xref: /openbmc/linux/net/sctp/socket.c (revision f71a261a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  * Copyright (c) 2001-2002 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions interface with the sockets layer to implement the
13  * SCTP Extensions for the Sockets API.
14  *
15  * Note that the descriptions from the specification are USER level
16  * functions--this file is the functions which populate the struct proto
17  * for SCTP which is the BOTTOM of the sockets interface.
18  *
19  * Please send any bug reports or fixes you make to the
20  * email address(es):
21  *    lksctp developers <linux-sctp@vger.kernel.org>
22  *
23  * Written or modified by:
24  *    La Monte H.P. Yarroll <piggy@acm.org>
25  *    Narasimha Budihal     <narsi@refcode.org>
26  *    Karl Knutson          <karl@athena.chicago.il.us>
27  *    Jon Grimm             <jgrimm@us.ibm.com>
28  *    Xingang Guo           <xingang.guo@intel.com>
29  *    Daisy Chang           <daisyc@us.ibm.com>
30  *    Sridhar Samudrala     <samudrala@us.ibm.com>
31  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
32  *    Ardelle Fan	    <ardelle.fan@intel.com>
33  *    Ryan Layer	    <rmlayer@us.ibm.com>
34  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
35  *    Kevin Gao             <kevin.gao@intel.com>
36  */
37 
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55 
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69 
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 				size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 					union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 			    struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 			     struct sctp_association *assoc,
92 			     enum sctp_socket_type type);
93 
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97 
98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 	sctp_memory_pressure = 1;
101 }
102 
103 
104 /* Get the sndbuf space available at the time on the association.  */
105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 	struct sock *sk = asoc->base.sk;
108 
109 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 				       : sk_stream_wspace(sk);
111 }
112 
113 /* Increment the used sndbuf space count of the corresponding association by
114  * the size of the outgoing data chunk.
115  * Also, set the skb destructor for sndbuf accounting later.
116  *
117  * Since it is always 1-1 between chunk and skb, and also a new skb is always
118  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119  * destructor in the data chunk skb for the purpose of the sndbuf space
120  * tracking.
121  */
122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 	struct sctp_association *asoc = chunk->asoc;
125 	struct sock *sk = asoc->base.sk;
126 
127 	/* The sndbuf space is tracked per association.  */
128 	sctp_association_hold(asoc);
129 
130 	if (chunk->shkey)
131 		sctp_auth_shkey_hold(chunk->shkey);
132 
133 	skb_set_owner_w(chunk->skb, sk);
134 
135 	chunk->skb->destructor = sctp_wfree;
136 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
137 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
138 
139 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 	sk_mem_charge(sk, chunk->skb->truesize);
143 }
144 
145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 	skb_orphan(chunk->skb);
148 }
149 
150 #define traverse_and_process()	\
151 do {				\
152 	msg = chunk->msg;	\
153 	if (msg == prev_msg)	\
154 		continue;	\
155 	list_for_each_entry(c, &msg->chunks, frag_list) {	\
156 		if ((clear && asoc->base.sk == c->skb->sk) ||	\
157 		    (!clear && asoc->base.sk != c->skb->sk))	\
158 			cb(c);	\
159 	}			\
160 	prev_msg = msg;		\
161 } while (0)
162 
163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 				       bool clear,
165 				       void (*cb)(struct sctp_chunk *))
166 
167 {
168 	struct sctp_datamsg *msg, *prev_msg = NULL;
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_chunk *chunk, *c;
171 	struct sctp_transport *t;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			traverse_and_process();
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		traverse_and_process();
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		traverse_and_process();
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		traverse_and_process();
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		traverse_and_process();
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (id <= SCTP_ALL_ASSOC)
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 static void sctp_auto_asconf_init(struct sctp_sock *sp)
361 {
362 	struct net *net = sock_net(&sp->inet.sk);
363 
364 	if (net->sctp.default_auto_asconf) {
365 		spin_lock(&net->sctp.addr_wq_lock);
366 		list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
367 		spin_unlock(&net->sctp.addr_wq_lock);
368 		sp->do_auto_asconf = 1;
369 	}
370 }
371 
372 /* Bind a local address either to an endpoint or to an association.  */
373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
374 {
375 	struct net *net = sock_net(sk);
376 	struct sctp_sock *sp = sctp_sk(sk);
377 	struct sctp_endpoint *ep = sp->ep;
378 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
379 	struct sctp_af *af;
380 	unsigned short snum;
381 	int ret = 0;
382 
383 	/* Common sockaddr verification. */
384 	af = sctp_sockaddr_af(sp, addr, len);
385 	if (!af) {
386 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
387 			 __func__, sk, addr, len);
388 		return -EINVAL;
389 	}
390 
391 	snum = ntohs(addr->v4.sin_port);
392 
393 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
394 		 __func__, sk, &addr->sa, bp->port, snum, len);
395 
396 	/* PF specific bind() address verification. */
397 	if (!sp->pf->bind_verify(sp, addr))
398 		return -EADDRNOTAVAIL;
399 
400 	/* We must either be unbound, or bind to the same port.
401 	 * It's OK to allow 0 ports if we are already bound.
402 	 * We'll just inhert an already bound port in this case
403 	 */
404 	if (bp->port) {
405 		if (!snum)
406 			snum = bp->port;
407 		else if (snum != bp->port) {
408 			pr_debug("%s: new port %d doesn't match existing port "
409 				 "%d\n", __func__, snum, bp->port);
410 			return -EINVAL;
411 		}
412 	}
413 
414 	if (snum && inet_port_requires_bind_service(net, snum) &&
415 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
416 		return -EACCES;
417 
418 	/* See if the address matches any of the addresses we may have
419 	 * already bound before checking against other endpoints.
420 	 */
421 	if (sctp_bind_addr_match(bp, addr, sp))
422 		return -EINVAL;
423 
424 	/* Make sure we are allowed to bind here.
425 	 * The function sctp_get_port_local() does duplicate address
426 	 * detection.
427 	 */
428 	addr->v4.sin_port = htons(snum);
429 	if (sctp_get_port_local(sk, addr))
430 		return -EADDRINUSE;
431 
432 	/* Refresh ephemeral port.  */
433 	if (!bp->port) {
434 		bp->port = inet_sk(sk)->inet_num;
435 		sctp_auto_asconf_init(sp);
436 	}
437 
438 	/* Add the address to the bind address list.
439 	 * Use GFP_ATOMIC since BHs will be disabled.
440 	 */
441 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
442 				 SCTP_ADDR_SRC, GFP_ATOMIC);
443 
444 	if (ret) {
445 		sctp_put_port(sk);
446 		return ret;
447 	}
448 	/* Copy back into socket for getsockname() use. */
449 	inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
450 	sp->pf->to_sk_saddr(addr, sk);
451 
452 	return ret;
453 }
454 
455  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
456  *
457  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
458  * at any one time.  If a sender, after sending an ASCONF chunk, decides
459  * it needs to transfer another ASCONF Chunk, it MUST wait until the
460  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
461  * subsequent ASCONF. Note this restriction binds each side, so at any
462  * time two ASCONF may be in-transit on any given association (one sent
463  * from each endpoint).
464  */
465 static int sctp_send_asconf(struct sctp_association *asoc,
466 			    struct sctp_chunk *chunk)
467 {
468 	int retval = 0;
469 
470 	/* If there is an outstanding ASCONF chunk, queue it for later
471 	 * transmission.
472 	 */
473 	if (asoc->addip_last_asconf) {
474 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
475 		goto out;
476 	}
477 
478 	/* Hold the chunk until an ASCONF_ACK is received. */
479 	sctp_chunk_hold(chunk);
480 	retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
481 	if (retval)
482 		sctp_chunk_free(chunk);
483 	else
484 		asoc->addip_last_asconf = chunk;
485 
486 out:
487 	return retval;
488 }
489 
490 /* Add a list of addresses as bind addresses to local endpoint or
491  * association.
492  *
493  * Basically run through each address specified in the addrs/addrcnt
494  * array/length pair, determine if it is IPv6 or IPv4 and call
495  * sctp_do_bind() on it.
496  *
497  * If any of them fails, then the operation will be reversed and the
498  * ones that were added will be removed.
499  *
500  * Only sctp_setsockopt_bindx() is supposed to call this function.
501  */
502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
503 {
504 	int cnt;
505 	int retval = 0;
506 	void *addr_buf;
507 	struct sockaddr *sa_addr;
508 	struct sctp_af *af;
509 
510 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
511 		 addrs, addrcnt);
512 
513 	addr_buf = addrs;
514 	for (cnt = 0; cnt < addrcnt; cnt++) {
515 		/* The list may contain either IPv4 or IPv6 address;
516 		 * determine the address length for walking thru the list.
517 		 */
518 		sa_addr = addr_buf;
519 		af = sctp_get_af_specific(sa_addr->sa_family);
520 		if (!af) {
521 			retval = -EINVAL;
522 			goto err_bindx_add;
523 		}
524 
525 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
526 				      af->sockaddr_len);
527 
528 		addr_buf += af->sockaddr_len;
529 
530 err_bindx_add:
531 		if (retval < 0) {
532 			/* Failed. Cleanup the ones that have been added */
533 			if (cnt > 0)
534 				sctp_bindx_rem(sk, addrs, cnt);
535 			return retval;
536 		}
537 	}
538 
539 	return retval;
540 }
541 
542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
543  * associations that are part of the endpoint indicating that a list of local
544  * addresses are added to the endpoint.
545  *
546  * If any of the addresses is already in the bind address list of the
547  * association, we do not send the chunk for that association.  But it will not
548  * affect other associations.
549  *
550  * Only sctp_setsockopt_bindx() is supposed to call this function.
551  */
552 static int sctp_send_asconf_add_ip(struct sock		*sk,
553 				   struct sockaddr	*addrs,
554 				   int 			addrcnt)
555 {
556 	struct sctp_sock		*sp;
557 	struct sctp_endpoint		*ep;
558 	struct sctp_association		*asoc;
559 	struct sctp_bind_addr		*bp;
560 	struct sctp_chunk		*chunk;
561 	struct sctp_sockaddr_entry	*laddr;
562 	union sctp_addr			*addr;
563 	union sctp_addr			saveaddr;
564 	void				*addr_buf;
565 	struct sctp_af			*af;
566 	struct list_head		*p;
567 	int 				i;
568 	int 				retval = 0;
569 
570 	sp = sctp_sk(sk);
571 	ep = sp->ep;
572 
573 	if (!ep->asconf_enable)
574 		return retval;
575 
576 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
577 		 __func__, sk, addrs, addrcnt);
578 
579 	list_for_each_entry(asoc, &ep->asocs, asocs) {
580 		if (!asoc->peer.asconf_capable)
581 			continue;
582 
583 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
584 			continue;
585 
586 		if (!sctp_state(asoc, ESTABLISHED))
587 			continue;
588 
589 		/* Check if any address in the packed array of addresses is
590 		 * in the bind address list of the association. If so,
591 		 * do not send the asconf chunk to its peer, but continue with
592 		 * other associations.
593 		 */
594 		addr_buf = addrs;
595 		for (i = 0; i < addrcnt; i++) {
596 			addr = addr_buf;
597 			af = sctp_get_af_specific(addr->v4.sin_family);
598 			if (!af) {
599 				retval = -EINVAL;
600 				goto out;
601 			}
602 
603 			if (sctp_assoc_lookup_laddr(asoc, addr))
604 				break;
605 
606 			addr_buf += af->sockaddr_len;
607 		}
608 		if (i < addrcnt)
609 			continue;
610 
611 		/* Use the first valid address in bind addr list of
612 		 * association as Address Parameter of ASCONF CHUNK.
613 		 */
614 		bp = &asoc->base.bind_addr;
615 		p = bp->address_list.next;
616 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
617 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
618 						   addrcnt, SCTP_PARAM_ADD_IP);
619 		if (!chunk) {
620 			retval = -ENOMEM;
621 			goto out;
622 		}
623 
624 		/* Add the new addresses to the bind address list with
625 		 * use_as_src set to 0.
626 		 */
627 		addr_buf = addrs;
628 		for (i = 0; i < addrcnt; i++) {
629 			addr = addr_buf;
630 			af = sctp_get_af_specific(addr->v4.sin_family);
631 			memcpy(&saveaddr, addr, af->sockaddr_len);
632 			retval = sctp_add_bind_addr(bp, &saveaddr,
633 						    sizeof(saveaddr),
634 						    SCTP_ADDR_NEW, GFP_ATOMIC);
635 			addr_buf += af->sockaddr_len;
636 		}
637 		if (asoc->src_out_of_asoc_ok) {
638 			struct sctp_transport *trans;
639 
640 			list_for_each_entry(trans,
641 			    &asoc->peer.transport_addr_list, transports) {
642 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
643 				    2*asoc->pathmtu, 4380));
644 				trans->ssthresh = asoc->peer.i.a_rwnd;
645 				trans->rto = asoc->rto_initial;
646 				sctp_max_rto(asoc, trans);
647 				trans->rtt = trans->srtt = trans->rttvar = 0;
648 				/* Clear the source and route cache */
649 				sctp_transport_route(trans, NULL,
650 						     sctp_sk(asoc->base.sk));
651 			}
652 		}
653 		retval = sctp_send_asconf(asoc, chunk);
654 	}
655 
656 out:
657 	return retval;
658 }
659 
660 /* Remove a list of addresses from bind addresses list.  Do not remove the
661  * last address.
662  *
663  * Basically run through each address specified in the addrs/addrcnt
664  * array/length pair, determine if it is IPv6 or IPv4 and call
665  * sctp_del_bind() on it.
666  *
667  * If any of them fails, then the operation will be reversed and the
668  * ones that were removed will be added back.
669  *
670  * At least one address has to be left; if only one address is
671  * available, the operation will return -EBUSY.
672  *
673  * Only sctp_setsockopt_bindx() is supposed to call this function.
674  */
675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
676 {
677 	struct sctp_sock *sp = sctp_sk(sk);
678 	struct sctp_endpoint *ep = sp->ep;
679 	int cnt;
680 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
681 	int retval = 0;
682 	void *addr_buf;
683 	union sctp_addr *sa_addr;
684 	struct sctp_af *af;
685 
686 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
687 		 __func__, sk, addrs, addrcnt);
688 
689 	addr_buf = addrs;
690 	for (cnt = 0; cnt < addrcnt; cnt++) {
691 		/* If the bind address list is empty or if there is only one
692 		 * bind address, there is nothing more to be removed (we need
693 		 * at least one address here).
694 		 */
695 		if (list_empty(&bp->address_list) ||
696 		    (sctp_list_single_entry(&bp->address_list))) {
697 			retval = -EBUSY;
698 			goto err_bindx_rem;
699 		}
700 
701 		sa_addr = addr_buf;
702 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
703 		if (!af) {
704 			retval = -EINVAL;
705 			goto err_bindx_rem;
706 		}
707 
708 		if (!af->addr_valid(sa_addr, sp, NULL)) {
709 			retval = -EADDRNOTAVAIL;
710 			goto err_bindx_rem;
711 		}
712 
713 		if (sa_addr->v4.sin_port &&
714 		    sa_addr->v4.sin_port != htons(bp->port)) {
715 			retval = -EINVAL;
716 			goto err_bindx_rem;
717 		}
718 
719 		if (!sa_addr->v4.sin_port)
720 			sa_addr->v4.sin_port = htons(bp->port);
721 
722 		/* FIXME - There is probably a need to check if sk->sk_saddr and
723 		 * sk->sk_rcv_addr are currently set to one of the addresses to
724 		 * be removed. This is something which needs to be looked into
725 		 * when we are fixing the outstanding issues with multi-homing
726 		 * socket routing and failover schemes. Refer to comments in
727 		 * sctp_do_bind(). -daisy
728 		 */
729 		retval = sctp_del_bind_addr(bp, sa_addr);
730 
731 		addr_buf += af->sockaddr_len;
732 err_bindx_rem:
733 		if (retval < 0) {
734 			/* Failed. Add the ones that has been removed back */
735 			if (cnt > 0)
736 				sctp_bindx_add(sk, addrs, cnt);
737 			return retval;
738 		}
739 	}
740 
741 	return retval;
742 }
743 
744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
745  * the associations that are part of the endpoint indicating that a list of
746  * local addresses are removed from the endpoint.
747  *
748  * If any of the addresses is already in the bind address list of the
749  * association, we do not send the chunk for that association.  But it will not
750  * affect other associations.
751  *
752  * Only sctp_setsockopt_bindx() is supposed to call this function.
753  */
754 static int sctp_send_asconf_del_ip(struct sock		*sk,
755 				   struct sockaddr	*addrs,
756 				   int			addrcnt)
757 {
758 	struct sctp_sock	*sp;
759 	struct sctp_endpoint	*ep;
760 	struct sctp_association	*asoc;
761 	struct sctp_transport	*transport;
762 	struct sctp_bind_addr	*bp;
763 	struct sctp_chunk	*chunk;
764 	union sctp_addr		*laddr;
765 	void			*addr_buf;
766 	struct sctp_af		*af;
767 	struct sctp_sockaddr_entry *saddr;
768 	int 			i;
769 	int 			retval = 0;
770 	int			stored = 0;
771 
772 	chunk = NULL;
773 	sp = sctp_sk(sk);
774 	ep = sp->ep;
775 
776 	if (!ep->asconf_enable)
777 		return retval;
778 
779 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
780 		 __func__, sk, addrs, addrcnt);
781 
782 	list_for_each_entry(asoc, &ep->asocs, asocs) {
783 
784 		if (!asoc->peer.asconf_capable)
785 			continue;
786 
787 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
788 			continue;
789 
790 		if (!sctp_state(asoc, ESTABLISHED))
791 			continue;
792 
793 		/* Check if any address in the packed array of addresses is
794 		 * not present in the bind address list of the association.
795 		 * If so, do not send the asconf chunk to its peer, but
796 		 * continue with other associations.
797 		 */
798 		addr_buf = addrs;
799 		for (i = 0; i < addrcnt; i++) {
800 			laddr = addr_buf;
801 			af = sctp_get_af_specific(laddr->v4.sin_family);
802 			if (!af) {
803 				retval = -EINVAL;
804 				goto out;
805 			}
806 
807 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
808 				break;
809 
810 			addr_buf += af->sockaddr_len;
811 		}
812 		if (i < addrcnt)
813 			continue;
814 
815 		/* Find one address in the association's bind address list
816 		 * that is not in the packed array of addresses. This is to
817 		 * make sure that we do not delete all the addresses in the
818 		 * association.
819 		 */
820 		bp = &asoc->base.bind_addr;
821 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
822 					       addrcnt, sp);
823 		if ((laddr == NULL) && (addrcnt == 1)) {
824 			if (asoc->asconf_addr_del_pending)
825 				continue;
826 			asoc->asconf_addr_del_pending =
827 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
828 			if (asoc->asconf_addr_del_pending == NULL) {
829 				retval = -ENOMEM;
830 				goto out;
831 			}
832 			asoc->asconf_addr_del_pending->sa.sa_family =
833 				    addrs->sa_family;
834 			asoc->asconf_addr_del_pending->v4.sin_port =
835 				    htons(bp->port);
836 			if (addrs->sa_family == AF_INET) {
837 				struct sockaddr_in *sin;
838 
839 				sin = (struct sockaddr_in *)addrs;
840 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
841 			} else if (addrs->sa_family == AF_INET6) {
842 				struct sockaddr_in6 *sin6;
843 
844 				sin6 = (struct sockaddr_in6 *)addrs;
845 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
846 			}
847 
848 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
849 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
850 				 asoc->asconf_addr_del_pending);
851 
852 			asoc->src_out_of_asoc_ok = 1;
853 			stored = 1;
854 			goto skip_mkasconf;
855 		}
856 
857 		if (laddr == NULL)
858 			return -EINVAL;
859 
860 		/* We do not need RCU protection throughout this loop
861 		 * because this is done under a socket lock from the
862 		 * setsockopt call.
863 		 */
864 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
865 						   SCTP_PARAM_DEL_IP);
866 		if (!chunk) {
867 			retval = -ENOMEM;
868 			goto out;
869 		}
870 
871 skip_mkasconf:
872 		/* Reset use_as_src flag for the addresses in the bind address
873 		 * list that are to be deleted.
874 		 */
875 		addr_buf = addrs;
876 		for (i = 0; i < addrcnt; i++) {
877 			laddr = addr_buf;
878 			af = sctp_get_af_specific(laddr->v4.sin_family);
879 			list_for_each_entry(saddr, &bp->address_list, list) {
880 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
881 					saddr->state = SCTP_ADDR_DEL;
882 			}
883 			addr_buf += af->sockaddr_len;
884 		}
885 
886 		/* Update the route and saddr entries for all the transports
887 		 * as some of the addresses in the bind address list are
888 		 * about to be deleted and cannot be used as source addresses.
889 		 */
890 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
891 					transports) {
892 			sctp_transport_route(transport, NULL,
893 					     sctp_sk(asoc->base.sk));
894 		}
895 
896 		if (stored)
897 			/* We don't need to transmit ASCONF */
898 			continue;
899 		retval = sctp_send_asconf(asoc, chunk);
900 	}
901 out:
902 	return retval;
903 }
904 
905 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
907 {
908 	struct sock *sk = sctp_opt2sk(sp);
909 	union sctp_addr *addr;
910 	struct sctp_af *af;
911 
912 	/* It is safe to write port space in caller. */
913 	addr = &addrw->a;
914 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
915 	af = sctp_get_af_specific(addr->sa.sa_family);
916 	if (!af)
917 		return -EINVAL;
918 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
919 		return -EINVAL;
920 
921 	if (addrw->state == SCTP_ADDR_NEW)
922 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
923 	else
924 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
925 }
926 
927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
928  *
929  * API 8.1
930  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
931  *                int flags);
932  *
933  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
934  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
935  * or IPv6 addresses.
936  *
937  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
938  * Section 3.1.2 for this usage.
939  *
940  * addrs is a pointer to an array of one or more socket addresses. Each
941  * address is contained in its appropriate structure (i.e. struct
942  * sockaddr_in or struct sockaddr_in6) the family of the address type
943  * must be used to distinguish the address length (note that this
944  * representation is termed a "packed array" of addresses). The caller
945  * specifies the number of addresses in the array with addrcnt.
946  *
947  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
948  * -1, and sets errno to the appropriate error code.
949  *
950  * For SCTP, the port given in each socket address must be the same, or
951  * sctp_bindx() will fail, setting errno to EINVAL.
952  *
953  * The flags parameter is formed from the bitwise OR of zero or more of
954  * the following currently defined flags:
955  *
956  * SCTP_BINDX_ADD_ADDR
957  *
958  * SCTP_BINDX_REM_ADDR
959  *
960  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
961  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
962  * addresses from the association. The two flags are mutually exclusive;
963  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
964  * not remove all addresses from an association; sctp_bindx() will
965  * reject such an attempt with EINVAL.
966  *
967  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
968  * additional addresses with an endpoint after calling bind().  Or use
969  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
970  * socket is associated with so that no new association accepted will be
971  * associated with those addresses. If the endpoint supports dynamic
972  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
973  * endpoint to send the appropriate message to the peer to change the
974  * peers address lists.
975  *
976  * Adding and removing addresses from a connected association is
977  * optional functionality. Implementations that do not support this
978  * functionality should return EOPNOTSUPP.
979  *
980  * Basically do nothing but copying the addresses from user to kernel
981  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
982  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
983  * from userspace.
984  *
985  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
986  * it.
987  *
988  * sk        The sk of the socket
989  * addrs     The pointer to the addresses
990  * addrssize Size of the addrs buffer
991  * op        Operation to perform (add or remove, see the flags of
992  *           sctp_bindx)
993  *
994  * Returns 0 if ok, <0 errno code on error.
995  */
996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
997 				 int addrs_size, int op)
998 {
999 	int err;
1000 	int addrcnt = 0;
1001 	int walk_size = 0;
1002 	struct sockaddr *sa_addr;
1003 	void *addr_buf = addrs;
1004 	struct sctp_af *af;
1005 
1006 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1007 		 __func__, sk, addr_buf, addrs_size, op);
1008 
1009 	if (unlikely(addrs_size <= 0))
1010 		return -EINVAL;
1011 
1012 	/* Walk through the addrs buffer and count the number of addresses. */
1013 	while (walk_size < addrs_size) {
1014 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1015 			return -EINVAL;
1016 
1017 		sa_addr = addr_buf;
1018 		af = sctp_get_af_specific(sa_addr->sa_family);
1019 
1020 		/* If the address family is not supported or if this address
1021 		 * causes the address buffer to overflow return EINVAL.
