1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 #define traverse_and_process() \ 151 do { \ 152 msg = chunk->msg; \ 153 if (msg == prev_msg) \ 154 continue; \ 155 list_for_each_entry(c, &msg->chunks, frag_list) { \ 156 if ((clear && asoc->base.sk == c->skb->sk) || \ 157 (!clear && asoc->base.sk != c->skb->sk)) \ 158 cb(c); \ 159 } \ 160 prev_msg = msg; \ 161 } while (0) 162 163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 164 bool clear, 165 void (*cb)(struct sctp_chunk *)) 166 167 { 168 struct sctp_datamsg *msg, *prev_msg = NULL; 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_chunk *chunk, *c; 171 struct sctp_transport *t; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 traverse_and_process(); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 traverse_and_process(); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static int sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 static void sctp_auto_asconf_init(struct sctp_sock *sp) 361 { 362 struct net *net = sock_net(&sp->inet.sk); 363 364 if (net->sctp.default_auto_asconf) { 365 spin_lock(&net->sctp.addr_wq_lock); 366 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 367 spin_unlock(&net->sctp.addr_wq_lock); 368 sp->do_auto_asconf = 1; 369 } 370 } 371 372 /* Bind a local address either to an endpoint or to an association. */ 373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 374 { 375 struct net *net = sock_net(sk); 376 struct sctp_sock *sp = sctp_sk(sk); 377 struct sctp_endpoint *ep = sp->ep; 378 struct sctp_bind_addr *bp = &ep->base.bind_addr; 379 struct sctp_af *af; 380 unsigned short snum; 381 int ret = 0; 382 383 /* Common sockaddr verification. */ 384 af = sctp_sockaddr_af(sp, addr, len); 385 if (!af) { 386 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 387 __func__, sk, addr, len); 388 return -EINVAL; 389 } 390 391 snum = ntohs(addr->v4.sin_port); 392 393 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 394 __func__, sk, &addr->sa, bp->port, snum, len); 395 396 /* PF specific bind() address verification. */ 397 if (!sp->pf->bind_verify(sp, addr)) 398 return -EADDRNOTAVAIL; 399 400 /* We must either be unbound, or bind to the same port. 401 * It's OK to allow 0 ports if we are already bound. 402 * We'll just inhert an already bound port in this case 403 */ 404 if (bp->port) { 405 if (!snum) 406 snum = bp->port; 407 else if (snum != bp->port) { 408 pr_debug("%s: new port %d doesn't match existing port " 409 "%d\n", __func__, snum, bp->port); 410 return -EINVAL; 411 } 412 } 413 414 if (snum && inet_port_requires_bind_service(net, snum) && 415 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 416 return -EACCES; 417 418 /* See if the address matches any of the addresses we may have 419 * already bound before checking against other endpoints. 420 */ 421 if (sctp_bind_addr_match(bp, addr, sp)) 422 return -EINVAL; 423 424 /* Make sure we are allowed to bind here. 425 * The function sctp_get_port_local() does duplicate address 426 * detection. 427 */ 428 addr->v4.sin_port = htons(snum); 429 if (sctp_get_port_local(sk, addr)) 430 return -EADDRINUSE; 431 432 /* Refresh ephemeral port. */ 433 if (!bp->port) { 434 bp->port = inet_sk(sk)->inet_num; 435 sctp_auto_asconf_init(sp); 436 } 437 438 /* Add the address to the bind address list. 439 * Use GFP_ATOMIC since BHs will be disabled. 440 */ 441 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 442 SCTP_ADDR_SRC, GFP_ATOMIC); 443 444 if (ret) { 445 sctp_put_port(sk); 446 return ret; 447 } 448 /* Copy back into socket for getsockname() use. */ 449 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 450 sp->pf->to_sk_saddr(addr, sk); 451 452 return ret; 453 } 454 455 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 456 * 457 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 458 * at any one time. If a sender, after sending an ASCONF chunk, decides 459 * it needs to transfer another ASCONF Chunk, it MUST wait until the 460 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 461 * subsequent ASCONF. Note this restriction binds each side, so at any 462 * time two ASCONF may be in-transit on any given association (one sent 463 * from each endpoint). 464 */ 465 static int sctp_send_asconf(struct sctp_association *asoc, 466 struct sctp_chunk *chunk) 467 { 468 int retval = 0; 469 470 /* If there is an outstanding ASCONF chunk, queue it for later 471 * transmission. 472 */ 473 if (asoc->addip_last_asconf) { 474 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 475 goto out; 476 } 477 478 /* Hold the chunk until an ASCONF_ACK is received. */ 479 sctp_chunk_hold(chunk); 480 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 481 if (retval) 482 sctp_chunk_free(chunk); 483 else 484 asoc->addip_last_asconf = chunk; 485 486 out: 487 return retval; 488 } 489 490 /* Add a list of addresses as bind addresses to local endpoint or 491 * association. 492 * 493 * Basically run through each address specified in the addrs/addrcnt 494 * array/length pair, determine if it is IPv6 or IPv4 and call 495 * sctp_do_bind() on it. 496 * 497 * If any of them fails, then the operation will be reversed and the 498 * ones that were added will be removed. 499 * 500 * Only sctp_setsockopt_bindx() is supposed to call this function. 501 */ 502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 503 { 504 int cnt; 505 int retval = 0; 506 void *addr_buf; 507 struct sockaddr *sa_addr; 508 struct sctp_af *af; 509 510 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 511 addrs, addrcnt); 512 513 addr_buf = addrs; 514 for (cnt = 0; cnt < addrcnt; cnt++) { 515 /* The list may contain either IPv4 or IPv6 address; 516 * determine the address length for walking thru the list. 517 */ 518 sa_addr = addr_buf; 519 af = sctp_get_af_specific(sa_addr->sa_family); 520 if (!af) { 521 retval = -EINVAL; 522 goto err_bindx_add; 523 } 524 525 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 526 af->sockaddr_len); 527 528 addr_buf += af->sockaddr_len; 529 530 err_bindx_add: 531 if (retval < 0) { 532 /* Failed. Cleanup the ones that have been added */ 533 if (cnt > 0) 534 sctp_bindx_rem(sk, addrs, cnt); 535 return retval; 536 } 537 } 538 539 return retval; 540 } 541 542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 543 * associations that are part of the endpoint indicating that a list of local 544 * addresses are added to the endpoint. 545 * 546 * If any of the addresses is already in the bind address list of the 547 * association, we do not send the chunk for that association. But it will not 548 * affect other associations. 549 * 550 * Only sctp_setsockopt_bindx() is supposed to call this function. 551 */ 552 static int sctp_send_asconf_add_ip(struct sock *sk, 553 struct sockaddr *addrs, 554 int addrcnt) 555 { 556 struct sctp_sock *sp; 557 struct sctp_endpoint *ep; 558 struct sctp_association *asoc; 559 struct sctp_bind_addr *bp; 560 struct sctp_chunk *chunk; 561 struct sctp_sockaddr_entry *laddr; 562 union sctp_addr *addr; 563 union sctp_addr saveaddr; 564 void *addr_buf; 565 struct sctp_af *af; 566 struct list_head *p; 567 int i; 568 int retval = 0; 569 570 sp = sctp_sk(sk); 571 ep = sp->ep; 572 573 if (!ep->asconf_enable) 574 return retval; 575 576 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 577 __func__, sk, addrs, addrcnt); 578 579 list_for_each_entry(asoc, &ep->asocs, asocs) { 580 if (!asoc->peer.asconf_capable) 581 continue; 582 583 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 584 continue; 585 586 if (!sctp_state(asoc, ESTABLISHED)) 587 continue; 588 589 /* Check if any address in the packed array of addresses is 590 * in the bind address list of the association. If so, 591 * do not send the asconf chunk to its peer, but continue with 592 * other associations. 593 */ 594 addr_buf = addrs; 595 for (i = 0; i < addrcnt; i++) { 596 addr = addr_buf; 597 af = sctp_get_af_specific(addr->v4.sin_family); 598 if (!af) { 599 retval = -EINVAL; 600 goto out; 601 } 602 603 if (sctp_assoc_lookup_laddr(asoc, addr)) 604 break; 605 606 addr_buf += af->sockaddr_len; 607 } 608 if (i < addrcnt) 609 continue; 610 611 /* Use the first valid address in bind addr list of 612 * association as Address Parameter of ASCONF CHUNK. 613 */ 614 bp = &asoc->base.bind_addr; 615 p = bp->address_list.next; 616 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 617 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 618 addrcnt, SCTP_PARAM_ADD_IP); 619 if (!chunk) { 620 retval = -ENOMEM; 621 goto out; 622 } 623 624 /* Add the new addresses to the bind address list with 625 * use_as_src set to 0. 626 */ 627 addr_buf = addrs; 628 for (i = 0; i < addrcnt; i++) { 629 addr = addr_buf; 630 af = sctp_get_af_specific(addr->v4.sin_family); 631 memcpy(&saveaddr, addr, af->sockaddr_len); 632 retval = sctp_add_bind_addr(bp, &saveaddr, 633 sizeof(saveaddr), 634 SCTP_ADDR_NEW, GFP_ATOMIC); 635 addr_buf += af->sockaddr_len; 636 } 637 if (asoc->src_out_of_asoc_ok) { 638 struct sctp_transport *trans; 639 640 list_for_each_entry(trans, 641 &asoc->peer.transport_addr_list, transports) { 642 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 643 2*asoc->pathmtu, 4380)); 644 trans->ssthresh = asoc->peer.i.a_rwnd; 645 trans->rto = asoc->rto_initial; 646 sctp_max_rto(asoc, trans); 647 trans->rtt = trans->srtt = trans->rttvar = 0; 648 /* Clear the source and route cache */ 649 sctp_transport_route(trans, NULL, 650 sctp_sk(asoc->base.sk)); 651 } 652 } 653 retval = sctp_send_asconf(asoc, chunk); 654 } 655 656 out: 657 return retval; 658 } 659 660 /* Remove a list of addresses from bind addresses list. Do not remove the 661 * last address. 662 * 663 * Basically run through each address specified in the addrs/addrcnt 664 * array/length pair, determine if it is IPv6 or IPv4 and call 665 * sctp_del_bind() on it. 666 * 667 * If any of them fails, then the operation will be reversed and the 668 * ones that were removed will be added back. 669 * 670 * At least one address has to be left; if only one address is 671 * available, the operation will return -EBUSY. 672 * 673 * Only sctp_setsockopt_bindx() is supposed to call this function. 674 */ 675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 676 { 677 struct sctp_sock *sp = sctp_sk(sk); 678 struct sctp_endpoint *ep = sp->ep; 679 int cnt; 680 struct sctp_bind_addr *bp = &ep->base.bind_addr; 681 int retval = 0; 682 void *addr_buf; 683 union sctp_addr *sa_addr; 684 struct sctp_af *af; 685 686 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 687 __func__, sk, addrs, addrcnt); 688 689 addr_buf = addrs; 690 for (cnt = 0; cnt < addrcnt; cnt++) { 691 /* If the bind address list is empty or if there is only one 692 * bind address, there is nothing more to be removed (we need 693 * at least one address here). 694 */ 695 if (list_empty(&bp->address_list) || 696 (sctp_list_single_entry(&bp->address_list))) { 697 retval = -EBUSY; 698 goto err_bindx_rem; 699 } 700 701 sa_addr = addr_buf; 702 af = sctp_get_af_specific(sa_addr->sa.sa_family); 703 if (!af) { 704 retval = -EINVAL; 705 goto err_bindx_rem; 706 } 707 708 if (!af->addr_valid(sa_addr, sp, NULL)) { 709 retval = -EADDRNOTAVAIL; 710 goto err_bindx_rem; 711 } 712 713 if (sa_addr->v4.sin_port && 714 sa_addr->v4.sin_port != htons(bp->port)) { 715 retval = -EINVAL; 716 goto err_bindx_rem; 717 } 718 719 if (!sa_addr->v4.sin_port) 720 sa_addr->v4.sin_port = htons(bp->port); 721 722 /* FIXME - There is probably a need to check if sk->sk_saddr and 723 * sk->sk_rcv_addr are currently set to one of the addresses to 724 * be removed. This is something which needs to be looked into 725 * when we are fixing the outstanding issues with multi-homing 726 * socket routing and failover schemes. Refer to comments in 727 * sctp_do_bind(). -daisy 728 */ 729 retval = sctp_del_bind_addr(bp, sa_addr); 730 731 addr_buf += af->sockaddr_len; 732 err_bindx_rem: 733 if (retval < 0) { 734 /* Failed. Add the ones that has been removed back */ 735 if (cnt > 0) 736 sctp_bindx_add(sk, addrs, cnt); 737 return retval; 738 } 739 } 740 741 return retval; 742 } 743 744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 745 * the associations that are part of the endpoint indicating that a list of 746 * local addresses are removed from the endpoint. 747 * 748 * If any of the addresses is already in the bind address list of the 749 * association, we do not send the chunk for that association. But it will not 750 * affect other associations. 751 * 752 * Only sctp_setsockopt_bindx() is supposed to call this function. 753 */ 754 static int sctp_send_asconf_del_ip(struct sock *sk, 755 struct sockaddr *addrs, 756 int addrcnt) 757 { 758 struct sctp_sock *sp; 759 struct sctp_endpoint *ep; 760 struct sctp_association *asoc; 761 struct sctp_transport *transport; 762 struct sctp_bind_addr *bp; 763 struct sctp_chunk *chunk; 764 union sctp_addr *laddr; 765 void *addr_buf; 766 struct sctp_af *af; 767 struct sctp_sockaddr_entry *saddr; 768 int i; 769 int retval = 0; 770 int stored = 0; 771 772 chunk = NULL; 773 sp = sctp_sk(sk); 774 ep = sp->ep; 775 776 if (!ep->asconf_enable) 777 return retval; 778 779 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 780 __func__, sk, addrs, addrcnt); 781 782 list_for_each_entry(asoc, &ep->asocs, asocs) { 783 784 if (!asoc->peer.asconf_capable) 785 continue; 786 787 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 788 continue; 789 790 if (!sctp_state(asoc, ESTABLISHED)) 791 continue; 792 793 /* Check if any address in the packed array of addresses is 794 * not present in the bind address list of the association. 795 * If so, do not send the asconf chunk to its peer, but 796 * continue with other associations. 797 */ 798 addr_buf = addrs; 799 for (i = 0; i < addrcnt; i++) { 800 laddr = addr_buf; 801 af = sctp_get_af_specific(laddr->v4.sin_family); 802 if (!af) { 803 retval = -EINVAL; 804 goto out; 805 } 806 807 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 808 break; 809 810 addr_buf += af->sockaddr_len; 811 } 812 if (i < addrcnt) 813 continue; 814 815 /* Find one address in the association's bind address list 816 * that is not in the packed array of addresses. This is to 817 * make sure that we do not delete all the addresses in the 818 * association. 819 */ 820 bp = &asoc->base.bind_addr; 821 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 822 addrcnt, sp); 823 if ((laddr == NULL) && (addrcnt == 1)) { 824 if (asoc->asconf_addr_del_pending) 825 continue; 826 asoc->asconf_addr_del_pending = 827 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 828 if (asoc->asconf_addr_del_pending == NULL) { 829 retval = -ENOMEM; 830 goto out; 831 } 832 asoc->asconf_addr_del_pending->sa.sa_family = 833 addrs->sa_family; 834 asoc->asconf_addr_del_pending->v4.sin_port = 835 htons(bp->port); 836 if (addrs->sa_family == AF_INET) { 837 struct sockaddr_in *sin; 838 839 sin = (struct sockaddr_in *)addrs; 840 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 841 } else if (addrs->sa_family == AF_INET6) { 842 struct sockaddr_in6 *sin6; 843 844 sin6 = (struct sockaddr_in6 *)addrs; 845 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 846 } 847 848 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 849 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 850 asoc->asconf_addr_del_pending); 851 852 asoc->src_out_of_asoc_ok = 1; 853 stored = 1; 854 goto skip_mkasconf; 855 } 856 857 if (laddr == NULL) 858 return -EINVAL; 859 860 /* We do not need RCU protection throughout this loop 861 * because this is done under a socket lock from the 862 * setsockopt call. 863 */ 864 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 865 SCTP_PARAM_DEL_IP); 866 if (!chunk) { 867 retval = -ENOMEM; 868 goto out; 869 } 870 871 skip_mkasconf: 872 /* Reset use_as_src flag for the addresses in the bind address 873 * list that are to be deleted. 874 */ 875 addr_buf = addrs; 876 for (i = 0; i < addrcnt; i++) { 877 laddr = addr_buf; 878 af = sctp_get_af_specific(laddr->v4.sin_family); 879 list_for_each_entry(saddr, &bp->address_list, list) { 880 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 881 saddr->state = SCTP_ADDR_DEL; 882 } 883 addr_buf += af->sockaddr_len; 884 } 885 886 /* Update the route and saddr entries for all the transports 887 * as some of the addresses in the bind address list are 888 * about to be deleted and cannot be used as source addresses. 889 */ 890 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 891 transports) { 892 sctp_transport_route(transport, NULL, 893 sctp_sk(asoc->base.sk)); 894 } 895 896 if (stored) 897 /* We don't need to transmit ASCONF */ 898 continue; 899 retval = sctp_send_asconf(asoc, chunk); 900 } 901 out: 902 return retval; 903 } 904 905 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 907 { 908 struct sock *sk = sctp_opt2sk(sp); 909 union sctp_addr *addr; 910 struct sctp_af *af; 911 912 /* It is safe to write port space in caller. */ 913 addr = &addrw->a; 914 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 915 af = sctp_get_af_specific(addr->sa.sa_family); 916 if (!af) 917 return -EINVAL; 918 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 919 return -EINVAL; 920 921 if (addrw->state == SCTP_ADDR_NEW) 922 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 923 else 924 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 925 } 926 927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 928 * 929 * API 8.1 930 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 931 * int flags); 932 * 933 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 934 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 935 * or IPv6 addresses. 936 * 937 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 938 * Section 3.1.2 for this usage. 939 * 940 * addrs is a pointer to an array of one or more socket addresses. Each 941 * address is contained in its appropriate structure (i.e. struct 942 * sockaddr_in or struct sockaddr_in6) the family of the address type 943 * must be used to distinguish the address length (note that this 944 * representation is termed a "packed array" of addresses). The caller 945 * specifies the number of addresses in the array with addrcnt. 946 * 947 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 948 * -1, and sets errno to the appropriate error code. 949 * 950 * For SCTP, the port given in each socket address must be the same, or 951 * sctp_bindx() will fail, setting errno to EINVAL. 952 * 953 * The flags parameter is formed from the bitwise OR of zero or more of 954 * the following currently defined flags: 955 * 956 * SCTP_BINDX_ADD_ADDR 957 * 958 * SCTP_BINDX_REM_ADDR 959 * 960 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 961 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 962 * addresses from the association. The two flags are mutually exclusive; 963 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 964 * not remove all addresses from an association; sctp_bindx() will 965 * reject such an attempt with EINVAL. 966 * 967 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 968 * additional addresses with an endpoint after calling bind(). Or use 969 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 970 * socket is associated with so that no new association accepted will be 971 * associated with those addresses. If the endpoint supports dynamic 972 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 973 * endpoint to send the appropriate message to the peer to change the 974 * peers address lists. 975 * 976 * Adding and removing addresses from a connected association is 977 * optional functionality. Implementations that do not support this 978 * functionality should return EOPNOTSUPP. 979 * 980 * Basically do nothing but copying the addresses from user to kernel 981 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 982 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 983 * from userspace. 984 * 985 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 986 * it. 987 * 988 * sk The sk of the socket 989 * addrs The pointer to the addresses 990 * addrssize Size of the addrs buffer 991 * op Operation to perform (add or remove, see the flags of 992 * sctp_bindx) 993 * 994 * Returns 0 if ok, <0 errno code on error. 995 */ 996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 997 int addrs_size, int op) 998 { 999 int err; 1000 int addrcnt = 0; 1001 int walk_size = 0; 1002 struct sockaddr *sa_addr; 1003 void *addr_buf = addrs; 1004 struct sctp_af *af; 1005 1006 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1007 __func__, sk, addr_buf, addrs_size, op); 1008 1009 if (unlikely(addrs_size <= 0)) 1010 return -EINVAL; 1011 1012 /* Walk through the addrs buffer and count the number of addresses. */ 1013 while (walk_size < addrs_size) { 1014 if (walk_size + sizeof(sa_family_t) > addrs_size) 1015 return -EINVAL; 1016 1017 sa_addr = addr_buf; 1018 af = sctp_get_af_specific(sa_addr->sa_family); 1019 1020 /* If the address family is not supported or if this address 1021 * causes the address buffer to overflow return EINVAL. 1022 */ 1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1024 return -EINVAL; 1025 addrcnt++; 1026 addr_buf += af->sockaddr_len; 1027 walk_size += af->sockaddr_len; 1028 } 1029 1030 /* Do the work. */ 1031 switch (op) { 1032 case SCTP_BINDX_ADD_ADDR: 1033 /* Allow security module to validate bindx addresses. */ 1034 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1035 addrs, addrs_size); 1036 if (err) 1037 return err; 1038 err = sctp_bindx_add(sk, addrs, addrcnt); 1039 if (err) 1040 return err; 1041 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1042 case SCTP_BINDX_REM_ADDR: 1043 err = sctp_bindx_rem(sk, addrs, addrcnt); 1044 if (err) 1045 return err; 1046 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1047 1048 default: 1049 return -EINVAL; 1050 } 1051 } 1052 1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1054 int addrlen) 1055 { 1056 int err; 1057 1058 lock_sock(sk); 1059 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1060 release_sock(sk); 1061 return err; 1062 } 1063 1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1065 const union sctp_addr *daddr, 1066 const struct sctp_initmsg *init, 1067 struct sctp_transport **tp) 1068 { 1069 struct sctp_association *asoc; 1070 struct sock *sk = ep->base.sk; 1071 struct net *net = sock_net(sk); 1072 enum sctp_scope scope; 1073 int err; 1074 1075 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1076 return -EADDRNOTAVAIL; 1077 1078 if (!ep->base.bind_addr.port) { 1079 if (sctp_autobind(sk)) 1080 return -EAGAIN; 1081 } else { 1082 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1083 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1084 return -EACCES; 1085 } 1086 1087 scope = sctp_scope(daddr); 1088 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1089 if (!asoc) 1090 return -ENOMEM; 1091 1092 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1093 if (err < 0) 1094 goto free; 1095 1096 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1097 if (!*tp) { 1098 err = -ENOMEM; 1099 goto free; 1100 } 1101 1102 if (!init) 1103 return 0; 1104 1105 if (init->sinit_num_ostreams) { 1106 __u16 outcnt = init->sinit_num_ostreams; 1107 1108 asoc->c.sinit_num_ostreams = outcnt; 1109 /* outcnt has been changed, need to re-init stream */ 1110 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1111 if (err) 1112 goto free; 1113 } 1114 1115 if (init->sinit_max_instreams) 1116 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1117 1118 if (init->sinit_max_attempts) 1119 asoc->max_init_attempts = init->sinit_max_attempts; 1120 1121 if (init->sinit_max_init_timeo) 1122 asoc->max_init_timeo = 1123 msecs_to_jiffies(init->sinit_max_init_timeo); 1124 1125 return 0; 1126 free: 1127 sctp_association_free(asoc); 1128 return err; 1129 } 1130 1131 static int sctp_connect_add_peer(struct sctp_association *asoc, 1132 union sctp_addr *daddr, int addr_len) 1133 { 1134 struct sctp_endpoint *ep = asoc->ep; 1135 struct sctp_association *old; 1136 struct sctp_transport *t; 1137 int err; 1138 1139 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1140 if (err) 1141 return err; 1142 1143 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1144 if (old && old != asoc) 1145 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1146 : -EALREADY; 1147 1148 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1149 return -EADDRNOTAVAIL; 1150 1151 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1152 if (!t) 1153 return -ENOMEM; 1154 1155 return 0; 1156 } 1157 1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1159 * 1160 * Common routine for handling connect() and sctp_connectx(). 1161 * Connect will come in with just a single address. 1162 */ 1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1164 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1165 { 1166 struct sctp_sock *sp = sctp_sk(sk); 1167 struct sctp_endpoint *ep = sp->ep; 1168 struct sctp_transport *transport; 1169 struct sctp_association *asoc; 1170 void *addr_buf = kaddrs; 1171 union sctp_addr *daddr; 1172 struct sctp_af *af; 1173 int walk_size, err; 1174 long timeo; 1175 1176 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1177 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1178 return -EISCONN; 1179 1180 daddr = addr_buf; 1181 af = sctp_get_af_specific(daddr->sa.sa_family); 1182 if (!af || af->sockaddr_len > addrs_size) 1183 return -EINVAL; 1184 1185 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1186 if (err) 1187 return err; 1188 1189 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1190 if (asoc) 1191 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1192 : -EALREADY; 1193 1194 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1195 if (err) 1196 return err; 1197 asoc = transport->asoc; 1198 1199 addr_buf += af->sockaddr_len; 1200 walk_size = af->sockaddr_len; 1201 while (walk_size < addrs_size) { 1202 err = -EINVAL; 1203 if (walk_size + sizeof(sa_family_t) > addrs_size) 1204 goto out_free; 1205 1206 daddr = addr_buf; 1207 af = sctp_get_af_specific(daddr->sa.sa_family); 1208 if (!af || af->sockaddr_len + walk_size > addrs_size) 1209 goto out_free; 1210 1211 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1212 goto out_free; 1213 1214 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1215 if (err) 1216 goto out_free; 1217 1218 addr_buf += af->sockaddr_len; 1219 walk_size += af->sockaddr_len; 1220 } 1221 1222 /* In case the user of sctp_connectx() wants an association 1223 * id back, assign one now. 1224 */ 1225 if (assoc_id) { 1226 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1227 if (err < 0) 1228 goto out_free; 1229 } 1230 1231 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1232 if (err < 0) 1233 goto out_free; 1234 1235 /* Initialize sk's dport and daddr for getpeername() */ 1236 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1237 sp->pf->to_sk_daddr(daddr, sk); 1238 sk->sk_err = 0; 1239 1240 if (assoc_id) 1241 *assoc_id = asoc->assoc_id; 1242 1243 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1244 return sctp_wait_for_connect(asoc, &timeo); 1245 1246 out_free: 1247 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1248 __func__, asoc, kaddrs, err); 1249 sctp_association_free(asoc); 1250 return err; 1251 } 1252 1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1254 * 1255 * API 8.9 1256 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1257 * sctp_assoc_t *asoc); 1258 * 1259 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1260 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1261 * or IPv6 addresses. 1262 * 1263 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1264 * Section 3.1.2 for this usage. 1265 * 1266 * addrs is a pointer to an array of one or more socket addresses. Each 1267 * address is contained in its appropriate structure (i.e. struct 1268 * sockaddr_in or struct sockaddr_in6) the family of the address type 1269 * must be used to distengish the address length (note that this 1270 * representation is termed a "packed array" of addresses). The caller 1271 * specifies the number of addresses in the array with addrcnt. 1272 * 1273 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1274 * the association id of the new association. On failure, sctp_connectx() 1275 * returns -1, and sets errno to the appropriate error code. The assoc_id 1276 * is not touched by the kernel. 1277 * 1278 * For SCTP, the port given in each socket address must be the same, or 1279 * sctp_connectx() will fail, setting errno to EINVAL. 1280 * 1281 * An application can use sctp_connectx to initiate an association with 1282 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1283 * allows a caller to specify multiple addresses at which a peer can be 1284 * reached. The way the SCTP stack uses the list of addresses to set up 1285 * the association is implementation dependent. This function only 1286 * specifies that the stack will try to make use of all the addresses in 1287 * the list when needed. 1288 * 1289 * Note that the list of addresses passed in is only used for setting up 1290 * the association. It does not necessarily equal the set of addresses 1291 * the peer uses for the resulting association. If the caller wants to 1292 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1293 * retrieve them after the association has been set up. 1294 * 1295 * Basically do nothing but copying the addresses from user to kernel 1296 * land and invoking either sctp_connectx(). This is used for tunneling 1297 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1298 * 1299 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1300 * it. 1301 * 1302 * sk The sk of the socket 1303 * addrs The pointer to the addresses 1304 * addrssize Size of the addrs buffer 1305 * 1306 * Returns >=0 if ok, <0 errno code on error. 1307 */ 1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1309 int addrs_size, sctp_assoc_t *assoc_id) 1310 { 1311 int err = 0, flags = 0; 1312 1313 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1314 __func__, sk, kaddrs, addrs_size); 1315 1316 /* make sure the 1st addr's sa_family is accessible later */ 1317 if (unlikely(addrs_size < sizeof(sa_family_t))) 1318 return -EINVAL; 1319 1320 /* Allow security module to validate connectx addresses. */ 1321 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1322 (struct sockaddr *)kaddrs, 1323 addrs_size); 1324 if (err) 1325 return err; 1326 1327 /* in-kernel sockets don't generally have a file allocated to them 1328 * if all they do is call sock_create_kern(). 1329 */ 1330 if (sk->sk_socket->file) 1331 flags = sk->sk_socket->file->f_flags; 1332 1333 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1334 } 1335 1336 /* 1337 * This is an older interface. It's kept for backward compatibility 1338 * to the option that doesn't provide association id. 1339 */ 1340 static int sctp_setsockopt_connectx_old(struct sock *sk, 1341 struct sockaddr *kaddrs, 1342 int addrs_size) 1343 { 1344 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1345 } 1346 1347 /* 1348 * New interface for the API. The since the API is done with a socket 1349 * option, to make it simple we feed back the association id is as a return 1350 * indication to the call. Error is always negative and association id is 1351 * always positive. 1352 */ 1353 static int sctp_setsockopt_connectx(struct sock *sk, 1354 struct sockaddr *kaddrs, 1355 int addrs_size) 1356 { 1357 sctp_assoc_t assoc_id = 0; 1358 int err = 0; 1359 1360 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1361 1362 if (err) 1363 return err; 1364 else 1365 return assoc_id; 1366 } 1367 1368 /* 1369 * New (hopefully final) interface for the API. 1370 * We use the sctp_getaddrs_old structure so that use-space library 1371 * can avoid any unnecessary allocations. The only different part 1372 * is that we store the actual length of the address buffer into the 1373 * addrs_num structure member. That way we can re-use the existing 1374 * code. 1375 */ 1376 #ifdef CONFIG_COMPAT 1377 struct compat_sctp_getaddrs_old { 1378 sctp_assoc_t assoc_id; 1379 s32 addr_num; 1380 compat_uptr_t addrs; /* struct sockaddr * */ 1381 }; 1382 #endif 1383 1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1385 char __user *optval, 1386 int __user *optlen) 1387 { 1388 struct sctp_getaddrs_old param; 1389 sctp_assoc_t assoc_id = 0; 1390 struct sockaddr *kaddrs; 1391 int err = 0; 1392 1393 #ifdef CONFIG_COMPAT 1394 if (in_compat_syscall()) { 1395 struct compat_sctp_getaddrs_old param32; 1396 1397 if (len < sizeof(param32)) 1398 return -EINVAL; 1399 if (copy_from_user(¶m32, optval, sizeof(param32))) 1400 return -EFAULT; 1401 1402 param.assoc_id = param32.assoc_id; 1403 param.addr_num = param32.addr_num; 1404 param.addrs = compat_ptr(param32.addrs); 1405 } else 1406 #endif 1407 { 1408 if (len < sizeof(param)) 1409 return -EINVAL; 1410 if (copy_from_user(¶m, optval, sizeof(param))) 1411 return -EFAULT; 1412 } 1413 1414 kaddrs = memdup_user(param.addrs, param.addr_num); 1415 if (IS_ERR(kaddrs)) 1416 return PTR_ERR(kaddrs); 1417 1418 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1419 kfree(kaddrs); 1420 if (err == 0 || err == -EINPROGRESS) { 1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1422 return -EFAULT; 1423 if (put_user(sizeof(assoc_id), optlen)) 1424 return -EFAULT; 1425 } 1426 1427 return err; 1428 } 1429 1430 /* API 3.1.4 close() - UDP Style Syntax 1431 * Applications use close() to perform graceful shutdown (as described in 1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1433 * by a UDP-style socket. 1434 * 1435 * The syntax is 1436 * 1437 * ret = close(int sd); 1438 * 1439 * sd - the socket descriptor of the associations to be closed. 1440 * 1441 * To gracefully shutdown a specific association represented by the 1442 * UDP-style socket, an application should use the sendmsg() call, 1443 * passing no user data, but including the appropriate flag in the 1444 * ancillary data (see Section xxxx). 1445 * 1446 * If sd in the close() call is a branched-off socket representing only 1447 * one association, the shutdown is performed on that association only. 1448 * 1449 * 4.1.6 close() - TCP Style Syntax 1450 * 1451 * Applications use close() to gracefully close down an association. 1452 * 1453 * The syntax is: 1454 * 1455 * int close(int sd); 1456 * 1457 * sd - the socket descriptor of the association to be closed. 1458 * 1459 * After an application calls close() on a socket descriptor, no further 1460 * socket operations will succeed on that descriptor. 1461 * 1462 * API 7.1.4 SO_LINGER 1463 * 1464 * An application using the TCP-style socket can use this option to 1465 * perform the SCTP ABORT primitive. The linger option structure is: 1466 * 1467 * struct linger { 1468 * int l_onoff; // option on/off 1469 * int l_linger; // linger time 1470 * }; 1471 * 1472 * To enable the option, set l_onoff to 1. If the l_linger value is set 1473 * to 0, calling close() is the same as the ABORT primitive. If the 1474 * value is set to a negative value, the setsockopt() call will return 1475 * an error. If the value is set to a positive value linger_time, the 1476 * close() can be blocked for at most linger_time ms. If the graceful 1477 * shutdown phase does not finish during this period, close() will 1478 * return but the graceful shutdown phase continues in the system. 