1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001 Intel Corp. 7 * Copyright (c) 2001 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This abstraction carries sctp events to the ULP (sockets). 11 * 12 * Please send any bug reports or fixes you make to the 13 * email address(es): 14 * lksctp developers <linux-sctp@vger.kernel.org> 15 * 16 * Written or modified by: 17 * Jon Grimm <jgrimm@us.ibm.com> 18 * La Monte H.P. Yarroll <piggy@acm.org> 19 * Sridhar Samudrala <sri@us.ibm.com> 20 */ 21 22 #include <linux/slab.h> 23 #include <linux/types.h> 24 #include <linux/skbuff.h> 25 #include <net/sock.h> 26 #include <net/busy_poll.h> 27 #include <net/sctp/structs.h> 28 #include <net/sctp/sctp.h> 29 #include <net/sctp/sm.h> 30 31 /* Forward declarations for internal helpers. */ 32 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 33 struct sctp_ulpevent *); 34 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *, 35 struct sctp_ulpevent *); 36 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 37 38 /* 1st Level Abstractions */ 39 40 /* Initialize a ULP queue from a block of memory. */ 41 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, 42 struct sctp_association *asoc) 43 { 44 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 45 46 ulpq->asoc = asoc; 47 skb_queue_head_init(&ulpq->reasm); 48 skb_queue_head_init(&ulpq->reasm_uo); 49 skb_queue_head_init(&ulpq->lobby); 50 ulpq->pd_mode = 0; 51 52 return ulpq; 53 } 54 55 56 /* Flush the reassembly and ordering queues. */ 57 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 58 { 59 struct sk_buff *skb; 60 struct sctp_ulpevent *event; 61 62 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 63 event = sctp_skb2event(skb); 64 sctp_ulpevent_free(event); 65 } 66 67 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 68 event = sctp_skb2event(skb); 69 sctp_ulpevent_free(event); 70 } 71 72 while ((skb = __skb_dequeue(&ulpq->reasm_uo)) != NULL) { 73 event = sctp_skb2event(skb); 74 sctp_ulpevent_free(event); 75 } 76 } 77 78 /* Dispose of a ulpqueue. */ 79 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 80 { 81 sctp_ulpq_flush(ulpq); 82 } 83 84 /* Process an incoming DATA chunk. */ 85 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 86 gfp_t gfp) 87 { 88 struct sk_buff_head temp; 89 struct sctp_ulpevent *event; 90 int event_eor = 0; 91 92 /* Create an event from the incoming chunk. */ 93 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 94 if (!event) 95 return -ENOMEM; 96 97 event->ssn = ntohs(chunk->subh.data_hdr->ssn); 98 event->ppid = chunk->subh.data_hdr->ppid; 99 100 /* Do reassembly if needed. */ 101 event = sctp_ulpq_reasm(ulpq, event); 102 103 /* Do ordering if needed. */ 104 if (event) { 105 /* Create a temporary list to collect chunks on. */ 106 skb_queue_head_init(&temp); 107 __skb_queue_tail(&temp, sctp_event2skb(event)); 108 109 if (event->msg_flags & MSG_EOR) 110 event = sctp_ulpq_order(ulpq, event); 111 } 112 113 /* Send event to the ULP. 'event' is the sctp_ulpevent for 114 * very first SKB on the 'temp' list. 115 */ 116 if (event) { 117 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 118 sctp_ulpq_tail_event(ulpq, &temp); 119 } 120 121 return event_eor; 122 } 123 124 /* Add a new event for propagation to the ULP. */ 125 /* Clear the partial delivery mode for this socket. Note: This 126 * assumes that no association is currently in partial delivery mode. 127 */ 128 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 129 { 130 struct sctp_sock *sp = sctp_sk(sk); 131 132 if (atomic_dec_and_test(&sp->pd_mode)) { 133 /* This means there are no other associations in PD, so 134 * we can go ahead and clear out the lobby in one shot 135 */ 136 if (!skb_queue_empty(&sp->pd_lobby)) { 137 skb_queue_splice_tail_init(&sp->pd_lobby, 138 &sk->sk_receive_queue); 139 return 1; 140 } 141 } else { 142 /* There are other associations in PD, so we only need to 143 * pull stuff out of the lobby that belongs to the 144 * associations that is exiting PD (all of its notifications 145 * are posted here). 