xref: /openbmc/linux/net/sctp/transport.c (revision bf070bb0)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP tranport representing
11  * a remote transport address.  For local transport addresses, we just use
12  * union sctp_addr.
13  *
14  * This SCTP implementation is free software;
15  * you can redistribute it and/or modify it under the terms of
16  * the GNU General Public License as published by
17  * the Free Software Foundation; either version 2, or (at your option)
18  * any later version.
19  *
20  * This SCTP implementation is distributed in the hope that it
21  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
22  *                 ************************
23  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
24  * See the GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with GNU CC; see the file COPYING.  If not, see
28  * <http://www.gnu.org/licenses/>.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <linux-sctp@vger.kernel.org>
33  *
34  * Written or modified by:
35  *    La Monte H.P. Yarroll <piggy@acm.org>
36  *    Karl Knutson          <karl@athena.chicago.il.us>
37  *    Jon Grimm             <jgrimm@us.ibm.com>
38  *    Xingang Guo           <xingang.guo@intel.com>
39  *    Hui Huang             <hui.huang@nokia.com>
40  *    Sridhar Samudrala	    <sri@us.ibm.com>
41  *    Ardelle Fan	    <ardelle.fan@intel.com>
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/slab.h>
47 #include <linux/types.h>
48 #include <linux/random.h>
49 #include <net/sctp/sctp.h>
50 #include <net/sctp/sm.h>
51 
52 /* 1st Level Abstractions.  */
53 
54 /* Initialize a new transport from provided memory.  */
55 static struct sctp_transport *sctp_transport_init(struct net *net,
56 						  struct sctp_transport *peer,
57 						  const union sctp_addr *addr,
58 						  gfp_t gfp)
59 {
60 	/* Copy in the address.  */
61 	peer->ipaddr = *addr;
62 	peer->af_specific = sctp_get_af_specific(addr->sa.sa_family);
63 	memset(&peer->saddr, 0, sizeof(union sctp_addr));
64 
65 	peer->sack_generation = 0;
66 
67 	/* From 6.3.1 RTO Calculation:
68 	 *
69 	 * C1) Until an RTT measurement has been made for a packet sent to the
70 	 * given destination transport address, set RTO to the protocol
71 	 * parameter 'RTO.Initial'.
72 	 */
73 	peer->rto = msecs_to_jiffies(net->sctp.rto_initial);
74 
75 	peer->last_time_heard = 0;
76 	peer->last_time_ecne_reduced = jiffies;
77 
78 	peer->param_flags = SPP_HB_DISABLE |
79 			    SPP_PMTUD_ENABLE |
80 			    SPP_SACKDELAY_ENABLE;
81 
82 	/* Initialize the default path max_retrans.  */
83 	peer->pathmaxrxt  = net->sctp.max_retrans_path;
84 	peer->pf_retrans  = net->sctp.pf_retrans;
85 
86 	INIT_LIST_HEAD(&peer->transmitted);
87 	INIT_LIST_HEAD(&peer->send_ready);
88 	INIT_LIST_HEAD(&peer->transports);
89 
90 	timer_setup(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 0);
91 	timer_setup(&peer->hb_timer, sctp_generate_heartbeat_event, 0);
92 	timer_setup(&peer->reconf_timer, sctp_generate_reconf_event, 0);
93 	timer_setup(&peer->proto_unreach_timer,
94 		    sctp_generate_proto_unreach_event, 0);
95 
96 	/* Initialize the 64-bit random nonce sent with heartbeat. */
97 	get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce));
98 
99 	refcount_set(&peer->refcnt, 1);
100 
101 	return peer;
102 }
103 
104 /* Allocate and initialize a new transport.  */
105 struct sctp_transport *sctp_transport_new(struct net *net,
106 					  const union sctp_addr *addr,
107 					  gfp_t gfp)
108 {
109 	struct sctp_transport *transport;
110 
111 	transport = kzalloc(sizeof(*transport), gfp);
112 	if (!transport)
113 		goto fail;
114 
115 	if (!sctp_transport_init(net, transport, addr, gfp))
116 		goto fail_init;
117 
118 	SCTP_DBG_OBJCNT_INC(transport);
119 
120 	return transport;
121 
122 fail_init:
123 	kfree(transport);
124 
125 fail:
126 	return NULL;
127 }
128 
129 /* This transport is no longer needed.  Free up if possible, or
130  * delay until it last reference count.