1479 */ 1480 static void sctp_close(struct sock *sk, long timeout) 1481 { 1482 struct net *net = sock_net(sk); 1483 struct sctp_endpoint *ep; 1484 struct sctp_association *asoc; 1485 struct list_head *pos, *temp; 1486 unsigned int data_was_unread; 1487 1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1489 1490 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1491 sk->sk_shutdown = SHUTDOWN_MASK; 1492 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1493 1494 ep = sctp_sk(sk)->ep; 1495 1496 /* Clean up any skbs sitting on the receive queue. */ 1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1499 1500 /* Walk all associations on an endpoint. */ 1501 list_for_each_safe(pos, temp, &ep->asocs) { 1502 asoc = list_entry(pos, struct sctp_association, asocs); 1503 1504 if (sctp_style(sk, TCP)) { 1505 /* A closed association can still be in the list if 1506 * it belongs to a TCP-style listening socket that is 1507 * not yet accepted. If so, free it. If not, send an 1508 * ABORT or SHUTDOWN based on the linger options. 1509 */ 1510 if (sctp_state(asoc, CLOSED)) { 1511 sctp_association_free(asoc); 1512 continue; 1513 } 1514 } 1515 1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1517 !skb_queue_empty(&asoc->ulpq.reasm) || 1518 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1519 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1520 struct sctp_chunk *chunk; 1521 1522 chunk = sctp_make_abort_user(asoc, NULL, 0); 1523 sctp_primitive_ABORT(net, asoc, chunk); 1524 } else 1525 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1526 } 1527 1528 /* On a TCP-style socket, block for at most linger_time if set. */ 1529 if (sctp_style(sk, TCP) && timeout) 1530 sctp_wait_for_close(sk, timeout); 1531 1532 /* This will run the backlog queue. */ 1533 release_sock(sk); 1534 1535 /* Supposedly, no process has access to the socket, but 1536 * the net layers still may. 1537 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1538 * held and that should be grabbed before socket lock. 1539 */ 1540 spin_lock_bh(&net->sctp.addr_wq_lock); 1541 bh_lock_sock_nested(sk); 1542 1543 /* Hold the sock, since sk_common_release() will put sock_put() 1544 * and we have just a little more cleanup. 1545 */ 1546 sock_hold(sk); 1547 sk_common_release(sk); 1548 1549 bh_unlock_sock(sk); 1550 spin_unlock_bh(&net->sctp.addr_wq_lock); 1551 1552 sock_put(sk); 1553 1554 SCTP_DBG_OBJCNT_DEC(sock); 1555 } 1556 1557 /* Handle EPIPE error. */ 1558 static int sctp_error(struct sock *sk, int flags, int err) 1559 { 1560 if (err == -EPIPE) 1561 err = sock_error(sk) ? : -EPIPE; 1562 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1563 send_sig(SIGPIPE, current, 0); 1564 return err; 1565 } 1566 1567 /* API 3.1.3 sendmsg() - UDP Style Syntax 1568 * 1569 * An application uses sendmsg() and recvmsg() calls to transmit data to 1570 * and receive data from its peer. 1571 * 1572 * ssize_t sendmsg(int socket, const struct msghdr *message, 1573 * int flags); 1574 * 1575 * socket - the socket descriptor of the endpoint. 1576 * message - pointer to the msghdr structure which contains a single 1577 * user message and possibly some ancillary data. 1578 * 1579 * See Section 5 for complete description of the data 1580 * structures. 1581 * 1582 * flags - flags sent or received with the user message, see Section 1583 * 5 for complete description of the flags. 1584 * 1585 * Note: This function could use a rewrite especially when explicit 1586 * connect support comes in. 1587 */ 1588 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1589 1590 static int sctp_msghdr_parse(const struct msghdr *msg, 1591 struct sctp_cmsgs *cmsgs); 1592 1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1594 struct sctp_sndrcvinfo *srinfo, 1595 const struct msghdr *msg, size_t msg_len) 1596 { 1597 __u16 sflags; 1598 int err; 1599 1600 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1601 return -EPIPE; 1602 1603 if (msg_len > sk->sk_sndbuf) 1604 return -EMSGSIZE; 1605 1606 memset(cmsgs, 0, sizeof(*cmsgs)); 1607 err = sctp_msghdr_parse(msg, cmsgs); 1608 if (err) { 1609 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1610 return err; 1611 } 1612 1613 memset(srinfo, 0, sizeof(*srinfo)); 1614 if (cmsgs->srinfo) { 1615 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1616 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1617 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1618 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1619 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1620 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1621 } 1622 1623 if (cmsgs->sinfo) { 1624 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1625 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1626 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1627 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1628 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1629 } 1630 1631 if (cmsgs->prinfo) { 1632 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1633 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1634 cmsgs->prinfo->pr_policy); 1635 } 1636 1637 sflags = srinfo->sinfo_flags; 1638 if (!sflags && msg_len) 1639 return 0; 1640 1641 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1642 return -EINVAL; 1643 1644 if (((sflags & SCTP_EOF) && msg_len > 0) || 1645 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1646 return -EINVAL; 1647 1648 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1649 return -EINVAL; 1650 1651 return 0; 1652 } 1653 1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1655 struct sctp_cmsgs *cmsgs, 1656 union sctp_addr *daddr, 1657 struct sctp_transport **tp) 1658 { 1659 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1660 struct sctp_association *asoc; 1661 struct cmsghdr *cmsg; 1662 __be32 flowinfo = 0; 1663 struct sctp_af *af; 1664 int err; 1665 1666 *tp = NULL; 1667 1668 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1669 return -EINVAL; 1670 1671 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1672 sctp_sstate(sk, CLOSING))) 1673 return -EADDRNOTAVAIL; 1674 1675 /* Label connection socket for first association 1-to-many 1676 * style for client sequence socket()->sendmsg(). This 1677 * needs to be done before sctp_assoc_add_peer() as that will 1678 * set up the initial packet that needs to account for any 1679 * security ip options (CIPSO/CALIPSO) added to the packet. 1680 */ 1681 af = sctp_get_af_specific(daddr->sa.sa_family); 1682 if (!af) 1683 return -EINVAL; 1684 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1685 (struct sockaddr *)daddr, 1686 af->sockaddr_len); 1687 if (err < 0) 1688 return err; 1689 1690 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1691 if (err) 1692 return err; 1693 asoc = (*tp)->asoc; 1694 1695 if (!cmsgs->addrs_msg) 1696 return 0; 1697 1698 if (daddr->sa.sa_family == AF_INET6) 1699 flowinfo = daddr->v6.sin6_flowinfo; 1700 1701 /* sendv addr list parse */ 1702 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1703 union sctp_addr _daddr; 1704 int dlen; 1705 1706 if (cmsg->cmsg_level != IPPROTO_SCTP || 1707 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1708 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1709 continue; 1710 1711 daddr = &_daddr; 1712 memset(daddr, 0, sizeof(*daddr)); 1713 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1714 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1715 if (dlen < sizeof(struct in_addr)) { 1716 err = -EINVAL; 1717 goto free; 1718 } 1719 1720 dlen = sizeof(struct in_addr); 1721 daddr->v4.sin_family = AF_INET; 1722 daddr->v4.sin_port = htons(asoc->peer.port); 1723 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1724 } else { 1725 if (dlen < sizeof(struct in6_addr)) { 1726 err = -EINVAL; 1727 goto free; 1728 } 1729 1730 dlen = sizeof(struct in6_addr); 1731 daddr->v6.sin6_flowinfo = flowinfo; 1732 daddr->v6.sin6_family = AF_INET6; 1733 daddr->v6.sin6_port = htons(asoc->peer.port); 1734 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1735 } 1736 1737 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1738 if (err) 1739 goto free; 1740 } 1741 1742 return 0; 1743 1744 free: 1745 sctp_association_free(asoc); 1746 return err; 1747 } 1748 1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1750 __u16 sflags, struct msghdr *msg, 1751 size_t msg_len) 1752 { 1753 struct sock *sk = asoc->base.sk; 1754 struct net *net = sock_net(sk); 1755 1756 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1757 return -EPIPE; 1758 1759 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1760 !sctp_state(asoc, ESTABLISHED)) 1761 return 0; 1762 1763 if (sflags & SCTP_EOF) { 1764 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1765 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1766 1767 return 0; 1768 } 1769 1770 if (sflags & SCTP_ABORT) { 1771 struct sctp_chunk *chunk; 1772 1773 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1774 if (!chunk) 1775 return -ENOMEM; 1776 1777 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1778 sctp_primitive_ABORT(net, asoc, chunk); 1779 iov_iter_revert(&msg->msg_iter, msg_len); 1780 1781 return 0; 1782 } 1783 1784 return 1; 1785 } 1786 1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1788 struct msghdr *msg, size_t msg_len, 1789 struct sctp_transport *transport, 1790 struct sctp_sndrcvinfo *sinfo) 1791 { 1792 struct sock *sk = asoc->base.sk; 1793 struct sctp_sock *sp = sctp_sk(sk); 1794 struct net *net = sock_net(sk); 1795 struct sctp_datamsg *datamsg; 1796 bool wait_connect = false; 1797 struct sctp_chunk *chunk; 1798 long timeo; 1799 int err; 1800 1801 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1802 err = -EINVAL; 1803 goto err; 1804 } 1805 1806 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1807 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1808 if (err) 1809 goto err; 1810 } 1811 1812 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1813 err = -EMSGSIZE; 1814 goto err; 1815 } 1816 1817 if (asoc->pmtu_pending) { 1818 if (sp->param_flags & SPP_PMTUD_ENABLE) 1819 sctp_assoc_sync_pmtu(asoc); 1820 asoc->pmtu_pending = 0; 1821 } 1822 1823 if (sctp_wspace(asoc) < (int)msg_len) 1824 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1825 1826 if (sk_under_memory_pressure(sk)) 1827 sk_mem_reclaim(sk); 1828 1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1830 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1831 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1832 if (err) 1833 goto err; 1834 } 1835 1836 if (sctp_state(asoc, CLOSED)) { 1837 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1838 if (err) 1839 goto err; 1840 1841 if (asoc->ep->intl_enable) { 1842 timeo = sock_sndtimeo(sk, 0); 1843 err = sctp_wait_for_connect(asoc, &timeo); 1844 if (err) { 1845 err = -ESRCH; 1846 goto err; 1847 } 1848 } else { 1849 wait_connect = true; 1850 } 1851 1852 pr_debug("%s: we associated primitively\n", __func__); 1853 } 1854 1855 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1856 if (IS_ERR(datamsg)) { 1857 err = PTR_ERR(datamsg); 1858 goto err; 1859 } 1860 1861 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1862 1863 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1864 sctp_chunk_hold(chunk); 1865 sctp_set_owner_w(chunk); 1866 chunk->transport = transport; 1867 } 1868 1869 err = sctp_primitive_SEND(net, asoc, datamsg); 1870 if (err) { 1871 sctp_datamsg_free(datamsg); 1872 goto err; 1873 } 1874 1875 pr_debug("%s: we sent primitively\n", __func__); 1876 1877 sctp_datamsg_put(datamsg); 1878 1879 if (unlikely(wait_connect)) { 1880 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1881 sctp_wait_for_connect(asoc, &timeo); 1882 } 1883 1884 err = msg_len; 1885 1886 err: 1887 return err; 1888 } 1889 1890 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1891 const struct msghdr *msg, 1892 struct sctp_cmsgs *cmsgs) 1893 { 1894 union sctp_addr *daddr = NULL; 1895 int err; 1896 1897 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1898 int len = msg->msg_namelen; 1899 1900 if (len > sizeof(*daddr)) 1901 len = sizeof(*daddr); 1902 1903 daddr = (union sctp_addr *)msg->msg_name; 1904 1905 err = sctp_verify_addr(sk, daddr, len); 1906 if (err) 1907 return ERR_PTR(err); 1908 } 1909 1910 return daddr; 1911 } 1912 1913 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1914 struct sctp_sndrcvinfo *sinfo, 1915 struct sctp_cmsgs *cmsgs) 1916 { 1917 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1918 sinfo->sinfo_stream = asoc->default_stream; 1919 sinfo->sinfo_ppid = asoc->default_ppid; 1920 sinfo->sinfo_context = asoc->default_context; 1921 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1922 1923 if (!cmsgs->prinfo) 1924 sinfo->sinfo_flags = asoc->default_flags; 1925 } 1926 1927 if (!cmsgs->srinfo && !cmsgs->prinfo) 1928 sinfo->sinfo_timetolive = asoc->default_timetolive; 1929 1930 if (cmsgs->authinfo) { 1931 /* Reuse sinfo_tsn to indicate that authinfo was set and 1932 * sinfo_ssn to save the keyid on tx path. 1933 */ 1934 sinfo->sinfo_tsn = 1; 1935 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1936 } 1937 } 1938 1939 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1940 { 1941 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1942 struct sctp_transport *transport = NULL; 1943 struct sctp_sndrcvinfo _sinfo, *sinfo; 1944 struct sctp_association *asoc, *tmp; 1945 struct sctp_cmsgs cmsgs; 1946 union sctp_addr *daddr; 1947 bool new = false; 1948 __u16 sflags; 1949 int err; 1950 1951 /* Parse and get snd_info */ 1952 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1953 if (err) 1954 goto out; 1955 1956 sinfo = &_sinfo; 1957 sflags = sinfo->sinfo_flags; 1958 1959 /* Get daddr from msg */ 1960 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1961 if (IS_ERR(daddr)) { 1962 err = PTR_ERR(daddr); 1963 goto out; 1964 } 1965 1966 lock_sock(sk); 1967 1968 /* SCTP_SENDALL process */ 1969 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1970 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1971 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1972 msg_len); 1973 if (err == 0) 1974 continue; 1975 if (err < 0) 1976 goto out_unlock; 1977 1978 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1979 1980 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1981 NULL, sinfo); 1982 if (err < 0) 1983 goto out_unlock; 1984 1985 iov_iter_revert(&msg->msg_iter, err); 1986 } 1987 1988 goto out_unlock; 1989 } 1990 1991 /* Get and check or create asoc */ 1992 if (daddr) { 1993 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1994 if (asoc) { 1995 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1996 msg_len); 1997 if (err <= 0) 1998 goto out_unlock; 1999 } else { 2000 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2001 &transport); 2002 if (err) 2003 goto out_unlock; 2004 2005 asoc = transport->asoc; 2006 new = true; 2007 } 2008 2009 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2010 transport = NULL; 2011 } else { 2012 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2013 if (!asoc) { 2014 err = -EPIPE; 2015 goto out_unlock; 2016 } 2017 2018 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2019 if (err <= 0) 2020 goto out_unlock; 2021 } 2022 2023 /* Update snd_info with the asoc */ 2024 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2025 2026 /* Send msg to the asoc */ 2027 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2028 if (err < 0 && err != -ESRCH && new) 2029 sctp_association_free(asoc); 2030 2031 out_unlock: 2032 release_sock(sk); 2033 out: 2034 return sctp_error(sk, msg->msg_flags, err); 2035 } 2036 2037 /* This is an extended version of skb_pull() that removes the data from the 2038 * start of a skb even when data is spread across the list of skb's in the 2039 * frag_list. len specifies the total amount of data that needs to be removed. 2040 * when 'len' bytes could be removed from the skb, it returns 0. 2041 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2042 * could not be removed. 2043 */ 2044 static int sctp_skb_pull(struct sk_buff *skb, int len) 2045 { 2046 struct sk_buff *list; 2047 int skb_len = skb_headlen(skb); 2048 int rlen; 2049 2050 if (len <= skb_len) { 2051 __skb_pull(skb, len); 2052 return 0; 2053 } 2054 len -= skb_len; 2055 __skb_pull(skb, skb_len); 2056 2057 skb_walk_frags(skb, list) { 2058 rlen = sctp_skb_pull(list, len); 2059 skb->len -= (len-rlen); 2060 skb->data_len -= (len-rlen); 2061 2062 if (!rlen) 2063 return 0; 2064 2065 len = rlen; 2066 } 2067 2068 return len; 2069 } 2070 2071 /* API 3.1.3 recvmsg() - UDP Style Syntax 2072 * 2073 * ssize_t recvmsg(int socket, struct msghdr *message, 2074 * int flags); 2075 * 2076 * socket - the socket descriptor of the endpoint. 2077 * message - pointer to the msghdr structure which contains a single 2078 * user message and possibly some ancillary data. 2079 * 2080 * See Section 5 for complete description of the data 2081 * structures. 2082 * 2083 * flags - flags sent or received with the user message, see Section 2084 * 5 for complete description of the flags. 2085 */ 2086 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2087 int flags, int *addr_len) 2088 { 2089 struct sctp_ulpevent *event = NULL; 2090 struct sctp_sock *sp = sctp_sk(sk); 2091 struct sk_buff *skb, *head_skb; 2092 int copied; 2093 int err = 0; 2094 int skb_len; 2095 2096 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", 2097 __func__, sk, msg, len, flags, addr_len); 2098 2099 lock_sock(sk); 2100 2101 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2102 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2103 err = -ENOTCONN; 2104 goto out; 2105 } 2106 2107 skb = sctp_skb_recv_datagram(sk, flags, &err); 2108 if (!skb) 2109 goto out; 2110 2111 /* Get the total length of the skb including any skb's in the 2112 * frag_list. 2113 */ 2114 skb_len = skb->len; 2115 2116 copied = skb_len; 2117 if (copied > len) 2118 copied = len; 2119 2120 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2121 2122 event = sctp_skb2event(skb); 2123 2124 if (err) 2125 goto out_free; 2126 2127 if (event->chunk && event->chunk->head_skb) 2128 head_skb = event->chunk->head_skb; 2129 else 2130 head_skb = skb; 2131 sock_recv_cmsgs(msg, sk, head_skb); 2132 if (sctp_ulpevent_is_notification(event)) { 2133 msg->msg_flags |= MSG_NOTIFICATION; 2134 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2135 } else { 2136 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2137 } 2138 2139 /* Check if we allow SCTP_NXTINFO. */ 2140 if (sp->recvnxtinfo) 2141 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2142 /* Check if we allow SCTP_RCVINFO. */ 2143 if (sp->recvrcvinfo) 2144 sctp_ulpevent_read_rcvinfo(event, msg); 2145 /* Check if we allow SCTP_SNDRCVINFO. */ 2146 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2147 sctp_ulpevent_read_sndrcvinfo(event, msg); 2148 2149 err = copied; 2150 2151 /* If skb's length exceeds the user's buffer, update the skb and 2152 * push it back to the receive_queue so that the next call to 2153 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2154 */ 2155 if (skb_len > copied) { 2156 msg->msg_flags &= ~MSG_EOR; 2157 if (flags & MSG_PEEK) 2158 goto out_free; 2159 sctp_skb_pull(skb, copied); 2160 skb_queue_head(&sk->sk_receive_queue, skb); 2161 2162 /* When only partial message is copied to the user, increase 2163 * rwnd by that amount. If all the data in the skb is read, 2164 * rwnd is updated when the event is freed. 2165 */ 2166 if (!sctp_ulpevent_is_notification(event)) 2167 sctp_assoc_rwnd_increase(event->asoc, copied); 2168 goto out; 2169 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2170 (event->msg_flags & MSG_EOR)) 2171 msg->msg_flags |= MSG_EOR; 2172 else 2173 msg->msg_flags &= ~MSG_EOR; 2174 2175 out_free: 2176 if (flags & MSG_PEEK) { 2177 /* Release the skb reference acquired after peeking the skb in 2178 * sctp_skb_recv_datagram(). 2179 */ 2180 kfree_skb(skb); 2181 } else { 2182 /* Free the event which includes releasing the reference to 2183 * the owner of the skb, freeing the skb and updating the 2184 * rwnd. 2185 */ 2186 sctp_ulpevent_free(event); 2187 } 2188 out: 2189 release_sock(sk); 2190 return err; 2191 } 2192 2193 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2194 * 2195 * This option is a on/off flag. If enabled no SCTP message 2196 * fragmentation will be performed. Instead if a message being sent 2197 * exceeds the current PMTU size, the message will NOT be sent and 2198 * instead a error will be indicated to the user. 2199 */ 2200 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2201 unsigned int optlen) 2202 { 2203 if (optlen < sizeof(int)) 2204 return -EINVAL; 2205 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2206 return 0; 2207 } 2208 2209 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2210 unsigned int optlen) 2211 { 2212 struct sctp_sock *sp = sctp_sk(sk); 2213 struct sctp_association *asoc; 2214 int i; 2215 2216 if (optlen > sizeof(struct sctp_event_subscribe)) 2217 return -EINVAL; 2218 2219 for (i = 0; i < optlen; i++) 2220 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2221 sn_type[i]); 2222 2223 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2224 asoc->subscribe = sctp_sk(sk)->subscribe; 2225 2226 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2227 * if there is no data to be sent or retransmit, the stack will 2228 * immediately send up this notification. 2229 */ 2230 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2231 struct sctp_ulpevent *event; 2232 2233 asoc = sctp_id2assoc(sk, 0); 2234 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2235 event = sctp_ulpevent_make_sender_dry_event(asoc, 2236 GFP_USER | __GFP_NOWARN); 2237 if (!event) 2238 return -ENOMEM; 2239 2240 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2241 } 2242 } 2243 2244 return 0; 2245 } 2246 2247 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2248 * 2249 * This socket option is applicable to the UDP-style socket only. When 2250 * set it will cause associations that are idle for more than the 2251 * specified number of seconds to automatically close. An association 2252 * being idle is defined an association that has NOT sent or received 2253 * user data. The special value of '0' indicates that no automatic 2254 * close of any associations should be performed. The option expects an 2255 * integer defining the number of seconds of idle time before an 2256 * association is closed. 2257 */ 2258 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2259 unsigned int optlen) 2260 { 2261 struct sctp_sock *sp = sctp_sk(sk); 2262 struct net *net = sock_net(sk); 2263 2264 /* Applicable to UDP-style socket only */ 2265 if (sctp_style(sk, TCP)) 2266 return -EOPNOTSUPP; 2267 if (optlen != sizeof(int)) 2268 return -EINVAL; 2269 2270 sp->autoclose = *optval; 2271 if (sp->autoclose > net->sctp.max_autoclose) 2272 sp->autoclose = net->sctp.max_autoclose; 2273 2274 return 0; 2275 } 2276 2277 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2278 * 2279 * Applications can enable or disable heartbeats for any peer address of 2280 * an association, modify an address's heartbeat interval, force a 2281 * heartbeat to be sent immediately, and adjust the address's maximum 2282 * number of retransmissions sent before an address is considered 2283 * unreachable. The following structure is used to access and modify an 2284 * address's parameters: 2285 * 2286 * struct sctp_paddrparams { 2287 * sctp_assoc_t spp_assoc_id; 2288 * struct sockaddr_storage spp_address; 2289 * uint32_t spp_hbinterval; 2290 * uint16_t spp_pathmaxrxt; 2291 * uint32_t spp_pathmtu; 2292 * uint32_t spp_sackdelay; 2293 * uint32_t spp_flags; 2294 * uint32_t spp_ipv6_flowlabel; 2295 * uint8_t spp_dscp; 2296 * }; 2297 * 2298 * spp_assoc_id - (one-to-many style socket) This is filled in the 2299 * application, and identifies the association for 2300 * this query. 2301 * spp_address - This specifies which address is of interest. 2302 * spp_hbinterval - This contains the value of the heartbeat interval, 2303 * in milliseconds. If a value of zero 2304 * is present in this field then no changes are to 2305 * be made to this parameter. 2306 * spp_pathmaxrxt - This contains the maximum number of 2307 * retransmissions before this address shall be 2308 * considered unreachable. If a value of zero 2309 * is present in this field then no changes are to 2310 * be made to this parameter. 2311 * spp_pathmtu - When Path MTU discovery is disabled the value 2312 * specified here will be the "fixed" path mtu. 2313 * Note that if the spp_address field is empty 2314 * then all associations on this address will 2315 * have this fixed path mtu set upon them. 2316 * 2317 * spp_sackdelay - When delayed sack is enabled, this value specifies 2318 * the number of milliseconds that sacks will be delayed 2319 * for. This value will apply to all addresses of an 2320 * association if the spp_address field is empty. Note 2321 * also, that if delayed sack is enabled and this 2322 * value is set to 0, no change is made to the last 2323 * recorded delayed sack timer value. 2324 * 2325 * spp_flags - These flags are used to control various features 2326 * on an association. The flag field may contain 2327 * zero or more of the following options. 2328 * 2329 * SPP_HB_ENABLE - Enable heartbeats on the 2330 * specified address. Note that if the address 2331 * field is empty all addresses for the association 2332 * have heartbeats enabled upon them. 2333 * 2334 * SPP_HB_DISABLE - Disable heartbeats on the 2335 * speicifed address. Note that if the address 2336 * field is empty all addresses for the association 2337 * will have their heartbeats disabled. Note also 2338 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2339 * mutually exclusive, only one of these two should 2340 * be specified. Enabling both fields will have 2341 * undetermined results. 2342 * 2343 * SPP_HB_DEMAND - Request a user initiated heartbeat 2344 * to be made immediately. 2345 * 2346 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2347 * heartbeat delayis to be set to the value of 0 2348 * milliseconds. 2349 * 2350 * SPP_PMTUD_ENABLE - This field will enable PMTU 2351 * discovery upon the specified address. Note that 2352 * if the address feild is empty then all addresses 2353 * on the association are effected. 2354 * 2355 * SPP_PMTUD_DISABLE - This field will disable PMTU 2356 * discovery upon the specified address. Note that 2357 * if the address feild is empty then all addresses 2358 * on the association are effected. Not also that 2359 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2360 * exclusive. Enabling both will have undetermined 2361 * results. 2362 * 2363 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2364 * on delayed sack. The time specified in spp_sackdelay 2365 * is used to specify the sack delay for this address. Note 2366 * that if spp_address is empty then all addresses will 2367 * enable delayed sack and take on the sack delay 2368 * value specified in spp_sackdelay. 2369 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2370 * off delayed sack. If the spp_address field is blank then 2371 * delayed sack is disabled for the entire association. Note 2372 * also that this field is mutually exclusive to 2373 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2374 * results. 2375 * 2376 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2377 * setting of the IPV6 flow label value. The value is 2378 * contained in the spp_ipv6_flowlabel field. 2379 * Upon retrieval, this flag will be set to indicate that 2380 * the spp_ipv6_flowlabel field has a valid value returned. 2381 * If a specific destination address is set (in the 2382 * spp_address field), then the value returned is that of 2383 * the address. If just an association is specified (and 2384 * no address), then the association's default flow label 2385 * is returned. If neither an association nor a destination 2386 * is specified, then the socket's default flow label is 2387 * returned. For non-IPv6 sockets, this flag will be left 2388 * cleared. 2389 * 2390 * SPP_DSCP: Setting this flag enables the setting of the 2391 * Differentiated Services Code Point (DSCP) value 2392 * associated with either the association or a specific 2393 * address. The value is obtained in the spp_dscp field. 2394 * Upon retrieval, this flag will be set to indicate that 2395 * the spp_dscp field has a valid value returned. If a 2396 * specific destination address is set when called (in the 2397 * spp_address field), then that specific destination 2398 * address's DSCP value is returned. If just an association 2399 * is specified, then the association's default DSCP is 2400 * returned. If neither an association nor a destination is 2401 * specified, then the socket's default DSCP is returned. 2402 * 2403 * spp_ipv6_flowlabel 2404 * - This field is used in conjunction with the 2405 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2406 * The 20 least significant bits are used for the flow 2407 * label. This setting has precedence over any IPv6-layer 2408 * setting. 2409 * 2410 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2411 * and contains the DSCP. The 6 most significant bits are 2412 * used for the DSCP. This setting has precedence over any 2413 * IPv4- or IPv6- layer setting. 2414 */ 2415 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2416 struct sctp_transport *trans, 2417 struct sctp_association *asoc, 2418 struct sctp_sock *sp, 2419 int hb_change, 2420 int pmtud_change, 2421 int sackdelay_change) 2422 { 2423 int error; 2424 2425 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2426 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2427 trans->asoc, trans); 2428 if (error) 2429 return error; 2430 } 2431 2432 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2433 * this field is ignored. Note also that a value of zero indicates 2434 * the current setting should be left unchanged. 2435 */ 2436 if (params->spp_flags & SPP_HB_ENABLE) { 2437 2438 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2439 * set. This lets us use 0 value when this flag 2440 * is set. 2441 */ 2442 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2443 params->spp_hbinterval = 0; 2444 2445 if (params->spp_hbinterval || 2446 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2447 if (trans) { 2448 trans->hbinterval = 2449 msecs_to_jiffies(params->spp_hbinterval); 2450 } else if (asoc) { 2451 asoc->hbinterval = 2452 msecs_to_jiffies(params->spp_hbinterval); 2453 } else { 2454 sp->hbinterval = params->spp_hbinterval; 2455 } 2456 } 2457 } 2458 2459 if (hb_change) { 2460 if (trans) { 2461 trans->param_flags = 2462 (trans->param_flags & ~SPP_HB) | hb_change; 2463 } else if (asoc) { 2464 asoc->param_flags = 2465 (asoc->param_flags & ~SPP_HB) | hb_change; 2466 } else { 2467 sp->param_flags = 2468 (sp->param_flags & ~SPP_HB) | hb_change; 2469 } 2470 } 2471 2472 /* When Path MTU discovery is disabled the value specified here will 2473 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2474 * include the flag SPP_PMTUD_DISABLE for this field to have any 2475 * effect). 2476 */ 2477 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2478 if (trans) { 2479 trans->pathmtu = params->spp_pathmtu; 2480 sctp_assoc_sync_pmtu(asoc); 2481 } else if (asoc) { 2482 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2483 } else { 2484 sp->pathmtu = params->spp_pathmtu; 2485 } 2486 } 2487 2488 if (pmtud_change) { 2489 if (trans) { 2490 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2491 (params->spp_flags & SPP_PMTUD_ENABLE); 2492 trans->param_flags = 2493 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2494 if (update) { 2495 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2496 sctp_assoc_sync_pmtu(asoc); 2497 } 2498 sctp_transport_pl_reset(trans); 2499 } else if (asoc) { 2500 asoc->param_flags = 2501 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2502 } else { 2503 sp->param_flags = 2504 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2505 } 2506 } 2507 2508 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2509 * value of this field is ignored. Note also that a value of zero 2510 * indicates the current setting should be left unchanged. 2511 */ 2512 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2513 if (trans) { 2514 trans->sackdelay = 2515 msecs_to_jiffies(params->spp_sackdelay); 2516 } else if (asoc) { 2517 asoc->sackdelay = 2518 msecs_to_jiffies(params->spp_sackdelay); 2519 } else { 2520 sp->sackdelay = params->spp_sackdelay; 2521 } 2522 } 2523 2524 if (sackdelay_change) { 2525 if (trans) { 2526 trans->param_flags = 2527 (trans->param_flags & ~SPP_SACKDELAY) | 2528 sackdelay_change; 2529 } else if (asoc) { 2530 asoc->param_flags = 2531 (asoc->param_flags & ~SPP_SACKDELAY) | 2532 sackdelay_change; 2533 } else { 2534 sp->param_flags = 2535 (sp->param_flags & ~SPP_SACKDELAY) | 2536 sackdelay_change; 2537 } 2538 } 2539 2540 /* Note that a value of zero indicates the current setting should be 2541 left unchanged. 2542 */ 2543 if (params->spp_pathmaxrxt) { 2544 if (trans) { 2545 trans->pathmaxrxt = params->spp_pathmaxrxt; 2546 } else if (asoc) { 2547 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2548 } else { 2549 sp->pathmaxrxt = params->spp_pathmaxrxt; 2550 } 2551 } 2552 2553 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2554 if (trans) { 2555 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2556 trans->flowlabel = params->spp_ipv6_flowlabel & 2557 SCTP_FLOWLABEL_VAL_MASK; 2558 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2559 } 2560 } else if (asoc) { 2561 struct sctp_transport *t; 2562 2563 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2564 transports) { 2565 if (t->ipaddr.sa.sa_family != AF_INET6) 2566 continue; 2567 t->flowlabel = params->spp_ipv6_flowlabel & 2568 SCTP_FLOWLABEL_VAL_MASK; 2569 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2570 } 2571 asoc->flowlabel = params->spp_ipv6_flowlabel & 2572 SCTP_FLOWLABEL_VAL_MASK; 2573 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2574 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2575 sp->flowlabel = params->spp_ipv6_flowlabel & 2576 SCTP_FLOWLABEL_VAL_MASK; 2577 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2578 } 2579 } 2580 2581 if (params->spp_flags & SPP_DSCP) { 2582 if (trans) { 2583 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2584 trans->dscp |= SCTP_DSCP_SET_MASK; 2585 } else if (asoc) { 2586 struct sctp_transport *t; 2587 2588 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2589 transports) { 2590 t->dscp = params->spp_dscp & 2591 SCTP_DSCP_VAL_MASK; 2592 t->dscp |= SCTP_DSCP_SET_MASK; 2593 } 2594 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2595 asoc->dscp |= SCTP_DSCP_SET_MASK; 2596 } else { 2597 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2598 sp->dscp |= SCTP_DSCP_SET_MASK; 2599 } 2600 } 2601 2602 return 0; 2603 } 2604 2605 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2606 struct sctp_paddrparams *params, 2607 unsigned int optlen) 2608 { 2609 struct sctp_transport *trans = NULL; 2610 struct sctp_association *asoc = NULL; 2611 struct sctp_sock *sp = sctp_sk(sk); 2612 int error; 2613 int hb_change, pmtud_change, sackdelay_change; 2614 2615 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2616 spp_ipv6_flowlabel), 4)) { 2617 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2618 return -EINVAL; 2619 } else if (optlen != sizeof(*params)) { 2620 return -EINVAL; 2621 } 2622 2623 /* Validate flags and value parameters. */ 2624 hb_change = params->spp_flags & SPP_HB; 2625 pmtud_change = params->spp_flags & SPP_PMTUD; 2626 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2627 2628 if (hb_change == SPP_HB || 2629 pmtud_change == SPP_PMTUD || 2630 sackdelay_change == SPP_SACKDELAY || 2631 params->spp_sackdelay > 500 || 2632 (params->spp_pathmtu && 2633 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2634 return -EINVAL; 2635 2636 /* If an address other than INADDR_ANY is specified, and 2637 * no transport is found, then the request is invalid. 