146 */ 147 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 148 struct sk_buff *skb, *tmp; 149 struct sctp_ulpevent *event; 150 151 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 152 event = sctp_skb2event(skb); 153 if (event->asoc == asoc) { 154 __skb_unlink(skb, &sp->pd_lobby); 155 __skb_queue_tail(&sk->sk_receive_queue, 156 skb); 157 } 158 } 159 } 160 } 161 162 return 0; 163 } 164 165 /* Set the pd_mode on the socket and ulpq */ 166 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 167 { 168 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 169 170 atomic_inc(&sp->pd_mode); 171 ulpq->pd_mode = 1; 172 } 173 174 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 175 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 176 { 177 ulpq->pd_mode = 0; 178 sctp_ulpq_reasm_drain(ulpq); 179 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 180 } 181 182 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sk_buff_head *skb_list) 183 { 184 struct sock *sk = ulpq->asoc->base.sk; 185 struct sctp_sock *sp = sctp_sk(sk); 186 struct sctp_ulpevent *event; 187 struct sk_buff_head *queue; 188 struct sk_buff *skb; 189 int clear_pd = 0; 190 191 skb = __skb_peek(skb_list); 192 event = sctp_skb2event(skb); 193 194 /* If the socket is just going to throw this away, do not 195 * even try to deliver it. 196 */ 197 if (sk->sk_shutdown & RCV_SHUTDOWN && 198 (sk->sk_shutdown & SEND_SHUTDOWN || 199 !sctp_ulpevent_is_notification(event))) 200 goto out_free; 201 202 if (!sctp_ulpevent_is_notification(event)) { 203 sk_mark_napi_id(sk, skb); 204 sk_incoming_cpu_update(sk); 205 } 206 /* Check if the user wishes to receive this event. */ 207 if (!sctp_ulpevent_is_enabled(event, ulpq->asoc->subscribe)) 208 goto out_free; 209 210 /* If we are in partial delivery mode, post to the lobby until 211 * partial delivery is cleared, unless, of course _this_ is 212 * the association the cause of the partial delivery. 213 */ 214 215 if (atomic_read(&sp->pd_mode) == 0) { 216 queue = &sk->sk_receive_queue; 217 } else { 218 if (ulpq->pd_mode) { 219 /* If the association is in partial delivery, we 220 * need to finish delivering the partially processed 221 * packet before passing any other data. This is 222 * because we don't truly support stream interleaving. 223 */ 224 if ((event->msg_flags & MSG_NOTIFICATION) || 225 (SCTP_DATA_NOT_FRAG == 226 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 227 queue = &sp->pd_lobby; 228 else { 229 clear_pd = event->msg_flags & MSG_EOR; 230 queue = &sk->sk_receive_queue; 231 } 232 } else { 233 /* 234 * If fragment interleave is enabled, we 235 * can queue this to the receive queue instead 236 * of the lobby. 237 */ 238 if (sp->frag_interleave) 239 queue = &sk->sk_receive_queue; 240 else 241 queue = &sp->pd_lobby; 242 } 243 } 244 245 skb_queue_splice_tail_init(skb_list, queue); 246 247 /* Did we just complete partial delivery and need to get 248 * rolling again? Move pending data to the receive 249 * queue. 250 */ 251 if (clear_pd) 252 sctp_ulpq_clear_pd(ulpq); 253 254 if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) { 255 if (!sock_owned_by_user(sk)) 256 sp->data_ready_signalled = 1; 257 sk->sk_data_ready(sk); 258 } 259 return 1; 260 261 out_free: 262 if (skb_list) 263 sctp_queue_purge_ulpevents(skb_list); 264 else 265 sctp_ulpevent_free(event); 266 267 return 0; 268 } 269 270 /* 2nd Level Abstractions */ 271 272 /* Helper function to store chunks that need to be reassembled. */ 273 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 274 struct sctp_ulpevent *event) 275 { 276 struct sk_buff *pos; 277 struct sctp_ulpevent *cevent; 278 __u32 tsn, ctsn; 279 280 tsn = event->tsn; 281 282 /* See if it belongs at the end. */ 283 pos = skb_peek_tail(&ulpq->reasm); 284 if (!pos) { 