xref: /openbmc/linux/net/sctp/ulpqueue.c (revision 12eb4683)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  *                 ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING.  If not, write to
25  * the Free Software Foundation, 59 Temple Place - Suite 330,
26  * Boston, MA 02111-1307, USA.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    Jon Grimm             <jgrimm@us.ibm.com>
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Sridhar Samudrala     <sri@us.ibm.com>
36  */
37 
38 #include <linux/slab.h>
39 #include <linux/types.h>
40 #include <linux/skbuff.h>
41 #include <net/sock.h>
42 #include <net/sctp/structs.h>
43 #include <net/sctp/sctp.h>
44 #include <net/sctp/sm.h>
45 
46 /* Forward declarations for internal helpers.  */
47 static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
48 					      struct sctp_ulpevent *);
49 static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *,
50 					      struct sctp_ulpevent *);
51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
52 
53 /* 1st Level Abstractions */
54 
55 /* Initialize a ULP queue from a block of memory.  */
56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
57 				 struct sctp_association *asoc)
58 {
59 	memset(ulpq, 0, sizeof(struct sctp_ulpq));
60 
61 	ulpq->asoc = asoc;
62 	skb_queue_head_init(&ulpq->reasm);
63 	skb_queue_head_init(&ulpq->lobby);
64 	ulpq->pd_mode  = 0;
65 
66 	return ulpq;
67 }
68 
69 
70 /* Flush the reassembly and ordering queues.  */
71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
72 {
73 	struct sk_buff *skb;
74 	struct sctp_ulpevent *event;
75 
76 	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
77 		event = sctp_skb2event(skb);
78 		sctp_ulpevent_free(event);
79 	}
80 
81 	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
82 		event = sctp_skb2event(skb);
83 		sctp_ulpevent_free(event);
84 	}
85 
86 }
87 
88 /* Dispose of a ulpqueue.  */
89 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
90 {
91 	sctp_ulpq_flush(ulpq);
92 }
93 
94 /* Process an incoming DATA chunk.  */
95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
96 			gfp_t gfp)
97 {
98 	struct sk_buff_head temp;
99 	struct sctp_ulpevent *event;
100 	int event_eor = 0;
101 
102 	/* Create an event from the incoming chunk. */
103 	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
104 	if (!event)
105 		return -ENOMEM;
106 
107 	/* Do reassembly if needed.  */
108 	event = sctp_ulpq_reasm(ulpq, event);
109 
110 	/* Do ordering if needed.  */
111 	if ((event) && (event->msg_flags & MSG_EOR)){
112 		/* Create a temporary list to collect chunks on.  */
113 		skb_queue_head_init(&temp);
114 		__skb_queue_tail(&temp, sctp_event2skb(event));
115 
116 		event = sctp_ulpq_order(ulpq, event);
117 	}
118 
119 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
120 	 * very first SKB on the 'temp' list.
121 	 */
122 	if (event) {
123 		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
124 		sctp_ulpq_tail_event(ulpq, event);
125 	}
126 
127 	return event_eor;
128 }
129 
130 /* Add a new event for propagation to the ULP.  */
131 /* Clear the partial delivery mode for this socket.   Note: This
132  * assumes that no association is currently in partial delivery mode.
133  */
134 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
135 {
136 	struct sctp_sock *sp = sctp_sk(sk);
137 
138 	if (atomic_dec_and_test(&sp->pd_mode)) {
139 		/* This means there are no other associations in PD, so
140 		 * we can go ahead and clear out the lobby in one shot
141 		 */
142 		if (!skb_queue_empty(&sp->pd_lobby)) {
143 			struct list_head *list;
144 			sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
145 			list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
146 			INIT_LIST_HEAD(list);
147 			return 1;
148 		}
149 	} else {
150 		/* There are other associations in PD, so we only need to
151 		 * pull stuff out of the lobby that belongs to the
152 		 * associations that is exiting PD (all of its notifications
153 		 * are posted here).
154 		 */
155 		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
156 			struct sk_buff *skb, *tmp;
157 			struct sctp_ulpevent *event;
158 
159 			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
160 				event = sctp_skb2event(skb);
161 				if (event->asoc == asoc) {
162 					__skb_unlink(skb, &sp->pd_lobby);
163 					__skb_queue_tail(&sk->sk_receive_queue,
164 							 skb);
165 				}
166 			}
167 		}
168 	}
169 
170 	return 0;
171 }
172 
173 /* Set the pd_mode on the socket and ulpq */
174 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
175 {
176 	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
177 
178 	atomic_inc(&sp->pd_mode);
179 	ulpq->pd_mode = 1;
180 }
181 
182 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
183 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
184 {
185 	ulpq->pd_mode = 0;
186 	sctp_ulpq_reasm_drain(ulpq);
187 	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
188 }
189 
190 /* If the SKB of 'event' is on a list, it is the first such member
191  * of that list.
