xref: /openbmc/linux/net/sctp/transport.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP tranport representing
11  * a remote transport address.  For local transport addresses, we just use
12  * union sctp_addr.
13  *
14  * This SCTP implementation is free software;
15  * you can redistribute it and/or modify it under the terms of
16  * the GNU General Public License as published by
17  * the Free Software Foundation; either version 2, or (at your option)
18  * any later version.
19  *
20  * This SCTP implementation is distributed in the hope that it
21  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
22  *                 ************************
23  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
24  * See the GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with GNU CC; see the file COPYING.  If not, write to
28  * the Free Software Foundation, 59 Temple Place - Suite 330,
29  * Boston, MA 02111-1307, USA.
30  *
31  * Please send any bug reports or fixes you make to the
32  * email address(es):
33  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
34  *
35  * Or submit a bug report through the following website:
36  *    http://www.sf.net/projects/lksctp
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Karl Knutson          <karl@athena.chicago.il.us>
41  *    Jon Grimm             <jgrimm@us.ibm.com>
42  *    Xingang Guo           <xingang.guo@intel.com>
43  *    Hui Huang             <hui.huang@nokia.com>
44  *    Sridhar Samudrala	    <sri@us.ibm.com>
45  *    Ardelle Fan	    <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52 
53 #include <linux/slab.h>
54 #include <linux/types.h>
55 #include <linux/random.h>
56 #include <net/sctp/sctp.h>
57 #include <net/sctp/sm.h>
58 
59 /* 1st Level Abstractions.  */
60 
61 /* Initialize a new transport from provided memory.  */
62 static struct sctp_transport *sctp_transport_init(struct sctp_transport *peer,
63 						  const union sctp_addr *addr,
64 						  gfp_t gfp)
65 {
66 	/* Copy in the address.  */
67 	peer->ipaddr = *addr;
68 	peer->af_specific = sctp_get_af_specific(addr->sa.sa_family);
69 	memset(&peer->saddr, 0, sizeof(union sctp_addr));
70 
71 	/* From 6.3.1 RTO Calculation:
72 	 *
73 	 * C1) Until an RTT measurement has been made for a packet sent to the
74 	 * given destination transport address, set RTO to the protocol
75 	 * parameter 'RTO.Initial'.
76 	 */
77 	peer->rto = msecs_to_jiffies(sctp_rto_initial);
78 
79 	peer->last_time_heard = jiffies;
80 	peer->last_time_ecne_reduced = jiffies;
81 
82 	peer->param_flags = SPP_HB_DISABLE |
83 			    SPP_PMTUD_ENABLE |
84 			    SPP_SACKDELAY_ENABLE;
85 
86 	/* Initialize the default path max_retrans.  */
87 	peer->pathmaxrxt  = sctp_max_retrans_path;
88 
89 	INIT_LIST_HEAD(&peer->transmitted);
90 	INIT_LIST_HEAD(&peer->send_ready);
91 	INIT_LIST_HEAD(&peer->transports);
92 
93 	setup_timer(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event,
94 			(unsigned long)peer);
95 	setup_timer(&peer->hb_timer, sctp_generate_heartbeat_event,
96 			(unsigned long)peer);
97 	setup_timer(&peer->proto_unreach_timer,
98 		    sctp_generate_proto_unreach_event, (unsigned long)peer);
99 
100 	/* Initialize the 64-bit random nonce sent with heartbeat. */
101 	get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce));
102 
103 	atomic_set(&peer->refcnt, 1);
104 
105 	return peer;
106 }
107 
108 /* Allocate and initialize a new transport.  */
109 struct sctp_transport *sctp_transport_new(const union sctp_addr *addr,
110 					  gfp_t gfp)
111 {
112 	struct sctp_transport *transport;
113 
114 	transport = t_new(struct sctp_transport, gfp);
115 	if (!transport)
116 		goto fail;
117 
118 	if (!sctp_transport_init(transport, addr, gfp))
119 		goto fail_init;
120 
121 	transport->malloced = 1;
122 	SCTP_DBG_OBJCNT_INC(transport);
123 
124 	return transport;
125 
126 fail_init:
127 	kfree(transport);
128 
129 fail:
130 	return NULL;
131 }
132 
133 /* This transport is no longer needed.  Free up if possible, or
134  * delay until it last reference count.
