1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This abstraction carries sctp events to the ULP (sockets). 10 * 11 * This SCTP implementation is free software; 12 * you can redistribute it and/or modify it under the terms of 13 * the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This SCTP implementation is distributed in the hope that it 18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 19 * ************************ 20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * See the GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with GNU CC; see the file COPYING. If not, see 25 * <http://www.gnu.org/licenses/>. 26 * 27 * Please send any bug reports or fixes you make to the 28 * email address(es): 29 * lksctp developers <linux-sctp@vger.kernel.org> 30 * 31 * Written or modified by: 32 * Jon Grimm <jgrimm@us.ibm.com> 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Sridhar Samudrala <sri@us.ibm.com> 35 */ 36 37 #include <linux/slab.h> 38 #include <linux/types.h> 39 #include <linux/skbuff.h> 40 #include <net/sock.h> 41 #include <net/busy_poll.h> 42 #include <net/sctp/structs.h> 43 #include <net/sctp/sctp.h> 44 #include <net/sctp/sm.h> 45 46 /* Forward declarations for internal helpers. */ 47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 48 struct sctp_ulpevent *); 49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *, 50 struct sctp_ulpevent *); 51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 52 53 /* 1st Level Abstractions */ 54 55 /* Initialize a ULP queue from a block of memory. */ 56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, 57 struct sctp_association *asoc) 58 { 59 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 60 61 ulpq->asoc = asoc; 62 skb_queue_head_init(&ulpq->reasm); 63 skb_queue_head_init(&ulpq->reasm_uo); 64 skb_queue_head_init(&ulpq->lobby); 65 ulpq->pd_mode = 0; 66 67 return ulpq; 68 } 69 70 71 /* Flush the reassembly and ordering queues. */ 72 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 73 { 74 struct sk_buff *skb; 75 struct sctp_ulpevent *event; 76 77 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 78 event = sctp_skb2event(skb); 79 sctp_ulpevent_free(event); 80 } 81 82 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 83 event = sctp_skb2event(skb); 84 sctp_ulpevent_free(event); 85 } 86 87 while ((skb = __skb_dequeue(&ulpq->reasm_uo)) != NULL) { 88 event = sctp_skb2event(skb); 89 sctp_ulpevent_free(event); 90 } 91 } 92 93 /* Dispose of a ulpqueue. */ 94 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 95 { 96 sctp_ulpq_flush(ulpq); 97 } 98 99 /* Process an incoming DATA chunk. */ 100 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 101 gfp_t gfp) 102 { 103 struct sk_buff_head temp; 104 struct sctp_ulpevent *event; 105 int event_eor = 0; 106 107 /* Create an event from the incoming chunk. */ 108 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 109 if (!event) 110 return -ENOMEM; 111 112 event->ssn = ntohs(chunk->subh.data_hdr->ssn); 113 event->ppid = chunk->subh.data_hdr->ppid; 114 115 /* Do reassembly if needed. */ 116 event = sctp_ulpq_reasm(ulpq, event); 117 118 /* Do ordering if needed. */ 119 if ((event) && (event->msg_flags & MSG_EOR)) { 120 /* Create a temporary list to collect chunks on. */ 121 skb_queue_head_init(&temp); 122 __skb_queue_tail(&temp, sctp_event2skb(event)); 123 124 event = sctp_ulpq_order(ulpq, event); 125 } 126 127 /* Send event to the ULP. 'event' is the sctp_ulpevent for 128 * very first SKB on the 'temp' list. 129 */ 130 if (event) { 131 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 132 sctp_ulpq_tail_event(ulpq, event); 133 } 134 135 return event_eor; 136 } 137 138 /* Add a new event for propagation to the ULP. */ 139 /* Clear the partial delivery mode for this socket. Note: This 140 * assumes that no association is currently in partial delivery mode. 141 */ 142 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 143 { 144 struct sctp_sock *sp = sctp_sk(sk); 145 146 if (atomic_dec_and_test(&sp->pd_mode)) { 147 /* This means there are no other associations in PD, so 148 * we can go ahead and clear out the lobby in one shot 149 */ 150 if (!skb_queue_empty(&sp->pd_lobby)) { 151 skb_queue_splice_tail_init(&sp->pd_lobby, 152 &sk->sk_receive_queue); 153 return 1; 154 } 155 } else { 156 /* There are other associations in PD, so we only need to 157 * pull stuff out of the lobby that belongs to the 158 * associations that is exiting PD (all of its notifications 159 * are posted here). 