xref: /openbmc/linux/net/sctp/transport.c (revision 8bd1369b)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * This module provides the abstraction for an SCTP tranport representing
11  * a remote transport address.  For local transport addresses, we just use
12  * union sctp_addr.
13  *
14  * This SCTP implementation is free software;
15  * you can redistribute it and/or modify it under the terms of
16  * the GNU General Public License as published by
17  * the Free Software Foundation; either version 2, or (at your option)
18  * any later version.
19  *
20  * This SCTP implementation is distributed in the hope that it
21  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
22  *                 ************************
23  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
24  * See the GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with GNU CC; see the file COPYING.  If not, see
28  * <http://www.gnu.org/licenses/>.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <linux-sctp@vger.kernel.org>
33  *
34  * Written or modified by:
35  *    La Monte H.P. Yarroll <piggy@acm.org>
36  *    Karl Knutson          <karl@athena.chicago.il.us>
37  *    Jon Grimm             <jgrimm@us.ibm.com>
38  *    Xingang Guo           <xingang.guo@intel.com>
39  *    Hui Huang             <hui.huang@nokia.com>
40  *    Sridhar Samudrala	    <sri@us.ibm.com>
41  *    Ardelle Fan	    <ardelle.fan@intel.com>
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/slab.h>
47 #include <linux/types.h>
48 #include <linux/random.h>
49 #include <net/sctp/sctp.h>
50 #include <net/sctp/sm.h>
51 
52 /* 1st Level Abstractions.  */
53 
54 /* Initialize a new transport from provided memory.  */
55 static struct sctp_transport *sctp_transport_init(struct net *net,
56 						  struct sctp_transport *peer,
57 						  const union sctp_addr *addr,
58 						  gfp_t gfp)
59 {
60 	/* Copy in the address.  */
61 	peer->ipaddr = *addr;
62 	peer->af_specific = sctp_get_af_specific(addr->sa.sa_family);
63 	memset(&peer->saddr, 0, sizeof(union sctp_addr));
64 
65 	peer->sack_generation = 0;
66 
67 	/* From 6.3.1 RTO Calculation:
68 	 *
69 	 * C1) Until an RTT measurement has been made for a packet sent to the
70 	 * given destination transport address, set RTO to the protocol
71 	 * parameter 'RTO.Initial'.
72 	 */
73 	peer->rto = msecs_to_jiffies(net->sctp.rto_initial);
74 
75 	peer->last_time_heard = 0;
76 	peer->last_time_ecne_reduced = jiffies;
77 
78 	peer->param_flags = SPP_HB_DISABLE |
79 			    SPP_PMTUD_ENABLE |
80 			    SPP_SACKDELAY_ENABLE;
81 
82 	/* Initialize the default path max_retrans.  */
83 	peer->pathmaxrxt  = net->sctp.max_retrans_path;
84 	peer->pf_retrans  = net->sctp.pf_retrans;
85 
86 	INIT_LIST_HEAD(&peer->transmitted);
87 	INIT_LIST_HEAD(&peer->send_ready);
88 	INIT_LIST_HEAD(&peer->transports);
89 
90 	timer_setup(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 0);
91 	timer_setup(&peer->hb_timer, sctp_generate_heartbeat_event, 0);
92 	timer_setup(&peer->reconf_timer, sctp_generate_reconf_event, 0);
93 	timer_setup(&peer->proto_unreach_timer,
94 		    sctp_generate_proto_unreach_event, 0);
95 
96 	/* Initialize the 64-bit random nonce sent with heartbeat. */
97 	get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce));
98 
99 	refcount_set(&peer->refcnt, 1);
100 
101 	return peer;
102 }
103 
104 /* Allocate and initialize a new transport.  */
105 struct sctp_transport *sctp_transport_new(struct net *net,
106 					  const union sctp_addr *addr,
107 					  gfp_t gfp)
108 {
109 	struct sctp_transport *transport;
110 
111 	transport = kzalloc(sizeof(*transport), gfp);
112 	if (!transport)
113 		goto fail;
114 
115 	if (!sctp_transport_init(net, transport, addr, gfp))
116 		goto fail_init;
117 
118 	SCTP_DBG_OBJCNT_INC(transport);
119 
120 	return transport;
121 
122 fail_init:
123 	kfree(transport);
124 
125 fail:
126 	return NULL;
127 }
128 
129 /* This transport is no longer needed.  Free up if possible, or
130  * delay until it last reference count.