131  */
132 void sctp_transport_free(struct sctp_transport *transport)
133 {
134 	/* Try to delete the heartbeat timer.  */
135 	if (del_timer(&transport->hb_timer))
136 		sctp_transport_put(transport);
137 
138 	/* Delete the T3_rtx timer if it's active.
139 	 * There is no point in not doing this now and letting
140 	 * structure hang around in memory since we know
141 	 * the tranport is going away.
142 	 */
143 	if (del_timer(&transport->T3_rtx_timer))
144 		sctp_transport_put(transport);
145 
146 	if (del_timer(&transport->reconf_timer))
147 		sctp_transport_put(transport);
148 
149 	/* Delete the ICMP proto unreachable timer if it's active. */
150 	if (del_timer(&transport->proto_unreach_timer))
151 		sctp_association_put(transport->asoc);
152 
153 	sctp_transport_put(transport);
154 }
155 
156 static void sctp_transport_destroy_rcu(struct rcu_head *head)
157 {
158 	struct sctp_transport *transport;
159 
160 	transport = container_of(head, struct sctp_transport, rcu);
161 
162 	dst_release(transport->dst);
163 	kfree(transport);
164 	SCTP_DBG_OBJCNT_DEC(transport);
165 }
166 
167 /* Destroy the transport data structure.
168  * Assumes there are no more users of this structure.
169  */
170 static void sctp_transport_destroy(struct sctp_transport *transport)
171 {
172 	if (unlikely(refcount_read(&transport->refcnt))) {
173 		WARN(1, "Attempt to destroy undead transport %p!\n", transport);
174 		return;
175 	}
176 
177 	sctp_packet_free(&transport->packet);
178 
179 	if (transport->asoc)
180 		sctp_association_put(transport->asoc);
181 
182 	call_rcu(&transport->rcu, sctp_transport_destroy_rcu);
183 }
184 
185 /* Start T3_rtx timer if it is not already running and update the heartbeat
186  * timer.  This routine is called every time a DATA chunk is sent.
187  */
188 void sctp_transport_reset_t3_rtx(struct sctp_transport *transport)
189 {
190 	/* RFC 2960 6.3.2 Retransmission Timer Rules
191 	 *
192 	 * R1) Every time a DATA chunk is sent to any address(including a
193 	 * retransmission), if the T3-rtx timer of that address is not running
194 	 * start it running so that it will expire after the RTO of that
195 	 * address.
196 	 */
197 
198 	if (!timer_pending(&transport->T3_rtx_timer))
199 		if (!mod_timer(&transport->T3_rtx_timer,
200 			       jiffies + transport->rto))
201 			sctp_transport_hold(transport);
202 }
203 
204 void sctp_transport_reset_hb_timer(struct sctp_transport *transport)
205 {
206 	unsigned long expires;
207 
208 	/* When a data chunk is sent, reset the heartbeat interval.  */
209 	expires = jiffies + sctp_transport_timeout(transport);
210 	if (time_before(transport->hb_timer.expires, expires) &&
211 	    !mod_timer(&transport->hb_timer,
212 		       expires + prandom_u32_max(transport->rto)))
213 		sctp_transport_hold(transport);
214 }
215 
216 void sctp_transport_reset_reconf_timer(struct sctp_transport *transport)
217 {
218 	if (!timer_pending(&transport->reconf_timer))
219 		if (!mod_timer(&transport->reconf_timer,
220 			       jiffies + transport->rto))
221 			sctp_transport_hold(transport);
222 }
223 
224 /* This transport has been assigned to an association.
225  * Initialize fields from the association or from the sock itself.
226  * Register the reference count in the association.
227  */
228 void sctp_transport_set_owner(struct sctp_transport *transport,
229 			      struct sctp_association *asoc)
230 {
231 	transport->asoc = asoc;
232 	sctp_association_hold(asoc);
233 }
234 
235 /* Initialize the pmtu of a transport. */
236 void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk)
237 {
238 	/* If we don't have a fresh route, look one up */
239 	if (!transport->dst || transport->dst->obsolete) {
240 		sctp_transport_dst_release(transport);
241 		transport->af_specific->get_dst(transport, &transport->saddr,
242 						&transport->fl, sk);
243 	}
244 
245 	if (transport->dst) {
246 		transport->pathmtu = SCTP_TRUNC4(dst_mtu(transport->dst));
247 	} else
248 		transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
249 }
250 
251 void sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu)
252 {
253 	struct dst_entry *dst = sctp_transport_dst_check(t);
254 
255 	if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
256 		pr_warn("%s: Reported pmtu %d too low, using default minimum of %d\n",
257 			__func__, pmtu, SCTP_DEFAULT_MINSEGMENT);
258 		/* Use default minimum segment size and disable
259 		 * pmtu discovery on this transport.