160 */ 161 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 162 struct sk_buff *skb, *tmp; 163 struct sctp_ulpevent *event; 164 165 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 166 event = sctp_skb2event(skb); 167 if (event->asoc == asoc) { 168 __skb_unlink(skb, &sp->pd_lobby); 169 __skb_queue_tail(&sk->sk_receive_queue, 170 skb); 171 } 172 } 173 } 174 } 175 176 return 0; 177 } 178 179 /* Set the pd_mode on the socket and ulpq */ 180 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 181 { 182 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 183 184 atomic_inc(&sp->pd_mode); 185 ulpq->pd_mode = 1; 186 } 187 188 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 189 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 190 { 191 ulpq->pd_mode = 0; 192 sctp_ulpq_reasm_drain(ulpq); 193 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 194 } 195 196 /* If the SKB of 'event' is on a list, it is the first such member 197 * of that list. 198 */ 199 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event) 200 { 201 struct sock *sk = ulpq->asoc->base.sk; 202 struct sctp_sock *sp = sctp_sk(sk); 203 struct sk_buff_head *queue, *skb_list; 204 struct sk_buff *skb = sctp_event2skb(event); 205 int clear_pd = 0; 206 207 skb_list = (struct sk_buff_head *) skb->prev; 208 209 /* If the socket is just going to throw this away, do not 210 * even try to deliver it. 211 */ 212 if (sk->sk_shutdown & RCV_SHUTDOWN && 213 (sk->sk_shutdown & SEND_SHUTDOWN || 214 !sctp_ulpevent_is_notification(event))) 215 goto out_free; 216 217 if (!sctp_ulpevent_is_notification(event)) { 218 sk_mark_napi_id(sk, skb); 219 sk_incoming_cpu_update(sk); 220 } 221 /* Check if the user wishes to receive this event. */ 222 if (!sctp_ulpevent_is_enabled(event, &sp->subscribe)) 223 goto out_free; 224 225 /* If we are in partial delivery mode, post to the lobby until 226 * partial delivery is cleared, unless, of course _this_ is 227 * the association the cause of the partial delivery. 228 */ 229 230 if (atomic_read(&sp->pd_mode) == 0) { 231 queue = &sk->sk_receive_queue; 232 } else { 233 if (ulpq->pd_mode) { 234 /* If the association is in partial delivery, we 235 * need to finish delivering the partially processed 236 * packet before passing any other data. This is 237 * because we don't truly support stream interleaving. 238 */ 239 if ((event->msg_flags & MSG_NOTIFICATION) || 240 (SCTP_DATA_NOT_FRAG == 241 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 242 queue = &sp->pd_lobby; 243 else { 244 clear_pd = event->msg_flags & MSG_EOR; 245 queue = &sk->sk_receive_queue; 246 } 247 } else { 248 /* 249 * If fragment interleave is enabled, we 250 * can queue this to the receive queue instead 251 * of the lobby. 252 */ 253 if (sp->frag_interleave) 254 queue = &sk->sk_receive_queue; 255 else 256 queue = &sp->pd_lobby; 257 } 258 } 259 260 /* If we are harvesting multiple skbs they will be 261 * collected on a list. 262 */ 263 if (skb_list) 264 skb_queue_splice_tail_init(skb_list, queue); 265 else 266 __skb_queue_tail(queue, skb); 267 268 /* Did we just complete partial delivery and need to get 269 * rolling again? Move pending data to the receive 270 * queue. 