131  */
132 void sctp_transport_free(struct sctp_transport *transport)
133 {
134 	/* Try to delete the heartbeat timer.  */
135 	if (del_timer(&transport->hb_timer))
136 		sctp_transport_put(transport);
137 
138 	/* Delete the T3_rtx timer if it's active.
139 	 * There is no point in not doing this now and letting
140 	 * structure hang around in memory since we know
141 	 * the tranport is going away.
142 	 */
143 	if (del_timer(&transport->T3_rtx_timer))
144 		sctp_transport_put(transport);
145 
146 	if (del_timer(&transport->reconf_timer))
147 		sctp_transport_put(transport);
148 
149 	/* Delete the ICMP proto unreachable timer if it's active. */
150 	if (del_timer(&transport->proto_unreach_timer))
151 		sctp_association_put(transport->asoc);
152 
153 	sctp_transport_put(transport);
154 }
155 
156 static void sctp_transport_destroy_rcu(struct rcu_head *head)
157 {
158 	struct sctp_transport *transport;
159 
160 	transport = container_of(head, struct sctp_transport, rcu);
161 
162 	dst_release(transport->dst);
163 	kfree(transport);
164 	SCTP_DBG_OBJCNT_DEC(transport);
165 }
166 
167 /* Destroy the transport data structure.
168  * Assumes there are no more users of this structure.
169  */
170 static void sctp_transport_destroy(struct sctp_transport *transport)
171 {
172 	if (unlikely(refcount_read(&transport->refcnt))) {
173 		WARN(1, "Attempt to destroy undead transport %p!\n", transport);
174 		return;
175 	}
176 
177 	sctp_packet_free(&transport->packet);
178 
179 	if (transport->asoc)
180 		sctp_association_put(transport->asoc);
181 
182 	call_rcu(&transport->rcu, sctp_transport_destroy_rcu);
183 }
184 
185 /* Start T3_rtx timer if it is not already running and update the heartbeat
186  * timer.  This routine is called every time a DATA chunk is sent.
187  */
188 void sctp_transport_reset_t3_rtx(struct sctp_transport *transport)
189 {
190 	/* RFC 2960 6.3.2 Retransmission Timer Rules
191 	 *
192 	 * R1) Every time a DATA chunk is sent to any address(including a
193 	 * retransmission), if the T3-rtx timer of that address is not running
194 	 * start it running so that it will expire after the RTO of that
195 	 * address.
196 	 */
197 
198 	if (!timer_pending(&transport->T3_rtx_timer))
199 		if (!mod_timer(&transport->T3_rtx_timer,
200 			       jiffies + transport->rto))
201 			sctp_transport_hold(transport);
202 }
203 
204 void sctp_transport_reset_hb_timer(struct sctp_transport *transport)
205 {
206 	unsigned long expires;
207 
208 	/* When a data chunk is sent, reset the heartbeat interval.  */
209 	expires = jiffies + sctp_transport_timeout(transport);
210 	if (time_before(transport->hb_timer.expires, expires) &&
211 	    !mod_timer(&transport->hb_timer,
212 		       expires + prandom_u32_max(transport->rto)))
213 		sctp_transport_hold(transport);
214 }
215 
216 void sctp_transport_reset_reconf_timer(struct sctp_transport *transport)
217 {
218 	if (!timer_pending(&transport->reconf_timer))
219 		if (!mod_timer(&transport->reconf_timer,
220 			       jiffies + transport->rto))
221 			sctp_transport_hold(transport);
222 }
223 
224 /* This transport has been assigned to an association.
