1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP tranport representing 11 * a remote transport address. For local transport addresses, we just use 12 * union sctp_addr. 13 * 14 * This SCTP implementation is free software; 15 * you can redistribute it and/or modify it under the terms of 16 * the GNU General Public License as published by 17 * the Free Software Foundation; either version 2, or (at your option) 18 * any later version. 19 * 20 * This SCTP implementation is distributed in the hope that it 21 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 22 * ************************ 23 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 24 * See the GNU General Public License for more details. 25 * 26 * You should have received a copy of the GNU General Public License 27 * along with GNU CC; see the file COPYING. If not, write to 28 * the Free Software Foundation, 59 Temple Place - Suite 330, 29 * Boston, MA 02111-1307, USA. 30 * 31 * Please send any bug reports or fixes you make to the 32 * email address(es): 33 * lksctp developers <lksctp-developers@lists.sourceforge.net> 34 * 35 * Or submit a bug report through the following website: 36 * http://www.sf.net/projects/lksctp 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Karl Knutson <karl@athena.chicago.il.us> 41 * Jon Grimm <jgrimm@us.ibm.com> 42 * Xingang Guo <xingang.guo@intel.com> 43 * Hui Huang <hui.huang@nokia.com> 44 * Sridhar Samudrala <sri@us.ibm.com> 45 * Ardelle Fan <ardelle.fan@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 52 53 #include <linux/slab.h> 54 #include <linux/types.h> 55 #include <linux/random.h> 56 #include <net/sctp/sctp.h> 57 #include <net/sctp/sm.h> 58 59 /* 1st Level Abstractions. */ 60 61 /* Initialize a new transport from provided memory. */ 62 static struct sctp_transport *sctp_transport_init(struct net *net, 63 struct sctp_transport *peer, 64 const union sctp_addr *addr, 65 gfp_t gfp) 66 { 67 /* Copy in the address. */ 68 peer->ipaddr = *addr; 69 peer->af_specific = sctp_get_af_specific(addr->sa.sa_family); 70 memset(&peer->saddr, 0, sizeof(union sctp_addr)); 71 72 peer->sack_generation = 0; 73 74 /* From 6.3.1 RTO Calculation: 75 * 76 * C1) Until an RTT measurement has been made for a packet sent to the 77 * given destination transport address, set RTO to the protocol 78 * parameter 'RTO.Initial'. 79 */ 80 peer->rto = msecs_to_jiffies(net->sctp.rto_initial); 81 82 peer->last_time_heard = jiffies; 83 peer->last_time_ecne_reduced = jiffies; 84 85 peer->param_flags = SPP_HB_DISABLE | 86 SPP_PMTUD_ENABLE | 87 SPP_SACKDELAY_ENABLE; 88 89 /* Initialize the default path max_retrans. */ 90 peer->pathmaxrxt = net->sctp.max_retrans_path; 91 peer->pf_retrans = net->sctp.pf_retrans; 92 93 INIT_LIST_HEAD(&peer->transmitted); 94 INIT_LIST_HEAD(&peer->send_ready); 95 INIT_LIST_HEAD(&peer->transports); 96 97 setup_timer(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 98 (unsigned long)peer); 99 setup_timer(&peer->hb_timer, sctp_generate_heartbeat_event, 100 (unsigned long)peer); 101 setup_timer(&peer->proto_unreach_timer, 102 sctp_generate_proto_unreach_event, (unsigned long)peer); 103 104 /* Initialize the 64-bit random nonce sent with heartbeat. */ 105 get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce)); 106 107 atomic_set(&peer->refcnt, 1); 108 109 return peer; 110 } 111 112 /* Allocate and initialize a new transport. */ 113 struct sctp_transport *sctp_transport_new(struct net *net, 114 const union sctp_addr *addr, 115 gfp_t gfp) 116 { 117 struct sctp_transport *transport; 118 119 transport = t_new(struct sctp_transport, gfp); 120 if (!transport) 121 goto fail; 122 123 if (!sctp_transport_init(net, transport, addr, gfp)) 124 goto fail_init; 125 126 transport->malloced = 1; 127 SCTP_DBG_OBJCNT_INC(transport); 128 129 return transport; 130 131 fail_init: 132 kfree(transport); 133 134 fail: 135 return NULL; 136 } 137 138 /* This transport is no longer needed. Free up if possible, or 139 * delay until it last reference count. 