * sender (item A3 in Section 3.5, RFC 3758), we can 710 * free all fragments on the list that are less then 711 * or equal to ctsn_point 712 */ 713 if (TSN_lte(tsn, fwd_tsn)) { 714 __skb_unlink(pos, &ulpq->reasm); 715 sctp_ulpevent_free(event); 716 } else 717 break; 718 } 719 } 720 721 /* 722 * Drain the reassembly queue. If we just cleared parted delivery, it 723 * is possible that the reassembly queue will contain already reassembled 724 * messages. Retrieve any such messages and give them to the user. 725 */ 726 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 727 { 728 struct sctp_ulpevent *event = NULL; 729 struct sk_buff_head temp; 730 731 if (skb_queue_empty(&ulpq->reasm)) 732 return; 733 734 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 735 /* Do ordering if needed. */ 736 if ((event) && (event->msg_flags & MSG_EOR)){ 737 skb_queue_head_init(&temp); 738 __skb_queue_tail(&temp, sctp_event2skb(event)); 739 740 event = sctp_ulpq_order(ulpq, event); 741 } 742 743 /* Send event to the ULP. 'event' is the 744 * sctp_ulpevent for very first SKB on the temp' list. 745 */ 746 if (event) 747 sctp_ulpq_tail_event(ulpq, event); 748 } 749 } 750 751 752 /* Helper function to gather skbs that have possibly become 753 * ordered by an an incoming chunk. 754 */ 755 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 756 struct sctp_ulpevent *event) 757 { 758 struct sk_buff_head *event_list; 759 struct sk_buff *pos, *tmp; 760 struct sctp_ulpevent *cevent; 761 struct sctp_stream *in; 762 __u16 sid, csid, cssn; 763 764 sid = event->stream; 765 in = &ulpq->asoc->ssnmap->in; 766 767 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 768 769 /* We are holding the chunks by stream, by SSN. */ 770 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 771 cevent = (struct sctp_ulpevent *) pos->cb; 772 csid = cevent->stream; 773 cssn = cevent->ssn; 774 775 /* Have we gone too far? */ 776 if (csid > sid) 777 break; 778 779 /* Have we not gone far enough? */ 780 if (csid < sid) 781 continue; 782 783 if (cssn != sctp_ssn_peek(in, sid)) 784 break; 785 786 /* Found it, so mark in the ssnmap. */ 787 sctp_ssn_next(in, sid); 788 789 __skb_unlink(pos, &ulpq->lobby); 790 791 /* Attach all gathered skbs to the event. */ 792 __skb_queue_tail(event_list, pos); 793 } 794 } 795 796 /* Helper function to store chunks needing ordering. */ 797 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 798 struct sctp_ulpevent *event) 799 { 800 struct sk_buff *pos; 801 struct sctp_ulpevent *cevent; 802 __u16 sid, csid; 803 __u16 ssn, cssn; 804 805 pos = skb_peek_tail(&ulpq->lobby); 806 if (!pos) { 807 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 808 return; 809 } 810 811 sid = event->stream; 812 ssn = event->ssn; 813 814 cevent = (struct sctp_ulpevent *) pos->cb; 815 csid = cevent->stream; 816 cssn = cevent->ssn; 817 if (sid > csid) { 818 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 819 return; 820 } 821 822 if ((sid == csid) && SSN_lt(cssn, ssn)) { 823 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 824 return; 825 } 826 827 /* Find the right place in this list. We store them by 828 * stream ID and then by SSN. 829 */ 830 skb_queue_walk(&ulpq->lobby, pos) { 831 cevent = (struct sctp_ulpevent *) pos->cb; 832 csid = cevent->stream; 833 cssn = cevent->ssn; 834 835 if (csid > sid) 836 break; 837 if (csid == sid && SSN_lt(ssn, cssn)) 838 break; 839 } 840 841 842 /* Insert before pos. */ 843 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 844 } 845 846 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 847 struct sctp_ulpevent *event) 848 { 849 __u16 sid, ssn; 850 struct sctp_stream *in; 851 852 /* Check if this message needs ordering. */ 853 if (SCTP_DATA_UNORDERED & event->msg_flags) 854 return event; 855 856 /* Note: The stream ID must be verified before this routine. */ 857 sid = event->stream; 858 ssn = event->ssn; 859 in = &ulpq->asoc->ssnmap->in; 860 861 /* Is this the expected SSN for this stream ID? */ 862 if (ssn != sctp_ssn_peek(in, sid)) { 863 /* We've received something out of order, so find where it 864 * needs to be placed. We order by stream and then by SSN. 865 */ 866 sctp_ulpq_store_ordered(ulpq, event); 867 return NULL; 868 } 869 870 /* Mark that the next chunk has been found. */ 871 sctp_ssn_next(in, sid); 872 873 /* Go find any other chunks that were waiting for 874 * ordering. 