1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This abstraction carries sctp events to the ULP (sockets). 10 * 11 * This SCTP implementation is free software; 12 * you can redistribute it and/or modify it under the terms of 13 * the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This SCTP implementation is distributed in the hope that it 18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 19 * ************************ 20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * See the GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with GNU CC; see the file COPYING. If not, see 25 * <http://www.gnu.org/licenses/>. 26 * 27 * Please send any bug reports or fixes you make to the 28 * email address(es): 29 * lksctp developers <linux-sctp@vger.kernel.org> 30 * 31 * Written or modified by: 32 * Jon Grimm <jgrimm@us.ibm.com> 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Sridhar Samudrala <sri@us.ibm.com> 35 */ 36 37 #include <linux/slab.h> 38 #include <linux/types.h> 39 #include <linux/skbuff.h> 40 #include <net/sock.h> 41 #include <net/busy_poll.h> 42 #include <net/sctp/structs.h> 43 #include <net/sctp/sctp.h> 44 #include <net/sctp/sm.h> 45 46 /* Forward declarations for internal helpers. */ 47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 48 struct sctp_ulpevent *); 49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *, 50 struct sctp_ulpevent *); 51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 52 53 /* 1st Level Abstractions */ 54 55 /* Initialize a ULP queue from a block of memory. */ 56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, 57 struct sctp_association *asoc) 58 { 59 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 60 61 ulpq->asoc = asoc; 62 skb_queue_head_init(&ulpq->reasm); 63 skb_queue_head_init(&ulpq->lobby); 64 ulpq->pd_mode = 0; 65 66 return ulpq; 67 } 68 69 70 /* Flush the reassembly and ordering queues. */ 71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 72 { 73 struct sk_buff *skb; 74 struct sctp_ulpevent *event; 75 76 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 77 event = sctp_skb2event(skb); 78 sctp_ulpevent_free(event); 79 } 80 81 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 82 event = sctp_skb2event(skb); 83 sctp_ulpevent_free(event); 84 } 85 86 } 87 88 /* Dispose of a ulpqueue. */ 89 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 90 { 91 sctp_ulpq_flush(ulpq); 92 } 93 94 /* Process an incoming DATA chunk. */ 95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 96 gfp_t gfp) 97 { 98 struct sk_buff_head temp; 99 struct sctp_ulpevent *event; 100 int event_eor = 0; 101 102 /* Create an event from the incoming chunk. */ 103 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 104 if (!event) 105 return -ENOMEM; 106 107 /* Do reassembly if needed. */ 108 event = sctp_ulpq_reasm(ulpq, event); 109 110 /* Do ordering if needed. */ 111 if ((event) && (event->msg_flags & MSG_EOR)) { 112 /* Create a temporary list to collect chunks on. */ 113 skb_queue_head_init(&temp); 114 __skb_queue_tail(&temp, sctp_event2skb(event)); 115 116 event = sctp_ulpq_order(ulpq, event); 117 } 118 119 /* Send event to the ULP. 'event' is the sctp_ulpevent for 120 * very first SKB on the 'temp' list. 121 */ 122 if (event) { 123 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 124 sctp_ulpq_tail_event(ulpq, event); 125 } 126 127 return event_eor; 128 } 129 130 /* Add a new event for propagation to the ULP. */ 131 /* Clear the partial delivery mode for this socket. Note: This 132 * assumes that no association is currently in partial delivery mode. 133 */ 134 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 135 { 136 struct sctp_sock *sp = sctp_sk(sk); 137 138 if (atomic_dec_and_test(&sp->pd_mode)) { 139 /* This means there are no other associations in PD, so 140 * we can go ahead and clear out the lobby in one shot 141 */ 142 if (!skb_queue_empty(&sp->pd_lobby)) { 143 struct list_head *list; 144 skb_queue_splice_tail_init(&sp->pd_lobby, 145 &sk->sk_receive_queue); 146 list = (struct list_head *)&sctp_sk(sk)->pd_lobby; 147 INIT_LIST_HEAD(list); 148 return 1; 149 } 150 } else { 151 /* There are other associations in PD, so we only need to 152 * pull stuff out of the lobby that belongs to the 153 * associations that is exiting PD (all of its notifications 154 * are posted here). 