2638 */ 2639 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2640 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2641 params->spp_assoc_id); 2642 if (!trans) 2643 return -EINVAL; 2644 } 2645 2646 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2647 * socket is a one to many style socket, and an association 2648 * was not found, then the id was invalid. 2649 */ 2650 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2651 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2652 sctp_style(sk, UDP)) 2653 return -EINVAL; 2654 2655 /* Heartbeat demand can only be sent on a transport or 2656 * association, but not a socket. 2657 */ 2658 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2659 return -EINVAL; 2660 2661 /* Process parameters. */ 2662 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2663 hb_change, pmtud_change, 2664 sackdelay_change); 2665 2666 if (error) 2667 return error; 2668 2669 /* If changes are for association, also apply parameters to each 2670 * transport. 2671 */ 2672 if (!trans && asoc) { 2673 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2674 transports) { 2675 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2676 hb_change, pmtud_change, 2677 sackdelay_change); 2678 } 2679 } 2680 2681 return 0; 2682 } 2683 2684 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2685 { 2686 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2687 } 2688 2689 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2690 { 2691 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2692 } 2693 2694 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2695 struct sctp_association *asoc) 2696 { 2697 struct sctp_transport *trans; 2698 2699 if (params->sack_delay) { 2700 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2701 asoc->param_flags = 2702 sctp_spp_sackdelay_enable(asoc->param_flags); 2703 } 2704 if (params->sack_freq == 1) { 2705 asoc->param_flags = 2706 sctp_spp_sackdelay_disable(asoc->param_flags); 2707 } else if (params->sack_freq > 1) { 2708 asoc->sackfreq = params->sack_freq; 2709 asoc->param_flags = 2710 sctp_spp_sackdelay_enable(asoc->param_flags); 2711 } 2712 2713 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2714 transports) { 2715 if (params->sack_delay) { 2716 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2717 trans->param_flags = 2718 sctp_spp_sackdelay_enable(trans->param_flags); 2719 } 2720 if (params->sack_freq == 1) { 2721 trans->param_flags = 2722 sctp_spp_sackdelay_disable(trans->param_flags); 2723 } else if (params->sack_freq > 1) { 2724 trans->sackfreq = params->sack_freq; 2725 trans->param_flags = 2726 sctp_spp_sackdelay_enable(trans->param_flags); 2727 } 2728 } 2729 } 2730 2731 /* 2732 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2733 * 2734 * This option will effect the way delayed acks are performed. This 2735 * option allows you to get or set the delayed ack time, in 2736 * milliseconds. It also allows changing the delayed ack frequency. 2737 * Changing the frequency to 1 disables the delayed sack algorithm. If 2738 * the assoc_id is 0, then this sets or gets the endpoints default 2739 * values. If the assoc_id field is non-zero, then the set or get 2740 * effects the specified association for the one to many model (the 2741 * assoc_id field is ignored by the one to one model). Note that if 2742 * sack_delay or sack_freq are 0 when setting this option, then the 2743 * current values will remain unchanged. 2744 * 2745 * struct sctp_sack_info { 2746 * sctp_assoc_t sack_assoc_id; 2747 * uint32_t sack_delay; 2748 * uint32_t sack_freq; 2749 * }; 2750 * 2751 * sack_assoc_id - This parameter, indicates which association the user 2752 * is performing an action upon. Note that if this field's value is 2753 * zero then the endpoints default value is changed (effecting future 2754 * associations only). 2755 * 2756 * sack_delay - This parameter contains the number of milliseconds that 2757 * the user is requesting the delayed ACK timer be set to. Note that 2758 * this value is defined in the standard to be between 200 and 500 2759 * milliseconds. 2760 * 2761 * sack_freq - This parameter contains the number of packets that must 2762 * be received before a sack is sent without waiting for the delay 2763 * timer to expire. The default value for this is 2, setting this 2764 * value to 1 will disable the delayed sack algorithm. 2765 */ 2766 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2767 struct sctp_sack_info *params) 2768 { 2769 struct sctp_sock *sp = sctp_sk(sk); 2770 struct sctp_association *asoc; 2771 2772 /* Validate value parameter. */ 2773 if (params->sack_delay > 500) 2774 return -EINVAL; 2775 2776 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2777 * socket is a one to many style socket, and an association 2778 * was not found, then the id was invalid. 2779 */ 2780 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2781 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2782 sctp_style(sk, UDP)) 2783 return -EINVAL; 2784 2785 if (asoc) { 2786 sctp_apply_asoc_delayed_ack(params, asoc); 2787 2788 return 0; 2789 } 2790 2791 if (sctp_style(sk, TCP)) 2792 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2793 2794 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2795 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2796 if (params->sack_delay) { 2797 sp->sackdelay = params->sack_delay; 2798 sp->param_flags = 2799 sctp_spp_sackdelay_enable(sp->param_flags); 2800 } 2801 if (params->sack_freq == 1) { 2802 sp->param_flags = 2803 sctp_spp_sackdelay_disable(sp->param_flags); 2804 } else if (params->sack_freq > 1) { 2805 sp->sackfreq = params->sack_freq; 2806 sp->param_flags = 2807 sctp_spp_sackdelay_enable(sp->param_flags); 2808 } 2809 } 2810 2811 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2812 params->sack_assoc_id == SCTP_ALL_ASSOC) 2813 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2814 sctp_apply_asoc_delayed_ack(params, asoc); 2815 2816 return 0; 2817 } 2818 2819 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2820 struct sctp_sack_info *params, 2821 unsigned int optlen) 2822 { 2823 if (optlen == sizeof(struct sctp_assoc_value)) { 2824 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2825 struct sctp_sack_info p; 2826 2827 pr_warn_ratelimited(DEPRECATED 2828 "%s (pid %d) " 2829 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2830 "Use struct sctp_sack_info instead\n", 2831 current->comm, task_pid_nr(current)); 2832 2833 p.sack_assoc_id = v->assoc_id; 2834 p.sack_delay = v->assoc_value; 2835 p.sack_freq = v->assoc_value ? 0 : 1; 2836 return __sctp_setsockopt_delayed_ack(sk, &p); 2837 } 2838 2839 if (optlen != sizeof(struct sctp_sack_info)) 2840 return -EINVAL; 2841 if (params->sack_delay == 0 && params->sack_freq == 0) 2842 return 0; 2843 return __sctp_setsockopt_delayed_ack(sk, params); 2844 } 2845 2846 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2847 * 2848 * Applications can specify protocol parameters for the default association 2849 * initialization. The option name argument to setsockopt() and getsockopt() 2850 * is SCTP_INITMSG. 2851 * 2852 * Setting initialization parameters is effective only on an unconnected 2853 * socket (for UDP-style sockets only future associations are effected 2854 * by the change). With TCP-style sockets, this option is inherited by 2855 * sockets derived from a listener socket. 2856 */ 2857 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2858 unsigned int optlen) 2859 { 2860 struct sctp_sock *sp = sctp_sk(sk); 2861 2862 if (optlen != sizeof(struct sctp_initmsg)) 2863 return -EINVAL; 2864 2865 if (sinit->sinit_num_ostreams) 2866 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2867 if (sinit->sinit_max_instreams) 2868 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2869 if (sinit->sinit_max_attempts) 2870 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2871 if (sinit->sinit_max_init_timeo) 2872 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2873 2874 return 0; 2875 } 2876 2877 /* 2878 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2879 * 2880 * Applications that wish to use the sendto() system call may wish to 2881 * specify a default set of parameters that would normally be supplied 2882 * through the inclusion of ancillary data. This socket option allows 2883 * such an application to set the default sctp_sndrcvinfo structure. 2884 * The application that wishes to use this socket option simply passes 2885 * in to this call the sctp_sndrcvinfo structure defined in Section 2886 * 5.2.2) The input parameters accepted by this call include 2887 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2888 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2889 * to this call if the caller is using the UDP model. 2890 */ 2891 static int sctp_setsockopt_default_send_param(struct sock *sk, 2892 struct sctp_sndrcvinfo *info, 2893 unsigned int optlen) 2894 { 2895 struct sctp_sock *sp = sctp_sk(sk); 2896 struct sctp_association *asoc; 2897 2898 if (optlen != sizeof(*info)) 2899 return -EINVAL; 2900 if (info->sinfo_flags & 2901 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2902 SCTP_ABORT | SCTP_EOF)) 2903 return -EINVAL; 2904 2905 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2906 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2907 sctp_style(sk, UDP)) 2908 return -EINVAL; 2909 2910 if (asoc) { 2911 asoc->default_stream = info->sinfo_stream; 2912 asoc->default_flags = info->sinfo_flags; 2913 asoc->default_ppid = info->sinfo_ppid; 2914 asoc->default_context = info->sinfo_context; 2915 asoc->default_timetolive = info->sinfo_timetolive; 2916 2917 return 0; 2918 } 2919 2920 if (sctp_style(sk, TCP)) 2921 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2922 2923 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2924 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2925 sp->default_stream = info->sinfo_stream; 2926 sp->default_flags = info->sinfo_flags; 2927 sp->default_ppid = info->sinfo_ppid; 2928 sp->default_context = info->sinfo_context; 2929 sp->default_timetolive = info->sinfo_timetolive; 2930 } 2931 2932 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2933 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2934 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2935 asoc->default_stream = info->sinfo_stream; 2936 asoc->default_flags = info->sinfo_flags; 2937 asoc->default_ppid = info->sinfo_ppid; 2938 asoc->default_context = info->sinfo_context; 2939 asoc->default_timetolive = info->sinfo_timetolive; 2940 } 2941 } 2942 2943 return 0; 2944 } 2945 2946 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2947 * (SCTP_DEFAULT_SNDINFO) 2948 */ 2949 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2950 struct sctp_sndinfo *info, 2951 unsigned int optlen) 2952 { 2953 struct sctp_sock *sp = sctp_sk(sk); 2954 struct sctp_association *asoc; 2955 2956 if (optlen != sizeof(*info)) 2957 return -EINVAL; 2958 if (info->snd_flags & 2959 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2960 SCTP_ABORT | SCTP_EOF)) 2961 return -EINVAL; 2962 2963 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2964 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2965 sctp_style(sk, UDP)) 2966 return -EINVAL; 2967 2968 if (asoc) { 2969 asoc->default_stream = info->snd_sid; 2970 asoc->default_flags = info->snd_flags; 2971 asoc->default_ppid = info->snd_ppid; 2972 asoc->default_context = info->snd_context; 2973 2974 return 0; 2975 } 2976 2977 if (sctp_style(sk, TCP)) 2978 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2979 2980 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2981 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2982 sp->default_stream = info->snd_sid; 2983 sp->default_flags = info->snd_flags; 2984 sp->default_ppid = info->snd_ppid; 2985 sp->default_context = info->snd_context; 2986 } 2987 2988 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2989 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2990 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2991 asoc->default_stream = info->snd_sid; 2992 asoc->default_flags = info->snd_flags; 2993 asoc->default_ppid = info->snd_ppid; 2994 asoc->default_context = info->snd_context; 2995 } 2996 } 2997 2998 return 0; 2999 } 3000 3001 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3002 * 3003 * Requests that the local SCTP stack use the enclosed peer address as 3004 * the association primary. The enclosed address must be one of the 3005 * association peer's addresses. 3006 */ 3007 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3008 unsigned int optlen) 3009 { 3010 struct sctp_transport *trans; 3011 struct sctp_af *af; 3012 int err; 3013 3014 if (optlen != sizeof(struct sctp_prim)) 3015 return -EINVAL; 3016 3017 /* Allow security module to validate address but need address len. */ 3018 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3019 if (!af) 3020 return -EINVAL; 3021 3022 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3023 (struct sockaddr *)&prim->ssp_addr, 3024 af->sockaddr_len); 3025 if (err) 3026 return err; 3027 3028 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3029 if (!trans) 3030 return -EINVAL; 3031 3032 sctp_assoc_set_primary(trans->asoc, trans); 3033 3034 return 0; 3035 } 3036 3037 /* 3038 * 7.1.5 SCTP_NODELAY 3039 * 3040 * Turn on/off any Nagle-like algorithm. This means that packets are 3041 * generally sent as soon as possible and no unnecessary delays are 3042 * introduced, at the cost of more packets in the network. Expects an 3043 * integer boolean flag. 3044 */ 3045 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3046 unsigned int optlen) 3047 { 3048 if (optlen < sizeof(int)) 3049 return -EINVAL; 3050 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3051 return 0; 3052 } 3053 3054 /* 3055 * 3056 * 7.1.1 SCTP_RTOINFO 3057 * 3058 * The protocol parameters used to initialize and bound retransmission 3059 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3060 * and modify these parameters. 3061 * All parameters are time values, in milliseconds. A value of 0, when 3062 * modifying the parameters, indicates that the current value should not 3063 * be changed. 3064 * 3065 */ 3066 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3067 struct sctp_rtoinfo *rtoinfo, 3068 unsigned int optlen) 3069 { 3070 struct sctp_association *asoc; 3071 unsigned long rto_min, rto_max; 3072 struct sctp_sock *sp = sctp_sk(sk); 3073 3074 if (optlen != sizeof (struct sctp_rtoinfo)) 3075 return -EINVAL; 3076 3077 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3078 3079 /* Set the values to the specific association */ 3080 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3081 sctp_style(sk, UDP)) 3082 return -EINVAL; 3083 3084 rto_max = rtoinfo->srto_max; 3085 rto_min = rtoinfo->srto_min; 3086 3087 if (rto_max) 3088 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3089 else 3090 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3091 3092 if (rto_min) 3093 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3094 else 3095 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3096 3097 if (rto_min > rto_max) 3098 return -EINVAL; 3099 3100 if (asoc) { 3101 if (rtoinfo->srto_initial != 0) 3102 asoc->rto_initial = 3103 msecs_to_jiffies(rtoinfo->srto_initial); 3104 asoc->rto_max = rto_max; 3105 asoc->rto_min = rto_min; 3106 } else { 3107 /* If there is no association or the association-id = 0 3108 * set the values to the endpoint. 3109 */ 3110 if (rtoinfo->srto_initial != 0) 3111 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3112 sp->rtoinfo.srto_max = rto_max; 3113 sp->rtoinfo.srto_min = rto_min; 3114 } 3115 3116 return 0; 3117 } 3118 3119 /* 3120 * 3121 * 7.1.2 SCTP_ASSOCINFO 3122 * 3123 * This option is used to tune the maximum retransmission attempts 3124 * of the association. 3125 * Returns an error if the new association retransmission value is 3126 * greater than the sum of the retransmission value of the peer. 3127 * See [SCTP] for more information. 3128 * 3129 */ 3130 static int sctp_setsockopt_associnfo(struct sock *sk, 3131 struct sctp_assocparams *assocparams, 3132 unsigned int optlen) 3133 { 3134 3135 struct sctp_association *asoc; 3136 3137 if (optlen != sizeof(struct sctp_assocparams)) 3138 return -EINVAL; 3139 3140 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3141 3142 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3143 sctp_style(sk, UDP)) 3144 return -EINVAL; 3145 3146 /* Set the values to the specific association */ 3147 if (asoc) { 3148 if (assocparams->sasoc_asocmaxrxt != 0) { 3149 __u32 path_sum = 0; 3150 int paths = 0; 3151 struct sctp_transport *peer_addr; 3152 3153 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3154 transports) { 3155 path_sum += peer_addr->pathmaxrxt; 3156 paths++; 3157 } 3158 3159 /* Only validate asocmaxrxt if we have more than 3160 * one path/transport. We do this because path 3161 * retransmissions are only counted when we have more 3162 * then one path. 3163 */ 3164 if (paths > 1 && 3165 assocparams->sasoc_asocmaxrxt > path_sum) 3166 return -EINVAL; 3167 3168 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3169 } 3170 3171 if (assocparams->sasoc_cookie_life != 0) 3172 asoc->cookie_life = 3173 ms_to_ktime(assocparams->sasoc_cookie_life); 3174 } else { 3175 /* Set the values to the endpoint */ 3176 struct sctp_sock *sp = sctp_sk(sk); 3177 3178 if (assocparams->sasoc_asocmaxrxt != 0) 3179 sp->assocparams.sasoc_asocmaxrxt = 3180 assocparams->sasoc_asocmaxrxt; 3181 if (assocparams->sasoc_cookie_life != 0) 3182 sp->assocparams.sasoc_cookie_life = 3183 assocparams->sasoc_cookie_life; 3184 } 3185 return 0; 3186 } 3187 3188 /* 3189 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3190 * 3191 * This socket option is a boolean flag which turns on or off mapped V4 3192 * addresses. If this option is turned on and the socket is type 3193 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3194 * If this option is turned off, then no mapping will be done of V4 3195 * addresses and a user will receive both PF_INET6 and PF_INET type 3196 * addresses on the socket. 3197 */ 3198 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3199 unsigned int optlen) 3200 { 3201 struct sctp_sock *sp = sctp_sk(sk); 3202 3203 if (optlen < sizeof(int)) 3204 return -EINVAL; 3205 if (*val) 3206 sp->v4mapped = 1; 3207 else 3208 sp->v4mapped = 0; 3209 3210 return 0; 3211 } 3212 3213 /* 3214 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3215 * This option will get or set the maximum size to put in any outgoing 3216 * SCTP DATA chunk. If a message is larger than this size it will be 3217 * fragmented by SCTP into the specified size. Note that the underlying 3218 * SCTP implementation may fragment into smaller sized chunks when the 3219 * PMTU of the underlying association is smaller than the value set by 3220 * the user. The default value for this option is '0' which indicates 3221 * the user is NOT limiting fragmentation and only the PMTU will effect 3222 * SCTP's choice of DATA chunk size. Note also that values set larger 3223 * than the maximum size of an IP datagram will effectively let SCTP 3224 * control fragmentation (i.e. the same as setting this option to 0). 3225 * 3226 * The following structure is used to access and modify this parameter: 3227 * 3228 * struct sctp_assoc_value { 3229 * sctp_assoc_t assoc_id; 3230 * uint32_t assoc_value; 3231 * }; 3232 * 3233 * assoc_id: This parameter is ignored for one-to-one style sockets. 3234 * For one-to-many style sockets this parameter indicates which 3235 * association the user is performing an action upon. Note that if 3236 * this field's value is zero then the endpoints default value is 3237 * changed (effecting future associations only). 3238 * assoc_value: This parameter specifies the maximum size in bytes. 3239 */ 3240 static int sctp_setsockopt_maxseg(struct sock *sk, 3241 struct sctp_assoc_value *params, 3242 unsigned int optlen) 3243 { 3244 struct sctp_sock *sp = sctp_sk(sk); 3245 struct sctp_association *asoc; 3246 sctp_assoc_t assoc_id; 3247 int val; 3248 3249 if (optlen == sizeof(int)) { 3250 pr_warn_ratelimited(DEPRECATED 3251 "%s (pid %d) " 3252 "Use of int in maxseg socket option.\n" 3253 "Use struct sctp_assoc_value instead\n", 3254 current->comm, task_pid_nr(current)); 3255 assoc_id = SCTP_FUTURE_ASSOC; 3256 val = *(int *)params; 3257 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3258 assoc_id = params->assoc_id; 3259 val = params->assoc_value; 3260 } else { 3261 return -EINVAL; 3262 } 3263 3264 asoc = sctp_id2assoc(sk, assoc_id); 3265 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3266 sctp_style(sk, UDP)) 3267 return -EINVAL; 3268 3269 if (val) { 3270 int min_len, max_len; 3271 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3272 sizeof(struct sctp_data_chunk); 3273 3274 min_len = sctp_min_frag_point(sp, datasize); 3275 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3276 3277 if (val < min_len || val > max_len) 3278 return -EINVAL; 3279 } 3280 3281 if (asoc) { 3282 asoc->user_frag = val; 3283 sctp_assoc_update_frag_point(asoc); 3284 } else { 3285 sp->user_frag = val; 3286 } 3287 3288 return 0; 3289 } 3290 3291 3292 /* 3293 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3294 * 3295 * Requests that the peer mark the enclosed address as the association 3296 * primary. The enclosed address must be one of the association's 3297 * locally bound addresses. The following structure is used to make a 3298 * set primary request: 3299 */ 3300 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3301 struct sctp_setpeerprim *prim, 3302 unsigned int optlen) 3303 { 3304 struct sctp_sock *sp; 3305 struct sctp_association *asoc = NULL; 3306 struct sctp_chunk *chunk; 3307 struct sctp_af *af; 3308 int err; 3309 3310 sp = sctp_sk(sk); 3311 3312 if (!sp->ep->asconf_enable) 3313 return -EPERM; 3314 3315 if (optlen != sizeof(struct sctp_setpeerprim)) 3316 return -EINVAL; 3317 3318 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3319 if (!asoc) 3320 return -EINVAL; 3321 3322 if (!asoc->peer.asconf_capable) 3323 return -EPERM; 3324 3325 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3326 return -EPERM; 3327 3328 if (!sctp_state(asoc, ESTABLISHED)) 3329 return -ENOTCONN; 3330 3331 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3332 if (!af) 3333 return -EINVAL; 3334 3335 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3336 return -EADDRNOTAVAIL; 3337 3338 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3339 return -EADDRNOTAVAIL; 3340 3341 /* Allow security module to validate address. */ 3342 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3343 (struct sockaddr *)&prim->sspp_addr, 3344 af->sockaddr_len); 3345 if (err) 3346 return err; 3347 3348 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3349 chunk = sctp_make_asconf_set_prim(asoc, 3350 (union sctp_addr *)&prim->sspp_addr); 3351 if (!chunk) 3352 return -ENOMEM; 3353 3354 err = sctp_send_asconf(asoc, chunk); 3355 3356 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3357 3358 return err; 3359 } 3360 3361 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3362 struct sctp_setadaptation *adapt, 3363 unsigned int optlen) 3364 { 3365 if (optlen != sizeof(struct sctp_setadaptation)) 3366 return -EINVAL; 3367 3368 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3369 3370 return 0; 3371 } 3372 3373 /* 3374 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3375 * 3376 * The context field in the sctp_sndrcvinfo structure is normally only 3377 * used when a failed message is retrieved holding the value that was 3378 * sent down on the actual send call. This option allows the setting of 3379 * a default context on an association basis that will be received on 3380 * reading messages from the peer. This is especially helpful in the 3381 * one-2-many model for an application to keep some reference to an 3382 * internal state machine that is processing messages on the 3383 * association. Note that the setting of this value only effects 3384 * received messages from the peer and does not effect the value that is 3385 * saved with outbound messages. 3386 */ 3387 static int sctp_setsockopt_context(struct sock *sk, 3388 struct sctp_assoc_value *params, 3389 unsigned int optlen) 3390 { 3391 struct sctp_sock *sp = sctp_sk(sk); 3392 struct sctp_association *asoc; 3393 3394 if (optlen != sizeof(struct sctp_assoc_value)) 3395 return -EINVAL; 3396 3397 asoc = sctp_id2assoc(sk, params->assoc_id); 3398 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3399 sctp_style(sk, UDP)) 3400 return -EINVAL; 3401 3402 if (asoc) { 3403 asoc->default_rcv_context = params->assoc_value; 3404 3405 return 0; 3406 } 3407 3408 if (sctp_style(sk, TCP)) 3409 params->assoc_id = SCTP_FUTURE_ASSOC; 3410 3411 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3412 params->assoc_id == SCTP_ALL_ASSOC) 3413 sp->default_rcv_context = params->assoc_value; 3414 3415 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3416 params->assoc_id == SCTP_ALL_ASSOC) 3417 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3418 asoc->default_rcv_context = params->assoc_value; 3419 3420 return 0; 3421 } 3422 3423 /* 3424 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3425 * 3426 * This options will at a minimum specify if the implementation is doing 3427 * fragmented interleave. Fragmented interleave, for a one to many 3428 * socket, is when subsequent calls to receive a message may return 3429 * parts of messages from different associations. Some implementations 3430 * may allow you to turn this value on or off. If so, when turned off, 3431 * no fragment interleave will occur (which will cause a head of line 3432 * blocking amongst multiple associations sharing the same one to many 3433 * socket). When this option is turned on, then each receive call may 3434 * come from a different association (thus the user must receive data 3435 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3436 * association each receive belongs to. 3437 * 3438 * This option takes a boolean value. A non-zero value indicates that 3439 * fragmented interleave is on. A value of zero indicates that 3440 * fragmented interleave is off. 3441 * 3442 * Note that it is important that an implementation that allows this 3443 * option to be turned on, have it off by default. Otherwise an unaware 3444 * application using the one to many model may become confused and act 3445 * incorrectly. 3446 */ 3447 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3448 unsigned int optlen) 3449 { 3450 if (optlen != sizeof(int)) 3451 return -EINVAL; 3452 3453 sctp_sk(sk)->frag_interleave = !!*val; 3454 3455 if (!sctp_sk(sk)->frag_interleave) 3456 sctp_sk(sk)->ep->intl_enable = 0; 3457 3458 return 0; 3459 } 3460 3461 /* 3462 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3463 * (SCTP_PARTIAL_DELIVERY_POINT) 3464 * 3465 * This option will set or get the SCTP partial delivery point. This 3466 * point is the size of a message where the partial delivery API will be 3467 * invoked to help free up rwnd space for the peer. Setting this to a 3468 * lower value will cause partial deliveries to happen more often. The 3469 * calls argument is an integer that sets or gets the partial delivery 3470 * point. Note also that the call will fail if the user attempts to set 3471 * this value larger than the socket receive buffer size. 3472 * 3473 * Note that any single message having a length smaller than or equal to 3474 * the SCTP partial delivery point will be delivered in one single read 3475 * call as long as the user provided buffer is large enough to hold the 3476 * message. 3477 */ 3478 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3479 unsigned int optlen) 3480 { 3481 if (optlen != sizeof(u32)) 3482 return -EINVAL; 3483 3484 /* Note: We double the receive buffer from what the user sets 3485 * it to be, also initial rwnd is based on rcvbuf/2. 3486 */ 3487 if (*val > (sk->sk_rcvbuf >> 1)) 3488 return -EINVAL; 3489 3490 sctp_sk(sk)->pd_point = *val; 3491 3492 return 0; /* is this the right error code? */ 3493 } 3494 3495 /* 3496 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3497 * 3498 * This option will allow a user to change the maximum burst of packets 3499 * that can be emitted by this association. Note that the default value 3500 * is 4, and some implementations may restrict this setting so that it 3501 * can only be lowered. 3502 * 3503 * NOTE: This text doesn't seem right. Do this on a socket basis with 3504 * future associations inheriting the socket value. 3505 */ 3506 static int sctp_setsockopt_maxburst(struct sock *sk, 3507 struct sctp_assoc_value *params, 3508 unsigned int optlen) 3509 { 3510 struct sctp_sock *sp = sctp_sk(sk); 3511 struct sctp_association *asoc; 3512 sctp_assoc_t assoc_id; 3513 u32 assoc_value; 3514 3515 if (optlen == sizeof(int)) { 3516 pr_warn_ratelimited(DEPRECATED 3517 "%s (pid %d) " 3518 "Use of int in max_burst socket option deprecated.\n" 3519 "Use struct sctp_assoc_value instead\n", 3520 current->comm, task_pid_nr(current)); 3521 assoc_id = SCTP_FUTURE_ASSOC; 3522 assoc_value = *((int *)params); 3523 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3524 assoc_id = params->assoc_id; 3525 assoc_value = params->assoc_value; 3526 } else 3527 return -EINVAL; 3528 3529 asoc = sctp_id2assoc(sk, assoc_id); 3530 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3531 return -EINVAL; 3532 3533 if (asoc) { 3534 asoc->max_burst = assoc_value; 3535 3536 return 0; 3537 } 3538 3539 if (sctp_style(sk, TCP)) 3540 assoc_id = SCTP_FUTURE_ASSOC; 3541 3542 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3543 sp->max_burst = assoc_value; 3544 3545 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3546 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3547 asoc->max_burst = assoc_value; 3548 3549 return 0; 3550 } 3551 3552 /* 3553 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3554 * 3555 * This set option adds a chunk type that the user is requesting to be 3556 * received only in an authenticated way. Changes to the list of chunks 3557 * will only effect future associations on the socket. 