285 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 286 return; 287 } 288 289 /* Short circuit just dropping it at the end. */ 290 cevent = sctp_skb2event(pos); 291 ctsn = cevent->tsn; 292 if (TSN_lt(ctsn, tsn)) { 293 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 294 return; 295 } 296 297 /* Find the right place in this list. We store them by TSN. */ 298 skb_queue_walk(&ulpq->reasm, pos) { 299 cevent = sctp_skb2event(pos); 300 ctsn = cevent->tsn; 301 302 if (TSN_lt(tsn, ctsn)) 303 break; 304 } 305 306 /* Insert before pos. */ 307 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 308 309 } 310 311 /* Helper function to return an event corresponding to the reassembled 312 * datagram. 313 * This routine creates a re-assembled skb given the first and last skb's 314 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 315 * payload was fragmented on the way and ip had to reassemble them. 316 * We add the rest of skb's to the first skb's fraglist. 317 */ 318 struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 319 struct sk_buff_head *queue, 320 struct sk_buff *f_frag, 321 struct sk_buff *l_frag) 322 { 323 struct sk_buff *pos; 324 struct sk_buff *new = NULL; 325 struct sctp_ulpevent *event; 326 struct sk_buff *pnext, *last; 327 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 328 329 /* Store the pointer to the 2nd skb */ 330 if (f_frag == l_frag) 331 pos = NULL; 332 else 333 pos = f_frag->next; 334 335 /* Get the last skb in the f_frag's frag_list if present. */ 336 for (last = list; list; last = list, list = list->next) 337 ; 338 339 /* Add the list of remaining fragments to the first fragments 340 * frag_list. 341 */ 342 if (last) 343 last->next = pos; 344 else { 345 if (skb_cloned(f_frag)) { 346 /* This is a cloned skb, we can't just modify 347 * the frag_list. We need a new skb to do that. 348 * Instead of calling skb_unshare(), we'll do it 349 * ourselves since we need to delay the free. 350 */ 351 new = skb_copy(f_frag, GFP_ATOMIC); 352 if (!new) 353 return NULL; /* try again later */ 354 355 sctp_skb_set_owner_r(new, f_frag->sk); 356 357 skb_shinfo(new)->frag_list = pos; 358 } else 359 skb_shinfo(f_frag)->frag_list = pos; 360 } 361 362 /* Remove the first fragment from the reassembly queue. */ 363 __skb_unlink(f_frag, queue); 364 365 /* if we did unshare, then free the old skb and re-assign */ 366 if (new) { 367 kfree_skb(f_frag); 368 f_frag = new; 369 } 370 371 while (pos) { 372 373 pnext = pos->next; 374 375 /* Update the len and data_len fields of the first fragment. */ 376 f_frag->len += pos->len; 377 f_frag->data_len += pos->len; 378 379 /* Remove the fragment from the reassembly queue. */ 380 __skb_unlink(pos, queue); 381 382 /* Break if we have reached the last fragment. */ 383 if (pos == l_frag) 384 break; 385 pos->next = pnext; 386 pos = pnext; 387 } 388 389 event = sctp_skb2event(f_frag); 390 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 391 392 return event; 393 } 394 395 396 /* Helper function to check if an incoming chunk has filled up the last 397 * missing fragment in a SCTP datagram and return the corresponding event. 398 */ 399 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 400 { 401 struct sk_buff *pos; 402 struct sctp_ulpevent *cevent; 403 struct sk_buff *first_frag = NULL; 404 __u32 ctsn, next_tsn; 405 struct sctp_ulpevent *retval = NULL; 406 struct sk_buff *pd_first = NULL; 407 struct sk_buff *pd_last = NULL; 408 size_t pd_len = 0; 409 struct sctp_association *asoc; 410 u32 pd_point; 411 412 /* Initialized to 0 just to avoid compiler warning message. Will 413 * never be used with this value. It is referenced only after it 414 * is set when we find the first fragment of a message. 415 */ 416 next_tsn = 0; 417 418 /* The chunks are held in the reasm queue sorted by TSN. 419 * Walk through the queue sequentially and look for a sequence of 420 * fragmented chunks that complete a datagram. 