1022 		 */
1023 		if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1024 			return -EINVAL;
1025 		addrcnt++;
1026 		addr_buf += af->sockaddr_len;
1027 		walk_size += af->sockaddr_len;
1028 	}
1029 
1030 	/* Do the work. */
1031 	switch (op) {
1032 	case SCTP_BINDX_ADD_ADDR:
1033 		/* Allow security module to validate bindx addresses. */
1034 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1035 						 addrs, addrs_size);
1036 		if (err)
1037 			return err;
1038 		err = sctp_bindx_add(sk, addrs, addrcnt);
1039 		if (err)
1040 			return err;
1041 		return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1042 	case SCTP_BINDX_REM_ADDR:
1043 		err = sctp_bindx_rem(sk, addrs, addrcnt);
1044 		if (err)
1045 			return err;
1046 		return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1047 
1048 	default:
1049 		return -EINVAL;
1050 	}
1051 }
1052 
1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1054 		int addrlen)
1055 {
1056 	int err;
1057 
1058 	lock_sock(sk);
1059 	err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1060 	release_sock(sk);
1061 	return err;
1062 }
1063 
1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1065 				 const union sctp_addr *daddr,
1066 				 const struct sctp_initmsg *init,
1067 				 struct sctp_transport **tp)
1068 {
1069 	struct sctp_association *asoc;
1070 	struct sock *sk = ep->base.sk;
1071 	struct net *net = sock_net(sk);
1072 	enum sctp_scope scope;
1073 	int err;
1074 
1075 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1076 		return -EADDRNOTAVAIL;
1077 
1078 	if (!ep->base.bind_addr.port) {
1079 		if (sctp_autobind(sk))
1080 			return -EAGAIN;
1081 	} else {
1082 		if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1083 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1084 			return -EACCES;
1085 	}
1086 
1087 	scope = sctp_scope(daddr);
1088 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1089 	if (!asoc)
1090 		return -ENOMEM;
1091 
1092 	err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1093 	if (err < 0)
1094 		goto free;
1095 
1096 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1097 	if (!*tp) {
1098 		err = -ENOMEM;
1099 		goto free;
1100 	}
1101 
1102 	if (!init)
1103 		return 0;
1104 
1105 	if (init->sinit_num_ostreams) {
1106 		__u16 outcnt = init->sinit_num_ostreams;
1107 
1108 		asoc->c.sinit_num_ostreams = outcnt;
1109 		/* outcnt has been changed, need to re-init stream */
1110 		err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1111 		if (err)
1112 			goto free;
1113 	}
1114 
1115 	if (init->sinit_max_instreams)
1116 		asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1117 
1118 	if (init->sinit_max_attempts)
1119 		asoc->max_init_attempts = init->sinit_max_attempts;
1120 
1121 	if (init->sinit_max_init_timeo)
1122 		asoc->max_init_timeo =
1123 			msecs_to_jiffies(init->sinit_max_init_timeo);
1124 
1125 	return 0;
1126 free:
1127 	sctp_association_free(asoc);
1128 	return err;
1129 }
1130 
1131 static int sctp_connect_add_peer(struct sctp_association *asoc,
1132 				 union sctp_addr *daddr, int addr_len)
1133 {
1134 	struct sctp_endpoint *ep = asoc->ep;
1135 	struct sctp_association *old;
1136 	struct sctp_transport *t;
1137 	int err;
1138 
1139 	err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1140 	if (err)
1141 		return err;
1142 
1143 	old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1144 	if (old && old != asoc)
1145 		return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1146 							    : -EALREADY;
1147 
1148 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1149 		return -EADDRNOTAVAIL;
1150 
1151 	t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1152 	if (!t)
1153 		return -ENOMEM;
1154 
1155 	return 0;
1156 }
1157 
1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1159  *
1160  * Common routine for handling connect() and sctp_connectx().
1161  * Connect will come in with just a single address.
1162  */
1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1164 			  int addrs_size, int flags, sctp_assoc_t *assoc_id)
1165 {
1166 	struct sctp_sock *sp = sctp_sk(sk);
1167 	struct sctp_endpoint *ep = sp->ep;
1168 	struct sctp_transport *transport;
1169 	struct sctp_association *asoc;
1170 	void *addr_buf = kaddrs;
1171 	union sctp_addr *daddr;
1172 	struct sctp_af *af;
1173 	int walk_size, err;
1174 	long timeo;
1175 
1176 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1177 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1178 		return -EISCONN;
1179 
1180 	daddr = addr_buf;
1181 	af = sctp_get_af_specific(daddr->sa.sa_family);
1182 	if (!af || af->sockaddr_len > addrs_size)
1183 		return -EINVAL;
1184 
1185 	err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1186 	if (err)
1187 		return err;
1188 
1189 	asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1190 	if (asoc)
1191 		return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1192 							     : -EALREADY;
1193 
1194 	err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1195 	if (err)
1196 		return err;
1197 	asoc = transport->asoc;
1198 
1199 	addr_buf += af->sockaddr_len;
1200 	walk_size = af->sockaddr_len;
1201 	while (walk_size < addrs_size) {
1202 		err = -EINVAL;
1203 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1204 			goto out_free;
1205 
1206 		daddr = addr_buf;
1207 		af = sctp_get_af_specific(daddr->sa.sa_family);
1208 		if (!af || af->sockaddr_len + walk_size > addrs_size)
1209 			goto out_free;
1210 
1211 		if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1212 			goto out_free;
1213 
1214 		err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1215 		if (err)
1216 			goto out_free;
1217 
1218 		addr_buf  += af->sockaddr_len;
1219 		walk_size += af->sockaddr_len;
1220 	}
1221 
1222 	/* In case the user of sctp_connectx() wants an association
1223 	 * id back, assign one now.
1224 	 */
1225 	if (assoc_id) {
1226 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1227 		if (err < 0)
1228 			goto out_free;
1229 	}
1230 
1231 	err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1232 	if (err < 0)
1233 		goto out_free;
1234 
1235 	/* Initialize sk's dport and daddr for getpeername() */
1236 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1237 	sp->pf->to_sk_daddr(daddr, sk);
1238 	sk->sk_err = 0;
1239 
1240 	if (assoc_id)
1241 		*assoc_id = asoc->assoc_id;
1242 
1243 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1244 	return sctp_wait_for_connect(asoc, &timeo);
1245 
1246 out_free:
1247 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1248 		 __func__, asoc, kaddrs, err);
1249 	sctp_association_free(asoc);
1250 	return err;
1251 }
1252 
1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1254  *
1255  * API 8.9
1256  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1257  * 			sctp_assoc_t *asoc);
1258  *
1259  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1260  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1261  * or IPv6 addresses.
1262  *
1263  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1264  * Section 3.1.2 for this usage.
1265  *
1266  * addrs is a pointer to an array of one or more socket addresses. Each
1267  * address is contained in its appropriate structure (i.e. struct
1268  * sockaddr_in or struct sockaddr_in6) the family of the address type
1269  * must be used to distengish the address length (note that this
1270  * representation is termed a "packed array" of addresses). The caller
1271  * specifies the number of addresses in the array with addrcnt.
1272  *
1273  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1274  * the association id of the new association.  On failure, sctp_connectx()
1275  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1276  * is not touched by the kernel.
1277  *
1278  * For SCTP, the port given in each socket address must be the same, or
1279  * sctp_connectx() will fail, setting errno to EINVAL.
1280  *
1281  * An application can use sctp_connectx to initiate an association with
1282  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1283  * allows a caller to specify multiple addresses at which a peer can be
1284  * reached.  The way the SCTP stack uses the list of addresses to set up
1285  * the association is implementation dependent.  This function only
1286  * specifies that the stack will try to make use of all the addresses in
1287  * the list when needed.
1288  *
1289  * Note that the list of addresses passed in is only used for setting up
1290  * the association.  It does not necessarily equal the set of addresses
1291  * the peer uses for the resulting association.  If the caller wants to
1292  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1293  * retrieve them after the association has been set up.
1294  *
1295  * Basically do nothing but copying the addresses from user to kernel
1296  * land and invoking either sctp_connectx(). This is used for tunneling
1297  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1298  *
1299  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1300  * it.
1301  *
1302  * sk        The sk of the socket
1303  * addrs     The pointer to the addresses
1304  * addrssize Size of the addrs buffer
1305  *
1306  * Returns >=0 if ok, <0 errno code on error.
1307  */
1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1309 				      int addrs_size, sctp_assoc_t *assoc_id)
1310 {
1311 	int err = 0, flags = 0;
1312 
1313 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1314 		 __func__, sk, kaddrs, addrs_size);
1315 
1316 	/* make sure the 1st addr's sa_family is accessible later */
1317 	if (unlikely(addrs_size < sizeof(sa_family_t)))
1318 		return -EINVAL;
1319 
1320 	/* Allow security module to validate connectx addresses. */
1321 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1322 					 (struct sockaddr *)kaddrs,
1323 					  addrs_size);
1324 	if (err)
1325 		return err;
1326 
1327 	/* in-kernel sockets don't generally have a file allocated to them
1328 	 * if all they do is call sock_create_kern().
1329 	 */
1330 	if (sk->sk_socket->file)
1331 		flags = sk->sk_socket->file->f_flags;
1332 
1333 	return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1334 }
1335 
1336 /*
1337  * This is an older interface.  It's kept for backward compatibility
1338  * to the option that doesn't provide association id.
1339  */
1340 static int sctp_setsockopt_connectx_old(struct sock *sk,
1341 					struct sockaddr *kaddrs,
1342 					int addrs_size)
1343 {
1344 	return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1345 }
1346 
1347 /*
1348  * New interface for the API.  The since the API is done with a socket
1349  * option, to make it simple we feed back the association id is as a return
1350  * indication to the call.  Error is always negative and association id is
1351  * always positive.
1352  */
1353 static int sctp_setsockopt_connectx(struct sock *sk,
1354 				    struct sockaddr *kaddrs,
1355 				    int addrs_size)
1356 {
1357 	sctp_assoc_t assoc_id = 0;
1358 	int err = 0;
1359 
1360 	err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1361 
1362 	if (err)
1363 		return err;
1364 	else
1365 		return assoc_id;
1366 }
1367 
1368 /*
1369  * New (hopefully final) interface for the API.
1370  * We use the sctp_getaddrs_old structure so that use-space library
1371  * can avoid any unnecessary allocations. The only different part
1372  * is that we store the actual length of the address buffer into the
1373  * addrs_num structure member. That way we can re-use the existing
1374  * code.
1375  */
1376 #ifdef CONFIG_COMPAT
1377 struct compat_sctp_getaddrs_old {
1378 	sctp_assoc_t	assoc_id;
1379 	s32		addr_num;
1380 	compat_uptr_t	addrs;		/* struct sockaddr * */
1381 };
1382 #endif
1383 
1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1385 				     char __user *optval,
1386 				     int __user *optlen)
1387 {
1388 	struct sctp_getaddrs_old param;
1389 	sctp_assoc_t assoc_id = 0;
1390 	struct sockaddr *kaddrs;
1391 	int err = 0;
1392 
1393 #ifdef CONFIG_COMPAT
1394 	if (in_compat_syscall()) {
1395 		struct compat_sctp_getaddrs_old param32;
1396 
1397 		if (len < sizeof(param32))
1398 			return -EINVAL;
1399 		if (copy_from_user(&param32, optval, sizeof(param32)))
1400 			return -EFAULT;
1401 
1402 		param.assoc_id = param32.assoc_id;
1403 		param.addr_num = param32.addr_num;
1404 		param.addrs = compat_ptr(param32.addrs);
1405 	} else
1406 #endif
1407 	{
1408 		if (len < sizeof(param))
1409 			return -EINVAL;
1410 		if (copy_from_user(&param, optval, sizeof(param)))
1411 			return -EFAULT;
1412 	}
1413 
1414 	kaddrs = memdup_user(param.addrs, param.addr_num);
1415 	if (IS_ERR(kaddrs))
1416 		return PTR_ERR(kaddrs);
1417 
1418 	err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1419 	kfree(kaddrs);
1420 	if (err == 0 || err == -EINPROGRESS) {
1421 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1422 			return -EFAULT;
1423 		if (put_user(sizeof(assoc_id), optlen))
1424 			return -EFAULT;
1425 	}
1426 
1427 	return err;
1428 }
1429 
1430 /* API 3.1.4 close() - UDP Style Syntax
1431  * Applications use close() to perform graceful shutdown (as described in
1432  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1433  * by a UDP-style socket.
1434  *
1435  * The syntax is
1436  *
1437  *   ret = close(int sd);
1438  *
1439  *   sd      - the socket descriptor of the associations to be closed.
1440  *
1441  * To gracefully shutdown a specific association represented by the
1442  * UDP-style socket, an application should use the sendmsg() call,
1443  * passing no user data, but including the appropriate flag in the
1444  * ancillary data (see Section xxxx).
1445  *
1446  * If sd in the close() call is a branched-off socket representing only
1447  * one association, the shutdown is performed on that association only.
1448  *
1449  * 4.1.6 close() - TCP Style Syntax
1450  *
1451  * Applications use close() to gracefully close down an association.
1452  *
1453  * The syntax is:
1454  *
1455  *    int close(int sd);
1456  *
1457  *      sd      - the socket descriptor of the association to be closed.
1458  *
1459  * After an application calls close() on a socket descriptor, no further
1460  * socket operations will succeed on that descriptor.
1461  *
1462  * API 7.1.4 SO_LINGER
1463  *
1464  * An application using the TCP-style socket can use this option to
1465  * perform the SCTP ABORT primitive.  The linger option structure is:
1466  *
1467  *  struct  linger {
1468  *     int     l_onoff;                // option on/off
1469  *     int     l_linger;               // linger time
1470  * };
1471  *
1472  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1473  * to 0, calling close() is the same as the ABORT primitive.  If the
1474  * value is set to a negative value, the setsockopt() call will return
1475  * an error.  If the value is set to a positive value linger_time, the
1476  * close() can be blocked for at most linger_time ms.  If the graceful
1477  * shutdown phase does not finish during this period, close() will
1478  * return but the graceful shutdown phase continues in the system.
1479  */
1480 static void sctp_close(struct sock *sk, long timeout)
1481 {
1482 	struct net *net = sock_net(sk);
1483 	struct sctp_endpoint *ep;
1484 	struct sctp_association *asoc;
1485 	struct list_head *pos, *temp;
1486 	unsigned int data_was_unread;
1487 
1488 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1489 
1490 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1491 	sk->sk_shutdown = SHUTDOWN_MASK;
1492 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1493 
1494 	ep = sctp_sk(sk)->ep;
1495 
1496 	/* Clean up any skbs sitting on the receive queue.  */
1497 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1498 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1499 
1500 	/* Walk all associations on an endpoint.  */
1501 	list_for_each_safe(pos, temp, &ep->asocs) {
1502 		asoc = list_entry(pos, struct sctp_association, asocs);
1503 
1504 		if (sctp_style(sk, TCP)) {
1505 			/* A closed association can still be in the list if
1506 			 * it belongs to a TCP-style listening socket that is
1507 			 * not yet accepted. If so, free it. If not, send an
1508 			 * ABORT or SHUTDOWN based on the linger options.
1509 			 */
1510 			if (sctp_state(asoc, CLOSED)) {
1511 				sctp_association_free(asoc);
1512 				continue;
1513 			}
1514 		}
1515 
1516 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1517 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1518 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1519 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1520 			struct sctp_chunk *chunk;
1521 
1522 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1523 			sctp_primitive_ABORT(net, asoc, chunk);
1524 		} else
1525 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1526 	}
1527 
1528 	/* On a TCP-style socket, block for at most linger_time if set. */
1529 	if (sctp_style(sk, TCP) && timeout)
1530 		sctp_wait_for_close(sk, timeout);
1531 
1532 	/* This will run the backlog queue.  */
1533 	release_sock(sk);
1534 
1535 	/* Supposedly, no process has access to the socket, but
1536 	 * the net layers still may.
1537 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1538 	 * held and that should be grabbed before socket lock.
1539 	 */
1540 	spin_lock_bh(&net->sctp.addr_wq_lock);
1541 	bh_lock_sock_nested(sk);
1542 
1543 	/* Hold the sock, since sk_common_release() will put sock_put()
1544 	 * and we have just a little more cleanup.
1545 	 */
1546 	sock_hold(sk);
1547 	sk_common_release(sk);
1548 
1549 	bh_unlock_sock(sk);
1550 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1551 
1552 	sock_put(sk);
1553 
1554 	SCTP_DBG_OBJCNT_DEC(sock);
1555 }
1556 
1557 /* Handle EPIPE error. */
1558 static int sctp_error(struct sock *sk, int flags, int err)
1559 {
1560 	if (err == -EPIPE)
1561 		err = sock_error(sk) ? : -EPIPE;
1562 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1563 		send_sig(SIGPIPE, current, 0);
1564 	return err;
1565 }
1566 
1567 /* API 3.1.3 sendmsg() - UDP Style Syntax
1568  *
1569  * An application uses sendmsg() and recvmsg() calls to transmit data to
1570  * and receive data from its peer.
1571  *
1572  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1573  *                  int flags);
1574  *
1575  *  socket  - the socket descriptor of the endpoint.
1576  *  message - pointer to the msghdr structure which contains a single
1577  *            user message and possibly some ancillary data.
1578  *
1579  *            See Section 5 for complete description of the data
1580  *            structures.
1581  *
1582  *  flags   - flags sent or received with the user message, see Section
1583  *            5 for complete description of the flags.
1584  *
1585  * Note:  This function could use a rewrite especially when explicit
1586  * connect support comes in.
1587  */
1588 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1589 
1590 static int sctp_msghdr_parse(const struct msghdr *msg,
1591 			     struct sctp_cmsgs *cmsgs);
1592 
1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1594 			      struct sctp_sndrcvinfo *srinfo,
1595 			      const struct msghdr *msg, size_t msg_len)
1596 {
1597 	__u16 sflags;
1598 	int err;
1599 
1600 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1601 		return -EPIPE;
1602 
1603 	if (msg_len > sk->sk_sndbuf)
1604 		return -EMSGSIZE;
1605 
1606 	memset(cmsgs, 0, sizeof(*cmsgs));
1607 	err = sctp_msghdr_parse(msg, cmsgs);
1608 	if (err) {
1609 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1610 		return err;
1611 	}
1612 
1613 	memset(srinfo, 0, sizeof(*srinfo));
1614 	if (cmsgs->srinfo) {
1615 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1616 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1617 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1618 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1619 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1620 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1621 	}
1622 
1623 	if (cmsgs->sinfo) {
1624 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1625 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1626 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1627 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1628 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1629 	}
1630 
1631 	if (cmsgs->prinfo) {
1632 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1633 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1634 				   cmsgs->prinfo->pr_policy);
1635 	}
1636 
1637 	sflags = srinfo->sinfo_flags;
1638 	if (!sflags && msg_len)
1639 		return 0;
1640 
1641 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1642 		return -EINVAL;
1643 
1644 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1645 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1646 		return -EINVAL;
1647 
1648 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1649 		return -EINVAL;
1650 
1651 	return 0;
1652 }
1653 
1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1655 				 struct sctp_cmsgs *cmsgs,
1656 				 union sctp_addr *daddr,
1657 				 struct sctp_transport **tp)
1658 {
1659 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1660 	struct sctp_association *asoc;
1661 	struct cmsghdr *cmsg;
1662 	__be32 flowinfo = 0;
1663 	struct sctp_af *af;
1664 	int err;
1665 
1666 	*tp = NULL;
1667 
1668 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1669 		return -EINVAL;
1670 
1671 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1672 				    sctp_sstate(sk, CLOSING)))
1673 		return -EADDRNOTAVAIL;
1674 
1675 	/* Label connection socket for first association 1-to-many
1676 	 * style for client sequence socket()->sendmsg(). This
1677 	 * needs to be done before sctp_assoc_add_peer() as that will
1678 	 * set up the initial packet that needs to account for any
1679 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1680 	 */
1681 	af = sctp_get_af_specific(daddr->sa.sa_family);
1682 	if (!af)
1683 		return -EINVAL;
1684 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1685 					 (struct sockaddr *)daddr,
1686 					 af->sockaddr_len);
1687 	if (err < 0)
1688 		return err;
1689 
1690 	err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1691 	if (err)
1692 		return err;
1693 	asoc = (*tp)->asoc;
1694 
1695 	if (!cmsgs->addrs_msg)
1696 		return 0;
1697 
1698 	if (daddr->sa.sa_family == AF_INET6)
1699 		flowinfo = daddr->v6.sin6_flowinfo;
1700 
1701 	/* sendv addr list parse */
1702 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1703 		union sctp_addr _daddr;
1704 		int dlen;
1705 
1706 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1707 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1708 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1709 			continue;
1710 
1711 		daddr = &_daddr;
1712 		memset(daddr, 0, sizeof(*daddr));
1713 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1714 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1715 			if (dlen < sizeof(struct in_addr)) {
1716 				err = -EINVAL;
1717 				goto free;
1718 			}
1719 
1720 			dlen = sizeof(struct in_addr);
1721 			daddr->v4.sin_family = AF_INET;
1722 			daddr->v4.sin_port = htons(asoc->peer.port);
1723 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1724 		} else {
1725 			if (dlen < sizeof(struct in6_addr)) {
1726 				err = -EINVAL;
1727 				goto free;
1728 			}
1729 
1730 			dlen = sizeof(struct in6_addr);
1731 			daddr->v6.sin6_flowinfo = flowinfo;
1732 			daddr->v6.sin6_family = AF_INET6;
1733 			daddr->v6.sin6_port = htons(asoc->peer.port);
1734 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1735 		}
1736 
1737 		err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1738 		if (err)
1739 			goto free;
1740 	}
1741 
1742 	return 0;
1743 
1744 free:
1745 	sctp_association_free(asoc);
1746 	return err;
1747 }
1748 
1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1750 				     __u16 sflags, struct msghdr *msg,
1751 				     size_t msg_len)
1752 {
1753 	struct sock *sk = asoc->base.sk;
1754 	struct net *net = sock_net(sk);
1755 
1756 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1757 		return -EPIPE;
1758 
1759 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1760 	    !sctp_state(asoc, ESTABLISHED))
1761 		return 0;
1762 
1763 	if (sflags & SCTP_EOF) {
1764 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1765 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1766 
1767 		return 0;
1768 	}
1769 
1770 	if (sflags & SCTP_ABORT) {
1771 		struct sctp_chunk *chunk;
1772 
1773 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1774 		if (!chunk)
1775 			return -ENOMEM;
1776 
1777 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1778 		sctp_primitive_ABORT(net, asoc, chunk);
1779 		iov_iter_revert(&msg->msg_iter, msg_len);
1780 
1781 		return 0;
1782 	}
1783 
1784 	return 1;
1785 }
1786 
1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1788 				struct msghdr *msg, size_t msg_len,
1789 				struct sctp_transport *transport,
1790 				struct sctp_sndrcvinfo *sinfo)
1791 {
1792 	struct sock *sk = asoc->base.sk;
1793 	struct sctp_sock *sp = sctp_sk(sk);
1794 	struct net *net = sock_net(sk);
1795 	struct sctp_datamsg *datamsg;
1796 	bool wait_connect = false;
1797 	struct sctp_chunk *chunk;
1798 	long timeo;
1799 	int err;
1800 
1801 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1802 		err = -EINVAL;
1803 		goto err;
1804 	}
1805 
1806 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1807 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1808 		if (err)
1809 			goto err;
1810 	}
1811 
1812 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1813 		err = -EMSGSIZE;
1814 		goto err;
1815 	}
1816 
1817 	if (asoc->pmtu_pending) {
1818 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1819 			sctp_assoc_sync_pmtu(asoc);
1820 		asoc->pmtu_pending = 0;
1821 	}
1822 
1823 	if (sctp_wspace(asoc) < (int)msg_len)
1824 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1825 
1826 	if (sk_under_memory_pressure(sk))
1827 		sk_mem_reclaim(sk);
1828 
1829 	if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1830 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1831 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1832 		if (err)
1833 			goto err;
1834 	}
1835 
1836 	if (sctp_state(asoc, CLOSED)) {
1837 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1838 		if (err)
1839 			goto err;
1840 
1841 		if (asoc->ep->intl_enable) {
1842 			timeo = sock_sndtimeo(sk, 0);
1843 			err = sctp_wait_for_connect(asoc, &timeo);
1844 			if (err) {
1845 				err = -ESRCH;
1846 				goto err;
1847 			}
1848 		} else {
1849 			wait_connect = true;
1850 		}
1851 
1852 		pr_debug("%s: we associated primitively\n", __func__);
1853 	}
1854 
1855 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1856 	if (IS_ERR(datamsg)) {
1857 		err = PTR_ERR(datamsg);
1858 		goto err;
1859 	}
1860 
1861 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1862 
1863 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1864 		sctp_chunk_hold(chunk);
1865 		sctp_set_owner_w(chunk);
1866 		chunk->transport = transport;
1867 	}
1868 
1869 	err = sctp_primitive_SEND(net, asoc, datamsg);
1870 	if (err) {
1871 		sctp_datamsg_free(datamsg);
1872 		goto err;
1873 	}
1874 
1875 	pr_debug("%s: we sent primitively\n", __func__);
1876 
1877 	sctp_datamsg_put(datamsg);
1878 
1879 	if (unlikely(wait_connect)) {
1880 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1881 		sctp_wait_for_connect(asoc, &timeo);
1882 	}
1883 
1884 	err = msg_len;
1885 
1886 err:
1887 	return err;
1888 }
1889 
1890 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1891 					       const struct msghdr *msg,
1892 					       struct sctp_cmsgs *cmsgs)
1893 {
1894 	union sctp_addr *daddr = NULL;
1895 	int err;
1896 
1897 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1898 		int len = msg->msg_namelen;
1899 
1900 		if (len > sizeof(*daddr))
1901 			len = sizeof(*daddr);
1902 
1903 		daddr = (union sctp_addr *)msg->msg_name;
1904 
1905 		err = sctp_verify_addr(sk, daddr, len);
1906 		if (err)
1907 			return ERR_PTR(err);
1908 	}
1909 
1910 	return daddr;
1911 }
1912 
1913 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1914 				      struct sctp_sndrcvinfo *sinfo,
1915 				      struct sctp_cmsgs *cmsgs)
1916 {
1917 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
1918 		sinfo->sinfo_stream = asoc->default_stream;
1919 		sinfo->sinfo_ppid = asoc->default_ppid;
1920 		sinfo->sinfo_context = asoc->default_context;
1921 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1922 
1923 		if (!cmsgs->prinfo)
1924 			sinfo->sinfo_flags = asoc->default_flags;
1925 	}
1926 
1927 	if (!cmsgs->srinfo && !cmsgs->prinfo)
1928 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1929 
1930 	if (cmsgs->authinfo) {
1931 		/* Reuse sinfo_tsn to indicate that authinfo was set and
1932 		 * sinfo_ssn to save the keyid on tx path.