140 */ 141 void sctp_transport_free(struct sctp_transport *transport) 142 { 143 transport->dead = 1; 144 145 /* Try to delete the heartbeat timer. */ 146 if (del_timer(&transport->hb_timer)) 147 sctp_transport_put(transport); 148 149 /* Delete the T3_rtx timer if it's active. 150 * There is no point in not doing this now and letting 151 * structure hang around in memory since we know 152 * the tranport is going away. 153 */ 154 if (timer_pending(&transport->T3_rtx_timer) && 155 del_timer(&transport->T3_rtx_timer)) 156 sctp_transport_put(transport); 157 158 /* Delete the ICMP proto unreachable timer if it's active. */ 159 if (timer_pending(&transport->proto_unreach_timer) && 160 del_timer(&transport->proto_unreach_timer)) 161 sctp_association_put(transport->asoc); 162 163 sctp_transport_put(transport); 164 } 165 166 /* Destroy the transport data structure. 167 * Assumes there are no more users of this structure. 168 */ 169 static void sctp_transport_destroy(struct sctp_transport *transport) 170 { 171 SCTP_ASSERT(transport->dead, "Transport is not dead", return); 172 173 if (transport->asoc) 174 sctp_association_put(transport->asoc); 175 176 sctp_packet_free(&transport->packet); 177 178 dst_release(transport->dst); 179 kfree(transport); 180 SCTP_DBG_OBJCNT_DEC(transport); 181 } 182 183 /* Start T3_rtx timer if it is not already running and update the heartbeat 184 * timer. This routine is called every time a DATA chunk is sent. 185 */ 186 void sctp_transport_reset_timers(struct sctp_transport *transport) 187 { 188 /* RFC 2960 6.3.2 Retransmission Timer Rules 189 * 190 * R1) Every time a DATA chunk is sent to any address(including a 191 * retransmission), if the T3-rtx timer of that address is not running 192 * start it running so that it will expire after the RTO of that 193 * address. 194 */ 195 196 if (!timer_pending(&transport->T3_rtx_timer)) 197 if (!mod_timer(&transport->T3_rtx_timer, 198 jiffies + transport->rto)) 199 sctp_transport_hold(transport); 200 201 /* When a data chunk is sent, reset the heartbeat interval. */ 202 if (!mod_timer(&transport->hb_timer, 203 sctp_transport_timeout(transport))) 204 sctp_transport_hold(transport); 205 } 206 207 /* This transport has been assigned to an association. 208 * Initialize fields from the association or from the sock itself. 209 * Register the reference count in the association. 210 */ 211 void sctp_transport_set_owner(struct sctp_transport *transport, 212 struct sctp_association *asoc) 213 { 214 transport->asoc = asoc; 215 sctp_association_hold(asoc); 216 } 217 218 /* Initialize the pmtu of a transport. */ 219 void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk) 220 { 221 /* If we don't have a fresh route, look one up */ 222 if (!transport->dst || transport->dst->obsolete) { 223 dst_release(transport->dst); 224 transport->af_specific->get_dst(transport, &transport->saddr, 225 &transport->fl, sk); 226 } 227 228 if (transport->dst) { 229 transport->pathmtu = dst_mtu(transport->dst); 230 } else 231 transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 232 } 233 234 void sctp_transport_update_pmtu(struct sock *sk, struct sctp_transport *t, u32 pmtu) 235 { 236 struct dst_entry *dst; 237 238 if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { 239 pr_warn("%s: Reported pmtu %d too low, using default minimum of %d\n", 240 __func__, pmtu, 241 SCTP_DEFAULT_MINSEGMENT); 242 /* Use default minimum segment size and disable 243 * pmtu discovery on this transport. 