421 * 'first_frag' and next_tsn are reset when we find a chunk which 422 * is the first fragment of a datagram. Once these 2 fields are set 423 * we expect to find the remaining middle fragments and the last 424 * fragment in order. If not, first_frag is reset to NULL and we 425 * start the next pass when we find another first fragment. 426 * 427 * There is a potential to do partial delivery if user sets 428 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 429 * to see if can do PD. 430 */ 431 skb_queue_walk(&ulpq->reasm, pos) { 432 cevent = sctp_skb2event(pos); 433 ctsn = cevent->tsn; 434 435 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 436 case SCTP_DATA_FIRST_FRAG: 437 /* If this "FIRST_FRAG" is the first 438 * element in the queue, then count it towards 439 * possible PD. 440 */ 441 if (skb_queue_is_first(&ulpq->reasm, pos)) { 442 pd_first = pos; 443 pd_last = pos; 444 pd_len = pos->len; 445 } else { 446 pd_first = NULL; 447 pd_last = NULL; 448 pd_len = 0; 449 } 450 451 first_frag = pos; 452 next_tsn = ctsn + 1; 453 break; 454 455 case SCTP_DATA_MIDDLE_FRAG: 456 if ((first_frag) && (ctsn == next_tsn)) { 457 next_tsn++; 458 if (pd_first) { 459 pd_last = pos; 460 pd_len += pos->len; 461 } 462 } else 463 first_frag = NULL; 464 break; 465 466 case SCTP_DATA_LAST_FRAG: 467 if (first_frag && (ctsn == next_tsn)) 468 goto found; 469 else 470 first_frag = NULL; 471 break; 472 } 473 } 474 475 asoc = ulpq->asoc; 476 if (pd_first) { 477 /* Make sure we can enter partial deliver. 478 * We can trigger partial delivery only if framgent 479 * interleave is set, or the socket is not already 480 * in partial delivery. 481 */ 482 if (!sctp_sk(asoc->base.sk)->frag_interleave && 483 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 484 goto done; 485 486 cevent = sctp_skb2event(pd_first); 487 pd_point = sctp_sk(asoc->base.sk)->pd_point; 488 if (pd_point && pd_point <= pd_len) { 489 retval = sctp_make_reassembled_event(asoc->base.net, 490 &ulpq->reasm, 491 pd_first, pd_last); 492 if (retval) 493 sctp_ulpq_set_pd(ulpq); 494 } 495 } 496 done: 497 return retval; 498 found: 499 retval = sctp_make_reassembled_event(ulpq->asoc->base.net, 500 &ulpq->reasm, first_frag, pos); 501 if (retval) 502 retval->msg_flags |= MSG_EOR; 503 goto done; 504 } 505 506 /* Retrieve the next set of fragments of a partial message. */ 507 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 508 { 509 struct sk_buff *pos, *last_frag, *first_frag; 510 struct sctp_ulpevent *cevent; 511 __u32 ctsn, next_tsn; 512 int is_last; 513 struct sctp_ulpevent *retval; 514 515 /* The chunks are held in the reasm queue sorted by TSN. 516 * Walk through the queue sequentially and look for the first 517 * sequence of fragmented chunks. 518 */ 519 520 if (skb_queue_empty(&ulpq->reasm)) 521 return NULL; 522 523 last_frag = first_frag = NULL; 524 retval = NULL; 525 next_tsn = 0; 526 is_last = 0; 527 528 skb_queue_walk(&ulpq->reasm, pos) { 529 cevent = sctp_skb2event(pos); 530 ctsn = cevent->tsn; 531 532 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 533 case SCTP_DATA_FIRST_FRAG: 534 if (!first_frag) 535 return NULL; 536 goto done; 537 case SCTP_DATA_MIDDLE_FRAG: 538 if (!first_frag) { 539 first_frag = pos; 540 next_tsn = ctsn + 1; 541 last_frag = pos; 542 } else if (next_tsn == ctsn) { 543 next_tsn++; 544 last_frag = pos; 545 } else 546 goto done; 547 break; 548 case SCTP_DATA_LAST_FRAG: 549 if (!first_frag) 550 first_frag = pos; 551 else if (ctsn != next_tsn) 552 goto done; 553 last_frag = pos; 554 is_last = 1; 555 goto done; 556 default: 557 return NULL; 558 } 559 } 560 561 /* We have the reassembled event. There is no need to look 562 * further. 563 */ 564 done: 565 retval = sctp_make_reassembled_event(ulpq->asoc->base.net, &ulpq->reasm, 566 first_frag, last_frag); 567 if (retval && is_last) 568 retval->msg_flags |= MSG_EOR; 569 570 return retval; 571 } 572 573 574 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 575 * need reassembling. 