192  */
193 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
194 {
195 	struct sock *sk = ulpq->asoc->base.sk;
196 	struct sk_buff_head *queue, *skb_list;
197 	struct sk_buff *skb = sctp_event2skb(event);
198 	int clear_pd = 0;
199 
200 	skb_list = (struct sk_buff_head *) skb->prev;
201 
202 	/* If the socket is just going to throw this away, do not
203 	 * even try to deliver it.
204 	 */
205 	if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
206 		goto out_free;
207 
208 	/* Check if the user wishes to receive this event.  */
209 	if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
210 		goto out_free;
211 
212 	/* If we are in partial delivery mode, post to the lobby until
213 	 * partial delivery is cleared, unless, of course _this_ is
214 	 * the association the cause of the partial delivery.
215 	 */
216 
217 	if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
218 		queue = &sk->sk_receive_queue;
219 	} else {
220 		if (ulpq->pd_mode) {
221 			/* If the association is in partial delivery, we
222 			 * need to finish delivering the partially processed
223 			 * packet before passing any other data.  This is
224 			 * because we don't truly support stream interleaving.
225 			 */
226 			if ((event->msg_flags & MSG_NOTIFICATION) ||
227 			    (SCTP_DATA_NOT_FRAG ==
228 				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
229 				queue = &sctp_sk(sk)->pd_lobby;
230 			else {
231 				clear_pd = event->msg_flags & MSG_EOR;
232 				queue = &sk->sk_receive_queue;
233 			}
234 		} else {
235 			/*
236 			 * If fragment interleave is enabled, we
237 			 * can queue this to the receive queue instead
238 			 * of the lobby.
239 			 */
240 			if (sctp_sk(sk)->frag_interleave)
241 				queue = &sk->sk_receive_queue;
242 			else
243 				queue = &sctp_sk(sk)->pd_lobby;
244 		}
245 	}
246 
247 	/* If we are harvesting multiple skbs they will be
248 	 * collected on a list.
249 	 */
250 	if (skb_list)
251 		sctp_skb_list_tail(skb_list, queue);
252 	else
253 		__skb_queue_tail(queue, skb);
254 
255 	/* Did we just complete partial delivery and need to get
256 	 * rolling again?  Move pending data to the receive
257 	 * queue.
258 	 */
259 	if (clear_pd)
260 		sctp_ulpq_clear_pd(ulpq);
261 
262 	if (queue == &sk->sk_receive_queue)
263 		sk->sk_data_ready(sk, 0);
264 	return 1;
265 
266 out_free:
267 	if (skb_list)
268 		sctp_queue_purge_ulpevents(skb_list);
269 	else
270 		sctp_ulpevent_free(event);
271 
272 	return 0;
273 }
274 
275 /* 2nd Level Abstractions */
276 
277 /* Helper function to store chunks that need to be reassembled.  */
278 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
279 					 struct sctp_ulpevent *event)
280 {
281 	struct sk_buff *pos;
282 	struct sctp_ulpevent *cevent;
283 	__u32 tsn, ctsn;
284 
285 	tsn = event->tsn;
286 
287 	/* See if it belongs at the end. */
288 	pos = skb_peek_tail(&ulpq->reasm);
289 	if (!pos) {
290 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
291 		return;
292 	}
293 
294 	/* Short circuit just dropping it at the end. */
295 	cevent = sctp_skb2event(pos);
296 	ctsn = cevent->tsn;
297 	if (TSN_lt(ctsn, tsn)) {
298 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
299 		return;
300 	}
301 
302 	/* Find the right place in this list. We store them by TSN.  */
303 	skb_queue_walk(&ulpq->reasm, pos) {
304 		cevent = sctp_skb2event(pos);
305 		ctsn = cevent->tsn;
306 
307 		if (TSN_lt(tsn, ctsn))
308 			break;
309 	}
310 
311 	/* Insert before pos. */
312 	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
313 
314 }
315 
316 /* Helper function to return an event corresponding to the reassembled
317  * datagram.