244 */ 245 t->pathmtu = SCTP_DEFAULT_MINSEGMENT; 246 } else { 247 t->pathmtu = pmtu; 248 } 249 250 dst = sctp_transport_dst_check(t); 251 if (!dst) 252 t->af_specific->get_dst(t, &t->saddr, &t->fl, sk); 253 254 if (dst) { 255 dst->ops->update_pmtu(dst, sk, NULL, pmtu); 256 257 dst = sctp_transport_dst_check(t); 258 if (!dst) 259 t->af_specific->get_dst(t, &t->saddr, &t->fl, sk); 260 } 261 } 262 263 /* Caches the dst entry and source address for a transport's destination 264 * address. 265 */ 266 void sctp_transport_route(struct sctp_transport *transport, 267 union sctp_addr *saddr, struct sctp_sock *opt) 268 { 269 struct sctp_association *asoc = transport->asoc; 270 struct sctp_af *af = transport->af_specific; 271 272 af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt)); 273 274 if (saddr) 275 memcpy(&transport->saddr, saddr, sizeof(union sctp_addr)); 276 else 277 af->get_saddr(opt, transport, &transport->fl); 278 279 if ((transport->param_flags & SPP_PMTUD_DISABLE) && transport->pathmtu) { 280 return; 281 } 282 if (transport->dst) { 283 transport->pathmtu = dst_mtu(transport->dst); 284 285 /* Initialize sk->sk_rcv_saddr, if the transport is the 286 * association's active path for getsockname(). 287 */ 288 if (asoc && (!asoc->peer.primary_path || 289 (transport == asoc->peer.active_path))) 290 opt->pf->af->to_sk_saddr(&transport->saddr, 291 asoc->base.sk); 292 } else 293 transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 294 } 295 296 /* Hold a reference to a transport. */ 297 void sctp_transport_hold(struct sctp_transport *transport) 298 { 299 atomic_inc(&transport->refcnt); 300 } 301 302 /* Release a reference to a transport and clean up 303 * if there are no more references. 304 */ 305 void sctp_transport_put(struct sctp_transport *transport) 306 { 307 if (atomic_dec_and_test(&transport->refcnt)) 308 sctp_transport_destroy(transport); 309 } 310 311 /* Update transport's RTO based on the newly calculated RTT. */ 312 void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt) 313 { 314 /* Check for valid transport. */ 315 SCTP_ASSERT(tp, "NULL transport", return); 316 317 /* We should not be doing any RTO updates unless rto_pending is set. */ 318 SCTP_ASSERT(tp->rto_pending, "rto_pending not set", return); 319 320 if (tp->rttvar || tp->srtt) { 321 struct net *net = sock_net(tp->asoc->base.sk); 322 /* 6.3.1 C3) When a new RTT measurement R' is made, set 323 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'| 324 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R' 325 */ 326 327 /* Note: The above algorithm has been rewritten to 328 * express rto_beta and rto_alpha as inverse powers 329 * of two. 330 * For example, assuming the default value of RTO.Alpha of 331 * 1/8, rto_alpha would be expressed as 3. 332 */ 333 tp->rttvar = tp->rttvar - (tp->rttvar >> net->sctp.rto_beta) 334 + ((abs(tp->srtt - rtt)) >> net->sctp.rto_beta); 335 tp->srtt = tp->srtt - (tp->srtt >> net->sctp.rto_alpha) 336 + (rtt >> net->sctp.rto_alpha); 337 } else { 338 /* 6.3.1 C2) When the first RTT measurement R is made, set 339 * SRTT <- R, RTTVAR <- R/2. 