576 */ 577 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 578 struct sctp_ulpevent *event) 579 { 580 struct sctp_ulpevent *retval = NULL; 581 582 /* Check if this is part of a fragmented message. */ 583 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 584 event->msg_flags |= MSG_EOR; 585 return event; 586 } 587 588 sctp_ulpq_store_reasm(ulpq, event); 589 if (!ulpq->pd_mode) 590 retval = sctp_ulpq_retrieve_reassembled(ulpq); 591 else { 592 __u32 ctsn, ctsnap; 593 594 /* Do not even bother unless this is the next tsn to 595 * be delivered. 596 */ 597 ctsn = event->tsn; 598 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 599 if (TSN_lte(ctsn, ctsnap)) 600 retval = sctp_ulpq_retrieve_partial(ulpq); 601 } 602 603 return retval; 604 } 605 606 /* Retrieve the first part (sequential fragments) for partial delivery. */ 607 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 608 { 609 struct sk_buff *pos, *last_frag, *first_frag; 610 struct sctp_ulpevent *cevent; 611 __u32 ctsn, next_tsn; 612 struct sctp_ulpevent *retval; 613 614 /* The chunks are held in the reasm queue sorted by TSN. 615 * Walk through the queue sequentially and look for a sequence of 616 * fragmented chunks that start a datagram. 617 */ 618 619 if (skb_queue_empty(&ulpq->reasm)) 620 return NULL; 621 622 last_frag = first_frag = NULL; 623 retval = NULL; 624 next_tsn = 0; 625 626 skb_queue_walk(&ulpq->reasm, pos) { 627 cevent = sctp_skb2event(pos); 628 ctsn = cevent->tsn; 629 630 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 631 case SCTP_DATA_FIRST_FRAG: 632 if (!first_frag) { 633 first_frag = pos; 634 next_tsn = ctsn + 1; 635 last_frag = pos; 636 } else 637 goto done; 638 break; 639 640 case SCTP_DATA_MIDDLE_FRAG: 641 if (!first_frag) 642 return NULL; 643 if (ctsn == next_tsn) { 644 next_tsn++; 645 last_frag = pos; 646 } else 647 goto done; 648 break; 649 650 case SCTP_DATA_LAST_FRAG: 651 if (!first_frag) 652 return NULL; 653 else 654 goto done; 655 break; 656 657 default: 658 return NULL; 659 } 660 } 661 662 /* We have the reassembled event. There is no need to look 663 * further. 664 */ 665 done: 666 retval = sctp_make_reassembled_event(ulpq->asoc->base.net, &ulpq->reasm, 667 first_frag, last_frag); 668 return retval; 669 } 670 671 /* 672 * Flush out stale fragments from the reassembly queue when processing 673 * a Forward TSN. 674 * 675 * RFC 3758, Section 3.6 676 * 677 * After receiving and processing a FORWARD TSN, the data receiver MUST 678 * take cautions in updating its re-assembly queue. The receiver MUST 679 * remove any partially reassembled message, which is still missing one 680 * or more TSNs earlier than or equal to the new cumulative TSN point. 681 * In the event that the receiver has invoked the partial delivery API, 682 * a notification SHOULD also be generated to inform the upper layer API 683 * that the message being partially delivered will NOT be completed. 684 */ 685 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 686 { 687 struct sk_buff *pos, *tmp; 688 struct sctp_ulpevent *event; 689 __u32 tsn; 690 691 if (skb_queue_empty(&ulpq->reasm)) 692 return; 693 694 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 695 event = sctp_skb2event(pos); 696 tsn = event->tsn; 697 698 /* Since the entire message must be abandoned by the 699 * sender (item A3 in Section 3.5, RFC 3758), we can 700 * free all fragments on the list that are less then 701 * or equal to ctsn_point 702 */ 703 if (TSN_lte(tsn, fwd_tsn)) { 704 __skb_unlink(pos, &ulpq->reasm); 705 sctp_ulpevent_free(event); 706 } else 707 break; 708 } 709 } 710 711 /* 712 * Drain the reassembly queue. If we just cleared parted delivery, it 713 * is possible that the reassembly queue will contain already reassembled 714 * messages. Retrieve any such messages and give them to the user. 715 */ 716 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 717 { 718 struct sctp_ulpevent *event = NULL; 719 720 if (skb_queue_empty(&ulpq->reasm)) 721 return; 722 723 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 724 struct sk_buff_head temp; 725 726 skb_queue_head_init(&temp); 727 __skb_queue_tail(&temp, sctp_event2skb(event)); 728 729 /* Do ordering if needed. */ 730 if (event->msg_flags & MSG_EOR) 731 event = sctp_ulpq_order(ulpq, event); 732 733 /* Send event to the ULP. 