225  * Initialize fields from the association or from the sock itself.
226  * Register the reference count in the association.
227  */
228 void sctp_transport_set_owner(struct sctp_transport *transport,
229 			      struct sctp_association *asoc)
230 {
231 	transport->asoc = asoc;
232 	sctp_association_hold(asoc);
233 }
234 
235 /* Initialize the pmtu of a transport. */
236 void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk)
237 {
238 	/* If we don't have a fresh route, look one up */
239 	if (!transport->dst || transport->dst->obsolete) {
240 		sctp_transport_dst_release(transport);
241 		transport->af_specific->get_dst(transport, &transport->saddr,
242 						&transport->fl, sk);
243 	}
244 
245 	if (transport->param_flags & SPP_PMTUD_DISABLE) {
246 		struct sctp_association *asoc = transport->asoc;
247 
248 		if (!transport->pathmtu && asoc && asoc->pathmtu)
249 			transport->pathmtu = asoc->pathmtu;
250 		if (transport->pathmtu)
251 			return;
252 	}
253 
254 	if (transport->dst)
255 		transport->pathmtu = sctp_dst_mtu(transport->dst);
256 	else
257 		transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
258 }
259 
260 bool sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu)
261 {
262 	struct dst_entry *dst = sctp_transport_dst_check(t);
263 	bool change = true;
264 
265 	if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
266 		pr_warn_ratelimited("%s: Reported pmtu %d too low, using default minimum of %d\n",
267 				    __func__, pmtu, SCTP_DEFAULT_MINSEGMENT);
268 		/* Use default minimum segment instead */
269 		pmtu = SCTP_DEFAULT_MINSEGMENT;
270 	}
271 	pmtu = SCTP_TRUNC4(pmtu);
272 
273 	if (dst) {
274 		dst->ops->update_pmtu(dst, t->asoc->base.sk, NULL, pmtu);
275 		dst = sctp_transport_dst_check(t);
276 	}
277 
278 	if (!dst) {
279 		t->af_specific->get_dst(t, &t->saddr, &t->fl, t->asoc->base.sk);
280 		dst = t->dst;
281 	}
282 
283 	if (dst) {
284 		/* Re-fetch, as under layers may have a higher minimum size */
285 		pmtu = sctp_dst_mtu(dst);
286 		change = t->pathmtu != pmtu;
287 	}
288 	t->pathmtu = pmtu;
289 
290 	return change;
291 }
292 
293 /* Caches the dst entry and source address for a transport's destination
294  * address.
295  */
296 void sctp_transport_route(struct sctp_transport *transport,
297 			  union sctp_addr *saddr, struct sctp_sock *opt)
298 {
299 	struct sctp_association *asoc = transport->asoc;
300 	struct sctp_af *af = transport->af_specific;
301 
302 	sctp_transport_dst_release(transport);
303 	af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt));
304 
305 	if (saddr)
306 		memcpy(&transport->saddr, saddr, sizeof(union sctp_addr));
307 	else
308 		af->get_saddr(opt, transport, &transport->fl);
309 
310 	sctp_transport_pmtu(transport, sctp_opt2sk(opt));
311 
312 	/* Initialize sk->sk_rcv_saddr, if the transport is the
313 	 * association's active path for getsockname().
314 	 */
315 	if (transport->dst && asoc &&
316 	    (!asoc->peer.primary_path || transport == asoc->peer.active_path))
317 		opt->pf->to_sk_saddr(&transport->saddr, asoc->base.sk);
318 }
319 
320 /* Hold a reference to a transport.  */
321 int sctp_transport_hold(struct sctp_transport *transport)
322 {
323 	return refcount_inc_not_zero(&transport->refcnt);
324 }
325 
326 /* Release a reference to a transport and clean up
327  * if there are no more references.