271 */ 272 if (clear_pd) 273 sctp_ulpq_clear_pd(ulpq); 274 275 if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) { 276 if (!sock_owned_by_user(sk)) 277 sp->data_ready_signalled = 1; 278 sk->sk_data_ready(sk); 279 } 280 return 1; 281 282 out_free: 283 if (skb_list) 284 sctp_queue_purge_ulpevents(skb_list); 285 else 286 sctp_ulpevent_free(event); 287 288 return 0; 289 } 290 291 /* 2nd Level Abstractions */ 292 293 /* Helper function to store chunks that need to be reassembled. */ 294 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 295 struct sctp_ulpevent *event) 296 { 297 struct sk_buff *pos; 298 struct sctp_ulpevent *cevent; 299 __u32 tsn, ctsn; 300 301 tsn = event->tsn; 302 303 /* See if it belongs at the end. */ 304 pos = skb_peek_tail(&ulpq->reasm); 305 if (!pos) { 306 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 307 return; 308 } 309 310 /* Short circuit just dropping it at the end. */ 311 cevent = sctp_skb2event(pos); 312 ctsn = cevent->tsn; 313 if (TSN_lt(ctsn, tsn)) { 314 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 315 return; 316 } 317 318 /* Find the right place in this list. We store them by TSN. */ 319 skb_queue_walk(&ulpq->reasm, pos) { 320 cevent = sctp_skb2event(pos); 321 ctsn = cevent->tsn; 322 323 if (TSN_lt(tsn, ctsn)) 324 break; 325 } 326 327 /* Insert before pos. */ 328 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 329 330 } 331 332 /* Helper function to return an event corresponding to the reassembled 333 * datagram. 334 * This routine creates a re-assembled skb given the first and last skb's 335 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 336 * payload was fragmented on the way and ip had to reassemble them. 337 * We add the rest of skb's to the first skb's fraglist. 338 */ 339 struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 340 struct sk_buff_head *queue, 341 struct sk_buff *f_frag, 342 struct sk_buff *l_frag) 343 { 344 struct sk_buff *pos; 345 struct sk_buff *new = NULL; 346 struct sctp_ulpevent *event; 347 struct sk_buff *pnext, *last; 348 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 349 350 /* Store the pointer to the 2nd skb */ 351 if (f_frag == l_frag) 352 pos = NULL; 353 else 354 pos = f_frag->next; 355 356 /* Get the last skb in the f_frag's frag_list if present. */ 357 for (last = list; list; last = list, list = list->next) 358 ; 359 360 /* Add the list of remaining fragments to the first fragments 361 * frag_list. 362 */ 363 if (last) 364 last->next = pos; 365 else { 366 if (skb_cloned(f_frag)) { 367 /* This is a cloned skb, we can't just modify 368 * the frag_list. We need a new skb to do that. 369 * Instead of calling skb_unshare(), we'll do it 370 * ourselves since we need to delay the free. 371 */ 372 new = skb_copy(f_frag, GFP_ATOMIC); 373 if (!new) 374 return NULL; /* try again later */ 375 376 sctp_skb_set_owner_r(new, f_frag->sk); 377 378 skb_shinfo(new)->frag_list = pos; 379 } else 380 skb_shinfo(f_frag)->frag_list = pos; 381 } 382 383 /* Remove the first fragment from the reassembly queue. */ 384 __skb_unlink(f_frag, queue); 385 386 /* if we did unshare, then free the old skb and re-assign */ 387 if (new) { 388 kfree_skb(f_frag); 389 f_frag = new; 390 } 391 392 while (pos) { 393 394 pnext = pos->next; 395 396 /* Update the len and data_len fields of the first fragment. */ 397 f_frag->len += pos->len; 398 f_frag->data_len += pos->len; 399 400 /* Remove the fragment from the reassembly queue. */ 401 __skb_unlink(pos, queue); 402 403 /* Break if we have reached the last fragment. */ 404 if (pos == l_frag) 405 break; 406 pos->next = pnext; 407 pos = pnext; 408 } 409 410 event = sctp_skb2event(f_frag); 411 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 412 413 return event; 414 } 415 416 417 /* Helper function to check if an incoming chunk has filled up the last 418 * missing fragment in a SCTP datagram and return the corresponding event. 419 */ 420 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 421 { 422 struct sk_buff *pos; 423 struct sctp_ulpevent *cevent; 424 struct sk_buff *first_frag = NULL; 425 __u32 ctsn, next_tsn; 426 struct sctp_ulpevent *retval = NULL; 427 struct sk_buff *pd_first = NULL; 428 struct sk_buff *pd_last = NULL; 429 size_t pd_len = 0; 430 struct sctp_association *asoc; 431 u32 pd_point; 432 433 /* Initialized to 0 just to avoid compiler warning message. Will 434 * never be used with this value. It is referenced only after it 435 * is set when we find the first fragment of a message. 