'event' is the 734 * sctp_ulpevent for very first SKB on the temp' list. 735 */ 736 if (event) 737 sctp_ulpq_tail_event(ulpq, &temp); 738 } 739 } 740 741 742 /* Helper function to gather skbs that have possibly become 743 * ordered by an an incoming chunk. 744 */ 745 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 746 struct sctp_ulpevent *event) 747 { 748 struct sk_buff_head *event_list; 749 struct sk_buff *pos, *tmp; 750 struct sctp_ulpevent *cevent; 751 struct sctp_stream *stream; 752 __u16 sid, csid, cssn; 753 754 sid = event->stream; 755 stream = &ulpq->asoc->stream; 756 757 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 758 759 /* We are holding the chunks by stream, by SSN. */ 760 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 761 cevent = (struct sctp_ulpevent *) pos->cb; 762 csid = cevent->stream; 763 cssn = cevent->ssn; 764 765 /* Have we gone too far? */ 766 if (csid > sid) 767 break; 768 769 /* Have we not gone far enough? */ 770 if (csid < sid) 771 continue; 772 773 if (cssn != sctp_ssn_peek(stream, in, sid)) 774 break; 775 776 /* Found it, so mark in the stream. */ 777 sctp_ssn_next(stream, in, sid); 778 779 __skb_unlink(pos, &ulpq->lobby); 780 781 /* Attach all gathered skbs to the event. */ 782 __skb_queue_tail(event_list, pos); 783 } 784 } 785 786 /* Helper function to store chunks needing ordering. */ 787 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 788 struct sctp_ulpevent *event) 789 { 790 struct sk_buff *pos; 791 struct sctp_ulpevent *cevent; 792 __u16 sid, csid; 793 __u16 ssn, cssn; 794 795 pos = skb_peek_tail(&ulpq->lobby); 796 if (!pos) { 797 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 798 return; 799 } 800 801 sid = event->stream; 802 ssn = event->ssn; 803 804 cevent = (struct sctp_ulpevent *) pos->cb; 805 csid = cevent->stream; 806 cssn = cevent->ssn; 807 if (sid > csid) { 808 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 809 return; 810 } 811 812 if ((sid == csid) && SSN_lt(cssn, ssn)) { 813 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 814 return; 815 } 816 817 /* Find the right place in this list. We store them by 818 * stream ID and then by SSN. 819 */ 820 skb_queue_walk(&ulpq->lobby, pos) { 821 cevent = (struct sctp_ulpevent *) pos->cb; 822 csid = cevent->stream; 823 cssn = cevent->ssn; 824 825 if (csid > sid) 826 break; 827 if (csid == sid && SSN_lt(ssn, cssn)) 828 break; 829 } 830 831 832 /* Insert before pos. */ 833 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 834 } 835 836 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 837 struct sctp_ulpevent *event) 838 { 839 __u16 sid, ssn; 840 struct sctp_stream *stream; 841 842 /* Check if this message needs ordering. */ 843 if (event->msg_flags & SCTP_DATA_UNORDERED) 844 return event; 845 846 /* Note: The stream ID must be verified before this routine. */ 847 sid = event->stream; 848 ssn = event->ssn; 849 stream = &ulpq->asoc->stream; 850 851 /* Is this the expected SSN for this stream ID? */ 852 if (ssn != sctp_ssn_peek(stream, in, sid)) { 853 /* We've received something out of order, so find where it 854 * needs to be placed. We order by stream and then by SSN. 855 */ 856 sctp_ulpq_store_ordered(ulpq, event); 857 return NULL; 858 } 859 860 /* Mark that the next chunk has been found. */ 861 sctp_ssn_next(stream, in, sid); 862 863 /* Go find any other chunks that were waiting for 864 * ordering. 