1933 		 */
1934 		sinfo->sinfo_tsn = 1;
1935 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1936 	}
1937 }
1938 
1939 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1940 {
1941 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1942 	struct sctp_transport *transport = NULL;
1943 	struct sctp_sndrcvinfo _sinfo, *sinfo;
1944 	struct sctp_association *asoc, *tmp;
1945 	struct sctp_cmsgs cmsgs;
1946 	union sctp_addr *daddr;
1947 	bool new = false;
1948 	__u16 sflags;
1949 	int err;
1950 
1951 	/* Parse and get snd_info */
1952 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1953 	if (err)
1954 		goto out;
1955 
1956 	sinfo  = &_sinfo;
1957 	sflags = sinfo->sinfo_flags;
1958 
1959 	/* Get daddr from msg */
1960 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1961 	if (IS_ERR(daddr)) {
1962 		err = PTR_ERR(daddr);
1963 		goto out;
1964 	}
1965 
1966 	lock_sock(sk);
1967 
1968 	/* SCTP_SENDALL process */
1969 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1970 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1971 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1972 							msg_len);
1973 			if (err == 0)
1974 				continue;
1975 			if (err < 0)
1976 				goto out_unlock;
1977 
1978 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1979 
1980 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1981 						   NULL, sinfo);
1982 			if (err < 0)
1983 				goto out_unlock;
1984 
1985 			iov_iter_revert(&msg->msg_iter, err);
1986 		}
1987 
1988 		goto out_unlock;
1989 	}
1990 
1991 	/* Get and check or create asoc */
1992 	if (daddr) {
1993 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1994 		if (asoc) {
1995 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1996 							msg_len);
1997 			if (err <= 0)
1998 				goto out_unlock;
1999 		} else {
2000 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2001 						    &transport);
2002 			if (err)
2003 				goto out_unlock;
2004 
2005 			asoc = transport->asoc;
2006 			new = true;
2007 		}
2008 
2009 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2010 			transport = NULL;
2011 	} else {
2012 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2013 		if (!asoc) {
2014 			err = -EPIPE;
2015 			goto out_unlock;
2016 		}
2017 
2018 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2019 		if (err <= 0)
2020 			goto out_unlock;
2021 	}
2022 
2023 	/* Update snd_info with the asoc */
2024 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2025 
2026 	/* Send msg to the asoc */
2027 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2028 	if (err < 0 && err != -ESRCH && new)
2029 		sctp_association_free(asoc);
2030 
2031 out_unlock:
2032 	release_sock(sk);
2033 out:
2034 	return sctp_error(sk, msg->msg_flags, err);
2035 }
2036 
2037 /* This is an extended version of skb_pull() that removes the data from the
2038  * start of a skb even when data is spread across the list of skb's in the
2039  * frag_list. len specifies the total amount of data that needs to be removed.
2040  * when 'len' bytes could be removed from the skb, it returns 0.
2041  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2042  * could not be removed.
2043  */
2044 static int sctp_skb_pull(struct sk_buff *skb, int len)
2045 {
2046 	struct sk_buff *list;
2047 	int skb_len = skb_headlen(skb);
2048 	int rlen;
2049 
2050 	if (len <= skb_len) {
2051 		__skb_pull(skb, len);
2052 		return 0;
2053 	}
2054 	len -= skb_len;
2055 	__skb_pull(skb, skb_len);
2056 
2057 	skb_walk_frags(skb, list) {
2058 		rlen = sctp_skb_pull(list, len);
2059 		skb->len -= (len-rlen);
2060 		skb->data_len -= (len-rlen);
2061 
2062 		if (!rlen)
2063 			return 0;
2064 
2065 		len = rlen;
2066 	}
2067 
2068 	return len;
2069 }
2070 
2071 /* API 3.1.3  recvmsg() - UDP Style Syntax
2072  *
2073  *  ssize_t recvmsg(int socket, struct msghdr *message,
2074  *                    int flags);
2075  *
2076  *  socket  - the socket descriptor of the endpoint.
2077  *  message - pointer to the msghdr structure which contains a single
2078  *            user message and possibly some ancillary data.
2079  *
2080  *            See Section 5 for complete description of the data
2081  *            structures.
2082  *
2083  *  flags   - flags sent or received with the user message, see Section
2084  *            5 for complete description of the flags.
2085  */
2086 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2087 			int flags, int *addr_len)
2088 {
2089 	struct sctp_ulpevent *event = NULL;
2090 	struct sctp_sock *sp = sctp_sk(sk);
2091 	struct sk_buff *skb, *head_skb;
2092 	int copied;
2093 	int err = 0;
2094 	int skb_len;
2095 
2096 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n",
2097 		 __func__, sk, msg, len, flags, addr_len);
2098 
2099 	lock_sock(sk);
2100 
2101 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2102 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2103 		err = -ENOTCONN;
2104 		goto out;
2105 	}
2106 
2107 	skb = sctp_skb_recv_datagram(sk, flags, &err);
2108 	if (!skb)
2109 		goto out;
2110 
2111 	/* Get the total length of the skb including any skb's in the
2112 	 * frag_list.
2113 	 */
2114 	skb_len = skb->len;
2115 
2116 	copied = skb_len;
2117 	if (copied > len)
2118 		copied = len;
2119 
2120 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2121 
2122 	event = sctp_skb2event(skb);
2123 
2124 	if (err)
2125 		goto out_free;
2126 
2127 	if (event->chunk && event->chunk->head_skb)
2128 		head_skb = event->chunk->head_skb;
2129 	else
2130 		head_skb = skb;
2131 	sock_recv_cmsgs(msg, sk, head_skb);
2132 	if (sctp_ulpevent_is_notification(event)) {
2133 		msg->msg_flags |= MSG_NOTIFICATION;
2134 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2135 	} else {
2136 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2137 	}
2138 
2139 	/* Check if we allow SCTP_NXTINFO. */
2140 	if (sp->recvnxtinfo)
2141 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2142 	/* Check if we allow SCTP_RCVINFO. */
2143 	if (sp->recvrcvinfo)
2144 		sctp_ulpevent_read_rcvinfo(event, msg);
2145 	/* Check if we allow SCTP_SNDRCVINFO. */
2146 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2147 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2148 
2149 	err = copied;
2150 
2151 	/* If skb's length exceeds the user's buffer, update the skb and
2152 	 * push it back to the receive_queue so that the next call to
2153 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2154 	 */
2155 	if (skb_len > copied) {
2156 		msg->msg_flags &= ~MSG_EOR;
2157 		if (flags & MSG_PEEK)
2158 			goto out_free;
2159 		sctp_skb_pull(skb, copied);
2160 		skb_queue_head(&sk->sk_receive_queue, skb);
2161 
2162 		/* When only partial message is copied to the user, increase
2163 		 * rwnd by that amount. If all the data in the skb is read,
2164 		 * rwnd is updated when the event is freed.
2165 		 */
2166 		if (!sctp_ulpevent_is_notification(event))
2167 			sctp_assoc_rwnd_increase(event->asoc, copied);
2168 		goto out;
2169 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2170 		   (event->msg_flags & MSG_EOR))
2171 		msg->msg_flags |= MSG_EOR;
2172 	else
2173 		msg->msg_flags &= ~MSG_EOR;
2174 
2175 out_free:
2176 	if (flags & MSG_PEEK) {
2177 		/* Release the skb reference acquired after peeking the skb in
2178 		 * sctp_skb_recv_datagram().
2179 		 */
2180 		kfree_skb(skb);
2181 	} else {
2182 		/* Free the event which includes releasing the reference to
2183 		 * the owner of the skb, freeing the skb and updating the
2184 		 * rwnd.
2185 		 */
2186 		sctp_ulpevent_free(event);
2187 	}
2188 out:
2189 	release_sock(sk);
2190 	return err;
2191 }
2192 
2193 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2194  *
2195  * This option is a on/off flag.  If enabled no SCTP message
2196  * fragmentation will be performed.  Instead if a message being sent
2197  * exceeds the current PMTU size, the message will NOT be sent and
2198  * instead a error will be indicated to the user.
2199  */
2200 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2201 					     unsigned int optlen)
2202 {
2203 	if (optlen < sizeof(int))
2204 		return -EINVAL;
2205 	sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2206 	return 0;
2207 }
2208 
2209 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2210 				  unsigned int optlen)
2211 {
2212 	struct sctp_sock *sp = sctp_sk(sk);
2213 	struct sctp_association *asoc;
2214 	int i;
2215 
2216 	if (optlen > sizeof(struct sctp_event_subscribe))
2217 		return -EINVAL;
2218 
2219 	for (i = 0; i < optlen; i++)
2220 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2221 				       sn_type[i]);
2222 
2223 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2224 		asoc->subscribe = sctp_sk(sk)->subscribe;
2225 
2226 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2227 	 * if there is no data to be sent or retransmit, the stack will
2228 	 * immediately send up this notification.
2229 	 */
2230 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2231 		struct sctp_ulpevent *event;
2232 
2233 		asoc = sctp_id2assoc(sk, 0);
2234 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2235 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2236 					GFP_USER | __GFP_NOWARN);
2237 			if (!event)
2238 				return -ENOMEM;
2239 
2240 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2241 		}
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2248  *
2249  * This socket option is applicable to the UDP-style socket only.  When
2250  * set it will cause associations that are idle for more than the
2251  * specified number of seconds to automatically close.  An association
2252  * being idle is defined an association that has NOT sent or received
2253  * user data.  The special value of '0' indicates that no automatic
2254  * close of any associations should be performed.  The option expects an
2255  * integer defining the number of seconds of idle time before an
2256  * association is closed.
2257  */
2258 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2259 				     unsigned int optlen)
2260 {
2261 	struct sctp_sock *sp = sctp_sk(sk);
2262 	struct net *net = sock_net(sk);
2263 
2264 	/* Applicable to UDP-style socket only */
2265 	if (sctp_style(sk, TCP))
2266 		return -EOPNOTSUPP;
2267 	if (optlen != sizeof(int))
2268 		return -EINVAL;
2269 
2270 	sp->autoclose = *optval;
2271 	if (sp->autoclose > net->sctp.max_autoclose)
2272 		sp->autoclose = net->sctp.max_autoclose;
2273 
2274 	return 0;
2275 }
2276 
2277 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2278  *
2279  * Applications can enable or disable heartbeats for any peer address of
2280  * an association, modify an address's heartbeat interval, force a
2281  * heartbeat to be sent immediately, and adjust the address's maximum
2282  * number of retransmissions sent before an address is considered
2283  * unreachable.  The following structure is used to access and modify an
2284  * address's parameters:
2285  *
2286  *  struct sctp_paddrparams {
2287  *     sctp_assoc_t            spp_assoc_id;
2288  *     struct sockaddr_storage spp_address;
2289  *     uint32_t                spp_hbinterval;
2290  *     uint16_t                spp_pathmaxrxt;
2291  *     uint32_t                spp_pathmtu;
2292  *     uint32_t                spp_sackdelay;
2293  *     uint32_t                spp_flags;
2294  *     uint32_t                spp_ipv6_flowlabel;
2295  *     uint8_t                 spp_dscp;
2296  * };
2297  *
2298  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2299  *                     application, and identifies the association for
2300  *                     this query.
2301  *   spp_address     - This specifies which address is of interest.
2302  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2303  *                     in milliseconds.  If a  value of zero
2304  *                     is present in this field then no changes are to
2305  *                     be made to this parameter.
2306  *   spp_pathmaxrxt  - This contains the maximum number of
2307  *                     retransmissions before this address shall be
2308  *                     considered unreachable. If a  value of zero
2309  *                     is present in this field then no changes are to
2310  *                     be made to this parameter.
2311  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2312  *                     specified here will be the "fixed" path mtu.
2313  *                     Note that if the spp_address field is empty
2314  *                     then all associations on this address will
2315  *                     have this fixed path mtu set upon them.
2316  *
2317  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2318  *                     the number of milliseconds that sacks will be delayed
2319  *                     for. This value will apply to all addresses of an
2320  *                     association if the spp_address field is empty. Note
2321  *                     also, that if delayed sack is enabled and this
2322  *                     value is set to 0, no change is made to the last
2323  *                     recorded delayed sack timer value.
2324  *
2325  *   spp_flags       - These flags are used to control various features
2326  *                     on an association. The flag field may contain
2327  *                     zero or more of the following options.
2328  *
2329  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2330  *                     specified address. Note that if the address
2331  *                     field is empty all addresses for the association
2332  *                     have heartbeats enabled upon them.
2333  *
2334  *                     SPP_HB_DISABLE - Disable heartbeats on the
2335  *                     speicifed address. Note that if the address
2336  *                     field is empty all addresses for the association
2337  *                     will have their heartbeats disabled. Note also
2338  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2339  *                     mutually exclusive, only one of these two should
2340  *                     be specified. Enabling both fields will have
2341  *                     undetermined results.
2342  *
2343  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2344  *                     to be made immediately.
2345  *
2346  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2347  *                     heartbeat delayis to be set to the value of 0
2348  *                     milliseconds.
2349  *
2350  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2351  *                     discovery upon the specified address. Note that
2352  *                     if the address feild is empty then all addresses
2353  *                     on the association are effected.
2354  *
2355  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2356  *                     discovery upon the specified address. Note that
2357  *                     if the address feild is empty then all addresses
2358  *                     on the association are effected. Not also that
2359  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2360  *                     exclusive. Enabling both will have undetermined
2361  *                     results.
2362  *
2363  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2364  *                     on delayed sack. The time specified in spp_sackdelay
2365  *                     is used to specify the sack delay for this address. Note
2366  *                     that if spp_address is empty then all addresses will
2367  *                     enable delayed sack and take on the sack delay
2368  *                     value specified in spp_sackdelay.
2369  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2370  *                     off delayed sack. If the spp_address field is blank then
2371  *                     delayed sack is disabled for the entire association. Note
2372  *                     also that this field is mutually exclusive to
2373  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2374  *                     results.
2375  *
2376  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2377  *                     setting of the IPV6 flow label value.  The value is
2378  *                     contained in the spp_ipv6_flowlabel field.
2379  *                     Upon retrieval, this flag will be set to indicate that
2380  *                     the spp_ipv6_flowlabel field has a valid value returned.
2381  *                     If a specific destination address is set (in the
2382  *                     spp_address field), then the value returned is that of
2383  *                     the address.  If just an association is specified (and
2384  *                     no address), then the association's default flow label
2385  *                     is returned.  If neither an association nor a destination
2386  *                     is specified, then the socket's default flow label is
2387  *                     returned.  For non-IPv6 sockets, this flag will be left
2388  *                     cleared.
2389  *
2390  *                     SPP_DSCP:  Setting this flag enables the setting of the
2391  *                     Differentiated Services Code Point (DSCP) value
2392  *                     associated with either the association or a specific
2393  *                     address.  The value is obtained in the spp_dscp field.
2394  *                     Upon retrieval, this flag will be set to indicate that
2395  *                     the spp_dscp field has a valid value returned.  If a
2396  *                     specific destination address is set when called (in the
2397  *                     spp_address field), then that specific destination
2398  *                     address's DSCP value is returned.  If just an association
2399  *                     is specified, then the association's default DSCP is
2400  *                     returned.  If neither an association nor a destination is
2401  *                     specified, then the socket's default DSCP is returned.
2402  *
2403  *   spp_ipv6_flowlabel
2404  *                   - This field is used in conjunction with the
2405  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2406  *                     The 20 least significant bits are used for the flow
2407  *                     label.  This setting has precedence over any IPv6-layer
2408  *                     setting.
2409  *
2410  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2411  *                     and contains the DSCP.  The 6 most significant bits are
2412  *                     used for the DSCP.  This setting has precedence over any
2413  *                     IPv4- or IPv6- layer setting.
2414  */
2415 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2416 				       struct sctp_transport   *trans,
2417 				       struct sctp_association *asoc,
2418 				       struct sctp_sock        *sp,
2419 				       int                      hb_change,
2420 				       int                      pmtud_change,
2421 				       int                      sackdelay_change)
2422 {
2423 	int error;
2424 
2425 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2426 		error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2427 							trans->asoc, trans);
2428 		if (error)
2429 			return error;
2430 	}
2431 
2432 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2433 	 * this field is ignored.  Note also that a value of zero indicates
2434 	 * the current setting should be left unchanged.
2435 	 */
2436 	if (params->spp_flags & SPP_HB_ENABLE) {
2437 
2438 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2439 		 * set.  This lets us use 0 value when this flag
2440 		 * is set.
2441 		 */
2442 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2443 			params->spp_hbinterval = 0;
2444 
2445 		if (params->spp_hbinterval ||
2446 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2447 			if (trans) {
2448 				trans->hbinterval =
2449 				    msecs_to_jiffies(params->spp_hbinterval);
2450 			} else if (asoc) {
2451 				asoc->hbinterval =
2452 				    msecs_to_jiffies(params->spp_hbinterval);
2453 			} else {
2454 				sp->hbinterval = params->spp_hbinterval;
2455 			}
2456 		}
2457 	}
2458 
2459 	if (hb_change) {
2460 		if (trans) {
2461 			trans->param_flags =
2462 				(trans->param_flags & ~SPP_HB) | hb_change;
2463 		} else if (asoc) {
2464 			asoc->param_flags =
2465 				(asoc->param_flags & ~SPP_HB) | hb_change;
2466 		} else {
2467 			sp->param_flags =
2468 				(sp->param_flags & ~SPP_HB) | hb_change;
2469 		}
2470 	}
2471 
2472 	/* When Path MTU discovery is disabled the value specified here will
2473 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2474 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2475 	 * effect).
2476 	 */
2477 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2478 		if (trans) {
2479 			trans->pathmtu = params->spp_pathmtu;
2480 			sctp_assoc_sync_pmtu(asoc);
2481 		} else if (asoc) {
2482 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2483 		} else {
2484 			sp->pathmtu = params->spp_pathmtu;
2485 		}
2486 	}
2487 
2488 	if (pmtud_change) {
2489 		if (trans) {
2490 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2491 				(params->spp_flags & SPP_PMTUD_ENABLE);
2492 			trans->param_flags =
2493 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2494 			if (update) {
2495 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2496 				sctp_assoc_sync_pmtu(asoc);
2497 			}
2498 			sctp_transport_pl_reset(trans);
2499 		} else if (asoc) {
2500 			asoc->param_flags =
2501 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2502 		} else {
2503 			sp->param_flags =
2504 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2505 		}
2506 	}
2507 
2508 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2509 	 * value of this field is ignored.  Note also that a value of zero
2510 	 * indicates the current setting should be left unchanged.
2511 	 */
2512 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2513 		if (trans) {
2514 			trans->sackdelay =
2515 				msecs_to_jiffies(params->spp_sackdelay);
2516 		} else if (asoc) {
2517 			asoc->sackdelay =
2518 				msecs_to_jiffies(params->spp_sackdelay);
2519 		} else {
2520 			sp->sackdelay = params->spp_sackdelay;
2521 		}
2522 	}
2523 
2524 	if (sackdelay_change) {
2525 		if (trans) {
2526 			trans->param_flags =
2527 				(trans->param_flags & ~SPP_SACKDELAY) |
2528 				sackdelay_change;
2529 		} else if (asoc) {
2530 			asoc->param_flags =
2531 				(asoc->param_flags & ~SPP_SACKDELAY) |
2532 				sackdelay_change;
2533 		} else {
2534 			sp->param_flags =
2535 				(sp->param_flags & ~SPP_SACKDELAY) |
2536 				sackdelay_change;
2537 		}
2538 	}
2539 
2540 	/* Note that a value of zero indicates the current setting should be
2541 	   left unchanged.
2542 	 */
2543 	if (params->spp_pathmaxrxt) {
2544 		if (trans) {
2545 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2546 		} else if (asoc) {
2547 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2548 		} else {
2549 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2550 		}
2551 	}
2552 
2553 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2554 		if (trans) {
2555 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2556 				trans->flowlabel = params->spp_ipv6_flowlabel &
2557 						   SCTP_FLOWLABEL_VAL_MASK;
2558 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2559 			}
2560 		} else if (asoc) {
2561 			struct sctp_transport *t;
2562 
2563 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2564 					    transports) {
2565 				if (t->ipaddr.sa.sa_family != AF_INET6)
2566 					continue;
2567 				t->flowlabel = params->spp_ipv6_flowlabel &
2568 					       SCTP_FLOWLABEL_VAL_MASK;
2569 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2570 			}
2571 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2572 					  SCTP_FLOWLABEL_VAL_MASK;
2573 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2574 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2575 			sp->flowlabel = params->spp_ipv6_flowlabel &
2576 					SCTP_FLOWLABEL_VAL_MASK;
2577 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2578 		}
2579 	}
2580 
2581 	if (params->spp_flags & SPP_DSCP) {
2582 		if (trans) {
2583 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2584 			trans->dscp |= SCTP_DSCP_SET_MASK;
2585 		} else if (asoc) {
2586 			struct sctp_transport *t;
2587 
2588 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2589 					    transports) {
2590 				t->dscp = params->spp_dscp &
2591 					  SCTP_DSCP_VAL_MASK;
2592 				t->dscp |= SCTP_DSCP_SET_MASK;
2593 			}
2594 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2595 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2596 		} else {
2597 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2598 			sp->dscp |= SCTP_DSCP_SET_MASK;
2599 		}
2600 	}
2601 
2602 	return 0;
2603 }
2604 
2605 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2606 					    struct sctp_paddrparams *params,
2607 					    unsigned int optlen)
2608 {
2609 	struct sctp_transport   *trans = NULL;
2610 	struct sctp_association *asoc = NULL;
2611 	struct sctp_sock        *sp = sctp_sk(sk);
2612 	int error;
2613 	int hb_change, pmtud_change, sackdelay_change;
2614 
2615 	if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2616 					    spp_ipv6_flowlabel), 4)) {
2617 		if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2618 			return -EINVAL;
2619 	} else if (optlen != sizeof(*params)) {
2620 		return -EINVAL;
2621 	}
2622 
2623 	/* Validate flags and value parameters. */
2624 	hb_change        = params->spp_flags & SPP_HB;
2625 	pmtud_change     = params->spp_flags & SPP_PMTUD;
2626 	sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2627 
2628 	if (hb_change        == SPP_HB ||
2629 	    pmtud_change     == SPP_PMTUD ||
2630 	    sackdelay_change == SPP_SACKDELAY ||
2631 	    params->spp_sackdelay > 500 ||
2632 	    (params->spp_pathmtu &&
2633 	     params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2634 		return -EINVAL;
2635 
2636 	/* If an address other than INADDR_ANY is specified, and
2637 	 * no transport is found, then the request is invalid.
2638 	 */
2639 	if (!sctp_is_any(sk, (union sctp_addr *)&params->spp_address)) {
2640 		trans = sctp_addr_id2transport(sk, &params->spp_address,
2641 					       params->spp_assoc_id);
2642 		if (!trans)
2643 			return -EINVAL;
2644 	}
2645 
2646 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2647 	 * socket is a one to many style socket, and an association
2648 	 * was not found, then the id was invalid.
2649 	 */
2650 	asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2651 	if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2652 	    sctp_style(sk, UDP))
2653 		return -EINVAL;
2654 
2655 	/* Heartbeat demand can only be sent on a transport or
2656 	 * association, but not a socket.
2657 	 */
2658 	if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2659 		return -EINVAL;
2660 
2661 	/* Process parameters. */
2662 	error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2663 					    hb_change, pmtud_change,
2664 					    sackdelay_change);
2665 
2666 	if (error)
2667 		return error;
2668 
2669 	/* If changes are for association, also apply parameters to each
2670 	 * transport.
2671 	 */
2672 	if (!trans && asoc) {
2673 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2674 				transports) {
2675 			sctp_apply_peer_addr_params(params, trans, asoc, sp,
2676 						    hb_change, pmtud_change,
2677 						    sackdelay_change);
2678 		}
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2685 {
2686 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2687 }
2688 
2689 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2690 {
2691 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2692 }
2693 
2694 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2695 					struct sctp_association *asoc)
2696 {
2697 	struct sctp_transport *trans;
2698 
2699 	if (params->sack_delay) {
2700 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2701 		asoc->param_flags =
2702 			sctp_spp_sackdelay_enable(asoc->param_flags);
2703 	}
2704 	if (params->sack_freq == 1) {
2705 		asoc->param_flags =
2706 			sctp_spp_sackdelay_disable(asoc->param_flags);
2707 	} else if (params->sack_freq > 1) {
2708 		asoc->sackfreq = params->sack_freq;
2709 		asoc->param_flags =
2710 			sctp_spp_sackdelay_enable(asoc->param_flags);
2711 	}
2712 
2713 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2714 			    transports) {
2715 		if (params->sack_delay) {
2716 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2717 			trans->param_flags =
2718 				sctp_spp_sackdelay_enable(trans->param_flags);
2719 		}
2720 		if (params->sack_freq == 1) {
2721 			trans->param_flags =
2722 				sctp_spp_sackdelay_disable(trans->param_flags);
2723 		} else if (params->sack_freq > 1) {
2724 			trans->sackfreq = params->sack_freq;
2725 			trans->param_flags =
2726 				sctp_spp_sackdelay_enable(trans->param_flags);
2727 		}
2728 	}
2729 }
2730 
2731 /*
2732  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2733  *
2734  * This option will effect the way delayed acks are performed.  This
2735  * option allows you to get or set the delayed ack time, in
2736  * milliseconds.  It also allows changing the delayed ack frequency.