328  */
329 void sctp_transport_put(struct sctp_transport *transport)
330 {
331 	if (refcount_dec_and_test(&transport->refcnt))
332 		sctp_transport_destroy(transport);
333 }
334 
335 /* Update transport's RTO based on the newly calculated RTT. */
336 void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt)
337 {
338 	if (unlikely(!tp->rto_pending))
339 		/* We should not be doing any RTO updates unless rto_pending is set.  */
340 		pr_debug("%s: rto_pending not set on transport %p!\n", __func__, tp);
341 
342 	if (tp->rttvar || tp->srtt) {
343 		struct net *net = sock_net(tp->asoc->base.sk);
344 		/* 6.3.1 C3) When a new RTT measurement R' is made, set
345 		 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|
346 		 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'
347 		 */
348 
349 		/* Note:  The above algorithm has been rewritten to
350 		 * express rto_beta and rto_alpha as inverse powers
351 		 * of two.
352 		 * For example, assuming the default value of RTO.Alpha of
353 		 * 1/8, rto_alpha would be expressed as 3.
354 		 */
355 		tp->rttvar = tp->rttvar - (tp->rttvar >> net->sctp.rto_beta)
356 			+ (((__u32)abs((__s64)tp->srtt - (__s64)rtt)) >> net->sctp.rto_beta);
357 		tp->srtt = tp->srtt - (tp->srtt >> net->sctp.rto_alpha)
358 			+ (rtt >> net->sctp.rto_alpha);
359 	} else {
360 		/* 6.3.1 C2) When the first RTT measurement R is made, set
361 		 * SRTT <- R, RTTVAR <- R/2.
362 		 */
363 		tp->srtt = rtt;
364 		tp->rttvar = rtt >> 1;
365 	}
366 
367 	/* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then
368 	 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY.
369 	 */
370 	if (tp->rttvar == 0)
371 		tp->rttvar = SCTP_CLOCK_GRANULARITY;
372 
373 	/* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */
374 	tp->rto = tp->srtt + (tp->rttvar << 2);
375 
376 	/* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min
377 	 * seconds then it is rounded up to RTO.Min seconds.
378 	 */
379 	if (tp->rto < tp->asoc->rto_min)
380 		tp->rto = tp->asoc->rto_min;
381 
382 	/* 6.3.1 C7) A maximum value may be placed on RTO provided it is
383 	 * at least RTO.max seconds.
384 	 */
385 	if (tp->rto > tp->asoc->rto_max)
386 		tp->rto = tp->asoc->rto_max;
387 
388 	sctp_max_rto(tp->asoc, tp);
389 	tp->rtt = rtt;
390 
391 	/* Reset rto_pending so that a new RTT measurement is started when a
392 	 * new data chunk is sent.
393 	 */
394 	tp->rto_pending = 0;
395 
396 	pr_debug("%s: transport:%p, rtt:%d, srtt:%d rttvar:%d, rto:%ld\n",
397 		 __func__, tp, rtt, tp->srtt, tp->rttvar, tp->rto);
398 }
399 
400 /* This routine updates the transport's cwnd and partial_bytes_acked
401  * parameters based on the bytes acked in the received SACK.
402  */
403 void sctp_transport_raise_cwnd(struct sctp_transport *transport,
404 			       __u32 sack_ctsn, __u32 bytes_acked)
405 {
406 	struct sctp_association *asoc = transport->asoc;
407 	__u32 cwnd, ssthresh, flight_size, pba, pmtu;
408 
409 	cwnd = transport->cwnd;
410 	flight_size = transport->flight_size;
411 
412 	/* See if we need to exit Fast Recovery first */
413 	if (asoc->fast_recovery &&
414 	    TSN_lte(asoc->fast_recovery_exit, sack_ctsn))
415 		asoc->fast_recovery = 0;
416 
417 	ssthresh = transport->ssthresh;
418 	pba = transport->partial_bytes_acked;
419 	pmtu = transport->asoc->pathmtu;
420 
421 	if (cwnd <= ssthresh) {
422 		/* RFC 4960 7.2.1
423 		 * o  When cwnd is less than or equal to ssthresh, an SCTP
424 		 *    endpoint MUST use the slow-start algorithm to increase
425 		 *    cwnd only if the current congestion window is being fully
426 		 *    utilized, an incoming SACK advances the Cumulative TSN
427 		 *    Ack Point, and the data sender is not in Fast Recovery.