340 */ 341 tp->srtt = rtt; 342 tp->rttvar = rtt >> 1; 343 } 344 345 /* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then 346 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY. 347 */ 348 if (tp->rttvar == 0) 349 tp->rttvar = SCTP_CLOCK_GRANULARITY; 350 351 /* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */ 352 tp->rto = tp->srtt + (tp->rttvar << 2); 353 354 /* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min 355 * seconds then it is rounded up to RTO.Min seconds. 356 */ 357 if (tp->rto < tp->asoc->rto_min) 358 tp->rto = tp->asoc->rto_min; 359 360 /* 6.3.1 C7) A maximum value may be placed on RTO provided it is 361 * at least RTO.max seconds. 362 */ 363 if (tp->rto > tp->asoc->rto_max) 364 tp->rto = tp->asoc->rto_max; 365 366 tp->rtt = rtt; 367 368 /* Reset rto_pending so that a new RTT measurement is started when a 369 * new data chunk is sent. 370 */ 371 tp->rto_pending = 0; 372 373 SCTP_DEBUG_PRINTK("%s: transport: %p, rtt: %d, srtt: %d " 374 "rttvar: %d, rto: %ld\n", __func__, 375 tp, rtt, tp->srtt, tp->rttvar, tp->rto); 376 } 377 378 /* This routine updates the transport's cwnd and partial_bytes_acked 379 * parameters based on the bytes acked in the received SACK. 380 */ 381 void sctp_transport_raise_cwnd(struct sctp_transport *transport, 382 __u32 sack_ctsn, __u32 bytes_acked) 383 { 384 struct sctp_association *asoc = transport->asoc; 385 __u32 cwnd, ssthresh, flight_size, pba, pmtu; 386 387 cwnd = transport->cwnd; 388 flight_size = transport->flight_size; 389 390 /* See if we need to exit Fast Recovery first */ 391 if (asoc->fast_recovery && 392 TSN_lte(asoc->fast_recovery_exit, sack_ctsn)) 393 asoc->fast_recovery = 0; 394 395 /* The appropriate cwnd increase algorithm is performed if, and only 396 * if the cumulative TSN whould advanced and the congestion window is 397 * being fully utilized. 398 */ 399 if (TSN_lte(sack_ctsn, transport->asoc->ctsn_ack_point) || 400 (flight_size < cwnd)) 401 return; 402 403 ssthresh = transport->ssthresh; 404 pba = transport->partial_bytes_acked; 405 pmtu = transport->asoc->pathmtu; 406 407 if (cwnd <= ssthresh) { 408 /* RFC 4960 7.2.1 409 * o When cwnd is less than or equal to ssthresh, an SCTP 410 * endpoint MUST use the slow-start algorithm to increase 411 * cwnd only if the current congestion window is being fully 412 * utilized, an incoming SACK advances the Cumulative TSN 413 * Ack Point, and the data sender is not in Fast Recovery. 414 * Only when these three conditions are met can the cwnd be 415 * increased; otherwise, the cwnd MUST not be increased. 416 * If these conditions are met, then cwnd MUST be increased 417 * by, at most, the lesser of 1) the total size of the 418 * previously outstanding DATA chunk(s) acknowledged, and 419 * 2) the destination's path MTU. This upper bound protects 420 * against the ACK-Splitting attack outlined in [SAVAGE99]. 421 */ 422 if (asoc->fast_recovery) 423 return; 424 425 if (bytes_acked > pmtu) 426 cwnd += pmtu; 427 else 428 cwnd += bytes_acked; 429 SCTP_DEBUG_PRINTK("%s: SLOW START: transport: %p, " 430 "bytes_acked: %d, cwnd: %d, ssthresh: %d, " 431 "flight_size: %d, pba: %d\n", 432 __func__, 433 transport, bytes_acked, cwnd, 434 ssthresh, flight_size, pba); 435 } else { 436 /* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh, 437 * upon each SACK arrival that advances the Cumulative TSN Ack 438 * Point, increase partial_bytes_acked by the total number of 439 * bytes of all new chunks acknowledged in that SACK including 440 * chunks acknowledged by the new Cumulative TSN Ack and by 441 * Gap Ack Blocks. 