2737  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2738  * the assoc_id is 0, then this sets or gets the endpoints default
2739  * values.  If the assoc_id field is non-zero, then the set or get
2740  * effects the specified association for the one to many model (the
2741  * assoc_id field is ignored by the one to one model).  Note that if
2742  * sack_delay or sack_freq are 0 when setting this option, then the
2743  * current values will remain unchanged.
2744  *
2745  * struct sctp_sack_info {
2746  *     sctp_assoc_t            sack_assoc_id;
2747  *     uint32_t                sack_delay;
2748  *     uint32_t                sack_freq;
2749  * };
2750  *
2751  * sack_assoc_id -  This parameter, indicates which association the user
2752  *    is performing an action upon.  Note that if this field's value is
2753  *    zero then the endpoints default value is changed (effecting future
2754  *    associations only).
2755  *
2756  * sack_delay -  This parameter contains the number of milliseconds that
2757  *    the user is requesting the delayed ACK timer be set to.  Note that
2758  *    this value is defined in the standard to be between 200 and 500
2759  *    milliseconds.
2760  *
2761  * sack_freq -  This parameter contains the number of packets that must
2762  *    be received before a sack is sent without waiting for the delay
2763  *    timer to expire.  The default value for this is 2, setting this
2764  *    value to 1 will disable the delayed sack algorithm.
2765  */
2766 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2767 					 struct sctp_sack_info *params)
2768 {
2769 	struct sctp_sock *sp = sctp_sk(sk);
2770 	struct sctp_association *asoc;
2771 
2772 	/* Validate value parameter. */
2773 	if (params->sack_delay > 500)
2774 		return -EINVAL;
2775 
2776 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2777 	 * socket is a one to many style socket, and an association
2778 	 * was not found, then the id was invalid.
2779 	 */
2780 	asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2781 	if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2782 	    sctp_style(sk, UDP))
2783 		return -EINVAL;
2784 
2785 	if (asoc) {
2786 		sctp_apply_asoc_delayed_ack(params, asoc);
2787 
2788 		return 0;
2789 	}
2790 
2791 	if (sctp_style(sk, TCP))
2792 		params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2793 
2794 	if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2795 	    params->sack_assoc_id == SCTP_ALL_ASSOC) {
2796 		if (params->sack_delay) {
2797 			sp->sackdelay = params->sack_delay;
2798 			sp->param_flags =
2799 				sctp_spp_sackdelay_enable(sp->param_flags);
2800 		}
2801 		if (params->sack_freq == 1) {
2802 			sp->param_flags =
2803 				sctp_spp_sackdelay_disable(sp->param_flags);
2804 		} else if (params->sack_freq > 1) {
2805 			sp->sackfreq = params->sack_freq;
2806 			sp->param_flags =
2807 				sctp_spp_sackdelay_enable(sp->param_flags);
2808 		}
2809 	}
2810 
2811 	if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2812 	    params->sack_assoc_id == SCTP_ALL_ASSOC)
2813 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2814 			sctp_apply_asoc_delayed_ack(params, asoc);
2815 
2816 	return 0;
2817 }
2818 
2819 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2820 				       struct sctp_sack_info *params,
2821 				       unsigned int optlen)
2822 {
2823 	if (optlen == sizeof(struct sctp_assoc_value)) {
2824 		struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2825 		struct sctp_sack_info p;
2826 
2827 		pr_warn_ratelimited(DEPRECATED
2828 				    "%s (pid %d) "
2829 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2830 				    "Use struct sctp_sack_info instead\n",
2831 				    current->comm, task_pid_nr(current));
2832 
2833 		p.sack_assoc_id = v->assoc_id;
2834 		p.sack_delay = v->assoc_value;
2835 		p.sack_freq = v->assoc_value ? 0 : 1;
2836 		return __sctp_setsockopt_delayed_ack(sk, &p);
2837 	}
2838 
2839 	if (optlen != sizeof(struct sctp_sack_info))
2840 		return -EINVAL;
2841 	if (params->sack_delay == 0 && params->sack_freq == 0)
2842 		return 0;
2843 	return __sctp_setsockopt_delayed_ack(sk, params);
2844 }
2845 
2846 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2847  *
2848  * Applications can specify protocol parameters for the default association
2849  * initialization.  The option name argument to setsockopt() and getsockopt()
2850  * is SCTP_INITMSG.
2851  *
2852  * Setting initialization parameters is effective only on an unconnected
2853  * socket (for UDP-style sockets only future associations are effected
2854  * by the change).  With TCP-style sockets, this option is inherited by
2855  * sockets derived from a listener socket.
2856  */
2857 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2858 				   unsigned int optlen)
2859 {
2860 	struct sctp_sock *sp = sctp_sk(sk);
2861 
2862 	if (optlen != sizeof(struct sctp_initmsg))
2863 		return -EINVAL;
2864 
2865 	if (sinit->sinit_num_ostreams)
2866 		sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2867 	if (sinit->sinit_max_instreams)
2868 		sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2869 	if (sinit->sinit_max_attempts)
2870 		sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2871 	if (sinit->sinit_max_init_timeo)
2872 		sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2873 
2874 	return 0;
2875 }
2876 
2877 /*
2878  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2879  *
2880  *   Applications that wish to use the sendto() system call may wish to
2881  *   specify a default set of parameters that would normally be supplied
2882  *   through the inclusion of ancillary data.  This socket option allows
2883  *   such an application to set the default sctp_sndrcvinfo structure.
2884  *   The application that wishes to use this socket option simply passes
2885  *   in to this call the sctp_sndrcvinfo structure defined in Section
2886  *   5.2.2) The input parameters accepted by this call include
2887  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2888  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2889  *   to this call if the caller is using the UDP model.
2890  */
2891 static int sctp_setsockopt_default_send_param(struct sock *sk,
2892 					      struct sctp_sndrcvinfo *info,
2893 					      unsigned int optlen)
2894 {
2895 	struct sctp_sock *sp = sctp_sk(sk);
2896 	struct sctp_association *asoc;
2897 
2898 	if (optlen != sizeof(*info))
2899 		return -EINVAL;
2900 	if (info->sinfo_flags &
2901 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2902 	      SCTP_ABORT | SCTP_EOF))
2903 		return -EINVAL;
2904 
2905 	asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2906 	if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2907 	    sctp_style(sk, UDP))
2908 		return -EINVAL;
2909 
2910 	if (asoc) {
2911 		asoc->default_stream = info->sinfo_stream;
2912 		asoc->default_flags = info->sinfo_flags;
2913 		asoc->default_ppid = info->sinfo_ppid;
2914 		asoc->default_context = info->sinfo_context;
2915 		asoc->default_timetolive = info->sinfo_timetolive;
2916 
2917 		return 0;
2918 	}
2919 
2920 	if (sctp_style(sk, TCP))
2921 		info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2922 
2923 	if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2924 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2925 		sp->default_stream = info->sinfo_stream;
2926 		sp->default_flags = info->sinfo_flags;
2927 		sp->default_ppid = info->sinfo_ppid;
2928 		sp->default_context = info->sinfo_context;
2929 		sp->default_timetolive = info->sinfo_timetolive;
2930 	}
2931 
2932 	if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2933 	    info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2934 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2935 			asoc->default_stream = info->sinfo_stream;
2936 			asoc->default_flags = info->sinfo_flags;
2937 			asoc->default_ppid = info->sinfo_ppid;
2938 			asoc->default_context = info->sinfo_context;
2939 			asoc->default_timetolive = info->sinfo_timetolive;
2940 		}
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2947  * (SCTP_DEFAULT_SNDINFO)
2948  */
2949 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2950 					   struct sctp_sndinfo *info,
2951 					   unsigned int optlen)
2952 {
2953 	struct sctp_sock *sp = sctp_sk(sk);
2954 	struct sctp_association *asoc;
2955 
2956 	if (optlen != sizeof(*info))
2957 		return -EINVAL;
2958 	if (info->snd_flags &
2959 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2960 	      SCTP_ABORT | SCTP_EOF))
2961 		return -EINVAL;
2962 
2963 	asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2964 	if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2965 	    sctp_style(sk, UDP))
2966 		return -EINVAL;
2967 
2968 	if (asoc) {
2969 		asoc->default_stream = info->snd_sid;
2970 		asoc->default_flags = info->snd_flags;
2971 		asoc->default_ppid = info->snd_ppid;
2972 		asoc->default_context = info->snd_context;
2973 
2974 		return 0;
2975 	}
2976 
2977 	if (sctp_style(sk, TCP))
2978 		info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2979 
2980 	if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2981 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2982 		sp->default_stream = info->snd_sid;
2983 		sp->default_flags = info->snd_flags;
2984 		sp->default_ppid = info->snd_ppid;
2985 		sp->default_context = info->snd_context;
2986 	}
2987 
2988 	if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2989 	    info->snd_assoc_id == SCTP_ALL_ASSOC) {
2990 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2991 			asoc->default_stream = info->snd_sid;
2992 			asoc->default_flags = info->snd_flags;
2993 			asoc->default_ppid = info->snd_ppid;
2994 			asoc->default_context = info->snd_context;
2995 		}
2996 	}
2997 
2998 	return 0;
2999 }
3000 
3001 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3002  *
3003  * Requests that the local SCTP stack use the enclosed peer address as
3004  * the association primary.  The enclosed address must be one of the
3005  * association peer's addresses.
3006  */
3007 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3008 					unsigned int optlen)
3009 {
3010 	struct sctp_transport *trans;
3011 	struct sctp_af *af;
3012 	int err;
3013 
3014 	if (optlen != sizeof(struct sctp_prim))
3015 		return -EINVAL;
3016 
3017 	/* Allow security module to validate address but need address len. */
3018 	af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3019 	if (!af)
3020 		return -EINVAL;
3021 
3022 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3023 					 (struct sockaddr *)&prim->ssp_addr,
3024 					 af->sockaddr_len);
3025 	if (err)
3026 		return err;
3027 
3028 	trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3029 	if (!trans)
3030 		return -EINVAL;
3031 
3032 	sctp_assoc_set_primary(trans->asoc, trans);
3033 
3034 	return 0;
3035 }
3036 
3037 /*
3038  * 7.1.5 SCTP_NODELAY
3039  *
3040  * Turn on/off any Nagle-like algorithm.  This means that packets are
3041  * generally sent as soon as possible and no unnecessary delays are
3042  * introduced, at the cost of more packets in the network.  Expects an
3043  *  integer boolean flag.
3044  */
3045 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3046 				   unsigned int optlen)
3047 {
3048 	if (optlen < sizeof(int))
3049 		return -EINVAL;
3050 	sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3051 	return 0;
3052 }
3053 
3054 /*
3055  *
3056  * 7.1.1 SCTP_RTOINFO
3057  *
3058  * The protocol parameters used to initialize and bound retransmission
3059  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3060  * and modify these parameters.
3061  * All parameters are time values, in milliseconds.  A value of 0, when
3062  * modifying the parameters, indicates that the current value should not
3063  * be changed.
3064  *
3065  */
3066 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3067 				   struct sctp_rtoinfo *rtoinfo,
3068 				   unsigned int optlen)
3069 {
3070 	struct sctp_association *asoc;
3071 	unsigned long rto_min, rto_max;
3072 	struct sctp_sock *sp = sctp_sk(sk);
3073 
3074 	if (optlen != sizeof (struct sctp_rtoinfo))
3075 		return -EINVAL;
3076 
3077 	asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3078 
3079 	/* Set the values to the specific association */
3080 	if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3081 	    sctp_style(sk, UDP))
3082 		return -EINVAL;
3083 
3084 	rto_max = rtoinfo->srto_max;
3085 	rto_min = rtoinfo->srto_min;
3086 
3087 	if (rto_max)
3088 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3089 	else
3090 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3091 
3092 	if (rto_min)
3093 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3094 	else
3095 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3096 
3097 	if (rto_min > rto_max)
3098 		return -EINVAL;
3099 
3100 	if (asoc) {
3101 		if (rtoinfo->srto_initial != 0)
3102 			asoc->rto_initial =
3103 				msecs_to_jiffies(rtoinfo->srto_initial);
3104 		asoc->rto_max = rto_max;
3105 		asoc->rto_min = rto_min;
3106 	} else {
3107 		/* If there is no association or the association-id = 0
3108 		 * set the values to the endpoint.
3109 		 */
3110 		if (rtoinfo->srto_initial != 0)
3111 			sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3112 		sp->rtoinfo.srto_max = rto_max;
3113 		sp->rtoinfo.srto_min = rto_min;
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 /*
3120  *
3121  * 7.1.2 SCTP_ASSOCINFO
3122  *
3123  * This option is used to tune the maximum retransmission attempts
3124  * of the association.
3125  * Returns an error if the new association retransmission value is
3126  * greater than the sum of the retransmission value  of the peer.
3127  * See [SCTP] for more information.
3128  *
3129  */
3130 static int sctp_setsockopt_associnfo(struct sock *sk,
3131 				     struct sctp_assocparams *assocparams,
3132 				     unsigned int optlen)
3133 {
3134 
3135 	struct sctp_association *asoc;
3136 
3137 	if (optlen != sizeof(struct sctp_assocparams))
3138 		return -EINVAL;
3139 
3140 	asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3141 
3142 	if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3143 	    sctp_style(sk, UDP))
3144 		return -EINVAL;
3145 
3146 	/* Set the values to the specific association */
3147 	if (asoc) {
3148 		if (assocparams->sasoc_asocmaxrxt != 0) {
3149 			__u32 path_sum = 0;
3150 			int   paths = 0;
3151 			struct sctp_transport *peer_addr;
3152 
3153 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3154 					transports) {
3155 				path_sum += peer_addr->pathmaxrxt;
3156 				paths++;
3157 			}
3158 
3159 			/* Only validate asocmaxrxt if we have more than
3160 			 * one path/transport.  We do this because path
3161 			 * retransmissions are only counted when we have more
3162 			 * then one path.
3163 			 */
3164 			if (paths > 1 &&
3165 			    assocparams->sasoc_asocmaxrxt > path_sum)
3166 				return -EINVAL;
3167 
3168 			asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3169 		}
3170 
3171 		if (assocparams->sasoc_cookie_life != 0)
3172 			asoc->cookie_life =
3173 				ms_to_ktime(assocparams->sasoc_cookie_life);
3174 	} else {
3175 		/* Set the values to the endpoint */
3176 		struct sctp_sock *sp = sctp_sk(sk);
3177 
3178 		if (assocparams->sasoc_asocmaxrxt != 0)
3179 			sp->assocparams.sasoc_asocmaxrxt =
3180 						assocparams->sasoc_asocmaxrxt;
3181 		if (assocparams->sasoc_cookie_life != 0)
3182 			sp->assocparams.sasoc_cookie_life =
3183 						assocparams->sasoc_cookie_life;
3184 	}
3185 	return 0;
3186 }
3187 
3188 /*
3189  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3190  *
3191  * This socket option is a boolean flag which turns on or off mapped V4
3192  * addresses.  If this option is turned on and the socket is type
3193  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3194  * If this option is turned off, then no mapping will be done of V4
3195  * addresses and a user will receive both PF_INET6 and PF_INET type
3196  * addresses on the socket.
3197  */
3198 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3199 				    unsigned int optlen)
3200 {
3201 	struct sctp_sock *sp = sctp_sk(sk);
3202 
3203 	if (optlen < sizeof(int))
3204 		return -EINVAL;
3205 	if (*val)
3206 		sp->v4mapped = 1;
3207 	else
3208 		sp->v4mapped = 0;
3209 
3210 	return 0;
3211 }
3212 
3213 /*
3214  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3215  * This option will get or set the maximum size to put in any outgoing
3216  * SCTP DATA chunk.  If a message is larger than this size it will be
3217  * fragmented by SCTP into the specified size.  Note that the underlying
3218  * SCTP implementation may fragment into smaller sized chunks when the
3219  * PMTU of the underlying association is smaller than the value set by
3220  * the user.  The default value for this option is '0' which indicates
3221  * the user is NOT limiting fragmentation and only the PMTU will effect
3222  * SCTP's choice of DATA chunk size.  Note also that values set larger
3223  * than the maximum size of an IP datagram will effectively let SCTP
3224  * control fragmentation (i.e. the same as setting this option to 0).
3225  *
3226  * The following structure is used to access and modify this parameter:
3227  *
3228  * struct sctp_assoc_value {
3229  *   sctp_assoc_t assoc_id;
3230  *   uint32_t assoc_value;
3231  * };
3232  *
3233  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3234  *    For one-to-many style sockets this parameter indicates which
3235  *    association the user is performing an action upon.  Note that if
3236  *    this field's value is zero then the endpoints default value is
3237  *    changed (effecting future associations only).
3238  * assoc_value:  This parameter specifies the maximum size in bytes.
3239  */
3240 static int sctp_setsockopt_maxseg(struct sock *sk,
3241 				  struct sctp_assoc_value *params,
3242 				  unsigned int optlen)
3243 {
3244 	struct sctp_sock *sp = sctp_sk(sk);
3245 	struct sctp_association *asoc;
3246 	sctp_assoc_t assoc_id;
3247 	int val;
3248 
3249 	if (optlen == sizeof(int)) {
3250 		pr_warn_ratelimited(DEPRECATED
3251 				    "%s (pid %d) "
3252 				    "Use of int in maxseg socket option.\n"
3253 				    "Use struct sctp_assoc_value instead\n",
3254 				    current->comm, task_pid_nr(current));
3255 		assoc_id = SCTP_FUTURE_ASSOC;
3256 		val = *(int *)params;
3257 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3258 		assoc_id = params->assoc_id;
3259 		val = params->assoc_value;
3260 	} else {
3261 		return -EINVAL;
3262 	}
3263 
3264 	asoc = sctp_id2assoc(sk, assoc_id);
3265 	if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3266 	    sctp_style(sk, UDP))
3267 		return -EINVAL;
3268 
3269 	if (val) {
3270 		int min_len, max_len;
3271 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3272 				 sizeof(struct sctp_data_chunk);
3273 
3274 		min_len = sctp_min_frag_point(sp, datasize);
3275 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3276 
3277 		if (val < min_len || val > max_len)
3278 			return -EINVAL;
3279 	}
3280 
3281 	if (asoc) {
3282 		asoc->user_frag = val;
3283 		sctp_assoc_update_frag_point(asoc);
3284 	} else {
3285 		sp->user_frag = val;
3286 	}
3287 
3288 	return 0;
3289 }
3290 
3291 
3292 /*
3293  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3294  *
3295  *   Requests that the peer mark the enclosed address as the association
3296  *   primary. The enclosed address must be one of the association's
3297  *   locally bound addresses. The following structure is used to make a
3298  *   set primary request:
3299  */
3300 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3301 					     struct sctp_setpeerprim *prim,
3302 					     unsigned int optlen)
3303 {
3304 	struct sctp_sock	*sp;
3305 	struct sctp_association	*asoc = NULL;
3306 	struct sctp_chunk	*chunk;
3307 	struct sctp_af		*af;
3308 	int 			err;
3309 
3310 	sp = sctp_sk(sk);
3311 
3312 	if (!sp->ep->asconf_enable)
3313 		return -EPERM;
3314 
3315 	if (optlen != sizeof(struct sctp_setpeerprim))
3316 		return -EINVAL;
3317 
3318 	asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3319 	if (!asoc)
3320 		return -EINVAL;
3321 
3322 	if (!asoc->peer.asconf_capable)
3323 		return -EPERM;
3324 
3325 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3326 		return -EPERM;
3327 
3328 	if (!sctp_state(asoc, ESTABLISHED))
3329 		return -ENOTCONN;
3330 
3331 	af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3332 	if (!af)
3333 		return -EINVAL;
3334 
3335 	if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3336 		return -EADDRNOTAVAIL;
3337 
3338 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3339 		return -EADDRNOTAVAIL;
3340 
3341 	/* Allow security module to validate address. */
3342 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3343 					 (struct sockaddr *)&prim->sspp_addr,
3344 					 af->sockaddr_len);
3345 	if (err)
3346 		return err;
3347 
3348 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3349 	chunk = sctp_make_asconf_set_prim(asoc,
3350 					  (union sctp_addr *)&prim->sspp_addr);
3351 	if (!chunk)
3352 		return -ENOMEM;
3353 
3354 	err = sctp_send_asconf(asoc, chunk);
3355 
3356 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3357 
3358 	return err;
3359 }
3360 
3361 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3362 					    struct sctp_setadaptation *adapt,
3363 					    unsigned int optlen)
3364 {
3365 	if (optlen != sizeof(struct sctp_setadaptation))
3366 		return -EINVAL;
3367 
3368 	sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3369 
3370 	return 0;
3371 }
3372 
3373 /*
3374  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3375  *
3376  * The context field in the sctp_sndrcvinfo structure is normally only
3377  * used when a failed message is retrieved holding the value that was
3378  * sent down on the actual send call.  This option allows the setting of
3379  * a default context on an association basis that will be received on
3380  * reading messages from the peer.  This is especially helpful in the
3381  * one-2-many model for an application to keep some reference to an
3382  * internal state machine that is processing messages on the
3383  * association.  Note that the setting of this value only effects
3384  * received messages from the peer and does not effect the value that is
3385  * saved with outbound messages.
3386  */
3387 static int sctp_setsockopt_context(struct sock *sk,
3388 				   struct sctp_assoc_value *params,
3389 				   unsigned int optlen)
3390 {
3391 	struct sctp_sock *sp = sctp_sk(sk);
3392 	struct sctp_association *asoc;
3393 
3394 	if (optlen != sizeof(struct sctp_assoc_value))
3395 		return -EINVAL;
3396 
3397 	asoc = sctp_id2assoc(sk, params->assoc_id);
3398 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3399 	    sctp_style(sk, UDP))
3400 		return -EINVAL;
3401 
3402 	if (asoc) {
3403 		asoc->default_rcv_context = params->assoc_value;
3404 
3405 		return 0;
3406 	}
3407 
3408 	if (sctp_style(sk, TCP))
3409 		params->assoc_id = SCTP_FUTURE_ASSOC;
3410 
3411 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3412 	    params->assoc_id == SCTP_ALL_ASSOC)
3413 		sp->default_rcv_context = params->assoc_value;
3414 
3415 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3416 	    params->assoc_id == SCTP_ALL_ASSOC)
3417 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3418 			asoc->default_rcv_context = params->assoc_value;
3419 
3420 	return 0;
3421 }
3422 
3423 /*
3424  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3425  *
3426  * This options will at a minimum specify if the implementation is doing
3427  * fragmented interleave.  Fragmented interleave, for a one to many
3428  * socket, is when subsequent calls to receive a message may return
3429  * parts of messages from different associations.  Some implementations
3430  * may allow you to turn this value on or off.  If so, when turned off,
3431  * no fragment interleave will occur (which will cause a head of line
3432  * blocking amongst multiple associations sharing the same one to many
3433  * socket).  When this option is turned on, then each receive call may
3434  * come from a different association (thus the user must receive data
3435  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3436  * association each receive belongs to.
3437  *
3438  * This option takes a boolean value.  A non-zero value indicates that
3439  * fragmented interleave is on.  A value of zero indicates that
3440  * fragmented interleave is off.
3441  *
3442  * Note that it is important that an implementation that allows this
3443  * option to be turned on, have it off by default.  Otherwise an unaware
3444  * application using the one to many model may become confused and act
3445  * incorrectly.
3446  */
3447 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3448 					       unsigned int optlen)
3449 {
3450 	if (optlen != sizeof(int))
3451 		return -EINVAL;
3452 
3453 	sctp_sk(sk)->frag_interleave = !!*val;
3454 
3455 	if (!sctp_sk(sk)->frag_interleave)
3456 		sctp_sk(sk)->ep->intl_enable = 0;
3457 
3458 	return 0;
3459 }
3460 
3461 /*
3462  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3463  *       (SCTP_PARTIAL_DELIVERY_POINT)
3464  *
3465  * This option will set or get the SCTP partial delivery point.  This
3466  * point is the size of a message where the partial delivery API will be
3467  * invoked to help free up rwnd space for the peer.  Setting this to a
3468  * lower value will cause partial deliveries to happen more often.  The
3469  * calls argument is an integer that sets or gets the partial delivery
3470  * point.  Note also that the call will fail if the user attempts to set
3471  * this value larger than the socket receive buffer size.
3472  *
3473  * Note that any single message having a length smaller than or equal to
3474  * the SCTP partial delivery point will be delivered in one single read
3475  * call as long as the user provided buffer is large enough to hold the
3476  * message.
3477  */
3478 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3479 						  unsigned int optlen)
3480 {
3481 	if (optlen != sizeof(u32))
3482 		return -EINVAL;
3483 
3484 	/* Note: We double the receive buffer from what the user sets
3485 	 * it to be, also initial rwnd is based on rcvbuf/2.
3486 	 */
3487 	if (*val > (sk->sk_rcvbuf >> 1))
3488 		return -EINVAL;
3489 
3490 	sctp_sk(sk)->pd_point = *val;
3491 
3492 	return 0; /* is this the right error code? */
3493 }
3494 
3495 /*
3496  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3497  *
3498  * This option will allow a user to change the maximum burst of packets
3499  * that can be emitted by this association.  Note that the default value
3500  * is 4, and some implementations may restrict this setting so that it
3501  * can only be lowered.
