1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This abstraction carries sctp events to the ULP (sockets). 10 * 11 * This SCTP implementation is free software; 12 * you can redistribute it and/or modify it under the terms of 13 * the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This SCTP implementation is distributed in the hope that it 18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 19 * ************************ 20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * See the GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with GNU CC; see the file COPYING. If not, write to 25 * the Free Software Foundation, 59 Temple Place - Suite 330, 26 * Boston, MA 02111-1307, USA. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * Jon Grimm <jgrimm@us.ibm.com> 34 * La Monte H.P. Yarroll <piggy@acm.org> 35 * Sridhar Samudrala <sri@us.ibm.com> 36 */ 37 38 #include <linux/slab.h> 39 #include <linux/types.h> 40 #include <linux/skbuff.h> 41 #include <net/sock.h> 42 #include <net/sctp/structs.h> 43 #include <net/sctp/sctp.h> 44 #include <net/sctp/sm.h> 45 46 /* Forward declarations for internal helpers. */ 47 static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 48 struct sctp_ulpevent *); 49 static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *, 50 struct sctp_ulpevent *); 51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 52 53 /* 1st Level Abstractions */ 54 55 /* Initialize a ULP queue from a block of memory. */ 56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, 57 struct sctp_association *asoc) 58 { 59 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 60 61 ulpq->asoc = asoc; 62 skb_queue_head_init(&ulpq->reasm); 63 skb_queue_head_init(&ulpq->lobby); 64 ulpq->pd_mode = 0; 65 66 return ulpq; 67 } 68 69 70 /* Flush the reassembly and ordering queues. */ 71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 72 { 73 struct sk_buff *skb; 74 struct sctp_ulpevent *event; 75 76 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 77 event = sctp_skb2event(skb); 78 sctp_ulpevent_free(event); 79 } 80 81 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 82 event = sctp_skb2event(skb); 83 sctp_ulpevent_free(event); 84 } 85 86 } 87 88 /* Dispose of a ulpqueue. */ 89 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 90 { 91 sctp_ulpq_flush(ulpq); 92 } 93 94 /* Process an incoming DATA chunk. */ 95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 96 gfp_t gfp) 97 { 98 struct sk_buff_head temp; 99 struct sctp_ulpevent *event; 100 int event_eor = 0; 101 102 /* Create an event from the incoming chunk. */ 103 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 104 if (!event) 105 return -ENOMEM; 106 107 /* Do reassembly if needed. */ 108 event = sctp_ulpq_reasm(ulpq, event); 109 110 /* Do ordering if needed. */ 111 if ((event) && (event->msg_flags & MSG_EOR)){ 112 /* Create a temporary list to collect chunks on. */ 113 skb_queue_head_init(&temp); 114 __skb_queue_tail(&temp, sctp_event2skb(event)); 115 116 event = sctp_ulpq_order(ulpq, event); 117 } 118 119 /* Send event to the ULP. 'event' is the sctp_ulpevent for 120 * very first SKB on the 'temp' list. 121 */ 122 if (event) { 123 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 124 sctp_ulpq_tail_event(ulpq, event); 125 } 126 127 return event_eor; 128 } 129 130 /* Add a new event for propagation to the ULP. */ 131 /* Clear the partial delivery mode for this socket. Note: This 132 * assumes that no association is currently in partial delivery mode. 133 */ 134 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 135 { 136 struct sctp_sock *sp = sctp_sk(sk); 137 138 if (atomic_dec_and_test(&sp->pd_mode)) { 139 /* This means there are no other associations in PD, so 140 * we can go ahead and clear out the lobby in one shot 141 */ 142 if (!skb_queue_empty(&sp->pd_lobby)) { 143 struct list_head *list; 144 sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue); 145 list = (struct list_head *)&sctp_sk(sk)->pd_lobby; 146 INIT_LIST_HEAD(list); 147 return 1; 148 } 149 } else { 150 /* There are other associations in PD, so we only need to 151 * pull stuff out of the lobby that belongs to the 152 * associations that is exiting PD (all of its notifications 153 * are posted here). 