318  * This routine creates a re-assembled skb given the first and last skb's
319  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
320  * payload was fragmented on the way and ip had to reassemble them.
321  * We add the rest of skb's to the first skb's fraglist.
322  */
323 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
324 	struct sk_buff_head *queue, struct sk_buff *f_frag,
325 	struct sk_buff *l_frag)
326 {
327 	struct sk_buff *pos;
328 	struct sk_buff *new = NULL;
329 	struct sctp_ulpevent *event;
330 	struct sk_buff *pnext, *last;
331 	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
332 
333 	/* Store the pointer to the 2nd skb */
334 	if (f_frag == l_frag)
335 		pos = NULL;
336 	else
337 		pos = f_frag->next;
338 
339 	/* Get the last skb in the f_frag's frag_list if present. */
340 	for (last = list; list; last = list, list = list->next);
341 
342 	/* Add the list of remaining fragments to the first fragments
343 	 * frag_list.
344 	 */
345 	if (last)
346 		last->next = pos;
347 	else {
348 		if (skb_cloned(f_frag)) {
349 			/* This is a cloned skb, we can't just modify
350 			 * the frag_list.  We need a new skb to do that.
351 			 * Instead of calling skb_unshare(), we'll do it
352 			 * ourselves since we need to delay the free.
353 			 */
354 			new = skb_copy(f_frag, GFP_ATOMIC);
355 			if (!new)
356 				return NULL;	/* try again later */
357 
358 			sctp_skb_set_owner_r(new, f_frag->sk);
359 
360 			skb_shinfo(new)->frag_list = pos;
361 		} else
362 			skb_shinfo(f_frag)->frag_list = pos;
363 	}
364 
365 	/* Remove the first fragment from the reassembly queue.  */
366 	__skb_unlink(f_frag, queue);
367 
368 	/* if we did unshare, then free the old skb and re-assign */
369 	if (new) {
370 		kfree_skb(f_frag);
371 		f_frag = new;
372 	}
373 
374 	while (pos) {
375 
376 		pnext = pos->next;
377 
378 		/* Update the len and data_len fields of the first fragment. */
379 		f_frag->len += pos->len;
380 		f_frag->data_len += pos->len;
381 
382 		/* Remove the fragment from the reassembly queue.  */
383 		__skb_unlink(pos, queue);
384 
385 		/* Break if we have reached the last fragment.  */
386 		if (pos == l_frag)
387 			break;
388 		pos->next = pnext;
389 		pos = pnext;
390 	}
391 
392 	event = sctp_skb2event(f_frag);
393 	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
394 
395 	return event;
396 }
397 
398 
399 /* Helper function to check if an incoming chunk has filled up the last
400  * missing fragment in a SCTP datagram and return the corresponding event.
401  */
402 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
403 {
404 	struct sk_buff *pos;
405 	struct sctp_ulpevent *cevent;
406 	struct sk_buff *first_frag = NULL;
407 	__u32 ctsn, next_tsn;
408 	struct sctp_ulpevent *retval = NULL;
409 	struct sk_buff *pd_first = NULL;
410 	struct sk_buff *pd_last = NULL;
411 	size_t pd_len = 0;
412 	struct sctp_association *asoc;
413 	u32 pd_point;
414 
415 	/* Initialized to 0 just to avoid compiler warning message.  Will
416 	 * never be used with this value. It is referenced only after it
417 	 * is set when we find the first fragment of a message.
418 	 */
419 	next_tsn = 0;
420 
421 	/* The chunks are held in the reasm queue sorted by TSN.
422 	 * Walk through the queue sequentially and look for a sequence of
423 	 * fragmented chunks that complete a datagram.
424 	 * 'first_frag' and next_tsn are reset when we find a chunk which
425 	 * is the first fragment of a datagram. Once these 2 fields are set
426 	 * we expect to find the remaining middle fragments and the last
427 	 * fragment in order. If not, first_frag is reset to NULL and we
428 	 * start the next pass when we find another first fragment.
429 	 *
430 	 * There is a potential to do partial delivery if user sets
431 	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
432 	 * to see if can do PD.
433 	 */
434 	skb_queue_walk(&ulpq->reasm, pos) {
435 		cevent = sctp_skb2event(pos);
436 		ctsn = cevent->tsn;
437 
438 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
439 		case SCTP_DATA_FIRST_FRAG:
440 			/* If this "FIRST_FRAG" is the first
441 			 * element in the queue, then count it towards
442 			 * possible PD.