3502  *
3503  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3504  * future associations inheriting the socket value.
3505  */
3506 static int sctp_setsockopt_maxburst(struct sock *sk,
3507 				    struct sctp_assoc_value *params,
3508 				    unsigned int optlen)
3509 {
3510 	struct sctp_sock *sp = sctp_sk(sk);
3511 	struct sctp_association *asoc;
3512 	sctp_assoc_t assoc_id;
3513 	u32 assoc_value;
3514 
3515 	if (optlen == sizeof(int)) {
3516 		pr_warn_ratelimited(DEPRECATED
3517 				    "%s (pid %d) "
3518 				    "Use of int in max_burst socket option deprecated.\n"
3519 				    "Use struct sctp_assoc_value instead\n",
3520 				    current->comm, task_pid_nr(current));
3521 		assoc_id = SCTP_FUTURE_ASSOC;
3522 		assoc_value = *((int *)params);
3523 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3524 		assoc_id = params->assoc_id;
3525 		assoc_value = params->assoc_value;
3526 	} else
3527 		return -EINVAL;
3528 
3529 	asoc = sctp_id2assoc(sk, assoc_id);
3530 	if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3531 		return -EINVAL;
3532 
3533 	if (asoc) {
3534 		asoc->max_burst = assoc_value;
3535 
3536 		return 0;
3537 	}
3538 
3539 	if (sctp_style(sk, TCP))
3540 		assoc_id = SCTP_FUTURE_ASSOC;
3541 
3542 	if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3543 		sp->max_burst = assoc_value;
3544 
3545 	if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3546 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3547 			asoc->max_burst = assoc_value;
3548 
3549 	return 0;
3550 }
3551 
3552 /*
3553  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3554  *
3555  * This set option adds a chunk type that the user is requesting to be
3556  * received only in an authenticated way.  Changes to the list of chunks
3557  * will only effect future associations on the socket.
3558  */
3559 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3560 				      struct sctp_authchunk *val,
3561 				      unsigned int optlen)
3562 {
3563 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3564 
3565 	if (!ep->auth_enable)
3566 		return -EACCES;
3567 
3568 	if (optlen != sizeof(struct sctp_authchunk))
3569 		return -EINVAL;
3570 
3571 	switch (val->sauth_chunk) {
3572 	case SCTP_CID_INIT:
3573 	case SCTP_CID_INIT_ACK:
3574 	case SCTP_CID_SHUTDOWN_COMPLETE:
3575 	case SCTP_CID_AUTH:
3576 		return -EINVAL;
3577 	}
3578 
3579 	/* add this chunk id to the endpoint */
3580 	return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3581 }
3582 
3583 /*
3584  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3585  *
3586  * This option gets or sets the list of HMAC algorithms that the local
3587  * endpoint requires the peer to use.
3588  */
3589 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3590 				      struct sctp_hmacalgo *hmacs,
3591 				      unsigned int optlen)
3592 {
3593 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3594 	u32 idents;
3595 
3596 	if (!ep->auth_enable)
3597 		return -EACCES;
3598 
3599 	if (optlen < sizeof(struct sctp_hmacalgo))
3600 		return -EINVAL;
3601 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3602 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3603 
3604 	idents = hmacs->shmac_num_idents;
3605 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3606 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3607 		return -EINVAL;
3608 
3609 	return sctp_auth_ep_set_hmacs(ep, hmacs);
3610 }
3611 
3612 /*
3613  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3614  *
3615  * This option will set a shared secret key which is used to build an
3616  * association shared key.
3617  */
3618 static int sctp_setsockopt_auth_key(struct sock *sk,
3619 				    struct sctp_authkey *authkey,
3620 				    unsigned int optlen)
3621 {
3622 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3623 	struct sctp_association *asoc;
3624 	int ret = -EINVAL;
3625 
3626 	if (optlen <= sizeof(struct sctp_authkey))
3627 		return -EINVAL;
3628 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3629 	 * this.
3630 	 */
3631 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3632 
3633 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3634 		goto out;
3635 
3636 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3637 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3638 	    sctp_style(sk, UDP))
3639 		goto out;
3640 
3641 	if (asoc) {
3642 		ret = sctp_auth_set_key(ep, asoc, authkey);
3643 		goto out;
3644 	}
3645 
3646 	if (sctp_style(sk, TCP))
3647 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3648 
3649 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3650 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3651 		ret = sctp_auth_set_key(ep, asoc, authkey);
3652 		if (ret)
3653 			goto out;
3654 	}
3655 
3656 	ret = 0;
3657 
3658 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3659 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3660 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3661 			int res = sctp_auth_set_key(ep, asoc, authkey);
3662 
3663 			if (res && !ret)
3664 				ret = res;
3665 		}
3666 	}
3667 
3668 out:
3669 	memzero_explicit(authkey, optlen);
3670 	return ret;
3671 }
3672 
3673 /*
3674  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3675  *
3676  * This option will get or set the active shared key to be used to build
3677  * the association shared key.
3678  */
3679 static int sctp_setsockopt_active_key(struct sock *sk,
3680 				      struct sctp_authkeyid *val,
3681 				      unsigned int optlen)
3682 {
3683 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3684 	struct sctp_association *asoc;
3685 	int ret = 0;
3686 
3687 	if (optlen != sizeof(struct sctp_authkeyid))
3688 		return -EINVAL;
3689 
3690 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3691 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3692 	    sctp_style(sk, UDP))
3693 		return -EINVAL;
3694 
3695 	if (asoc)
3696 		return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3697 
3698 	if (sctp_style(sk, TCP))
3699 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3700 
3701 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3702 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3703 		ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3704 		if (ret)
3705 			return ret;
3706 	}
3707 
3708 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3709 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3710 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3711 			int res = sctp_auth_set_active_key(ep, asoc,
3712 							   val->scact_keynumber);
3713 
3714 			if (res && !ret)
3715 				ret = res;
3716 		}
3717 	}
3718 
3719 	return ret;
3720 }
3721 
3722 /*
3723  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3724  *
3725  * This set option will delete a shared secret key from use.
3726  */
3727 static int sctp_setsockopt_del_key(struct sock *sk,
3728 				   struct sctp_authkeyid *val,
3729 				   unsigned int optlen)
3730 {
3731 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3732 	struct sctp_association *asoc;
3733 	int ret = 0;
3734 
3735 	if (optlen != sizeof(struct sctp_authkeyid))
3736 		return -EINVAL;
3737 
3738 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3739 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3740 	    sctp_style(sk, UDP))
3741 		return -EINVAL;
3742 
3743 	if (asoc)
3744 		return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3745 
3746 	if (sctp_style(sk, TCP))
3747 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3748 
3749 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3750 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3751 		ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3752 		if (ret)
3753 			return ret;
3754 	}
3755 
3756 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3757 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3758 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3759 			int res = sctp_auth_del_key_id(ep, asoc,
3760 						       val->scact_keynumber);
3761 
3762 			if (res && !ret)
3763 				ret = res;
3764 		}
3765 	}
3766 
3767 	return ret;
3768 }
3769 
3770 /*
3771  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3772  *
3773  * This set option will deactivate a shared secret key.
3774  */
3775 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3776 					  struct sctp_authkeyid *val,
3777 					  unsigned int optlen)
3778 {
3779 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3780 	struct sctp_association *asoc;
3781 	int ret = 0;
3782 
3783 	if (optlen != sizeof(struct sctp_authkeyid))
3784 		return -EINVAL;
3785 
3786 	asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3787 	if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3788 	    sctp_style(sk, UDP))
3789 		return -EINVAL;
3790 
3791 	if (asoc)
3792 		return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3793 
3794 	if (sctp_style(sk, TCP))
3795 		val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3796 
3797 	if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3798 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3799 		ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3800 		if (ret)
3801 			return ret;
3802 	}
3803 
3804 	if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3805 	    val->scact_assoc_id == SCTP_ALL_ASSOC) {
3806 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3807 			int res = sctp_auth_deact_key_id(ep, asoc,
3808 							 val->scact_keynumber);
3809 
3810 			if (res && !ret)
3811 				ret = res;
3812 		}
3813 	}
3814 
3815 	return ret;
3816 }
3817 
3818 /*
3819  * 8.1.23 SCTP_AUTO_ASCONF
3820  *
3821  * This option will enable or disable the use of the automatic generation of
3822  * ASCONF chunks to add and delete addresses to an existing association.  Note
3823  * that this option has two caveats namely: a) it only affects sockets that
3824  * are bound to all addresses available to the SCTP stack, and b) the system
3825  * administrator may have an overriding control that turns the ASCONF feature
3826  * off no matter what setting the socket option may have.
3827  * This option expects an integer boolean flag, where a non-zero value turns on
3828  * the option, and a zero value turns off the option.
3829  * Note. In this implementation, socket operation overrides default parameter
3830  * being set by sysctl as well as FreeBSD implementation
3831  */
3832 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3833 					unsigned int optlen)
3834 {
3835 	struct sctp_sock *sp = sctp_sk(sk);
3836 
3837 	if (optlen < sizeof(int))
3838 		return -EINVAL;
3839 	if (!sctp_is_ep_boundall(sk) && *val)
3840 		return -EINVAL;
3841 	if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3842 		return 0;
3843 
3844 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3845 	if (*val == 0 && sp->do_auto_asconf) {
3846 		list_del(&sp->auto_asconf_list);
3847 		sp->do_auto_asconf = 0;
3848 	} else if (*val && !sp->do_auto_asconf) {
3849 		list_add_tail(&sp->auto_asconf_list,
3850 		    &sock_net(sk)->sctp.auto_asconf_splist);
3851 		sp->do_auto_asconf = 1;
3852 	}
3853 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3854 	return 0;
3855 }
3856 
3857 /*
3858  * SCTP_PEER_ADDR_THLDS
3859  *
3860  * This option allows us to alter the partially failed threshold for one or all
3861  * transports in an association.  See Section 6.1 of:
3862  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3863  */
3864 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3865 					    struct sctp_paddrthlds_v2 *val,
3866 					    unsigned int optlen, bool v2)
3867 {
3868 	struct sctp_transport *trans;
3869 	struct sctp_association *asoc;
3870 	int len;
3871 
3872 	len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3873 	if (optlen < len)
3874 		return -EINVAL;
3875 
3876 	if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3877 		return -EINVAL;
3878 
3879 	if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3880 		trans = sctp_addr_id2transport(sk, &val->spt_address,
3881 					       val->spt_assoc_id);
3882 		if (!trans)
3883 			return -ENOENT;
3884 
3885 		if (val->spt_pathmaxrxt)
3886 			trans->pathmaxrxt = val->spt_pathmaxrxt;
3887 		if (v2)
3888 			trans->ps_retrans = val->spt_pathcpthld;
3889 		trans->pf_retrans = val->spt_pathpfthld;
3890 
3891 		return 0;
3892 	}
3893 
3894 	asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3895 	if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3896 	    sctp_style(sk, UDP))
3897 		return -EINVAL;
3898 
3899 	if (asoc) {
3900 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3901 				    transports) {
3902 			if (val->spt_pathmaxrxt)
3903 				trans->pathmaxrxt = val->spt_pathmaxrxt;
3904 			if (v2)
3905 				trans->ps_retrans = val->spt_pathcpthld;
3906 			trans->pf_retrans = val->spt_pathpfthld;
3907 		}
3908 
3909 		if (val->spt_pathmaxrxt)
3910 			asoc->pathmaxrxt = val->spt_pathmaxrxt;
3911 		if (v2)
3912 			asoc->ps_retrans = val->spt_pathcpthld;
3913 		asoc->pf_retrans = val->spt_pathpfthld;
3914 	} else {
3915 		struct sctp_sock *sp = sctp_sk(sk);
3916 
3917 		if (val->spt_pathmaxrxt)
3918 			sp->pathmaxrxt = val->spt_pathmaxrxt;
3919 		if (v2)
3920 			sp->ps_retrans = val->spt_pathcpthld;
3921 		sp->pf_retrans = val->spt_pathpfthld;
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3928 				       unsigned int optlen)
3929 {
3930 	if (optlen < sizeof(int))
3931 		return -EINVAL;
3932 
3933 	sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3934 
3935 	return 0;
3936 }
3937 
3938 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3939 				       unsigned int optlen)
3940 {
3941 	if (optlen < sizeof(int))
3942 		return -EINVAL;
3943 
3944 	sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3945 
3946 	return 0;
3947 }
3948 
3949 static int sctp_setsockopt_pr_supported(struct sock *sk,
3950 					struct sctp_assoc_value *params,
3951 					unsigned int optlen)
3952 {
3953 	struct sctp_association *asoc;
3954 
3955 	if (optlen != sizeof(*params))
3956 		return -EINVAL;
3957 
3958 	asoc = sctp_id2assoc(sk, params->assoc_id);
3959 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3960 	    sctp_style(sk, UDP))
3961 		return -EINVAL;
3962 
3963 	sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3964 
3965 	return 0;
3966 }
3967 
3968 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3969 					  struct sctp_default_prinfo *info,
3970 					  unsigned int optlen)
3971 {
3972 	struct sctp_sock *sp = sctp_sk(sk);
3973 	struct sctp_association *asoc;
3974 	int retval = -EINVAL;
3975 
3976 	if (optlen != sizeof(*info))
3977 		goto out;
3978 
3979 	if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3980 		goto out;
3981 
3982 	if (info->pr_policy == SCTP_PR_SCTP_NONE)
3983 		info->pr_value = 0;
3984 
3985 	asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3986 	if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3987 	    sctp_style(sk, UDP))
3988 		goto out;
3989 
3990 	retval = 0;
3991 
3992 	if (asoc) {
3993 		SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3994 		asoc->default_timetolive = info->pr_value;
3995 		goto out;
3996 	}
3997 
3998 	if (sctp_style(sk, TCP))
3999 		info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4000 
4001 	if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4002 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
4003 		SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4004 		sp->default_timetolive = info->pr_value;
4005 	}
4006 
4007 	if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4008 	    info->pr_assoc_id == SCTP_ALL_ASSOC) {
4009 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4010 			SCTP_PR_SET_POLICY(asoc->default_flags,
4011 					   info->pr_policy);
4012 			asoc->default_timetolive = info->pr_value;
4013 		}
4014 	}
4015 
4016 out:
4017 	return retval;
4018 }
4019 
4020 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4021 					      struct sctp_assoc_value *params,
4022 					      unsigned int optlen)
4023 {
4024 	struct sctp_association *asoc;
4025 	int retval = -EINVAL;
4026 
4027 	if (optlen != sizeof(*params))
4028 		goto out;
4029 
4030 	asoc = sctp_id2assoc(sk, params->assoc_id);
4031 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4032 	    sctp_style(sk, UDP))
4033 		goto out;
4034 
4035 	sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4036 
4037 	retval = 0;
4038 
4039 out:
4040 	return retval;
4041 }
4042 
4043 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4044 					   struct sctp_assoc_value *params,
4045 					   unsigned int optlen)
4046 {
4047 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4048 	struct sctp_association *asoc;
4049 	int retval = -EINVAL;
4050 
4051 	if (optlen != sizeof(*params))
4052 		goto out;
4053 
4054 	if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4055 		goto out;
4056 
4057 	asoc = sctp_id2assoc(sk, params->assoc_id);
4058 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4059 	    sctp_style(sk, UDP))
4060 		goto out;
4061 
4062 	retval = 0;
4063 
4064 	if (asoc) {
4065 		asoc->strreset_enable = params->assoc_value;
4066 		goto out;
4067 	}
4068 
4069 	if (sctp_style(sk, TCP))
4070 		params->assoc_id = SCTP_FUTURE_ASSOC;
4071 
4072 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4073 	    params->assoc_id == SCTP_ALL_ASSOC)
4074 		ep->strreset_enable = params->assoc_value;
4075 
4076 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4077 	    params->assoc_id == SCTP_ALL_ASSOC)
4078 		list_for_each_entry(asoc, &ep->asocs, asocs)
4079 			asoc->strreset_enable = params->assoc_value;
4080 
4081 out:
4082 	return retval;
4083 }
4084 
4085 static int sctp_setsockopt_reset_streams(struct sock *sk,
4086 					 struct sctp_reset_streams *params,
4087 					 unsigned int optlen)
4088 {
4089 	struct sctp_association *asoc;
4090 
4091 	if (optlen < sizeof(*params))
4092 		return -EINVAL;
4093 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4094 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4095 					     sizeof(__u16) * sizeof(*params));
4096 
4097 	if (params->srs_number_streams * sizeof(__u16) >
4098 	    optlen - sizeof(*params))
4099 		return -EINVAL;
4100 
4101 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4102 	if (!asoc)
4103 		return -EINVAL;
4104 
4105 	return sctp_send_reset_streams(asoc, params);
4106 }
4107 
4108 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4109 				       unsigned int optlen)
4110 {
4111 	struct sctp_association *asoc;
4112 
4113 	if (optlen != sizeof(*associd))
4114 		return -EINVAL;
4115 
4116 	asoc = sctp_id2assoc(sk, *associd);
4117 	if (!asoc)
4118 		return -EINVAL;
4119 
4120 	return sctp_send_reset_assoc(asoc);
4121 }
4122 
4123 static int sctp_setsockopt_add_streams(struct sock *sk,
4124 				       struct sctp_add_streams *params,
4125 				       unsigned int optlen)
4126 {
4127 	struct sctp_association *asoc;
4128 
4129 	if (optlen != sizeof(*params))
4130 		return -EINVAL;
4131 
4132 	asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4133 	if (!asoc)
4134 		return -EINVAL;
4135 
4136 	return sctp_send_add_streams(asoc, params);
4137 }
4138 
4139 static int sctp_setsockopt_scheduler(struct sock *sk,
4140 				     struct sctp_assoc_value *params,
4141 				     unsigned int optlen)
4142 {
4143 	struct sctp_sock *sp = sctp_sk(sk);
4144 	struct sctp_association *asoc;
4145 	int retval = 0;
4146 
4147 	if (optlen < sizeof(*params))
4148 		return -EINVAL;
4149 
4150 	if (params->assoc_value > SCTP_SS_MAX)
4151 		return -EINVAL;
4152 
4153 	asoc = sctp_id2assoc(sk, params->assoc_id);
4154 	if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4155 	    sctp_style(sk, UDP))
4156 		return -EINVAL;
4157 
4158 	if (asoc)
4159 		return sctp_sched_set_sched(asoc, params->assoc_value);
4160 
4161 	if (sctp_style(sk, TCP))
4162 		params->assoc_id = SCTP_FUTURE_ASSOC;
4163 
4164 	if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4165 	    params->assoc_id == SCTP_ALL_ASSOC)
4166 		sp->default_ss = params->assoc_value;
4167 
4168 	if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4169 	    params->assoc_id == SCTP_ALL_ASSOC) {
4170 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4171 			int ret = sctp_sched_set_sched(asoc,
4172 						       params->assoc_value);
4173 
4174 			if (ret && !retval)
4175 				retval = ret;
4176 		}
4177 	}
4178 
4179 	return retval;
4180 }
4181 
4182 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4183 					   struct sctp_stream_value *params,
4184 					   unsigned int optlen)
4185 {
4186 	struct sctp_association *asoc;
4187 	int retval = -EINVAL;
4188 
4189 	if (optlen < sizeof(*params))
4190 		goto out;
4191 
4192 	asoc = sctp_id2assoc(sk, params->assoc_id);
4193 	if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4194 	    sctp_style(sk, UDP))
4195 		goto out;
4196 
4197 	if (asoc) {
4198 		retval = sctp_sched_set_value(asoc, params->stream_id,
4199 					      params->stream_value, GFP_KERNEL);
4200 		goto out;
4201 	}
4202 
4203 	retval = 0;
4204 
4205 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4206 		int ret = sctp_sched_set_value(asoc, params->stream_id,
4207 					       params->stream_value,
4208 					       GFP_KERNEL);
4209 		if (ret && !retval) /* try to return the 1st error. */
4210 			retval = ret;
4211 	}
4212 
4213 out:
4214 	return retval;
4215 }
4216 
4217 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4218 						  struct sctp_assoc_value *p,
4219 						  unsigned int optlen)
4220 {
4221 	struct sctp_sock *sp = sctp_sk(sk);
4222 	struct sctp_association *asoc;
4223 
4224 	if (optlen < sizeof(*p))
4225 		return -EINVAL;
4226 
4227 	asoc = sctp_id2assoc(sk, p->assoc_id);
4228 	if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4229 		return -EINVAL;
4230 
4231 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4232 		return -EPERM;
4233 	}
4234 
4235 	sp->ep->intl_enable = !!p->assoc_value;
4236 	return 0;
4237 }
4238 
4239 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4240 				      unsigned int optlen)
4241 {
4242 	if (!sctp_style(sk, TCP))
4243 		return -EOPNOTSUPP;
4244 
4245 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4246 		return -EFAULT;
4247 
4248 	if (optlen < sizeof(int))
4249 		return -EINVAL;
4250 
4251 	sctp_sk(sk)->reuse = !!*val;
4252 
4253 	return 0;
4254 }
4255 
4256 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4257 					struct sctp_association *asoc)
4258 {
4259 	struct sctp_ulpevent *event;
4260 
4261 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4262 
4263 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4264 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4265 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4266 					GFP_USER | __GFP_NOWARN);
4267 			if (!event)
4268 				return -ENOMEM;
4269 
4270 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4271 		}
4272 	}
4273 
4274 	return 0;
4275 }
4276 
4277 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4278 				 unsigned int optlen)
4279 {
4280 	struct sctp_sock *sp = sctp_sk(sk);
4281 	struct sctp_association *asoc;
4282 	int retval = 0;
4283 
4284 	if (optlen < sizeof(*param))
4285 		return -EINVAL;
4286 
4287 	if (param->se_type < SCTP_SN_TYPE_BASE ||
4288 	    param->se_type > SCTP_SN_TYPE_MAX)
4289 		return -EINVAL;
4290 
4291 	asoc = sctp_id2assoc(sk, param->se_assoc_id);
4292 	if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4293 	    sctp_style(sk, UDP))
4294 		return -EINVAL;
4295 
4296 	if (asoc)
4297 		return sctp_assoc_ulpevent_type_set(param, asoc);
4298 
4299 	if (sctp_style(sk, TCP))
4300 		param->se_assoc_id = SCTP_FUTURE_ASSOC;
4301 
4302 	if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4303 	    param->se_assoc_id == SCTP_ALL_ASSOC)
4304 		sctp_ulpevent_type_set(&sp->subscribe,
4305 				       param->se_type, param->se_on);
4306 
4307 	if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4308 	    param->se_assoc_id == SCTP_ALL_ASSOC) {
4309 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4310 			int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4311 
4312 			if (ret && !retval)
4313 				retval = ret;
4314 		}
4315 	}
4316 
4317 	return retval;
4318 }
4319 
4320 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4321 					    struct sctp_assoc_value *params,
4322 					    unsigned int optlen)
4323 {
4324 	struct sctp_association *asoc;
4325 	struct sctp_endpoint *ep;
4326 	int retval = -EINVAL;
4327 
4328 	if (optlen != sizeof(*params))
4329 		goto out;
4330 
4331 	asoc = sctp_id2assoc(sk, params->assoc_id);
4332 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4333 	    sctp_style(sk, UDP))
4334 		goto out;
4335 
4336 	ep = sctp_sk(sk)->ep;
4337 	ep->asconf_enable = !!params->assoc_value;
4338 
4339 	if (ep->asconf_enable && ep->auth_enable) {
4340 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4341 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4342 	}
4343 
4344 	retval = 0;
4345 
4346 out:
4347 	return retval;
4348 }
4349 
4350 static int sctp_setsockopt_auth_supported(struct sock *sk,
4351 					  struct sctp_assoc_value *params,
4352 					  unsigned int optlen)
4353 {
4354 	struct sctp_association *asoc;
4355 	struct sctp_endpoint *ep;
4356 	int retval = -EINVAL;
4357 
4358 	if (optlen != sizeof(*params))
4359 		goto out;
4360 
4361 	asoc = sctp_id2assoc(sk, params->assoc_id);
4362 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4363 	    sctp_style(sk, UDP))
4364 		goto out;
4365 
4366 	ep = sctp_sk(sk)->ep;
4367 	if (params->assoc_value) {
4368 		retval = sctp_auth_init(ep, GFP_KERNEL);
4369 		if (retval)
4370 			goto out;
4371 		if (ep->asconf_enable) {
4372 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4373 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4374 		}
4375 	}
4376 
4377 	ep->auth_enable = !!params->assoc_value;
4378 	retval = 0;
4379 
4380 out:
4381 	return retval;
4382 }
4383 
4384 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4385 					 struct sctp_assoc_value *params,
4386 					 unsigned int optlen)
4387 {
4388 	struct sctp_association *asoc;
4389 	int retval = -EINVAL;
4390 
4391 	if (optlen != sizeof(*params))
4392 		goto out;
4393 
4394 	asoc = sctp_id2assoc(sk, params->assoc_id);
4395 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4396 	    sctp_style(sk, UDP))
4397 		goto out;
4398 
4399 	sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4400 	retval = 0;
4401 
4402 out:
4403 	return retval;
4404 }
4405 
4406 static int sctp_setsockopt_pf_expose(struct sock *sk,
4407 				     struct sctp_assoc_value *params,
4408 				     unsigned int optlen)
4409 {
4410 	struct sctp_association *asoc;
4411 	int retval = -EINVAL;
4412 
4413 	if (optlen != sizeof(*params))
4414 		goto out;
4415 
4416 	if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4417 		goto out;
4418 
4419 	asoc = sctp_id2assoc(sk, params->assoc_id);
4420 	if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4421 	    sctp_style(sk, UDP))
4422 		goto out;
4423 
4424 	if (asoc)
4425 		asoc->pf_expose = params->assoc_value;
4426 	else
4427 		sctp_sk(sk)->pf_expose = params->assoc_value;
4428 	retval = 0;
4429 
4430 out:
4431 	return retval;
4432 }
4433 
4434 static int sctp_setsockopt_encap_port(struct sock *sk,
4435 				      struct sctp_udpencaps *encap,
4436 				      unsigned int optlen)
4437 {
4438 	struct sctp_association *asoc;
4439 	struct sctp_transport *t;
4440 	__be16 encap_port;
4441 
4442 	if (optlen != sizeof(*encap))
4443 		return -EINVAL;
4444 
4445 	/* If an address other than INADDR_ANY is specified, and
4446 	 * no transport is found, then the request is invalid.