3558 */ 3559 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3560 struct sctp_authchunk *val, 3561 unsigned int optlen) 3562 { 3563 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3564 3565 if (!ep->auth_enable) 3566 return -EACCES; 3567 3568 if (optlen != sizeof(struct sctp_authchunk)) 3569 return -EINVAL; 3570 3571 switch (val->sauth_chunk) { 3572 case SCTP_CID_INIT: 3573 case SCTP_CID_INIT_ACK: 3574 case SCTP_CID_SHUTDOWN_COMPLETE: 3575 case SCTP_CID_AUTH: 3576 return -EINVAL; 3577 } 3578 3579 /* add this chunk id to the endpoint */ 3580 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3581 } 3582 3583 /* 3584 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3585 * 3586 * This option gets or sets the list of HMAC algorithms that the local 3587 * endpoint requires the peer to use. 3588 */ 3589 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3590 struct sctp_hmacalgo *hmacs, 3591 unsigned int optlen) 3592 { 3593 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3594 u32 idents; 3595 3596 if (!ep->auth_enable) 3597 return -EACCES; 3598 3599 if (optlen < sizeof(struct sctp_hmacalgo)) 3600 return -EINVAL; 3601 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3602 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3603 3604 idents = hmacs->shmac_num_idents; 3605 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3606 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3607 return -EINVAL; 3608 3609 return sctp_auth_ep_set_hmacs(ep, hmacs); 3610 } 3611 3612 /* 3613 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3614 * 3615 * This option will set a shared secret key which is used to build an 3616 * association shared key. 3617 */ 3618 static int sctp_setsockopt_auth_key(struct sock *sk, 3619 struct sctp_authkey *authkey, 3620 unsigned int optlen) 3621 { 3622 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3623 struct sctp_association *asoc; 3624 int ret = -EINVAL; 3625 3626 if (optlen <= sizeof(struct sctp_authkey)) 3627 return -EINVAL; 3628 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3629 * this. 3630 */ 3631 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3632 3633 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3634 goto out; 3635 3636 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3637 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3638 sctp_style(sk, UDP)) 3639 goto out; 3640 3641 if (asoc) { 3642 ret = sctp_auth_set_key(ep, asoc, authkey); 3643 goto out; 3644 } 3645 3646 if (sctp_style(sk, TCP)) 3647 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3648 3649 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3650 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3651 ret = sctp_auth_set_key(ep, asoc, authkey); 3652 if (ret) 3653 goto out; 3654 } 3655 3656 ret = 0; 3657 3658 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3659 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3660 list_for_each_entry(asoc, &ep->asocs, asocs) { 3661 int res = sctp_auth_set_key(ep, asoc, authkey); 3662 3663 if (res && !ret) 3664 ret = res; 3665 } 3666 } 3667 3668 out: 3669 memzero_explicit(authkey, optlen); 3670 return ret; 3671 } 3672 3673 /* 3674 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3675 * 3676 * This option will get or set the active shared key to be used to build 3677 * the association shared key. 3678 */ 3679 static int sctp_setsockopt_active_key(struct sock *sk, 3680 struct sctp_authkeyid *val, 3681 unsigned int optlen) 3682 { 3683 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3684 struct sctp_association *asoc; 3685 int ret = 0; 3686 3687 if (optlen != sizeof(struct sctp_authkeyid)) 3688 return -EINVAL; 3689 3690 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3691 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3692 sctp_style(sk, UDP)) 3693 return -EINVAL; 3694 3695 if (asoc) 3696 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3697 3698 if (sctp_style(sk, TCP)) 3699 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3700 3701 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3702 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3703 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3704 if (ret) 3705 return ret; 3706 } 3707 3708 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3709 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3710 list_for_each_entry(asoc, &ep->asocs, asocs) { 3711 int res = sctp_auth_set_active_key(ep, asoc, 3712 val->scact_keynumber); 3713 3714 if (res && !ret) 3715 ret = res; 3716 } 3717 } 3718 3719 return ret; 3720 } 3721 3722 /* 3723 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3724 * 3725 * This set option will delete a shared secret key from use. 3726 */ 3727 static int sctp_setsockopt_del_key(struct sock *sk, 3728 struct sctp_authkeyid *val, 3729 unsigned int optlen) 3730 { 3731 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3732 struct sctp_association *asoc; 3733 int ret = 0; 3734 3735 if (optlen != sizeof(struct sctp_authkeyid)) 3736 return -EINVAL; 3737 3738 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3739 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3740 sctp_style(sk, UDP)) 3741 return -EINVAL; 3742 3743 if (asoc) 3744 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3745 3746 if (sctp_style(sk, TCP)) 3747 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3748 3749 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3750 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3751 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3752 if (ret) 3753 return ret; 3754 } 3755 3756 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3757 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3758 list_for_each_entry(asoc, &ep->asocs, asocs) { 3759 int res = sctp_auth_del_key_id(ep, asoc, 3760 val->scact_keynumber); 3761 3762 if (res && !ret) 3763 ret = res; 3764 } 3765 } 3766 3767 return ret; 3768 } 3769 3770 /* 3771 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3772 * 3773 * This set option will deactivate a shared secret key. 3774 */ 3775 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3776 struct sctp_authkeyid *val, 3777 unsigned int optlen) 3778 { 3779 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3780 struct sctp_association *asoc; 3781 int ret = 0; 3782 3783 if (optlen != sizeof(struct sctp_authkeyid)) 3784 return -EINVAL; 3785 3786 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3787 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3788 sctp_style(sk, UDP)) 3789 return -EINVAL; 3790 3791 if (asoc) 3792 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3793 3794 if (sctp_style(sk, TCP)) 3795 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3796 3797 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3798 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3799 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3800 if (ret) 3801 return ret; 3802 } 3803 3804 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3805 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3806 list_for_each_entry(asoc, &ep->asocs, asocs) { 3807 int res = sctp_auth_deact_key_id(ep, asoc, 3808 val->scact_keynumber); 3809 3810 if (res && !ret) 3811 ret = res; 3812 } 3813 } 3814 3815 return ret; 3816 } 3817 3818 /* 3819 * 8.1.23 SCTP_AUTO_ASCONF 3820 * 3821 * This option will enable or disable the use of the automatic generation of 3822 * ASCONF chunks to add and delete addresses to an existing association. Note 3823 * that this option has two caveats namely: a) it only affects sockets that 3824 * are bound to all addresses available to the SCTP stack, and b) the system 3825 * administrator may have an overriding control that turns the ASCONF feature 3826 * off no matter what setting the socket option may have. 3827 * This option expects an integer boolean flag, where a non-zero value turns on 3828 * the option, and a zero value turns off the option. 3829 * Note. In this implementation, socket operation overrides default parameter 3830 * being set by sysctl as well as FreeBSD implementation 3831 */ 3832 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3833 unsigned int optlen) 3834 { 3835 struct sctp_sock *sp = sctp_sk(sk); 3836 3837 if (optlen < sizeof(int)) 3838 return -EINVAL; 3839 if (!sctp_is_ep_boundall(sk) && *val) 3840 return -EINVAL; 3841 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3842 return 0; 3843 3844 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3845 if (*val == 0 && sp->do_auto_asconf) { 3846 list_del(&sp->auto_asconf_list); 3847 sp->do_auto_asconf = 0; 3848 } else if (*val && !sp->do_auto_asconf) { 3849 list_add_tail(&sp->auto_asconf_list, 3850 &sock_net(sk)->sctp.auto_asconf_splist); 3851 sp->do_auto_asconf = 1; 3852 } 3853 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3854 return 0; 3855 } 3856 3857 /* 3858 * SCTP_PEER_ADDR_THLDS 3859 * 3860 * This option allows us to alter the partially failed threshold for one or all 3861 * transports in an association. See Section 6.1 of: 3862 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3863 */ 3864 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3865 struct sctp_paddrthlds_v2 *val, 3866 unsigned int optlen, bool v2) 3867 { 3868 struct sctp_transport *trans; 3869 struct sctp_association *asoc; 3870 int len; 3871 3872 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3873 if (optlen < len) 3874 return -EINVAL; 3875 3876 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3877 return -EINVAL; 3878 3879 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3880 trans = sctp_addr_id2transport(sk, &val->spt_address, 3881 val->spt_assoc_id); 3882 if (!trans) 3883 return -ENOENT; 3884 3885 if (val->spt_pathmaxrxt) 3886 trans->pathmaxrxt = val->spt_pathmaxrxt; 3887 if (v2) 3888 trans->ps_retrans = val->spt_pathcpthld; 3889 trans->pf_retrans = val->spt_pathpfthld; 3890 3891 return 0; 3892 } 3893 3894 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3895 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3896 sctp_style(sk, UDP)) 3897 return -EINVAL; 3898 3899 if (asoc) { 3900 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3901 transports) { 3902 if (val->spt_pathmaxrxt) 3903 trans->pathmaxrxt = val->spt_pathmaxrxt; 3904 if (v2) 3905 trans->ps_retrans = val->spt_pathcpthld; 3906 trans->pf_retrans = val->spt_pathpfthld; 3907 } 3908 3909 if (val->spt_pathmaxrxt) 3910 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3911 if (v2) 3912 asoc->ps_retrans = val->spt_pathcpthld; 3913 asoc->pf_retrans = val->spt_pathpfthld; 3914 } else { 3915 struct sctp_sock *sp = sctp_sk(sk); 3916 3917 if (val->spt_pathmaxrxt) 3918 sp->pathmaxrxt = val->spt_pathmaxrxt; 3919 if (v2) 3920 sp->ps_retrans = val->spt_pathcpthld; 3921 sp->pf_retrans = val->spt_pathpfthld; 3922 } 3923 3924 return 0; 3925 } 3926 3927 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3928 unsigned int optlen) 3929 { 3930 if (optlen < sizeof(int)) 3931 return -EINVAL; 3932 3933 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3934 3935 return 0; 3936 } 3937 3938 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3939 unsigned int optlen) 3940 { 3941 if (optlen < sizeof(int)) 3942 return -EINVAL; 3943 3944 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3945 3946 return 0; 3947 } 3948 3949 static int sctp_setsockopt_pr_supported(struct sock *sk, 3950 struct sctp_assoc_value *params, 3951 unsigned int optlen) 3952 { 3953 struct sctp_association *asoc; 3954 3955 if (optlen != sizeof(*params)) 3956 return -EINVAL; 3957 3958 asoc = sctp_id2assoc(sk, params->assoc_id); 3959 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3960 sctp_style(sk, UDP)) 3961 return -EINVAL; 3962 3963 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3964 3965 return 0; 3966 } 3967 3968 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3969 struct sctp_default_prinfo *info, 3970 unsigned int optlen) 3971 { 3972 struct sctp_sock *sp = sctp_sk(sk); 3973 struct sctp_association *asoc; 3974 int retval = -EINVAL; 3975 3976 if (optlen != sizeof(*info)) 3977 goto out; 3978 3979 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3980 goto out; 3981 3982 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3983 info->pr_value = 0; 3984 3985 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3986 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3987 sctp_style(sk, UDP)) 3988 goto out; 3989 3990 retval = 0; 3991 3992 if (asoc) { 3993 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 3994 asoc->default_timetolive = info->pr_value; 3995 goto out; 3996 } 3997 3998 if (sctp_style(sk, TCP)) 3999 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4000 4001 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4002 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4003 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4004 sp->default_timetolive = info->pr_value; 4005 } 4006 4007 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4008 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4009 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4010 SCTP_PR_SET_POLICY(asoc->default_flags, 4011 info->pr_policy); 4012 asoc->default_timetolive = info->pr_value; 4013 } 4014 } 4015 4016 out: 4017 return retval; 4018 } 4019 4020 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4021 struct sctp_assoc_value *params, 4022 unsigned int optlen) 4023 { 4024 struct sctp_association *asoc; 4025 int retval = -EINVAL; 4026 4027 if (optlen != sizeof(*params)) 4028 goto out; 4029 4030 asoc = sctp_id2assoc(sk, params->assoc_id); 4031 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4032 sctp_style(sk, UDP)) 4033 goto out; 4034 4035 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4036 4037 retval = 0; 4038 4039 out: 4040 return retval; 4041 } 4042 4043 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4044 struct sctp_assoc_value *params, 4045 unsigned int optlen) 4046 { 4047 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4048 struct sctp_association *asoc; 4049 int retval = -EINVAL; 4050 4051 if (optlen != sizeof(*params)) 4052 goto out; 4053 4054 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4055 goto out; 4056 4057 asoc = sctp_id2assoc(sk, params->assoc_id); 4058 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4059 sctp_style(sk, UDP)) 4060 goto out; 4061 4062 retval = 0; 4063 4064 if (asoc) { 4065 asoc->strreset_enable = params->assoc_value; 4066 goto out; 4067 } 4068 4069 if (sctp_style(sk, TCP)) 4070 params->assoc_id = SCTP_FUTURE_ASSOC; 4071 4072 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4073 params->assoc_id == SCTP_ALL_ASSOC) 4074 ep->strreset_enable = params->assoc_value; 4075 4076 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4077 params->assoc_id == SCTP_ALL_ASSOC) 4078 list_for_each_entry(asoc, &ep->asocs, asocs) 4079 asoc->strreset_enable = params->assoc_value; 4080 4081 out: 4082 return retval; 4083 } 4084 4085 static int sctp_setsockopt_reset_streams(struct sock *sk, 4086 struct sctp_reset_streams *params, 4087 unsigned int optlen) 4088 { 4089 struct sctp_association *asoc; 4090 4091 if (optlen < sizeof(*params)) 4092 return -EINVAL; 4093 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4094 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4095 sizeof(__u16) * sizeof(*params)); 4096 4097 if (params->srs_number_streams * sizeof(__u16) > 4098 optlen - sizeof(*params)) 4099 return -EINVAL; 4100 4101 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4102 if (!asoc) 4103 return -EINVAL; 4104 4105 return sctp_send_reset_streams(asoc, params); 4106 } 4107 4108 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4109 unsigned int optlen) 4110 { 4111 struct sctp_association *asoc; 4112 4113 if (optlen != sizeof(*associd)) 4114 return -EINVAL; 4115 4116 asoc = sctp_id2assoc(sk, *associd); 4117 if (!asoc) 4118 return -EINVAL; 4119 4120 return sctp_send_reset_assoc(asoc); 4121 } 4122 4123 static int sctp_setsockopt_add_streams(struct sock *sk, 4124 struct sctp_add_streams *params, 4125 unsigned int optlen) 4126 { 4127 struct sctp_association *asoc; 4128 4129 if (optlen != sizeof(*params)) 4130 return -EINVAL; 4131 4132 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4133 if (!asoc) 4134 return -EINVAL; 4135 4136 return sctp_send_add_streams(asoc, params); 4137 } 4138 4139 static int sctp_setsockopt_scheduler(struct sock *sk, 4140 struct sctp_assoc_value *params, 4141 unsigned int optlen) 4142 { 4143 struct sctp_sock *sp = sctp_sk(sk); 4144 struct sctp_association *asoc; 4145 int retval = 0; 4146 4147 if (optlen < sizeof(*params)) 4148 return -EINVAL; 4149 4150 if (params->assoc_value > SCTP_SS_MAX) 4151 return -EINVAL; 4152 4153 asoc = sctp_id2assoc(sk, params->assoc_id); 4154 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4155 sctp_style(sk, UDP)) 4156 return -EINVAL; 4157 4158 if (asoc) 4159 return sctp_sched_set_sched(asoc, params->assoc_value); 4160 4161 if (sctp_style(sk, TCP)) 4162 params->assoc_id = SCTP_FUTURE_ASSOC; 4163 4164 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4165 params->assoc_id == SCTP_ALL_ASSOC) 4166 sp->default_ss = params->assoc_value; 4167 4168 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4169 params->assoc_id == SCTP_ALL_ASSOC) { 4170 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4171 int ret = sctp_sched_set_sched(asoc, 4172 params->assoc_value); 4173 4174 if (ret && !retval) 4175 retval = ret; 4176 } 4177 } 4178 4179 return retval; 4180 } 4181 4182 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4183 struct sctp_stream_value *params, 4184 unsigned int optlen) 4185 { 4186 struct sctp_association *asoc; 4187 int retval = -EINVAL; 4188 4189 if (optlen < sizeof(*params)) 4190 goto out; 4191 4192 asoc = sctp_id2assoc(sk, params->assoc_id); 4193 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4194 sctp_style(sk, UDP)) 4195 goto out; 4196 4197 if (asoc) { 4198 retval = sctp_sched_set_value(asoc, params->stream_id, 4199 params->stream_value, GFP_KERNEL); 4200 goto out; 4201 } 4202 4203 retval = 0; 4204 4205 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4206 int ret = sctp_sched_set_value(asoc, params->stream_id, 4207 params->stream_value, 4208 GFP_KERNEL); 4209 if (ret && !retval) /* try to return the 1st error. */ 4210 retval = ret; 4211 } 4212 4213 out: 4214 return retval; 4215 } 4216 4217 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4218 struct sctp_assoc_value *p, 4219 unsigned int optlen) 4220 { 4221 struct sctp_sock *sp = sctp_sk(sk); 4222 struct sctp_association *asoc; 4223 4224 if (optlen < sizeof(*p)) 4225 return -EINVAL; 4226 4227 asoc = sctp_id2assoc(sk, p->assoc_id); 4228 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4229 return -EINVAL; 4230 4231 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4232 return -EPERM; 4233 } 4234 4235 sp->ep->intl_enable = !!p->assoc_value; 4236 return 0; 4237 } 4238 4239 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4240 unsigned int optlen) 4241 { 4242 if (!sctp_style(sk, TCP)) 4243 return -EOPNOTSUPP; 4244 4245 if (sctp_sk(sk)->ep->base.bind_addr.port) 4246 return -EFAULT; 4247 4248 if (optlen < sizeof(int)) 4249 return -EINVAL; 4250 4251 sctp_sk(sk)->reuse = !!*val; 4252 4253 return 0; 4254 } 4255 4256 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4257 struct sctp_association *asoc) 4258 { 4259 struct sctp_ulpevent *event; 4260 4261 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4262 4263 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4264 if (sctp_outq_is_empty(&asoc->outqueue)) { 4265 event = sctp_ulpevent_make_sender_dry_event(asoc, 4266 GFP_USER | __GFP_NOWARN); 4267 if (!event) 4268 return -ENOMEM; 4269 4270 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4271 } 4272 } 4273 4274 return 0; 4275 } 4276 4277 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4278 unsigned int optlen) 4279 { 4280 struct sctp_sock *sp = sctp_sk(sk); 4281 struct sctp_association *asoc; 4282 int retval = 0; 4283 4284 if (optlen < sizeof(*param)) 4285 return -EINVAL; 4286 4287 if (param->se_type < SCTP_SN_TYPE_BASE || 4288 param->se_type > SCTP_SN_TYPE_MAX) 4289 return -EINVAL; 4290 4291 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4292 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4293 sctp_style(sk, UDP)) 4294 return -EINVAL; 4295 4296 if (asoc) 4297 return sctp_assoc_ulpevent_type_set(param, asoc); 4298 4299 if (sctp_style(sk, TCP)) 4300 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4301 4302 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4303 param->se_assoc_id == SCTP_ALL_ASSOC) 4304 sctp_ulpevent_type_set(&sp->subscribe, 4305 param->se_type, param->se_on); 4306 4307 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4308 param->se_assoc_id == SCTP_ALL_ASSOC) { 4309 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4310 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4311 4312 if (ret && !retval) 4313 retval = ret; 4314 } 4315 } 4316 4317 return retval; 4318 } 4319 4320 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4321 struct sctp_assoc_value *params, 4322 unsigned int optlen) 4323 { 4324 struct sctp_association *asoc; 4325 struct sctp_endpoint *ep; 4326 int retval = -EINVAL; 4327 4328 if (optlen != sizeof(*params)) 4329 goto out; 4330 4331 asoc = sctp_id2assoc(sk, params->assoc_id); 4332 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4333 sctp_style(sk, UDP)) 4334 goto out; 4335 4336 ep = sctp_sk(sk)->ep; 4337 ep->asconf_enable = !!params->assoc_value; 4338 4339 if (ep->asconf_enable && ep->auth_enable) { 4340 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4341 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4342 } 4343 4344 retval = 0; 4345 4346 out: 4347 return retval; 4348 } 4349 4350 static int sctp_setsockopt_auth_supported(struct sock *sk, 4351 struct sctp_assoc_value *params, 4352 unsigned int optlen) 4353 { 4354 struct sctp_association *asoc; 4355 struct sctp_endpoint *ep; 4356 int retval = -EINVAL; 4357 4358 if (optlen != sizeof(*params)) 4359 goto out; 4360 4361 asoc = sctp_id2assoc(sk, params->assoc_id); 4362 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4363 sctp_style(sk, UDP)) 4364 goto out; 4365 4366 ep = sctp_sk(sk)->ep; 4367 if (params->assoc_value) { 4368 retval = sctp_auth_init(ep, GFP_KERNEL); 4369 if (retval) 4370 goto out; 4371 if (ep->asconf_enable) { 4372 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4373 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4374 } 4375 } 4376 4377 ep->auth_enable = !!params->assoc_value; 4378 retval = 0; 4379 4380 out: 4381 return retval; 4382 } 4383 4384 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4385 struct sctp_assoc_value *params, 4386 unsigned int optlen) 4387 { 4388 struct sctp_association *asoc; 4389 int retval = -EINVAL; 4390 4391 if (optlen != sizeof(*params)) 4392 goto out; 4393 4394 asoc = sctp_id2assoc(sk, params->assoc_id); 4395 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4396 sctp_style(sk, UDP)) 4397 goto out; 4398 4399 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4400 retval = 0; 4401 4402 out: 4403 return retval; 4404 } 4405 4406 static int sctp_setsockopt_pf_expose(struct sock *sk, 4407 struct sctp_assoc_value *params, 4408 unsigned int optlen) 4409 { 4410 struct sctp_association *asoc; 4411 int retval = -EINVAL; 4412 4413 if (optlen != sizeof(*params)) 4414 goto out; 4415 4416 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4417 goto out; 4418 4419 asoc = sctp_id2assoc(sk, params->assoc_id); 4420 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4421 sctp_style(sk, UDP)) 4422 goto out; 4423 4424 if (asoc) 4425 asoc->pf_expose = params->assoc_value; 4426 else 4427 sctp_sk(sk)->pf_expose = params->assoc_value; 4428 retval = 0; 4429 4430 out: 4431 return retval; 4432 } 4433 4434 static int sctp_setsockopt_encap_port(struct sock *sk, 4435 struct sctp_udpencaps *encap, 4436 unsigned int optlen) 4437 { 4438 struct sctp_association *asoc; 4439 struct sctp_transport *t; 4440 __be16 encap_port; 4441 4442 if (optlen != sizeof(*encap)) 4443 return -EINVAL; 4444 4445 /* If an address other than INADDR_ANY is specified, and 4446 * no transport is found, then the request is invalid. 4447 */ 4448 encap_port = (__force __be16)encap->sue_port; 4449 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4450 t = sctp_addr_id2transport(sk, &encap->sue_address, 4451 encap->sue_assoc_id); 4452 if (!t) 4453 return -EINVAL; 4454 4455 t->encap_port = encap_port; 4456 return 0; 4457 } 4458 4459 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4460 * socket is a one to many style socket, and an association 4461 * was not found, then the id was invalid. 4462 */ 4463 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4464 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4465 sctp_style(sk, UDP)) 4466 return -EINVAL; 4467 4468 /* If changes are for association, also apply encap_port to 4469 * each transport. 4470 */ 4471 if (asoc) { 4472 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4473 transports) 4474 t->encap_port = encap_port; 4475 4476 asoc->encap_port = encap_port; 4477 return 0; 4478 } 4479 4480 sctp_sk(sk)->encap_port = encap_port; 4481 return 0; 4482 } 4483 4484 static int sctp_setsockopt_probe_interval(struct sock *sk, 4485 struct sctp_probeinterval *params, 4486 unsigned int optlen) 4487 { 4488 struct sctp_association *asoc; 4489 struct sctp_transport *t; 4490 __u32 probe_interval; 4491 4492 if (optlen != sizeof(*params)) 4493 return -EINVAL; 4494 4495 probe_interval = params->spi_interval; 4496 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4497 return -EINVAL; 4498 4499 /* If an address other than INADDR_ANY is specified, and 4500 * no transport is found, then the request is invalid. 4501 */ 4502 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4503 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4504 params->spi_assoc_id); 4505 if (!t) 4506 return -EINVAL; 4507 4508 t->probe_interval = msecs_to_jiffies(probe_interval); 4509 sctp_transport_pl_reset(t); 4510 return 0; 4511 } 4512 4513 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4514 * socket is a one to many style socket, and an association 4515 * was not found, then the id was invalid. 4516 */ 4517 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4518 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4519 sctp_style(sk, UDP)) 4520 return -EINVAL; 4521 4522 /* If changes are for association, also apply probe_interval to 4523 * each transport. 4524 */ 4525 if (asoc) { 4526 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4527 t->probe_interval = msecs_to_jiffies(probe_interval); 4528 sctp_transport_pl_reset(t); 4529 } 4530 4531 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4532 return 0; 4533 } 4534 4535 sctp_sk(sk)->probe_interval = probe_interval; 4536 return 0; 4537 } 4538 4539 /* API 6.2 setsockopt(), getsockopt() 4540 * 4541 * Applications use setsockopt() and getsockopt() to set or retrieve 4542 * socket options. Socket options are used to change the default 4543 * behavior of sockets calls. They are described in Section 7. 4544 * 4545 * The syntax is: 4546 * 4547 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4548 * int __user *optlen); 4549 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4550 * int optlen); 4551 * 4552 * sd - the socket descript. 4553 * level - set to IPPROTO_SCTP for all SCTP options. 4554 * optname - the option name. 4555 * optval - the buffer to store the value of the option. 4556 * optlen - the size of the buffer. 4557 */ 4558 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4559 sockptr_t optval, unsigned int optlen) 4560 { 4561 void *kopt = NULL; 4562 int retval = 0; 4563 4564 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4565 4566 /* I can hardly begin to describe how wrong this is. This is 4567 * so broken as to be worse than useless. The API draft 4568 * REALLY is NOT helpful here... I am not convinced that the 4569 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4570 * are at all well-founded. 4571 */ 4572 if (level != SOL_SCTP) { 4573 struct sctp_af *af = sctp_sk(sk)->pf->af; 4574 4575 return af->setsockopt(sk, level, optname, optval, optlen); 4576 } 4577 4578 if (optlen > 0) { 4579 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4580 optlen = min_t(unsigned int, optlen, 4581 PAGE_ALIGN(USHRT_MAX + 4582 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4583 kopt = memdup_sockptr(optval, optlen); 4584 if (IS_ERR(kopt)) 4585 return PTR_ERR(kopt); 4586 } 4587 4588 lock_sock(sk); 4589 4590 switch (optname) { 4591 case SCTP_SOCKOPT_BINDX_ADD: 4592 /* 'optlen' is the size of the addresses buffer. */ 4593 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4594 SCTP_BINDX_ADD_ADDR); 4595 break; 4596 4597 case SCTP_SOCKOPT_BINDX_REM: 4598 /* 'optlen' is the size of the addresses buffer. */ 4599 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4600 SCTP_BINDX_REM_ADDR); 4601 break; 4602 4603 case SCTP_SOCKOPT_CONNECTX_OLD: 4604 /* 'optlen' is the size of the addresses buffer. */ 4605 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4606 break; 4607 4608 case SCTP_SOCKOPT_CONNECTX: 4609 /* 'optlen' is the size of the addresses buffer. */ 4610 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4611 break; 4612 4613 case SCTP_DISABLE_FRAGMENTS: 4614 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4615 break; 4616 4617 case SCTP_EVENTS: 4618 retval = sctp_setsockopt_events(sk, kopt, optlen); 4619 break; 4620 4621 case SCTP_AUTOCLOSE: 4622 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4623 break; 4624 4625 case SCTP_PEER_ADDR_PARAMS: 4626 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4627 break; 4628 4629 case SCTP_DELAYED_SACK: 4630 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4631 break; 4632 case SCTP_PARTIAL_DELIVERY_POINT: 4633 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4634 break; 4635 4636 case SCTP_INITMSG: 4637 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4638 break; 4639 case SCTP_DEFAULT_SEND_PARAM: 4640 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4641 break; 4642 case SCTP_DEFAULT_SNDINFO: 4643 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4644 break; 4645 case SCTP_PRIMARY_ADDR: 4646 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4647 break; 4648 case SCTP_SET_PEER_PRIMARY_ADDR: 4649 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4650 break; 4651 case SCTP_NODELAY: 4652 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4653 break; 4654 case SCTP_RTOINFO: 4655 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4656 break; 4657 case SCTP_ASSOCINFO: 4658 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4659 break; 4660 case SCTP_I_WANT_MAPPED_V4_ADDR: 4661 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4662 break; 4663 case SCTP_MAXSEG: 4664 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4665 break; 4666 case SCTP_ADAPTATION_LAYER: 4667 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4668 break; 4669 case SCTP_CONTEXT: 4670 retval = sctp_setsockopt_context(sk, kopt, optlen); 4671 break; 4672 case SCTP_FRAGMENT_INTERLEAVE: 4673 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4674 break; 4675 case SCTP_MAX_BURST: 4676 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4677 break; 4678 case SCTP_AUTH_CHUNK: 4679 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4680 break; 4681 case SCTP_HMAC_IDENT: 4682 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4683 break; 4684 case SCTP_AUTH_KEY: 4685 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4686 break; 4687 case SCTP_AUTH_ACTIVE_KEY: 4688 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4689 break; 4690 case SCTP_AUTH_DELETE_KEY: 4691 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4692 break; 4693 case SCTP_AUTH_DEACTIVATE_KEY: 4694 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4695 break; 4696 case SCTP_AUTO_ASCONF: 4697 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4698 break; 4699 case SCTP_PEER_ADDR_THLDS: 4700 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4701 false); 4702 break; 4703 case SCTP_PEER_ADDR_THLDS_V2: 4704 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4705 true); 4706 break; 4707 case SCTP_RECVRCVINFO: 4708 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4709 break; 4710 case SCTP_RECVNXTINFO: 4711 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4712 break; 4713 case SCTP_PR_SUPPORTED: 4714 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4715 break; 4716 case SCTP_DEFAULT_PRINFO: 4717 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4718 break; 4719 case SCTP_RECONFIG_SUPPORTED: 4720 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4721 break; 4722 case SCTP_ENABLE_STREAM_RESET: 4723 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4724 break; 4725 case SCTP_RESET_STREAMS: 4726 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4727 break; 4728 case SCTP_RESET_ASSOC: 4729 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4730 break; 4731 case SCTP_ADD_STREAMS: 4732 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4733 break; 4734 case SCTP_STREAM_SCHEDULER: 4735 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4736 break; 4737 case SCTP_STREAM_SCHEDULER_VALUE: 4738 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4739 break; 4740 case SCTP_INTERLEAVING_SUPPORTED: 4741 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4742 optlen); 4743 break; 4744 case SCTP_REUSE_PORT: 4745 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4746 break; 4747 case SCTP_EVENT: 4748 retval = sctp_setsockopt_event(sk, kopt, optlen); 4749 break; 4750 case SCTP_ASCONF_SUPPORTED: 4751 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4752 break; 4753 case SCTP_AUTH_SUPPORTED: 4754 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4755 break; 4756 case SCTP_ECN_SUPPORTED: 4757 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4758 break; 4759 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4760 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4761 break; 4762 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4763 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4764 break; 4765 case SCTP_PLPMTUD_PROBE_INTERVAL: 4766 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4767 break; 4768 default: 4769 retval = -ENOPROTOOPT; 4770 break; 4771 } 4772 4773 release_sock(sk); 4774 kfree(kopt); 4775 return retval; 4776 } 4777 4778 /* API 3.1.6 connect() - UDP Style Syntax 4779 * 4780 * An application may use the connect() call in the UDP model to initiate an 4781 * association without sending data. 4782 * 4783 * The syntax is: 4784 * 4785 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4786 * 4787 * sd: the socket descriptor to have a new association added to. 4788 * 4789 * nam: the address structure (either struct sockaddr_in or struct 4790 * sockaddr_in6 defined in RFC2553 [7]). 4791 * 4792 * len: the size of the address. 4793 */ 4794 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4795 int addr_len, int flags) 4796 { 4797 struct sctp_af *af; 4798 int err = -EINVAL; 4799 4800 lock_sock(sk); 4801 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4802 addr, addr_len); 4803 4804 /* Validate addr_len before calling common connect/connectx routine. */ 4805 af = sctp_get_af_specific(addr->sa_family); 4806 if (af && addr_len >= af->sockaddr_len) 4807 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4808 4809 release_sock(sk); 4810 return err; 4811 } 4812 4813 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4814 int addr_len, int flags) 4815 { 4816 if (addr_len < sizeof(uaddr->sa_family)) 4817 return -EINVAL; 4818 4819 if (uaddr->sa_family == AF_UNSPEC) 4820 return -EOPNOTSUPP; 4821 4822 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4823 } 4824 4825 /* FIXME: Write comments. */ 4826 static int sctp_disconnect(struct sock *sk, int flags) 4827 { 4828 return -EOPNOTSUPP; /* STUB */ 4829 } 4830 4831 /* 4.1.4 accept() - TCP Style Syntax 4832 * 4833 * Applications use accept() call to remove an established SCTP 4834 * association from the accept queue of the endpoint. A new socket 4835 * descriptor will be returned from accept() to represent the newly 4836 * formed association. 4837 */ 4838 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4839 { 4840 struct sctp_sock *sp; 4841 struct sctp_endpoint *ep; 4842 struct sock *newsk = NULL; 4843 struct sctp_association *asoc; 4844 long timeo; 4845 int error = 0; 4846 4847 lock_sock(sk); 4848 4849 sp = sctp_sk(sk); 4850 ep = sp->ep; 4851 4852 if (!sctp_style(sk, TCP)) { 4853 error = -EOPNOTSUPP; 4854 goto out; 4855 } 4856 4857 if (!sctp_sstate(sk, LISTENING)) { 4858 error = -EINVAL; 4859 goto out; 4860 } 4861 4862 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4863 4864 error = sctp_wait_for_accept(sk, timeo); 4865 if (error) 4866 goto out; 4867 4868 /* We treat the list of associations on the endpoint as the accept 4869 * queue and pick the first association on the list. 4870 */ 4871 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4872 4873 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4874 if (!newsk) { 4875 error = -ENOMEM; 4876 goto out; 4877 } 4878 4879 /* Populate the fields of the newsk from the oldsk and migrate the 4880 * asoc to the newsk. 4881 */ 4882 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4883 if (error) { 4884 sk_common_release(newsk); 4885 newsk = NULL; 4886 } 4887 4888 out: 4889 release_sock(sk); 4890 *err = error; 4891 return newsk; 4892 } 4893 4894 /* The SCTP ioctl handler. */ 4895 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4896 { 4897 int rc = -ENOTCONN; 4898 4899 lock_sock(sk); 4900 4901 /* 4902 * SEQPACKET-style sockets in LISTENING state are valid, for 4903 * SCTP, so only discard TCP-style sockets in LISTENING state. 4904 */ 4905 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4906 goto out; 4907 4908 switch (cmd) { 4909 case SIOCINQ: { 4910 struct sk_buff *skb; 4911 unsigned int amount = 0; 4912 4913 skb = skb_peek(&sk->sk_receive_queue); 4914 if (skb != NULL) { 4915 /* 4916 * We will only return the amount of this packet since 4917 * that is all that will be read. 4918 */ 4919 amount = skb->len; 4920 } 4921 rc = put_user(amount, (int __user *)arg); 4922 break; 4923 } 4924 default: 4925 rc = -ENOIOCTLCMD; 4926 break; 4927 } 4928 out: 4929 release_sock(sk); 4930 return rc; 4931 } 4932 4933 /* This is the function which gets called during socket creation to 4934 * initialized the SCTP-specific portion of the sock. 4935 * The sock structure should already be zero-filled memory. 