154 */ 155 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 156 struct sk_buff *skb, *tmp; 157 struct sctp_ulpevent *event; 158 159 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 160 event = sctp_skb2event(skb); 161 if (event->asoc == asoc) { 162 __skb_unlink(skb, &sp->pd_lobby); 163 __skb_queue_tail(&sk->sk_receive_queue, 164 skb); 165 } 166 } 167 } 168 } 169 170 return 0; 171 } 172 173 /* Set the pd_mode on the socket and ulpq */ 174 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 175 { 176 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 177 178 atomic_inc(&sp->pd_mode); 179 ulpq->pd_mode = 1; 180 } 181 182 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 183 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 184 { 185 ulpq->pd_mode = 0; 186 sctp_ulpq_reasm_drain(ulpq); 187 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 188 } 189 190 /* If the SKB of 'event' is on a list, it is the first such member 191 * of that list. 192 */ 193 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event) 194 { 195 struct sock *sk = ulpq->asoc->base.sk; 196 struct sk_buff_head *queue, *skb_list; 197 struct sk_buff *skb = sctp_event2skb(event); 198 int clear_pd = 0; 199 200 skb_list = (struct sk_buff_head *) skb->prev; 201 202 /* If the socket is just going to throw this away, do not 203 * even try to deliver it. 204 */ 205 if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN)) 206 goto out_free; 207 208 /* Check if the user wishes to receive this event. */ 209 if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe)) 210 goto out_free; 211 212 /* If we are in partial delivery mode, post to the lobby until 213 * partial delivery is cleared, unless, of course _this_ is 214 * the association the cause of the partial delivery. 215 */ 216 217 if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) { 218 queue = &sk->sk_receive_queue; 219 } else { 220 if (ulpq->pd_mode) { 221 /* If the association is in partial delivery, we 222 * need to finish delivering the partially processed 223 * packet before passing any other data. This is 224 * because we don't truly support stream interleaving. 225 */ 226 if ((event->msg_flags & MSG_NOTIFICATION) || 227 (SCTP_DATA_NOT_FRAG == 228 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 229 queue = &sctp_sk(sk)->pd_lobby; 230 else { 231 clear_pd = event->msg_flags & MSG_EOR; 232 queue = &sk->sk_receive_queue; 233 } 234 } else { 235 /* 236 * If fragment interleave is enabled, we 237 * can queue this to the receive queue instead 238 * of the lobby. 239 */ 240 if (sctp_sk(sk)->frag_interleave) 241 queue = &sk->sk_receive_queue; 242 else 243 queue = &sctp_sk(sk)->pd_lobby; 244 } 245 } 246 247 /* If we are harvesting multiple skbs they will be 248 * collected on a list. 249 */ 250 if (skb_list) 251 sctp_skb_list_tail(skb_list, queue); 252 else 253 __skb_queue_tail(queue, skb); 254 255 /* Did we just complete partial delivery and need to get 256 * rolling again? Move pending data to the receive 257 * queue. 