875 */ 876 sctp_ulpq_retrieve_ordered(ulpq, event); 877 878 return event; 879 } 880 881 /* Helper function to gather skbs that have possibly become 882 * ordered by forward tsn skipping their dependencies. 883 */ 884 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 885 { 886 struct sk_buff *pos, *tmp; 887 struct sctp_ulpevent *cevent; 888 struct sctp_ulpevent *event; 889 struct sctp_stream *in; 890 struct sk_buff_head temp; 891 struct sk_buff_head *lobby = &ulpq->lobby; 892 __u16 csid, cssn; 893 894 in = &ulpq->asoc->ssnmap->in; 895 896 /* We are holding the chunks by stream, by SSN. */ 897 skb_queue_head_init(&temp); 898 event = NULL; 899 sctp_skb_for_each(pos, lobby, tmp) { 900 cevent = (struct sctp_ulpevent *) pos->cb; 901 csid = cevent->stream; 902 cssn = cevent->ssn; 903 904 /* Have we gone too far? */ 905 if (csid > sid) 906 break; 907 908 /* Have we not gone far enough? */ 909 if (csid < sid) 910 continue; 911 912 /* see if this ssn has been marked by skipping */ 913 if (!SSN_lt(cssn, sctp_ssn_peek(in, csid))) 914 break; 915 916 __skb_unlink(pos, lobby); 917 if (!event) 918 /* Create a temporary list to collect chunks on. */ 919 event = sctp_skb2event(pos); 920 921 /* Attach all gathered skbs to the event. */ 922 __skb_queue_tail(&temp, pos); 923 } 924 925 /* If we didn't reap any data, see if the next expected SSN 926 * is next on the queue and if so, use that. 927 */ 928 if (event == NULL && pos != (struct sk_buff *)lobby) { 929 cevent = (struct sctp_ulpevent *) pos->cb; 930 csid = cevent->stream; 931 cssn = cevent->ssn; 932 933 if (csid == sid && cssn == sctp_ssn_peek(in, csid)) { 934 sctp_ssn_next(in, csid); 935 __skb_unlink(pos, lobby); 936 __skb_queue_tail(&temp, pos); 937 event = sctp_skb2event(pos); 938 } 939 } 940 941 /* Send event to the ULP. 'event' is the sctp_ulpevent for 942 * very first SKB on the 'temp' list. 943 */ 944 if (event) { 945 /* see if we have more ordered that we can deliver */ 946 sctp_ulpq_retrieve_ordered(ulpq, event); 947 sctp_ulpq_tail_event(ulpq, event); 948 } 949 } 950 951 /* Skip over an SSN. This is used during the processing of 952 * Forwared TSN chunk to skip over the abandoned ordered data 953 */ 954 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 955 { 956 struct sctp_stream *in; 957 958 /* Note: The stream ID must be verified before this routine. */ 959 in = &ulpq->asoc->ssnmap->in; 960 961 /* Is this an old SSN? If so ignore. */ 962 if (SSN_lt(ssn, sctp_ssn_peek(in, sid))) 963 return; 964 965 /* Mark that we are no longer expecting this SSN or lower. */ 966 sctp_ssn_skip(in, sid, ssn); 967 968 /* Go find any other chunks that were waiting for 969 * ordering and deliver them if needed. 970 */ 971 sctp_ulpq_reap_ordered(ulpq, sid); 972 } 973 974 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, 975 struct sk_buff_head *list, __u16 needed) 976 { 977 __u16 freed = 0; 978 __u32 tsn, last_tsn; 979 struct sk_buff *skb, *flist, *last; 980 struct sctp_ulpevent *event; 981 struct sctp_tsnmap *tsnmap; 982 983 tsnmap = &ulpq->asoc->peer.tsn_map; 984 985 while ((skb = skb_peek_tail(list)) != NULL) { 986 event = sctp_skb2event(skb); 987 tsn = event->tsn; 988 989 /* Don't renege below the Cumulative TSN ACK Point. */ 990 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 991 break; 992 993 /* Events in ordering queue may have multiple fragments 994 * corresponding to additional TSNs. Sum the total 995 * freed space; find the last TSN. 996 */ 997 freed += skb_headlen(skb); 998 flist = skb_shinfo(skb)->frag_list; 999 for (last = flist; flist; flist = flist->next) { 1000 last = flist; 1001 freed += skb_headlen(last); 1002 } 1003 if (last) 1004 last_tsn = sctp_skb2event(last)->tsn; 1005 else 1006 last_tsn = tsn; 1007 1008 /* Unlink the event, then renege all applicable TSNs. */ 1009 __skb_unlink(skb, list); 1010 sctp_ulpevent_free(event); 1011 while (TSN_lte(tsn, last_tsn)) { 1012 sctp_tsnmap_renege(tsnmap, tsn); 1013 tsn++; 1014 } 1015 if (freed >= needed) 1016 return freed; 1017 } 1018 1019 return freed; 1020 } 1021 1022 /* Renege 'needed' bytes from the ordering queue. */ 1023 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1024 { 1025 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1026 } 1027 1028 /* Renege 'needed' bytes from the reassembly queue. */ 1029 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1030 { 1031 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1032 } 1033 1034 /* Partial deliver the first message as there is pressure on rwnd. */ 1035 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1036 gfp_t gfp) 1037 { 1038 struct sctp_ulpevent *event; 1039 struct sctp_association *asoc; 1040 struct sctp_sock *sp; 1041 __u32 ctsn; 1042 struct sk_buff *skb; 1043 1044 asoc = ulpq->asoc; 1045 sp = sctp_sk(asoc->base.sk); 1046 1047 /* If the association is already in Partial Delivery mode 1048 * we have nothing to do. 1049 */ 1050 if (ulpq->pd_mode) 1051 return; 1052 1053 /* Data must be at or below the Cumulative TSN ACK Point to 1054 * start partial delivery. 1055 */ 1056 skb = skb_peek(&asoc->ulpq.reasm); 1057 if (skb != NULL) { 1058 ctsn = sctp_skb2event(skb)->tsn; 1059 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1060 return; 1061 } 1062 1063 /* If the user enabled fragment interleave socket option, 1064 * multiple associations can enter partial delivery. 1065 * Otherwise, we can only enter partial delivery if the 1066 * socket is not in partial deliver mode. 1067 */ 1068 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1069 /* Is partial delivery possible? */ 1070 event = sctp_ulpq_retrieve_first(ulpq); 1071 /* Send event to the ULP. */ 1072 if (event) { 1073 sctp_ulpq_tail_event(ulpq, event); 1074 sctp_ulpq_set_pd(ulpq); 1075 return; 1076 } 1077 } 1078 } 1079 1080 /* Renege some packets to make room for an incoming chunk. */ 1081 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1082 gfp_t gfp) 1083 { 1084 struct sctp_association *asoc; 1085 __u16 needed, freed; 1086 1087 asoc = ulpq->asoc; 1088 1089 if (chunk) { 1090 needed = ntohs(chunk->chunk_hdr->length); 1091 needed -= sizeof(sctp_data_chunk_t); 1092 } else 1093 needed = SCTP_DEFAULT_MAXWINDOW; 1094 1095 freed = 0; 1096 1097 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1098 freed = sctp_ulpq_renege_order(ulpq, needed); 1099 if (freed < needed) { 1100 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1101 } 1102 } 1103 /* If able to free enough room, accept this chunk. */ 1104 if (chunk && (freed >= needed)) { 1105 int retval; 1106 retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1107 /* 1108 * Enter partial delivery if chunk has not been 1109 * delivered; otherwise, drain the reassembly queue. 1110 */ 1111 if (retval <= 0) 1112 sctp_ulpq_partial_delivery(ulpq, gfp); 1113 else if (retval == 1) 1114 sctp_ulpq_reasm_drain(ulpq); 1115 } 1116 1117 sk_mem_reclaim(asoc->base.sk); 1118 } 1119 1120 1121 1122 /* Notify the application if an association is aborted and in 1123 * partial delivery mode. Send up any pending received messages. 1124 */ 1125 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1126 { 1127 struct sctp_ulpevent *ev = NULL; 1128 struct sock *sk; 1129 1130 if (!ulpq->pd_mode) 1131 return; 1132 1133 sk = ulpq->asoc->base.sk; 1134 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT, 1135 &sctp_sk(sk)->subscribe)) 1136 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1137 SCTP_PARTIAL_DELIVERY_ABORTED, 1138 gfp); 1139 if (ev) 1140 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1141 1142 /* If there is data waiting, send it up the socket now. */ 1143 if (sctp_ulpq_clear_pd(ulpq) || ev) 1144 sk->sk_data_ready(sk, 0); 1145 } 1146