1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This abstraction carries sctp events to the ULP (sockets). 10 * 11 * This SCTP implementation is free software; 12 * you can redistribute it and/or modify it under the terms of 13 * the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This SCTP implementation is distributed in the hope that it 18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 19 * ************************ 20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * See the GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with GNU CC; see the file COPYING. If not, see 25 * <http://www.gnu.org/licenses/>. 26 * 27 * Please send any bug reports or fixes you make to the 28 * email address(es): 29 * lksctp developers <linux-sctp@vger.kernel.org> 30 * 31 * Written or modified by: 32 * Jon Grimm <jgrimm@us.ibm.com> 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Sridhar Samudrala <sri@us.ibm.com> 35 */ 36 37 #include <linux/slab.h> 38 #include <linux/types.h> 39 #include <linux/skbuff.h> 40 #include <net/sock.h> 41 #include <net/busy_poll.h> 42 #include <net/sctp/structs.h> 43 #include <net/sctp/sctp.h> 44 #include <net/sctp/sm.h> 45 46 /* Forward declarations for internal helpers. */ 47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 48 struct sctp_ulpevent *); 49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *, 50 struct sctp_ulpevent *); 51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 52 53 /* 1st Level Abstractions */ 54 55 /* Initialize a ULP queue from a block of memory. */ 56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, 57 struct sctp_association *asoc) 58 { 59 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 60 61 ulpq->asoc = asoc; 62 skb_queue_head_init(&ulpq->reasm); 63 skb_queue_head_init(&ulpq->lobby); 64 ulpq->pd_mode = 0; 65 66 return ulpq; 67 } 68 69 70 /* Flush the reassembly and ordering queues. */ 71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 72 { 73 struct sk_buff *skb; 74 struct sctp_ulpevent *event; 75 76 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 77 event = sctp_skb2event(skb); 78 sctp_ulpevent_free(event); 79 } 80 81 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 82 event = sctp_skb2event(skb); 83 sctp_ulpevent_free(event); 84 } 85 86 } 87 88 /* Dispose of a ulpqueue. */ 89 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 90 { 91 sctp_ulpq_flush(ulpq); 92 } 93 94 /* Process an incoming DATA chunk. */ 95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 96 gfp_t gfp) 97 { 98 struct sk_buff_head temp; 99 struct sctp_ulpevent *event; 100 int event_eor = 0; 101 102 /* Create an event from the incoming chunk. */ 103 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 104 if (!event) 105 return -ENOMEM; 106 107 /* Do reassembly if needed. */ 108 event = sctp_ulpq_reasm(ulpq, event); 109 110 /* Do ordering if needed. */ 111 if ((event) && (event->msg_flags & MSG_EOR)) { 112 /* Create a temporary list to collect chunks on. */ 113 skb_queue_head_init(&temp); 114 __skb_queue_tail(&temp, sctp_event2skb(event)); 115 116 event = sctp_ulpq_order(ulpq, event); 117 } 118 119 /* Send event to the ULP. 'event' is the sctp_ulpevent for 120 * very first SKB on the 'temp' list. 121 */ 122 if (event) { 123 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 124 sctp_ulpq_tail_event(ulpq, event); 125 } 126 127 return event_eor; 128 } 129 130 /* Add a new event for propagation to the ULP. */ 131 /* Clear the partial delivery mode for this socket. Note: This 132 * assumes that no association is currently in partial delivery mode. 133 */ 134 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 135 { 136 struct sctp_sock *sp = sctp_sk(sk); 137 138 if (atomic_dec_and_test(&sp->pd_mode)) { 139 /* This means there are no other associations in PD, so 140 * we can go ahead and clear out the lobby in one shot 141 */ 142 if (!skb_queue_empty(&sp->pd_lobby)) { 143 struct list_head *list; 144 skb_queue_splice_tail_init(&sp->pd_lobby, 145 &sk->sk_receive_queue); 146 list = (struct list_head *)&sctp_sk(sk)->pd_lobby; 147 INIT_LIST_HEAD(list); 148 return 1; 149 } 150 } else { 151 /* There are other associations in PD, so we only need to 152 * pull stuff out of the lobby that belongs to the 153 * associations that is exiting PD (all of its notifications 154 * are posted here). 