428 		 *    Only when these three conditions are met can the cwnd be
429 		 *    increased; otherwise, the cwnd MUST not be increased.
430 		 *    If these conditions are met, then cwnd MUST be increased
431 		 *    by, at most, the lesser of 1) the total size of the
432 		 *    previously outstanding DATA chunk(s) acknowledged, and
433 		 *    2) the destination's path MTU.  This upper bound protects
434 		 *    against the ACK-Splitting attack outlined in [SAVAGE99].
435 		 */
436 		if (asoc->fast_recovery)
437 			return;
438 
439 		/* The appropriate cwnd increase algorithm is performed
440 		 * if, and only if the congestion window is being fully
441 		 * utilized.  Note that RFC4960 Errata 3.22 removed the
442 		 * other condition on ctsn moving.
443 		 */
444 		if (flight_size < cwnd)
445 			return;
446 
447 		if (bytes_acked > pmtu)
448 			cwnd += pmtu;
449 		else
450 			cwnd += bytes_acked;
451 
452 		pr_debug("%s: slow start: transport:%p, bytes_acked:%d, "
453 			 "cwnd:%d, ssthresh:%d, flight_size:%d, pba:%d\n",
454 			 __func__, transport, bytes_acked, cwnd, ssthresh,
455 			 flight_size, pba);
456 	} else {
457 		/* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh,
458 		 * upon each SACK arrival, increase partial_bytes_acked
459 		 * by the total number of bytes of all new chunks
460 		 * acknowledged in that SACK including chunks
461 		 * acknowledged by the new Cumulative TSN Ack and by Gap
462 		 * Ack Blocks. (updated by RFC4960 Errata 3.22)
463 		 *
464 		 * When partial_bytes_acked is greater than cwnd and
465 		 * before the arrival of the SACK the sender had less
466 		 * bytes of data outstanding than cwnd (i.e., before
467 		 * arrival of the SACK, flightsize was less than cwnd),
468 		 * reset partial_bytes_acked to cwnd. (RFC 4960 Errata
469 		 * 3.26)
470 		 *
471 		 * When partial_bytes_acked is equal to or greater than
472 		 * cwnd and before the arrival of the SACK the sender
473 		 * had cwnd or more bytes of data outstanding (i.e.,
474 		 * before arrival of the SACK, flightsize was greater
475 		 * than or equal to cwnd), partial_bytes_acked is reset
476 		 * to (partial_bytes_acked - cwnd). Next, cwnd is
477 		 * increased by MTU. (RFC 4960 Errata 3.12)
478 		 */
479 		pba += bytes_acked;
480 		if (pba > cwnd && flight_size < cwnd)
481 			pba = cwnd;
482 		if (pba >= cwnd && flight_size >= cwnd) {
483 			pba = pba - cwnd;
484 			cwnd += pmtu;
485 		}
486 
487 		pr_debug("%s: congestion avoidance: transport:%p, "
488 			 "bytes_acked:%d, cwnd:%d, ssthresh:%d, "
489 			 "flight_size:%d, pba:%d\n", __func__,
490 			 transport, bytes_acked, cwnd, ssthresh,
491 			 flight_size, pba);
492 	}
493 
494 	transport->cwnd = cwnd;
495 	transport->partial_bytes_acked = pba;
496 }
497 
498 /* This routine is used to lower the transport's cwnd when congestion is
499  * detected.