436 */ 437 next_tsn = 0; 438 439 /* The chunks are held in the reasm queue sorted by TSN. 440 * Walk through the queue sequentially and look for a sequence of 441 * fragmented chunks that complete a datagram. 442 * 'first_frag' and next_tsn are reset when we find a chunk which 443 * is the first fragment of a datagram. Once these 2 fields are set 444 * we expect to find the remaining middle fragments and the last 445 * fragment in order. If not, first_frag is reset to NULL and we 446 * start the next pass when we find another first fragment. 447 * 448 * There is a potential to do partial delivery if user sets 449 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 450 * to see if can do PD. 451 */ 452 skb_queue_walk(&ulpq->reasm, pos) { 453 cevent = sctp_skb2event(pos); 454 ctsn = cevent->tsn; 455 456 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 457 case SCTP_DATA_FIRST_FRAG: 458 /* If this "FIRST_FRAG" is the first 459 * element in the queue, then count it towards 460 * possible PD. 461 */ 462 if (pos == ulpq->reasm.next) { 463 pd_first = pos; 464 pd_last = pos; 465 pd_len = pos->len; 466 } else { 467 pd_first = NULL; 468 pd_last = NULL; 469 pd_len = 0; 470 } 471 472 first_frag = pos; 473 next_tsn = ctsn + 1; 474 break; 475 476 case SCTP_DATA_MIDDLE_FRAG: 477 if ((first_frag) && (ctsn == next_tsn)) { 478 next_tsn++; 479 if (pd_first) { 480 pd_last = pos; 481 pd_len += pos->len; 482 } 483 } else 484 first_frag = NULL; 485 break; 486 487 case SCTP_DATA_LAST_FRAG: 488 if (first_frag && (ctsn == next_tsn)) 489 goto found; 490 else 491 first_frag = NULL; 492 break; 493 } 494 } 495 496 asoc = ulpq->asoc; 497 if (pd_first) { 498 /* Make sure we can enter partial deliver. 499 * We can trigger partial delivery only if framgent 500 * interleave is set, or the socket is not already 501 * in partial delivery. 502 */ 503 if (!sctp_sk(asoc->base.sk)->frag_interleave && 504 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 505 goto done; 506 507 cevent = sctp_skb2event(pd_first); 508 pd_point = sctp_sk(asoc->base.sk)->pd_point; 509 if (pd_point && pd_point <= pd_len) { 510 retval = sctp_make_reassembled_event(sock_net(asoc->base.sk), 511 &ulpq->reasm, 512 pd_first, 513 pd_last); 514 if (retval) 515 sctp_ulpq_set_pd(ulpq); 516 } 517 } 518 done: 519 return retval; 520 found: 521 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 522 &ulpq->reasm, first_frag, pos); 523 if (retval) 524 retval->msg_flags |= MSG_EOR; 525 goto done; 526 } 527 528 /* Retrieve the next set of fragments of a partial message. */ 529 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 530 { 531 struct sk_buff *pos, *last_frag, *first_frag; 532 struct sctp_ulpevent *cevent; 533 __u32 ctsn, next_tsn; 534 int is_last; 535 struct sctp_ulpevent *retval; 536 537 /* The chunks are held in the reasm queue sorted by TSN. 538 * Walk through the queue sequentially and look for the first 539 * sequence of fragmented chunks. 540 */ 541 542 if (skb_queue_empty(&ulpq->reasm)) 543 return NULL; 544 545 last_frag = first_frag = NULL; 546 retval = NULL; 547 next_tsn = 0; 548 is_last = 0; 549 550 skb_queue_walk(&ulpq->reasm, pos) { 551 cevent = sctp_skb2event(pos); 552 ctsn = cevent->tsn; 553 554 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 555 case SCTP_DATA_FIRST_FRAG: 556 if (!first_frag) 557 return NULL; 558 goto done; 559 case SCTP_DATA_MIDDLE_FRAG: 560 if (!first_frag) { 561 first_frag = pos; 562 next_tsn = ctsn + 1; 563 last_frag = pos; 564 } else if (next_tsn == ctsn) { 565 next_tsn++; 566 last_frag = pos; 567 } else 568 goto done; 569 break; 570 case SCTP_DATA_LAST_FRAG: 571 if (!first_frag) 572 first_frag = pos; 573 else if (ctsn != next_tsn) 574 goto done; 575 last_frag = pos; 576 is_last = 1; 577 goto done; 578 default: 579 return NULL; 580 } 581 } 582 583 /* We have the reassembled event. There is no need to look 584 * further. 