258 */ 259 if (clear_pd) 260 sctp_ulpq_clear_pd(ulpq); 261 262 if (queue == &sk->sk_receive_queue) 263 sk->sk_data_ready(sk, 0); 264 return 1; 265 266 out_free: 267 if (skb_list) 268 sctp_queue_purge_ulpevents(skb_list); 269 else 270 sctp_ulpevent_free(event); 271 272 return 0; 273 } 274 275 /* 2nd Level Abstractions */ 276 277 /* Helper function to store chunks that need to be reassembled. */ 278 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 279 struct sctp_ulpevent *event) 280 { 281 struct sk_buff *pos; 282 struct sctp_ulpevent *cevent; 283 __u32 tsn, ctsn; 284 285 tsn = event->tsn; 286 287 /* See if it belongs at the end. */ 288 pos = skb_peek_tail(&ulpq->reasm); 289 if (!pos) { 290 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 291 return; 292 } 293 294 /* Short circuit just dropping it at the end. */ 295 cevent = sctp_skb2event(pos); 296 ctsn = cevent->tsn; 297 if (TSN_lt(ctsn, tsn)) { 298 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 299 return; 300 } 301 302 /* Find the right place in this list. We store them by TSN. */ 303 skb_queue_walk(&ulpq->reasm, pos) { 304 cevent = sctp_skb2event(pos); 305 ctsn = cevent->tsn; 306 307 if (TSN_lt(tsn, ctsn)) 308 break; 309 } 310 311 /* Insert before pos. */ 312 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 313 314 } 315 316 /* Helper function to return an event corresponding to the reassembled 317 * datagram. 318 * This routine creates a re-assembled skb given the first and last skb's 319 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 320 * payload was fragmented on the way and ip had to reassemble them. 321 * We add the rest of skb's to the first skb's fraglist. 322 */ 323 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 324 struct sk_buff_head *queue, struct sk_buff *f_frag, 325 struct sk_buff *l_frag) 326 { 327 struct sk_buff *pos; 328 struct sk_buff *new = NULL; 329 struct sctp_ulpevent *event; 330 struct sk_buff *pnext, *last; 331 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 332 333 /* Store the pointer to the 2nd skb */ 334 if (f_frag == l_frag) 335 pos = NULL; 336 else 337 pos = f_frag->next; 338 339 /* Get the last skb in the f_frag's frag_list if present. */ 340 for (last = list; list; last = list, list = list->next); 341 342 /* Add the list of remaining fragments to the first fragments 343 * frag_list. 344 */ 345 if (last) 346 last->next = pos; 347 else { 348 if (skb_cloned(f_frag)) { 349 /* This is a cloned skb, we can't just modify 350 * the frag_list. We need a new skb to do that. 351 * Instead of calling skb_unshare(), we'll do it 352 * ourselves since we need to delay the free. 353 */ 354 new = skb_copy(f_frag, GFP_ATOMIC); 355 if (!new) 356 return NULL; /* try again later */ 357 358 sctp_skb_set_owner_r(new, f_frag->sk); 359 360 skb_shinfo(new)->frag_list = pos; 361 } else 362 skb_shinfo(f_frag)->frag_list = pos; 363 } 364 365 /* Remove the first fragment from the reassembly queue. */ 366 __skb_unlink(f_frag, queue); 367 368 /* if we did unshare, then free the old skb and re-assign */ 369 if (new) { 370 kfree_skb(f_frag); 371 f_frag = new; 372 } 373 374 while (pos) { 375 376 pnext = pos->next; 377 378 /* Update the len and data_len fields of the first fragment. */ 379 f_frag->len += pos->len; 380 f_frag->data_len += pos->len; 381 382 /* Remove the fragment from the reassembly queue. */ 383 __skb_unlink(pos, queue); 384 385 /* Break if we have reached the last fragment. */ 386 if (pos == l_frag) 387 break; 388 pos->next = pnext; 389 pos = pnext; 390 } 391 392 event = sctp_skb2event(f_frag); 393 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 394 395 return event; 396 } 397 398 399 /* Helper function to check if an incoming chunk has filled up the last 400 * missing fragment in a SCTP datagram and return the corresponding event. 401 */ 402 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 403 { 404 struct sk_buff *pos; 405 struct sctp_ulpevent *cevent; 406 struct sk_buff *first_frag = NULL; 407 __u32 ctsn, next_tsn; 408 struct sctp_ulpevent *retval = NULL; 409 struct sk_buff *pd_first = NULL; 410 struct sk_buff *pd_last = NULL; 411 size_t pd_len = 0; 412 struct sctp_association *asoc; 413 u32 pd_point; 414 415 /* Initialized to 0 just to avoid compiler warning message. Will 416 * never be used with this value. It is referenced only after it 417 * is set when we find the first fragment of a message. 