443 			 */
444 			if (pos == ulpq->reasm.next) {
445 			    pd_first = pos;
446 			    pd_last = pos;
447 			    pd_len = pos->len;
448 			} else {
449 			    pd_first = NULL;
450 			    pd_last = NULL;
451 			    pd_len = 0;
452 			}
453 
454 			first_frag = pos;
455 			next_tsn = ctsn + 1;
456 			break;
457 
458 		case SCTP_DATA_MIDDLE_FRAG:
459 			if ((first_frag) && (ctsn == next_tsn)) {
460 				next_tsn++;
461 				if (pd_first) {
462 				    pd_last = pos;
463 				    pd_len += pos->len;
464 				}
465 			} else
466 				first_frag = NULL;
467 			break;
468 
469 		case SCTP_DATA_LAST_FRAG:
470 			if (first_frag && (ctsn == next_tsn))
471 				goto found;
472 			else
473 				first_frag = NULL;
474 			break;
475 		}
476 	}
477 
478 	asoc = ulpq->asoc;
479 	if (pd_first) {
480 		/* Make sure we can enter partial deliver.
481 		 * We can trigger partial delivery only if framgent
482 		 * interleave is set, or the socket is not already
483 		 * in  partial delivery.
484 		 */
485 		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
486 		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
487 			goto done;
488 
489 		cevent = sctp_skb2event(pd_first);
490 		pd_point = sctp_sk(asoc->base.sk)->pd_point;
491 		if (pd_point && pd_point <= pd_len) {
492 			retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
493 							     &ulpq->reasm,
494 							     pd_first,
495 							     pd_last);
496 			if (retval)
497 				sctp_ulpq_set_pd(ulpq);
498 		}
499 	}
500 done:
501 	return retval;
502 found:
503 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
504 					     &ulpq->reasm, first_frag, pos);
505 	if (retval)
506 		retval->msg_flags |= MSG_EOR;
507 	goto done;
508 }
509 
510 /* Retrieve the next set of fragments of a partial message. */
511 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
512 {
513 	struct sk_buff *pos, *last_frag, *first_frag;
514 	struct sctp_ulpevent *cevent;
515 	__u32 ctsn, next_tsn;
516 	int is_last;
517 	struct sctp_ulpevent *retval;
518 
519 	/* The chunks are held in the reasm queue sorted by TSN.
520 	 * Walk through the queue sequentially and look for the first
521 	 * sequence of fragmented chunks.
522 	 */
523 
524 	if (skb_queue_empty(&ulpq->reasm))
525 		return NULL;
526 
527 	last_frag = first_frag = NULL;
528 	retval = NULL;
529 	next_tsn = 0;
530 	is_last = 0;
531 
532 	skb_queue_walk(&ulpq->reasm, pos) {
533 		cevent = sctp_skb2event(pos);
534 		ctsn = cevent->tsn;
535 
536 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
537 		case SCTP_DATA_FIRST_FRAG:
538 			if (!first_frag)
539 				return NULL;
540 			goto done;
541 		case SCTP_DATA_MIDDLE_FRAG:
542 			if (!first_frag) {
543 				first_frag = pos;
544 				next_tsn = ctsn + 1;
545 				last_frag = pos;
546 			} else if (next_tsn == ctsn) {
547 				next_tsn++;
548 				last_frag = pos;
549 			} else
550 				goto done;
551 			break;
552 		case SCTP_DATA_LAST_FRAG:
553 			if (!first_frag)
554 				first_frag = pos;
555 			else if (ctsn != next_tsn)
556 				goto done;
557 			last_frag = pos;
558 			is_last = 1;
559 			goto done;
560 		default:
561 			return NULL;
562 		}
563 	}
564 
565 	/* We have the reassembled event. There is no need to look
566 	 * further.
567 	 */
568 done:
569 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
570 					&ulpq->reasm, first_frag, last_frag);
571 	if (retval && is_last)
572 		retval->msg_flags |= MSG_EOR;
573 
574 	return retval;
575 }
576 
577 
578 /* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
579  * need reassembling.
580  */
581 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
582 						struct sctp_ulpevent *event)
583 {
584 	struct sctp_ulpevent *retval = NULL;
585 
586 	/* Check if this is part of a fragmented message.  */
587 	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
588 		event->msg_flags |= MSG_EOR;
589 		return event;
590 	}
591 
592 	sctp_ulpq_store_reasm(ulpq, event);
593 	if (!ulpq->pd_mode)
594 		retval = sctp_ulpq_retrieve_reassembled(ulpq);
595 	else {
596 		__u32 ctsn, ctsnap;
597 
598 		/* Do not even bother unless this is the next tsn to
599 		 * be delivered.