135  */
136 void sctp_transport_free(struct sctp_transport *transport)
137 {
138 	transport->dead = 1;
139 
140 	/* Try to delete the heartbeat timer.  */
141 	if (del_timer(&transport->hb_timer))
142 		sctp_transport_put(transport);
143 
144 	/* Delete the T3_rtx timer if it's active.
145 	 * There is no point in not doing this now and letting
146 	 * structure hang around in memory since we know
147 	 * the tranport is going away.
148 	 */
149 	if (timer_pending(&transport->T3_rtx_timer) &&
150 	    del_timer(&transport->T3_rtx_timer))
151 		sctp_transport_put(transport);
152 
153 	/* Delete the ICMP proto unreachable timer if it's active. */
154 	if (timer_pending(&transport->proto_unreach_timer) &&
155 	    del_timer(&transport->proto_unreach_timer))
156 		sctp_association_put(transport->asoc);
157 
158 	sctp_transport_put(transport);
159 }
160 
161 /* Destroy the transport data structure.
162  * Assumes there are no more users of this structure.
163  */
164 static void sctp_transport_destroy(struct sctp_transport *transport)
165 {
166 	SCTP_ASSERT(transport->dead, "Transport is not dead", return);
167 
168 	if (transport->asoc)
169 		sctp_association_put(transport->asoc);
170 
171 	sctp_packet_free(&transport->packet);
172 
173 	dst_release(transport->dst);
174 	kfree(transport);
175 	SCTP_DBG_OBJCNT_DEC(transport);
176 }
177 
178 /* Start T3_rtx timer if it is not already running and update the heartbeat
179  * timer.  This routine is called every time a DATA chunk is sent.
180  */
181 void sctp_transport_reset_timers(struct sctp_transport *transport)
182 {
183 	/* RFC 2960 6.3.2 Retransmission Timer Rules
184 	 *
185 	 * R1) Every time a DATA chunk is sent to any address(including a
186 	 * retransmission), if the T3-rtx timer of that address is not running
187 	 * start it running so that it will expire after the RTO of that
188 	 * address.
189 	 */
190 
191 	if (!timer_pending(&transport->T3_rtx_timer))
192 		if (!mod_timer(&transport->T3_rtx_timer,
193 			       jiffies + transport->rto))
194 			sctp_transport_hold(transport);
195 
196 	/* When a data chunk is sent, reset the heartbeat interval.  */
197 	if (!mod_timer(&transport->hb_timer,
198 		       sctp_transport_timeout(transport)))
199 	    sctp_transport_hold(transport);
200 }
201 
202 /* This transport has been assigned to an association.
203  * Initialize fields from the association or from the sock itself.
204  * Register the reference count in the association.
205  */
206 void sctp_transport_set_owner(struct sctp_transport *transport,
207 			      struct sctp_association *asoc)
208 {
209 	transport->asoc = asoc;
210 	sctp_association_hold(asoc);
211 }
212 
213 /* Initialize the pmtu of a transport. */
214 void sctp_transport_pmtu(struct sctp_transport *transport)
215 {
216 	struct dst_entry *dst;
217 
218 	dst = transport->af_specific->get_dst(NULL, &transport->ipaddr, NULL);
219 
220 	if (dst) {
221 		transport->pathmtu = dst_mtu(dst);
222 		dst_release(dst);
223 	} else
224 		transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
225 }
226 
227 /* this is a complete rip-off from __sk_dst_check
228  * the cookie is always 0 since this is how it's used in the
229  * pmtu code
230  */
231 static struct dst_entry *sctp_transport_dst_check(struct sctp_transport *t)
232 {
233 	struct dst_entry *dst = t->dst;
234 
235 	if (dst && dst->obsolete && dst->ops->check(dst, 0) == NULL) {
236 		dst_release(t->dst);
237 		t->dst = NULL;
238 		return NULL;
239 	}
240 
241 	return dst;
242 }
243 
244 void sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu)
245 {
246 	struct dst_entry *dst;
247 
248 	if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
249 		pr_warn("%s: Reported pmtu %d too low, using default minimum of %d\n",
250 			__func__, pmtu,
251 			SCTP_DEFAULT_MINSEGMENT);
252 		/* Use default minimum segment size and disable
253 		 * pmtu discovery on this transport.