500  */
501 void sctp_transport_lower_cwnd(struct sctp_transport *transport,
502 			       enum sctp_lower_cwnd reason)
503 {
504 	struct sctp_association *asoc = transport->asoc;
505 
506 	switch (reason) {
507 	case SCTP_LOWER_CWND_T3_RTX:
508 		/* RFC 2960 Section 7.2.3, sctpimpguide
509 		 * When the T3-rtx timer expires on an address, SCTP should
510 		 * perform slow start by:
511 		 *      ssthresh = max(cwnd/2, 4*MTU)
512 		 *      cwnd = 1*MTU
513 		 *      partial_bytes_acked = 0
514 		 */
515 		transport->ssthresh = max(transport->cwnd/2,
516 					  4*asoc->pathmtu);
517 		transport->cwnd = asoc->pathmtu;
518 
519 		/* T3-rtx also clears fast recovery */
520 		asoc->fast_recovery = 0;
521 		break;
522 
523 	case SCTP_LOWER_CWND_FAST_RTX:
524 		/* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the
525 		 * destination address(es) to which the missing DATA chunks
526 		 * were last sent, according to the formula described in
527 		 * Section 7.2.3.
528 		 *
529 		 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet
530 		 * losses from SACK (see Section 7.2.4), An endpoint
531 		 * should do the following:
532 		 *      ssthresh = max(cwnd/2, 4*MTU)
533 		 *      cwnd = ssthresh
534 		 *      partial_bytes_acked = 0
535 		 */
536 		if (asoc->fast_recovery)
537 			return;
538 
539 		/* Mark Fast recovery */
540 		asoc->fast_recovery = 1;
541 		asoc->fast_recovery_exit = asoc->next_tsn - 1;
542 
543 		transport->ssthresh = max(transport->cwnd/2,
544 					  4*asoc->pathmtu);
545 		transport->cwnd = transport->ssthresh;
546 		break;
547 
548 	case SCTP_LOWER_CWND_ECNE:
549 		/* RFC 2481 Section 6.1.2.
550 		 * If the sender receives an ECN-Echo ACK packet
551 		 * then the sender knows that congestion was encountered in the
552 		 * network on the path from the sender to the receiver. The
553 		 * indication of congestion should be treated just as a
554 		 * congestion loss in non-ECN Capable TCP. That is, the TCP
555 		 * source halves the congestion window "cwnd" and reduces the
556 		 * slow start threshold "ssthresh".
557 		 * A critical condition is that TCP does not react to
558 		 * congestion indications more than once every window of
559 		 * data (or more loosely more than once every round-trip time).
560 		 */
561 		if (time_after(jiffies, transport->last_time_ecne_reduced +
562 					transport->rtt)) {
563 			transport->ssthresh = max(transport->cwnd/2,
564 						  4*asoc->pathmtu);
565 			transport->cwnd = transport->ssthresh;
566 			transport->last_time_ecne_reduced = jiffies;
567 		}
568 		break;
569 
570 	case SCTP_LOWER_CWND_INACTIVE:
571 		/* RFC 2960 Section 7.2.1, sctpimpguide
572 		 * When the endpoint does not transmit data on a given
573 		 * transport address, the cwnd of the transport address
574 		 * should be adjusted to max(cwnd/2, 4*MTU) per RTO.
575 		 * NOTE: Although the draft recommends that this check needs
576 		 * to be done every RTO interval, we do it every hearbeat
577 		 * interval.
578 		 */
579 		transport->cwnd = max(transport->cwnd/2,
580 					 4*asoc->pathmtu);
581 		/* RFC 4960 Errata 3.27.2: also adjust sshthresh */
582 		transport->ssthresh = transport->cwnd;
583 		break;
584 	}
585 
586 	transport->partial_bytes_acked = 0;
587 
588 	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d\n",
589 		 __func__, transport, reason, transport->cwnd,
590 		 transport->ssthresh);
591 }
592 
593 /* Apply Max.Burst limit to the congestion window:
594  * sctpimpguide-05 2.14.2
595  * D) When the time comes for the sender to
596  * transmit new DATA chunks, the protocol parameter Max.Burst MUST
597  * first be applied to limit how many new DATA chunks may be sent.