155 */ 156 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 157 struct sk_buff *skb, *tmp; 158 struct sctp_ulpevent *event; 159 160 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 161 event = sctp_skb2event(skb); 162 if (event->asoc == asoc) { 163 __skb_unlink(skb, &sp->pd_lobby); 164 __skb_queue_tail(&sk->sk_receive_queue, 165 skb); 166 } 167 } 168 } 169 } 170 171 return 0; 172 } 173 174 /* Set the pd_mode on the socket and ulpq */ 175 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 176 { 177 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 178 179 atomic_inc(&sp->pd_mode); 180 ulpq->pd_mode = 1; 181 } 182 183 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 184 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 185 { 186 ulpq->pd_mode = 0; 187 sctp_ulpq_reasm_drain(ulpq); 188 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 189 } 190 191 /* If the SKB of 'event' is on a list, it is the first such member 192 * of that list. 193 */ 194 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event) 195 { 196 struct sock *sk = ulpq->asoc->base.sk; 197 struct sctp_sock *sp = sctp_sk(sk); 198 struct sk_buff_head *queue, *skb_list; 199 struct sk_buff *skb = sctp_event2skb(event); 200 int clear_pd = 0; 201 202 skb_list = (struct sk_buff_head *) skb->prev; 203 204 /* If the socket is just going to throw this away, do not 205 * even try to deliver it. 206 */ 207 if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN)) 208 goto out_free; 209 210 if (!sctp_ulpevent_is_notification(event)) { 211 sk_mark_napi_id(sk, skb); 212 sk_incoming_cpu_update(sk); 213 } 214 /* Check if the user wishes to receive this event. */ 215 if (!sctp_ulpevent_is_enabled(event, &sp->subscribe)) 216 goto out_free; 217 218 /* If we are in partial delivery mode, post to the lobby until 219 * partial delivery is cleared, unless, of course _this_ is 220 * the association the cause of the partial delivery. 221 */ 222 223 if (atomic_read(&sp->pd_mode) == 0) { 224 queue = &sk->sk_receive_queue; 225 } else { 226 if (ulpq->pd_mode) { 227 /* If the association is in partial delivery, we 228 * need to finish delivering the partially processed 229 * packet before passing any other data. This is 230 * because we don't truly support stream interleaving. 231 */ 232 if ((event->msg_flags & MSG_NOTIFICATION) || 233 (SCTP_DATA_NOT_FRAG == 234 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 235 queue = &sp->pd_lobby; 236 else { 237 clear_pd = event->msg_flags & MSG_EOR; 238 queue = &sk->sk_receive_queue; 239 } 240 } else { 241 /* 242 * If fragment interleave is enabled, we 243 * can queue this to the receive queue instead 244 * of the lobby. 245 */ 246 if (sp->frag_interleave) 247 queue = &sk->sk_receive_queue; 248 else 249 queue = &sp->pd_lobby; 250 } 251 } 252 253 /* If we are harvesting multiple skbs they will be 254 * collected on a list. 255 */ 256 if (skb_list) 257 skb_queue_splice_tail_init(skb_list, queue); 258 else 259 __skb_queue_tail(queue, skb); 260 261 /* Did we just complete partial delivery and need to get 262 * rolling again? Move pending data to the receive 263 * queue. 