4447 	 */
4448 	encap_port = (__force __be16)encap->sue_port;
4449 	if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4450 		t = sctp_addr_id2transport(sk, &encap->sue_address,
4451 					   encap->sue_assoc_id);
4452 		if (!t)
4453 			return -EINVAL;
4454 
4455 		t->encap_port = encap_port;
4456 		return 0;
4457 	}
4458 
4459 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4460 	 * socket is a one to many style socket, and an association
4461 	 * was not found, then the id was invalid.
4462 	 */
4463 	asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4464 	if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4465 	    sctp_style(sk, UDP))
4466 		return -EINVAL;
4467 
4468 	/* If changes are for association, also apply encap_port to
4469 	 * each transport.
4470 	 */
4471 	if (asoc) {
4472 		list_for_each_entry(t, &asoc->peer.transport_addr_list,
4473 				    transports)
4474 			t->encap_port = encap_port;
4475 
4476 		asoc->encap_port = encap_port;
4477 		return 0;
4478 	}
4479 
4480 	sctp_sk(sk)->encap_port = encap_port;
4481 	return 0;
4482 }
4483 
4484 static int sctp_setsockopt_probe_interval(struct sock *sk,
4485 					  struct sctp_probeinterval *params,
4486 					  unsigned int optlen)
4487 {
4488 	struct sctp_association *asoc;
4489 	struct sctp_transport *t;
4490 	__u32 probe_interval;
4491 
4492 	if (optlen != sizeof(*params))
4493 		return -EINVAL;
4494 
4495 	probe_interval = params->spi_interval;
4496 	if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
4497 		return -EINVAL;
4498 
4499 	/* If an address other than INADDR_ANY is specified, and
4500 	 * no transport is found, then the request is invalid.
4501 	 */
4502 	if (!sctp_is_any(sk, (union sctp_addr *)&params->spi_address)) {
4503 		t = sctp_addr_id2transport(sk, &params->spi_address,
4504 					   params->spi_assoc_id);
4505 		if (!t)
4506 			return -EINVAL;
4507 
4508 		t->probe_interval = msecs_to_jiffies(probe_interval);
4509 		sctp_transport_pl_reset(t);
4510 		return 0;
4511 	}
4512 
4513 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4514 	 * socket is a one to many style socket, and an association
4515 	 * was not found, then the id was invalid.
4516 	 */
4517 	asoc = sctp_id2assoc(sk, params->spi_assoc_id);
4518 	if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
4519 	    sctp_style(sk, UDP))
4520 		return -EINVAL;
4521 
4522 	/* If changes are for association, also apply probe_interval to
4523 	 * each transport.
4524 	 */
4525 	if (asoc) {
4526 		list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
4527 			t->probe_interval = msecs_to_jiffies(probe_interval);
4528 			sctp_transport_pl_reset(t);
4529 		}
4530 
4531 		asoc->probe_interval = msecs_to_jiffies(probe_interval);
4532 		return 0;
4533 	}
4534 
4535 	sctp_sk(sk)->probe_interval = probe_interval;
4536 	return 0;
4537 }
4538 
4539 /* API 6.2 setsockopt(), getsockopt()
4540  *
4541  * Applications use setsockopt() and getsockopt() to set or retrieve
4542  * socket options.  Socket options are used to change the default
4543  * behavior of sockets calls.  They are described in Section 7.
4544  *
4545  * The syntax is:
4546  *
4547  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4548  *                    int __user *optlen);
4549  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4550  *                    int optlen);
4551  *
4552  *   sd      - the socket descript.
4553  *   level   - set to IPPROTO_SCTP for all SCTP options.
4554  *   optname - the option name.
4555  *   optval  - the buffer to store the value of the option.
4556  *   optlen  - the size of the buffer.
4557  */
4558 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4559 			   sockptr_t optval, unsigned int optlen)
4560 {
4561 	void *kopt = NULL;
4562 	int retval = 0;
4563 
4564 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4565 
4566 	/* I can hardly begin to describe how wrong this is.  This is
4567 	 * so broken as to be worse than useless.  The API draft
4568 	 * REALLY is NOT helpful here...  I am not convinced that the
4569 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4570 	 * are at all well-founded.
4571 	 */
4572 	if (level != SOL_SCTP) {
4573 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4574 
4575 		return af->setsockopt(sk, level, optname, optval, optlen);
4576 	}
4577 
4578 	if (optlen > 0) {
4579 		/* Trim it to the biggest size sctp sockopt may need if necessary */
4580 		optlen = min_t(unsigned int, optlen,
4581 			       PAGE_ALIGN(USHRT_MAX +
4582 					  sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4583 		kopt = memdup_sockptr(optval, optlen);
4584 		if (IS_ERR(kopt))
4585 			return PTR_ERR(kopt);
4586 	}
4587 
4588 	lock_sock(sk);
4589 
4590 	switch (optname) {
4591 	case SCTP_SOCKOPT_BINDX_ADD:
4592 		/* 'optlen' is the size of the addresses buffer. */
4593 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4594 					       SCTP_BINDX_ADD_ADDR);
4595 		break;
4596 
4597 	case SCTP_SOCKOPT_BINDX_REM:
4598 		/* 'optlen' is the size of the addresses buffer. */
4599 		retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4600 					       SCTP_BINDX_REM_ADDR);
4601 		break;
4602 
4603 	case SCTP_SOCKOPT_CONNECTX_OLD:
4604 		/* 'optlen' is the size of the addresses buffer. */
4605 		retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4606 		break;
4607 
4608 	case SCTP_SOCKOPT_CONNECTX:
4609 		/* 'optlen' is the size of the addresses buffer. */
4610 		retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4611 		break;
4612 
4613 	case SCTP_DISABLE_FRAGMENTS:
4614 		retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4615 		break;
4616 
4617 	case SCTP_EVENTS:
4618 		retval = sctp_setsockopt_events(sk, kopt, optlen);
4619 		break;
4620 
4621 	case SCTP_AUTOCLOSE:
4622 		retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4623 		break;
4624 
4625 	case SCTP_PEER_ADDR_PARAMS:
4626 		retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4627 		break;
4628 
4629 	case SCTP_DELAYED_SACK:
4630 		retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4631 		break;
4632 	case SCTP_PARTIAL_DELIVERY_POINT:
4633 		retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4634 		break;
4635 
4636 	case SCTP_INITMSG:
4637 		retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4638 		break;
4639 	case SCTP_DEFAULT_SEND_PARAM:
4640 		retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4641 		break;
4642 	case SCTP_DEFAULT_SNDINFO:
4643 		retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4644 		break;
4645 	case SCTP_PRIMARY_ADDR:
4646 		retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4647 		break;
4648 	case SCTP_SET_PEER_PRIMARY_ADDR:
4649 		retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4650 		break;
4651 	case SCTP_NODELAY:
4652 		retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4653 		break;
4654 	case SCTP_RTOINFO:
4655 		retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4656 		break;
4657 	case SCTP_ASSOCINFO:
4658 		retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4659 		break;
4660 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4661 		retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4662 		break;
4663 	case SCTP_MAXSEG:
4664 		retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4665 		break;
4666 	case SCTP_ADAPTATION_LAYER:
4667 		retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4668 		break;
4669 	case SCTP_CONTEXT:
4670 		retval = sctp_setsockopt_context(sk, kopt, optlen);
4671 		break;
4672 	case SCTP_FRAGMENT_INTERLEAVE:
4673 		retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4674 		break;
4675 	case SCTP_MAX_BURST:
4676 		retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4677 		break;
4678 	case SCTP_AUTH_CHUNK:
4679 		retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4680 		break;
4681 	case SCTP_HMAC_IDENT:
4682 		retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4683 		break;
4684 	case SCTP_AUTH_KEY:
4685 		retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4686 		break;
4687 	case SCTP_AUTH_ACTIVE_KEY:
4688 		retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4689 		break;
4690 	case SCTP_AUTH_DELETE_KEY:
4691 		retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4692 		break;
4693 	case SCTP_AUTH_DEACTIVATE_KEY:
4694 		retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4695 		break;
4696 	case SCTP_AUTO_ASCONF:
4697 		retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4698 		break;
4699 	case SCTP_PEER_ADDR_THLDS:
4700 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4701 							  false);
4702 		break;
4703 	case SCTP_PEER_ADDR_THLDS_V2:
4704 		retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4705 							  true);
4706 		break;
4707 	case SCTP_RECVRCVINFO:
4708 		retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4709 		break;
4710 	case SCTP_RECVNXTINFO:
4711 		retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4712 		break;
4713 	case SCTP_PR_SUPPORTED:
4714 		retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4715 		break;
4716 	case SCTP_DEFAULT_PRINFO:
4717 		retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4718 		break;
4719 	case SCTP_RECONFIG_SUPPORTED:
4720 		retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4721 		break;
4722 	case SCTP_ENABLE_STREAM_RESET:
4723 		retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4724 		break;
4725 	case SCTP_RESET_STREAMS:
4726 		retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4727 		break;
4728 	case SCTP_RESET_ASSOC:
4729 		retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4730 		break;
4731 	case SCTP_ADD_STREAMS:
4732 		retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4733 		break;
4734 	case SCTP_STREAM_SCHEDULER:
4735 		retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4736 		break;
4737 	case SCTP_STREAM_SCHEDULER_VALUE:
4738 		retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4739 		break;
4740 	case SCTP_INTERLEAVING_SUPPORTED:
4741 		retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4742 								optlen);
4743 		break;
4744 	case SCTP_REUSE_PORT:
4745 		retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4746 		break;
4747 	case SCTP_EVENT:
4748 		retval = sctp_setsockopt_event(sk, kopt, optlen);
4749 		break;
4750 	case SCTP_ASCONF_SUPPORTED:
4751 		retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4752 		break;
4753 	case SCTP_AUTH_SUPPORTED:
4754 		retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4755 		break;
4756 	case SCTP_ECN_SUPPORTED:
4757 		retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4758 		break;
4759 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4760 		retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4761 		break;
4762 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
4763 		retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4764 		break;
4765 	case SCTP_PLPMTUD_PROBE_INTERVAL:
4766 		retval = sctp_setsockopt_probe_interval(sk, kopt, optlen);
4767 		break;
4768 	default:
4769 		retval = -ENOPROTOOPT;
4770 		break;
4771 	}
4772 
4773 	release_sock(sk);
4774 	kfree(kopt);
4775 	return retval;
4776 }
4777 
4778 /* API 3.1.6 connect() - UDP Style Syntax
4779  *
4780  * An application may use the connect() call in the UDP model to initiate an
4781  * association without sending data.
4782  *
4783  * The syntax is:
4784  *
4785  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4786  *
4787  * sd: the socket descriptor to have a new association added to.
4788  *
4789  * nam: the address structure (either struct sockaddr_in or struct
4790  *    sockaddr_in6 defined in RFC2553 [7]).
4791  *
4792  * len: the size of the address.
4793  */
4794 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4795 			int addr_len, int flags)
4796 {
4797 	struct sctp_af *af;
4798 	int err = -EINVAL;
4799 
4800 	lock_sock(sk);
4801 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4802 		 addr, addr_len);
4803 
4804 	/* Validate addr_len before calling common connect/connectx routine. */
4805 	af = sctp_get_af_specific(addr->sa_family);
4806 	if (af && addr_len >= af->sockaddr_len)
4807 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4808 
4809 	release_sock(sk);
4810 	return err;
4811 }
4812 
4813 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4814 		      int addr_len, int flags)
4815 {
4816 	if (addr_len < sizeof(uaddr->sa_family))
4817 		return -EINVAL;
4818 
4819 	if (uaddr->sa_family == AF_UNSPEC)
4820 		return -EOPNOTSUPP;
4821 
4822 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4823 }
4824 
4825 /* FIXME: Write comments. */
4826 static int sctp_disconnect(struct sock *sk, int flags)
4827 {
4828 	return -EOPNOTSUPP; /* STUB */
4829 }
4830 
4831 /* 4.1.4 accept() - TCP Style Syntax
4832  *
4833  * Applications use accept() call to remove an established SCTP
4834  * association from the accept queue of the endpoint.  A new socket
4835  * descriptor will be returned from accept() to represent the newly
4836  * formed association.
4837  */
4838 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4839 {
4840 	struct sctp_sock *sp;
4841 	struct sctp_endpoint *ep;
4842 	struct sock *newsk = NULL;
4843 	struct sctp_association *asoc;
4844 	long timeo;
4845 	int error = 0;
4846 
4847 	lock_sock(sk);
4848 
4849 	sp = sctp_sk(sk);
4850 	ep = sp->ep;
4851 
4852 	if (!sctp_style(sk, TCP)) {
4853 		error = -EOPNOTSUPP;
4854 		goto out;
4855 	}
4856 
4857 	if (!sctp_sstate(sk, LISTENING)) {
4858 		error = -EINVAL;
4859 		goto out;
4860 	}
4861 
4862 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4863 
4864 	error = sctp_wait_for_accept(sk, timeo);
4865 	if (error)
4866 		goto out;
4867 
4868 	/* We treat the list of associations on the endpoint as the accept
4869 	 * queue and pick the first association on the list.
4870 	 */
4871 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4872 
4873 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4874 	if (!newsk) {
4875 		error = -ENOMEM;
4876 		goto out;
4877 	}
4878 
4879 	/* Populate the fields of the newsk from the oldsk and migrate the
4880 	 * asoc to the newsk.
4881 	 */
4882 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4883 	if (error) {
4884 		sk_common_release(newsk);
4885 		newsk = NULL;
4886 	}
4887 
4888 out:
4889 	release_sock(sk);
4890 	*err = error;
4891 	return newsk;
4892 }
4893 
4894 /* The SCTP ioctl handler. */
4895 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4896 {
4897 	int rc = -ENOTCONN;
4898 
4899 	lock_sock(sk);
4900 
4901 	/*
4902 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4903 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4904 	 */
4905 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4906 		goto out;
4907 
4908 	switch (cmd) {
4909 	case SIOCINQ: {
4910 		struct sk_buff *skb;
4911 		unsigned int amount = 0;
4912 
4913 		skb = skb_peek(&sk->sk_receive_queue);
4914 		if (skb != NULL) {
4915 			/*
4916 			 * We will only return the amount of this packet since
4917 			 * that is all that will be read.
4918 			 */
4919 			amount = skb->len;
4920 		}
4921 		rc = put_user(amount, (int __user *)arg);
4922 		break;
4923 	}
4924 	default:
4925 		rc = -ENOIOCTLCMD;
4926 		break;
4927 	}
4928 out:
4929 	release_sock(sk);
4930 	return rc;
4931 }
4932 
4933 /* This is the function which gets called during socket creation to
4934  * initialized the SCTP-specific portion of the sock.
4935  * The sock structure should already be zero-filled memory.
4936  */
4937 static int sctp_init_sock(struct sock *sk)
4938 {
4939 	struct net *net = sock_net(sk);
4940 	struct sctp_sock *sp;
4941 
4942 	pr_debug("%s: sk:%p\n", __func__, sk);
4943 
4944 	sp = sctp_sk(sk);
4945 
4946 	/* Initialize the SCTP per socket area.  */
4947 	switch (sk->sk_type) {
4948 	case SOCK_SEQPACKET:
4949 		sp->type = SCTP_SOCKET_UDP;
4950 		break;
4951 	case SOCK_STREAM:
4952 		sp->type = SCTP_SOCKET_TCP;
4953 		break;
4954 	default:
4955 		return -ESOCKTNOSUPPORT;
4956 	}
4957 
4958 	sk->sk_gso_type = SKB_GSO_SCTP;
4959 
4960 	/* Initialize default send parameters. These parameters can be
4961 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4962 	 */
4963 	sp->default_stream = 0;
4964 	sp->default_ppid = 0;
4965 	sp->default_flags = 0;
4966 	sp->default_context = 0;
4967 	sp->default_timetolive = 0;
4968 
4969 	sp->default_rcv_context = 0;
4970 	sp->max_burst = net->sctp.max_burst;
4971 
4972 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4973 
4974 	/* Initialize default setup parameters. These parameters
4975 	 * can be modified with the SCTP_INITMSG socket option or
4976 	 * overridden by the SCTP_INIT CMSG.
4977 	 */
4978 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4979 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4980 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4981 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4982 
4983 	/* Initialize default RTO related parameters.  These parameters can
4984 	 * be modified for with the SCTP_RTOINFO socket option.
4985 	 */
4986 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4987 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4988 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4989 
4990 	/* Initialize default association related parameters. These parameters
4991 	 * can be modified with the SCTP_ASSOCINFO socket option.
4992 	 */
4993 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4994 	sp->assocparams.sasoc_number_peer_destinations = 0;
4995 	sp->assocparams.sasoc_peer_rwnd = 0;
4996 	sp->assocparams.sasoc_local_rwnd = 0;
4997 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4998 
4999 	/* Initialize default event subscriptions. By default, all the
5000 	 * options are off.
5001 	 */
5002 	sp->subscribe = 0;
5003 
5004 	/* Default Peer Address Parameters.  These defaults can
5005 	 * be modified via SCTP_PEER_ADDR_PARAMS
5006 	 */
5007 	sp->hbinterval  = net->sctp.hb_interval;
5008 	sp->udp_port    = htons(net->sctp.udp_port);
5009 	sp->encap_port  = htons(net->sctp.encap_port);
5010 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
5011 	sp->pf_retrans  = net->sctp.pf_retrans;
5012 	sp->ps_retrans  = net->sctp.ps_retrans;
5013 	sp->pf_expose   = net->sctp.pf_expose;
5014 	sp->pathmtu     = 0; /* allow default discovery */
5015 	sp->sackdelay   = net->sctp.sack_timeout;
5016 	sp->sackfreq	= 2;
5017 	sp->param_flags = SPP_HB_ENABLE |
5018 			  SPP_PMTUD_ENABLE |
5019 			  SPP_SACKDELAY_ENABLE;
5020 	sp->default_ss = SCTP_SS_DEFAULT;
5021 
5022 	/* If enabled no SCTP message fragmentation will be performed.
5023 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5024 	 */
5025 	sp->disable_fragments = 0;
5026 
5027 	/* Enable Nagle algorithm by default.  */
5028 	sp->nodelay           = 0;
5029 
5030 	sp->recvrcvinfo = 0;
5031 	sp->recvnxtinfo = 0;
5032 
5033 	/* Enable by default. */
5034 	sp->v4mapped          = 1;
5035 
5036 	/* Auto-close idle associations after the configured
5037 	 * number of seconds.  A value of 0 disables this
5038 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
5039 	 * for UDP-style sockets only.
5040 	 */
5041 	sp->autoclose         = 0;
5042 
5043 	/* User specified fragmentation limit. */
5044 	sp->user_frag         = 0;
5045 
5046 	sp->adaptation_ind = 0;
5047 
5048 	sp->pf = sctp_get_pf_specific(sk->sk_family);
5049 
5050 	/* Control variables for partial data delivery. */
5051 	atomic_set(&sp->pd_mode, 0);
5052 	skb_queue_head_init(&sp->pd_lobby);
5053 	sp->frag_interleave = 0;
5054 	sp->probe_interval = net->sctp.probe_interval;
5055 
5056 	/* Create a per socket endpoint structure.  Even if we
5057 	 * change the data structure relationships, this may still
5058 	 * be useful for storing pre-connect address information.
5059 	 */
5060 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5061 	if (!sp->ep)
5062 		return -ENOMEM;
5063 
5064 	sp->hmac = NULL;
5065 
5066 	sk->sk_destruct = sctp_destruct_sock;
5067 
5068 	SCTP_DBG_OBJCNT_INC(sock);
5069 
5070 	sk_sockets_allocated_inc(sk);
5071 	sock_prot_inuse_add(net, sk->sk_prot, 1);
5072 
5073 	return 0;
5074 }
5075 
5076 /* Cleanup any SCTP per socket resources. Must be called with
5077  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5078  */
5079 static void sctp_destroy_sock(struct sock *sk)
5080 {
5081 	struct sctp_sock *sp;
5082 
5083 	pr_debug("%s: sk:%p\n", __func__, sk);
5084 
5085 	/* Release our hold on the endpoint. */
5086 	sp = sctp_sk(sk);
5087 	/* This could happen during socket init, thus we bail out
5088 	 * early, since the rest of the below is not setup either.
5089 	 */
5090 	if (sp->ep == NULL)
5091 		return;
5092 
5093 	if (sp->do_auto_asconf) {
5094 		sp->do_auto_asconf = 0;
5095 		list_del(&sp->auto_asconf_list);
5096 	}
5097 	sctp_endpoint_free(sp->ep);
5098 	sk_sockets_allocated_dec(sk);
5099 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5100 }
5101 
5102 /* Triggered when there are no references on the socket anymore */
5103 static void sctp_destruct_sock(struct sock *sk)
5104 {
5105 	struct sctp_sock *sp = sctp_sk(sk);
5106 
5107 	/* Free up the HMAC transform. */
5108 	crypto_free_shash(sp->hmac);
5109 
5110 	inet_sock_destruct(sk);
5111 }
5112 
5113 /* API 4.1.7 shutdown() - TCP Style Syntax
5114  *     int shutdown(int socket, int how);
5115  *
5116  *     sd      - the socket descriptor of the association to be closed.
5117  *     how     - Specifies the type of shutdown.  The  values  are
5118  *               as follows:
5119  *               SHUT_RD
5120  *                     Disables further receive operations. No SCTP
5121  *                     protocol action is taken.
5122  *               SHUT_WR
5123  *                     Disables further send operations, and initiates
5124  *                     the SCTP shutdown sequence.
5125  *               SHUT_RDWR
5126  *                     Disables further send  and  receive  operations
5127  *                     and initiates the SCTP shutdown sequence.