260 		 */
261 		t->pathmtu = SCTP_DEFAULT_MINSEGMENT;
262 	} else {
263 		t->pathmtu = pmtu;
264 	}
265 
266 	if (dst) {
267 		dst->ops->update_pmtu(dst, t->asoc->base.sk, NULL, pmtu);
268 		dst = sctp_transport_dst_check(t);
269 	}
270 
271 	if (!dst)
272 		t->af_specific->get_dst(t, &t->saddr, &t->fl, t->asoc->base.sk);
273 }
274 
275 /* Caches the dst entry and source address for a transport's destination
276  * address.
277  */
278 void sctp_transport_route(struct sctp_transport *transport,
279 			  union sctp_addr *saddr, struct sctp_sock *opt)
280 {
281 	struct sctp_association *asoc = transport->asoc;
282 	struct sctp_af *af = transport->af_specific;
283 
284 	af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt));
285 
286 	if (saddr)
287 		memcpy(&transport->saddr, saddr, sizeof(union sctp_addr));
288 	else
289 		af->get_saddr(opt, transport, &transport->fl);
290 
291 	if ((transport->param_flags & SPP_PMTUD_DISABLE) && transport->pathmtu) {
292 		return;
293 	}
294 	if (transport->dst) {
295 		transport->pathmtu = SCTP_TRUNC4(dst_mtu(transport->dst));
296 
297 		/* Initialize sk->sk_rcv_saddr, if the transport is the
298 		 * association's active path for getsockname().
299 		 */
300 		if (asoc && (!asoc->peer.primary_path ||
301 				(transport == asoc->peer.active_path)))
302 			opt->pf->to_sk_saddr(&transport->saddr,
303 					     asoc->base.sk);
304 	} else
305 		transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
306 }
307 
308 /* Hold a reference to a transport.  */
309 int sctp_transport_hold(struct sctp_transport *transport)
310 {
311 	return refcount_inc_not_zero(&transport->refcnt);
312 }
313 
314 /* Release a reference to a transport and clean up
315  * if there are no more references.
316  */
317 void sctp_transport_put(struct sctp_transport *transport)
318 {
319 	if (refcount_dec_and_test(&transport->refcnt))
320 		sctp_transport_destroy(transport);
321 }
322 
323 /* Update transport's RTO based on the newly calculated RTT. */
324 void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt)
325 {
326 	if (unlikely(!tp->rto_pending))
327 		/* We should not be doing any RTO updates unless rto_pending is set.  */
328 		pr_debug("%s: rto_pending not set on transport %p!\n", __func__, tp);
329 
330 	if (tp->rttvar || tp->srtt) {
331 		struct net *net = sock_net(tp->asoc->base.sk);
332 		/* 6.3.1 C3) When a new RTT measurement R' is made, set
333 		 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|
334 		 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'
335 		 */
336 
337 		/* Note:  The above algorithm has been rewritten to
338 		 * express rto_beta and rto_alpha as inverse powers
339 		 * of two.
340 		 * For example, assuming the default value of RTO.Alpha of
341 		 * 1/8, rto_alpha would be expressed as 3.
342 		 */
343 		tp->rttvar = tp->rttvar - (tp->rttvar >> net->sctp.rto_beta)
344 			+ (((__u32)abs((__s64)tp->srtt - (__s64)rtt)) >> net->sctp.rto_beta);
345 		tp->srtt = tp->srtt - (tp->srtt >> net->sctp.rto_alpha)
346 			+ (rtt >> net->sctp.rto_alpha);
347 	} else {
348 		/* 6.3.1 C2) When the first RTT measurement R is made, set
349 		 * SRTT <- R, RTTVAR <- R/2.
350 		 */
351 		tp->srtt = rtt;
352 		tp->rttvar = rtt >> 1;
353 	}
354 
355 	/* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then
356 	 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY.
357 	 */
358 	if (tp->rttvar == 0)
359 		tp->rttvar = SCTP_CLOCK_GRANULARITY;
360 
361 	/* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */
362 	tp->rto = tp->srtt + (tp->rttvar << 2);
363 
364 	/* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min
365 	 * seconds then it is rounded up to RTO.Min seconds.