4936 */ 4937 static int sctp_init_sock(struct sock *sk) 4938 { 4939 struct net *net = sock_net(sk); 4940 struct sctp_sock *sp; 4941 4942 pr_debug("%s: sk:%p\n", __func__, sk); 4943 4944 sp = sctp_sk(sk); 4945 4946 /* Initialize the SCTP per socket area. */ 4947 switch (sk->sk_type) { 4948 case SOCK_SEQPACKET: 4949 sp->type = SCTP_SOCKET_UDP; 4950 break; 4951 case SOCK_STREAM: 4952 sp->type = SCTP_SOCKET_TCP; 4953 break; 4954 default: 4955 return -ESOCKTNOSUPPORT; 4956 } 4957 4958 sk->sk_gso_type = SKB_GSO_SCTP; 4959 4960 /* Initialize default send parameters. These parameters can be 4961 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4962 */ 4963 sp->default_stream = 0; 4964 sp->default_ppid = 0; 4965 sp->default_flags = 0; 4966 sp->default_context = 0; 4967 sp->default_timetolive = 0; 4968 4969 sp->default_rcv_context = 0; 4970 sp->max_burst = net->sctp.max_burst; 4971 4972 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4973 4974 /* Initialize default setup parameters. These parameters 4975 * can be modified with the SCTP_INITMSG socket option or 4976 * overridden by the SCTP_INIT CMSG. 4977 */ 4978 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4979 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4980 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4981 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4982 4983 /* Initialize default RTO related parameters. These parameters can 4984 * be modified for with the SCTP_RTOINFO socket option. 4985 */ 4986 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4987 sp->rtoinfo.srto_max = net->sctp.rto_max; 4988 sp->rtoinfo.srto_min = net->sctp.rto_min; 4989 4990 /* Initialize default association related parameters. These parameters 4991 * can be modified with the SCTP_ASSOCINFO socket option. 4992 */ 4993 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4994 sp->assocparams.sasoc_number_peer_destinations = 0; 4995 sp->assocparams.sasoc_peer_rwnd = 0; 4996 sp->assocparams.sasoc_local_rwnd = 0; 4997 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4998 4999 /* Initialize default event subscriptions. By default, all the 5000 * options are off. 5001 */ 5002 sp->subscribe = 0; 5003 5004 /* Default Peer Address Parameters. These defaults can 5005 * be modified via SCTP_PEER_ADDR_PARAMS 5006 */ 5007 sp->hbinterval = net->sctp.hb_interval; 5008 sp->udp_port = htons(net->sctp.udp_port); 5009 sp->encap_port = htons(net->sctp.encap_port); 5010 sp->pathmaxrxt = net->sctp.max_retrans_path; 5011 sp->pf_retrans = net->sctp.pf_retrans; 5012 sp->ps_retrans = net->sctp.ps_retrans; 5013 sp->pf_expose = net->sctp.pf_expose; 5014 sp->pathmtu = 0; /* allow default discovery */ 5015 sp->sackdelay = net->sctp.sack_timeout; 5016 sp->sackfreq = 2; 5017 sp->param_flags = SPP_HB_ENABLE | 5018 SPP_PMTUD_ENABLE | 5019 SPP_SACKDELAY_ENABLE; 5020 sp->default_ss = SCTP_SS_DEFAULT; 5021 5022 /* If enabled no SCTP message fragmentation will be performed. 5023 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5024 */ 5025 sp->disable_fragments = 0; 5026 5027 /* Enable Nagle algorithm by default. */ 5028 sp->nodelay = 0; 5029 5030 sp->recvrcvinfo = 0; 5031 sp->recvnxtinfo = 0; 5032 5033 /* Enable by default. */ 5034 sp->v4mapped = 1; 5035 5036 /* Auto-close idle associations after the configured 5037 * number of seconds. A value of 0 disables this 5038 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5039 * for UDP-style sockets only. 5040 */ 5041 sp->autoclose = 0; 5042 5043 /* User specified fragmentation limit. */ 5044 sp->user_frag = 0; 5045 5046 sp->adaptation_ind = 0; 5047 5048 sp->pf = sctp_get_pf_specific(sk->sk_family); 5049 5050 /* Control variables for partial data delivery. */ 5051 atomic_set(&sp->pd_mode, 0); 5052 skb_queue_head_init(&sp->pd_lobby); 5053 sp->frag_interleave = 0; 5054 sp->probe_interval = net->sctp.probe_interval; 5055 5056 /* Create a per socket endpoint structure. Even if we 5057 * change the data structure relationships, this may still 5058 * be useful for storing pre-connect address information. 5059 */ 5060 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5061 if (!sp->ep) 5062 return -ENOMEM; 5063 5064 sp->hmac = NULL; 5065 5066 sk->sk_destruct = sctp_destruct_sock; 5067 5068 SCTP_DBG_OBJCNT_INC(sock); 5069 5070 sk_sockets_allocated_inc(sk); 5071 sock_prot_inuse_add(net, sk->sk_prot, 1); 5072 5073 return 0; 5074 } 5075 5076 /* Cleanup any SCTP per socket resources. Must be called with 5077 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5078 */ 5079 static void sctp_destroy_sock(struct sock *sk) 5080 { 5081 struct sctp_sock *sp; 5082 5083 pr_debug("%s: sk:%p\n", __func__, sk); 5084 5085 /* Release our hold on the endpoint. */ 5086 sp = sctp_sk(sk); 5087 /* This could happen during socket init, thus we bail out 5088 * early, since the rest of the below is not setup either. 5089 */ 5090 if (sp->ep == NULL) 5091 return; 5092 5093 if (sp->do_auto_asconf) { 5094 sp->do_auto_asconf = 0; 5095 list_del(&sp->auto_asconf_list); 5096 } 5097 sctp_endpoint_free(sp->ep); 5098 sk_sockets_allocated_dec(sk); 5099 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5100 } 5101 5102 /* Triggered when there are no references on the socket anymore */ 5103 static void sctp_destruct_sock(struct sock *sk) 5104 { 5105 struct sctp_sock *sp = sctp_sk(sk); 5106 5107 /* Free up the HMAC transform. */ 5108 crypto_free_shash(sp->hmac); 5109 5110 inet_sock_destruct(sk); 5111 } 5112 5113 /* API 4.1.7 shutdown() - TCP Style Syntax 5114 * int shutdown(int socket, int how); 5115 * 5116 * sd - the socket descriptor of the association to be closed. 5117 * how - Specifies the type of shutdown. The values are 5118 * as follows: 5119 * SHUT_RD 5120 * Disables further receive operations. No SCTP 5121 * protocol action is taken. 5122 * SHUT_WR 5123 * Disables further send operations, and initiates 5124 * the SCTP shutdown sequence. 5125 * SHUT_RDWR 5126 * Disables further send and receive operations 5127 * and initiates the SCTP shutdown sequence. 5128 */ 5129 static void sctp_shutdown(struct sock *sk, int how) 5130 { 5131 struct net *net = sock_net(sk); 5132 struct sctp_endpoint *ep; 5133 5134 if (!sctp_style(sk, TCP)) 5135 return; 5136 5137 ep = sctp_sk(sk)->ep; 5138 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5139 struct sctp_association *asoc; 5140 5141 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5142 asoc = list_entry(ep->asocs.next, 5143 struct sctp_association, asocs); 5144 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5145 } 5146 } 5147 5148 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5149 struct sctp_info *info) 5150 { 5151 struct sctp_transport *prim; 5152 struct list_head *pos; 5153 int mask; 5154 5155 memset(info, 0, sizeof(*info)); 5156 if (!asoc) { 5157 struct sctp_sock *sp = sctp_sk(sk); 5158 5159 info->sctpi_s_autoclose = sp->autoclose; 5160 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5161 info->sctpi_s_pd_point = sp->pd_point; 5162 info->sctpi_s_nodelay = sp->nodelay; 5163 info->sctpi_s_disable_fragments = sp->disable_fragments; 5164 info->sctpi_s_v4mapped = sp->v4mapped; 5165 info->sctpi_s_frag_interleave = sp->frag_interleave; 5166 info->sctpi_s_type = sp->type; 5167 5168 return 0; 5169 } 5170 5171 info->sctpi_tag = asoc->c.my_vtag; 5172 info->sctpi_state = asoc->state; 5173 info->sctpi_rwnd = asoc->a_rwnd; 5174 info->sctpi_unackdata = asoc->unack_data; 5175 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5176 info->sctpi_instrms = asoc->stream.incnt; 5177 info->sctpi_outstrms = asoc->stream.outcnt; 5178 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5179 info->sctpi_inqueue++; 5180 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5181 info->sctpi_outqueue++; 5182 info->sctpi_overall_error = asoc->overall_error_count; 5183 info->sctpi_max_burst = asoc->max_burst; 5184 info->sctpi_maxseg = asoc->frag_point; 5185 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5186 info->sctpi_peer_tag = asoc->c.peer_vtag; 5187 5188 mask = asoc->peer.ecn_capable << 1; 5189 mask = (mask | asoc->peer.ipv4_address) << 1; 5190 mask = (mask | asoc->peer.ipv6_address) << 1; 5191 mask = (mask | asoc->peer.hostname_address) << 1; 5192 mask = (mask | asoc->peer.asconf_capable) << 1; 5193 mask = (mask | asoc->peer.prsctp_capable) << 1; 5194 mask = (mask | asoc->peer.auth_capable); 5195 info->sctpi_peer_capable = mask; 5196 mask = asoc->peer.sack_needed << 1; 5197 mask = (mask | asoc->peer.sack_generation) << 1; 5198 mask = (mask | asoc->peer.zero_window_announced); 5199 info->sctpi_peer_sack = mask; 5200 5201 info->sctpi_isacks = asoc->stats.isacks; 5202 info->sctpi_osacks = asoc->stats.osacks; 5203 info->sctpi_opackets = asoc->stats.opackets; 5204 info->sctpi_ipackets = asoc->stats.ipackets; 5205 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5206 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5207 info->sctpi_idupchunks = asoc->stats.idupchunks; 5208 info->sctpi_gapcnt = asoc->stats.gapcnt; 5209 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5210 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5211 info->sctpi_oodchunks = asoc->stats.oodchunks; 5212 info->sctpi_iodchunks = asoc->stats.iodchunks; 5213 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5214 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5215 5216 prim = asoc->peer.primary_path; 5217 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5218 info->sctpi_p_state = prim->state; 5219 info->sctpi_p_cwnd = prim->cwnd; 5220 info->sctpi_p_srtt = prim->srtt; 5221 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5222 info->sctpi_p_hbinterval = prim->hbinterval; 5223 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5224 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5225 info->sctpi_p_ssthresh = prim->ssthresh; 5226 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5227 info->sctpi_p_flight_size = prim->flight_size; 5228 info->sctpi_p_error = prim->error_count; 5229 5230 return 0; 5231 } 5232 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5233 5234 /* use callback to avoid exporting the core structure */ 5235 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5236 { 5237 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5238 5239 rhashtable_walk_start(iter); 5240 } 5241 5242 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5243 { 5244 rhashtable_walk_stop(iter); 5245 rhashtable_walk_exit(iter); 5246 } 5247 5248 struct sctp_transport *sctp_transport_get_next(struct net *net, 5249 struct rhashtable_iter *iter) 5250 { 5251 struct sctp_transport *t; 5252 5253 t = rhashtable_walk_next(iter); 5254 for (; t; t = rhashtable_walk_next(iter)) { 5255 if (IS_ERR(t)) { 5256 if (PTR_ERR(t) == -EAGAIN) 5257 continue; 5258 break; 5259 } 5260 5261 if (!sctp_transport_hold(t)) 5262 continue; 5263 5264 if (net_eq(t->asoc->base.net, net) && 5265 t->asoc->peer.primary_path == t) 5266 break; 5267 5268 sctp_transport_put(t); 5269 } 5270 5271 return t; 5272 } 5273 5274 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5275 struct rhashtable_iter *iter, 5276 int pos) 5277 { 5278 struct sctp_transport *t; 5279 5280 if (!pos) 5281 return SEQ_START_TOKEN; 5282 5283 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5284 if (!--pos) 5285 break; 5286 sctp_transport_put(t); 5287 } 5288 5289 return t; 5290 } 5291 5292 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5293 void *p) { 5294 int err = 0; 5295 int hash = 0; 5296 struct sctp_endpoint *ep; 5297 struct sctp_hashbucket *head; 5298 5299 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5300 hash++, head++) { 5301 read_lock_bh(&head->lock); 5302 sctp_for_each_hentry(ep, &head->chain) { 5303 err = cb(ep, p); 5304 if (err) 5305 break; 5306 } 5307 read_unlock_bh(&head->lock); 5308 } 5309 5310 return err; 5311 } 5312 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5313 5314 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, 5315 const union sctp_addr *laddr, 5316 const union sctp_addr *paddr, void *p) 5317 { 5318 struct sctp_transport *transport; 5319 struct sctp_endpoint *ep; 5320 int err = -ENOENT; 5321 5322 rcu_read_lock(); 5323 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5324 if (!transport) { 5325 rcu_read_unlock(); 5326 return err; 5327 } 5328 ep = transport->asoc->ep; 5329 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5330 sctp_transport_put(transport); 5331 rcu_read_unlock(); 5332 return err; 5333 } 5334 rcu_read_unlock(); 5335 5336 err = cb(ep, transport, p); 5337 sctp_endpoint_put(ep); 5338 sctp_transport_put(transport); 5339 return err; 5340 } 5341 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5342 5343 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, 5344 struct net *net, int *pos, void *p) 5345 { 5346 struct rhashtable_iter hti; 5347 struct sctp_transport *tsp; 5348 struct sctp_endpoint *ep; 5349 int ret; 5350 5351 again: 5352 ret = 0; 5353 sctp_transport_walk_start(&hti); 5354 5355 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5356 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5357 ep = tsp->asoc->ep; 5358 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5359 ret = cb(ep, tsp, p); 5360 if (ret) 5361 break; 5362 sctp_endpoint_put(ep); 5363 } 5364 (*pos)++; 5365 sctp_transport_put(tsp); 5366 } 5367 sctp_transport_walk_stop(&hti); 5368 5369 if (ret) { 5370 if (cb_done && !cb_done(ep, tsp, p)) { 5371 (*pos)++; 5372 sctp_endpoint_put(ep); 5373 sctp_transport_put(tsp); 5374 goto again; 5375 } 5376 sctp_endpoint_put(ep); 5377 sctp_transport_put(tsp); 5378 } 5379 5380 return ret; 5381 } 5382 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); 5383 5384 /* 7.2.1 Association Status (SCTP_STATUS) 5385 5386 * Applications can retrieve current status information about an 5387 * association, including association state, peer receiver window size, 5388 * number of unacked data chunks, and number of data chunks pending 5389 * receipt. This information is read-only. 5390 */ 5391 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5392 char __user *optval, 5393 int __user *optlen) 5394 { 5395 struct sctp_status status; 5396 struct sctp_association *asoc = NULL; 5397 struct sctp_transport *transport; 5398 sctp_assoc_t associd; 5399 int retval = 0; 5400 5401 if (len < sizeof(status)) { 5402 retval = -EINVAL; 5403 goto out; 5404 } 5405 5406 len = sizeof(status); 5407 if (copy_from_user(&status, optval, len)) { 5408 retval = -EFAULT; 5409 goto out; 5410 } 5411 5412 associd = status.sstat_assoc_id; 5413 asoc = sctp_id2assoc(sk, associd); 5414 if (!asoc) { 5415 retval = -EINVAL; 5416 goto out; 5417 } 5418 5419 transport = asoc->peer.primary_path; 5420 5421 status.sstat_assoc_id = sctp_assoc2id(asoc); 5422 status.sstat_state = sctp_assoc_to_state(asoc); 5423 status.sstat_rwnd = asoc->peer.rwnd; 5424 status.sstat_unackdata = asoc->unack_data; 5425 5426 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5427 status.sstat_instrms = asoc->stream.incnt; 5428 status.sstat_outstrms = asoc->stream.outcnt; 5429 status.sstat_fragmentation_point = asoc->frag_point; 5430 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5431 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5432 transport->af_specific->sockaddr_len); 5433 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5434 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5435 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5436 status.sstat_primary.spinfo_state = transport->state; 5437 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5438 status.sstat_primary.spinfo_srtt = transport->srtt; 5439 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5440 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5441 5442 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5443 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5444 5445 if (put_user(len, optlen)) { 5446 retval = -EFAULT; 5447 goto out; 5448 } 5449 5450 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5451 __func__, len, status.sstat_state, status.sstat_rwnd, 5452 status.sstat_assoc_id); 5453 5454 if (copy_to_user(optval, &status, len)) { 5455 retval = -EFAULT; 5456 goto out; 5457 } 5458 5459 out: 5460 return retval; 5461 } 5462 5463 5464 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5465 * 5466 * Applications can retrieve information about a specific peer address 5467 * of an association, including its reachability state, congestion 5468 * window, and retransmission timer values. This information is 5469 * read-only. 5470 */ 5471 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5472 char __user *optval, 5473 int __user *optlen) 5474 { 5475 struct sctp_paddrinfo pinfo; 5476 struct sctp_transport *transport; 5477 int retval = 0; 5478 5479 if (len < sizeof(pinfo)) { 5480 retval = -EINVAL; 5481 goto out; 5482 } 5483 5484 len = sizeof(pinfo); 5485 if (copy_from_user(&pinfo, optval, len)) { 5486 retval = -EFAULT; 5487 goto out; 5488 } 5489 5490 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5491 pinfo.spinfo_assoc_id); 5492 if (!transport) { 5493 retval = -EINVAL; 5494 goto out; 5495 } 5496 5497 if (transport->state == SCTP_PF && 5498 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5499 retval = -EACCES; 5500 goto out; 5501 } 5502 5503 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5504 pinfo.spinfo_state = transport->state; 5505 pinfo.spinfo_cwnd = transport->cwnd; 5506 pinfo.spinfo_srtt = transport->srtt; 5507 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5508 pinfo.spinfo_mtu = transport->pathmtu; 5509 5510 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5511 pinfo.spinfo_state = SCTP_ACTIVE; 5512 5513 if (put_user(len, optlen)) { 5514 retval = -EFAULT; 5515 goto out; 5516 } 5517 5518 if (copy_to_user(optval, &pinfo, len)) { 5519 retval = -EFAULT; 5520 goto out; 5521 } 5522 5523 out: 5524 return retval; 5525 } 5526 5527 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5528 * 5529 * This option is a on/off flag. If enabled no SCTP message 5530 * fragmentation will be performed. Instead if a message being sent 5531 * exceeds the current PMTU size, the message will NOT be sent and 5532 * instead a error will be indicated to the user. 5533 */ 5534 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5535 char __user *optval, int __user *optlen) 5536 { 5537 int val; 5538 5539 if (len < sizeof(int)) 5540 return -EINVAL; 5541 5542 len = sizeof(int); 5543 val = (sctp_sk(sk)->disable_fragments == 1); 5544 if (put_user(len, optlen)) 5545 return -EFAULT; 5546 if (copy_to_user(optval, &val, len)) 5547 return -EFAULT; 5548 return 0; 5549 } 5550 5551 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5552 * 5553 * This socket option is used to specify various notifications and 5554 * ancillary data the user wishes to receive. 5555 */ 5556 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5557 int __user *optlen) 5558 { 5559 struct sctp_event_subscribe subscribe; 5560 __u8 *sn_type = (__u8 *)&subscribe; 5561 int i; 5562 5563 if (len == 0) 5564 return -EINVAL; 5565 if (len > sizeof(struct sctp_event_subscribe)) 5566 len = sizeof(struct sctp_event_subscribe); 5567 if (put_user(len, optlen)) 5568 return -EFAULT; 5569 5570 for (i = 0; i < len; i++) 5571 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5572 SCTP_SN_TYPE_BASE + i); 5573 5574 if (copy_to_user(optval, &subscribe, len)) 5575 return -EFAULT; 5576 5577 return 0; 5578 } 5579 5580 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5581 * 5582 * This socket option is applicable to the UDP-style socket only. When 5583 * set it will cause associations that are idle for more than the 5584 * specified number of seconds to automatically close. An association 5585 * being idle is defined an association that has NOT sent or received 5586 * user data. The special value of '0' indicates that no automatic 5587 * close of any associations should be performed. The option expects an 5588 * integer defining the number of seconds of idle time before an 5589 * association is closed. 5590 */ 5591 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5592 { 5593 /* Applicable to UDP-style socket only */ 5594 if (sctp_style(sk, TCP)) 5595 return -EOPNOTSUPP; 5596 if (len < sizeof(int)) 5597 return -EINVAL; 5598 len = sizeof(int); 5599 if (put_user(len, optlen)) 5600 return -EFAULT; 5601 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5602 return -EFAULT; 5603 return 0; 5604 } 5605 5606 /* Helper routine to branch off an association to a new socket. */ 5607 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5608 { 5609 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5610 struct sctp_sock *sp = sctp_sk(sk); 5611 struct socket *sock; 5612 int err = 0; 5613 5614 /* Do not peel off from one netns to another one. */ 5615 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5616 return -EINVAL; 5617 5618 if (!asoc) 5619 return -EINVAL; 5620 5621 /* An association cannot be branched off from an already peeled-off 5622 * socket, nor is this supported for tcp style sockets. 5623 */ 5624 if (!sctp_style(sk, UDP)) 5625 return -EINVAL; 5626 5627 /* Create a new socket. */ 5628 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5629 if (err < 0) 5630 return err; 5631 5632 sctp_copy_sock(sock->sk, sk, asoc); 5633 5634 /* Make peeled-off sockets more like 1-1 accepted sockets. 5635 * Set the daddr and initialize id to something more random and also 5636 * copy over any ip options. 5637 */ 5638 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk); 5639 sp->pf->copy_ip_options(sk, sock->sk); 5640 5641 /* Populate the fields of the newsk from the oldsk and migrate the 5642 * asoc to the newsk. 5643 */ 5644 err = sctp_sock_migrate(sk, sock->sk, asoc, 5645 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5646 if (err) { 5647 sock_release(sock); 5648 sock = NULL; 5649 } 5650 5651 *sockp = sock; 5652 5653 return err; 5654 } 5655 EXPORT_SYMBOL(sctp_do_peeloff); 5656 5657 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5658 struct file **newfile, unsigned flags) 5659 { 5660 struct socket *newsock; 5661 int retval; 5662 5663 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5664 if (retval < 0) 5665 goto out; 5666 5667 /* Map the socket to an unused fd that can be returned to the user. */ 5668 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5669 if (retval < 0) { 5670 sock_release(newsock); 5671 goto out; 5672 } 5673 5674 *newfile = sock_alloc_file(newsock, 0, NULL); 5675 if (IS_ERR(*newfile)) { 5676 put_unused_fd(retval); 5677 retval = PTR_ERR(*newfile); 5678 *newfile = NULL; 5679 return retval; 5680 } 5681 5682 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5683 retval); 5684 5685 peeloff->sd = retval; 5686 5687 if (flags & SOCK_NONBLOCK) 5688 (*newfile)->f_flags |= O_NONBLOCK; 5689 out: 5690 return retval; 5691 } 5692 5693 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5694 { 5695 sctp_peeloff_arg_t peeloff; 5696 struct file *newfile = NULL; 5697 int retval = 0; 5698 5699 if (len < sizeof(sctp_peeloff_arg_t)) 5700 return -EINVAL; 5701 len = sizeof(sctp_peeloff_arg_t); 5702 if (copy_from_user(&peeloff, optval, len)) 5703 return -EFAULT; 5704 5705 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5706 if (retval < 0) 5707 goto out; 5708 5709 /* Return the fd mapped to the new socket. */ 5710 if (put_user(len, optlen)) { 5711 fput(newfile); 5712 put_unused_fd(retval); 5713 return -EFAULT; 5714 } 5715 5716 if (copy_to_user(optval, &peeloff, len)) { 5717 fput(newfile); 5718 put_unused_fd(retval); 5719 return -EFAULT; 5720 } 5721 fd_install(retval, newfile); 5722 out: 5723 return retval; 5724 } 5725 5726 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5727 char __user *optval, int __user *optlen) 5728 { 5729 sctp_peeloff_flags_arg_t peeloff; 5730 struct file *newfile = NULL; 5731 int retval = 0; 5732 5733 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5734 return -EINVAL; 5735 len = sizeof(sctp_peeloff_flags_arg_t); 5736 if (copy_from_user(&peeloff, optval, len)) 5737 return -EFAULT; 5738 5739 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5740 &newfile, peeloff.flags); 5741 if (retval < 0) 5742 goto out; 5743 5744 /* Return the fd mapped to the new socket. */ 5745 if (put_user(len, optlen)) { 5746 fput(newfile); 5747 put_unused_fd(retval); 5748 return -EFAULT; 5749 } 5750 5751 if (copy_to_user(optval, &peeloff, len)) { 5752 fput(newfile); 5753 put_unused_fd(retval); 5754 return -EFAULT; 5755 } 5756 fd_install(retval, newfile); 5757 out: 5758 return retval; 5759 } 5760 5761 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5762 * 5763 * Applications can enable or disable heartbeats for any peer address of 5764 * an association, modify an address's heartbeat interval, force a 5765 * heartbeat to be sent immediately, and adjust the address's maximum 5766 * number of retransmissions sent before an address is considered 5767 * unreachable. The following structure is used to access and modify an 5768 * address's parameters: 5769 * 5770 * struct sctp_paddrparams { 5771 * sctp_assoc_t spp_assoc_id; 5772 * struct sockaddr_storage spp_address; 5773 * uint32_t spp_hbinterval; 5774 * uint16_t spp_pathmaxrxt; 5775 * uint32_t spp_pathmtu; 5776 * uint32_t spp_sackdelay; 5777 * uint32_t spp_flags; 5778 * }; 5779 * 5780 * spp_assoc_id - (one-to-many style socket) This is filled in the 5781 * application, and identifies the association for 5782 * this query. 5783 * spp_address - This specifies which address is of interest. 5784 * spp_hbinterval - This contains the value of the heartbeat interval, 5785 * in milliseconds. If a value of zero 5786 * is present in this field then no changes are to 5787 * be made to this parameter. 5788 * spp_pathmaxrxt - This contains the maximum number of 5789 * retransmissions before this address shall be 5790 * considered unreachable. If a value of zero 5791 * is present in this field then no changes are to 5792 * be made to this parameter. 5793 * spp_pathmtu - When Path MTU discovery is disabled the value 5794 * specified here will be the "fixed" path mtu. 5795 * Note that if the spp_address field is empty 5796 * then all associations on this address will 5797 * have this fixed path mtu set upon them. 5798 * 5799 * spp_sackdelay - When delayed sack is enabled, this value specifies 5800 * the number of milliseconds that sacks will be delayed 5801 * for. This value will apply to all addresses of an 5802 * association if the spp_address field is empty. Note 5803 * also, that if delayed sack is enabled and this 5804 * value is set to 0, no change is made to the last 5805 * recorded delayed sack timer value. 5806 * 5807 * spp_flags - These flags are used to control various features 5808 * on an association. The flag field may contain 5809 * zero or more of the following options. 5810 * 5811 * SPP_HB_ENABLE - Enable heartbeats on the 5812 * specified address. Note that if the address 5813 * field is empty all addresses for the association 5814 * have heartbeats enabled upon them. 5815 * 5816 * SPP_HB_DISABLE - Disable heartbeats on the 5817 * speicifed address. Note that if the address 5818 * field is empty all addresses for the association 5819 * will have their heartbeats disabled. Note also 5820 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5821 * mutually exclusive, only one of these two should 5822 * be specified. Enabling both fields will have 5823 * undetermined results. 5824 * 5825 * SPP_HB_DEMAND - Request a user initiated heartbeat 5826 * to be made immediately. 5827 * 5828 * SPP_PMTUD_ENABLE - This field will enable PMTU 5829 * discovery upon the specified address. Note that 5830 * if the address feild is empty then all addresses 5831 * on the association are effected. 5832 * 5833 * SPP_PMTUD_DISABLE - This field will disable PMTU 5834 * discovery upon the specified address. Note that 5835 * if the address feild is empty then all addresses 5836 * on the association are effected. Not also that 5837 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5838 * exclusive. Enabling both will have undetermined 5839 * results. 5840 * 5841 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5842 * on delayed sack. The time specified in spp_sackdelay 5843 * is used to specify the sack delay for this address. Note 5844 * that if spp_address is empty then all addresses will 5845 * enable delayed sack and take on the sack delay 5846 * value specified in spp_sackdelay. 5847 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5848 * off delayed sack. If the spp_address field is blank then 5849 * delayed sack is disabled for the entire association. Note 5850 * also that this field is mutually exclusive to 5851 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5852 * results. 5853 * 5854 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5855 * setting of the IPV6 flow label value. The value is 5856 * contained in the spp_ipv6_flowlabel field. 5857 * Upon retrieval, this flag will be set to indicate that 5858 * the spp_ipv6_flowlabel field has a valid value returned. 5859 * If a specific destination address is set (in the 5860 * spp_address field), then the value returned is that of 5861 * the address. If just an association is specified (and 5862 * no address), then the association's default flow label 5863 * is returned. If neither an association nor a destination 5864 * is specified, then the socket's default flow label is 5865 * returned. For non-IPv6 sockets, this flag will be left 5866 * cleared. 5867 * 5868 * SPP_DSCP: Setting this flag enables the setting of the 5869 * Differentiated Services Code Point (DSCP) value 5870 * associated with either the association or a specific 5871 * address. The value is obtained in the spp_dscp field. 5872 * Upon retrieval, this flag will be set to indicate that 5873 * the spp_dscp field has a valid value returned. If a 5874 * specific destination address is set when called (in the 5875 * spp_address field), then that specific destination 5876 * address's DSCP value is returned. If just an association 5877 * is specified, then the association's default DSCP is 5878 * returned. If neither an association nor a destination is 5879 * specified, then the socket's default DSCP is returned. 5880 * 5881 * spp_ipv6_flowlabel 5882 * - This field is used in conjunction with the 5883 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5884 * The 20 least significant bits are used for the flow 5885 * label. This setting has precedence over any IPv6-layer 5886 * setting. 5887 * 5888 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5889 * and contains the DSCP. The 6 most significant bits are 5890 * used for the DSCP. This setting has precedence over any 5891 * IPv4- or IPv6- layer setting. 5892 */ 5893 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5894 char __user *optval, int __user *optlen) 5895 { 5896 struct sctp_paddrparams params; 5897 struct sctp_transport *trans = NULL; 5898 struct sctp_association *asoc = NULL; 5899 struct sctp_sock *sp = sctp_sk(sk); 5900 5901 if (len >= sizeof(params)) 5902 len = sizeof(params); 5903 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5904 spp_ipv6_flowlabel), 4)) 5905 len = ALIGN(offsetof(struct sctp_paddrparams, 5906 spp_ipv6_flowlabel), 4); 5907 else 5908 return -EINVAL; 5909 5910 if (copy_from_user(¶ms, optval, len)) 5911 return -EFAULT; 5912 5913 /* If an address other than INADDR_ANY is specified, and 5914 * no transport is found, then the request is invalid. 5915 */ 5916 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5917 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5918 params.spp_assoc_id); 5919 if (!trans) { 5920 pr_debug("%s: failed no transport\n", __func__); 5921 return -EINVAL; 5922 } 5923 } 5924 5925 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5926 * socket is a one to many style socket, and an association 5927 * was not found, then the id was invalid. 5928 */ 5929 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5930 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5931 sctp_style(sk, UDP)) { 5932 pr_debug("%s: failed no association\n", __func__); 5933 return -EINVAL; 5934 } 5935 5936 if (trans) { 5937 /* Fetch transport values. */ 5938 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5939 params.spp_pathmtu = trans->pathmtu; 5940 params.spp_pathmaxrxt = trans->pathmaxrxt; 5941 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5942 5943 /*draft-11 doesn't say what to return in spp_flags*/ 5944 params.spp_flags = trans->param_flags; 5945 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5946 params.spp_ipv6_flowlabel = trans->flowlabel & 5947 SCTP_FLOWLABEL_VAL_MASK; 5948 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5949 } 5950 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5951 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5952 params.spp_flags |= SPP_DSCP; 5953 } 5954 } else if (asoc) { 5955 /* Fetch association values. */ 5956 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5957 params.spp_pathmtu = asoc->pathmtu; 5958 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5959 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5960 5961 /*draft-11 doesn't say what to return in spp_flags*/ 5962 params.spp_flags = asoc->param_flags; 5963 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5964 params.spp_ipv6_flowlabel = asoc->flowlabel & 5965 SCTP_FLOWLABEL_VAL_MASK; 5966 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5967 } 5968 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5969 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5970 params.spp_flags |= SPP_DSCP; 5971 } 5972 } else { 5973 /* Fetch socket values. */ 5974 params.spp_hbinterval = sp->hbinterval; 5975 params.spp_pathmtu = sp->pathmtu; 5976 params.spp_sackdelay = sp->sackdelay; 5977 params.spp_pathmaxrxt = sp->pathmaxrxt; 5978 5979 /*draft-11 doesn't say what to return in spp_flags*/ 5980 params.spp_flags = sp->param_flags; 5981 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5982 params.spp_ipv6_flowlabel = sp->flowlabel & 5983 SCTP_FLOWLABEL_VAL_MASK; 5984 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5985 } 5986 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5987 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5988 params.spp_flags |= SPP_DSCP; 5989 } 5990 } 5991 5992 if (copy_to_user(optval, ¶ms, len)) 5993 return -EFAULT; 5994 5995 if (put_user(len, optlen)) 5996 return -EFAULT; 5997 5998 return 0; 5999 } 6000 6001 /* 6002 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6003 * 6004 * This option will effect the way delayed acks are performed. This 6005 * option allows you to get or set the delayed ack time, in 6006 * milliseconds. It also allows changing the delayed ack frequency. 6007 * Changing the frequency to 1 disables the delayed sack algorithm. If 6008 * the assoc_id is 0, then this sets or gets the endpoints default 6009 * values. If the assoc_id field is non-zero, then the set or get 6010 * effects the specified association for the one to many model (the 6011 * assoc_id field is ignored by the one to one model). Note that if 6012 * sack_delay or sack_freq are 0 when setting this option, then the 6013 * current values will remain unchanged. 