418 */ 419 next_tsn = 0; 420 421 /* The chunks are held in the reasm queue sorted by TSN. 422 * Walk through the queue sequentially and look for a sequence of 423 * fragmented chunks that complete a datagram. 424 * 'first_frag' and next_tsn are reset when we find a chunk which 425 * is the first fragment of a datagram. Once these 2 fields are set 426 * we expect to find the remaining middle fragments and the last 427 * fragment in order. If not, first_frag is reset to NULL and we 428 * start the next pass when we find another first fragment. 429 * 430 * There is a potential to do partial delivery if user sets 431 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 432 * to see if can do PD. 433 */ 434 skb_queue_walk(&ulpq->reasm, pos) { 435 cevent = sctp_skb2event(pos); 436 ctsn = cevent->tsn; 437 438 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 439 case SCTP_DATA_FIRST_FRAG: 440 /* If this "FIRST_FRAG" is the first 441 * element in the queue, then count it towards 442 * possible PD. 443 */ 444 if (pos == ulpq->reasm.next) { 445 pd_first = pos; 446 pd_last = pos; 447 pd_len = pos->len; 448 } else { 449 pd_first = NULL; 450 pd_last = NULL; 451 pd_len = 0; 452 } 453 454 first_frag = pos; 455 next_tsn = ctsn + 1; 456 break; 457 458 case SCTP_DATA_MIDDLE_FRAG: 459 if ((first_frag) && (ctsn == next_tsn)) { 460 next_tsn++; 461 if (pd_first) { 462 pd_last = pos; 463 pd_len += pos->len; 464 } 465 } else 466 first_frag = NULL; 467 break; 468 469 case SCTP_DATA_LAST_FRAG: 470 if (first_frag && (ctsn == next_tsn)) 471 goto found; 472 else 473 first_frag = NULL; 474 break; 475 } 476 } 477 478 asoc = ulpq->asoc; 479 if (pd_first) { 480 /* Make sure we can enter partial deliver. 481 * We can trigger partial delivery only if framgent 482 * interleave is set, or the socket is not already 483 * in partial delivery. 484 */ 485 if (!sctp_sk(asoc->base.sk)->frag_interleave && 486 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 487 goto done; 488 489 cevent = sctp_skb2event(pd_first); 490 pd_point = sctp_sk(asoc->base.sk)->pd_point; 491 if (pd_point && pd_point <= pd_len) { 492 retval = sctp_make_reassembled_event(sock_net(asoc->base.sk), 493 &ulpq->reasm, 494 pd_first, 495 pd_last); 496 if (retval) 497 sctp_ulpq_set_pd(ulpq); 498 } 499 } 500 done: 501 return retval; 502 found: 503 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 504 &ulpq->reasm, first_frag, pos); 505 if (retval) 506 retval->msg_flags |= MSG_EOR; 507 goto done; 508 } 509 510 /* Retrieve the next set of fragments of a partial message. */ 511 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 512 { 513 struct sk_buff *pos, *last_frag, *first_frag; 514 struct sctp_ulpevent *cevent; 515 __u32 ctsn, next_tsn; 516 int is_last; 517 struct sctp_ulpevent *retval; 518 519 /* The chunks are held in the reasm queue sorted by TSN. 520 * Walk through the queue sequentially and look for the first 521 * sequence of fragmented chunks. 522 */ 523 524 if (skb_queue_empty(&ulpq->reasm)) 525 return NULL; 526 527 last_frag = first_frag = NULL; 528 retval = NULL; 529 next_tsn = 0; 530 is_last = 0; 531 532 skb_queue_walk(&ulpq->reasm, pos) { 533 cevent = sctp_skb2event(pos); 534 ctsn = cevent->tsn; 535 536 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 537 case SCTP_DATA_FIRST_FRAG: 538 if (!first_frag) 539 return NULL; 540 goto done; 541 case SCTP_DATA_MIDDLE_FRAG: 542 if (!first_frag) { 543 first_frag = pos; 544 next_tsn = ctsn + 1; 545 last_frag = pos; 546 } else if (next_tsn == ctsn) { 547 next_tsn++; 548 last_frag = pos; 549 } else 550 goto done; 551 break; 552 case SCTP_DATA_LAST_FRAG: 553 if (!first_frag) 554 first_frag = pos; 555 else if (ctsn != next_tsn) 556 goto done; 557 last_frag = pos; 558 is_last = 1; 559 goto done; 560 default: 561 return NULL; 562 } 563 } 564 565 /* We have the reassembled event. There is no need to look 566 * further. 