264 */ 265 if (clear_pd) 266 sctp_ulpq_clear_pd(ulpq); 267 268 if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) { 269 sp->data_ready_signalled = 1; 270 sk->sk_data_ready(sk); 271 } 272 return 1; 273 274 out_free: 275 if (skb_list) 276 sctp_queue_purge_ulpevents(skb_list); 277 else 278 sctp_ulpevent_free(event); 279 280 return 0; 281 } 282 283 /* 2nd Level Abstractions */ 284 285 /* Helper function to store chunks that need to be reassembled. */ 286 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 287 struct sctp_ulpevent *event) 288 { 289 struct sk_buff *pos; 290 struct sctp_ulpevent *cevent; 291 __u32 tsn, ctsn; 292 293 tsn = event->tsn; 294 295 /* See if it belongs at the end. */ 296 pos = skb_peek_tail(&ulpq->reasm); 297 if (!pos) { 298 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 299 return; 300 } 301 302 /* Short circuit just dropping it at the end. */ 303 cevent = sctp_skb2event(pos); 304 ctsn = cevent->tsn; 305 if (TSN_lt(ctsn, tsn)) { 306 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 307 return; 308 } 309 310 /* Find the right place in this list. We store them by TSN. */ 311 skb_queue_walk(&ulpq->reasm, pos) { 312 cevent = sctp_skb2event(pos); 313 ctsn = cevent->tsn; 314 315 if (TSN_lt(tsn, ctsn)) 316 break; 317 } 318 319 /* Insert before pos. */ 320 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 321 322 } 323 324 /* Helper function to return an event corresponding to the reassembled 325 * datagram. 326 * This routine creates a re-assembled skb given the first and last skb's 327 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 328 * payload was fragmented on the way and ip had to reassemble them. 329 * We add the rest of skb's to the first skb's fraglist. 330 */ 331 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 332 struct sk_buff_head *queue, struct sk_buff *f_frag, 333 struct sk_buff *l_frag) 334 { 335 struct sk_buff *pos; 336 struct sk_buff *new = NULL; 337 struct sctp_ulpevent *event; 338 struct sk_buff *pnext, *last; 339 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 340 341 /* Store the pointer to the 2nd skb */ 342 if (f_frag == l_frag) 343 pos = NULL; 344 else 345 pos = f_frag->next; 346 347 /* Get the last skb in the f_frag's frag_list if present. */ 348 for (last = list; list; last = list, list = list->next) 349 ; 350 351 /* Add the list of remaining fragments to the first fragments 352 * frag_list. 353 */ 354 if (last) 355 last->next = pos; 356 else { 357 if (skb_cloned(f_frag)) { 358 /* This is a cloned skb, we can't just modify 359 * the frag_list. We need a new skb to do that. 360 * Instead of calling skb_unshare(), we'll do it 361 * ourselves since we need to delay the free. 362 */ 363 new = skb_copy(f_frag, GFP_ATOMIC); 364 if (!new) 365 return NULL; /* try again later */ 366 367 sctp_skb_set_owner_r(new, f_frag->sk); 368 369 skb_shinfo(new)->frag_list = pos; 370 } else 371 skb_shinfo(f_frag)->frag_list = pos; 372 } 373 374 /* Remove the first fragment from the reassembly queue. */ 375 __skb_unlink(f_frag, queue); 376 377 /* if we did unshare, then free the old skb and re-assign */ 378 if (new) { 379 kfree_skb(f_frag); 380 f_frag = new; 381 } 382 383 while (pos) { 384 385 pnext = pos->next; 386 387 /* Update the len and data_len fields of the first fragment. */ 388 f_frag->len += pos->len; 389 f_frag->data_len += pos->len; 390 391 /* Remove the fragment from the reassembly queue. */ 392 __skb_unlink(pos, queue); 393 394 /* Break if we have reached the last fragment. */ 395 if (pos == l_frag) 396 break; 397 pos->next = pnext; 398 pos = pnext; 399 } 400 401 event = sctp_skb2event(f_frag); 402 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 403 404 return event; 405 } 406 407 408 /* Helper function to check if an incoming chunk has filled up the last 409 * missing fragment in a SCTP datagram and return the corresponding event. 410 */ 411 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 412 { 413 struct sk_buff *pos; 414 struct sctp_ulpevent *cevent; 415 struct sk_buff *first_frag = NULL; 416 __u32 ctsn, next_tsn; 417 struct sctp_ulpevent *retval = NULL; 418 struct sk_buff *pd_first = NULL; 419 struct sk_buff *pd_last = NULL; 420 size_t pd_len = 0; 421 struct sctp_association *asoc; 422 u32 pd_point; 423 424 /* Initialized to 0 just to avoid compiler warning message. Will 425 * never be used with this value. It is referenced only after it 426 * is set when we find the first fragment of a message. 