585 */ 586 done: 587 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 588 &ulpq->reasm, first_frag, last_frag); 589 if (retval && is_last) 590 retval->msg_flags |= MSG_EOR; 591 592 return retval; 593 } 594 595 596 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 597 * need reassembling. 598 */ 599 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 600 struct sctp_ulpevent *event) 601 { 602 struct sctp_ulpevent *retval = NULL; 603 604 /* Check if this is part of a fragmented message. */ 605 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 606 event->msg_flags |= MSG_EOR; 607 return event; 608 } 609 610 sctp_ulpq_store_reasm(ulpq, event); 611 if (!ulpq->pd_mode) 612 retval = sctp_ulpq_retrieve_reassembled(ulpq); 613 else { 614 __u32 ctsn, ctsnap; 615 616 /* Do not even bother unless this is the next tsn to 617 * be delivered. 618 */ 619 ctsn = event->tsn; 620 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 621 if (TSN_lte(ctsn, ctsnap)) 622 retval = sctp_ulpq_retrieve_partial(ulpq); 623 } 624 625 return retval; 626 } 627 628 /* Retrieve the first part (sequential fragments) for partial delivery. */ 629 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 630 { 631 struct sk_buff *pos, *last_frag, *first_frag; 632 struct sctp_ulpevent *cevent; 633 __u32 ctsn, next_tsn; 634 struct sctp_ulpevent *retval; 635 636 /* The chunks are held in the reasm queue sorted by TSN. 637 * Walk through the queue sequentially and look for a sequence of 638 * fragmented chunks that start a datagram. 639 */ 640 641 if (skb_queue_empty(&ulpq->reasm)) 642 return NULL; 643 644 last_frag = first_frag = NULL; 645 retval = NULL; 646 next_tsn = 0; 647 648 skb_queue_walk(&ulpq->reasm, pos) { 649 cevent = sctp_skb2event(pos); 650 ctsn = cevent->tsn; 651 652 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 653 case SCTP_DATA_FIRST_FRAG: 654 if (!first_frag) { 655 first_frag = pos; 656 next_tsn = ctsn + 1; 657 last_frag = pos; 658 } else 659 goto done; 660 break; 661 662 case SCTP_DATA_MIDDLE_FRAG: 663 if (!first_frag) 664 return NULL; 665 if (ctsn == next_tsn) { 666 next_tsn++; 667 last_frag = pos; 668 } else 669 goto done; 670 break; 671 672 case SCTP_DATA_LAST_FRAG: 673 if (!first_frag) 674 return NULL; 675 else 676 goto done; 677 break; 678 679 default: 680 return NULL; 681 } 682 } 683 684 /* We have the reassembled event. There is no need to look 685 * further. 686 */ 687 done: 688 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 689 &ulpq->reasm, first_frag, last_frag); 690 return retval; 691 } 692 693 /* 694 * Flush out stale fragments from the reassembly queue when processing 695 * a Forward TSN. 696 * 697 * RFC 3758, Section 3.6 698 * 699 * After receiving and processing a FORWARD TSN, the data receiver MUST 700 * take cautions in updating its re-assembly queue. The receiver MUST 701 * remove any partially reassembled message, which is still missing one 702 * or more TSNs earlier than or equal to the new cumulative TSN point. 703 * In the event that the receiver has invoked the partial delivery API, 704 * a notification SHOULD also be generated to inform the upper layer API 705 * that the message being partially delivered will NOT be completed. 