366 	 */
367 	if (tp->rto < tp->asoc->rto_min)
368 		tp->rto = tp->asoc->rto_min;
369 
370 	/* 6.3.1 C7) A maximum value may be placed on RTO provided it is
371 	 * at least RTO.max seconds.
372 	 */
373 	if (tp->rto > tp->asoc->rto_max)
374 		tp->rto = tp->asoc->rto_max;
375 
376 	sctp_max_rto(tp->asoc, tp);
377 	tp->rtt = rtt;
378 
379 	/* Reset rto_pending so that a new RTT measurement is started when a
380 	 * new data chunk is sent.
381 	 */
382 	tp->rto_pending = 0;
383 
384 	pr_debug("%s: transport:%p, rtt:%d, srtt:%d rttvar:%d, rto:%ld\n",
385 		 __func__, tp, rtt, tp->srtt, tp->rttvar, tp->rto);
386 }
387 
388 /* This routine updates the transport's cwnd and partial_bytes_acked
389  * parameters based on the bytes acked in the received SACK.
390  */
391 void sctp_transport_raise_cwnd(struct sctp_transport *transport,
392 			       __u32 sack_ctsn, __u32 bytes_acked)
393 {
394 	struct sctp_association *asoc = transport->asoc;
395 	__u32 cwnd, ssthresh, flight_size, pba, pmtu;
396 
397 	cwnd = transport->cwnd;
398 	flight_size = transport->flight_size;
399 
400 	/* See if we need to exit Fast Recovery first */
401 	if (asoc->fast_recovery &&
402 	    TSN_lte(asoc->fast_recovery_exit, sack_ctsn))
403 		asoc->fast_recovery = 0;
404 
405 	ssthresh = transport->ssthresh;
406 	pba = transport->partial_bytes_acked;
407 	pmtu = transport->asoc->pathmtu;
408 
409 	if (cwnd <= ssthresh) {
410 		/* RFC 4960 7.2.1
411 		 * o  When cwnd is less than or equal to ssthresh, an SCTP
412 		 *    endpoint MUST use the slow-start algorithm to increase
413 		 *    cwnd only if the current congestion window is being fully
414 		 *    utilized, an incoming SACK advances the Cumulative TSN
415 		 *    Ack Point, and the data sender is not in Fast Recovery.
416 		 *    Only when these three conditions are met can the cwnd be
417 		 *    increased; otherwise, the cwnd MUST not be increased.
418 		 *    If these conditions are met, then cwnd MUST be increased
419 		 *    by, at most, the lesser of 1) the total size of the
420 		 *    previously outstanding DATA chunk(s) acknowledged, and
421 		 *    2) the destination's path MTU.  This upper bound protects
422 		 *    against the ACK-Splitting attack outlined in [SAVAGE99].
423 		 */
424 		if (asoc->fast_recovery)
425 			return;
426 
427 		/* The appropriate cwnd increase algorithm is performed
428 		 * if, and only if the congestion window is being fully
429 		 * utilized.  Note that RFC4960 Errata 3.22 removed the
430 		 * other condition on ctsn moving.
431 		 */
432 		if (flight_size < cwnd)
433 			return;
434 
435 		if (bytes_acked > pmtu)
436 			cwnd += pmtu;
437 		else
438 			cwnd += bytes_acked;
439 
440 		pr_debug("%s: slow start: transport:%p, bytes_acked:%d, "
441 			 "cwnd:%d, ssthresh:%d, flight_size:%d, pba:%d\n",
442 			 __func__, transport, bytes_acked, cwnd, ssthresh,
443 			 flight_size, pba);
444 	} else {
445 		/* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh,
446 		 * upon each SACK arrival, increase partial_bytes_acked
447 		 * by the total number of bytes of all new chunks
448 		 * acknowledged in that SACK including chunks
449 		 * acknowledged by the new Cumulative TSN Ack and by Gap
450 		 * Ack Blocks. (updated by RFC4960 Errata 3.22)
451 		 *
452 		 * When partial_bytes_acked is greater than cwnd and
453 		 * before the arrival of the SACK the sender had less
454 		 * bytes of data outstanding than cwnd (i.e., before
455 		 * arrival of the SACK, flightsize was less than cwnd),
456 		 * reset partial_bytes_acked to cwnd. (RFC 4960 Errata
457 		 * 3.26)
458 		 *
459 		 * When partial_bytes_acked is equal to or greater than
460 		 * cwnd and before the arrival of the SACK the sender
461 		 * had cwnd or more bytes of data outstanding (i.e.,
462 		 * before arrival of the SACK, flightsize was greater
463 		 * than or equal to cwnd), partial_bytes_acked is reset
464 		 * to (partial_bytes_acked - cwnd). Next, cwnd is
465 		 * increased by MTU. (RFC 4960 Errata 3.12)
466 		 */
467 		pba += bytes_acked;
468 		if (pba > cwnd && flight_size < cwnd)
469 			pba = cwnd;
470 		if (pba >= cwnd && flight_size >= cwnd) {
471 			pba = pba - cwnd;
472 			cwnd += pmtu;
473 		}
474 
475 		pr_debug("%s: congestion avoidance: transport:%p, "
476 			 "bytes_acked:%d, cwnd:%d, ssthresh:%d, "
477 			 "flight_size:%d, pba:%d\n", __func__,
478 			 transport, bytes_acked, cwnd, ssthresh,
479 			 flight_size, pba);
480 	}
481 
482 	transport->cwnd = cwnd;
483 	transport->partial_bytes_acked = pba;
484 }
485 
486 /* This routine is used to lower the transport's cwnd when congestion is
487  * detected.