600 		 */
601 		ctsn = event->tsn;
602 		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
603 		if (TSN_lte(ctsn, ctsnap))
604 			retval = sctp_ulpq_retrieve_partial(ulpq);
605 	}
606 
607 	return retval;
608 }
609 
610 /* Retrieve the first part (sequential fragments) for partial delivery.  */
611 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
612 {
613 	struct sk_buff *pos, *last_frag, *first_frag;
614 	struct sctp_ulpevent *cevent;
615 	__u32 ctsn, next_tsn;
616 	struct sctp_ulpevent *retval;
617 
618 	/* The chunks are held in the reasm queue sorted by TSN.
619 	 * Walk through the queue sequentially and look for a sequence of
620 	 * fragmented chunks that start a datagram.
621 	 */
622 
623 	if (skb_queue_empty(&ulpq->reasm))
624 		return NULL;
625 
626 	last_frag = first_frag = NULL;
627 	retval = NULL;
628 	next_tsn = 0;
629 
630 	skb_queue_walk(&ulpq->reasm, pos) {
631 		cevent = sctp_skb2event(pos);
632 		ctsn = cevent->tsn;
633 
634 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
635 		case SCTP_DATA_FIRST_FRAG:
636 			if (!first_frag) {
637 				first_frag = pos;
638 				next_tsn = ctsn + 1;
639 				last_frag = pos;
640 			} else
641 				goto done;
642 			break;
643 
644 		case SCTP_DATA_MIDDLE_FRAG:
645 			if (!first_frag)
646 				return NULL;
647 			if (ctsn == next_tsn) {
648 				next_tsn++;
649 				last_frag = pos;
650 			} else
651 				goto done;
652 			break;
653 
654 		case SCTP_DATA_LAST_FRAG:
655 			if (!first_frag)
656 				return NULL;
657 			else
658 				goto done;
659 			break;
660 
661 		default:
662 			return NULL;
663 		}
664 	}
665 
666 	/* We have the reassembled event. There is no need to look
667 	 * further.
668 	 */
669 done:
670 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
671 					&ulpq->reasm, first_frag, last_frag);
672 	return retval;
673 }
674 
675 /*
676  * Flush out stale fragments from the reassembly queue when processing
677  * a Forward TSN.
678  *
679  * RFC 3758, Section 3.6
680  *
681  * After receiving and processing a FORWARD TSN, the data receiver MUST
682  * take cautions in updating its re-assembly queue.  The receiver MUST
683  * remove any partially reassembled message, which is still missing one
684  * or more TSNs earlier than or equal to the new cumulative TSN point.
685  * In the event that the receiver has invoked the partial delivery API,
686  * a notification SHOULD also be generated to inform the upper layer API
687  * that the message being partially delivered will NOT be completed.
688  */
689 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
690 {
691 	struct sk_buff *pos, *tmp;
692 	struct sctp_ulpevent *event;
693 	__u32 tsn;
694 
695 	if (skb_queue_empty(&ulpq->reasm))
696 		return;
697 
698 	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
699 		event = sctp_skb2event(pos);
700 		tsn = event->tsn;
701 
702 		/* Since the entire message must be abandoned by the
703 		 * sender (item A3 in Section 3.5, RFC 3758), we can
704 		 * free all fragments on the list that are less then
705 		 * or equal to ctsn_point
706 		 */
707 		if (TSN_lte(tsn, fwd_tsn)) {
708 			__skb_unlink(pos, &ulpq->reasm);
709 			sctp_ulpevent_free(event);
710 		} else
711 			break;
712 	}
713 }
714 
715 /*
716  * Drain the reassembly queue.  If we just cleared parted delivery, it
717  * is possible that the reassembly queue will contain already reassembled
718  * messages.  Retrieve any such messages and give them to the user.
719  */
720 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
721 {
722 	struct sctp_ulpevent *event = NULL;
723 	struct sk_buff_head temp;
724 
725 	if (skb_queue_empty(&ulpq->reasm))
726 		return;
727 
728 	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
729 		/* Do ordering if needed.  */
730 		if ((event) && (event->msg_flags & MSG_EOR)){
731 			skb_queue_head_init(&temp);
732 			__skb_queue_tail(&temp, sctp_event2skb(event));
733 
734 			event = sctp_ulpq_order(ulpq, event);
735 		}
736 
737 		/* Send event to the ULP.  'event' is the
738 		 * sctp_ulpevent for  very first SKB on the  temp' list.