155 */ 156 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 157 struct sk_buff *skb, *tmp; 158 struct sctp_ulpevent *event; 159 160 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 161 event = sctp_skb2event(skb); 162 if (event->asoc == asoc) { 163 __skb_unlink(skb, &sp->pd_lobby); 164 __skb_queue_tail(&sk->sk_receive_queue, 165 skb); 166 } 167 } 168 } 169 } 170 171 return 0; 172 } 173 174 /* Set the pd_mode on the socket and ulpq */ 175 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 176 { 177 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 178 179 atomic_inc(&sp->pd_mode); 180 ulpq->pd_mode = 1; 181 } 182 183 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 184 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 185 { 186 ulpq->pd_mode = 0; 187 sctp_ulpq_reasm_drain(ulpq); 188 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 189 } 190 191 /* If the SKB of 'event' is on a list, it is the first such member 192 * of that list. 193 */ 194 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event) 195 { 196 struct sock *sk = ulpq->asoc->base.sk; 197 struct sctp_sock *sp = sctp_sk(sk); 198 struct sk_buff_head *queue, *skb_list; 199 struct sk_buff *skb = sctp_event2skb(event); 200 int clear_pd = 0; 201 202 skb_list = (struct sk_buff_head *) skb->prev; 203 204 /* If the socket is just going to throw this away, do not 205 * even try to deliver it. 206 */ 207 if (sk->sk_shutdown & RCV_SHUTDOWN && 208 (sk->sk_shutdown & SEND_SHUTDOWN || 209 !sctp_ulpevent_is_notification(event))) 210 goto out_free; 211 212 if (!sctp_ulpevent_is_notification(event)) { 213 sk_mark_napi_id(sk, skb); 214 sk_incoming_cpu_update(sk); 215 } 216 /* Check if the user wishes to receive this event. */ 217 if (!sctp_ulpevent_is_enabled(event, &sp->subscribe)) 218 goto out_free; 219 220 /* If we are in partial delivery mode, post to the lobby until 221 * partial delivery is cleared, unless, of course _this_ is 222 * the association the cause of the partial delivery. 223 */ 224 225 if (atomic_read(&sp->pd_mode) == 0) { 226 queue = &sk->sk_receive_queue; 227 } else { 228 if (ulpq->pd_mode) { 229 /* If the association is in partial delivery, we 230 * need to finish delivering the partially processed 231 * packet before passing any other data. This is 232 * because we don't truly support stream interleaving. 233 */ 234 if ((event->msg_flags & MSG_NOTIFICATION) || 235 (SCTP_DATA_NOT_FRAG == 236 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 237 queue = &sp->pd_lobby; 238 else { 239 clear_pd = event->msg_flags & MSG_EOR; 240 queue = &sk->sk_receive_queue; 241 } 242 } else { 243 /* 244 * If fragment interleave is enabled, we 245 * can queue this to the receive queue instead 246 * of the lobby. 247 */ 248 if (sp->frag_interleave) 249 queue = &sk->sk_receive_queue; 250 else 251 queue = &sp->pd_lobby; 252 } 253 } 254 255 /* If we are harvesting multiple skbs they will be 256 * collected on a list. 257 */ 258 if (skb_list) 259 skb_queue_splice_tail_init(skb_list, queue); 260 else 261 __skb_queue_tail(queue, skb); 262 263 /* Did we just complete partial delivery and need to get 264 * rolling again? Move pending data to the receive 265 * queue. 