598  * The limit is applied by adjusting cwnd as follows:
599  * 	if ((flightsize+ Max.Burst * MTU) < cwnd)
600  * 		cwnd = flightsize + Max.Burst * MTU
601  */
602 
603 void sctp_transport_burst_limited(struct sctp_transport *t)
604 {
605 	struct sctp_association *asoc = t->asoc;
606 	u32 old_cwnd = t->cwnd;
607 	u32 max_burst_bytes;
608 
609 	if (t->burst_limited || asoc->max_burst == 0)
610 		return;
611 
612 	max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu);
613 	if (max_burst_bytes < old_cwnd) {
614 		t->cwnd = max_burst_bytes;
615 		t->burst_limited = old_cwnd;
616 	}
617 }
618 
619 /* Restore the old cwnd congestion window, after the burst had it's
620  * desired effect.
621  */
622 void sctp_transport_burst_reset(struct sctp_transport *t)
623 {
624 	if (t->burst_limited) {
625 		t->cwnd = t->burst_limited;
626 		t->burst_limited = 0;
627 	}
628 }
629 
630 /* What is the next timeout value for this transport? */
631 unsigned long sctp_transport_timeout(struct sctp_transport *trans)
632 {
633 	/* RTO + timer slack +/- 50% of RTO */
634 	unsigned long timeout = trans->rto >> 1;
635 
636 	if (trans->state != SCTP_UNCONFIRMED &&
637 	    trans->state != SCTP_PF)
638 		timeout += trans->hbinterval;
639 
640 	return max_t(unsigned long, timeout, HZ / 5);
641 }
642 
643 /* Reset transport variables to their initial values */
644 void sctp_transport_reset(struct sctp_transport *t)
645 {
646 	struct sctp_association *asoc = t->asoc;
647 
648 	/* RFC 2960 (bis), Section 5.2.4
649 	 * All the congestion control parameters (e.g., cwnd, ssthresh)
650 	 * related to this peer MUST be reset to their initial values
651 	 * (see Section 6.2.1)
652 	 */
653 	t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
654 	t->burst_limited = 0;
655 	t->ssthresh = asoc->peer.i.a_rwnd;
656 	t->rto = asoc->rto_initial;
657 	sctp_max_rto(asoc, t);
658 	t->rtt = 0;
659 	t->srtt = 0;
660 	t->rttvar = 0;
661 
662 	/* Reset these additional variables so that we have a clean slate. */
663 	t->partial_bytes_acked = 0;
664 	t->flight_size = 0;
665 	t->error_count = 0;
666 	t->rto_pending = 0;
667 	t->hb_sent = 0;
668 
669 	/* Initialize the state information for SFR-CACC */
670 	t->cacc.changeover_active = 0;
671 	t->cacc.cycling_changeover = 0;
672 	t->cacc.next_tsn_at_change = 0;
673 	t->cacc.cacc_saw_newack = 0;
674 }
675 
676 /* Schedule retransmission on the given transport */
677 void sctp_transport_immediate_rtx(struct sctp_transport *t)
678 {
679 	/* Stop pending T3_rtx_timer */
680 	if (del_timer(&t->T3_rtx_timer))
681 		sctp_transport_put(t);
682 
683 	sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX);
684 	if (!timer_pending(&t->T3_rtx_timer)) {
685 		if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto))
686 			sctp_transport_hold(t);
687 	}
688 }
689 
690 /* Drop dst */
691 void sctp_transport_dst_release(struct sctp_transport *t)
692 {
693 	dst_release(t->dst);
694 	t->dst = NULL;
695 	t->dst_pending_confirm = 0;
696 }
697 
698 /* Schedule neighbour confirm */
699 void sctp_transport_dst_confirm(struct sctp_transport *t)
700 {
701 	t->dst_pending_confirm = 1;
702 }
703