739 		 */
740 		if (event)
741 			sctp_ulpq_tail_event(ulpq, event);
742 	}
743 }
744 
745 
746 /* Helper function to gather skbs that have possibly become
747  * ordered by an an incoming chunk.
748  */
749 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
750 					      struct sctp_ulpevent *event)
751 {
752 	struct sk_buff_head *event_list;
753 	struct sk_buff *pos, *tmp;
754 	struct sctp_ulpevent *cevent;
755 	struct sctp_stream *in;
756 	__u16 sid, csid, cssn;
757 
758 	sid = event->stream;
759 	in  = &ulpq->asoc->ssnmap->in;
760 
761 	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
762 
763 	/* We are holding the chunks by stream, by SSN.  */
764 	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
765 		cevent = (struct sctp_ulpevent *) pos->cb;
766 		csid = cevent->stream;
767 		cssn = cevent->ssn;
768 
769 		/* Have we gone too far?  */
770 		if (csid > sid)
771 			break;
772 
773 		/* Have we not gone far enough?  */
774 		if (csid < sid)
775 			continue;
776 
777 		if (cssn != sctp_ssn_peek(in, sid))
778 			break;
779 
780 		/* Found it, so mark in the ssnmap. */
781 		sctp_ssn_next(in, sid);
782 
783 		__skb_unlink(pos, &ulpq->lobby);
784 
785 		/* Attach all gathered skbs to the event.  */
786 		__skb_queue_tail(event_list, pos);
787 	}
788 }
789 
790 /* Helper function to store chunks needing ordering.  */
791 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
792 					   struct sctp_ulpevent *event)
793 {
794 	struct sk_buff *pos;
795 	struct sctp_ulpevent *cevent;
796 	__u16 sid, csid;
797 	__u16 ssn, cssn;
798 
799 	pos = skb_peek_tail(&ulpq->lobby);
800 	if (!pos) {
801 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
802 		return;
803 	}
804 
805 	sid = event->stream;
806 	ssn = event->ssn;
807 
808 	cevent = (struct sctp_ulpevent *) pos->cb;
809 	csid = cevent->stream;
810 	cssn = cevent->ssn;
811 	if (sid > csid) {
812 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
813 		return;
814 	}
815 
816 	if ((sid == csid) && SSN_lt(cssn, ssn)) {
817 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
818 		return;
819 	}
820 
821 	/* Find the right place in this list.  We store them by
822 	 * stream ID and then by SSN.
823 	 */
824 	skb_queue_walk(&ulpq->lobby, pos) {
825 		cevent = (struct sctp_ulpevent *) pos->cb;
826 		csid = cevent->stream;
827 		cssn = cevent->ssn;
828 
829 		if (csid > sid)
830 			break;
831 		if (csid == sid && SSN_lt(ssn, cssn))
832 			break;
833 	}
834 
835 
836 	/* Insert before pos. */
837 	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
838 }
839 
840 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
841 					     struct sctp_ulpevent *event)
842 {
843 	__u16 sid, ssn;
844 	struct sctp_stream *in;
845 
846 	/* Check if this message needs ordering.  */
847 	if (SCTP_DATA_UNORDERED & event->msg_flags)
848 		return event;
849 
850 	/* Note: The stream ID must be verified before this routine.  */
851 	sid = event->stream;
852 	ssn = event->ssn;
853 	in  = &ulpq->asoc->ssnmap->in;
854 
855 	/* Is this the expected SSN for this stream ID?  */
856 	if (ssn != sctp_ssn_peek(in, sid)) {
857 		/* We've received something out of order, so find where it
858 		 * needs to be placed.  We order by stream and then by SSN.
859 		 */
860 		sctp_ulpq_store_ordered(ulpq, event);
861 		return NULL;
862 	}
863 
864 	/* Mark that the next chunk has been found.  */
865 	sctp_ssn_next(in, sid);
866 
867 	/* Go find any other chunks that were waiting for
868 	 * ordering.
869 	 */
870 	sctp_ulpq_retrieve_ordered(ulpq, event);
871 
872 	return event;
873 }
874 
875 /* Helper function to gather skbs that have possibly become
876  * ordered by forward tsn skipping their dependencies.