488  */
489 void sctp_transport_lower_cwnd(struct sctp_transport *transport,
490 			       enum sctp_lower_cwnd reason)
491 {
492 	struct sctp_association *asoc = transport->asoc;
493 
494 	switch (reason) {
495 	case SCTP_LOWER_CWND_T3_RTX:
496 		/* RFC 2960 Section 7.2.3, sctpimpguide
497 		 * When the T3-rtx timer expires on an address, SCTP should
498 		 * perform slow start by:
499 		 *      ssthresh = max(cwnd/2, 4*MTU)
500 		 *      cwnd = 1*MTU
501 		 *      partial_bytes_acked = 0
502 		 */
503 		transport->ssthresh = max(transport->cwnd/2,
504 					  4*asoc->pathmtu);
505 		transport->cwnd = asoc->pathmtu;
506 
507 		/* T3-rtx also clears fast recovery */
508 		asoc->fast_recovery = 0;
509 		break;
510 
511 	case SCTP_LOWER_CWND_FAST_RTX:
512 		/* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the
513 		 * destination address(es) to which the missing DATA chunks
514 		 * were last sent, according to the formula described in
515 		 * Section 7.2.3.
516 		 *
517 		 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet
518 		 * losses from SACK (see Section 7.2.4), An endpoint
519 		 * should do the following:
520 		 *      ssthresh = max(cwnd/2, 4*MTU)
521 		 *      cwnd = ssthresh
522 		 *      partial_bytes_acked = 0
523 		 */
524 		if (asoc->fast_recovery)
525 			return;
526 
527 		/* Mark Fast recovery */
528 		asoc->fast_recovery = 1;
529 		asoc->fast_recovery_exit = asoc->next_tsn - 1;
530 
531 		transport->ssthresh = max(transport->cwnd/2,
532 					  4*asoc->pathmtu);
533 		transport->cwnd = transport->ssthresh;
534 		break;
535 
536 	case SCTP_LOWER_CWND_ECNE:
537 		/* RFC 2481 Section 6.1.2.
538 		 * If the sender receives an ECN-Echo ACK packet
539 		 * then the sender knows that congestion was encountered in the
540 		 * network on the path from the sender to the receiver. The
541 		 * indication of congestion should be treated just as a
542 		 * congestion loss in non-ECN Capable TCP. That is, the TCP
543 		 * source halves the congestion window "cwnd" and reduces the
544 		 * slow start threshold "ssthresh".
545 		 * A critical condition is that TCP does not react to
546 		 * congestion indications more than once every window of
547 		 * data (or more loosely more than once every round-trip time).
548 		 */
549 		if (time_after(jiffies, transport->last_time_ecne_reduced +
550 					transport->rtt)) {
551 			transport->ssthresh = max(transport->cwnd/2,
552 						  4*asoc->pathmtu);
553 			transport->cwnd = transport->ssthresh;
554 			transport->last_time_ecne_reduced = jiffies;
555 		}
556 		break;
557 
558 	case SCTP_LOWER_CWND_INACTIVE:
559 		/* RFC 2960 Section 7.2.1, sctpimpguide
560 		 * When the endpoint does not transmit data on a given
561 		 * transport address, the cwnd of the transport address
562 		 * should be adjusted to max(cwnd/2, 4*MTU) per RTO.
563 		 * NOTE: Although the draft recommends that this check needs
564 		 * to be done every RTO interval, we do it every hearbeat
565 		 * interval.