254 		 */
255 		t->pathmtu = SCTP_DEFAULT_MINSEGMENT;
256 	} else {
257 		t->pathmtu = pmtu;
258 	}
259 
260 	dst = sctp_transport_dst_check(t);
261 	if (dst)
262 		dst->ops->update_pmtu(dst, pmtu);
263 }
264 
265 /* Caches the dst entry and source address for a transport's destination
266  * address.
267  */
268 void sctp_transport_route(struct sctp_transport *transport,
269 			  union sctp_addr *saddr, struct sctp_sock *opt)
270 {
271 	struct sctp_association *asoc = transport->asoc;
272 	struct sctp_af *af = transport->af_specific;
273 	union sctp_addr *daddr = &transport->ipaddr;
274 	struct dst_entry *dst;
275 
276 	dst = af->get_dst(asoc, daddr, saddr);
277 
278 	if (saddr)
279 		memcpy(&transport->saddr, saddr, sizeof(union sctp_addr));
280 	else
281 		af->get_saddr(opt, asoc, dst, daddr, &transport->saddr);
282 
283 	transport->dst = dst;
284 	if ((transport->param_flags & SPP_PMTUD_DISABLE) && transport->pathmtu) {
285 		return;
286 	}
287 	if (dst) {
288 		transport->pathmtu = dst_mtu(dst);
289 
290 		/* Initialize sk->sk_rcv_saddr, if the transport is the
291 		 * association's active path for getsockname().
292 		 */
293 		if (asoc && (!asoc->peer.primary_path ||
294 				(transport == asoc->peer.active_path)))
295 			opt->pf->af->to_sk_saddr(&transport->saddr,
296 						 asoc->base.sk);
297 	} else
298 		transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
299 }
300 
301 /* Hold a reference to a transport.  */
302 void sctp_transport_hold(struct sctp_transport *transport)
303 {
304 	atomic_inc(&transport->refcnt);
305 }
306 
307 /* Release a reference to a transport and clean up
308  * if there are no more references.
309  */
310 void sctp_transport_put(struct sctp_transport *transport)
311 {
312 	if (atomic_dec_and_test(&transport->refcnt))
313 		sctp_transport_destroy(transport);
314 }
315 
316 /* Update transport's RTO based on the newly calculated RTT. */
317 void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt)
318 {
319 	/* Check for valid transport.  */
320 	SCTP_ASSERT(tp, "NULL transport", return);
321 
322 	/* We should not be doing any RTO updates unless rto_pending is set.  */
323 	SCTP_ASSERT(tp->rto_pending, "rto_pending not set", return);
324 
325 	if (tp->rttvar || tp->srtt) {
326 		/* 6.3.1 C3) When a new RTT measurement R' is made, set
327 		 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|
328 		 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'
329 		 */
330 
331 		/* Note:  The above algorithm has been rewritten to
332 		 * express rto_beta and rto_alpha as inverse powers
333 		 * of two.
334 		 * For example, assuming the default value of RTO.Alpha of
335 		 * 1/8, rto_alpha would be expressed as 3.
336 		 */
337 		tp->rttvar = tp->rttvar - (tp->rttvar >> sctp_rto_beta)
338 			+ ((abs(tp->srtt - rtt)) >> sctp_rto_beta);
339 		tp->srtt = tp->srtt - (tp->srtt >> sctp_rto_alpha)
340 			+ (rtt >> sctp_rto_alpha);
341 	} else {
342 		/* 6.3.1 C2) When the first RTT measurement R is made, set
343 		 * SRTT <- R, RTTVAR <- R/2.
344 		 */
345 		tp->srtt = rtt;
346 		tp->rttvar = rtt >> 1;
347 	}
348 
349 	/* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then
350 	 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY.