427 */ 428 next_tsn = 0; 429 430 /* The chunks are held in the reasm queue sorted by TSN. 431 * Walk through the queue sequentially and look for a sequence of 432 * fragmented chunks that complete a datagram. 433 * 'first_frag' and next_tsn are reset when we find a chunk which 434 * is the first fragment of a datagram. Once these 2 fields are set 435 * we expect to find the remaining middle fragments and the last 436 * fragment in order. If not, first_frag is reset to NULL and we 437 * start the next pass when we find another first fragment. 438 * 439 * There is a potential to do partial delivery if user sets 440 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 441 * to see if can do PD. 442 */ 443 skb_queue_walk(&ulpq->reasm, pos) { 444 cevent = sctp_skb2event(pos); 445 ctsn = cevent->tsn; 446 447 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 448 case SCTP_DATA_FIRST_FRAG: 449 /* If this "FIRST_FRAG" is the first 450 * element in the queue, then count it towards 451 * possible PD. 452 */ 453 if (pos == ulpq->reasm.next) { 454 pd_first = pos; 455 pd_last = pos; 456 pd_len = pos->len; 457 } else { 458 pd_first = NULL; 459 pd_last = NULL; 460 pd_len = 0; 461 } 462 463 first_frag = pos; 464 next_tsn = ctsn + 1; 465 break; 466 467 case SCTP_DATA_MIDDLE_FRAG: 468 if ((first_frag) && (ctsn == next_tsn)) { 469 next_tsn++; 470 if (pd_first) { 471 pd_last = pos; 472 pd_len += pos->len; 473 } 474 } else 475 first_frag = NULL; 476 break; 477 478 case SCTP_DATA_LAST_FRAG: 479 if (first_frag && (ctsn == next_tsn)) 480 goto found; 481 else 482 first_frag = NULL; 483 break; 484 } 485 } 486 487 asoc = ulpq->asoc; 488 if (pd_first) { 489 /* Make sure we can enter partial deliver. 490 * We can trigger partial delivery only if framgent 491 * interleave is set, or the socket is not already 492 * in partial delivery. 493 */ 494 if (!sctp_sk(asoc->base.sk)->frag_interleave && 495 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 496 goto done; 497 498 cevent = sctp_skb2event(pd_first); 499 pd_point = sctp_sk(asoc->base.sk)->pd_point; 500 if (pd_point && pd_point <= pd_len) { 501 retval = sctp_make_reassembled_event(sock_net(asoc->base.sk), 502 &ulpq->reasm, 503 pd_first, 504 pd_last); 505 if (retval) 506 sctp_ulpq_set_pd(ulpq); 507 } 508 } 509 done: 510 return retval; 511 found: 512 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 513 &ulpq->reasm, first_frag, pos); 514 if (retval) 515 retval->msg_flags |= MSG_EOR; 516 goto done; 517 } 518 519 /* Retrieve the next set of fragments of a partial message. */ 520 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 521 { 522 struct sk_buff *pos, *last_frag, *first_frag; 523 struct sctp_ulpevent *cevent; 524 __u32 ctsn, next_tsn; 525 int is_last; 526 struct sctp_ulpevent *retval; 527 528 /* The chunks are held in the reasm queue sorted by TSN. 529 * Walk through the queue sequentially and look for the first 530 * sequence of fragmented chunks. 531 */ 532 533 if (skb_queue_empty(&ulpq->reasm)) 534 return NULL; 535 536 last_frag = first_frag = NULL; 537 retval = NULL; 538 next_tsn = 0; 539 is_last = 0; 540 541 skb_queue_walk(&ulpq->reasm, pos) { 542 cevent = sctp_skb2event(pos); 543 ctsn = cevent->tsn; 544 545 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 546 case SCTP_DATA_FIRST_FRAG: 547 if (!first_frag) 548 return NULL; 549 goto done; 550 case SCTP_DATA_MIDDLE_FRAG: 551 if (!first_frag) { 552 first_frag = pos; 553 next_tsn = ctsn + 1; 554 last_frag = pos; 555 } else if (next_tsn == ctsn) { 556 next_tsn++; 557 last_frag = pos; 558 } else 559 goto done; 560 break; 561 case SCTP_DATA_LAST_FRAG: 562 if (!first_frag) 563 first_frag = pos; 564 else if (ctsn != next_tsn) 565 goto done; 566 last_frag = pos; 567 is_last = 1; 568 goto done; 569 default: 570 return NULL; 571 } 572 } 573 574 /* We have the reassembled event. There is no need to look 575 * further. 