266 */ 267 if (clear_pd) 268 sctp_ulpq_clear_pd(ulpq); 269 270 if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) { 271 sp->data_ready_signalled = 1; 272 sk->sk_data_ready(sk); 273 } 274 return 1; 275 276 out_free: 277 if (skb_list) 278 sctp_queue_purge_ulpevents(skb_list); 279 else 280 sctp_ulpevent_free(event); 281 282 return 0; 283 } 284 285 /* 2nd Level Abstractions */ 286 287 /* Helper function to store chunks that need to be reassembled. */ 288 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 289 struct sctp_ulpevent *event) 290 { 291 struct sk_buff *pos; 292 struct sctp_ulpevent *cevent; 293 __u32 tsn, ctsn; 294 295 tsn = event->tsn; 296 297 /* See if it belongs at the end. */ 298 pos = skb_peek_tail(&ulpq->reasm); 299 if (!pos) { 300 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 301 return; 302 } 303 304 /* Short circuit just dropping it at the end. */ 305 cevent = sctp_skb2event(pos); 306 ctsn = cevent->tsn; 307 if (TSN_lt(ctsn, tsn)) { 308 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 309 return; 310 } 311 312 /* Find the right place in this list. We store them by TSN. */ 313 skb_queue_walk(&ulpq->reasm, pos) { 314 cevent = sctp_skb2event(pos); 315 ctsn = cevent->tsn; 316 317 if (TSN_lt(tsn, ctsn)) 318 break; 319 } 320 321 /* Insert before pos. */ 322 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 323 324 } 325 326 /* Helper function to return an event corresponding to the reassembled 327 * datagram. 328 * This routine creates a re-assembled skb given the first and last skb's 329 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 330 * payload was fragmented on the way and ip had to reassemble them. 331 * We add the rest of skb's to the first skb's fraglist. 332 */ 333 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 334 struct sk_buff_head *queue, struct sk_buff *f_frag, 335 struct sk_buff *l_frag) 336 { 337 struct sk_buff *pos; 338 struct sk_buff *new = NULL; 339 struct sctp_ulpevent *event; 340 struct sk_buff *pnext, *last; 341 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 342 343 /* Store the pointer to the 2nd skb */ 344 if (f_frag == l_frag) 345 pos = NULL; 346 else 347 pos = f_frag->next; 348 349 /* Get the last skb in the f_frag's frag_list if present. */ 350 for (last = list; list; last = list, list = list->next) 351 ; 352 353 /* Add the list of remaining fragments to the first fragments 354 * frag_list. 355 */ 356 if (last) 357 last->next = pos; 358 else { 359 if (skb_cloned(f_frag)) { 360 /* This is a cloned skb, we can't just modify 361 * the frag_list. We need a new skb to do that. 362 * Instead of calling skb_unshare(), we'll do it 363 * ourselves since we need to delay the free. 364 */ 365 new = skb_copy(f_frag, GFP_ATOMIC); 366 if (!new) 367 return NULL; /* try again later */ 368 369 sctp_skb_set_owner_r(new, f_frag->sk); 370 371 skb_shinfo(new)->frag_list = pos; 372 } else 373 skb_shinfo(f_frag)->frag_list = pos; 374 } 375 376 /* Remove the first fragment from the reassembly queue. */ 377 __skb_unlink(f_frag, queue); 378 379 /* if we did unshare, then free the old skb and re-assign */ 380 if (new) { 381 kfree_skb(f_frag); 382 f_frag = new; 383 } 384 385 while (pos) { 386 387 pnext = pos->next; 388 389 /* Update the len and data_len fields of the first fragment. */ 390 f_frag->len += pos->len; 391 f_frag->data_len += pos->len; 392 393 /* Remove the fragment from the reassembly queue. */ 394 __skb_unlink(pos, queue); 395 396 /* Break if we have reached the last fragment. */ 397 if (pos == l_frag) 398 break; 399 pos->next = pnext; 400 pos = pnext; 401 } 402 403 event = sctp_skb2event(f_frag); 404 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 405 406 return event; 407 } 408 409 410 /* Helper function to check if an incoming chunk has filled up the last 411 * missing fragment in a SCTP datagram and return the corresponding event. 412 */ 413 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 414 { 415 struct sk_buff *pos; 416 struct sctp_ulpevent *cevent; 417 struct sk_buff *first_frag = NULL; 418 __u32 ctsn, next_tsn; 419 struct sctp_ulpevent *retval = NULL; 420 struct sk_buff *pd_first = NULL; 421 struct sk_buff *pd_last = NULL; 422 size_t pd_len = 0; 423 struct sctp_association *asoc; 424 u32 pd_point; 425 426 /* Initialized to 0 just to avoid compiler warning message. Will 427 * never be used with this value. It is referenced only after it 428 * is set when we find the first fragment of a message. 