351 	 */
352 	if (tp->rttvar == 0)
353 		tp->rttvar = SCTP_CLOCK_GRANULARITY;
354 
355 	/* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */
356 	tp->rto = tp->srtt + (tp->rttvar << 2);
357 
358 	/* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min
359 	 * seconds then it is rounded up to RTO.Min seconds.
360 	 */
361 	if (tp->rto < tp->asoc->rto_min)
362 		tp->rto = tp->asoc->rto_min;
363 
364 	/* 6.3.1 C7) A maximum value may be placed on RTO provided it is
365 	 * at least RTO.max seconds.
366 	 */
367 	if (tp->rto > tp->asoc->rto_max)
368 		tp->rto = tp->asoc->rto_max;
369 
370 	tp->rtt = rtt;
371 
372 	/* Reset rto_pending so that a new RTT measurement is started when a
373 	 * new data chunk is sent.
374 	 */
375 	tp->rto_pending = 0;
376 
377 	SCTP_DEBUG_PRINTK("%s: transport: %p, rtt: %d, srtt: %d "
378 			  "rttvar: %d, rto: %ld\n", __func__,
379 			  tp, rtt, tp->srtt, tp->rttvar, tp->rto);
380 }
381 
382 /* This routine updates the transport's cwnd and partial_bytes_acked
383  * parameters based on the bytes acked in the received SACK.
384  */
385 void sctp_transport_raise_cwnd(struct sctp_transport *transport,
386 			       __u32 sack_ctsn, __u32 bytes_acked)
387 {
388 	struct sctp_association *asoc = transport->asoc;
389 	__u32 cwnd, ssthresh, flight_size, pba, pmtu;
390 
391 	cwnd = transport->cwnd;
392 	flight_size = transport->flight_size;
393 
394 	/* See if we need to exit Fast Recovery first */
395 	if (asoc->fast_recovery &&
396 	    TSN_lte(asoc->fast_recovery_exit, sack_ctsn))
397 		asoc->fast_recovery = 0;
398 
399 	/* The appropriate cwnd increase algorithm is performed if, and only
400 	 * if the cumulative TSN whould advanced and the congestion window is
401 	 * being fully utilized.
402 	 */
403 	if (TSN_lte(sack_ctsn, transport->asoc->ctsn_ack_point) ||
404 	    (flight_size < cwnd))
405 		return;
406 
407 	ssthresh = transport->ssthresh;
408 	pba = transport->partial_bytes_acked;
409 	pmtu = transport->asoc->pathmtu;
410 
411 	if (cwnd <= ssthresh) {
412 		/* RFC 4960 7.2.1
413 		 * o  When cwnd is less than or equal to ssthresh, an SCTP
414 		 *    endpoint MUST use the slow-start algorithm to increase
415 		 *    cwnd only if the current congestion window is being fully
416 		 *    utilized, an incoming SACK advances the Cumulative TSN
417 		 *    Ack Point, and the data sender is not in Fast Recovery.
418 		 *    Only when these three conditions are met can the cwnd be
419 		 *    increased; otherwise, the cwnd MUST not be increased.
420 		 *    If these conditions are met, then cwnd MUST be increased
421 		 *    by, at most, the lesser of 1) the total size of the
422 		 *    previously outstanding DATA chunk(s) acknowledged, and
423 		 *    2) the destination's path MTU.  This upper bound protects
424 		 *    against the ACK-Splitting attack outlined in [SAVAGE99].
425 		 */
426 		if (asoc->fast_recovery)
427 			return;
428 
429 		if (bytes_acked > pmtu)
430 			cwnd += pmtu;
431 		else
432 			cwnd += bytes_acked;
433 		SCTP_DEBUG_PRINTK("%s: SLOW START: transport: %p, "
434 				  "bytes_acked: %d, cwnd: %d, ssthresh: %d, "
435 				  "flight_size: %d, pba: %d\n",
436 				  __func__,
437 				  transport, bytes_acked, cwnd,
438 				  ssthresh, flight_size, pba);
439 	} else {
440 		/* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh,
441 		 * upon each SACK arrival that advances the Cumulative TSN Ack
442 		 * Point, increase partial_bytes_acked by the total number of
443 		 * bytes of all new chunks acknowledged in that SACK including
444 		 * chunks acknowledged by the new Cumulative TSN Ack and by
445 		 * Gap Ack Blocks.