442 * 443 * When partial_bytes_acked is equal to or greater than cwnd 444 * and before the arrival of the SACK the sender had cwnd or 445 * more bytes of data outstanding (i.e., before arrival of the 446 * SACK, flightsize was greater than or equal to cwnd), 447 * increase cwnd by MTU, and reset partial_bytes_acked to 448 * (partial_bytes_acked - cwnd). 449 */ 450 pba += bytes_acked; 451 if (pba >= cwnd) { 452 cwnd += pmtu; 453 pba = ((cwnd < pba) ? (pba - cwnd) : 0); 454 } 455 SCTP_DEBUG_PRINTK("%s: CONGESTION AVOIDANCE: " 456 "transport: %p, bytes_acked: %d, cwnd: %d, " 457 "ssthresh: %d, flight_size: %d, pba: %d\n", 458 __func__, 459 transport, bytes_acked, cwnd, 460 ssthresh, flight_size, pba); 461 } 462 463 transport->cwnd = cwnd; 464 transport->partial_bytes_acked = pba; 465 } 466 467 /* This routine is used to lower the transport's cwnd when congestion is 468 * detected. 469 */ 470 void sctp_transport_lower_cwnd(struct sctp_transport *transport, 471 sctp_lower_cwnd_t reason) 472 { 473 struct sctp_association *asoc = transport->asoc; 474 475 switch (reason) { 476 case SCTP_LOWER_CWND_T3_RTX: 477 /* RFC 2960 Section 7.2.3, sctpimpguide 478 * When the T3-rtx timer expires on an address, SCTP should 479 * perform slow start by: 480 * ssthresh = max(cwnd/2, 4*MTU) 481 * cwnd = 1*MTU 482 * partial_bytes_acked = 0 483 */ 484 transport->ssthresh = max(transport->cwnd/2, 485 4*asoc->pathmtu); 486 transport->cwnd = asoc->pathmtu; 487 488 /* T3-rtx also clears fast recovery */ 489 asoc->fast_recovery = 0; 490 break; 491 492 case SCTP_LOWER_CWND_FAST_RTX: 493 /* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the 494 * destination address(es) to which the missing DATA chunks 495 * were last sent, according to the formula described in 496 * Section 7.2.3. 497 * 498 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet 499 * losses from SACK (see Section 7.2.4), An endpoint 500 * should do the following: 501 * ssthresh = max(cwnd/2, 4*MTU) 502 * cwnd = ssthresh 503 * partial_bytes_acked = 0 504 */ 505 if (asoc->fast_recovery) 506 return; 507 508 /* Mark Fast recovery */ 509 asoc->fast_recovery = 1; 510 asoc->fast_recovery_exit = asoc->next_tsn - 1; 511 512 transport->ssthresh = max(transport->cwnd/2, 513 4*asoc->pathmtu); 514 transport->cwnd = transport->ssthresh; 515 break; 516 517 case SCTP_LOWER_CWND_ECNE: 518 /* RFC 2481 Section 6.1.2. 519 * If the sender receives an ECN-Echo ACK packet 520 * then the sender knows that congestion was encountered in the 521 * network on the path from the sender to the receiver. The 522 * indication of congestion should be treated just as a 523 * congestion loss in non-ECN Capable TCP. That is, the TCP 524 * source halves the congestion window "cwnd" and reduces the 525 * slow start threshold "ssthresh". 526 * A critical condition is that TCP does not react to 527 * congestion indications more than once every window of 528 * data (or more loosely more than once every round-trip time). 529 */ 530 if (time_after(jiffies, transport->last_time_ecne_reduced + 531 transport->rtt)) { 532 transport->ssthresh = max(transport->cwnd/2, 533 4*asoc->pathmtu); 534 transport->cwnd = transport->ssthresh; 535 transport->last_time_ecne_reduced = jiffies; 536 } 537 break; 538 539 case SCTP_LOWER_CWND_INACTIVE: 540 /* RFC 2960 Section 7.2.1, sctpimpguide 541 * When the endpoint does not transmit data on a given 542 * transport address, the cwnd of the transport address 543 * should be adjusted to max(cwnd/2, 4*MTU) per RTO. 544 * NOTE: Although the draft recommends that this check needs 545 * to be done every RTO interval, we do it every hearbeat 546 * interval. 