567 */ 568 done: 569 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 570 &ulpq->reasm, first_frag, last_frag); 571 if (retval && is_last) 572 retval->msg_flags |= MSG_EOR; 573 574 return retval; 575 } 576 577 578 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 579 * need reassembling. 580 */ 581 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 582 struct sctp_ulpevent *event) 583 { 584 struct sctp_ulpevent *retval = NULL; 585 586 /* Check if this is part of a fragmented message. */ 587 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 588 event->msg_flags |= MSG_EOR; 589 return event; 590 } 591 592 sctp_ulpq_store_reasm(ulpq, event); 593 if (!ulpq->pd_mode) 594 retval = sctp_ulpq_retrieve_reassembled(ulpq); 595 else { 596 __u32 ctsn, ctsnap; 597 598 /* Do not even bother unless this is the next tsn to 599 * be delivered. 600 */ 601 ctsn = event->tsn; 602 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 603 if (TSN_lte(ctsn, ctsnap)) 604 retval = sctp_ulpq_retrieve_partial(ulpq); 605 } 606 607 return retval; 608 } 609 610 /* Retrieve the first part (sequential fragments) for partial delivery. */ 611 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 612 { 613 struct sk_buff *pos, *last_frag, *first_frag; 614 struct sctp_ulpevent *cevent; 615 __u32 ctsn, next_tsn; 616 struct sctp_ulpevent *retval; 617 618 /* The chunks are held in the reasm queue sorted by TSN. 619 * Walk through the queue sequentially and look for a sequence of 620 * fragmented chunks that start a datagram. 621 */ 622 623 if (skb_queue_empty(&ulpq->reasm)) 624 return NULL; 625 626 last_frag = first_frag = NULL; 627 retval = NULL; 628 next_tsn = 0; 629 630 skb_queue_walk(&ulpq->reasm, pos) { 631 cevent = sctp_skb2event(pos); 632 ctsn = cevent->tsn; 633 634 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 635 case SCTP_DATA_FIRST_FRAG: 636 if (!first_frag) { 637 first_frag = pos; 638 next_tsn = ctsn + 1; 639 last_frag = pos; 640 } else 641 goto done; 642 break; 643 644 case SCTP_DATA_MIDDLE_FRAG: 645 if (!first_frag) 646 return NULL; 647 if (ctsn == next_tsn) { 648 next_tsn++; 649 last_frag = pos; 650 } else 651 goto done; 652 break; 653 654 case SCTP_DATA_LAST_FRAG: 655 if (!first_frag) 656 return NULL; 657 else 658 goto done; 659 break; 660 661 default: 662 return NULL; 663 } 664 } 665 666 /* We have the reassembled event. There is no need to look 667 * further. 668 */ 669 done: 670 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 671 &ulpq->reasm, first_frag, last_frag); 672 return retval; 673 } 674 675 /* 676 * Flush out stale fragments from the reassembly queue when processing 677 * a Forward TSN. 678 * 679 * RFC 3758, Section 3.6 680 * 681 * After receiving and processing a FORWARD TSN, the data receiver MUST 682 * take cautions in updating its re-assembly queue. The receiver MUST 683 * remove any partially reassembled message, which is still missing one 684 * or more TSNs earlier than or equal to the new cumulative TSN point. 685 * In the event that the receiver has invoked the partial delivery API, 686 * a notification SHOULD also be generated to inform the upper layer API 687 * that the message being partially delivered will NOT be completed. 688 */ 689 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 690 { 691 struct sk_buff *pos, *tmp; 692 struct sctp_ulpevent *event; 693 __u32 tsn; 694 695 if (skb_queue_empty(&ulpq->reasm)) 696 return; 697 698 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 699 event = sctp_skb2event(pos); 700 tsn = event->tsn; 701 702 /* Since the entire message must be abandoned by the 703 * sender (item A3 in Section 3.5, RFC 3758), we can 704 * free all fragments on the list that are less then 705 * or equal to ctsn_point 706 */ 707 if (TSN_lte(tsn, fwd_tsn)) { 708 __skb_unlink(pos, &ulpq->reasm); 709 sctp_ulpevent_free(event); 710 } else 711 break; 712 } 713 } 714 715 /* 716 * Drain the reassembly queue. If we just cleared