429 */ 430 next_tsn = 0; 431 432 /* The chunks are held in the reasm queue sorted by TSN. 433 * Walk through the queue sequentially and look for a sequence of 434 * fragmented chunks that complete a datagram. 435 * 'first_frag' and next_tsn are reset when we find a chunk which 436 * is the first fragment of a datagram. Once these 2 fields are set 437 * we expect to find the remaining middle fragments and the last 438 * fragment in order. If not, first_frag is reset to NULL and we 439 * start the next pass when we find another first fragment. 440 * 441 * There is a potential to do partial delivery if user sets 442 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 443 * to see if can do PD. 444 */ 445 skb_queue_walk(&ulpq->reasm, pos) { 446 cevent = sctp_skb2event(pos); 447 ctsn = cevent->tsn; 448 449 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 450 case SCTP_DATA_FIRST_FRAG: 451 /* If this "FIRST_FRAG" is the first 452 * element in the queue, then count it towards 453 * possible PD. 454 */ 455 if (pos == ulpq->reasm.next) { 456 pd_first = pos; 457 pd_last = pos; 458 pd_len = pos->len; 459 } else { 460 pd_first = NULL; 461 pd_last = NULL; 462 pd_len = 0; 463 } 464 465 first_frag = pos; 466 next_tsn = ctsn + 1; 467 break; 468 469 case SCTP_DATA_MIDDLE_FRAG: 470 if ((first_frag) && (ctsn == next_tsn)) { 471 next_tsn++; 472 if (pd_first) { 473 pd_last = pos; 474 pd_len += pos->len; 475 } 476 } else 477 first_frag = NULL; 478 break; 479 480 case SCTP_DATA_LAST_FRAG: 481 if (first_frag && (ctsn == next_tsn)) 482 goto found; 483 else 484 first_frag = NULL; 485 break; 486 } 487 } 488 489 asoc = ulpq->asoc; 490 if (pd_first) { 491 /* Make sure we can enter partial deliver. 492 * We can trigger partial delivery only if framgent 493 * interleave is set, or the socket is not already 494 * in partial delivery. 495 */ 496 if (!sctp_sk(asoc->base.sk)->frag_interleave && 497 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 498 goto done; 499 500 cevent = sctp_skb2event(pd_first); 501 pd_point = sctp_sk(asoc->base.sk)->pd_point; 502 if (pd_point && pd_point <= pd_len) { 503 retval = sctp_make_reassembled_event(sock_net(asoc->base.sk), 504 &ulpq->reasm, 505 pd_first, 506 pd_last); 507 if (retval) 508 sctp_ulpq_set_pd(ulpq); 509 } 510 } 511 done: 512 return retval; 513 found: 514 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 515 &ulpq->reasm, first_frag, pos); 516 if (retval) 517 retval->msg_flags |= MSG_EOR; 518 goto done; 519 } 520 521 /* Retrieve the next set of fragments of a partial message. */ 522 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 523 { 524 struct sk_buff *pos, *last_frag, *first_frag; 525 struct sctp_ulpevent *cevent; 526 __u32 ctsn, next_tsn; 527 int is_last; 528 struct sctp_ulpevent *retval; 529 530 /* The chunks are held in the reasm queue sorted by TSN. 531 * Walk through the queue sequentially and look for the first 532 * sequence of fragmented chunks. 533 */ 534 535 if (skb_queue_empty(&ulpq->reasm)) 536 return NULL; 537 538 last_frag = first_frag = NULL; 539 retval = NULL; 540 next_tsn = 0; 541 is_last = 0; 542 543 skb_queue_walk(&ulpq->reasm, pos) { 544 cevent = sctp_skb2event(pos); 545 ctsn = cevent->tsn; 546 547 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 548 case SCTP_DATA_FIRST_FRAG: 549 if (!first_frag) 550 return NULL; 551 goto done; 552 case SCTP_DATA_MIDDLE_FRAG: 553 if (!first_frag) { 554 first_frag = pos; 555 next_tsn = ctsn + 1; 556 last_frag = pos; 557 } else if (next_tsn == ctsn) { 558 next_tsn++; 559 last_frag = pos; 560 } else 561 goto done; 562 break; 563 case SCTP_DATA_LAST_FRAG: 564 if (!first_frag) 565 first_frag = pos; 566 else if (ctsn != next_tsn) 567 goto done; 568 last_frag = pos; 569 is_last = 1; 570 goto done; 571 default: 572 return NULL; 573 } 574 } 575 576 /* We have the reassembled event. There is no need to look 577 * further. 