706 */ 707 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 708 { 709 struct sk_buff *pos, *tmp; 710 struct sctp_ulpevent *event; 711 __u32 tsn; 712 713 if (skb_queue_empty(&ulpq->reasm)) 714 return; 715 716 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 717 event = sctp_skb2event(pos); 718 tsn = event->tsn; 719 720 /* Since the entire message must be abandoned by the 721 * sender (item A3 in Section 3.5, RFC 3758), we can 722 * free all fragments on the list that are less then 723 * or equal to ctsn_point 724 */ 725 if (TSN_lte(tsn, fwd_tsn)) { 726 __skb_unlink(pos, &ulpq->reasm); 727 sctp_ulpevent_free(event); 728 } else 729 break; 730 } 731 } 732 733 /* 734 * Drain the reassembly queue. If we just cleared parted delivery, it 735 * is possible that the reassembly queue will contain already reassembled 736 * messages. Retrieve any such messages and give them to the user. 737 */ 738 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 739 { 740 struct sctp_ulpevent *event = NULL; 741 struct sk_buff_head temp; 742 743 if (skb_queue_empty(&ulpq->reasm)) 744 return; 745 746 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 747 /* Do ordering if needed. */ 748 if ((event) && (event->msg_flags & MSG_EOR)) { 749 skb_queue_head_init(&temp); 750 __skb_queue_tail(&temp, sctp_event2skb(event)); 751 752 event = sctp_ulpq_order(ulpq, event); 753 } 754 755 /* Send event to the ULP. 'event' is the 756 * sctp_ulpevent for very first SKB on the temp' list. 757 */ 758 if (event) 759 sctp_ulpq_tail_event(ulpq, event); 760 } 761 } 762 763 764 /* Helper function to gather skbs that have possibly become 765 * ordered by an an incoming chunk. 766 */ 767 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 768 struct sctp_ulpevent *event) 769 { 770 struct sk_buff_head *event_list; 771 struct sk_buff *pos, *tmp; 772 struct sctp_ulpevent *cevent; 773 struct sctp_stream *stream; 774 __u16 sid, csid, cssn; 775 776 sid = event->stream; 777 stream = &ulpq->asoc->stream; 778 779 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 780 781 /* We are holding the chunks by stream, by SSN. */ 782 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 783 cevent = (struct sctp_ulpevent *) pos->cb; 784 csid = cevent->stream; 785 cssn = cevent->ssn; 786 787 /* Have we gone too far? */ 788 if (csid > sid) 789 break; 790 791 /* Have we not gone far enough? */ 792 if (csid < sid) 793 continue; 794 795 if (cssn != sctp_ssn_peek(stream, in, sid)) 796 break; 797 798 /* Found it, so mark in the stream. */ 799 sctp_ssn_next(stream, in, sid); 800 801 __skb_unlink(pos, &ulpq->lobby); 802 803 /* Attach all gathered skbs to the event. */ 804 __skb_queue_tail(event_list, pos); 805 } 806 } 807 808 /* Helper function to store chunks needing ordering. */ 809 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 810 struct sctp_ulpevent *event) 811 { 812 struct sk_buff *pos; 813 struct sctp_ulpevent *cevent; 814 __u16 sid, csid; 815 __u16 ssn, cssn; 816 817 pos = skb_peek_tail(&ulpq->lobby); 818 if (!pos) { 819 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 820 return; 821 } 822 823 sid = event->stream; 824 ssn = event->ssn; 825 826 cevent = (struct sctp_ulpevent *) pos->cb; 827 csid = cevent->stream; 828 cssn = cevent->ssn; 829 if (sid > csid) { 830 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 831 return; 832 } 833 834 if ((sid == csid) && SSN_lt(cssn, ssn)) { 835 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 836 return; 837 } 838 839 /* Find the right place in this list. We store them by 840 * stream ID and then by SSN. 841 */ 842 skb_queue_walk(&ulpq->lobby, pos) { 843 cevent = (struct sctp_ulpevent *) pos->cb; 844 csid = cevent->stream; 845 cssn = cevent->ssn; 846 847 if (csid > sid) 848 break; 849 if (csid == sid && SSN_lt(ssn, cssn)) 850 break; 851 } 852 853 854 /* Insert before pos. */ 855 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 856 } 857 858 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 859 struct sctp_ulpevent *event) 860 { 861 __u16 sid, ssn; 862 struct sctp_stream *stream; 863 864 /* Check if this message needs ordering. */ 865 if (event->msg_flags & SCTP_DATA_UNORDERED) 866 return event; 867 868 /* Note: The stream ID must be verified before this routine. */ 869 sid = event->stream; 870 ssn = event->ssn; 871 stream = &ulpq->asoc->stream; 872 873 /* Is this the expected SSN for this stream ID? */ 874 if (ssn != sctp_ssn_peek(stream, in, sid)) { 875 /* We've received something out of order, so find where it 876 * needs to be placed. We order by stream and then by SSN. 877 */ 878 sctp_ulpq_store_ordered(ulpq, event); 879 return NULL; 880 } 881 882 /* Mark that the next chunk has been found. */ 883 sctp_ssn_next(stream, in, sid); 884 885 /* Go find any other chunks that were waiting for 886 * ordering. 