parted delivery, it 717 * is possible that the reassembly queue will contain already reassembled 718 * messages. Retrieve any such messages and give them to the user. 719 */ 720 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 721 { 722 struct sctp_ulpevent *event = NULL; 723 struct sk_buff_head temp; 724 725 if (skb_queue_empty(&ulpq->reasm)) 726 return; 727 728 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 729 /* Do ordering if needed. */ 730 if ((event) && (event->msg_flags & MSG_EOR)){ 731 skb_queue_head_init(&temp); 732 __skb_queue_tail(&temp, sctp_event2skb(event)); 733 734 event = sctp_ulpq_order(ulpq, event); 735 } 736 737 /* Send event to the ULP. 'event' is the 738 * sctp_ulpevent for very first SKB on the temp' list. 739 */ 740 if (event) 741 sctp_ulpq_tail_event(ulpq, event); 742 } 743 } 744 745 746 /* Helper function to gather skbs that have possibly become 747 * ordered by an an incoming chunk. 748 */ 749 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 750 struct sctp_ulpevent *event) 751 { 752 struct sk_buff_head *event_list; 753 struct sk_buff *pos, *tmp; 754 struct sctp_ulpevent *cevent; 755 struct sctp_stream *in; 756 __u16 sid, csid, cssn; 757 758 sid = event->stream; 759 in = &ulpq->asoc->ssnmap->in; 760 761 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 762 763 /* We are holding the chunks by stream, by SSN. */ 764 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 765 cevent = (struct sctp_ulpevent *) pos->cb; 766 csid = cevent->stream; 767 cssn = cevent->ssn; 768 769 /* Have we gone too far? */ 770 if (csid > sid) 771 break; 772 773 /* Have we not gone far enough? */ 774 if (csid < sid) 775 continue; 776 777 if (cssn != sctp_ssn_peek(in, sid)) 778 break; 779 780 /* Found it, so mark in the ssnmap. */ 781 sctp_ssn_next(in, sid); 782 783 __skb_unlink(pos, &ulpq->lobby); 784 785 /* Attach all gathered skbs to the event. */ 786 __skb_queue_tail(event_list, pos); 787 } 788 } 789 790 /* Helper function to store chunks needing ordering. */ 791 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 792 struct sctp_ulpevent *event) 793 { 794 struct sk_buff *pos; 795 struct sctp_ulpevent *cevent; 796 __u16 sid, csid; 797 __u16 ssn, cssn; 798 799 pos = skb_peek_tail(&ulpq->lobby); 800 if (!pos) { 801 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 802 return; 803 } 804 805 sid = event->stream; 806 ssn = event->ssn; 807 808 cevent = (struct sctp_ulpevent *) pos->cb; 809 csid = cevent->stream; 810 cssn = cevent->ssn; 811 if (sid > csid) { 812 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 813 return; 814 } 815 816 if ((sid == csid) && SSN_lt(cssn, ssn)) { 817 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 818 return; 819 } 820 821 /* Find the right place in this list. We store them by 822 * stream ID and then by SSN. 823 */ 824 skb_queue_walk(&ulpq->lobby, pos) { 825 cevent = (struct sctp_ulpevent *) pos->cb; 826 csid = cevent->stream; 827 cssn = cevent->ssn; 828 829 if (csid > sid) 830 break; 831 if (csid == sid && SSN_lt(ssn, cssn)) 832 break; 833 } 834 835 836 /* Insert before pos. */ 837 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 838 } 839 840 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 841 struct sctp_ulpevent *event) 842 { 843 __u16 sid, ssn; 844 struct sctp_stream *in; 845 846 /* Check if this message needs ordering. */ 847 if (SCTP_DATA_UNORDERED & event->msg_flags) 848 return event; 849 850 /* Note: The stream ID must be verified before this routine. */ 851 sid = event->stream; 852 ssn = event->ssn; 853 in = &ulpq->asoc->ssnmap->in; 854 855 /* Is this the expected SSN for this stream ID? */ 856 if (ssn != sctp_ssn_peek(in, sid)) { 857 /* We've received something out of order, so find where it 858 * needs to be placed. We order by stream and then by SSN. 859 */ 860 sctp_ulpq_store_ordered(ulpq, event); 861 return NULL; 862 } 863 864 /* Mark that the next chunk has been found. */ 865 sctp_ssn_next(in, sid); 866 867 /* Go find any other chunks that were waiting for 868 * ordering. 