576 */ 577 done: 578 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 579 &ulpq->reasm, first_frag, last_frag); 580 if (retval && is_last) 581 retval->msg_flags |= MSG_EOR; 582 583 return retval; 584 } 585 586 587 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 588 * need reassembling. 589 */ 590 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 591 struct sctp_ulpevent *event) 592 { 593 struct sctp_ulpevent *retval = NULL; 594 595 /* Check if this is part of a fragmented message. */ 596 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 597 event->msg_flags |= MSG_EOR; 598 return event; 599 } 600 601 sctp_ulpq_store_reasm(ulpq, event); 602 if (!ulpq->pd_mode) 603 retval = sctp_ulpq_retrieve_reassembled(ulpq); 604 else { 605 __u32 ctsn, ctsnap; 606 607 /* Do not even bother unless this is the next tsn to 608 * be delivered. 609 */ 610 ctsn = event->tsn; 611 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 612 if (TSN_lte(ctsn, ctsnap)) 613 retval = sctp_ulpq_retrieve_partial(ulpq); 614 } 615 616 return retval; 617 } 618 619 /* Retrieve the first part (sequential fragments) for partial delivery. */ 620 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 621 { 622 struct sk_buff *pos, *last_frag, *first_frag; 623 struct sctp_ulpevent *cevent; 624 __u32 ctsn, next_tsn; 625 struct sctp_ulpevent *retval; 626 627 /* The chunks are held in the reasm queue sorted by TSN. 628 * Walk through the queue sequentially and look for a sequence of 629 * fragmented chunks that start a datagram. 630 */ 631 632 if (skb_queue_empty(&ulpq->reasm)) 633 return NULL; 634 635 last_frag = first_frag = NULL; 636 retval = NULL; 637 next_tsn = 0; 638 639 skb_queue_walk(&ulpq->reasm, pos) { 640 cevent = sctp_skb2event(pos); 641 ctsn = cevent->tsn; 642 643 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 644 case SCTP_DATA_FIRST_FRAG: 645 if (!first_frag) { 646 first_frag = pos; 647 next_tsn = ctsn + 1; 648 last_frag = pos; 649 } else 650 goto done; 651 break; 652 653 case SCTP_DATA_MIDDLE_FRAG: 654 if (!first_frag) 655 return NULL; 656 if (ctsn == next_tsn) { 657 next_tsn++; 658 last_frag = pos; 659 } else 660 goto done; 661 break; 662 663 case SCTP_DATA_LAST_FRAG: 664 if (!first_frag) 665 return NULL; 666 else 667 goto done; 668 break; 669 670 default: 671 return NULL; 672 } 673 } 674 675 /* We have the reassembled event. There is no need to look 676 * further. 677 */ 678 done: 679 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 680 &ulpq->reasm, first_frag, last_frag); 681 return retval; 682 } 683 684 /* 685 * Flush out stale fragments from the reassembly queue when processing 686 * a Forward TSN. 687 * 688 * RFC 3758, Section 3.6 689 * 690 * After receiving and processing a FORWARD TSN, the data receiver MUST 691 * take cautions in updating its re-assembly queue. The receiver MUST 692 * remove any partially reassembled message, which is still missing one 693 * or more TSNs earlier than or equal to the new cumulative TSN point. 694 * In the event that the receiver has invoked the partial delivery API, 695 * a notification SHOULD also be generated to inform the upper layer API 696 * that the message being partially delivered will NOT be completed. 697 */ 698 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 699 { 700 struct sk_buff *pos, *tmp; 701 struct sctp_ulpevent *event; 702 __u32 tsn; 703 704 if (skb_queue_empty(&ulpq->reasm)) 705 return; 706 707 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 708 event = sctp_skb2event(pos); 709 tsn = event->tsn; 710 711 /* Since the entire message must be abandoned by the 712 * sender (item A3 in Section 3.5, RFC 3758), we can 713 * free all fragments on the list that are less then 714 * or equal to ctsn_point 715 */ 716 if (TSN_lte(tsn, fwd_tsn)) { 717 __skb_unlink(pos, &ulpq->reasm); 718 sctp_ulpevent_free(event); 719 } else 720 break; 721 } 722 } 723 724 /* 725 * Drain the reassembly