566 		 */
567 		transport->cwnd = max(transport->cwnd/2,
568 					 4*asoc->pathmtu);
569 		/* RFC 4960 Errata 3.27.2: also adjust sshthresh */
570 		transport->ssthresh = transport->cwnd;
571 		break;
572 	}
573 
574 	transport->partial_bytes_acked = 0;
575 
576 	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d\n",
577 		 __func__, transport, reason, transport->cwnd,
578 		 transport->ssthresh);
579 }
580 
581 /* Apply Max.Burst limit to the congestion window:
582  * sctpimpguide-05 2.14.2
583  * D) When the time comes for the sender to
584  * transmit new DATA chunks, the protocol parameter Max.Burst MUST
585  * first be applied to limit how many new DATA chunks may be sent.
586  * The limit is applied by adjusting cwnd as follows:
587  * 	if ((flightsize+ Max.Burst * MTU) < cwnd)
588  * 		cwnd = flightsize + Max.Burst * MTU
589  */
590 
591 void sctp_transport_burst_limited(struct sctp_transport *t)
592 {
593 	struct sctp_association *asoc = t->asoc;
594 	u32 old_cwnd = t->cwnd;
595 	u32 max_burst_bytes;
596 
597 	if (t->burst_limited || asoc->max_burst == 0)
598 		return;
599 
600 	max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu);
601 	if (max_burst_bytes < old_cwnd) {
602 		t->cwnd = max_burst_bytes;
603 		t->burst_limited = old_cwnd;
604 	}
605 }
606 
607 /* Restore the old cwnd congestion window, after the burst had it's
608  * desired effect.
609  */
610 void sctp_transport_burst_reset(struct sctp_transport *t)
611 {
612 	if (t->burst_limited) {
613 		t->cwnd = t->burst_limited;
614 		t->burst_limited = 0;
615 	}
616 }
617 
618 /* What is the next timeout value for this transport? */
619 unsigned long sctp_transport_timeout(struct sctp_transport *trans)
620 {
621 	/* RTO + timer slack +/- 50% of RTO */
622 	unsigned long timeout = trans->rto >> 1;
623 
624 	if (trans->state != SCTP_UNCONFIRMED &&
625 	    trans->state != SCTP_PF)
626 		timeout += trans->hbinterval;
627 
628 	return timeout;
629 }
630 
631 /* Reset transport variables to their initial values */
632 void sctp_transport_reset(struct sctp_transport *t)
633 {
634 	struct sctp_association *asoc = t->asoc;
635 
636 	/* RFC 2960 (bis), Section 5.2.4
637 	 * All the congestion control parameters (e.g., cwnd, ssthresh)
638 	 * related to this peer MUST be reset to their initial values
639 	 * (see Section 6.2.1)
640 	 */
641 	t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
642 	t->burst_limited = 0;
643 	t->ssthresh = asoc->peer.i.a_rwnd;
644 	t->rto = asoc->rto_initial;
645 	sctp_max_rto(asoc, t);
646 	t->rtt = 0;
647 	t->srtt = 0;
648 	t->rttvar = 0;
649 
650 	/* Reset these additional variables so that we have a clean slate. */
651 	t->partial_bytes_acked = 0;
652 	t->flight_size = 0;
653 	t->error_count = 0;
654 	t->rto_pending = 0;
655 	t->hb_sent = 0;
656 
657 	/* Initialize the state information for SFR-CACC */
658 	t->cacc.changeover_active = 0;
659 	t->cacc.cycling_changeover = 0;
660 	t->cacc.next_tsn_at_change = 0;
661 	t->cacc.cacc_saw_newack = 0;
662 }
663 
664 /* Schedule retransmission on the given transport */
665 void sctp_transport_immediate_rtx(struct sctp_transport *t)
666 {
667 	/* Stop pending T3_rtx_timer */
668 	if (del_timer(&t->T3_rtx_timer))
669 		sctp_transport_put(t);
670 
671 	sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX);
672 	if (!timer_pending(&t->T3_rtx_timer)) {
673 		if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto))
674 			sctp_transport_hold(t);
675 	}
676 }
677 
678 /* Drop dst */
679 void sctp_transport_dst_release(struct sctp_transport *t)
680 {
681 	dst_release(t->dst);
682 	t->dst = NULL;
683 	t->dst_pending_confirm = 0;
684 }
685 
686 /* Schedule neighbour confirm */
687 void sctp_transport_dst_confirm(struct sctp_transport *t)
688 {
689 	t->dst_pending_confirm = 1;
690 }
691