547 */ 548 transport->cwnd = max(transport->cwnd/2, 549 4*asoc->pathmtu); 550 break; 551 } 552 553 transport->partial_bytes_acked = 0; 554 SCTP_DEBUG_PRINTK("%s: transport: %p reason: %d cwnd: " 555 "%d ssthresh: %d\n", __func__, 556 transport, reason, 557 transport->cwnd, transport->ssthresh); 558 } 559 560 /* Apply Max.Burst limit to the congestion window: 561 * sctpimpguide-05 2.14.2 562 * D) When the time comes for the sender to 563 * transmit new DATA chunks, the protocol parameter Max.Burst MUST 564 * first be applied to limit how many new DATA chunks may be sent. 565 * The limit is applied by adjusting cwnd as follows: 566 * if ((flightsize+ Max.Burst * MTU) < cwnd) 567 * cwnd = flightsize + Max.Burst * MTU 568 */ 569 570 void sctp_transport_burst_limited(struct sctp_transport *t) 571 { 572 struct sctp_association *asoc = t->asoc; 573 u32 old_cwnd = t->cwnd; 574 u32 max_burst_bytes; 575 576 if (t->burst_limited) 577 return; 578 579 max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu); 580 if (max_burst_bytes < old_cwnd) { 581 t->cwnd = max_burst_bytes; 582 t->burst_limited = old_cwnd; 583 } 584 } 585 586 /* Restore the old cwnd congestion window, after the burst had it's 587 * desired effect. 588 */ 589 void sctp_transport_burst_reset(struct sctp_transport *t) 590 { 591 if (t->burst_limited) { 592 t->cwnd = t->burst_limited; 593 t->burst_limited = 0; 594 } 595 } 596 597 /* What is the next timeout value for this transport? */ 598 unsigned long sctp_transport_timeout(struct sctp_transport *t) 599 { 600 unsigned long timeout; 601 timeout = t->rto + sctp_jitter(t->rto); 602 if ((t->state != SCTP_UNCONFIRMED) && 603 (t->state != SCTP_PF)) 604 timeout += t->hbinterval; 605 timeout += jiffies; 606 return timeout; 607 } 608 609 /* Reset transport variables to their initial values */ 610 void sctp_transport_reset(struct sctp_transport *t) 611 { 612 struct sctp_association *asoc = t->asoc; 613 614 /* RFC 2960 (bis), Section 5.2.4 615 * All the congestion control parameters (e.g., cwnd, ssthresh) 616 * related to this peer MUST be reset to their initial values 617 * (see Section 6.2.1) 618 */ 619 t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 620 t->burst_limited = 0; 621 t->ssthresh = asoc->peer.i.a_rwnd; 622 t->rto = asoc->rto_initial; 623 t->rtt = 0; 624 t->srtt = 0; 625 t->rttvar = 0; 626 627 /* Reset these additional varibles so that we have a clean 628 * slate. 629 */ 630 t->partial_bytes_acked = 0; 631 t->flight_size = 0; 632 t->error_count = 0; 633 t->rto_pending = 0; 634 t->hb_sent = 0; 635 636 /* Initialize the state information for SFR-CACC */ 637 t->cacc.changeover_active = 0; 638 t->cacc.cycling_changeover = 0; 639 t->cacc.next_tsn_at_change = 0; 640 t->cacc.cacc_saw_newack = 0; 641 } 642 643 /* Schedule retransmission on the given transport */ 644 void sctp_transport_immediate_rtx(struct sctp_transport *t) 645 { 646 /* Stop pending T3_rtx_timer */ 647 if (timer_pending(&t->T3_rtx_timer)) { 648 (void)del_timer(&t->T3_rtx_timer); 649 sctp_transport_put(t); 650 } 651 sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX); 652 if (!timer_pending(&t->T3_rtx_timer)) { 653 if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto)) 654 sctp_transport_hold(t); 655 } 656 return; 657 } 658