queue. If we just cleared parted delivery, it 726 * is possible that the reassembly queue will contain already reassembled 727 * messages. Retrieve any such messages and give them to the user. 728 */ 729 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 730 { 731 struct sctp_ulpevent *event = NULL; 732 struct sk_buff_head temp; 733 734 if (skb_queue_empty(&ulpq->reasm)) 735 return; 736 737 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 738 /* Do ordering if needed. */ 739 if ((event) && (event->msg_flags & MSG_EOR)) { 740 skb_queue_head_init(&temp); 741 __skb_queue_tail(&temp, sctp_event2skb(event)); 742 743 event = sctp_ulpq_order(ulpq, event); 744 } 745 746 /* Send event to the ULP. 'event' is the 747 * sctp_ulpevent for very first SKB on the temp' list. 748 */ 749 if (event) 750 sctp_ulpq_tail_event(ulpq, event); 751 } 752 } 753 754 755 /* Helper function to gather skbs that have possibly become 756 * ordered by an an incoming chunk. 757 */ 758 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 759 struct sctp_ulpevent *event) 760 { 761 struct sk_buff_head *event_list; 762 struct sk_buff *pos, *tmp; 763 struct sctp_ulpevent *cevent; 764 struct sctp_stream *in; 765 __u16 sid, csid, cssn; 766 767 sid = event->stream; 768 in = &ulpq->asoc->ssnmap->in; 769 770 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 771 772 /* We are holding the chunks by stream, by SSN. */ 773 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 774 cevent = (struct sctp_ulpevent *) pos->cb; 775 csid = cevent->stream; 776 cssn = cevent->ssn; 777 778 /* Have we gone too far? */ 779 if (csid > sid) 780 break; 781 782 /* Have we not gone far enough? */ 783 if (csid < sid) 784 continue; 785 786 if (cssn != sctp_ssn_peek(in, sid)) 787 break; 788 789 /* Found it, so mark in the ssnmap. */ 790 sctp_ssn_next(in, sid); 791 792 __skb_unlink(pos, &ulpq->lobby); 793 794 /* Attach all gathered skbs to the event. */ 795 __skb_queue_tail(event_list, pos); 796 } 797 } 798 799 /* Helper function to store chunks needing ordering. */ 800 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 801 struct sctp_ulpevent *event) 802 { 803 struct sk_buff *pos; 804 struct sctp_ulpevent *cevent; 805 __u16 sid, csid; 806 __u16 ssn, cssn; 807 808 pos = skb_peek_tail(&ulpq->lobby); 809 if (!pos) { 810 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 811 return; 812 } 813 814 sid = event->stream; 815 ssn = event->ssn; 816 817 cevent = (struct sctp_ulpevent *) pos->cb; 818 csid = cevent->stream; 819 cssn = cevent->ssn; 820 if (sid > csid) { 821 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 822 return; 823 } 824 825 if ((sid == csid) && SSN_lt(cssn, ssn)) { 826 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 827 return; 828 } 829 830 /* Find the right place in this list. We store them by 831 * stream ID and then by SSN. 832 */ 833 skb_queue_walk(&ulpq->lobby, pos) { 834 cevent = (struct sctp_ulpevent *) pos->cb; 835 csid = cevent->stream; 836 cssn = cevent->ssn; 837 838 if (csid > sid) 839 break; 840 if (csid == sid && SSN_lt(ssn, cssn)) 841 break; 842 } 843 844 845 /* Insert before pos. */ 846 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 847 } 848 849 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 850 struct sctp_ulpevent *event) 851 { 852 __u16 sid, ssn; 853 struct sctp_stream *in; 854 855 /* Check if this message needs ordering. */ 856 if (SCTP_DATA_UNORDERED & event->msg_flags) 857 return event; 858 859 /* Note: The stream ID must be verified before this routine. */ 860 sid = event->stream; 861 ssn = event->ssn; 862 in = &ulpq->asoc->ssnmap->in; 863 864 /* Is this the expected SSN for this stream ID? */ 865 if (ssn != sctp_ssn_peek(in, sid)) { 866 /* We've received something out of order, so find where it 867 * needs to be placed. We order by stream and then by SSN. 868 */ 869 sctp_ulpq_store_ordered(ulpq, event); 870 return NULL; 871 } 872 873 /* Mark that the next chunk has been found. */ 874 sctp_ssn_next(in, sid); 875 876 /* Go find any other chunks that were waiting for 877 * ordering. 