877  */
878 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
879 {
880 	struct sk_buff *pos, *tmp;
881 	struct sctp_ulpevent *cevent;
882 	struct sctp_ulpevent *event;
883 	struct sctp_stream *in;
884 	struct sk_buff_head temp;
885 	struct sk_buff_head *lobby = &ulpq->lobby;
886 	__u16 csid, cssn;
887 
888 	in  = &ulpq->asoc->ssnmap->in;
889 
890 	/* We are holding the chunks by stream, by SSN.  */
891 	skb_queue_head_init(&temp);
892 	event = NULL;
893 	sctp_skb_for_each(pos, lobby, tmp) {
894 		cevent = (struct sctp_ulpevent *) pos->cb;
895 		csid = cevent->stream;
896 		cssn = cevent->ssn;
897 
898 		/* Have we gone too far?  */
899 		if (csid > sid)
900 			break;
901 
902 		/* Have we not gone far enough?  */
903 		if (csid < sid)
904 			continue;
905 
906 		/* see if this ssn has been marked by skipping */
907 		if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
908 			break;
909 
910 		__skb_unlink(pos, lobby);
911 		if (!event)
912 			/* Create a temporary list to collect chunks on.  */
913 			event = sctp_skb2event(pos);
914 
915 		/* Attach all gathered skbs to the event.  */
916 		__skb_queue_tail(&temp, pos);
917 	}
918 
919 	/* If we didn't reap any data, see if the next expected SSN
920 	 * is next on the queue and if so, use that.
921 	 */
922 	if (event == NULL && pos != (struct sk_buff *)lobby) {
923 		cevent = (struct sctp_ulpevent *) pos->cb;
924 		csid = cevent->stream;
925 		cssn = cevent->ssn;
926 
927 		if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
928 			sctp_ssn_next(in, csid);
929 			__skb_unlink(pos, lobby);
930 			__skb_queue_tail(&temp, pos);
931 			event = sctp_skb2event(pos);
932 		}
933 	}
934 
935 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
936 	 * very first SKB on the 'temp' list.
937 	 */
938 	if (event) {
939 		/* see if we have more ordered that we can deliver */
940 		sctp_ulpq_retrieve_ordered(ulpq, event);
941 		sctp_ulpq_tail_event(ulpq, event);
942 	}
943 }
944 
945 /* Skip over an SSN. This is used during the processing of
946  * Forwared TSN chunk to skip over the abandoned ordered data
947  */
948 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
949 {
950 	struct sctp_stream *in;
951 
952 	/* Note: The stream ID must be verified before this routine.  */
953 	in  = &ulpq->asoc->ssnmap->in;
954 
955 	/* Is this an old SSN?  If so ignore. */
956 	if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
957 		return;
958 
959 	/* Mark that we are no longer expecting this SSN or lower. */
960 	sctp_ssn_skip(in, sid, ssn);
961 
962 	/* Go find any other chunks that were waiting for
963 	 * ordering and deliver them if needed.
964 	 */
965 	sctp_ulpq_reap_ordered(ulpq, sid);
966 }
967 
968 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
969 		struct sk_buff_head *list, __u16 needed)
970 {
971 	__u16 freed = 0;
972 	__u32 tsn, last_tsn;
973 	struct sk_buff *skb, *flist, *last;
974 	struct sctp_ulpevent *event;
975 	struct sctp_tsnmap *tsnmap;
976 
977 	tsnmap = &ulpq->asoc->peer.tsn_map;
978 
979 	while ((skb = skb_peek_tail(list)) != NULL) {
980 		event = sctp_skb2event(skb);
981 		tsn = event->tsn;
982 
983 		/* Don't renege below the Cumulative TSN ACK Point. */
984 		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
985 			break;
986 
987 		/* Events in ordering queue may have multiple fragments
988 		 * corresponding to additional TSNs.  Sum the total
989 		 * freed space; find the last TSN.