578 */ 579 done: 580 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 581 &ulpq->reasm, first_frag, last_frag); 582 if (retval && is_last) 583 retval->msg_flags |= MSG_EOR; 584 585 return retval; 586 } 587 588 589 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 590 * need reassembling. 591 */ 592 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 593 struct sctp_ulpevent *event) 594 { 595 struct sctp_ulpevent *retval = NULL; 596 597 /* Check if this is part of a fragmented message. */ 598 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 599 event->msg_flags |= MSG_EOR; 600 return event; 601 } 602 603 sctp_ulpq_store_reasm(ulpq, event); 604 if (!ulpq->pd_mode) 605 retval = sctp_ulpq_retrieve_reassembled(ulpq); 606 else { 607 __u32 ctsn, ctsnap; 608 609 /* Do not even bother unless this is the next tsn to 610 * be delivered. 611 */ 612 ctsn = event->tsn; 613 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 614 if (TSN_lte(ctsn, ctsnap)) 615 retval = sctp_ulpq_retrieve_partial(ulpq); 616 } 617 618 return retval; 619 } 620 621 /* Retrieve the first part (sequential fragments) for partial delivery. */ 622 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 623 { 624 struct sk_buff *pos, *last_frag, *first_frag; 625 struct sctp_ulpevent *cevent; 626 __u32 ctsn, next_tsn; 627 struct sctp_ulpevent *retval; 628 629 /* The chunks are held in the reasm queue sorted by TSN. 630 * Walk through the queue sequentially and look for a sequence of 631 * fragmented chunks that start a datagram. 632 */ 633 634 if (skb_queue_empty(&ulpq->reasm)) 635 return NULL; 636 637 last_frag = first_frag = NULL; 638 retval = NULL; 639 next_tsn = 0; 640 641 skb_queue_walk(&ulpq->reasm, pos) { 642 cevent = sctp_skb2event(pos); 643 ctsn = cevent->tsn; 644 645 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 646 case SCTP_DATA_FIRST_FRAG: 647 if (!first_frag) { 648 first_frag = pos; 649 next_tsn = ctsn + 1; 650 last_frag = pos; 651 } else 652 goto done; 653 break; 654 655 case SCTP_DATA_MIDDLE_FRAG: 656 if (!first_frag) 657 return NULL; 658 if (ctsn == next_tsn) { 659 next_tsn++; 660 last_frag = pos; 661 } else 662 goto done; 663 break; 664 665 case SCTP_DATA_LAST_FRAG: 666 if (!first_frag) 667 return NULL; 668 else 669 goto done; 670 break; 671 672 default: 673 return NULL; 674 } 675 } 676 677 /* We have the reassembled event. There is no need to look 678 * further. 679 */ 680 done: 681 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 682 &ulpq->reasm, first_frag, last_frag); 683 return retval; 684 } 685 686 /* 687 * Flush out stale fragments from the reassembly queue when processing 688 * a Forward TSN. 689 * 690 * RFC 3758, Section 3.6 691 * 692 * After receiving and processing a FORWARD TSN, the data receiver MUST 693 * take cautions in updating its re-assembly queue. The receiver MUST 694 * remove any partially reassembled message, which is still missing one 695 * or more TSNs earlier than or equal to the new cumulative TSN point. 696 * In the event that the receiver has invoked the partial delivery API, 697 * a notification SHOULD also be generated to inform the upper layer API 698 * that the message being partially delivered will NOT be completed. 699 */ 700 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 701 { 702 struct sk_buff *pos, *tmp; 703 struct sctp_ulpevent *event; 704 __u32 tsn; 705 706 if (skb_queue_empty(&ulpq->reasm)) 707 return; 708 709 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 710 event = sctp_skb2event(pos); 711 tsn = event->tsn; 712 713 /* Since the entire message must be abandoned by the 714 * sender (item A3 in Section 3.5, RFC 3758), we can 715 * free all fragments on the list that are less then 716 * or equal to ctsn_point 717 */ 718 if (TSN_lte(tsn, fwd_tsn)) { 719 __skb_unlink(pos, &ulpq->reasm); 720 sctp_ulpevent_free(event); 721 } else 722 break; 723 } 724 } 725 726 /* 727 * Drain