869 */ 870 sctp_ulpq_retrieve_ordered(ulpq, event); 871 872 return event; 873 } 874 875 /* Helper function to gather skbs that have possibly become 876 * ordered by forward tsn skipping their dependencies. 877 */ 878 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 879 { 880 struct sk_buff *pos, *tmp; 881 struct sctp_ulpevent *cevent; 882 struct sctp_ulpevent *event; 883 struct sctp_stream *in; 884 struct sk_buff_head temp; 885 struct sk_buff_head *lobby = &ulpq->lobby; 886 __u16 csid, cssn; 887 888 in = &ulpq->asoc->ssnmap->in; 889 890 /* We are holding the chunks by stream, by SSN. */ 891 skb_queue_head_init(&temp); 892 event = NULL; 893 sctp_skb_for_each(pos, lobby, tmp) { 894 cevent = (struct sctp_ulpevent *) pos->cb; 895 csid = cevent->stream; 896 cssn = cevent->ssn; 897 898 /* Have we gone too far? */ 899 if (csid > sid) 900 break; 901 902 /* Have we not gone far enough? */ 903 if (csid < sid) 904 continue; 905 906 /* see if this ssn has been marked by skipping */ 907 if (!SSN_lt(cssn, sctp_ssn_peek(in, csid))) 908 break; 909 910 __skb_unlink(pos, lobby); 911 if (!event) 912 /* Create a temporary list to collect chunks on. */ 913 event = sctp_skb2event(pos); 914 915 /* Attach all gathered skbs to the event. */ 916 __skb_queue_tail(&temp, pos); 917 } 918 919 /* If we didn't reap any data, see if the next expected SSN 920 * is next on the queue and if so, use that. 921 */ 922 if (event == NULL && pos != (struct sk_buff *)lobby) { 923 cevent = (struct sctp_ulpevent *) pos->cb; 924 csid = cevent->stream; 925 cssn = cevent->ssn; 926 927 if (csid == sid && cssn == sctp_ssn_peek(in, csid)) { 928 sctp_ssn_next(in, csid); 929 __skb_unlink(pos, lobby); 930 __skb_queue_tail(&temp, pos); 931 event = sctp_skb2event(pos); 932 } 933 } 934 935 /* Send event to the ULP. 'event' is the sctp_ulpevent for 936 * very first SKB on the 'temp' list. 937 */ 938 if (event) { 939 /* see if we have more ordered that we can deliver */ 940 sctp_ulpq_retrieve_ordered(ulpq, event); 941 sctp_ulpq_tail_event(ulpq, event); 942 } 943 } 944 945 /* Skip over an SSN. This is used during the processing of 946 * Forwared TSN chunk to skip over the abandoned ordered data 947 */ 948 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 949 { 950 struct sctp_stream *in; 951 952 /* Note: The stream ID must be verified before this routine. */ 953 in = &ulpq->asoc->ssnmap->in; 954 955 /* Is this an old SSN? If so ignore. */ 956 if (SSN_lt(ssn, sctp_ssn_peek(in, sid))) 957 return; 958 959 /* Mark that we are no longer expecting this SSN or lower. */ 960 sctp_ssn_skip(in, sid, ssn); 961 962 /* Go find any other chunks that were waiting for 963 * ordering and deliver them if needed. 964 */ 965 sctp_ulpq_reap_ordered(ulpq, sid); 966 } 967 968 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, 969 struct sk_buff_head *list, __u16 needed) 970 { 971 __u16 freed = 0; 972 __u32 tsn, last_tsn; 973 struct sk_buff *skb, *flist, *last; 974 struct sctp_ulpevent *event; 975 struct sctp_tsnmap *tsnmap; 976 977 tsnmap = &ulpq->asoc->peer.tsn_map; 978 979 while ((skb = skb_peek_tail(list)) != NULL) { 980 event = sctp_skb2event(skb); 981 tsn = event->tsn; 982 983 /* Don't renege below the Cumulative TSN ACK Point. */ 984 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 985 break; 986 987 /* Events in ordering queue may have multiple fragments 988 * corresponding to additional TSNs. Sum the total 989 * freed space; find the last TSN. 990 */ 991 freed += skb_headlen(skb); 992 flist = skb_shinfo(skb)->frag_list; 993 for (last = flist; flist; flist = flist->next) { 994 last = flist; 995 freed += skb_headlen(last); 996 } 997 if (last) 998 last_tsn = sctp_skb2event(last)->tsn; 999 else 1000 last_tsn = tsn; 1001 1002 /* Unlink the event, then