990 		 */
991 		freed += skb_headlen(skb);
992 		flist = skb_shinfo(skb)->frag_list;
993 		for (last = flist; flist; flist = flist->next) {
994 			last = flist;
995 			freed += skb_headlen(last);
996 		}
997 		if (last)
998 			last_tsn = sctp_skb2event(last)->tsn;
999 		else
1000 			last_tsn = tsn;
1001 
1002 		/* Unlink the event, then renege all applicable TSNs. */
1003 		__skb_unlink(skb, list);
1004 		sctp_ulpevent_free(event);
1005 		while (TSN_lte(tsn, last_tsn)) {
1006 			sctp_tsnmap_renege(tsnmap, tsn);
1007 			tsn++;
1008 		}
1009 		if (freed >= needed)
1010 			return freed;
1011 	}
1012 
1013 	return freed;
1014 }
1015 
1016 /* Renege 'needed' bytes from the ordering queue. */
1017 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1018 {
1019 	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1020 }
1021 
1022 /* Renege 'needed' bytes from the reassembly queue. */
1023 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1024 {
1025 	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1026 }
1027 
1028 /* Partial deliver the first message as there is pressure on rwnd. */
1029 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
1030 				gfp_t gfp)
1031 {
1032 	struct sctp_ulpevent *event;
1033 	struct sctp_association *asoc;
1034 	struct sctp_sock *sp;
1035 	__u32 ctsn;
1036 	struct sk_buff *skb;
1037 
1038 	asoc = ulpq->asoc;
1039 	sp = sctp_sk(asoc->base.sk);
1040 
1041 	/* If the association is already in Partial Delivery mode
1042 	 * we have nothing to do.
1043 	 */
1044 	if (ulpq->pd_mode)
1045 		return;
1046 
1047 	/* Data must be at or below the Cumulative TSN ACK Point to
1048 	 * start partial delivery.
1049 	 */
1050 	skb = skb_peek(&asoc->ulpq.reasm);
1051 	if (skb != NULL) {
1052 		ctsn = sctp_skb2event(skb)->tsn;
1053 		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1054 			return;
1055 	}
1056 
1057 	/* If the user enabled fragment interleave socket option,
1058 	 * multiple associations can enter partial delivery.
1059 	 * Otherwise, we can only enter partial delivery if the
1060 	 * socket is not in partial deliver mode.
1061 	 */
1062 	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1063 		/* Is partial delivery possible?  */
1064 		event = sctp_ulpq_retrieve_first(ulpq);
1065 		/* Send event to the ULP.   */
1066 		if (event) {
1067 			sctp_ulpq_tail_event(ulpq, event);
1068 			sctp_ulpq_set_pd(ulpq);
1069 			return;
1070 		}
1071 	}
1072 }
1073 
1074 /* Renege some packets to make room for an incoming chunk.  */
1075 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1076 		      gfp_t gfp)
1077 {
1078 	struct sctp_association *asoc;
1079 	__u16 needed, freed;
1080 
1081 	asoc = ulpq->asoc;
1082 
1083 	if (chunk) {
1084 		needed = ntohs(chunk->chunk_hdr->length);
1085 		needed -= sizeof(sctp_data_chunk_t);
1086 	} else
1087 		needed = SCTP_DEFAULT_MAXWINDOW;
1088 
1089 	freed = 0;
1090 
1091 	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1092 		freed = sctp_ulpq_renege_order(ulpq, needed);
1093 		if (freed < needed) {
1094 			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1095 		}
1096 	}
1097 	/* If able to free enough room, accept this chunk. */
1098 	if (chunk && (freed >= needed)) {
1099 		int retval;
1100 		retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1101 		/*
1102 		 * Enter partial delivery if chunk has not been
1103 		 * delivered; otherwise, drain the reassembly queue.
1104 		 */
1105 		if (retval <= 0)
1106 			sctp_ulpq_partial_delivery(ulpq, gfp);
1107 		else if (retval == 1)
1108 			sctp_ulpq_reasm_drain(ulpq);
1109 	}
1110 
1111 	sk_mem_reclaim(asoc->base.sk);
1112 }
1113 
1114 
1115 
1116 /* Notify the application if an association is aborted and in
1117  * partial delivery mode.  Send up any pending received messages.
1118  */
1119 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1120 {
1121 	struct sctp_ulpevent *ev = NULL;
1122 	struct sock *sk;
1123 
1124 	if (!ulpq->pd_mode)
1125 		return;
1126 
1127 	sk = ulpq->asoc->base.sk;
1128 	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1129 				       &sctp_sk(sk)->subscribe))
1130 		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1131 					      SCTP_PARTIAL_DELIVERY_ABORTED,
1132 					      gfp);
1133 	if (ev)
1134 		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1135 
1136 	/* If there is data waiting, send it up the socket now. */
1137 	if (sctp_ulpq_clear_pd(ulpq) || ev)
1138 		sk->sk_data_ready(sk, 0);
1139 }
1140