865 */ 866 sctp_ulpq_retrieve_ordered(ulpq, event); 867 868 return event; 869 } 870 871 /* Helper function to gather skbs that have possibly become 872 * ordered by forward tsn skipping their dependencies. 873 */ 874 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 875 { 876 struct sk_buff *pos, *tmp; 877 struct sctp_ulpevent *cevent; 878 struct sctp_ulpevent *event; 879 struct sctp_stream *stream; 880 struct sk_buff_head temp; 881 struct sk_buff_head *lobby = &ulpq->lobby; 882 __u16 csid, cssn; 883 884 stream = &ulpq->asoc->stream; 885 886 /* We are holding the chunks by stream, by SSN. */ 887 skb_queue_head_init(&temp); 888 event = NULL; 889 sctp_skb_for_each(pos, lobby, tmp) { 890 cevent = (struct sctp_ulpevent *) pos->cb; 891 csid = cevent->stream; 892 cssn = cevent->ssn; 893 894 /* Have we gone too far? */ 895 if (csid > sid) 896 break; 897 898 /* Have we not gone far enough? */ 899 if (csid < sid) 900 continue; 901 902 /* see if this ssn has been marked by skipping */ 903 if (!SSN_lt(cssn, sctp_ssn_peek(stream, in, csid))) 904 break; 905 906 __skb_unlink(pos, lobby); 907 if (!event) 908 /* Create a temporary list to collect chunks on. */ 909 event = sctp_skb2event(pos); 910 911 /* Attach all gathered skbs to the event. */ 912 __skb_queue_tail(&temp, pos); 913 } 914 915 /* If we didn't reap any data, see if the next expected SSN 916 * is next on the queue and if so, use that. 917 */ 918 if (event == NULL && pos != (struct sk_buff *)lobby) { 919 cevent = (struct sctp_ulpevent *) pos->cb; 920 csid = cevent->stream; 921 cssn = cevent->ssn; 922 923 if (csid == sid && cssn == sctp_ssn_peek(stream, in, csid)) { 924 sctp_ssn_next(stream, in, csid); 925 __skb_unlink(pos, lobby); 926 __skb_queue_tail(&temp, pos); 927 event = sctp_skb2event(pos); 928 } 929 } 930 931 /* Send event to the ULP. 'event' is the sctp_ulpevent for 932 * very first SKB on the 'temp' list. 933 */ 934 if (event) { 935 /* see if we have more ordered that we can deliver */ 936 sctp_ulpq_retrieve_ordered(ulpq, event); 937 sctp_ulpq_tail_event(ulpq, &temp); 938 } 939 } 940 941 /* Skip over an SSN. This is used during the processing of 942 * Forwared TSN chunk to skip over the abandoned ordered data 943 */ 944 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 945 { 946 struct sctp_stream *stream; 947 948 /* Note: The stream ID must be verified before this routine. */ 949 stream = &ulpq->asoc->stream; 950 951 /* Is this an old SSN? If so ignore. */ 952 if (SSN_lt(ssn, sctp_ssn_peek(stream, in, sid))) 953 return; 954 955 /* Mark that we are no longer expecting this SSN or lower. */ 956 sctp_ssn_skip(stream, in, sid, ssn); 957 958 /* Go find any other chunks that were waiting for 959 * ordering and deliver them if needed. 960 */ 961 sctp_ulpq_reap_ordered(ulpq, sid); 962 } 963 964 __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, struct sk_buff_head *list, 965 __u16 needed) 966 { 967 __u16 freed = 0; 968 __u32 tsn, last_tsn; 969 struct sk_buff *skb, *flist, *last; 970 struct sctp_ulpevent *event; 971 struct sctp_tsnmap *tsnmap; 972 973 tsnmap = &ulpq->asoc->peer.tsn_map; 974 975 while ((skb = skb_peek_tail(list)) != NULL) { 976 event = sctp_skb2event(skb); 977 tsn = event->tsn; 978 979 /* Don't renege below the Cumulative TSN ACK Point. */ 980 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 981 break; 982 983 /* Events in ordering queue may have multiple fragments 984 * corresponding to additional TSNs. Sum the total 985 * freed space; find the last TSN. 986 */ 987 freed += skb_headlen(skb); 988 flist = skb_shinfo(skb)->frag_list; 989 for (last = flist; flist; flist = flist->next) { 990 last = flist; 991 freed += skb_headlen(last); 992 } 993 if (last) 994 last_tsn = sctp_skb2event(last)->tsn; 995 else 996 last_tsn = tsn; 997 998 /* Unlink the event, then renege all applicable TSNs. */ 999 __skb_unlink(skb, list); 1000 sctp_ulpevent_free(event); 1001 while (TSN_lte(tsn, last_tsn)) { 1002 sctp_tsnmap_renege(tsnmap, tsn); 