5128  */
5129 static void sctp_shutdown(struct sock *sk, int how)
5130 {
5131 	struct net *net = sock_net(sk);
5132 	struct sctp_endpoint *ep;
5133 
5134 	if (!sctp_style(sk, TCP))
5135 		return;
5136 
5137 	ep = sctp_sk(sk)->ep;
5138 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5139 		struct sctp_association *asoc;
5140 
5141 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5142 		asoc = list_entry(ep->asocs.next,
5143 				  struct sctp_association, asocs);
5144 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5145 	}
5146 }
5147 
5148 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5149 		       struct sctp_info *info)
5150 {
5151 	struct sctp_transport *prim;
5152 	struct list_head *pos;
5153 	int mask;
5154 
5155 	memset(info, 0, sizeof(*info));
5156 	if (!asoc) {
5157 		struct sctp_sock *sp = sctp_sk(sk);
5158 
5159 		info->sctpi_s_autoclose = sp->autoclose;
5160 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5161 		info->sctpi_s_pd_point = sp->pd_point;
5162 		info->sctpi_s_nodelay = sp->nodelay;
5163 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5164 		info->sctpi_s_v4mapped = sp->v4mapped;
5165 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5166 		info->sctpi_s_type = sp->type;
5167 
5168 		return 0;
5169 	}
5170 
5171 	info->sctpi_tag = asoc->c.my_vtag;
5172 	info->sctpi_state = asoc->state;
5173 	info->sctpi_rwnd = asoc->a_rwnd;
5174 	info->sctpi_unackdata = asoc->unack_data;
5175 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5176 	info->sctpi_instrms = asoc->stream.incnt;
5177 	info->sctpi_outstrms = asoc->stream.outcnt;
5178 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5179 		info->sctpi_inqueue++;
5180 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5181 		info->sctpi_outqueue++;
5182 	info->sctpi_overall_error = asoc->overall_error_count;
5183 	info->sctpi_max_burst = asoc->max_burst;
5184 	info->sctpi_maxseg = asoc->frag_point;
5185 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5186 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5187 
5188 	mask = asoc->peer.ecn_capable << 1;
5189 	mask = (mask | asoc->peer.ipv4_address) << 1;
5190 	mask = (mask | asoc->peer.ipv6_address) << 1;
5191 	mask = (mask | asoc->peer.hostname_address) << 1;
5192 	mask = (mask | asoc->peer.asconf_capable) << 1;
5193 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5194 	mask = (mask | asoc->peer.auth_capable);
5195 	info->sctpi_peer_capable = mask;
5196 	mask = asoc->peer.sack_needed << 1;
5197 	mask = (mask | asoc->peer.sack_generation) << 1;
5198 	mask = (mask | asoc->peer.zero_window_announced);
5199 	info->sctpi_peer_sack = mask;
5200 
5201 	info->sctpi_isacks = asoc->stats.isacks;
5202 	info->sctpi_osacks = asoc->stats.osacks;
5203 	info->sctpi_opackets = asoc->stats.opackets;
5204 	info->sctpi_ipackets = asoc->stats.ipackets;
5205 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5206 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5207 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5208 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5209 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5210 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5211 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5212 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5213 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5214 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5215 
5216 	prim = asoc->peer.primary_path;
5217 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5218 	info->sctpi_p_state = prim->state;
5219 	info->sctpi_p_cwnd = prim->cwnd;
5220 	info->sctpi_p_srtt = prim->srtt;
5221 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5222 	info->sctpi_p_hbinterval = prim->hbinterval;
5223 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5224 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5225 	info->sctpi_p_ssthresh = prim->ssthresh;
5226 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5227 	info->sctpi_p_flight_size = prim->flight_size;
5228 	info->sctpi_p_error = prim->error_count;
5229 
5230 	return 0;
5231 }
5232 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5233 
5234 /* use callback to avoid exporting the core structure */
5235 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5236 {
5237 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5238 
5239 	rhashtable_walk_start(iter);
5240 }
5241 
5242 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5243 {
5244 	rhashtable_walk_stop(iter);
5245 	rhashtable_walk_exit(iter);
5246 }
5247 
5248 struct sctp_transport *sctp_transport_get_next(struct net *net,
5249 					       struct rhashtable_iter *iter)
5250 {
5251 	struct sctp_transport *t;
5252 
5253 	t = rhashtable_walk_next(iter);
5254 	for (; t; t = rhashtable_walk_next(iter)) {
5255 		if (IS_ERR(t)) {
5256 			if (PTR_ERR(t) == -EAGAIN)
5257 				continue;
5258 			break;
5259 		}
5260 
5261 		if (!sctp_transport_hold(t))
5262 			continue;
5263 
5264 		if (net_eq(t->asoc->base.net, net) &&
5265 		    t->asoc->peer.primary_path == t)
5266 			break;
5267 
5268 		sctp_transport_put(t);
5269 	}
5270 
5271 	return t;
5272 }
5273 
5274 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5275 					      struct rhashtable_iter *iter,
5276 					      int pos)
5277 {
5278 	struct sctp_transport *t;
5279 
5280 	if (!pos)
5281 		return SEQ_START_TOKEN;
5282 
5283 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5284 		if (!--pos)
5285 			break;
5286 		sctp_transport_put(t);
5287 	}
5288 
5289 	return t;
5290 }
5291 
5292 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5293 			   void *p) {
5294 	int err = 0;
5295 	int hash = 0;
5296 	struct sctp_endpoint *ep;
5297 	struct sctp_hashbucket *head;
5298 
5299 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5300 	     hash++, head++) {
5301 		read_lock_bh(&head->lock);
5302 		sctp_for_each_hentry(ep, &head->chain) {
5303 			err = cb(ep, p);
5304 			if (err)
5305 				break;
5306 		}
5307 		read_unlock_bh(&head->lock);
5308 	}
5309 
5310 	return err;
5311 }
5312 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5313 
5314 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net,
5315 				  const union sctp_addr *laddr,
5316 				  const union sctp_addr *paddr, void *p)
5317 {
5318 	struct sctp_transport *transport;
5319 	struct sctp_endpoint *ep;
5320 	int err = -ENOENT;
5321 
5322 	rcu_read_lock();
5323 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5324 	if (!transport) {
5325 		rcu_read_unlock();
5326 		return err;
5327 	}
5328 	ep = transport->asoc->ep;
5329 	if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5330 		sctp_transport_put(transport);
5331 		rcu_read_unlock();
5332 		return err;
5333 	}
5334 	rcu_read_unlock();
5335 
5336 	err = cb(ep, transport, p);
5337 	sctp_endpoint_put(ep);
5338 	sctp_transport_put(transport);
5339 	return err;
5340 }
5341 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5342 
5343 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done,
5344 				    struct net *net, int *pos, void *p)
5345 {
5346 	struct rhashtable_iter hti;
5347 	struct sctp_transport *tsp;
5348 	struct sctp_endpoint *ep;
5349 	int ret;
5350 
5351 again:
5352 	ret = 0;
5353 	sctp_transport_walk_start(&hti);
5354 
5355 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5356 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5357 		ep = tsp->asoc->ep;
5358 		if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5359 			ret = cb(ep, tsp, p);
5360 			if (ret)
5361 				break;
5362 			sctp_endpoint_put(ep);
5363 		}
5364 		(*pos)++;
5365 		sctp_transport_put(tsp);
5366 	}
5367 	sctp_transport_walk_stop(&hti);
5368 
5369 	if (ret) {
5370 		if (cb_done && !cb_done(ep, tsp, p)) {
5371 			(*pos)++;
5372 			sctp_endpoint_put(ep);
5373 			sctp_transport_put(tsp);
5374 			goto again;
5375 		}
5376 		sctp_endpoint_put(ep);
5377 		sctp_transport_put(tsp);
5378 	}
5379 
5380 	return ret;
5381 }
5382 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process);
5383 
5384 /* 7.2.1 Association Status (SCTP_STATUS)
5385 
5386  * Applications can retrieve current status information about an
5387  * association, including association state, peer receiver window size,
5388  * number of unacked data chunks, and number of data chunks pending
5389  * receipt.  This information is read-only.
5390  */
5391 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5392 				       char __user *optval,
5393 				       int __user *optlen)
5394 {
5395 	struct sctp_status status;
5396 	struct sctp_association *asoc = NULL;
5397 	struct sctp_transport *transport;
5398 	sctp_assoc_t associd;
5399 	int retval = 0;
5400 
5401 	if (len < sizeof(status)) {
5402 		retval = -EINVAL;
5403 		goto out;
5404 	}
5405 
5406 	len = sizeof(status);
5407 	if (copy_from_user(&status, optval, len)) {
5408 		retval = -EFAULT;
5409 		goto out;
5410 	}
5411 
5412 	associd = status.sstat_assoc_id;
5413 	asoc = sctp_id2assoc(sk, associd);
5414 	if (!asoc) {
5415 		retval = -EINVAL;
5416 		goto out;
5417 	}
5418 
5419 	transport = asoc->peer.primary_path;
5420 
5421 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5422 	status.sstat_state = sctp_assoc_to_state(asoc);
5423 	status.sstat_rwnd =  asoc->peer.rwnd;
5424 	status.sstat_unackdata = asoc->unack_data;
5425 
5426 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5427 	status.sstat_instrms = asoc->stream.incnt;
5428 	status.sstat_outstrms = asoc->stream.outcnt;
5429 	status.sstat_fragmentation_point = asoc->frag_point;
5430 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5431 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5432 			transport->af_specific->sockaddr_len);
5433 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5434 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5435 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5436 	status.sstat_primary.spinfo_state = transport->state;
5437 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5438 	status.sstat_primary.spinfo_srtt = transport->srtt;
5439 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5440 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5441 
5442 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5443 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5444 
5445 	if (put_user(len, optlen)) {
5446 		retval = -EFAULT;
5447 		goto out;
5448 	}
5449 
5450 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5451 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5452 		 status.sstat_assoc_id);
5453 
5454 	if (copy_to_user(optval, &status, len)) {
5455 		retval = -EFAULT;
5456 		goto out;
5457 	}
5458 
5459 out:
5460 	return retval;
5461 }
5462 
5463 
5464 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5465  *
5466  * Applications can retrieve information about a specific peer address
5467  * of an association, including its reachability state, congestion
5468  * window, and retransmission timer values.  This information is
5469  * read-only.
5470  */
5471 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5472 					  char __user *optval,
5473 					  int __user *optlen)
5474 {
5475 	struct sctp_paddrinfo pinfo;
5476 	struct sctp_transport *transport;
5477 	int retval = 0;
5478 
5479 	if (len < sizeof(pinfo)) {
5480 		retval = -EINVAL;
5481 		goto out;
5482 	}
5483 
5484 	len = sizeof(pinfo);
5485 	if (copy_from_user(&pinfo, optval, len)) {
5486 		retval = -EFAULT;
5487 		goto out;
5488 	}
5489 
5490 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5491 					   pinfo.spinfo_assoc_id);
5492 	if (!transport) {
5493 		retval = -EINVAL;
5494 		goto out;
5495 	}
5496 
5497 	if (transport->state == SCTP_PF &&
5498 	    transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5499 		retval = -EACCES;
5500 		goto out;
5501 	}
5502 
5503 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5504 	pinfo.spinfo_state = transport->state;
5505 	pinfo.spinfo_cwnd = transport->cwnd;
5506 	pinfo.spinfo_srtt = transport->srtt;
5507 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5508 	pinfo.spinfo_mtu = transport->pathmtu;
5509 
5510 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5511 		pinfo.spinfo_state = SCTP_ACTIVE;
5512 
5513 	if (put_user(len, optlen)) {
5514 		retval = -EFAULT;
5515 		goto out;
5516 	}
5517 
5518 	if (copy_to_user(optval, &pinfo, len)) {
5519 		retval = -EFAULT;
5520 		goto out;
5521 	}
5522 
5523 out:
5524 	return retval;
5525 }
5526 
5527 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5528  *
5529  * This option is a on/off flag.  If enabled no SCTP message
5530  * fragmentation will be performed.  Instead if a message being sent
5531  * exceeds the current PMTU size, the message will NOT be sent and
5532  * instead a error will be indicated to the user.
5533  */
5534 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5535 					char __user *optval, int __user *optlen)
5536 {
5537 	int val;
5538 
5539 	if (len < sizeof(int))
5540 		return -EINVAL;
5541 
5542 	len = sizeof(int);
5543 	val = (sctp_sk(sk)->disable_fragments == 1);
5544 	if (put_user(len, optlen))
5545 		return -EFAULT;
5546 	if (copy_to_user(optval, &val, len))
5547 		return -EFAULT;
5548 	return 0;
5549 }
5550 
5551 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5552  *
5553  * This socket option is used to specify various notifications and
5554  * ancillary data the user wishes to receive.
5555  */
5556 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5557 				  int __user *optlen)
5558 {
5559 	struct sctp_event_subscribe subscribe;
5560 	__u8 *sn_type = (__u8 *)&subscribe;
5561 	int i;
5562 
5563 	if (len == 0)
5564 		return -EINVAL;
5565 	if (len > sizeof(struct sctp_event_subscribe))
5566 		len = sizeof(struct sctp_event_subscribe);
5567 	if (put_user(len, optlen))
5568 		return -EFAULT;
5569 
5570 	for (i = 0; i < len; i++)
5571 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5572 							SCTP_SN_TYPE_BASE + i);
5573 
5574 	if (copy_to_user(optval, &subscribe, len))
5575 		return -EFAULT;
5576 
5577 	return 0;
5578 }
5579 
5580 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5581  *
5582  * This socket option is applicable to the UDP-style socket only.  When
5583  * set it will cause associations that are idle for more than the
5584  * specified number of seconds to automatically close.  An association
5585  * being idle is defined an association that has NOT sent or received
5586  * user data.  The special value of '0' indicates that no automatic
5587  * close of any associations should be performed.  The option expects an
5588  * integer defining the number of seconds of idle time before an
5589  * association is closed.
5590  */
5591 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5592 {
5593 	/* Applicable to UDP-style socket only */
5594 	if (sctp_style(sk, TCP))
5595 		return -EOPNOTSUPP;
5596 	if (len < sizeof(int))
5597 		return -EINVAL;
5598 	len = sizeof(int);
5599 	if (put_user(len, optlen))
5600 		return -EFAULT;
5601 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5602 		return -EFAULT;
5603 	return 0;
5604 }
5605 
5606 /* Helper routine to branch off an association to a new socket.  */
5607 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5608 {
5609 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5610 	struct sctp_sock *sp = sctp_sk(sk);
5611 	struct socket *sock;
5612 	int err = 0;
5613 
5614 	/* Do not peel off from one netns to another one. */
5615 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5616 		return -EINVAL;
5617 
5618 	if (!asoc)
5619 		return -EINVAL;
5620 
5621 	/* An association cannot be branched off from an already peeled-off
5622 	 * socket, nor is this supported for tcp style sockets.
5623 	 */
5624 	if (!sctp_style(sk, UDP))
5625 		return -EINVAL;
5626 
5627 	/* Create a new socket.  */
5628 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5629 	if (err < 0)
5630 		return err;
5631 
5632 	sctp_copy_sock(sock->sk, sk, asoc);
5633 
5634 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5635 	 * Set the daddr and initialize id to something more random and also
5636 	 * copy over any ip options.
5637 	 */
5638 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk);
5639 	sp->pf->copy_ip_options(sk, sock->sk);
5640 
5641 	/* Populate the fields of the newsk from the oldsk and migrate the
5642 	 * asoc to the newsk.
5643 	 */
5644 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5645 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5646 	if (err) {
5647 		sock_release(sock);
5648 		sock = NULL;
5649 	}
5650 
5651 	*sockp = sock;
5652 
5653 	return err;
5654 }
5655 EXPORT_SYMBOL(sctp_do_peeloff);
5656 
5657 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5658 					  struct file **newfile, unsigned flags)
5659 {
5660 	struct socket *newsock;
5661 	int retval;
5662 
5663 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5664 	if (retval < 0)
5665 		goto out;
5666 
5667 	/* Map the socket to an unused fd that can be returned to the user.  */
5668 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5669 	if (retval < 0) {
5670 		sock_release(newsock);
5671 		goto out;
5672 	}
5673 
5674 	*newfile = sock_alloc_file(newsock, 0, NULL);
5675 	if (IS_ERR(*newfile)) {
5676 		put_unused_fd(retval);
5677 		retval = PTR_ERR(*newfile);
5678 		*newfile = NULL;
5679 		return retval;
5680 	}
5681 
5682 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5683 		 retval);
5684 
5685 	peeloff->sd = retval;
5686 
5687 	if (flags & SOCK_NONBLOCK)
5688 		(*newfile)->f_flags |= O_NONBLOCK;
5689 out:
5690 	return retval;
5691 }
5692 
5693 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5694 {
5695 	sctp_peeloff_arg_t peeloff;
5696 	struct file *newfile = NULL;
5697 	int retval = 0;
5698 
5699 	if (len < sizeof(sctp_peeloff_arg_t))
5700 		return -EINVAL;
5701 	len = sizeof(sctp_peeloff_arg_t);
5702 	if (copy_from_user(&peeloff, optval, len))
5703 		return -EFAULT;
5704 
5705 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5706 	if (retval < 0)
5707 		goto out;
5708 
5709 	/* Return the fd mapped to the new socket.  */
5710 	if (put_user(len, optlen)) {
5711 		fput(newfile);
5712 		put_unused_fd(retval);
5713 		return -EFAULT;
5714 	}
5715 
5716 	if (copy_to_user(optval, &peeloff, len)) {
5717 		fput(newfile);
5718 		put_unused_fd(retval);
5719 		return -EFAULT;
5720 	}
5721 	fd_install(retval, newfile);
5722 out:
5723 	return retval;
5724 }
5725 
5726 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5727 					 char __user *optval, int __user *optlen)
5728 {
5729 	sctp_peeloff_flags_arg_t peeloff;
5730 	struct file *newfile = NULL;
5731 	int retval = 0;
5732 
5733 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5734 		return -EINVAL;
5735 	len = sizeof(sctp_peeloff_flags_arg_t);
5736 	if (copy_from_user(&peeloff, optval, len))
5737 		return -EFAULT;
5738 
5739 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5740 						&newfile, peeloff.flags);
5741 	if (retval < 0)
5742 		goto out;
5743 
5744 	/* Return the fd mapped to the new socket.  */
5745 	if (put_user(len, optlen)) {
5746 		fput(newfile);
5747 		put_unused_fd(retval);
5748 		return -EFAULT;
5749 	}
5750 
5751 	if (copy_to_user(optval, &peeloff, len)) {
5752 		fput(newfile);
5753 		put_unused_fd(retval);
5754 		return -EFAULT;
5755 	}
5756 	fd_install(retval, newfile);
5757 out:
5758 	return retval;
5759 }
5760 
5761 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5762  *
5763  * Applications can enable or disable heartbeats for any peer address of
5764  * an association, modify an address's heartbeat interval, force a
5765  * heartbeat to be sent immediately, and adjust the address's maximum
5766  * number of retransmissions sent before an address is considered
5767  * unreachable.  The following structure is used to access and modify an
5768  * address's parameters:
5769  *
5770  *  struct sctp_paddrparams {
5771  *     sctp_assoc_t            spp_assoc_id;
5772  *     struct sockaddr_storage spp_address;
5773  *     uint32_t                spp_hbinterval;
5774  *     uint16_t                spp_pathmaxrxt;
5775  *     uint32_t                spp_pathmtu;
5776  *     uint32_t                spp_sackdelay;
5777  *     uint32_t                spp_flags;
5778  * };
5779  *
5780  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5781  *                     application, and identifies the association for
5782  *                     this query.
5783  *   spp_address     - This specifies which address is of interest.
5784  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5785  *                     in milliseconds.  If a  value of zero
5786  *                     is present in this field then no changes are to
5787  *                     be made to this parameter.
5788  *   spp_pathmaxrxt  - This contains the maximum number of
5789  *                     retransmissions before this address shall be
5790  *                     considered unreachable. If a  value of zero
5791  *                     is present in this field then no changes are to
5792  *                     be made to this parameter.
5793  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5794  *                     specified here will be the "fixed" path mtu.
5795  *                     Note that if the spp_address field is empty
5796  *                     then all associations on this address will
5797  *                     have this fixed path mtu set upon them.
5798  *
5799  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5800  *                     the number of milliseconds that sacks will be delayed
5801  *                     for. This value will apply to all addresses of an
5802  *                     association if the spp_address field is empty. Note
5803  *                     also, that if delayed sack is enabled and this
5804  *                     value is set to 0, no change is made to the last
5805  *                     recorded delayed sack timer value.
5806  *
5807  *   spp_flags       - These flags are used to control various features
5808  *                     on an association. The flag field may contain
5809  *                     zero or more of the following options.
5810  *
5811  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5812  *                     specified address. Note that if the address
5813  *                     field is empty all addresses for the association
5814  *                     have heartbeats enabled upon them.
5815  *
5816  *                     SPP_HB_DISABLE - Disable heartbeats on the
5817  *                     speicifed address. Note that if the address
5818  *                     field is empty all addresses for the association
5819  *                     will have their heartbeats disabled. Note also
5820  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5821  *                     mutually exclusive, only one of these two should
5822  *                     be specified. Enabling both fields will have
5823  *                     undetermined results.
5824  *
5825  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5826  *                     to be made immediately.
5827  *
5828  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5829  *                     discovery upon the specified address. Note that
5830  *                     if the address feild is empty then all addresses
5831  *                     on the association are effected.
5832  *
5833  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5834  *                     discovery upon the specified address. Note that
5835  *                     if the address feild is empty then all addresses
5836  *                     on the association are effected. Not also that
5837  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5838  *                     exclusive. Enabling both will have undetermined
5839  *                     results.
5840  *
5841  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5842  *                     on delayed sack. The time specified in spp_sackdelay
5843  *                     is used to specify the sack delay for this address. Note
5844  *                     that if spp_address is empty then all addresses will
5845  *                     enable delayed sack and take on the sack delay
5846  *                     value specified in spp_sackdelay.
5847  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5848  *                     off delayed sack. If the spp_address field is blank then
5849  *                     delayed sack is disabled for the entire association. Note
5850  *                     also that this field is mutually exclusive to
5851  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5852  *                     results.
5853  *
5854  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5855  *                     setting of the IPV6 flow label value.  The value is
5856  *                     contained in the spp_ipv6_flowlabel field.
5857  *                     Upon retrieval, this flag will be set to indicate that
5858  *                     the spp_ipv6_flowlabel field has a valid value returned.
5859  *                     If a specific destination address is set (in the
5860  *                     spp_address field), then the value returned is that of
5861  *                     the address.  If just an association is specified (and
5862  *                     no address), then the association's default flow label
5863  *                     is returned.  If neither an association nor a destination
5864  *                     is specified, then the socket's default flow label is
5865  *                     returned.  For non-IPv6 sockets, this flag will be left
5866  *                     cleared.
5867  *
5868  *                     SPP_DSCP:  Setting this flag enables the setting of the
5869  *                     Differentiated Services Code Point (DSCP) value
5870  *                     associated with either the association or a specific
5871  *                     address.  The value is obtained in the spp_dscp field.
5872  *                     Upon retrieval, this flag will be set to indicate that
5873  *                     the spp_dscp field has a valid value returned.  If a
5874  *                     specific destination address is set when called (in the
5875  *                     spp_address field), then that specific destination
5876  *                     address's DSCP value is returned.  If just an association
5877  *                     is specified, then the association's default DSCP is
5878  *                     returned.  If neither an association nor a destination is
5879  *                     specified, then the socket's default DSCP is returned.
5880  *
5881  *   spp_ipv6_flowlabel
5882  *                   - This field is used in conjunction with the
5883  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5884  *                     The 20 least significant bits are used for the flow
5885  *                     label.  This setting has precedence over any IPv6-layer
5886  *                     setting.
5887  *
5888  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5889  *                     and contains the DSCP.  The 6 most significant bits are
5890  *                     used for the DSCP.  This setting has precedence over any
5891  *                     IPv4- or IPv6- layer setting.
5892  */
5893 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5894 					    char __user *optval, int __user *optlen)
5895 {
5896 	struct sctp_paddrparams  params;
5897 	struct sctp_transport   *trans = NULL;
5898 	struct sctp_association *asoc = NULL;
5899 	struct sctp_sock        *sp = sctp_sk(sk);
5900 
5901 	if (len >= sizeof(params))
5902 		len = sizeof(params);
5903 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5904 				       spp_ipv6_flowlabel), 4))
5905 		len = ALIGN(offsetof(struct sctp_paddrparams,
5906 				     spp_ipv6_flowlabel), 4);
5907 	else
5908 		return -EINVAL;
5909 
5910 	if (copy_from_user(&params, optval, len))
5911 		return -EFAULT;
5912 
5913 	/* If an address other than INADDR_ANY is specified, and
5914 	 * no transport is found, then the request is invalid.
5915 	 */
5916 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5917 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5918 					       params.spp_assoc_id);
5919 		if (!trans) {
5920 			pr_debug("%s: failed no transport\n", __func__);
5921 			return -EINVAL;
5922 		}
5923 	}
5924 
5925 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5926 	 * socket is a one to many style socket, and an association
5927 	 * was not found, then the id was invalid.
5928 	 */
5929 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5930 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5931 	    sctp_style(sk, UDP)) {
5932 		pr_debug("%s: failed no association\n", __func__);
5933 		return -EINVAL;
5934 	}
5935 
5936 	if (trans) {
5937 		/* Fetch transport values. */
5938 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5939 		params.spp_pathmtu    = trans->pathmtu;
5940 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5941 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5942 
5943 		/*draft-11 doesn't say what to return in spp_flags*/
5944 		params.spp_flags      = trans->param_flags;
5945 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5946 			params.spp_ipv6_flowlabel = trans->flowlabel &
5947 						    SCTP_FLOWLABEL_VAL_MASK;
5948 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5949 		}
5950 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5951 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5952 			params.spp_flags |= SPP_DSCP;
5953 		}
5954 	} else if (asoc) {
5955 		/* Fetch association values. */
5956 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5957 		params.spp_pathmtu    = asoc->pathmtu;
5958 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5959 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5960 
5961 		/*draft-11 doesn't say what to return in spp_flags*/
5962 		params.spp_flags      = asoc->param_flags;
5963 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5964 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5965 						    SCTP_FLOWLABEL_VAL_MASK;
5966 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5967 		}
5968 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5969 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5970 			params.spp_flags |= SPP_DSCP;
5971 		}
5972 	} else {
5973 		/* Fetch socket values. */
5974 		params.spp_hbinterval = sp->hbinterval;
5975 		params.spp_pathmtu    = sp->pathmtu;
5976 		params.spp_sackdelay  = sp->sackdelay;
5977 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5978 
5979 		/*draft-11 doesn't say what to return in spp_flags*/
5980 		params.spp_flags      = sp->param_flags;
5981 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5982 			params.spp_ipv6_flowlabel = sp->flowlabel &
5983 						    SCTP_FLOWLABEL_VAL_MASK;
5984 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5985 		}
5986 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5987 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5988 			params.spp_flags |= SPP_DSCP;
5989 		}
5990 	}
5991 
5992 	if (copy_to_user(optval, &params, len))
5993 		return -EFAULT;
5994 
5995 	if (put_user(len, optlen))
5996 		return -EFAULT;
5997 
5998 	return 0;
5999 }
6000 
6001 /*
6002  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
6003  *
6004  * This option will effect the way delayed acks are performed.  This
6005  * option allows you to get or set the delayed ack time, in
6006  * milliseconds.  It also allows changing the delayed ack frequency.
6007  * Changing the frequency to 1 disables the delayed sack algorithm.  If
6008  * the assoc_id is 0, then this sets or gets the endpoints default
6009  * values.  If the assoc_id field is non-zero, then the set or get
6010  * effects the specified association for the one to many model (the
6011  * assoc_id field is ignored by the one to one model).  Note that if
6012  * sack_delay or sack_freq are 0 when setting this option, then the
6013  * current values will remain unchanged.
6014  *
6015  * struct sctp_sack_info {
6016  *     sctp_assoc_t            sack_assoc_id;
6017  *     uint32_t                sack_delay;
6018  *     uint32_t                sack_freq;
6019  * };
6020  *
6021  * sack_assoc_id -  This parameter, indicates which association the user
6022  *    is performing an action upon.  Note that if this field's value is
6023  *    zero then the endpoints default value is changed (effecting future
6024  *    associations only).