renege all applicable TSNs. */ 1003 __skb_unlink(skb, list); 1004 sctp_ulpevent_free(event); 1005 while (TSN_lte(tsn, last_tsn)) { 1006 sctp_tsnmap_renege(tsnmap, tsn); 1007 tsn++; 1008 } 1009 if (freed >= needed) 1010 return freed; 1011 } 1012 1013 return freed; 1014 } 1015 1016 /* Renege 'needed' bytes from the ordering queue. */ 1017 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1018 { 1019 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1020 } 1021 1022 /* Renege 'needed' bytes from the reassembly queue. */ 1023 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1024 { 1025 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1026 } 1027 1028 /* Partial deliver the first message as there is pressure on rwnd. */ 1029 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1030 gfp_t gfp) 1031 { 1032 struct sctp_ulpevent *event; 1033 struct sctp_association *asoc; 1034 struct sctp_sock *sp; 1035 __u32 ctsn; 1036 struct sk_buff *skb; 1037 1038 asoc = ulpq->asoc; 1039 sp = sctp_sk(asoc->base.sk); 1040 1041 /* If the association is already in Partial Delivery mode 1042 * we have nothing to do. 1043 */ 1044 if (ulpq->pd_mode) 1045 return; 1046 1047 /* Data must be at or below the Cumulative TSN ACK Point to 1048 * start partial delivery. 1049 */ 1050 skb = skb_peek(&asoc->ulpq.reasm); 1051 if (skb != NULL) { 1052 ctsn = sctp_skb2event(skb)->tsn; 1053 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1054 return; 1055 } 1056 1057 /* If the user enabled fragment interleave socket option, 1058 * multiple associations can enter partial delivery. 1059 * Otherwise, we can only enter partial delivery if the 1060 * socket is not in partial deliver mode. 1061 */ 1062 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1063 /* Is partial delivery possible? */ 1064 event = sctp_ulpq_retrieve_first(ulpq); 1065 /* Send event to the ULP. */ 1066 if (event) { 1067 sctp_ulpq_tail_event(ulpq, event); 1068 sctp_ulpq_set_pd(ulpq); 1069 return; 1070 } 1071 } 1072 } 1073 1074 /* Renege some packets to make room for an incoming chunk. */ 1075 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1076 gfp_t gfp) 1077 { 1078 struct sctp_association *asoc; 1079 __u16 needed, freed; 1080 1081 asoc = ulpq->asoc; 1082 1083 if (chunk) { 1084 needed = ntohs(chunk->chunk_hdr->length); 1085 needed -= sizeof(sctp_data_chunk_t); 1086 } else 1087 needed = SCTP_DEFAULT_MAXWINDOW; 1088 1089 freed = 0; 1090 1091 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1092 freed = sctp_ulpq_renege_order(ulpq, needed); 1093 if (freed < needed) { 1094 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1095 } 1096 } 1097 /* If able to free enough room, accept this chunk. */ 1098 if (chunk && (freed >= needed)) { 1099 int retval; 1100 retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1101 /* 1102 * Enter partial delivery if chunk has not been 1103 * delivered; otherwise, drain the reassembly queue. 1104 */ 1105 if (retval <= 0) 1106 sctp_ulpq_partial_delivery(ulpq, gfp); 1107 else if (retval == 1) 1108 sctp_ulpq_reasm_drain(ulpq); 1109 } 1110 1111 sk_mem_reclaim(asoc->base.sk); 1112 } 1113 1114 1115 1116 /* Notify the application if an association is aborted and in 1117 * partial delivery mode. Send up any pending received messages. 1118 */ 1119 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1120 { 1121 struct sctp_ulpevent *ev = NULL; 1122 struct sock *sk; 1123 1124 if (!ulpq->pd_mode) 1125 return; 1126 1127 sk = ulpq->asoc->base.sk; 1128 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT, 1129 &sctp_sk(sk)->subscribe)) 1130 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1131 SCTP_PARTIAL_DELIVERY_ABORTED, 1132 gfp); 1133 if (ev) 1134 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1135 1136 /* If there is data waiting, send it up the socket now. */ 1137 if (sctp_ulpq_clear_pd(ulpq) || ev) 1138 sk->sk_data_ready(sk, 0); 1139 } 1140