1003 tsn++; 1004 } 1005 if (freed >= needed) 1006 return freed; 1007 } 1008 1009 return freed; 1010 } 1011 1012 /* Renege 'needed' bytes from the ordering queue. */ 1013 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1014 { 1015 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1016 } 1017 1018 /* Renege 'needed' bytes from the reassembly queue. */ 1019 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1020 { 1021 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1022 } 1023 1024 /* Partial deliver the first message as there is pressure on rwnd. */ 1025 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1026 gfp_t gfp) 1027 { 1028 struct sctp_ulpevent *event; 1029 struct sctp_association *asoc; 1030 struct sctp_sock *sp; 1031 __u32 ctsn; 1032 struct sk_buff *skb; 1033 1034 asoc = ulpq->asoc; 1035 sp = sctp_sk(asoc->base.sk); 1036 1037 /* If the association is already in Partial Delivery mode 1038 * we have nothing to do. 1039 */ 1040 if (ulpq->pd_mode) 1041 return; 1042 1043 /* Data must be at or below the Cumulative TSN ACK Point to 1044 * start partial delivery. 1045 */ 1046 skb = skb_peek(&asoc->ulpq.reasm); 1047 if (skb != NULL) { 1048 ctsn = sctp_skb2event(skb)->tsn; 1049 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1050 return; 1051 } 1052 1053 /* If the user enabled fragment interleave socket option, 1054 * multiple associations can enter partial delivery. 1055 * Otherwise, we can only enter partial delivery if the 1056 * socket is not in partial deliver mode. 1057 */ 1058 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1059 /* Is partial delivery possible? */ 1060 event = sctp_ulpq_retrieve_first(ulpq); 1061 /* Send event to the ULP. */ 1062 if (event) { 1063 struct sk_buff_head temp; 1064 1065 skb_queue_head_init(&temp); 1066 __skb_queue_tail(&temp, sctp_event2skb(event)); 1067 sctp_ulpq_tail_event(ulpq, &temp); 1068 sctp_ulpq_set_pd(ulpq); 1069 return; 1070 } 1071 } 1072 } 1073 1074 /* Renege some packets to make room for an incoming chunk. */ 1075 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1076 gfp_t gfp) 1077 { 1078 struct sctp_association *asoc = ulpq->asoc; 1079 __u32 freed = 0; 1080 __u16 needed; 1081 1082 needed = ntohs(chunk->chunk_hdr->length) - 1083 sizeof(struct sctp_data_chunk); 1084 1085 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1086 freed = sctp_ulpq_renege_order(ulpq, needed); 1087 if (freed < needed) 1088 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1089 } 1090 /* If able to free enough room, accept this chunk. */ 1091 if (sk_rmem_schedule(asoc->base.sk, chunk->skb, needed) && 1092 freed >= needed) { 1093 int retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1094 /* 1095 * Enter partial delivery if chunk has not been 1096 * delivered; otherwise, drain the reassembly queue. 1097 */ 1098 if (retval <= 0) 1099 sctp_ulpq_partial_delivery(ulpq, gfp); 1100 else if (retval == 1) 1101 sctp_ulpq_reasm_drain(ulpq); 1102 } 1103 1104 sk_mem_reclaim(asoc->base.sk); 1105 } 1106 1107 1108 1109 /* Notify the application if an association is aborted and in 1110 * partial delivery mode. Send up any pending received messages. 1111 */ 1112 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1113 { 1114 struct sctp_ulpevent *ev = NULL; 1115 struct sctp_sock *sp; 1116 struct sock *sk; 1117 1118 if (!ulpq->pd_mode) 1119 return; 1120 1121 sk = ulpq->asoc->base.sk; 1122 sp = sctp_sk(sk); 1123 if (sctp_ulpevent_type_enabled(ulpq->asoc->subscribe, 1124 SCTP_PARTIAL_DELIVERY_EVENT)) 1125 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1126 SCTP_PARTIAL_DELIVERY_ABORTED, 1127 0, 0, 0, gfp); 1128 if (ev) 1129 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1130 1131 /* If there is data waiting, send it up the socket now. */ 1132 if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) { 1133 sp->data_ready_signalled = 1; 1134 sk->sk_data_ready(sk); 1135 } 1136 } 1137