the reassembly queue. If we just cleared parted delivery, it 728 * is possible that the reassembly queue will contain already reassembled 729 * messages. Retrieve any such messages and give them to the user. 730 */ 731 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 732 { 733 struct sctp_ulpevent *event = NULL; 734 struct sk_buff_head temp; 735 736 if (skb_queue_empty(&ulpq->reasm)) 737 return; 738 739 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 740 /* Do ordering if needed. */ 741 if ((event) && (event->msg_flags & MSG_EOR)) { 742 skb_queue_head_init(&temp); 743 __skb_queue_tail(&temp, sctp_event2skb(event)); 744 745 event = sctp_ulpq_order(ulpq, event); 746 } 747 748 /* Send event to the ULP. 'event' is the 749 * sctp_ulpevent for very first SKB on the temp' list. 750 */ 751 if (event) 752 sctp_ulpq_tail_event(ulpq, event); 753 } 754 } 755 756 757 /* Helper function to gather skbs that have possibly become 758 * ordered by an an incoming chunk. 759 */ 760 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 761 struct sctp_ulpevent *event) 762 { 763 struct sk_buff_head *event_list; 764 struct sk_buff *pos, *tmp; 765 struct sctp_ulpevent *cevent; 766 struct sctp_stream *in; 767 __u16 sid, csid, cssn; 768 769 sid = event->stream; 770 in = &ulpq->asoc->ssnmap->in; 771 772 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 773 774 /* We are holding the chunks by stream, by SSN. */ 775 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 776 cevent = (struct sctp_ulpevent *) pos->cb; 777 csid = cevent->stream; 778 cssn = cevent->ssn; 779 780 /* Have we gone too far? */ 781 if (csid > sid) 782 break; 783 784 /* Have we not gone far enough? */ 785 if (csid < sid) 786 continue; 787 788 if (cssn != sctp_ssn_peek(in, sid)) 789 break; 790 791 /* Found it, so mark in the ssnmap. */ 792 sctp_ssn_next(in, sid); 793 794 __skb_unlink(pos, &ulpq->lobby); 795 796 /* Attach all gathered skbs to the event. */ 797 __skb_queue_tail(event_list, pos); 798 } 799 } 800 801 /* Helper function to store chunks needing ordering. */ 802 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 803 struct sctp_ulpevent *event) 804 { 805 struct sk_buff *pos; 806 struct sctp_ulpevent *cevent; 807 __u16 sid, csid; 808 __u16 ssn, cssn; 809 810 pos = skb_peek_tail(&ulpq->lobby); 811 if (!pos) { 812 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 813 return; 814 } 815 816 sid = event->stream; 817 ssn = event->ssn; 818 819 cevent = (struct sctp_ulpevent *) pos->cb; 820 csid = cevent->stream; 821 cssn = cevent->ssn; 822 if (sid > csid) { 823 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 824 return; 825 } 826 827 if ((sid == csid) && SSN_lt(cssn, ssn)) { 828 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 829 return; 830 } 831 832 /* Find the right place in this list. We store them by 833 * stream ID and then by SSN. 834 */ 835 skb_queue_walk(&ulpq->lobby, pos) { 836 cevent = (struct sctp_ulpevent *) pos->cb; 837 csid = cevent->stream; 838 cssn = cevent->ssn; 839 840 if (csid > sid) 841 break; 842 if (csid == sid && SSN_lt(ssn, cssn)) 843 break; 844 } 845 846 847 /* Insert before pos. */ 848 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 849 } 850 851 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 852 struct sctp_ulpevent *event) 853 { 854 __u16 sid, ssn; 855 struct sctp_stream *in; 856 857 /* Check if this message needs ordering. */ 858 if (SCTP_DATA_UNORDERED & event->msg_flags) 859 return event; 860 861 /* Note: The stream ID must be verified before this routine. */ 862 sid = event->stream; 863 ssn = event->ssn; 864 in = &ulpq->asoc->ssnmap->in; 865 866 /* Is this the expected SSN for this stream ID? */ 867 if (ssn != sctp_ssn_peek(in, sid)) { 868 /* We've received something out of order, so find where it 869 * needs to be placed. We order by stream and then by SSN. 870 */ 871 sctp_ulpq_store_ordered(ulpq, event); 872 return NULL; 873 } 874 875 /* Mark that the next chunk has been found. */ 876 sctp_ssn_next(in, sid); 877 878 /* Go find any other chunks that were waiting for 879 * ordering. 