878 */ 879 sctp_ulpq_retrieve_ordered(ulpq, event); 880 881 return event; 882 } 883 884 /* Helper function to gather skbs that have possibly become 885 * ordered by forward tsn skipping their dependencies. 886 */ 887 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 888 { 889 struct sk_buff *pos, *tmp; 890 struct sctp_ulpevent *cevent; 891 struct sctp_ulpevent *event; 892 struct sctp_stream *in; 893 struct sk_buff_head temp; 894 struct sk_buff_head *lobby = &ulpq->lobby; 895 __u16 csid, cssn; 896 897 in = &ulpq->asoc->ssnmap->in; 898 899 /* We are holding the chunks by stream, by SSN. */ 900 skb_queue_head_init(&temp); 901 event = NULL; 902 sctp_skb_for_each(pos, lobby, tmp) { 903 cevent = (struct sctp_ulpevent *) pos->cb; 904 csid = cevent->stream; 905 cssn = cevent->ssn; 906 907 /* Have we gone too far? */ 908 if (csid > sid) 909 break; 910 911 /* Have we not gone far enough? */ 912 if (csid < sid) 913 continue; 914 915 /* see if this ssn has been marked by skipping */ 916 if (!SSN_lt(cssn, sctp_ssn_peek(in, csid))) 917 break; 918 919 __skb_unlink(pos, lobby); 920 if (!event) 921 /* Create a temporary list to collect chunks on. */ 922 event = sctp_skb2event(pos); 923 924 /* Attach all gathered skbs to the event. */ 925 __skb_queue_tail(&temp, pos); 926 } 927 928 /* If we didn't reap any data, see if the next expected SSN 929 * is next on the queue and if so, use that. 930 */ 931 if (event == NULL && pos != (struct sk_buff *)lobby) { 932 cevent = (struct sctp_ulpevent *) pos->cb; 933 csid = cevent->stream; 934 cssn = cevent->ssn; 935 936 if (csid == sid && cssn == sctp_ssn_peek(in, csid)) { 937 sctp_ssn_next(in, csid); 938 __skb_unlink(pos, lobby); 939 __skb_queue_tail(&temp, pos); 940 event = sctp_skb2event(pos); 941 } 942 } 943 944 /* Send event to the ULP. 'event' is the sctp_ulpevent for 945 * very first SKB on the 'temp' list. 946 */ 947 if (event) { 948 /* see if we have more ordered that we can deliver */ 949 sctp_ulpq_retrieve_ordered(ulpq, event); 950 sctp_ulpq_tail_event(ulpq, event); 951 } 952 } 953 954 /* Skip over an SSN. This is used during the processing of 955 * Forwared TSN chunk to skip over the abandoned ordered data 956 */ 957 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 958 { 959 struct sctp_stream *in; 960 961 /* Note: The stream ID must be verified before this routine. */ 962 in = &ulpq->asoc->ssnmap->in; 963 964 /* Is this an old SSN? If so ignore. */ 965 if (SSN_lt(ssn, sctp_ssn_peek(in, sid))) 966 return; 967 968 /* Mark that we are no longer expecting this SSN or lower. */ 969 sctp_ssn_skip(in, sid, ssn); 970 971 /* Go find any other chunks that were waiting for 972 * ordering and deliver them if needed. 973 */ 974 sctp_ulpq_reap_ordered(ulpq, sid); 975 } 976 977 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, 978 struct sk_buff_head *list, __u16 needed) 979 { 980 __u16 freed = 0; 981 __u32 tsn, last_tsn; 982 struct sk_buff *skb, *flist, *last; 983 struct sctp_ulpevent *event; 984 struct sctp_tsnmap *tsnmap; 985 986 tsnmap = &ulpq->asoc->peer.tsn_map; 987 988 while ((skb = skb_peek_tail(list)) != NULL) { 989 event = sctp_skb2event(skb); 990 tsn = event->tsn; 991 992 /* Don't renege below the Cumulative TSN ACK Point. */ 993 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 994 break; 995 996 /* Events in ordering queue may have multiple fragments 997 * corresponding to additional TSNs. Sum the total 998 * freed space; find the last TSN. 999 */ 1000 freed += skb_headlen(skb); 1001 flist = skb_shinfo(skb)->frag_list; 1002 for (last = flist; flist; flist = flist->next) { 1003 last = flist; 1004 freed += skb_headlen(last); 1005 } 1006 if (last) 1007 last_tsn = sctp_skb2event(last)->tsn; 1008 else 1009 last_tsn = tsn; 1010 1011 /* Unlink the event, then renege all applicable TSNs. */ 1012 __skb_unlink(skb, list); 1013 