446 		 *
447 		 * When partial_bytes_acked is equal to or greater than cwnd
448 		 * and before the arrival of the SACK the sender had cwnd or
449 		 * more bytes of data outstanding (i.e., before arrival of the
450 		 * SACK, flightsize was greater than or equal to cwnd),
451 		 * increase cwnd by MTU, and reset partial_bytes_acked to
452 		 * (partial_bytes_acked - cwnd).
453 		 */
454 		pba += bytes_acked;
455 		if (pba >= cwnd) {
456 			cwnd += pmtu;
457 			pba = ((cwnd < pba) ? (pba - cwnd) : 0);
458 		}
459 		SCTP_DEBUG_PRINTK("%s: CONGESTION AVOIDANCE: "
460 				  "transport: %p, bytes_acked: %d, cwnd: %d, "
461 				  "ssthresh: %d, flight_size: %d, pba: %d\n",
462 				  __func__,
463 				  transport, bytes_acked, cwnd,
464 				  ssthresh, flight_size, pba);
465 	}
466 
467 	transport->cwnd = cwnd;
468 	transport->partial_bytes_acked = pba;
469 }
470 
471 /* This routine is used to lower the transport's cwnd when congestion is
472  * detected.
473  */
474 void sctp_transport_lower_cwnd(struct sctp_transport *transport,
475 			       sctp_lower_cwnd_t reason)
476 {
477 	struct sctp_association *asoc = transport->asoc;
478 
479 	switch (reason) {
480 	case SCTP_LOWER_CWND_T3_RTX:
481 		/* RFC 2960 Section 7.2.3, sctpimpguide
482 		 * When the T3-rtx timer expires on an address, SCTP should
483 		 * perform slow start by:
484 		 *      ssthresh = max(cwnd/2, 4*MTU)
485 		 *      cwnd = 1*MTU
486 		 *      partial_bytes_acked = 0
487 		 */
488 		transport->ssthresh = max(transport->cwnd/2,
489 					  4*asoc->pathmtu);
490 		transport->cwnd = asoc->pathmtu;
491 
492 		/* T3-rtx also clears fast recovery */
493 		asoc->fast_recovery = 0;
494 		break;
495 
496 	case SCTP_LOWER_CWND_FAST_RTX:
497 		/* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the
498 		 * destination address(es) to which the missing DATA chunks
499 		 * were last sent, according to the formula described in
500 		 * Section 7.2.3.
501 		 *
502 		 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet
503 		 * losses from SACK (see Section 7.2.4), An endpoint
504 		 * should do the following:
505 		 *      ssthresh = max(cwnd/2, 4*MTU)
506 		 *      cwnd = ssthresh
507 		 *      partial_bytes_acked = 0
508 		 */
509 		if (asoc->fast_recovery)
510 			return;
511 
512 		/* Mark Fast recovery */
513 		asoc->fast_recovery = 1;
514 		asoc->fast_recovery_exit = asoc->next_tsn - 1;
515 
516 		transport->ssthresh = max(transport->cwnd/2,
517 					  4*asoc->pathmtu);
518 		transport->cwnd = transport->ssthresh;
519 		break;
520 
521 	case SCTP_LOWER_CWND_ECNE:
522 		/* RFC 2481 Section 6.1.2.
523 		 * If the sender receives an ECN-Echo ACK packet
524 		 * then the sender knows that congestion was encountered in the
525 		 * network on the path from the sender to the receiver. The
526 		 * indication of congestion should be treated just as a
527 		 * congestion loss in non-ECN Capable TCP. That is, the TCP
528 		 * source halves the congestion window "cwnd" and reduces the
529 		 * slow start threshold "ssthresh".
530 		 * A critical condition is that TCP does not react to
531 		 * congestion indications more than once every window of
532 		 * data (or more loosely more than once every round-trip time).