880 */ 881 sctp_ulpq_retrieve_ordered(ulpq, event); 882 883 return event; 884 } 885 886 /* Helper function to gather skbs that have possibly become 887 * ordered by forward tsn skipping their dependencies. 888 */ 889 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 890 { 891 struct sk_buff *pos, *tmp; 892 struct sctp_ulpevent *cevent; 893 struct sctp_ulpevent *event; 894 struct sctp_stream *in; 895 struct sk_buff_head temp; 896 struct sk_buff_head *lobby = &ulpq->lobby; 897 __u16 csid, cssn; 898 899 in = &ulpq->asoc->ssnmap->in; 900 901 /* We are holding the chunks by stream, by SSN. */ 902 skb_queue_head_init(&temp); 903 event = NULL; 904 sctp_skb_for_each(pos, lobby, tmp) { 905 cevent = (struct sctp_ulpevent *) pos->cb; 906 csid = cevent->stream; 907 cssn = cevent->ssn; 908 909 /* Have we gone too far? */ 910 if (csid > sid) 911 break; 912 913 /* Have we not gone far enough? */ 914 if (csid < sid) 915 continue; 916 917 /* see if this ssn has been marked by skipping */ 918 if (!SSN_lt(cssn, sctp_ssn_peek(in, csid))) 919 break; 920 921 __skb_unlink(pos, lobby); 922 if (!event) 923 /* Create a temporary list to collect chunks on. */ 924 event = sctp_skb2event(pos); 925 926 /* Attach all gathered skbs to the event. */ 927 __skb_queue_tail(&temp, pos); 928 } 929 930 /* If we didn't reap any data, see if the next expected SSN 931 * is next on the queue and if so, use that. 932 */ 933 if (event == NULL && pos != (struct sk_buff *)lobby) { 934 cevent = (struct sctp_ulpevent *) pos->cb; 935 csid = cevent->stream; 936 cssn = cevent->ssn; 937 938 if (csid == sid && cssn == sctp_ssn_peek(in, csid)) { 939 sctp_ssn_next(in, csid); 940 __skb_unlink(pos, lobby); 941 __skb_queue_tail(&temp, pos); 942 event = sctp_skb2event(pos); 943 } 944 } 945 946 /* Send event to the ULP. 'event' is the sctp_ulpevent for 947 * very first SKB on the 'temp' list. 948 */ 949 if (event) { 950 /* see if we have more ordered that we can deliver */ 951 sctp_ulpq_retrieve_ordered(ulpq, event); 952 sctp_ulpq_tail_event(ulpq, event); 953 } 954 } 955 956 /* Skip over an SSN. This is used during the processing of 957 * Forwared TSN chunk to skip over the abandoned ordered data 958 */ 959 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 960 { 961 struct sctp_stream *in; 962 963 /* Note: The stream ID must be verified before this routine. */ 964 in = &ulpq->asoc->ssnmap->in; 965 966 /* Is this an old SSN? If so ignore. */ 967 if (SSN_lt(ssn, sctp_ssn_peek(in, sid))) 968 return; 969 970 /* Mark that we are no longer expecting this SSN or lower. */ 971 sctp_ssn_skip(in, sid, ssn); 972 973 /* Go find any other chunks that were waiting for 974 * ordering and deliver them if needed. 975 */ 976 sctp_ulpq_reap_ordered(ulpq, sid); 977 } 978 979 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, 980 struct sk_buff_head *list, __u16 needed) 981 { 982 __u16 freed = 0; 983 __u32 tsn, last_tsn; 984 struct sk_buff *skb, *flist, *last; 985 struct sctp_ulpevent *event; 986 struct sctp_tsnmap *tsnmap; 987 988 tsnmap = &ulpq->asoc->peer.tsn_map; 989 990 while ((skb = skb_peek_tail(list)) != NULL) { 991 event = sctp_skb2event(skb); 992 tsn = event->tsn; 993 994 /* Don't renege below the Cumulative TSN ACK Point. */ 995 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 996 break; 997 998 /* Events in ordering queue may have multiple fragments 999 * corresponding to additional TSNs. Sum the total 1000 * freed space; find the last TSN. 1001 */ 1002 freed += skb_headlen(skb); 1003 flist = skb_shinfo(skb)->frag_list; 1004 for (last = flist; flist; flist = flist->next) { 1005 last = flist; 1006 freed += skb_headlen(last); 1007 } 1008 if (last) 1009 last_tsn = sctp_skb2event(last)->tsn; 1010 else 1011 last_tsn = tsn; 1012 1013 /* Unlink the event, then renege all applicable TSNs. */ 1014 __skb_unlink(skb, list); 