887 */ 888 sctp_ulpq_retrieve_ordered(ulpq, event); 889 890 return event; 891 } 892 893 /* Helper function to gather skbs that have possibly become 894 * ordered by forward tsn skipping their dependencies. 895 */ 896 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 897 { 898 struct sk_buff *pos, *tmp; 899 struct sctp_ulpevent *cevent; 900 struct sctp_ulpevent *event; 901 struct sctp_stream *stream; 902 struct sk_buff_head temp; 903 struct sk_buff_head *lobby = &ulpq->lobby; 904 __u16 csid, cssn; 905 906 stream = &ulpq->asoc->stream; 907 908 /* We are holding the chunks by stream, by SSN. */ 909 skb_queue_head_init(&temp); 910 event = NULL; 911 sctp_skb_for_each(pos, lobby, tmp) { 912 cevent = (struct sctp_ulpevent *) pos->cb; 913 csid = cevent->stream; 914 cssn = cevent->ssn; 915 916 /* Have we gone too far? */ 917 if (csid > sid) 918 break; 919 920 /* Have we not gone far enough? */ 921 if (csid < sid) 922 continue; 923 924 /* see if this ssn has been marked by skipping */ 925 if (!SSN_lt(cssn, sctp_ssn_peek(stream, in, csid))) 926 break; 927 928 __skb_unlink(pos, lobby); 929 if (!event) 930 /* Create a temporary list to collect chunks on. */ 931 event = sctp_skb2event(pos); 932 933 /* Attach all gathered skbs to the event. */ 934 __skb_queue_tail(&temp, pos); 935 } 936 937 /* If we didn't reap any data, see if the next expected SSN 938 * is next on the queue and if so, use that. 939 */ 940 if (event == NULL && pos != (struct sk_buff *)lobby) { 941 cevent = (struct sctp_ulpevent *) pos->cb; 942 csid = cevent->stream; 943 cssn = cevent->ssn; 944 945 if (csid == sid && cssn == sctp_ssn_peek(stream, in, csid)) { 946 sctp_ssn_next(stream, in, csid); 947 __skb_unlink(pos, lobby); 948 __skb_queue_tail(&temp, pos); 949 event = sctp_skb2event(pos); 950 } 951 } 952 953 /* Send event to the ULP. 'event' is the sctp_ulpevent for 954 * very first SKB on the 'temp' list. 955 */ 956 if (event) { 957 /* see if we have more ordered that we can deliver */ 958 sctp_ulpq_retrieve_ordered(ulpq, event); 959 sctp_ulpq_tail_event(ulpq, event); 960 } 961 } 962 963 /* Skip over an SSN. This is used during the processing of 964 * Forwared TSN chunk to skip over the abandoned ordered data 965 */ 966 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 967 { 968 struct sctp_stream *stream; 969 970 /* Note: The stream ID must be verified before this routine. */ 971 stream = &ulpq->asoc->stream; 972 973 /* Is this an old SSN? If so ignore. */ 974 if (SSN_lt(ssn, sctp_ssn_peek(stream, in, sid))) 975 return; 976 977 /* Mark that we are no longer expecting this SSN or lower. */ 978 sctp_ssn_skip(stream, in, sid, ssn); 979 980 /* Go find any other chunks that were waiting for 981 * ordering and deliver them if needed. 982 */ 983 sctp_ulpq_reap_ordered(ulpq, sid); 984 } 985 986 __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, struct sk_buff_head *list, 987 __u16 needed) 988 { 989 __u16 freed = 0; 990 __u32 tsn, last_tsn; 991 struct sk_buff *skb, *flist, *last; 992 struct sctp_ulpevent *event; 993 struct sctp_tsnmap *tsnmap; 994 995 tsnmap = &ulpq->asoc->peer.tsn_map; 996 997 while ((skb = skb_peek_tail(list)) != NULL) { 998 event = sctp_skb2event(skb); 999 tsn = event->tsn; 1000 1001 /* Don't renege below the Cumulative TSN ACK Point. */ 1002 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 1003 break; 1004 1005 /* Events in ordering queue may have multiple fragments 1006 * corresponding to additional TSNs. Sum the total 1007 * freed space; find the last TSN. 1008 */ 1009 freed += skb_headlen(skb); 1010 flist = skb_shinfo(skb)->frag_list; 1011 for (last = flist; flist; flist = flist->next) { 1012 last = flist; 1013 freed += skb_headlen(last); 1014 } 1015 if (last) 1016 last_tsn = sctp_skb2event(last)->tsn; 1017 else 1018 last_tsn = tsn; 1019 1020 /* Unlink the event, then renege all applicable TSNs. */ 1021 __skb_unlink(skb, list); 1022 sctp_ulpevent_free(event); 1023 while (TSN_lte(tsn, last_tsn)) { 1024 sctp_tsnmap_renege(tsnmap, tsn); 1025 tsn++; 1026 } 1027 if (freed >= needed) 1028 return freed; 1029 } 1030 1031 return freed; 1032 } 1033 1034 /* Renege 'needed' bytes from the ordering queue. */ 1035 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1036 { 1037 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1038 } 1039 1040 /* Renege 'needed' bytes from the reassembly queue. */ 1041 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1042 { 1043 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1044 } 1045 1046 /* Partial deliver the first message as there is pressure on rwnd. */ 1047 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1048 gfp_t gfp) 1049 { 1050 struct sctp_ulpevent *event; 1051 struct sctp_association *asoc; 1052 struct sctp_sock *sp; 1053 __u32 ctsn; 1054 struct sk_buff *skb; 1055 1056 asoc = ulpq->asoc; 1057 sp = sctp_sk(asoc->base.sk); 1058 1059 /* If the association is already in Partial Delivery mode 1060 * we have nothing to do. 1061 */ 1062 if (ulpq->pd_mode) 1063 return; 1064 1065 /* Data must be at or below the Cumulative TSN ACK Point to 1066 * start partial delivery. 1067 */ 1068 skb = skb_peek(&asoc->ulpq.reasm); 1069 if (skb != NULL) { 1070 ctsn = sctp_skb2event(skb)->tsn; 1071 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1072 return; 1073 } 1074 1075 /* If the user enabled fragment interleave socket option, 1076 * multiple associations can enter partial delivery. 1077 * Otherwise, we can only enter partial delivery if the 1078 * socket is not in partial deliver mode. 1079 */ 1080 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1081 /* Is partial delivery possible? */ 1082 event = sctp_ulpq_retrieve_first(ulpq); 1083 /* Send event to the ULP. */ 1084 if (event) { 1085 sctp_ulpq_tail_event(ulpq, event); 1086 sctp_ulpq_set_pd(ulpq); 1087 return; 1088 } 1089 } 1090 } 1091 1092 /* Renege some packets to make room for an incoming chunk. */ 1093 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1094 gfp_t gfp) 1095 { 1096 struct sctp_association *asoc = ulpq->asoc; 1097 __u32 freed = 0; 1098 __u16 needed; 1099 1100 needed = ntohs(chunk->chunk_hdr->length) - 1101 sizeof(struct sctp_data_chunk); 1102 1103 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1104 freed = sctp_ulpq_renege_order(ulpq, needed); 1105 if (freed < needed) 1106 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1107 } 1108 /* If able to free enough room, accept this chunk. */ 1109 if (freed >= needed) { 1110 int retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1111 /* 1112 * Enter partial delivery if chunk has not been 1113 * delivered; otherwise, drain the reassembly queue. 1114 */ 1115 if (retval <= 0) 1116 sctp_ulpq_partial_delivery(ulpq, gfp); 1117 else if (retval == 1) 1118 sctp_ulpq_reasm_drain(ulpq); 1119 } 1120 1121 sk_mem_reclaim(asoc->base.sk); 1122 } 1123 1124 1125 1126 /* Notify the application if an association is aborted and in 1127 * partial delivery mode. Send up any pending received messages. 1128 */ 1129 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1130 { 1131 struct sctp_ulpevent *ev = NULL; 1132 struct sock *sk; 1133 struct sctp_sock *sp; 1134 1135 if (!ulpq->pd_mode) 1136 return; 1137 1138 sk = ulpq->asoc->base.sk; 1139 sp = sctp_sk(sk); 1140 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT, 1141 &sctp_sk(sk)->subscribe)) 1142 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1143 SCTP_PARTIAL_DELIVERY_ABORTED, 1144 0, 0, 0, gfp); 1145 if (ev) 1146 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1147 1148 /* If there is data waiting, send it up the socket now. */ 1149 if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) { 1150 sp->data_ready_signalled = 1; 1151 sk->sk_data_ready(sk); 1152 } 1153 } 1154