6014 * 6015 * struct sctp_sack_info { 6016 * sctp_assoc_t sack_assoc_id; 6017 * uint32_t sack_delay; 6018 * uint32_t sack_freq; 6019 * }; 6020 * 6021 * sack_assoc_id - This parameter, indicates which association the user 6022 * is performing an action upon. Note that if this field's value is 6023 * zero then the endpoints default value is changed (effecting future 6024 * associations only). 6025 * 6026 * sack_delay - This parameter contains the number of milliseconds that 6027 * the user is requesting the delayed ACK timer be set to. Note that 6028 * this value is defined in the standard to be between 200 and 500 6029 * milliseconds. 6030 * 6031 * sack_freq - This parameter contains the number of packets that must 6032 * be received before a sack is sent without waiting for the delay 6033 * timer to expire. The default value for this is 2, setting this 6034 * value to 1 will disable the delayed sack algorithm. 6035 */ 6036 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6037 char __user *optval, 6038 int __user *optlen) 6039 { 6040 struct sctp_sack_info params; 6041 struct sctp_association *asoc = NULL; 6042 struct sctp_sock *sp = sctp_sk(sk); 6043 6044 if (len >= sizeof(struct sctp_sack_info)) { 6045 len = sizeof(struct sctp_sack_info); 6046 6047 if (copy_from_user(¶ms, optval, len)) 6048 return -EFAULT; 6049 } else if (len == sizeof(struct sctp_assoc_value)) { 6050 pr_warn_ratelimited(DEPRECATED 6051 "%s (pid %d) " 6052 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6053 "Use struct sctp_sack_info instead\n", 6054 current->comm, task_pid_nr(current)); 6055 if (copy_from_user(¶ms, optval, len)) 6056 return -EFAULT; 6057 } else 6058 return -EINVAL; 6059 6060 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6061 * socket is a one to many style socket, and an association 6062 * was not found, then the id was invalid. 6063 */ 6064 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6065 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6066 sctp_style(sk, UDP)) 6067 return -EINVAL; 6068 6069 if (asoc) { 6070 /* Fetch association values. */ 6071 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6072 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6073 params.sack_freq = asoc->sackfreq; 6074 6075 } else { 6076 params.sack_delay = 0; 6077 params.sack_freq = 1; 6078 } 6079 } else { 6080 /* Fetch socket values. */ 6081 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6082 params.sack_delay = sp->sackdelay; 6083 params.sack_freq = sp->sackfreq; 6084 } else { 6085 params.sack_delay = 0; 6086 params.sack_freq = 1; 6087 } 6088 } 6089 6090 if (copy_to_user(optval, ¶ms, len)) 6091 return -EFAULT; 6092 6093 if (put_user(len, optlen)) 6094 return -EFAULT; 6095 6096 return 0; 6097 } 6098 6099 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6100 * 6101 * Applications can specify protocol parameters for the default association 6102 * initialization. The option name argument to setsockopt() and getsockopt() 6103 * is SCTP_INITMSG. 6104 * 6105 * Setting initialization parameters is effective only on an unconnected 6106 * socket (for UDP-style sockets only future associations are effected 6107 * by the change). With TCP-style sockets, this option is inherited by 6108 * sockets derived from a listener socket. 6109 */ 6110 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6111 { 6112 if (len < sizeof(struct sctp_initmsg)) 6113 return -EINVAL; 6114 len = sizeof(struct sctp_initmsg); 6115 if (put_user(len, optlen)) 6116 return -EFAULT; 6117 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6118 return -EFAULT; 6119 return 0; 6120 } 6121 6122 6123 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6124 char __user *optval, int __user *optlen) 6125 { 6126 struct sctp_association *asoc; 6127 int cnt = 0; 6128 struct sctp_getaddrs getaddrs; 6129 struct sctp_transport *from; 6130 void __user *to; 6131 union sctp_addr temp; 6132 struct sctp_sock *sp = sctp_sk(sk); 6133 int addrlen; 6134 size_t space_left; 6135 int bytes_copied; 6136 6137 if (len < sizeof(struct sctp_getaddrs)) 6138 return -EINVAL; 6139 6140 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6141 return -EFAULT; 6142 6143 /* For UDP-style sockets, id specifies the association to query. */ 6144 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6145 if (!asoc) 6146 return -EINVAL; 6147 6148 to = optval + offsetof(struct sctp_getaddrs, addrs); 6149 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6150 6151 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6152 transports) { 6153 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6154 addrlen = sctp_get_pf_specific(sk->sk_family) 6155 ->addr_to_user(sp, &temp); 6156 if (space_left < addrlen) 6157 return -ENOMEM; 6158 if (copy_to_user(to, &temp, addrlen)) 6159 return -EFAULT; 6160 to += addrlen; 6161 cnt++; 6162 space_left -= addrlen; 6163 } 6164 6165 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6166 return -EFAULT; 6167 bytes_copied = ((char __user *)to) - optval; 6168 if (put_user(bytes_copied, optlen)) 6169 return -EFAULT; 6170 6171 return 0; 6172 } 6173 6174 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6175 size_t space_left, int *bytes_copied) 6176 { 6177 struct sctp_sockaddr_entry *addr; 6178 union sctp_addr temp; 6179 int cnt = 0; 6180 int addrlen; 6181 struct net *net = sock_net(sk); 6182 6183 rcu_read_lock(); 6184 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6185 if (!addr->valid) 6186 continue; 6187 6188 if ((PF_INET == sk->sk_family) && 6189 (AF_INET6 == addr->a.sa.sa_family)) 6190 continue; 6191 if ((PF_INET6 == sk->sk_family) && 6192 inet_v6_ipv6only(sk) && 6193 (AF_INET == addr->a.sa.sa_family)) 6194 continue; 6195 memcpy(&temp, &addr->a, sizeof(temp)); 6196 if (!temp.v4.sin_port) 6197 temp.v4.sin_port = htons(port); 6198 6199 addrlen = sctp_get_pf_specific(sk->sk_family) 6200 ->addr_to_user(sctp_sk(sk), &temp); 6201 6202 if (space_left < addrlen) { 6203 cnt = -ENOMEM; 6204 break; 6205 } 6206 memcpy(to, &temp, addrlen); 6207 6208 to += addrlen; 6209 cnt++; 6210 space_left -= addrlen; 6211 *bytes_copied += addrlen; 6212 } 6213 rcu_read_unlock(); 6214 6215 return cnt; 6216 } 6217 6218 6219 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6220 char __user *optval, int __user *optlen) 6221 { 6222 struct sctp_bind_addr *bp; 6223 struct sctp_association *asoc; 6224 int cnt = 0; 6225 struct sctp_getaddrs getaddrs; 6226 struct sctp_sockaddr_entry *addr; 6227 void __user *to; 6228 union sctp_addr temp; 6229 struct sctp_sock *sp = sctp_sk(sk); 6230 int addrlen; 6231 int err = 0; 6232 size_t space_left; 6233 int bytes_copied = 0; 6234 void *addrs; 6235 void *buf; 6236 6237 if (len < sizeof(struct sctp_getaddrs)) 6238 return -EINVAL; 6239 6240 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6241 return -EFAULT; 6242 6243 /* 6244 * For UDP-style sockets, id specifies the association to query. 6245 * If the id field is set to the value '0' then the locally bound 6246 * addresses are returned without regard to any particular 6247 * association. 6248 */ 6249 if (0 == getaddrs.assoc_id) { 6250 bp = &sctp_sk(sk)->ep->base.bind_addr; 6251 } else { 6252 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6253 if (!asoc) 6254 return -EINVAL; 6255 bp = &asoc->base.bind_addr; 6256 } 6257 6258 to = optval + offsetof(struct sctp_getaddrs, addrs); 6259 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6260 6261 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6262 if (!addrs) 6263 return -ENOMEM; 6264 6265 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6266 * addresses from the global local address list. 6267 */ 6268 if (sctp_list_single_entry(&bp->address_list)) { 6269 addr = list_entry(bp->address_list.next, 6270 struct sctp_sockaddr_entry, list); 6271 if (sctp_is_any(sk, &addr->a)) { 6272 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6273 space_left, &bytes_copied); 6274 if (cnt < 0) { 6275 err = cnt; 6276 goto out; 6277 } 6278 goto copy_getaddrs; 6279 } 6280 } 6281 6282 buf = addrs; 6283 /* Protection on the bound address list is not needed since 6284 * in the socket option context we hold a socket lock and 6285 * thus the bound address list can't change. 6286 */ 6287 list_for_each_entry(addr, &bp->address_list, list) { 6288 memcpy(&temp, &addr->a, sizeof(temp)); 6289 addrlen = sctp_get_pf_specific(sk->sk_family) 6290 ->addr_to_user(sp, &temp); 6291 if (space_left < addrlen) { 6292 err = -ENOMEM; /*fixme: right error?*/ 6293 goto out; 6294 } 6295 memcpy(buf, &temp, addrlen); 6296 buf += addrlen; 6297 bytes_copied += addrlen; 6298 cnt++; 6299 space_left -= addrlen; 6300 } 6301 6302 copy_getaddrs: 6303 if (copy_to_user(to, addrs, bytes_copied)) { 6304 err = -EFAULT; 6305 goto out; 6306 } 6307 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6308 err = -EFAULT; 6309 goto out; 6310 } 6311 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6312 * but we can't change it anymore. 6313 */ 6314 if (put_user(bytes_copied, optlen)) 6315 err = -EFAULT; 6316 out: 6317 kfree(addrs); 6318 return err; 6319 } 6320 6321 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6322 * 6323 * Requests that the local SCTP stack use the enclosed peer address as 6324 * the association primary. The enclosed address must be one of the 6325 * association peer's addresses. 6326 */ 6327 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6328 char __user *optval, int __user *optlen) 6329 { 6330 struct sctp_prim prim; 6331 struct sctp_association *asoc; 6332 struct sctp_sock *sp = sctp_sk(sk); 6333 6334 if (len < sizeof(struct sctp_prim)) 6335 return -EINVAL; 6336 6337 len = sizeof(struct sctp_prim); 6338 6339 if (copy_from_user(&prim, optval, len)) 6340 return -EFAULT; 6341 6342 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6343 if (!asoc) 6344 return -EINVAL; 6345 6346 if (!asoc->peer.primary_path) 6347 return -ENOTCONN; 6348 6349 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6350 asoc->peer.primary_path->af_specific->sockaddr_len); 6351 6352 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6353 (union sctp_addr *)&prim.ssp_addr); 6354 6355 if (put_user(len, optlen)) 6356 return -EFAULT; 6357 if (copy_to_user(optval, &prim, len)) 6358 return -EFAULT; 6359 6360 return 0; 6361 } 6362 6363 /* 6364 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6365 * 6366 * Requests that the local endpoint set the specified Adaptation Layer 6367 * Indication parameter for all future INIT and INIT-ACK exchanges. 6368 */ 6369 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6370 char __user *optval, int __user *optlen) 6371 { 6372 struct sctp_setadaptation adaptation; 6373 6374 if (len < sizeof(struct sctp_setadaptation)) 6375 return -EINVAL; 6376 6377 len = sizeof(struct sctp_setadaptation); 6378 6379 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6380 6381 if (put_user(len, optlen)) 6382 return -EFAULT; 6383 if (copy_to_user(optval, &adaptation, len)) 6384 return -EFAULT; 6385 6386 return 0; 6387 } 6388 6389 /* 6390 * 6391 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6392 * 6393 * Applications that wish to use the sendto() system call may wish to 6394 * specify a default set of parameters that would normally be supplied 6395 * through the inclusion of ancillary data. This socket option allows 6396 * such an application to set the default sctp_sndrcvinfo structure. 6397 6398 6399 * The application that wishes to use this socket option simply passes 6400 * in to this call the sctp_sndrcvinfo structure defined in Section 6401 * 5.2.2) The input parameters accepted by this call include 6402 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6403 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6404 * to this call if the caller is using the UDP model. 6405 * 6406 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6407 */ 6408 static int sctp_getsockopt_default_send_param(struct sock *sk, 6409 int len, char __user *optval, 6410 int __user *optlen) 6411 { 6412 struct sctp_sock *sp = sctp_sk(sk); 6413 struct sctp_association *asoc; 6414 struct sctp_sndrcvinfo info; 6415 6416 if (len < sizeof(info)) 6417 return -EINVAL; 6418 6419 len = sizeof(info); 6420 6421 if (copy_from_user(&info, optval, len)) 6422 return -EFAULT; 6423 6424 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6425 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6426 sctp_style(sk, UDP)) 6427 return -EINVAL; 6428 6429 if (asoc) { 6430 info.sinfo_stream = asoc->default_stream; 6431 info.sinfo_flags = asoc->default_flags; 6432 info.sinfo_ppid = asoc->default_ppid; 6433 info.sinfo_context = asoc->default_context; 6434 info.sinfo_timetolive = asoc->default_timetolive; 6435 } else { 6436 info.sinfo_stream = sp->default_stream; 6437 info.sinfo_flags = sp->default_flags; 6438 info.sinfo_ppid = sp->default_ppid; 6439 info.sinfo_context = sp->default_context; 6440 info.sinfo_timetolive = sp->default_timetolive; 6441 } 6442 6443 if (put_user(len, optlen)) 6444 return -EFAULT; 6445 if (copy_to_user(optval, &info, len)) 6446 return -EFAULT; 6447 6448 return 0; 6449 } 6450 6451 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6452 * (SCTP_DEFAULT_SNDINFO) 6453 */ 6454 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6455 char __user *optval, 6456 int __user *optlen) 6457 { 6458 struct sctp_sock *sp = sctp_sk(sk); 6459 struct sctp_association *asoc; 6460 struct sctp_sndinfo info; 6461 6462 if (len < sizeof(info)) 6463 return -EINVAL; 6464 6465 len = sizeof(info); 6466 6467 if (copy_from_user(&info, optval, len)) 6468 return -EFAULT; 6469 6470 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6471 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6472 sctp_style(sk, UDP)) 6473 return -EINVAL; 6474 6475 if (asoc) { 6476 info.snd_sid = asoc->default_stream; 6477 info.snd_flags = asoc->default_flags; 6478 info.snd_ppid = asoc->default_ppid; 6479 info.snd_context = asoc->default_context; 6480 } else { 6481 info.snd_sid = sp->default_stream; 6482 info.snd_flags = sp->default_flags; 6483 info.snd_ppid = sp->default_ppid; 6484 info.snd_context = sp->default_context; 6485 } 6486 6487 if (put_user(len, optlen)) 6488 return -EFAULT; 6489 if (copy_to_user(optval, &info, len)) 6490 return -EFAULT; 6491 6492 return 0; 6493 } 6494 6495 /* 6496 * 6497 * 7.1.5 SCTP_NODELAY 6498 * 6499 * Turn on/off any Nagle-like algorithm. This means that packets are 6500 * generally sent as soon as possible and no unnecessary delays are 6501 * introduced, at the cost of more packets in the network. Expects an 6502 * integer boolean flag. 6503 */ 6504 6505 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6506 char __user *optval, int __user *optlen) 6507 { 6508 int val; 6509 6510 if (len < sizeof(int)) 6511 return -EINVAL; 6512 6513 len = sizeof(int); 6514 val = (sctp_sk(sk)->nodelay == 1); 6515 if (put_user(len, optlen)) 6516 return -EFAULT; 6517 if (copy_to_user(optval, &val, len)) 6518 return -EFAULT; 6519 return 0; 6520 } 6521 6522 /* 6523 * 6524 * 7.1.1 SCTP_RTOINFO 6525 * 6526 * The protocol parameters used to initialize and bound retransmission 6527 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6528 * and modify these parameters. 6529 * All parameters are time values, in milliseconds. A value of 0, when 6530 * modifying the parameters, indicates that the current value should not 6531 * be changed. 6532 * 6533 */ 6534 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6535 char __user *optval, 6536 int __user *optlen) { 6537 struct sctp_rtoinfo rtoinfo; 6538 struct sctp_association *asoc; 6539 6540 if (len < sizeof (struct sctp_rtoinfo)) 6541 return -EINVAL; 6542 6543 len = sizeof(struct sctp_rtoinfo); 6544 6545 if (copy_from_user(&rtoinfo, optval, len)) 6546 return -EFAULT; 6547 6548 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6549 6550 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6551 sctp_style(sk, UDP)) 6552 return -EINVAL; 6553 6554 /* Values corresponding to the specific association. */ 6555 if (asoc) { 6556 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6557 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6558 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6559 } else { 6560 /* Values corresponding to the endpoint. */ 6561 struct sctp_sock *sp = sctp_sk(sk); 6562 6563 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6564 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6565 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6566 } 6567 6568 if (put_user(len, optlen)) 6569 return -EFAULT; 6570 6571 if (copy_to_user(optval, &rtoinfo, len)) 6572 return -EFAULT; 6573 6574 return 0; 6575 } 6576 6577 /* 6578 * 6579 * 7.1.2 SCTP_ASSOCINFO 6580 * 6581 * This option is used to tune the maximum retransmission attempts 6582 * of the association. 6583 * Returns an error if the new association retransmission value is 6584 * greater than the sum of the retransmission value of the peer. 6585 * See [SCTP] for more information. 6586 * 6587 */ 6588 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6589 char __user *optval, 6590 int __user *optlen) 6591 { 6592 6593 struct sctp_assocparams assocparams; 6594 struct sctp_association *asoc; 6595 struct list_head *pos; 6596 int cnt = 0; 6597 6598 if (len < sizeof (struct sctp_assocparams)) 6599 return -EINVAL; 6600 6601 len = sizeof(struct sctp_assocparams); 6602 6603 if (copy_from_user(&assocparams, optval, len)) 6604 return -EFAULT; 6605 6606 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6607 6608 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6609 sctp_style(sk, UDP)) 6610 return -EINVAL; 6611 6612 /* Values correspoinding to the specific association */ 6613 if (asoc) { 6614 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6615 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6616 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6617 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6618 6619 list_for_each(pos, &asoc->peer.transport_addr_list) { 6620 cnt++; 6621 } 6622 6623 assocparams.sasoc_number_peer_destinations = cnt; 6624 } else { 6625 /* Values corresponding to the endpoint */ 6626 struct sctp_sock *sp = sctp_sk(sk); 6627 6628 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6629 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6630 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6631 assocparams.sasoc_cookie_life = 6632 sp->assocparams.sasoc_cookie_life; 6633 assocparams.sasoc_number_peer_destinations = 6634 sp->assocparams. 6635 sasoc_number_peer_destinations; 6636 } 6637 6638 if (put_user(len, optlen)) 6639 return -EFAULT; 6640 6641 if (copy_to_user(optval, &assocparams, len)) 6642 return -EFAULT; 6643 6644 return 0; 6645 } 6646 6647 /* 6648 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6649 * 6650 * This socket option is a boolean flag which turns on or off mapped V4 6651 * addresses. If this option is turned on and the socket is type 6652 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6653 * If this option is turned off, then no mapping will be done of V4 6654 * addresses and a user will receive both PF_INET6 and PF_INET type 6655 * addresses on the socket. 6656 */ 6657 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6658 char __user *optval, int __user *optlen) 6659 { 6660 int val; 6661 struct sctp_sock *sp = sctp_sk(sk); 6662 6663 if (len < sizeof(int)) 6664 return -EINVAL; 6665 6666 len = sizeof(int); 6667 val = sp->v4mapped; 6668 if (put_user(len, optlen)) 6669 return -EFAULT; 6670 if (copy_to_user(optval, &val, len)) 6671 return -EFAULT; 6672 6673 return 0; 6674 } 6675 6676 /* 6677 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6678 * (chapter and verse is quoted at sctp_setsockopt_context()) 6679 */ 6680 static int sctp_getsockopt_context(struct sock *sk, int len, 6681 char __user *optval, int __user *optlen) 6682 { 6683 struct sctp_assoc_value params; 6684 struct sctp_association *asoc; 6685 6686 if (len < sizeof(struct sctp_assoc_value)) 6687 return -EINVAL; 6688 6689 len = sizeof(struct sctp_assoc_value); 6690 6691 if (copy_from_user(¶ms, optval, len)) 6692 return -EFAULT; 6693 6694 asoc = sctp_id2assoc(sk, params.assoc_id); 6695 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6696 sctp_style(sk, UDP)) 6697 return -EINVAL; 6698 6699 params.assoc_value = asoc ? asoc->default_rcv_context 6700 : sctp_sk(sk)->default_rcv_context; 6701 6702 if (put_user(len, optlen)) 6703 return -EFAULT; 6704 if (copy_to_user(optval, ¶ms, len)) 6705 return -EFAULT; 6706 6707 return 0; 6708 } 6709 6710 /* 6711 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6712 * This option will get or set the maximum size to put in any outgoing 6713 * SCTP DATA chunk. If a message is larger than this size it will be 6714 * fragmented by SCTP into the specified size. Note that the underlying 6715 * SCTP implementation may fragment into smaller sized chunks when the 6716 * PMTU of the underlying association is smaller than the value set by 6717 * the user. The default value for this option is '0' which indicates 6718 * the user is NOT limiting fragmentation and only the PMTU will effect 6719 * SCTP's choice of DATA chunk size. Note also that values set larger 6720 * than the maximum size of an IP datagram will effectively let SCTP 6721 * control fragmentation (i.e. the same as setting this option to 0). 6722 * 6723 * The following structure is used to access and modify this parameter: 6724 * 6725 * struct sctp_assoc_value { 6726 * sctp_assoc_t assoc_id; 6727 * uint32_t assoc_value; 6728 * }; 6729 * 6730 * assoc_id: This parameter is ignored for one-to-one style sockets. 6731 * For one-to-many style sockets this parameter indicates which 6732 * association the user is performing an action upon. Note that if 6733 * this field's value is zero then the endpoints default value is 6734 * changed (effecting future associations only). 6735 * assoc_value: This parameter specifies the maximum size in bytes. 6736 */ 6737 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6738 char __user *optval, int __user *optlen) 6739 { 6740 struct sctp_assoc_value params; 6741 struct sctp_association *asoc; 6742 6743 if (len == sizeof(int)) { 6744 pr_warn_ratelimited(DEPRECATED 6745 "%s (pid %d) " 6746 "Use of int in maxseg socket option.\n" 6747 "Use struct sctp_assoc_value instead\n", 6748 current->comm, task_pid_nr(current)); 6749 params.assoc_id = SCTP_FUTURE_ASSOC; 6750 } else if (len >= sizeof(struct sctp_assoc_value)) { 6751 len = sizeof(struct sctp_assoc_value); 6752 if (copy_from_user(¶ms, optval, len)) 6753 return -EFAULT; 6754 } else 6755 return -EINVAL; 6756 6757 asoc = sctp_id2assoc(sk, params.assoc_id); 6758 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6759 sctp_style(sk, UDP)) 6760 return -EINVAL; 6761 6762 if (asoc) 6763 params.assoc_value = asoc->frag_point; 6764 else 6765 params.assoc_value = sctp_sk(sk)->user_frag; 6766 6767 if (put_user(len, optlen)) 6768 return -EFAULT; 6769 if (len == sizeof(int)) { 6770 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6771 return -EFAULT; 6772 } else { 6773 if (copy_to_user(optval, ¶ms, len)) 6774 return -EFAULT; 6775 } 6776 6777 return 0; 6778 } 6779 6780 /* 6781 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6782 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6783 */ 6784 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6785 char __user *optval, int __user *optlen) 6786 { 6787 int val; 6788 6789 if (len < sizeof(int)) 6790 return -EINVAL; 6791 6792 len = sizeof(int); 6793 6794 val = sctp_sk(sk)->frag_interleave; 6795 if (put_user(len, optlen)) 6796 return -EFAULT; 6797 if (copy_to_user(optval, &val, len)) 6798 return -EFAULT; 6799 6800 return 0; 6801 } 6802 6803 /* 6804 * 7.1.25. Set or Get the sctp partial delivery point 6805 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6806 */ 6807 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6808 char __user *optval, 6809 int __user *optlen) 6810 { 6811 u32 val; 6812 6813 if (len < sizeof(u32)) 6814 return -EINVAL; 6815 6816 len = sizeof(u32); 6817 6818 val = sctp_sk(sk)->pd_point; 6819 if (put_user(len, optlen)) 6820 return -EFAULT; 6821 if (copy_to_user(optval, &val, len)) 6822 return -EFAULT; 6823 6824 return 0; 6825 } 6826 6827 /* 6828 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6829 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6830 */ 6831 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6832 char __user *optval, 6833 int __user *optlen) 6834 { 6835 struct sctp_assoc_value params; 6836 struct sctp_association *asoc; 6837 6838 if (len == sizeof(int)) { 6839 pr_warn_ratelimited(DEPRECATED 6840 "%s (pid %d) " 6841 "Use of int in max_burst socket option.\n" 6842 "Use struct sctp_assoc_value instead\n", 6843 current->comm, task_pid_nr(current)); 6844 params.assoc_id = SCTP_FUTURE_ASSOC; 6845 } else if (len >= sizeof(struct sctp_assoc_value)) { 6846 len = sizeof(struct sctp_assoc_value); 6847 if (copy_from_user(¶ms, optval, len)) 6848 return -EFAULT; 6849 } else 6850 return -EINVAL; 6851 6852 asoc = sctp_id2assoc(sk, params.assoc_id); 6853 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6854 sctp_style(sk, UDP)) 6855 return -EINVAL; 6856 6857 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6858 6859 if (len == sizeof(int)) { 6860 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6861 return -EFAULT; 6862 } else { 6863 if (copy_to_user(optval, ¶ms, len)) 6864 return -EFAULT; 6865 } 6866 6867 return 0; 6868 6869 } 6870 6871 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6872 char __user *optval, int __user *optlen) 6873 { 6874 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6875 struct sctp_hmacalgo __user *p = (void __user *)optval; 6876 struct sctp_hmac_algo_param *hmacs; 6877 __u16 data_len = 0; 6878 u32 num_idents; 6879 int i; 6880 6881 if (!ep->auth_enable) 6882 return -EACCES; 6883 6884 hmacs = ep->auth_hmacs_list; 6885 data_len = ntohs(hmacs->param_hdr.length) - 6886 sizeof(struct sctp_paramhdr); 6887 6888 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6889 return -EINVAL; 6890 6891 len = sizeof(struct sctp_hmacalgo) + data_len; 6892 num_idents = data_len / sizeof(u16); 6893 6894 if (put_user(len, optlen)) 6895 return -EFAULT; 6896 if (put_user(num_idents, &p->shmac_num_idents)) 6897 return -EFAULT; 6898 for (i = 0; i < num_idents; i++) { 6899 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6900 6901 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6902 return -EFAULT; 6903 } 6904 return 0; 6905 } 6906 6907 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6908 char __user *optval, int __user *optlen) 6909 { 6910 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6911 struct sctp_authkeyid val; 6912 struct sctp_association *asoc; 6913 6914 if (len < sizeof(struct sctp_authkeyid)) 6915 return -EINVAL; 6916 6917 len = sizeof(struct sctp_authkeyid); 6918 if (copy_from_user(&val, optval, len)) 6919 return -EFAULT; 6920 6921 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6922 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6923 return -EINVAL; 6924 6925 if (asoc) { 6926 if (!asoc->peer.auth_capable) 6927 return -EACCES; 6928 val.scact_keynumber = asoc->active_key_id; 6929 } else { 6930 if (!ep->auth_enable) 6931 return -EACCES; 6932 val.scact_keynumber = ep->active_key_id; 6933 } 6934 6935 if (put_user(len, optlen)) 6936 return -EFAULT; 6937 if (copy_to_user(optval, &val, len)) 6938 return -EFAULT; 6939 6940 return 0; 6941 } 6942 6943 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6944 char __user *optval, int __user *optlen) 6945 { 6946 struct sctp_authchunks __user *p = (void __user *)optval; 6947 struct sctp_authchunks val; 6948 struct sctp_association *asoc; 6949 struct sctp_chunks_param *ch; 6950 u32 num_chunks = 0; 6951 char __user *to; 6952 6953 if (len < sizeof(struct sctp_authchunks)) 6954 return -EINVAL; 6955 6956 if (copy_from_user(&val, optval, sizeof(val))) 6957 return -EFAULT; 6958 6959 to = p->gauth_chunks; 6960 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6961 if (!asoc) 6962 return -EINVAL; 6963 6964 if (!asoc->peer.auth_capable) 6965 return -EACCES; 6966 6967 ch = asoc->peer.peer_chunks; 6968 if (!ch) 6969 goto num; 6970 6971 /* See if the user provided enough room for all the data */ 6972 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6973 if (len < num_chunks) 6974 return -EINVAL; 6975 6976 if (copy_to_user(to, ch->chunks, num_chunks)) 6977 return -EFAULT; 6978 num: 6979 len = sizeof(struct sctp_authchunks) + num_chunks; 6980 if (put_user(len, optlen)) 6981 return -EFAULT; 6982 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6983 return -EFAULT; 6984 return 0; 6985 } 6986 6987 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6988 char __user *optval, int __user *optlen) 6989 { 6990 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6991 struct sctp_authchunks __user *p = (void __user *)optval; 6992 struct sctp_authchunks val; 6993 struct sctp_association *asoc; 6994 struct sctp_chunks_param *ch; 6995 u32 num_chunks = 0; 6996 char __user *to; 6997 6998 if (len < sizeof(struct sctp_authchunks)) 6999 return -EINVAL; 7000 7001 if (copy_from_user(&val, optval, sizeof(val))) 7002 return -EFAULT; 7003 7004 to = p->gauth_chunks; 7005 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7006 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7007 sctp_style(sk, UDP)) 7008 return -EINVAL; 7009 7010 if (asoc) { 7011 if (!asoc->peer.auth_capable) 7012 return -EACCES; 7013 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7014 } else { 7015 if (!ep->auth_enable) 7016 return -EACCES; 7017 ch = ep->auth_chunk_list; 7018 } 7019 if (!ch) 7020 goto num; 7021 7022 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7023 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7024 return -EINVAL; 7025 7026 if (copy_to_user(to, ch->chunks, num_chunks)) 7027 return -EFAULT; 7028 num: 7029 len = sizeof(struct sctp_authchunks) + num_chunks; 7030 if (put_user(len, optlen)) 7031 return -EFAULT; 7032 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7033 return -EFAULT; 7034 7035 return 0; 7036 } 7037 7038 /* 7039 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7040 * This option gets the current number of associations that are attached 7041 * to a one-to-many style socket. The option value is an uint32_t. 7042 */ 7043 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7044 char __user *optval, int __user *optlen) 7045 { 7046 struct sctp_sock *sp = sctp_sk(sk); 7047 struct sctp_association *asoc; 7048 u32 val = 0; 7049 7050 if (sctp_style(sk, TCP)) 7051 return -EOPNOTSUPP; 7052 7053 if (len < sizeof(u32)) 7054 return -EINVAL; 7055 7056 len = sizeof(u32); 7057 7058 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7059 val++; 7060 } 7061 7062 if (put_user(len, optlen)) 7063 return -EFAULT; 7064 if (copy_to_user(optval, &val, len)) 7065 return -EFAULT; 7066 7067 return 0; 7068 } 7069 7070 /* 7071 * 8.1.23 SCTP_AUTO_ASCONF 7072 * See the corresponding setsockopt entry as description 7073 */ 7074 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7075 char __user *optval, int __user *optlen) 7076 { 7077 int val = 0; 7078 7079 if (len < sizeof(int)) 7080 return -EINVAL; 7081 7082 len = sizeof(int); 7083 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7084 val = 1; 7085 if (put_user(len, optlen)) 7086 return -EFAULT; 7087 if (copy_to_user(optval, &val, len)) 7088 return -EFAULT; 7089 return 0; 7090 } 7091 7092 /* 7093 * 8.2.6. Get the Current Identifiers of Associations 7094 * (SCTP_GET_ASSOC_ID_LIST) 7095 * 7096 * This option gets the current list of SCTP association identifiers of 7097 * the SCTP associations handled by a one-to-many style socket. 