533 		 */
534 		if (time_after(jiffies, transport->last_time_ecne_reduced +
535 					transport->rtt)) {
536 			transport->ssthresh = max(transport->cwnd/2,
537 						  4*asoc->pathmtu);
538 			transport->cwnd = transport->ssthresh;
539 			transport->last_time_ecne_reduced = jiffies;
540 		}
541 		break;
542 
543 	case SCTP_LOWER_CWND_INACTIVE:
544 		/* RFC 2960 Section 7.2.1, sctpimpguide
545 		 * When the endpoint does not transmit data on a given
546 		 * transport address, the cwnd of the transport address
547 		 * should be adjusted to max(cwnd/2, 4*MTU) per RTO.
548 		 * NOTE: Although the draft recommends that this check needs
549 		 * to be done every RTO interval, we do it every hearbeat
550 		 * interval.
551 		 */
552 		transport->cwnd = max(transport->cwnd/2,
553 					 4*asoc->pathmtu);
554 		break;
555 	}
556 
557 	transport->partial_bytes_acked = 0;
558 	SCTP_DEBUG_PRINTK("%s: transport: %p reason: %d cwnd: "
559 			  "%d ssthresh: %d\n", __func__,
560 			  transport, reason,
561 			  transport->cwnd, transport->ssthresh);
562 }
563 
564 /* Apply Max.Burst limit to the congestion window:
565  * sctpimpguide-05 2.14.2
566  * D) When the time comes for the sender to
567  * transmit new DATA chunks, the protocol parameter Max.Burst MUST
568  * first be applied to limit how many new DATA chunks may be sent.
569  * The limit is applied by adjusting cwnd as follows:
570  * 	if ((flightsize+ Max.Burst * MTU) < cwnd)
571  * 		cwnd = flightsize + Max.Burst * MTU
572  */
573 
574 void sctp_transport_burst_limited(struct sctp_transport *t)
575 {
576 	struct sctp_association *asoc = t->asoc;
577 	u32 old_cwnd = t->cwnd;
578 	u32 max_burst_bytes;
579 
580 	if (t->burst_limited)
581 		return;
582 
583 	max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu);
584 	if (max_burst_bytes < old_cwnd) {
585 		t->cwnd = max_burst_bytes;
586 		t->burst_limited = old_cwnd;
587 	}
588 }
589 
590 /* Restore the old cwnd congestion window, after the burst had it's
591  * desired effect.
592  */
593 void sctp_transport_burst_reset(struct sctp_transport *t)
594 {
595 	if (t->burst_limited) {
596 		t->cwnd = t->burst_limited;
597 		t->burst_limited = 0;
598 	}
599 }
600 
601 /* What is the next timeout value for this transport? */
602 unsigned long sctp_transport_timeout(struct sctp_transport *t)
603 {
604 	unsigned long timeout;
605 	timeout = t->rto + sctp_jitter(t->rto);
606 	if (t->state != SCTP_UNCONFIRMED)
607 		timeout += t->hbinterval;
608 	timeout += jiffies;
609 	return timeout;
610 }
611 
612 /* Reset transport variables to their initial values */
613 void sctp_transport_reset(struct sctp_transport *t)
614 {
615 	struct sctp_association *asoc = t->asoc;
616 
617 	/* RFC 2960 (bis), Section 5.2.4
618 	 * All the congestion control parameters (e.g., cwnd, ssthresh)
619 	 * related to this peer MUST be reset to their initial values
620 	 * (see Section 6.2.1)
621 	 */
622 	t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
623 	t->burst_limited = 0;
624 	t->ssthresh = asoc->peer.i.a_rwnd;
625 	t->rto = asoc->rto_initial;
626 	t->rtt = 0;
627 	t->srtt = 0;
628 	t->rttvar = 0;
629 
630 	/* Reset these additional varibles so that we have a clean
631 	 * slate.
632 	 */
633 	t->partial_bytes_acked = 0;
634 	t->flight_size = 0;
635 	t->error_count = 0;
636 	t->rto_pending = 0;
637 	t->hb_sent = 0;
638 
639 	/* Initialize the state information for SFR-CACC */
640 	t->cacc.changeover_active = 0;
641 	t->cacc.cycling_changeover = 0;
642 	t->cacc.next_tsn_at_change = 0;
643 	t->cacc.cacc_saw_newack = 0;
644 }
645