1015 sctp_ulpevent_free(event); 1016 while (TSN_lte(tsn, last_tsn)) { 1017 sctp_tsnmap_renege(tsnmap, tsn); 1018 tsn++; 1019 } 1020 if (freed >= needed) 1021 return freed; 1022 } 1023 1024 return freed; 1025 } 1026 1027 /* Renege 'needed' bytes from the ordering queue. */ 1028 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1029 { 1030 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1031 } 1032 1033 /* Renege 'needed' bytes from the reassembly queue. */ 1034 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1035 { 1036 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1037 } 1038 1039 /* Partial deliver the first message as there is pressure on rwnd. */ 1040 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1041 gfp_t gfp) 1042 { 1043 struct sctp_ulpevent *event; 1044 struct sctp_association *asoc; 1045 struct sctp_sock *sp; 1046 __u32 ctsn; 1047 struct sk_buff *skb; 1048 1049 asoc = ulpq->asoc; 1050 sp = sctp_sk(asoc->base.sk); 1051 1052 /* If the association is already in Partial Delivery mode 1053 * we have nothing to do. 1054 */ 1055 if (ulpq->pd_mode) 1056 return; 1057 1058 /* Data must be at or below the Cumulative TSN ACK Point to 1059 * start partial delivery. 1060 */ 1061 skb = skb_peek(&asoc->ulpq.reasm); 1062 if (skb != NULL) { 1063 ctsn = sctp_skb2event(skb)->tsn; 1064 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1065 return; 1066 } 1067 1068 /* If the user enabled fragment interleave socket option, 1069 * multiple associations can enter partial delivery. 1070 * Otherwise, we can only enter partial delivery if the 1071 * socket is not in partial deliver mode. 1072 */ 1073 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1074 /* Is partial delivery possible? */ 1075 event = sctp_ulpq_retrieve_first(ulpq); 1076 /* Send event to the ULP. */ 1077 if (event) { 1078 sctp_ulpq_tail_event(ulpq, event); 1079 sctp_ulpq_set_pd(ulpq); 1080 return; 1081 } 1082 } 1083 } 1084 1085 /* Renege some packets to make room for an incoming chunk. */ 1086 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1087 gfp_t gfp) 1088 { 1089 struct sctp_association *asoc; 1090 __u16 needed, freed; 1091 1092 asoc = ulpq->asoc; 1093 1094 if (chunk) { 1095 needed = ntohs(chunk->chunk_hdr->length); 1096 needed -= sizeof(sctp_data_chunk_t); 1097 } else 1098 needed = SCTP_DEFAULT_MAXWINDOW; 1099 1100 freed = 0; 1101 1102 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1103 freed = sctp_ulpq_renege_order(ulpq, needed); 1104 if (freed < needed) { 1105 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1106 } 1107 } 1108 /* If able to free enough room, accept this chunk. */ 1109 if (chunk && (freed >= needed)) { 1110 int retval; 1111 retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1112 /* 1113 * Enter partial delivery if chunk has not been 1114 * delivered; otherwise, drain the reassembly queue. 1115 */ 1116 if (retval <= 0) 1117 sctp_ulpq_partial_delivery(ulpq, gfp); 1118 else if (retval == 1) 1119 sctp_ulpq_reasm_drain(ulpq); 1120 } 1121 1122 sk_mem_reclaim(asoc->base.sk); 1123 } 1124 1125 1126 1127 /* Notify the application if an association is aborted and in 1128 * partial delivery mode. Send up any pending received messages. 1129 */ 1130 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1131 { 1132 struct sctp_ulpevent *ev = NULL; 1133 struct sock *sk; 1134 struct sctp_sock *sp; 1135 1136 if (!ulpq->pd_mode) 1137 return; 1138 1139 sk = ulpq->asoc->base.sk; 1140 sp = sctp_sk(sk); 1141 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT, 1142 &sctp_sk(sk)->subscribe)) 1143 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1144 SCTP_PARTIAL_DELIVERY_ABORTED, 1145 gfp); 1146 if (ev) 1147 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1148 1149 /* If there is data waiting, send it up the socket now. */ 1150 if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) { 1151 sp->data_ready_signalled = 1; 1152 sk->sk_data_ready(sk); 1153 } 1154 } 1155