7098 */ 7099 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7100 char __user *optval, int __user *optlen) 7101 { 7102 struct sctp_sock *sp = sctp_sk(sk); 7103 struct sctp_association *asoc; 7104 struct sctp_assoc_ids *ids; 7105 u32 num = 0; 7106 7107 if (sctp_style(sk, TCP)) 7108 return -EOPNOTSUPP; 7109 7110 if (len < sizeof(struct sctp_assoc_ids)) 7111 return -EINVAL; 7112 7113 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7114 num++; 7115 } 7116 7117 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7118 return -EINVAL; 7119 7120 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7121 7122 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7123 if (unlikely(!ids)) 7124 return -ENOMEM; 7125 7126 ids->gaids_number_of_ids = num; 7127 num = 0; 7128 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7129 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7130 } 7131 7132 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7133 kfree(ids); 7134 return -EFAULT; 7135 } 7136 7137 kfree(ids); 7138 return 0; 7139 } 7140 7141 /* 7142 * SCTP_PEER_ADDR_THLDS 7143 * 7144 * This option allows us to fetch the partially failed threshold for one or all 7145 * transports in an association. See Section 6.1 of: 7146 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7147 */ 7148 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7149 char __user *optval, int len, 7150 int __user *optlen, bool v2) 7151 { 7152 struct sctp_paddrthlds_v2 val; 7153 struct sctp_transport *trans; 7154 struct sctp_association *asoc; 7155 int min; 7156 7157 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7158 if (len < min) 7159 return -EINVAL; 7160 len = min; 7161 if (copy_from_user(&val, optval, len)) 7162 return -EFAULT; 7163 7164 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7165 trans = sctp_addr_id2transport(sk, &val.spt_address, 7166 val.spt_assoc_id); 7167 if (!trans) 7168 return -ENOENT; 7169 7170 val.spt_pathmaxrxt = trans->pathmaxrxt; 7171 val.spt_pathpfthld = trans->pf_retrans; 7172 val.spt_pathcpthld = trans->ps_retrans; 7173 7174 goto out; 7175 } 7176 7177 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7178 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7179 sctp_style(sk, UDP)) 7180 return -EINVAL; 7181 7182 if (asoc) { 7183 val.spt_pathpfthld = asoc->pf_retrans; 7184 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7185 val.spt_pathcpthld = asoc->ps_retrans; 7186 } else { 7187 struct sctp_sock *sp = sctp_sk(sk); 7188 7189 val.spt_pathpfthld = sp->pf_retrans; 7190 val.spt_pathmaxrxt = sp->pathmaxrxt; 7191 val.spt_pathcpthld = sp->ps_retrans; 7192 } 7193 7194 out: 7195 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7196 return -EFAULT; 7197 7198 return 0; 7199 } 7200 7201 /* 7202 * SCTP_GET_ASSOC_STATS 7203 * 7204 * This option retrieves local per endpoint statistics. It is modeled 7205 * after OpenSolaris' implementation 7206 */ 7207 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7208 char __user *optval, 7209 int __user *optlen) 7210 { 7211 struct sctp_assoc_stats sas; 7212 struct sctp_association *asoc = NULL; 7213 7214 /* User must provide at least the assoc id */ 7215 if (len < sizeof(sctp_assoc_t)) 7216 return -EINVAL; 7217 7218 /* Allow the struct to grow and fill in as much as possible */ 7219 len = min_t(size_t, len, sizeof(sas)); 7220 7221 if (copy_from_user(&sas, optval, len)) 7222 return -EFAULT; 7223 7224 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7225 if (!asoc) 7226 return -EINVAL; 7227 7228 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7229 sas.sas_gapcnt = asoc->stats.gapcnt; 7230 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7231 sas.sas_osacks = asoc->stats.osacks; 7232 sas.sas_isacks = asoc->stats.isacks; 7233 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7234 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7235 sas.sas_oodchunks = asoc->stats.oodchunks; 7236 sas.sas_iodchunks = asoc->stats.iodchunks; 7237 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7238 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7239 sas.sas_idupchunks = asoc->stats.idupchunks; 7240 sas.sas_opackets = asoc->stats.opackets; 7241 sas.sas_ipackets = asoc->stats.ipackets; 7242 7243 /* New high max rto observed, will return 0 if not a single 7244 * RTO update took place. obs_rto_ipaddr will be bogus 7245 * in such a case 7246 */ 7247 sas.sas_maxrto = asoc->stats.max_obs_rto; 7248 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7249 sizeof(struct sockaddr_storage)); 7250 7251 /* Mark beginning of a new observation period */ 7252 asoc->stats.max_obs_rto = asoc->rto_min; 7253 7254 if (put_user(len, optlen)) 7255 return -EFAULT; 7256 7257 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7258 7259 if (copy_to_user(optval, &sas, len)) 7260 return -EFAULT; 7261 7262 return 0; 7263 } 7264 7265 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7266 char __user *optval, 7267 int __user *optlen) 7268 { 7269 int val = 0; 7270 7271 if (len < sizeof(int)) 7272 return -EINVAL; 7273 7274 len = sizeof(int); 7275 if (sctp_sk(sk)->recvrcvinfo) 7276 val = 1; 7277 if (put_user(len, optlen)) 7278 return -EFAULT; 7279 if (copy_to_user(optval, &val, len)) 7280 return -EFAULT; 7281 7282 return 0; 7283 } 7284 7285 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7286 char __user *optval, 7287 int __user *optlen) 7288 { 7289 int val = 0; 7290 7291 if (len < sizeof(int)) 7292 return -EINVAL; 7293 7294 len = sizeof(int); 7295 if (sctp_sk(sk)->recvnxtinfo) 7296 val = 1; 7297 if (put_user(len, optlen)) 7298 return -EFAULT; 7299 if (copy_to_user(optval, &val, len)) 7300 return -EFAULT; 7301 7302 return 0; 7303 } 7304 7305 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7306 char __user *optval, 7307 int __user *optlen) 7308 { 7309 struct sctp_assoc_value params; 7310 struct sctp_association *asoc; 7311 int retval = -EFAULT; 7312 7313 if (len < sizeof(params)) { 7314 retval = -EINVAL; 7315 goto out; 7316 } 7317 7318 len = sizeof(params); 7319 if (copy_from_user(¶ms, optval, len)) 7320 goto out; 7321 7322 asoc = sctp_id2assoc(sk, params.assoc_id); 7323 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7324 sctp_style(sk, UDP)) { 7325 retval = -EINVAL; 7326 goto out; 7327 } 7328 7329 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7330 : sctp_sk(sk)->ep->prsctp_enable; 7331 7332 if (put_user(len, optlen)) 7333 goto out; 7334 7335 if (copy_to_user(optval, ¶ms, len)) 7336 goto out; 7337 7338 retval = 0; 7339 7340 out: 7341 return retval; 7342 } 7343 7344 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7345 char __user *optval, 7346 int __user *optlen) 7347 { 7348 struct sctp_default_prinfo info; 7349 struct sctp_association *asoc; 7350 int retval = -EFAULT; 7351 7352 if (len < sizeof(info)) { 7353 retval = -EINVAL; 7354 goto out; 7355 } 7356 7357 len = sizeof(info); 7358 if (copy_from_user(&info, optval, len)) 7359 goto out; 7360 7361 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7362 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7363 sctp_style(sk, UDP)) { 7364 retval = -EINVAL; 7365 goto out; 7366 } 7367 7368 if (asoc) { 7369 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7370 info.pr_value = asoc->default_timetolive; 7371 } else { 7372 struct sctp_sock *sp = sctp_sk(sk); 7373 7374 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7375 info.pr_value = sp->default_timetolive; 7376 } 7377 7378 if (put_user(len, optlen)) 7379 goto out; 7380 7381 if (copy_to_user(optval, &info, len)) 7382 goto out; 7383 7384 retval = 0; 7385 7386 out: 7387 return retval; 7388 } 7389 7390 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7391 char __user *optval, 7392 int __user *optlen) 7393 { 7394 struct sctp_prstatus params; 7395 struct sctp_association *asoc; 7396 int policy; 7397 int retval = -EINVAL; 7398 7399 if (len < sizeof(params)) 7400 goto out; 7401 7402 len = sizeof(params); 7403 if (copy_from_user(¶ms, optval, len)) { 7404 retval = -EFAULT; 7405 goto out; 7406 } 7407 7408 policy = params.sprstat_policy; 7409 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7410 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7411 goto out; 7412 7413 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7414 if (!asoc) 7415 goto out; 7416 7417 if (policy == SCTP_PR_SCTP_ALL) { 7418 params.sprstat_abandoned_unsent = 0; 7419 params.sprstat_abandoned_sent = 0; 7420 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7421 params.sprstat_abandoned_unsent += 7422 asoc->abandoned_unsent[policy]; 7423 params.sprstat_abandoned_sent += 7424 asoc->abandoned_sent[policy]; 7425 } 7426 } else { 7427 params.sprstat_abandoned_unsent = 7428 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7429 params.sprstat_abandoned_sent = 7430 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7431 } 7432 7433 if (put_user(len, optlen)) { 7434 retval = -EFAULT; 7435 goto out; 7436 } 7437 7438 if (copy_to_user(optval, ¶ms, len)) { 7439 retval = -EFAULT; 7440 goto out; 7441 } 7442 7443 retval = 0; 7444 7445 out: 7446 return retval; 7447 } 7448 7449 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7450 char __user *optval, 7451 int __user *optlen) 7452 { 7453 struct sctp_stream_out_ext *streamoute; 7454 struct sctp_association *asoc; 7455 struct sctp_prstatus params; 7456 int retval = -EINVAL; 7457 int policy; 7458 7459 if (len < sizeof(params)) 7460 goto out; 7461 7462 len = sizeof(params); 7463 if (copy_from_user(¶ms, optval, len)) { 7464 retval = -EFAULT; 7465 goto out; 7466 } 7467 7468 policy = params.sprstat_policy; 7469 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7470 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7471 goto out; 7472 7473 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7474 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7475 goto out; 7476 7477 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7478 if (!streamoute) { 7479 /* Not allocated yet, means all stats are 0 */ 7480 params.sprstat_abandoned_unsent = 0; 7481 params.sprstat_abandoned_sent = 0; 7482 retval = 0; 7483 goto out; 7484 } 7485 7486 if (policy == SCTP_PR_SCTP_ALL) { 7487 params.sprstat_abandoned_unsent = 0; 7488 params.sprstat_abandoned_sent = 0; 7489 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7490 params.sprstat_abandoned_unsent += 7491 streamoute->abandoned_unsent[policy]; 7492 params.sprstat_abandoned_sent += 7493 streamoute->abandoned_sent[policy]; 7494 } 7495 } else { 7496 params.sprstat_abandoned_unsent = 7497 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7498 params.sprstat_abandoned_sent = 7499 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7500 } 7501 7502 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7503 retval = -EFAULT; 7504 goto out; 7505 } 7506 7507 retval = 0; 7508 7509 out: 7510 return retval; 7511 } 7512 7513 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7514 char __user *optval, 7515 int __user *optlen) 7516 { 7517 struct sctp_assoc_value params; 7518 struct sctp_association *asoc; 7519 int retval = -EFAULT; 7520 7521 if (len < sizeof(params)) { 7522 retval = -EINVAL; 7523 goto out; 7524 } 7525 7526 len = sizeof(params); 7527 if (copy_from_user(¶ms, optval, len)) 7528 goto out; 7529 7530 asoc = sctp_id2assoc(sk, params.assoc_id); 7531 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7532 sctp_style(sk, UDP)) { 7533 retval = -EINVAL; 7534 goto out; 7535 } 7536 7537 params.assoc_value = asoc ? asoc->peer.reconf_capable 7538 : sctp_sk(sk)->ep->reconf_enable; 7539 7540 if (put_user(len, optlen)) 7541 goto out; 7542 7543 if (copy_to_user(optval, ¶ms, len)) 7544 goto out; 7545 7546 retval = 0; 7547 7548 out: 7549 return retval; 7550 } 7551 7552 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7553 char __user *optval, 7554 int __user *optlen) 7555 { 7556 struct sctp_assoc_value params; 7557 struct sctp_association *asoc; 7558 int retval = -EFAULT; 7559 7560 if (len < sizeof(params)) { 7561 retval = -EINVAL; 7562 goto out; 7563 } 7564 7565 len = sizeof(params); 7566 if (copy_from_user(¶ms, optval, len)) 7567 goto out; 7568 7569 asoc = sctp_id2assoc(sk, params.assoc_id); 7570 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7571 sctp_style(sk, UDP)) { 7572 retval = -EINVAL; 7573 goto out; 7574 } 7575 7576 params.assoc_value = asoc ? asoc->strreset_enable 7577 : sctp_sk(sk)->ep->strreset_enable; 7578 7579 if (put_user(len, optlen)) 7580 goto out; 7581 7582 if (copy_to_user(optval, ¶ms, len)) 7583 goto out; 7584 7585 retval = 0; 7586 7587 out: 7588 return retval; 7589 } 7590 7591 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7592 char __user *optval, 7593 int __user *optlen) 7594 { 7595 struct sctp_assoc_value params; 7596 struct sctp_association *asoc; 7597 int retval = -EFAULT; 7598 7599 if (len < sizeof(params)) { 7600 retval = -EINVAL; 7601 goto out; 7602 } 7603 7604 len = sizeof(params); 7605 if (copy_from_user(¶ms, optval, len)) 7606 goto out; 7607 7608 asoc = sctp_id2assoc(sk, params.assoc_id); 7609 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7610 sctp_style(sk, UDP)) { 7611 retval = -EINVAL; 7612 goto out; 7613 } 7614 7615 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7616 : sctp_sk(sk)->default_ss; 7617 7618 if (put_user(len, optlen)) 7619 goto out; 7620 7621 if (copy_to_user(optval, ¶ms, len)) 7622 goto out; 7623 7624 retval = 0; 7625 7626 out: 7627 return retval; 7628 } 7629 7630 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7631 char __user *optval, 7632 int __user *optlen) 7633 { 7634 struct sctp_stream_value params; 7635 struct sctp_association *asoc; 7636 int retval = -EFAULT; 7637 7638 if (len < sizeof(params)) { 7639 retval = -EINVAL; 7640 goto out; 7641 } 7642 7643 len = sizeof(params); 7644 if (copy_from_user(¶ms, optval, len)) 7645 goto out; 7646 7647 asoc = sctp_id2assoc(sk, params.assoc_id); 7648 if (!asoc) { 7649 retval = -EINVAL; 7650 goto out; 7651 } 7652 7653 retval = sctp_sched_get_value(asoc, params.stream_id, 7654 ¶ms.stream_value); 7655 if (retval) 7656 goto out; 7657 7658 if (put_user(len, optlen)) { 7659 retval = -EFAULT; 7660 goto out; 7661 } 7662 7663 if (copy_to_user(optval, ¶ms, len)) { 7664 retval = -EFAULT; 7665 goto out; 7666 } 7667 7668 out: 7669 return retval; 7670 } 7671 7672 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7673 char __user *optval, 7674 int __user *optlen) 7675 { 7676 struct sctp_assoc_value params; 7677 struct sctp_association *asoc; 7678 int retval = -EFAULT; 7679 7680 if (len < sizeof(params)) { 7681 retval = -EINVAL; 7682 goto out; 7683 } 7684 7685 len = sizeof(params); 7686 if (copy_from_user(¶ms, optval, len)) 7687 goto out; 7688 7689 asoc = sctp_id2assoc(sk, params.assoc_id); 7690 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7691 sctp_style(sk, UDP)) { 7692 retval = -EINVAL; 7693 goto out; 7694 } 7695 7696 params.assoc_value = asoc ? asoc->peer.intl_capable 7697 : sctp_sk(sk)->ep->intl_enable; 7698 7699 if (put_user(len, optlen)) 7700 goto out; 7701 7702 if (copy_to_user(optval, ¶ms, len)) 7703 goto out; 7704 7705 retval = 0; 7706 7707 out: 7708 return retval; 7709 } 7710 7711 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7712 char __user *optval, 7713 int __user *optlen) 7714 { 7715 int val; 7716 7717 if (len < sizeof(int)) 7718 return -EINVAL; 7719 7720 len = sizeof(int); 7721 val = sctp_sk(sk)->reuse; 7722 if (put_user(len, optlen)) 7723 return -EFAULT; 7724 7725 if (copy_to_user(optval, &val, len)) 7726 return -EFAULT; 7727 7728 return 0; 7729 } 7730 7731 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7732 int __user *optlen) 7733 { 7734 struct sctp_association *asoc; 7735 struct sctp_event param; 7736 __u16 subscribe; 7737 7738 if (len < sizeof(param)) 7739 return -EINVAL; 7740 7741 len = sizeof(param); 7742 if (copy_from_user(¶m, optval, len)) 7743 return -EFAULT; 7744 7745 if (param.se_type < SCTP_SN_TYPE_BASE || 7746 param.se_type > SCTP_SN_TYPE_MAX) 7747 return -EINVAL; 7748 7749 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7750 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7751 sctp_style(sk, UDP)) 7752 return -EINVAL; 7753 7754 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7755 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7756 7757 if (put_user(len, optlen)) 7758 return -EFAULT; 7759 7760 if (copy_to_user(optval, ¶m, len)) 7761 return -EFAULT; 7762 7763 return 0; 7764 } 7765 7766 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7767 char __user *optval, 7768 int __user *optlen) 7769 { 7770 struct sctp_assoc_value params; 7771 struct sctp_association *asoc; 7772 int retval = -EFAULT; 7773 7774 if (len < sizeof(params)) { 7775 retval = -EINVAL; 7776 goto out; 7777 } 7778 7779 len = sizeof(params); 7780 if (copy_from_user(¶ms, optval, len)) 7781 goto out; 7782 7783 asoc = sctp_id2assoc(sk, params.assoc_id); 7784 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7785 sctp_style(sk, UDP)) { 7786 retval = -EINVAL; 7787 goto out; 7788 } 7789 7790 params.assoc_value = asoc ? asoc->peer.asconf_capable 7791 : sctp_sk(sk)->ep->asconf_enable; 7792 7793 if (put_user(len, optlen)) 7794 goto out; 7795 7796 if (copy_to_user(optval, ¶ms, len)) 7797 goto out; 7798 7799 retval = 0; 7800 7801 out: 7802 return retval; 7803 } 7804 7805 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7806 char __user *optval, 7807 int __user *optlen) 7808 { 7809 struct sctp_assoc_value params; 7810 struct sctp_association *asoc; 7811 int retval = -EFAULT; 7812 7813 if (len < sizeof(params)) { 7814 retval = -EINVAL; 7815 goto out; 7816 } 7817 7818 len = sizeof(params); 7819 if (copy_from_user(¶ms, optval, len)) 7820 goto out; 7821 7822 asoc = sctp_id2assoc(sk, params.assoc_id); 7823 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7824 sctp_style(sk, UDP)) { 7825 retval = -EINVAL; 7826 goto out; 7827 } 7828 7829 params.assoc_value = asoc ? asoc->peer.auth_capable 7830 : sctp_sk(sk)->ep->auth_enable; 7831 7832 if (put_user(len, optlen)) 7833 goto out; 7834 7835 if (copy_to_user(optval, ¶ms, len)) 7836 goto out; 7837 7838 retval = 0; 7839 7840 out: 7841 return retval; 7842 } 7843 7844 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7845 char __user *optval, 7846 int __user *optlen) 7847 { 7848 struct sctp_assoc_value params; 7849 struct sctp_association *asoc; 7850 int retval = -EFAULT; 7851 7852 if (len < sizeof(params)) { 7853 retval = -EINVAL; 7854 goto out; 7855 } 7856 7857 len = sizeof(params); 7858 if (copy_from_user(¶ms, optval, len)) 7859 goto out; 7860 7861 asoc = sctp_id2assoc(sk, params.assoc_id); 7862 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7863 sctp_style(sk, UDP)) { 7864 retval = -EINVAL; 7865 goto out; 7866 } 7867 7868 params.assoc_value = asoc ? asoc->peer.ecn_capable 7869 : sctp_sk(sk)->ep->ecn_enable; 7870 7871 if (put_user(len, optlen)) 7872 goto out; 7873 7874 if (copy_to_user(optval, ¶ms, len)) 7875 goto out; 7876 7877 retval = 0; 7878 7879 out: 7880 return retval; 7881 } 7882 7883 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7884 char __user *optval, 7885 int __user *optlen) 7886 { 7887 struct sctp_assoc_value params; 7888 struct sctp_association *asoc; 7889 int retval = -EFAULT; 7890 7891 if (len < sizeof(params)) { 7892 retval = -EINVAL; 7893 goto out; 7894 } 7895 7896 len = sizeof(params); 7897 if (copy_from_user(¶ms, optval, len)) 7898 goto out; 7899 7900 asoc = sctp_id2assoc(sk, params.assoc_id); 7901 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7902 sctp_style(sk, UDP)) { 7903 retval = -EINVAL; 7904 goto out; 7905 } 7906 7907 params.assoc_value = asoc ? asoc->pf_expose 7908 : sctp_sk(sk)->pf_expose; 7909 7910 if (put_user(len, optlen)) 7911 goto out; 7912 7913 if (copy_to_user(optval, ¶ms, len)) 7914 goto out; 7915 7916 retval = 0; 7917 7918 out: 7919 return retval; 7920 } 7921 7922 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7923 char __user *optval, int __user *optlen) 7924 { 7925 struct sctp_association *asoc; 7926 struct sctp_udpencaps encap; 7927 struct sctp_transport *t; 7928 __be16 encap_port; 7929 7930 if (len < sizeof(encap)) 7931 return -EINVAL; 7932 7933 len = sizeof(encap); 7934 if (copy_from_user(&encap, optval, len)) 7935 return -EFAULT; 7936 7937 /* If an address other than INADDR_ANY is specified, and 7938 * no transport is found, then the request is invalid. 7939 */ 7940 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7941 t = sctp_addr_id2transport(sk, &encap.sue_address, 7942 encap.sue_assoc_id); 7943 if (!t) { 7944 pr_debug("%s: failed no transport\n", __func__); 7945 return -EINVAL; 7946 } 7947 7948 encap_port = t->encap_port; 7949 goto out; 7950 } 7951 7952 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7953 * socket is a one to many style socket, and an association 7954 * was not found, then the id was invalid. 7955 */ 7956 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7957 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7958 sctp_style(sk, UDP)) { 7959 pr_debug("%s: failed no association\n", __func__); 7960 return -EINVAL; 7961 } 7962 7963 if (asoc) { 7964 encap_port = asoc->encap_port; 7965 goto out; 7966 } 7967 7968 encap_port = sctp_sk(sk)->encap_port; 7969 7970 out: 7971 encap.sue_port = (__force uint16_t)encap_port; 7972 if (copy_to_user(optval, &encap, len)) 7973 return -EFAULT; 7974 7975 if (put_user(len, optlen)) 7976 return -EFAULT; 7977 7978 return 0; 7979 } 7980 7981 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 7982 char __user *optval, 7983 int __user *optlen) 7984 { 7985 struct sctp_probeinterval params; 7986 struct sctp_association *asoc; 7987 struct sctp_transport *t; 7988 __u32 probe_interval; 7989 7990 if (len < sizeof(params)) 7991 return -EINVAL; 7992 7993 len = sizeof(params); 7994 if (copy_from_user(¶ms, optval, len)) 7995 return -EFAULT; 7996 7997 /* If an address other than INADDR_ANY is specified, and 7998 * no transport is found, then the request is invalid. 7999 */ 8000 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 8001 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 8002 params.spi_assoc_id); 8003 if (!t) { 8004 pr_debug("%s: failed no transport\n", __func__); 8005 return -EINVAL; 8006 } 8007 8008 probe_interval = jiffies_to_msecs(t->probe_interval); 8009 goto out; 8010 } 8011 8012 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8013 * socket is a one to many style socket, and an association 8014 * was not found, then the id was invalid. 8015 */ 8016 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8017 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8018 sctp_style(sk, UDP)) { 8019 pr_debug("%s: failed no association\n", __func__); 8020 return -EINVAL; 8021 } 8022 8023 if (asoc) { 8024 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8025 goto out; 8026 } 8027 8028 probe_interval = sctp_sk(sk)->probe_interval; 8029 8030 out: 8031 params.spi_interval = probe_interval; 8032 if (copy_to_user(optval, ¶ms, len)) 8033 return -EFAULT; 8034 8035 if (put_user(len, optlen)) 8036 return -EFAULT; 8037 8038 return 0; 8039 } 8040 8041 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8042 char __user *optval, int __user *optlen) 8043 { 8044 int retval = 0; 8045 int len; 8046 8047 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8048 8049 /* I can hardly begin to describe how wrong this is. This is 8050 * so broken as to be worse than useless. The API draft 8051 * REALLY is NOT helpful here... I am not convinced that the 8052 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8053 * are at all well-founded. 8054 */ 8055 if (level != SOL_SCTP) { 8056 struct sctp_af *af = sctp_sk(sk)->pf->af; 8057 8058 retval = af->getsockopt(sk, level, optname, optval, optlen); 8059 return retval; 8060 } 8061 8062 if (get_user(len, optlen)) 8063 return -EFAULT; 8064 8065 if (len < 0) 8066 return -EINVAL; 8067 8068 lock_sock(sk); 8069 8070 switch (optname) { 8071 case SCTP_STATUS: 8072 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8073 break; 8074 case SCTP_DISABLE_FRAGMENTS: 8075 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8076 optlen); 8077 break; 8078 case SCTP_EVENTS: 8079 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8080 break; 8081 case SCTP_AUTOCLOSE: 8082 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8083 break; 8084 case SCTP_SOCKOPT_PEELOFF: 8085 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8086 break; 8087 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8088 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8089 break; 8090 case SCTP_PEER_ADDR_PARAMS: 8091 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8092 optlen); 8093 break; 8094 case SCTP_DELAYED_SACK: 8095 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8096 optlen); 8097 break; 8098 case SCTP_INITMSG: 8099 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8100 break; 8101 case SCTP_GET_PEER_ADDRS: 8102 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8103 optlen); 8104 break; 8105 case SCTP_GET_LOCAL_ADDRS: 8106 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8107 optlen); 8108 break; 8109 case SCTP_SOCKOPT_CONNECTX3: 8110 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8111 break; 8112 case SCTP_DEFAULT_SEND_PARAM: 8113 retval = sctp_getsockopt_default_send_param(sk, len, 8114 optval, optlen); 8115 break; 8116 case SCTP_DEFAULT_SNDINFO: 8117 retval = sctp_getsockopt_default_sndinfo(sk, len, 8118 optval, optlen); 8119 break; 8120 case SCTP_PRIMARY_ADDR: 8121 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8122 break; 8123 case SCTP_NODELAY: 8124 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8125 break; 8126 case SCTP_RTOINFO: 8127 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8128 break; 8129 case SCTP_ASSOCINFO: 8130 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8131 break; 8132 case SCTP_I_WANT_MAPPED_V4_ADDR: 8133 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8134 break; 8135 case SCTP_MAXSEG: 8136 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8137 break; 8138 case SCTP_GET_PEER_ADDR_INFO: 8139 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8140 optlen); 8141 break; 8142 case SCTP_ADAPTATION_LAYER: 8143 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8144 optlen); 8145 break; 8146 case SCTP_CONTEXT: 8147 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8148 break; 8149 case SCTP_FRAGMENT_INTERLEAVE: 8150 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8151 optlen); 8152 break; 8153 case SCTP_PARTIAL_DELIVERY_POINT: 8154 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8155 optlen); 8156 break; 8157 case SCTP_MAX_BURST: 8158 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8159 break; 8160 case SCTP_AUTH_KEY: 8161 case SCTP_AUTH_CHUNK: 8162 case SCTP_AUTH_DELETE_KEY: 8163 case SCTP_AUTH_DEACTIVATE_KEY: 8164 retval = -EOPNOTSUPP; 8165 break; 8166 case SCTP_HMAC_IDENT: 8167 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8168 break; 8169 case SCTP_AUTH_ACTIVE_KEY: 8170 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8171 break; 8172 case SCTP_PEER_AUTH_CHUNKS: 8173 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8174 optlen); 8175 break; 8176 case SCTP_LOCAL_AUTH_CHUNKS: 8177 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8178 optlen); 8179 break; 8180 case SCTP_GET_ASSOC_NUMBER: 8181 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8182 break; 8183 case SCTP_GET_ASSOC_ID_LIST: 8184 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8185 break; 8186 case SCTP_AUTO_ASCONF: 8187 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8188 break; 8189 case SCTP_PEER_ADDR_THLDS: 8190 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8191 optlen, false); 8192 break; 8193 case SCTP_PEER_ADDR_THLDS_V2: 8194 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8195 optlen, true); 8196 break; 8197 case SCTP_GET_ASSOC_STATS: 8198 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8199 break; 8200 case SCTP_RECVRCVINFO: 8201 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8202 break; 8203 case SCTP_RECVNXTINFO: 8204 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8205 break; 8206 case SCTP_PR_SUPPORTED: 8207 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8208 break; 8209 case SCTP_DEFAULT_PRINFO: 8210 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8211 optlen); 8212 break; 8213 case SCTP_PR_ASSOC_STATUS: 8214 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8215 optlen); 8216 break; 8217 case SCTP_PR_STREAM_STATUS: 8218 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8219 optlen); 8220 break; 8221 case SCTP_RECONFIG_SUPPORTED: 8222 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8223 optlen); 8224 break; 8225 case SCTP_ENABLE_STREAM_RESET: 8226 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8227 optlen); 8228 break; 8229 case SCTP_STREAM_SCHEDULER: 8230 retval = sctp_getsockopt_scheduler(sk, len, optval, 8231 optlen); 8232 break; 8233 case SCTP_STREAM_SCHEDULER_VALUE: 8234 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8235 optlen); 8236 break; 8237 case SCTP_INTERLEAVING_SUPPORTED: 8238 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8239 optlen); 8240 break; 8241 case SCTP_REUSE_PORT: 8242 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8243 break; 8244 case SCTP_EVENT: 8245 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8246 break; 8247 case SCTP_ASCONF_SUPPORTED: 8248 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8249 optlen); 8250 break; 8251 case SCTP_AUTH_SUPPORTED: 8252 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8253 optlen); 8254 break; 8255 case SCTP_ECN_SUPPORTED: 8256 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8257 break; 8258 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8259 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8260 break; 8261 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8262 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8263 break; 8264 case SCTP_PLPMTUD_PROBE_INTERVAL: 8265 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8266 break; 8267 default: 8268 retval = -ENOPROTOOPT; 8269 break; 8270 } 8271 8272 release_sock(sk); 8273 return retval; 8274 } 8275 8276 static int sctp_hash(struct sock *sk) 8277 { 8278 /* STUB */ 8279 return 0; 8280 } 8281 8282 static void sctp_unhash(struct sock *sk) 8283 { 8284 /* STUB */ 8285 } 8286 8287 /* Check if port is acceptable. Possibly find first available port. 8288 * 8289 * The port hash table (contained in the 'global' SCTP protocol storage 8290 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8291 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8292 * list (the list number is the port number hashed out, so as you 8293 * would expect from a hash function, all the ports in a given list have 8294 * such a number that hashes out to the same list number; you were 8295 * expecting that, right?); so each list has a set of ports, with a 8296 * link to the socket (struct sock) that uses it, the port number and 8297 * a fastreuse flag (FIXME: NPI ipg). 8298 */ 8299 static struct sctp_bind_bucket *sctp_bucket_create( 8300 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8301 8302 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8303 { 8304 struct sctp_sock *sp = sctp_sk(sk); 8305 bool reuse = (sk->sk_reuse || sp->reuse); 8306 struct sctp_bind_hashbucket *head; /* hash list */ 8307 struct net *net = sock_net(sk); 8308 kuid_t uid = sock_i_uid(sk); 8309 struct sctp_bind_bucket *pp; 8310 unsigned short snum; 8311 int ret; 8312 8313 snum = ntohs(addr->v4.sin_port); 8314 8315 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8316 8317 if (snum == 0) { 8318 /* Search for an available port. */ 8319 int low, high, remaining, index; 8320 unsigned int rover; 8321 8322 inet_get_local_port_range(net, &low, &high); 8323 remaining = (high - low) + 1; 8324 rover = prandom_u32() % remaining + low; 8325 8326 do { 8327 rover++; 8328 if ((rover < low) || (rover > high)) 8329 rover = low; 8330 if (inet_is_local_reserved_port(net, rover)) 8331 continue; 8332 index = sctp_phashfn(net, rover); 8333 head = &sctp_port_hashtable[index]; 8334 spin_lock_bh(&head->lock); 8335 sctp_for_each_hentry(pp, &head->chain) 8336 if ((pp->port == rover) && 8337 net_eq(net, pp->net)) 8338 goto next; 8339 break; 8340 next: 8341 spin_unlock_bh(&head->lock); 8342 cond_resched(); 8343 } while (--remaining > 0); 8344 8345 /* Exhausted local port range during search? */ 8346 ret = 1; 8347 if (remaining <= 0) 8348 return ret; 8349 8350 /* OK, here is the one we will use. HEAD (the port 8351 * hash table list entry) is non-NULL and we hold it's 8352 * mutex. 8353 */ 8354 snum = rover; 8355 } else { 8356 /* We are given an specific port number; we verify 8357 * that it is not being used. If it is used, we will 8358 * exahust the search in the hash list corresponding 8359 * to the port number (snum) - we detect that with the 8360 * port iterator, pp being NULL. 8361 */ 8362 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8363 spin_lock_bh(&head->lock); 8364 sctp_for_each_hentry(pp, &head->chain) { 8365 if ((pp->port == snum) && net_eq(pp->net, net)) 8366 goto pp_found; 8367 } 8368 } 8369 pp = NULL; 8370 goto pp_not_found; 8371 pp_found: 8372 if (!hlist_empty(&pp->owner)) { 8373 /* We had a port hash table hit - there is an 8374 * available port (pp != NULL) and it is being 8375 * used by other socket (pp->owner not empty); that other 8376 * socket is going to be sk2. 8377 */ 8378 struct sock *sk2; 8379 8380 pr_debug("%s: found a possible match\n", __func__); 8381 8382 if ((pp->fastreuse && reuse && 8383 sk->sk_state != SCTP_SS_LISTENING) || 8384 (pp->fastreuseport && sk->sk_reuseport && 8385 uid_eq(pp->fastuid, uid))) 8386 goto success; 8387 8388 /* Run through the list of sockets bound to the port 8389 * (pp->port) [via the pointers bind_next and 8390 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8391 * we get the endpoint they describe and run through 8392 * the endpoint's list of IP (v4 or v6) addresses, 8393 * comparing each of the addresses with the address of 8394 * the socket sk. If we find a match, then that means 8395 * that this port/socket (sk) combination are already 8396 * in an endpoint. 8397 */ 8398 sk_for_each_bound(sk2, &pp->owner) { 8399 struct sctp_sock *sp2 = sctp_sk(sk2); 8400 struct sctp_endpoint *ep2 = sp2->ep; 8401 8402 if (sk == sk2 || 8403 (reuse && (sk2->sk_reuse || sp2->reuse) && 8404 sk2->sk_state != SCTP_SS_LISTENING) || 8405 (sk->sk_reuseport && sk2->sk_reuseport && 8406 uid_eq(uid, sock_i_uid(sk2)))) 8407 continue; 8408 8409 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8410 addr, sp2, sp)) { 8411 ret = 1; 8412 goto fail_unlock; 8413 } 8414 } 8415 8416 pr_debug("%s: found a match\n", __func__); 8417 } 8418 pp_not_found: 8419 /* If there was a hash table miss, create a new port. */ 8420 ret = 1; 8421 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8422 goto fail_unlock; 8423 8424 /* In either case (hit or miss), make sure fastreuse is 1 only 8425 * if sk->sk_reuse is too (that is, if the caller requested 8426 * SO_REUSEADDR on this socket -sk-). 8427 */ 8428 if (hlist_empty(&pp->owner)) { 8429 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8430 pp->fastreuse = 1; 8431 else 8432 pp->fastreuse = 0; 8433 8434 if (sk->sk_reuseport) { 8435 pp->fastreuseport = 1; 8436 pp->fastuid = uid; 8437 } else { 8438 pp->fastreuseport = 0; 8439 } 8440 } else { 8441 if (pp->fastreuse && 8442 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8443 pp->fastreuse = 0; 8444 8445 if (pp->fastreuseport && 8446 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8447 pp->fastreuseport = 0; 8448 } 8449 8450 /* We are set, so fill up all the data in the hash table 8451 * entry, tie the socket list information with the rest of the 8452 * sockets FIXME: Blurry, NPI (ipg). 8453 */ 8454 success: 8455 if (!sp->bind_hash) { 8456 inet_sk(sk)->inet_num = snum; 8457 sk_add_bind_node(sk, &pp->owner); 8458 sp->bind_hash = pp; 8459 } 8460 ret = 0; 8461 8462 fail_unlock: 8463 spin_unlock_bh(&head->lock); 8464 return ret; 8465 } 8466 8467 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8468 * port is requested. 8469 */ 8470 static int sctp_get_port(struct sock *sk, unsigned short snum) 8471 { 8472 union sctp_addr addr; 8473 struct sctp_af *af = sctp_sk(sk)->pf->af; 8474 8475 /* Set up a dummy address struct from the sk. */ 8476 af->from_sk(&addr, sk); 8477 addr.v4.sin_port = htons(snum); 8478 8479 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8480 return sctp_get_port_local(sk, &addr); 8481 } 8482 8483 /* 8484 * Move a socket to LISTENING state. 8485 */ 8486 static int sctp_listen_start(struct sock *sk, int backlog) 8487 { 8488 struct sctp_sock *sp = sctp_sk(sk); 8489 struct sctp_endpoint *ep = sp->ep; 8490 struct crypto_shash *tfm = NULL; 8491 char alg[32]; 8492 8493 /* Allocate HMAC for generating cookie. */ 8494 if (!sp->hmac && sp->sctp_hmac_alg) { 8495 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8496 tfm = crypto_alloc_shash(alg, 0, 0); 8497 if (IS_ERR(tfm)) { 8498 net_info_ratelimited("failed to load transform for %s: %ld\n", 8499 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8500 return -ENOSYS; 8501 } 8502 sctp_sk(sk)->hmac = tfm; 8503 } 8504 8505 /* 8506 * If a bind() or sctp_bindx() is not called prior to a listen() 8507 * call that allows new associations to be accepted, the system 8508 * picks an ephemeral port and will choose an address set equivalent 8509 * to binding with a wildcard address. 8510 * 8511 * This is not currently spelled out in the SCTP sockets 8512 * extensions draft, but follows the practice as seen in TCP 8513 * sockets. 8514 * 8515 */ 8516 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8517 if (!ep->base.bind_addr.port) { 8518 if (sctp_autobind(sk)) 8519 return -EAGAIN; 8520 } else { 8521 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8522 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8523 return -EADDRINUSE; 8524 } 8525 } 8526 8527 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8528 return sctp_hash_endpoint(ep); 8529 } 8530 8531 /* 8532 * 4.1.3 / 5.1.3 listen() 8533 * 8534 * By default, new associations are not accepted for UDP style sockets. 8535 * An application uses listen() to mark a socket as being able to 8536 * accept new associations. 8537 * 8538 * On TCP style sockets, applications use listen() to ready the SCTP 8539 * endpoint for accepting inbound associations. 8540 * 8541 * On both types of endpoints a backlog of '0' disables listening. 8542 * 8543 * Move a socket to LISTENING state. 