sctp_ulpevent_free(event); 1014 while (TSN_lte(tsn, last_tsn)) { 1015 sctp_tsnmap_renege(tsnmap, tsn); 1016 tsn++; 1017 } 1018 if (freed >= needed) 1019 return freed; 1020 } 1021 1022 return freed; 1023 } 1024 1025 /* Renege 'needed' bytes from the ordering queue. */ 1026 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1027 { 1028 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1029 } 1030 1031 /* Renege 'needed' bytes from the reassembly queue. */ 1032 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1033 { 1034 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1035 } 1036 1037 /* Partial deliver the first message as there is pressure on rwnd. */ 1038 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1039 gfp_t gfp) 1040 { 1041 struct sctp_ulpevent *event; 1042 struct sctp_association *asoc; 1043 struct sctp_sock *sp; 1044 __u32 ctsn; 1045 struct sk_buff *skb; 1046 1047 asoc = ulpq->asoc; 1048 sp = sctp_sk(asoc->base.sk); 1049 1050 /* If the association is already in Partial Delivery mode 1051 * we have nothing to do. 1052 */ 1053 if (ulpq->pd_mode) 1054 return; 1055 1056 /* Data must be at or below the Cumulative TSN ACK Point to 1057 * start partial delivery. 1058 */ 1059 skb = skb_peek(&asoc->ulpq.reasm); 1060 if (skb != NULL) { 1061 ctsn = sctp_skb2event(skb)->tsn; 1062 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1063 return; 1064 } 1065 1066 /* If the user enabled fragment interleave socket option, 1067 * multiple associations can enter partial delivery. 1068 * Otherwise, we can only enter partial delivery if the 1069 * socket is not in partial deliver mode. 1070 */ 1071 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1072 /* Is partial delivery possible? */ 1073 event = sctp_ulpq_retrieve_first(ulpq); 1074 /* Send event to the ULP. */ 1075 if (event) { 1076 sctp_ulpq_tail_event(ulpq, event); 1077 sctp_ulpq_set_pd(ulpq); 1078 return; 1079 } 1080 } 1081 } 1082 1083 /* Renege some packets to make room for an incoming chunk. */ 1084 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1085 gfp_t gfp) 1086 { 1087 struct sctp_association *asoc; 1088 __u16 needed, freed; 1089 1090 asoc = ulpq->asoc; 1091 1092 if (chunk) { 1093 needed = ntohs(chunk->chunk_hdr->length); 1094 needed -= sizeof(sctp_data_chunk_t); 1095 } else 1096 needed = SCTP_DEFAULT_MAXWINDOW; 1097 1098 freed = 0; 1099 1100 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1101 freed = sctp_ulpq_renege_order(ulpq, needed); 1102 if (freed < needed) { 1103 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1104 } 1105 } 1106 /* If able to free enough room, accept this chunk. */ 1107 if (chunk && (freed >= needed)) { 1108 int retval; 1109 retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1110 /* 1111 * Enter partial delivery if chunk has not been 1112 * delivered; otherwise, drain the reassembly queue. 1113 */ 1114 if (retval <= 0) 1115 sctp_ulpq_partial_delivery(ulpq, gfp); 1116 else if (retval == 1) 1117 sctp_ulpq_reasm_drain(ulpq); 1118 } 1119 1120 sk_mem_reclaim(asoc->base.sk); 1121 } 1122 1123 1124 1125 /* Notify the application if an association is aborted and in 1126 * partial delivery mode. Send up any pending received messages. 1127 */ 1128 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1129 { 1130 struct sctp_ulpevent *ev = NULL; 1131 struct sock *sk; 1132 struct sctp_sock *sp; 1133 1134 if (!ulpq->pd_mode) 1135 return; 1136 1137 sk = ulpq->asoc->base.sk; 1138 sp = sctp_sk(sk); 1139 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT, 1140 &sctp_sk(sk)->subscribe)) 1141 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1142 SCTP_PARTIAL_DELIVERY_ABORTED, 1143 gfp); 1144 if (ev) 1145 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1146 1147 /* If there is data waiting, send it up the socket now. */ 1148 if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) { 1149 sp->data_ready_signalled = 1; 1150 sk->sk_data_ready(sk); 1151 } 1152 } 1153