8544 */ 8545 int sctp_inet_listen(struct socket *sock, int backlog) 8546 { 8547 struct sock *sk = sock->sk; 8548 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8549 int err = -EINVAL; 8550 8551 if (unlikely(backlog < 0)) 8552 return err; 8553 8554 lock_sock(sk); 8555 8556 /* Peeled-off sockets are not allowed to listen(). */ 8557 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8558 goto out; 8559 8560 if (sock->state != SS_UNCONNECTED) 8561 goto out; 8562 8563 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8564 goto out; 8565 8566 /* If backlog is zero, disable listening. */ 8567 if (!backlog) { 8568 if (sctp_sstate(sk, CLOSED)) 8569 goto out; 8570 8571 err = 0; 8572 sctp_unhash_endpoint(ep); 8573 sk->sk_state = SCTP_SS_CLOSED; 8574 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8575 sctp_sk(sk)->bind_hash->fastreuse = 1; 8576 goto out; 8577 } 8578 8579 /* If we are already listening, just update the backlog */ 8580 if (sctp_sstate(sk, LISTENING)) 8581 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8582 else { 8583 err = sctp_listen_start(sk, backlog); 8584 if (err) 8585 goto out; 8586 } 8587 8588 err = 0; 8589 out: 8590 release_sock(sk); 8591 return err; 8592 } 8593 8594 /* 8595 * This function is done by modeling the current datagram_poll() and the 8596 * tcp_poll(). Note that, based on these implementations, we don't 8597 * lock the socket in this function, even though it seems that, 8598 * ideally, locking or some other mechanisms can be used to ensure 8599 * the integrity of the counters (sndbuf and wmem_alloc) used 8600 * in this place. We assume that we don't need locks either until proven 8601 * otherwise. 8602 * 8603 * Another thing to note is that we include the Async I/O support 8604 * here, again, by modeling the current TCP/UDP code. We don't have 8605 * a good way to test with it yet. 8606 */ 8607 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8608 { 8609 struct sock *sk = sock->sk; 8610 struct sctp_sock *sp = sctp_sk(sk); 8611 __poll_t mask; 8612 8613 poll_wait(file, sk_sleep(sk), wait); 8614 8615 sock_rps_record_flow(sk); 8616 8617 /* A TCP-style listening socket becomes readable when the accept queue 8618 * is not empty. 8619 */ 8620 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8621 return (!list_empty(&sp->ep->asocs)) ? 8622 (EPOLLIN | EPOLLRDNORM) : 0; 8623 8624 mask = 0; 8625 8626 /* Is there any exceptional events? */ 8627 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8628 mask |= EPOLLERR | 8629 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8630 if (sk->sk_shutdown & RCV_SHUTDOWN) 8631 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8632 if (sk->sk_shutdown == SHUTDOWN_MASK) 8633 mask |= EPOLLHUP; 8634 8635 /* Is it readable? Reconsider this code with TCP-style support. */ 8636 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8637 mask |= EPOLLIN | EPOLLRDNORM; 8638 8639 /* The association is either gone or not ready. */ 8640 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8641 return mask; 8642 8643 /* Is it writable? */ 8644 if (sctp_writeable(sk)) { 8645 mask |= EPOLLOUT | EPOLLWRNORM; 8646 } else { 8647 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8648 /* 8649 * Since the socket is not locked, the buffer 8650 * might be made available after the writeable check and 8651 * before the bit is set. This could cause a lost I/O 8652 * signal. tcp_poll() has a race breaker for this race 8653 * condition. Based on their implementation, we put 8654 * in the following code to cover it as well. 8655 */ 8656 if (sctp_writeable(sk)) 8657 mask |= EPOLLOUT | EPOLLWRNORM; 8658 } 8659 return mask; 8660 } 8661 8662 /******************************************************************** 8663 * 2nd Level Abstractions 8664 ********************************************************************/ 8665 8666 static struct sctp_bind_bucket *sctp_bucket_create( 8667 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8668 { 8669 struct sctp_bind_bucket *pp; 8670 8671 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8672 if (pp) { 8673 SCTP_DBG_OBJCNT_INC(bind_bucket); 8674 pp->port = snum; 8675 pp->fastreuse = 0; 8676 INIT_HLIST_HEAD(&pp->owner); 8677 pp->net = net; 8678 hlist_add_head(&pp->node, &head->chain); 8679 } 8680 return pp; 8681 } 8682 8683 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8684 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8685 { 8686 if (pp && hlist_empty(&pp->owner)) { 8687 __hlist_del(&pp->node); 8688 kmem_cache_free(sctp_bucket_cachep, pp); 8689 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8690 } 8691 } 8692 8693 /* Release this socket's reference to a local port. */ 8694 static inline void __sctp_put_port(struct sock *sk) 8695 { 8696 struct sctp_bind_hashbucket *head = 8697 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8698 inet_sk(sk)->inet_num)]; 8699 struct sctp_bind_bucket *pp; 8700 8701 spin_lock(&head->lock); 8702 pp = sctp_sk(sk)->bind_hash; 8703 __sk_del_bind_node(sk); 8704 sctp_sk(sk)->bind_hash = NULL; 8705 inet_sk(sk)->inet_num = 0; 8706 sctp_bucket_destroy(pp); 8707 spin_unlock(&head->lock); 8708 } 8709 8710 void sctp_put_port(struct sock *sk) 8711 { 8712 local_bh_disable(); 8713 __sctp_put_port(sk); 8714 local_bh_enable(); 8715 } 8716 8717 /* 8718 * The system picks an ephemeral port and choose an address set equivalent 8719 * to binding with a wildcard address. 8720 * One of those addresses will be the primary address for the association. 8721 * This automatically enables the multihoming capability of SCTP. 8722 */ 8723 static int sctp_autobind(struct sock *sk) 8724 { 8725 union sctp_addr autoaddr; 8726 struct sctp_af *af; 8727 __be16 port; 8728 8729 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8730 af = sctp_sk(sk)->pf->af; 8731 8732 port = htons(inet_sk(sk)->inet_num); 8733 af->inaddr_any(&autoaddr, port); 8734 8735 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8736 } 8737 8738 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8739 * 8740 * From RFC 2292 8741 * 4.2 The cmsghdr Structure * 8742 * 8743 * When ancillary data is sent or received, any number of ancillary data 8744 * objects can be specified by the msg_control and msg_controllen members of 8745 * the msghdr structure, because each object is preceded by 8746 * a cmsghdr structure defining the object's length (the cmsg_len member). 8747 * Historically Berkeley-derived implementations have passed only one object 8748 * at a time, but this API allows multiple objects to be 8749 * passed in a single call to sendmsg() or recvmsg(). The following example 8750 * shows two ancillary data objects in a control buffer. 8751 * 8752 * |<--------------------------- msg_controllen -------------------------->| 8753 * | | 8754 * 8755 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8756 * 8757 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8758 * | | | 8759 * 8760 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8761 * 8762 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8763 * | | | | | 8764 * 8765 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8766 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8767 * 8768 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8769 * 8770 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8771 * ^ 8772 * | 8773 * 8774 * msg_control 8775 * points here 8776 */ 8777 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8778 { 8779 struct msghdr *my_msg = (struct msghdr *)msg; 8780 struct cmsghdr *cmsg; 8781 8782 for_each_cmsghdr(cmsg, my_msg) { 8783 if (!CMSG_OK(my_msg, cmsg)) 8784 return -EINVAL; 8785 8786 /* Should we parse this header or ignore? */ 8787 if (cmsg->cmsg_level != IPPROTO_SCTP) 8788 continue; 8789 8790 /* Strictly check lengths following example in SCM code. */ 8791 switch (cmsg->cmsg_type) { 8792 case SCTP_INIT: 8793 /* SCTP Socket API Extension 8794 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8795 * 8796 * This cmsghdr structure provides information for 8797 * initializing new SCTP associations with sendmsg(). 8798 * The SCTP_INITMSG socket option uses this same data 8799 * structure. This structure is not used for 8800 * recvmsg(). 8801 * 8802 * cmsg_level cmsg_type cmsg_data[] 8803 * ------------ ------------ ---------------------- 8804 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8805 */ 8806 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8807 return -EINVAL; 8808 8809 cmsgs->init = CMSG_DATA(cmsg); 8810 break; 8811 8812 case SCTP_SNDRCV: 8813 /* SCTP Socket API Extension 8814 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8815 * 8816 * This cmsghdr structure specifies SCTP options for 8817 * sendmsg() and describes SCTP header information 8818 * about a received message through recvmsg(). 8819 * 8820 * cmsg_level cmsg_type cmsg_data[] 8821 * ------------ ------------ ---------------------- 8822 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8823 */ 8824 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8825 return -EINVAL; 8826 8827 cmsgs->srinfo = CMSG_DATA(cmsg); 8828 8829 if (cmsgs->srinfo->sinfo_flags & 8830 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8831 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8832 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8833 return -EINVAL; 8834 break; 8835 8836 case SCTP_SNDINFO: 8837 /* SCTP Socket API Extension 8838 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8839 * 8840 * This cmsghdr structure specifies SCTP options for 8841 * sendmsg(). This structure and SCTP_RCVINFO replaces 8842 * SCTP_SNDRCV which has been deprecated. 8843 * 8844 * cmsg_level cmsg_type cmsg_data[] 8845 * ------------ ------------ --------------------- 8846 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8847 */ 8848 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8849 return -EINVAL; 8850 8851 cmsgs->sinfo = CMSG_DATA(cmsg); 8852 8853 if (cmsgs->sinfo->snd_flags & 8854 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8855 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8856 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8857 return -EINVAL; 8858 break; 8859 case SCTP_PRINFO: 8860 /* SCTP Socket API Extension 8861 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8862 * 8863 * This cmsghdr structure specifies SCTP options for sendmsg(). 8864 * 8865 * cmsg_level cmsg_type cmsg_data[] 8866 * ------------ ------------ --------------------- 8867 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8868 */ 8869 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8870 return -EINVAL; 8871 8872 cmsgs->prinfo = CMSG_DATA(cmsg); 8873 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8874 return -EINVAL; 8875 8876 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8877 cmsgs->prinfo->pr_value = 0; 8878 break; 8879 case SCTP_AUTHINFO: 8880 /* SCTP Socket API Extension 8881 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8882 * 8883 * This cmsghdr structure specifies SCTP options for sendmsg(). 8884 * 8885 * cmsg_level cmsg_type cmsg_data[] 8886 * ------------ ------------ --------------------- 8887 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8888 */ 8889 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8890 return -EINVAL; 8891 8892 cmsgs->authinfo = CMSG_DATA(cmsg); 8893 break; 8894 case SCTP_DSTADDRV4: 8895 case SCTP_DSTADDRV6: 8896 /* SCTP Socket API Extension 8897 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8898 * 8899 * This cmsghdr structure specifies SCTP options for sendmsg(). 8900 * 8901 * cmsg_level cmsg_type cmsg_data[] 8902 * ------------ ------------ --------------------- 8903 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8904 * ------------ ------------ --------------------- 8905 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8906 */ 8907 cmsgs->addrs_msg = my_msg; 8908 break; 8909 default: 8910 return -EINVAL; 8911 } 8912 } 8913 8914 return 0; 8915 } 8916 8917 /* 8918 * Wait for a packet.. 8919 * Note: This function is the same function as in core/datagram.c 8920 * with a few modifications to make lksctp work. 8921 */ 8922 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8923 { 8924 int error; 8925 DEFINE_WAIT(wait); 8926 8927 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8928 8929 /* Socket errors? */ 8930 error = sock_error(sk); 8931 if (error) 8932 goto out; 8933 8934 if (!skb_queue_empty(&sk->sk_receive_queue)) 8935 goto ready; 8936 8937 /* Socket shut down? */ 8938 if (sk->sk_shutdown & RCV_SHUTDOWN) 8939 goto out; 8940 8941 /* Sequenced packets can come disconnected. If so we report the 8942 * problem. 8943 */ 8944 error = -ENOTCONN; 8945 8946 /* Is there a good reason to think that we may receive some data? */ 8947 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8948 goto out; 8949 8950 /* Handle signals. */ 8951 if (signal_pending(current)) 8952 goto interrupted; 8953 8954 /* Let another process have a go. Since we are going to sleep 8955 * anyway. Note: This may cause odd behaviors if the message 8956 * does not fit in the user's buffer, but this seems to be the 8957 * only way to honor MSG_DONTWAIT realistically. 8958 */ 8959 release_sock(sk); 8960 *timeo_p = schedule_timeout(*timeo_p); 8961 lock_sock(sk); 8962 8963 ready: 8964 finish_wait(sk_sleep(sk), &wait); 8965 return 0; 8966 8967 interrupted: 8968 error = sock_intr_errno(*timeo_p); 8969 8970 out: 8971 finish_wait(sk_sleep(sk), &wait); 8972 *err = error; 8973 return error; 8974 } 8975 8976 /* Receive a datagram. 8977 * Note: This is pretty much the same routine as in core/datagram.c 8978 * with a few changes to make lksctp work. 8979 */ 8980 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) 8981 { 8982 int error; 8983 struct sk_buff *skb; 8984 long timeo; 8985 8986 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 8987 8988 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8989 MAX_SCHEDULE_TIMEOUT); 8990 8991 do { 8992 /* Again only user level code calls this function, 8993 * so nothing interrupt level 8994 * will suddenly eat the receive_queue. 8995 * 8996 * Look at current nfs client by the way... 8997 * However, this function was correct in any case. 8) 8998 */ 8999 if (flags & MSG_PEEK) { 9000 skb = skb_peek(&sk->sk_receive_queue); 9001 if (skb) 9002 refcount_inc(&skb->users); 9003 } else { 9004 skb = __skb_dequeue(&sk->sk_receive_queue); 9005 } 9006 9007 if (skb) 9008 return skb; 9009 9010 /* Caller is allowed not to check sk->sk_err before calling. */ 9011 error = sock_error(sk); 9012 if (error) 9013 goto no_packet; 9014 9015 if (sk->sk_shutdown & RCV_SHUTDOWN) 9016 break; 9017 9018 if (sk_can_busy_loop(sk)) { 9019 sk_busy_loop(sk, flags & MSG_DONTWAIT); 9020 9021 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 9022 continue; 9023 } 9024 9025 /* User doesn't want to wait. */ 9026 error = -EAGAIN; 9027 if (!timeo) 9028 goto no_packet; 9029 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9030 9031 return NULL; 9032 9033 no_packet: 9034 *err = error; 9035 return NULL; 9036 } 9037 9038 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9039 static void __sctp_write_space(struct sctp_association *asoc) 9040 { 9041 struct sock *sk = asoc->base.sk; 9042 9043 if (sctp_wspace(asoc) <= 0) 9044 return; 9045 9046 if (waitqueue_active(&asoc->wait)) 9047 wake_up_interruptible(&asoc->wait); 9048 9049 if (sctp_writeable(sk)) { 9050 struct socket_wq *wq; 9051 9052 rcu_read_lock(); 9053 wq = rcu_dereference(sk->sk_wq); 9054 if (wq) { 9055 if (waitqueue_active(&wq->wait)) 9056 wake_up_interruptible(&wq->wait); 9057 9058 /* Note that we try to include the Async I/O support 9059 * here by modeling from the current TCP/UDP code. 9060 * We have not tested with it yet. 9061 */ 9062 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9063 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9064 } 9065 rcu_read_unlock(); 9066 } 9067 } 9068 9069 static void sctp_wake_up_waiters(struct sock *sk, 9070 struct sctp_association *asoc) 9071 { 9072 struct sctp_association *tmp = asoc; 9073 9074 /* We do accounting for the sndbuf space per association, 9075 * so we only need to wake our own association. 9076 */ 9077 if (asoc->ep->sndbuf_policy) 9078 return __sctp_write_space(asoc); 9079 9080 /* If association goes down and is just flushing its 9081 * outq, then just normally notify others. 9082 */ 9083 if (asoc->base.dead) 9084 return sctp_write_space(sk); 9085 9086 /* Accounting for the sndbuf space is per socket, so we 9087 * need to wake up others, try to be fair and in case of 9088 * other associations, let them have a go first instead 9089 * of just doing a sctp_write_space() call. 9090 * 9091 * Note that we reach sctp_wake_up_waiters() only when 9092 * associations free up queued chunks, thus we are under 9093 * lock and the list of associations on a socket is 9094 * guaranteed not to change. 9095 */ 9096 for (tmp = list_next_entry(tmp, asocs); 1; 9097 tmp = list_next_entry(tmp, asocs)) { 9098 /* Manually skip the head element. */ 9099 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9100 continue; 9101 /* Wake up association. */ 9102 __sctp_write_space(tmp); 9103 /* We've reached the end. */ 9104 if (tmp == asoc) 9105 break; 9106 } 9107 } 9108 9109 /* Do accounting for the sndbuf space. 9110 * Decrement the used sndbuf space of the corresponding association by the 9111 * data size which was just transmitted(freed). 9112 */ 9113 static void sctp_wfree(struct sk_buff *skb) 9114 { 9115 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9116 struct sctp_association *asoc = chunk->asoc; 9117 struct sock *sk = asoc->base.sk; 9118 9119 sk_mem_uncharge(sk, skb->truesize); 9120 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 9121 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9122 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9123 &sk->sk_wmem_alloc)); 9124 9125 if (chunk->shkey) { 9126 struct sctp_shared_key *shkey = chunk->shkey; 9127 9128 /* refcnt == 2 and !list_empty mean after this release, it's 9129 * not being used anywhere, and it's time to notify userland 9130 * that this shkey can be freed if it's been deactivated. 9131 */ 9132 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9133 refcount_read(&shkey->refcnt) == 2) { 9134 struct sctp_ulpevent *ev; 9135 9136 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9137 SCTP_AUTH_FREE_KEY, 9138 GFP_KERNEL); 9139 if (ev) 9140 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9141 } 9142 sctp_auth_shkey_release(chunk->shkey); 9143 } 9144 9145 sock_wfree(skb); 9146 sctp_wake_up_waiters(sk, asoc); 9147 9148 sctp_association_put(asoc); 9149 } 9150 9151 /* Do accounting for the receive space on the socket. 9152 * Accounting for the association is done in ulpevent.c 9153 * We set this as a destructor for the cloned data skbs so that 9154 * accounting is done at the correct time. 9155 */ 9156 void sctp_sock_rfree(struct sk_buff *skb) 9157 { 9158 struct sock *sk = skb->sk; 9159 struct sctp_ulpevent *event = sctp_skb2event(skb); 9160 9161 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9162 9163 /* 9164 * Mimic the behavior of sock_rfree 9165 */ 9166 sk_mem_uncharge(sk, event->rmem_len); 9167 } 9168 9169 9170 /* Helper function to wait for space in the sndbuf. */ 9171 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9172 size_t msg_len) 9173 { 9174 struct sock *sk = asoc->base.sk; 9175 long current_timeo = *timeo_p; 9176 DEFINE_WAIT(wait); 9177 int err = 0; 9178 9179 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9180 *timeo_p, msg_len); 9181 9182 /* Increment the association's refcnt. */ 9183 sctp_association_hold(asoc); 9184 9185 /* Wait on the association specific sndbuf space. */ 9186 for (;;) { 9187 prepare_to_wait_exclusive(&asoc->wait, &wait, 9188 TASK_INTERRUPTIBLE); 9189 if (asoc->base.dead) 9190 goto do_dead; 9191 if (!*timeo_p) 9192 goto do_nonblock; 9193 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9194 goto do_error; 9195 if (signal_pending(current)) 9196 goto do_interrupted; 9197 if (sk_under_memory_pressure(sk)) 9198 sk_mem_reclaim(sk); 9199 if ((int)msg_len <= sctp_wspace(asoc) && 9200 sk_wmem_schedule(sk, msg_len)) 9201 break; 9202 9203 /* Let another process have a go. Since we are going 9204 * to sleep anyway. 9205 */ 9206 release_sock(sk); 9207 current_timeo = schedule_timeout(current_timeo); 9208 lock_sock(sk); 9209 if (sk != asoc->base.sk) 9210 goto do_error; 9211 9212 *timeo_p = current_timeo; 9213 } 9214 9215 out: 9216 finish_wait(&asoc->wait, &wait); 9217 9218 /* Release the association's refcnt. */ 9219 sctp_association_put(asoc); 9220 9221 return err; 9222 9223 do_dead: 9224 err = -ESRCH; 9225 goto out; 9226 9227 do_error: 9228 err = -EPIPE; 9229 goto out; 9230 9231 do_interrupted: 9232 err = sock_intr_errno(*timeo_p); 9233 goto out; 9234 9235 do_nonblock: 9236 err = -EAGAIN; 9237 goto out; 9238 } 9239 9240 void sctp_data_ready(struct sock *sk) 9241 { 9242 struct socket_wq *wq; 9243 9244 rcu_read_lock(); 9245 wq = rcu_dereference(sk->sk_wq); 9246 if (skwq_has_sleeper(wq)) 9247 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9248 EPOLLRDNORM | EPOLLRDBAND); 9249 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9250 rcu_read_unlock(); 9251 } 9252 9253 /* If socket sndbuf has changed, wake up all per association waiters. */ 9254 void sctp_write_space(struct sock *sk) 9255 { 9256 struct sctp_association *asoc; 9257 9258 /* Wake up the tasks in each wait queue. */ 9259 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9260 __sctp_write_space(asoc); 9261 } 9262 } 9263 9264 /* Is there any sndbuf space available on the socket? 9265 * 9266 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9267 * associations on the same socket. For a UDP-style socket with 9268 * multiple associations, it is possible for it to be "unwriteable" 9269 * prematurely. I assume that this is acceptable because 9270 * a premature "unwriteable" is better than an accidental "writeable" which 9271 * would cause an unwanted block under certain circumstances. For the 1-1 9272 * UDP-style sockets or TCP-style sockets, this code should work. 9273 * - Daisy 9274 */ 9275 static bool sctp_writeable(struct sock *sk) 9276 { 9277 return sk->sk_sndbuf > sk->sk_wmem_queued; 9278 } 9279 9280 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9281 * returns immediately with EINPROGRESS. 9282 */ 9283 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9284 { 9285 struct sock *sk = asoc->base.sk; 9286 int err = 0; 9287 long current_timeo = *timeo_p; 9288 DEFINE_WAIT(wait); 9289 9290 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9291 9292 /* Increment the association's refcnt. */ 9293 sctp_association_hold(asoc); 9294 9295 for (;;) { 9296 prepare_to_wait_exclusive(&asoc->wait, &wait, 9297 TASK_INTERRUPTIBLE); 9298 if (!*timeo_p) 9299 goto do_nonblock; 9300 if (sk->sk_shutdown & RCV_SHUTDOWN) 9301 break; 9302 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9303 asoc->base.dead) 9304 goto do_error; 9305 if (signal_pending(current)) 9306 goto do_interrupted; 9307 9308 if (sctp_state(asoc, ESTABLISHED)) 9309 break; 9310 9311 /* Let another process have a go. Since we are going 9312 * to sleep anyway. 9313 */ 9314 release_sock(sk); 9315 current_timeo = schedule_timeout(current_timeo); 9316 lock_sock(sk); 9317 9318 *timeo_p = current_timeo; 9319 } 9320 9321 out: 9322 finish_wait(&asoc->wait, &wait); 9323 9324 /* Release the association's refcnt. */ 9325 sctp_association_put(asoc); 9326 9327 return err; 9328 9329 do_error: 9330 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9331 err = -ETIMEDOUT; 9332 else 9333 err = -ECONNREFUSED; 9334 goto out; 9335 9336 do_interrupted: 9337 err = sock_intr_errno(*timeo_p); 9338 goto out; 9339 9340 do_nonblock: 9341 err = -EINPROGRESS; 9342 goto out; 9343 } 9344 9345 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9346 { 9347 struct sctp_endpoint *ep; 9348 int err = 0; 9349 DEFINE_WAIT(wait); 9350 9351 ep = sctp_sk(sk)->ep; 9352 9353 9354 for (;;) { 9355 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9356 TASK_INTERRUPTIBLE); 9357 9358 if (list_empty(&ep->asocs)) { 9359 release_sock(sk); 9360 timeo = schedule_timeout(timeo); 9361 lock_sock(sk); 9362 } 9363 9364 err = -EINVAL; 9365 if (!sctp_sstate(sk, LISTENING)) 9366 break; 9367 9368 err = 0; 9369 if (!list_empty(&ep->asocs)) 9370 break; 9371 9372 err = sock_intr_errno(timeo); 9373 if (signal_pending(current)) 9374 break; 9375 9376 err = -EAGAIN; 9377 if (!timeo) 9378 break; 9379 } 9380 9381 finish_wait(sk_sleep(sk), &wait); 9382 9383 return err; 9384 } 9385 9386 static void sctp_wait_for_close(struct sock *sk, long timeout) 9387 { 9388 DEFINE_WAIT(wait); 9389 9390 do { 9391 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9392 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9393 break; 9394 release_sock(sk); 9395 timeout = schedule_timeout(timeout); 9396 lock_sock(sk); 9397 } while (!signal_pending(current) && timeout); 9398 9399 finish_wait(sk_sleep(sk), &wait); 9400 } 9401 9402 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9403 { 9404 struct sk_buff *frag; 9405 9406 if (!skb->data_len) 9407 goto done; 9408 9409 /* Don't forget the fragments. */ 9410 skb_walk_frags(skb, frag) 9411 sctp_skb_set_owner_r_frag(frag, sk); 9412 9413 done: 9414 sctp_skb_set_owner_r(skb, sk); 9415 } 9416 9417 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9418 struct sctp_association *asoc) 9419 { 9420 struct inet_sock *inet = inet_sk(sk); 9421 struct inet_sock *newinet; 9422 struct sctp_sock *sp = sctp_sk(sk); 9423 9424 newsk->sk_type = sk->sk_type; 9425 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9426 newsk->sk_flags = sk->sk_flags; 9427 newsk->sk_tsflags = sk->sk_tsflags; 9428 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9429 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9430 newsk->sk_reuse = sk->sk_reuse; 9431 sctp_sk(newsk)->reuse = sp->reuse; 9432 9433 newsk->sk_shutdown = sk->sk_shutdown; 9434 newsk->sk_destruct = sctp_destruct_sock; 9435 newsk->sk_family = sk->sk_family; 9436 newsk->sk_protocol = IPPROTO_SCTP; 9437 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9438 newsk->sk_sndbuf = sk->sk_sndbuf; 9439 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9440 newsk->sk_lingertime = sk->sk_lingertime; 9441 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9442 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9443 newsk->sk_rxhash = sk->sk_rxhash; 9444 9445 newinet = inet_sk(newsk); 9446 9447 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9448 * getsockname() and getpeername() 9449 */ 9450 newinet->inet_sport = inet->inet_sport; 9451 newinet->inet_saddr = inet->inet_saddr; 9452 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9453 newinet->inet_dport = htons(asoc->peer.port); 9454 newinet->pmtudisc = inet->pmtudisc; 9455 newinet->inet_id = prandom_u32(); 9456 9457 newinet->uc_ttl = inet->uc_ttl; 9458 newinet->mc_loop = 1; 9459 newinet->mc_ttl = 1; 9460 newinet->mc_index = 0; 9461 newinet->mc_list = NULL; 9462 9463 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9464 net_enable_timestamp(); 9465 9466 /* Set newsk security attributes from original sk and connection 9467 * security attribute from asoc. 9468 */ 9469 security_sctp_sk_clone(asoc, sk, newsk); 9470 } 9471 9472 static inline void sctp_copy_descendant(struct sock *sk_to, 9473 const struct sock *sk_from) 9474 { 9475 size_t ancestor_size = sizeof(struct inet_sock); 9476 9477 ancestor_size += sk_from->sk_prot->obj_size; 9478 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9479 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9480 } 9481 9482 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9483 * and its messages to the newsk. 9484 */ 9485 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9486 struct sctp_association *assoc, 9487 enum sctp_socket_type type) 9488 { 9489 struct sctp_sock *oldsp = sctp_sk(oldsk); 9490 struct sctp_sock *newsp = sctp_sk(newsk); 9491 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9492 struct sctp_endpoint *newep = newsp->ep; 9493 struct sk_buff *skb, *tmp; 9494 struct sctp_ulpevent *event; 9495 struct sctp_bind_hashbucket *head; 9496 int err; 9497 9498 /* Migrate socket buffer sizes and all the socket level options to the 9499 * new socket. 9500 */ 9501 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9502 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9503 /* Brute force copy old sctp opt. */ 9504 sctp_copy_descendant(newsk, oldsk); 9505 9506 /* Restore the ep value that was overwritten with the above structure 9507 * copy. 9508 */ 9509 newsp->ep = newep; 9510 newsp->hmac = NULL; 9511 9512 /* Hook this new socket in to the bind_hash list. */ 9513 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9514 inet_sk(oldsk)->inet_num)]; 9515 spin_lock_bh(&head->lock); 9516 pp = sctp_sk(oldsk)->bind_hash; 9517 sk_add_bind_node(newsk, &pp->owner); 9518 sctp_sk(newsk)->bind_hash = pp; 9519 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9520 spin_unlock_bh(&head->lock); 9521 9522 /* Copy the bind_addr list from the original endpoint to the new 9523 * endpoint so that we can handle restarts properly 9524 */ 9525 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9526 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9527 if (err) 9528 return err; 9529 9530 /* New ep's auth_hmacs should be set if old ep's is set, in case 9531 * that net->sctp.auth_enable has been changed to 0 by users and 9532 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9533 */ 9534 if (oldsp->ep->auth_hmacs) { 9535 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9536 if (err) 9537 return err; 9538 } 9539 9540 sctp_auto_asconf_init(newsp); 9541 9542 /* Move any messages in the old socket's receive queue that are for the 9543 * peeled off association to the new socket's receive queue. 9544 */ 9545 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9546 event = sctp_skb2event(skb); 9547 if (event->asoc == assoc) { 9548 __skb_unlink(skb, &oldsk->sk_receive_queue); 9549 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9550 sctp_skb_set_owner_r_frag(skb, newsk); 9551 } 9552 } 9553 9554 /* Clean up any messages pending delivery due to partial 9555 * delivery. Three cases: 9556 * 1) No partial deliver; no work. 9557 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9558 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9559 */ 9560 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9561 9562 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9563 struct sk_buff_head *queue; 9564 9565 /* Decide which queue to move pd_lobby skbs to. */ 9566 if (assoc->ulpq.pd_mode) { 9567 queue = &newsp->pd_lobby; 9568 } else 9569 queue = &newsk->sk_receive_queue; 9570 9571 /* Walk through the pd_lobby, looking for skbs that 9572 * need moved to the new socket. 9573 */ 9574 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9575 event = sctp_skb2event(skb); 9576 if (event->asoc == assoc) { 9577 __skb_unlink(skb, &oldsp->pd_lobby); 9578 __skb_queue_tail(queue, skb); 9579 sctp_skb_set_owner_r_frag(skb, newsk); 9580 } 9581 } 9582 9583 /* Clear up any skbs waiting for the partial 9584 * delivery to finish. 9585 */ 9586 if (assoc->ulpq.pd_mode) 9587 sctp_clear_pd(oldsk, NULL); 9588 9589 } 9590 9591 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9592 9593 /* Set the type of socket to indicate that it is peeled off from the 9594 * original UDP-style socket or created with the accept() call on a 9595 * TCP-style socket.. 9596 */ 9597 newsp->type = type; 9598 9599 /* Mark the new socket "in-use" by the user so that any packets 9600 * that may arrive on the association after we've moved it are 9601 * queued to the backlog. This prevents a potential race between 9602 * backlog processing on the old socket and new-packet processing 9603 * on the new socket. 9604 * 9605 * The caller has just allocated newsk so we can guarantee that other 9606 * paths won't try to lock it and then oldsk. 9607 */ 9608 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9609 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9610 sctp_assoc_migrate(assoc, newsk); 9611 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9612 9613 /* If the association on the newsk is already closed before accept() 9614 * is called, set RCV_SHUTDOWN flag. 9615 */ 9616 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9617 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9618 newsk->sk_shutdown |= RCV_SHUTDOWN; 9619 } else { 9620 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9621 } 9622 9623 release_sock(newsk); 9624 9625 return 0; 9626 } 9627 9628 9629 /* This proto struct describes the ULP interface for SCTP. */ 9630 struct proto sctp_prot = { 9631 .name = "SCTP", 9632 .owner = THIS_MODULE, 9633 .close = sctp_close, 9634 .disconnect = sctp_disconnect, 9635 .accept = sctp_accept, 9636 .ioctl = sctp_ioctl, 9637 .init = sctp_init_sock, 9638 .destroy = sctp_destroy_sock, 9639 .shutdown = sctp_shutdown, 9640 .setsockopt = sctp_setsockopt, 9641 .getsockopt = sctp_getsockopt, 9642 .sendmsg = sctp_sendmsg, 9643 .recvmsg = sctp_recvmsg, 9644 .bind = sctp_bind, 9645 .bind_add = sctp_bind_add, 9646 .backlog_rcv = sctp_backlog_rcv, 9647 .hash = sctp_hash, 9648 .unhash = sctp_unhash, 9649 .no_autobind = true, 9650 .obj_size = sizeof(struct sctp_sock), 9651 .useroffset = offsetof(struct sctp_sock, subscribe), 9652 .usersize = offsetof(struct sctp_sock, initmsg) - 9653 offsetof(struct sctp_sock, subscribe) + 9654 sizeof_field(struct sctp_sock, initmsg), 9655 .sysctl_mem = sysctl_sctp_mem, 9656 .sysctl_rmem = sysctl_sctp_rmem, 9657 .sysctl_wmem = sysctl_sctp_wmem, 9658 .memory_pressure = &sctp_memory_pressure, 9659 .enter_memory_pressure = sctp_enter_memory_pressure, 9660 .memory_allocated = &sctp_memory_allocated, 9661 .sockets_allocated = &sctp_sockets_allocated, 9662 }; 9663 9664 #if IS_ENABLED(CONFIG_IPV6) 9665 9666 #include <net/transp_v6.h> 9667 static void sctp_v6_destroy_sock(struct sock *sk) 9668 { 9669 sctp_destroy_sock(sk); 9670 inet6_destroy_sock(sk); 9671 } 9672 9673 struct proto sctpv6_prot = { 9674 .name = "SCTPv6", 9675 .owner = THIS_MODULE, 9676 .close = sctp_close, 9677 .disconnect = sctp_disconnect, 9678 .accept = sctp_accept, 9679 .ioctl = sctp_ioctl, 9680 .init = sctp_init_sock, 9681 .destroy = sctp_v6_destroy_sock, 9682 .shutdown = sctp_shutdown, 9683 .setsockopt = sctp_setsockopt, 9684 .getsockopt = sctp_getsockopt, 9685 .sendmsg = sctp_sendmsg, 9686 .recvmsg = sctp_recvmsg, 9687 .bind = sctp_bind, 9688 .bind_add = sctp_bind_add, 9689 .backlog_rcv = sctp_backlog_rcv, 9690 .hash = sctp_hash, 9691 .unhash = sctp_unhash, 9692 .no_autobind = true, 9693 .obj_size = sizeof(struct sctp6_sock), 9694 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9695 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9696 offsetof(struct sctp6_sock, sctp.subscribe) + 9697 sizeof_field(struct sctp6_sock, sctp.initmsg), 9698 .sysctl_mem = sysctl_sctp_mem, 9699 .sysctl_rmem = sysctl_sctp_rmem, 9700 .sysctl_wmem = sysctl_sctp_wmem, 9701 .memory_pressure = &sctp_memory_pressure, 9702 .enter_memory_pressure = sctp_enter_memory_pressure, 9703 .memory_allocated = &sctp_memory_allocated, 9704 .sockets_allocated = &sctp_sockets_allocated, 9705 }; 9706 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9707