6025  *
6026  * sack_delay -  This parameter contains the number of milliseconds that
6027  *    the user is requesting the delayed ACK timer be set to.  Note that
6028  *    this value is defined in the standard to be between 200 and 500
6029  *    milliseconds.
6030  *
6031  * sack_freq -  This parameter contains the number of packets that must
6032  *    be received before a sack is sent without waiting for the delay
6033  *    timer to expire.  The default value for this is 2, setting this
6034  *    value to 1 will disable the delayed sack algorithm.
6035  */
6036 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6037 					    char __user *optval,
6038 					    int __user *optlen)
6039 {
6040 	struct sctp_sack_info    params;
6041 	struct sctp_association *asoc = NULL;
6042 	struct sctp_sock        *sp = sctp_sk(sk);
6043 
6044 	if (len >= sizeof(struct sctp_sack_info)) {
6045 		len = sizeof(struct sctp_sack_info);
6046 
6047 		if (copy_from_user(&params, optval, len))
6048 			return -EFAULT;
6049 	} else if (len == sizeof(struct sctp_assoc_value)) {
6050 		pr_warn_ratelimited(DEPRECATED
6051 				    "%s (pid %d) "
6052 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6053 				    "Use struct sctp_sack_info instead\n",
6054 				    current->comm, task_pid_nr(current));
6055 		if (copy_from_user(&params, optval, len))
6056 			return -EFAULT;
6057 	} else
6058 		return -EINVAL;
6059 
6060 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6061 	 * socket is a one to many style socket, and an association
6062 	 * was not found, then the id was invalid.
6063 	 */
6064 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6065 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6066 	    sctp_style(sk, UDP))
6067 		return -EINVAL;
6068 
6069 	if (asoc) {
6070 		/* Fetch association values. */
6071 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6072 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6073 			params.sack_freq = asoc->sackfreq;
6074 
6075 		} else {
6076 			params.sack_delay = 0;
6077 			params.sack_freq = 1;
6078 		}
6079 	} else {
6080 		/* Fetch socket values. */
6081 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6082 			params.sack_delay  = sp->sackdelay;
6083 			params.sack_freq = sp->sackfreq;
6084 		} else {
6085 			params.sack_delay  = 0;
6086 			params.sack_freq = 1;
6087 		}
6088 	}
6089 
6090 	if (copy_to_user(optval, &params, len))
6091 		return -EFAULT;
6092 
6093 	if (put_user(len, optlen))
6094 		return -EFAULT;
6095 
6096 	return 0;
6097 }
6098 
6099 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6100  *
6101  * Applications can specify protocol parameters for the default association
6102  * initialization.  The option name argument to setsockopt() and getsockopt()
6103  * is SCTP_INITMSG.
6104  *
6105  * Setting initialization parameters is effective only on an unconnected
6106  * socket (for UDP-style sockets only future associations are effected
6107  * by the change).  With TCP-style sockets, this option is inherited by
6108  * sockets derived from a listener socket.
6109  */
6110 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6111 {
6112 	if (len < sizeof(struct sctp_initmsg))
6113 		return -EINVAL;
6114 	len = sizeof(struct sctp_initmsg);
6115 	if (put_user(len, optlen))
6116 		return -EFAULT;
6117 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6118 		return -EFAULT;
6119 	return 0;
6120 }
6121 
6122 
6123 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6124 				      char __user *optval, int __user *optlen)
6125 {
6126 	struct sctp_association *asoc;
6127 	int cnt = 0;
6128 	struct sctp_getaddrs getaddrs;
6129 	struct sctp_transport *from;
6130 	void __user *to;
6131 	union sctp_addr temp;
6132 	struct sctp_sock *sp = sctp_sk(sk);
6133 	int addrlen;
6134 	size_t space_left;
6135 	int bytes_copied;
6136 
6137 	if (len < sizeof(struct sctp_getaddrs))
6138 		return -EINVAL;
6139 
6140 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6141 		return -EFAULT;
6142 
6143 	/* For UDP-style sockets, id specifies the association to query.  */
6144 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6145 	if (!asoc)
6146 		return -EINVAL;
6147 
6148 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6149 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6150 
6151 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6152 				transports) {
6153 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6154 		addrlen = sctp_get_pf_specific(sk->sk_family)
6155 			      ->addr_to_user(sp, &temp);
6156 		if (space_left < addrlen)
6157 			return -ENOMEM;
6158 		if (copy_to_user(to, &temp, addrlen))
6159 			return -EFAULT;
6160 		to += addrlen;
6161 		cnt++;
6162 		space_left -= addrlen;
6163 	}
6164 
6165 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6166 		return -EFAULT;
6167 	bytes_copied = ((char __user *)to) - optval;
6168 	if (put_user(bytes_copied, optlen))
6169 		return -EFAULT;
6170 
6171 	return 0;
6172 }
6173 
6174 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6175 			    size_t space_left, int *bytes_copied)
6176 {
6177 	struct sctp_sockaddr_entry *addr;
6178 	union sctp_addr temp;
6179 	int cnt = 0;
6180 	int addrlen;
6181 	struct net *net = sock_net(sk);
6182 
6183 	rcu_read_lock();
6184 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6185 		if (!addr->valid)
6186 			continue;
6187 
6188 		if ((PF_INET == sk->sk_family) &&
6189 		    (AF_INET6 == addr->a.sa.sa_family))
6190 			continue;
6191 		if ((PF_INET6 == sk->sk_family) &&
6192 		    inet_v6_ipv6only(sk) &&
6193 		    (AF_INET == addr->a.sa.sa_family))
6194 			continue;
6195 		memcpy(&temp, &addr->a, sizeof(temp));
6196 		if (!temp.v4.sin_port)
6197 			temp.v4.sin_port = htons(port);
6198 
6199 		addrlen = sctp_get_pf_specific(sk->sk_family)
6200 			      ->addr_to_user(sctp_sk(sk), &temp);
6201 
6202 		if (space_left < addrlen) {
6203 			cnt =  -ENOMEM;
6204 			break;
6205 		}
6206 		memcpy(to, &temp, addrlen);
6207 
6208 		to += addrlen;
6209 		cnt++;
6210 		space_left -= addrlen;
6211 		*bytes_copied += addrlen;
6212 	}
6213 	rcu_read_unlock();
6214 
6215 	return cnt;
6216 }
6217 
6218 
6219 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6220 				       char __user *optval, int __user *optlen)
6221 {
6222 	struct sctp_bind_addr *bp;
6223 	struct sctp_association *asoc;
6224 	int cnt = 0;
6225 	struct sctp_getaddrs getaddrs;
6226 	struct sctp_sockaddr_entry *addr;
6227 	void __user *to;
6228 	union sctp_addr temp;
6229 	struct sctp_sock *sp = sctp_sk(sk);
6230 	int addrlen;
6231 	int err = 0;
6232 	size_t space_left;
6233 	int bytes_copied = 0;
6234 	void *addrs;
6235 	void *buf;
6236 
6237 	if (len < sizeof(struct sctp_getaddrs))
6238 		return -EINVAL;
6239 
6240 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6241 		return -EFAULT;
6242 
6243 	/*
6244 	 *  For UDP-style sockets, id specifies the association to query.
6245 	 *  If the id field is set to the value '0' then the locally bound
6246 	 *  addresses are returned without regard to any particular
6247 	 *  association.
6248 	 */
6249 	if (0 == getaddrs.assoc_id) {
6250 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6251 	} else {
6252 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6253 		if (!asoc)
6254 			return -EINVAL;
6255 		bp = &asoc->base.bind_addr;
6256 	}
6257 
6258 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6259 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6260 
6261 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6262 	if (!addrs)
6263 		return -ENOMEM;
6264 
6265 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6266 	 * addresses from the global local address list.
6267 	 */
6268 	if (sctp_list_single_entry(&bp->address_list)) {
6269 		addr = list_entry(bp->address_list.next,
6270 				  struct sctp_sockaddr_entry, list);
6271 		if (sctp_is_any(sk, &addr->a)) {
6272 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6273 						space_left, &bytes_copied);
6274 			if (cnt < 0) {
6275 				err = cnt;
6276 				goto out;
6277 			}
6278 			goto copy_getaddrs;
6279 		}
6280 	}
6281 
6282 	buf = addrs;
6283 	/* Protection on the bound address list is not needed since
6284 	 * in the socket option context we hold a socket lock and
6285 	 * thus the bound address list can't change.
6286 	 */
6287 	list_for_each_entry(addr, &bp->address_list, list) {
6288 		memcpy(&temp, &addr->a, sizeof(temp));
6289 		addrlen = sctp_get_pf_specific(sk->sk_family)
6290 			      ->addr_to_user(sp, &temp);
6291 		if (space_left < addrlen) {
6292 			err =  -ENOMEM; /*fixme: right error?*/
6293 			goto out;
6294 		}
6295 		memcpy(buf, &temp, addrlen);
6296 		buf += addrlen;
6297 		bytes_copied += addrlen;
6298 		cnt++;
6299 		space_left -= addrlen;
6300 	}
6301 
6302 copy_getaddrs:
6303 	if (copy_to_user(to, addrs, bytes_copied)) {
6304 		err = -EFAULT;
6305 		goto out;
6306 	}
6307 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6308 		err = -EFAULT;
6309 		goto out;
6310 	}
6311 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6312 	 * but we can't change it anymore.
6313 	 */
6314 	if (put_user(bytes_copied, optlen))
6315 		err = -EFAULT;
6316 out:
6317 	kfree(addrs);
6318 	return err;
6319 }
6320 
6321 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6322  *
6323  * Requests that the local SCTP stack use the enclosed peer address as
6324  * the association primary.  The enclosed address must be one of the
6325  * association peer's addresses.
6326  */
6327 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6328 					char __user *optval, int __user *optlen)
6329 {
6330 	struct sctp_prim prim;
6331 	struct sctp_association *asoc;
6332 	struct sctp_sock *sp = sctp_sk(sk);
6333 
6334 	if (len < sizeof(struct sctp_prim))
6335 		return -EINVAL;
6336 
6337 	len = sizeof(struct sctp_prim);
6338 
6339 	if (copy_from_user(&prim, optval, len))
6340 		return -EFAULT;
6341 
6342 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6343 	if (!asoc)
6344 		return -EINVAL;
6345 
6346 	if (!asoc->peer.primary_path)
6347 		return -ENOTCONN;
6348 
6349 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6350 		asoc->peer.primary_path->af_specific->sockaddr_len);
6351 
6352 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6353 			(union sctp_addr *)&prim.ssp_addr);
6354 
6355 	if (put_user(len, optlen))
6356 		return -EFAULT;
6357 	if (copy_to_user(optval, &prim, len))
6358 		return -EFAULT;
6359 
6360 	return 0;
6361 }
6362 
6363 /*
6364  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6365  *
6366  * Requests that the local endpoint set the specified Adaptation Layer
6367  * Indication parameter for all future INIT and INIT-ACK exchanges.
6368  */
6369 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6370 				  char __user *optval, int __user *optlen)
6371 {
6372 	struct sctp_setadaptation adaptation;
6373 
6374 	if (len < sizeof(struct sctp_setadaptation))
6375 		return -EINVAL;
6376 
6377 	len = sizeof(struct sctp_setadaptation);
6378 
6379 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6380 
6381 	if (put_user(len, optlen))
6382 		return -EFAULT;
6383 	if (copy_to_user(optval, &adaptation, len))
6384 		return -EFAULT;
6385 
6386 	return 0;
6387 }
6388 
6389 /*
6390  *
6391  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6392  *
6393  *   Applications that wish to use the sendto() system call may wish to
6394  *   specify a default set of parameters that would normally be supplied
6395  *   through the inclusion of ancillary data.  This socket option allows
6396  *   such an application to set the default sctp_sndrcvinfo structure.
6397 
6398 
6399  *   The application that wishes to use this socket option simply passes
6400  *   in to this call the sctp_sndrcvinfo structure defined in Section
6401  *   5.2.2) The input parameters accepted by this call include
6402  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6403  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6404  *   to this call if the caller is using the UDP model.
6405  *
6406  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6407  */
6408 static int sctp_getsockopt_default_send_param(struct sock *sk,
6409 					int len, char __user *optval,
6410 					int __user *optlen)
6411 {
6412 	struct sctp_sock *sp = sctp_sk(sk);
6413 	struct sctp_association *asoc;
6414 	struct sctp_sndrcvinfo info;
6415 
6416 	if (len < sizeof(info))
6417 		return -EINVAL;
6418 
6419 	len = sizeof(info);
6420 
6421 	if (copy_from_user(&info, optval, len))
6422 		return -EFAULT;
6423 
6424 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6425 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6426 	    sctp_style(sk, UDP))
6427 		return -EINVAL;
6428 
6429 	if (asoc) {
6430 		info.sinfo_stream = asoc->default_stream;
6431 		info.sinfo_flags = asoc->default_flags;
6432 		info.sinfo_ppid = asoc->default_ppid;
6433 		info.sinfo_context = asoc->default_context;
6434 		info.sinfo_timetolive = asoc->default_timetolive;
6435 	} else {
6436 		info.sinfo_stream = sp->default_stream;
6437 		info.sinfo_flags = sp->default_flags;
6438 		info.sinfo_ppid = sp->default_ppid;
6439 		info.sinfo_context = sp->default_context;
6440 		info.sinfo_timetolive = sp->default_timetolive;
6441 	}
6442 
6443 	if (put_user(len, optlen))
6444 		return -EFAULT;
6445 	if (copy_to_user(optval, &info, len))
6446 		return -EFAULT;
6447 
6448 	return 0;
6449 }
6450 
6451 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6452  * (SCTP_DEFAULT_SNDINFO)
6453  */
6454 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6455 					   char __user *optval,
6456 					   int __user *optlen)
6457 {
6458 	struct sctp_sock *sp = sctp_sk(sk);
6459 	struct sctp_association *asoc;
6460 	struct sctp_sndinfo info;
6461 
6462 	if (len < sizeof(info))
6463 		return -EINVAL;
6464 
6465 	len = sizeof(info);
6466 
6467 	if (copy_from_user(&info, optval, len))
6468 		return -EFAULT;
6469 
6470 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6471 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6472 	    sctp_style(sk, UDP))
6473 		return -EINVAL;
6474 
6475 	if (asoc) {
6476 		info.snd_sid = asoc->default_stream;
6477 		info.snd_flags = asoc->default_flags;
6478 		info.snd_ppid = asoc->default_ppid;
6479 		info.snd_context = asoc->default_context;
6480 	} else {
6481 		info.snd_sid = sp->default_stream;
6482 		info.snd_flags = sp->default_flags;
6483 		info.snd_ppid = sp->default_ppid;
6484 		info.snd_context = sp->default_context;
6485 	}
6486 
6487 	if (put_user(len, optlen))
6488 		return -EFAULT;
6489 	if (copy_to_user(optval, &info, len))
6490 		return -EFAULT;
6491 
6492 	return 0;
6493 }
6494 
6495 /*
6496  *
6497  * 7.1.5 SCTP_NODELAY
6498  *
6499  * Turn on/off any Nagle-like algorithm.  This means that packets are
6500  * generally sent as soon as possible and no unnecessary delays are
6501  * introduced, at the cost of more packets in the network.  Expects an
6502  * integer boolean flag.
6503  */
6504 
6505 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6506 				   char __user *optval, int __user *optlen)
6507 {
6508 	int val;
6509 
6510 	if (len < sizeof(int))
6511 		return -EINVAL;
6512 
6513 	len = sizeof(int);
6514 	val = (sctp_sk(sk)->nodelay == 1);
6515 	if (put_user(len, optlen))
6516 		return -EFAULT;
6517 	if (copy_to_user(optval, &val, len))
6518 		return -EFAULT;
6519 	return 0;
6520 }
6521 
6522 /*
6523  *
6524  * 7.1.1 SCTP_RTOINFO
6525  *
6526  * The protocol parameters used to initialize and bound retransmission
6527  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6528  * and modify these parameters.
6529  * All parameters are time values, in milliseconds.  A value of 0, when
6530  * modifying the parameters, indicates that the current value should not
6531  * be changed.
6532  *
6533  */
6534 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6535 				char __user *optval,
6536 				int __user *optlen) {
6537 	struct sctp_rtoinfo rtoinfo;
6538 	struct sctp_association *asoc;
6539 
6540 	if (len < sizeof (struct sctp_rtoinfo))
6541 		return -EINVAL;
6542 
6543 	len = sizeof(struct sctp_rtoinfo);
6544 
6545 	if (copy_from_user(&rtoinfo, optval, len))
6546 		return -EFAULT;
6547 
6548 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6549 
6550 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6551 	    sctp_style(sk, UDP))
6552 		return -EINVAL;
6553 
6554 	/* Values corresponding to the specific association. */
6555 	if (asoc) {
6556 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6557 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6558 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6559 	} else {
6560 		/* Values corresponding to the endpoint. */
6561 		struct sctp_sock *sp = sctp_sk(sk);
6562 
6563 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6564 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6565 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6566 	}
6567 
6568 	if (put_user(len, optlen))
6569 		return -EFAULT;
6570 
6571 	if (copy_to_user(optval, &rtoinfo, len))
6572 		return -EFAULT;
6573 
6574 	return 0;
6575 }
6576 
6577 /*
6578  *
6579  * 7.1.2 SCTP_ASSOCINFO
6580  *
6581  * This option is used to tune the maximum retransmission attempts
6582  * of the association.
6583  * Returns an error if the new association retransmission value is
6584  * greater than the sum of the retransmission value  of the peer.
6585  * See [SCTP] for more information.
6586  *
6587  */
6588 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6589 				     char __user *optval,
6590 				     int __user *optlen)
6591 {
6592 
6593 	struct sctp_assocparams assocparams;
6594 	struct sctp_association *asoc;
6595 	struct list_head *pos;
6596 	int cnt = 0;
6597 
6598 	if (len < sizeof (struct sctp_assocparams))
6599 		return -EINVAL;
6600 
6601 	len = sizeof(struct sctp_assocparams);
6602 
6603 	if (copy_from_user(&assocparams, optval, len))
6604 		return -EFAULT;
6605 
6606 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6607 
6608 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6609 	    sctp_style(sk, UDP))
6610 		return -EINVAL;
6611 
6612 	/* Values correspoinding to the specific association */
6613 	if (asoc) {
6614 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6615 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6616 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6617 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6618 
6619 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6620 			cnt++;
6621 		}
6622 
6623 		assocparams.sasoc_number_peer_destinations = cnt;
6624 	} else {
6625 		/* Values corresponding to the endpoint */
6626 		struct sctp_sock *sp = sctp_sk(sk);
6627 
6628 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6629 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6630 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6631 		assocparams.sasoc_cookie_life =
6632 					sp->assocparams.sasoc_cookie_life;
6633 		assocparams.sasoc_number_peer_destinations =
6634 					sp->assocparams.
6635 					sasoc_number_peer_destinations;
6636 	}
6637 
6638 	if (put_user(len, optlen))
6639 		return -EFAULT;
6640 
6641 	if (copy_to_user(optval, &assocparams, len))
6642 		return -EFAULT;
6643 
6644 	return 0;
6645 }
6646 
6647 /*
6648  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6649  *
6650  * This socket option is a boolean flag which turns on or off mapped V4
6651  * addresses.  If this option is turned on and the socket is type
6652  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6653  * If this option is turned off, then no mapping will be done of V4
6654  * addresses and a user will receive both PF_INET6 and PF_INET type
6655  * addresses on the socket.
6656  */
6657 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6658 				    char __user *optval, int __user *optlen)
6659 {
6660 	int val;
6661 	struct sctp_sock *sp = sctp_sk(sk);
6662 
6663 	if (len < sizeof(int))
6664 		return -EINVAL;
6665 
6666 	len = sizeof(int);
6667 	val = sp->v4mapped;
6668 	if (put_user(len, optlen))
6669 		return -EFAULT;
6670 	if (copy_to_user(optval, &val, len))
6671 		return -EFAULT;
6672 
6673 	return 0;
6674 }
6675 
6676 /*
6677  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6678  * (chapter and verse is quoted at sctp_setsockopt_context())
6679  */
6680 static int sctp_getsockopt_context(struct sock *sk, int len,
6681 				   char __user *optval, int __user *optlen)
6682 {
6683 	struct sctp_assoc_value params;
6684 	struct sctp_association *asoc;
6685 
6686 	if (len < sizeof(struct sctp_assoc_value))
6687 		return -EINVAL;
6688 
6689 	len = sizeof(struct sctp_assoc_value);
6690 
6691 	if (copy_from_user(&params, optval, len))
6692 		return -EFAULT;
6693 
6694 	asoc = sctp_id2assoc(sk, params.assoc_id);
6695 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6696 	    sctp_style(sk, UDP))
6697 		return -EINVAL;
6698 
6699 	params.assoc_value = asoc ? asoc->default_rcv_context
6700 				  : sctp_sk(sk)->default_rcv_context;
6701 
6702 	if (put_user(len, optlen))
6703 		return -EFAULT;
6704 	if (copy_to_user(optval, &params, len))
6705 		return -EFAULT;
6706 
6707 	return 0;
6708 }
6709 
6710 /*
6711  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6712  * This option will get or set the maximum size to put in any outgoing
6713  * SCTP DATA chunk.  If a message is larger than this size it will be
6714  * fragmented by SCTP into the specified size.  Note that the underlying
6715  * SCTP implementation may fragment into smaller sized chunks when the
6716  * PMTU of the underlying association is smaller than the value set by
6717  * the user.  The default value for this option is '0' which indicates
6718  * the user is NOT limiting fragmentation and only the PMTU will effect
6719  * SCTP's choice of DATA chunk size.  Note also that values set larger
6720  * than the maximum size of an IP datagram will effectively let SCTP
6721  * control fragmentation (i.e. the same as setting this option to 0).
6722  *
6723  * The following structure is used to access and modify this parameter:
6724  *
6725  * struct sctp_assoc_value {
6726  *   sctp_assoc_t assoc_id;
6727  *   uint32_t assoc_value;
6728  * };
6729  *
6730  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6731  *    For one-to-many style sockets this parameter indicates which
6732  *    association the user is performing an action upon.  Note that if
6733  *    this field's value is zero then the endpoints default value is
6734  *    changed (effecting future associations only).
6735  * assoc_value:  This parameter specifies the maximum size in bytes.
6736  */
6737 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6738 				  char __user *optval, int __user *optlen)
6739 {
6740 	struct sctp_assoc_value params;
6741 	struct sctp_association *asoc;
6742 
6743 	if (len == sizeof(int)) {
6744 		pr_warn_ratelimited(DEPRECATED
6745 				    "%s (pid %d) "
6746 				    "Use of int in maxseg socket option.\n"
6747 				    "Use struct sctp_assoc_value instead\n",
6748 				    current->comm, task_pid_nr(current));
6749 		params.assoc_id = SCTP_FUTURE_ASSOC;
6750 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6751 		len = sizeof(struct sctp_assoc_value);
6752 		if (copy_from_user(&params, optval, len))
6753 			return -EFAULT;
6754 	} else
6755 		return -EINVAL;
6756 
6757 	asoc = sctp_id2assoc(sk, params.assoc_id);
6758 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6759 	    sctp_style(sk, UDP))
6760 		return -EINVAL;
6761 
6762 	if (asoc)
6763 		params.assoc_value = asoc->frag_point;
6764 	else
6765 		params.assoc_value = sctp_sk(sk)->user_frag;
6766 
6767 	if (put_user(len, optlen))
6768 		return -EFAULT;
6769 	if (len == sizeof(int)) {
6770 		if (copy_to_user(optval, &params.assoc_value, len))
6771 			return -EFAULT;
6772 	} else {
6773 		if (copy_to_user(optval, &params, len))
6774 			return -EFAULT;
6775 	}
6776 
6777 	return 0;
6778 }
6779 
6780 /*
6781  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6782  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6783  */
6784 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6785 					       char __user *optval, int __user *optlen)
6786 {
6787 	int val;
6788 
6789 	if (len < sizeof(int))
6790 		return -EINVAL;
6791 
6792 	len = sizeof(int);
6793 
6794 	val = sctp_sk(sk)->frag_interleave;
6795 	if (put_user(len, optlen))
6796 		return -EFAULT;
6797 	if (copy_to_user(optval, &val, len))
6798 		return -EFAULT;
6799 
6800 	return 0;
6801 }
6802 
6803 /*
6804  * 7.1.25.  Set or Get the sctp partial delivery point
6805  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6806  */
6807 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6808 						  char __user *optval,
6809 						  int __user *optlen)
6810 {
6811 	u32 val;
6812 
6813 	if (len < sizeof(u32))
6814 		return -EINVAL;
6815 
6816 	len = sizeof(u32);
6817 
6818 	val = sctp_sk(sk)->pd_point;
6819 	if (put_user(len, optlen))
6820 		return -EFAULT;
6821 	if (copy_to_user(optval, &val, len))
6822 		return -EFAULT;
6823 
6824 	return 0;
6825 }
6826 
6827 /*
6828  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6829  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6830  */
6831 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6832 				    char __user *optval,
6833 				    int __user *optlen)
6834 {
6835 	struct sctp_assoc_value params;
6836 	struct sctp_association *asoc;
6837 
6838 	if (len == sizeof(int)) {
6839 		pr_warn_ratelimited(DEPRECATED
6840 				    "%s (pid %d) "
6841 				    "Use of int in max_burst socket option.\n"
6842 				    "Use struct sctp_assoc_value instead\n",
6843 				    current->comm, task_pid_nr(current));
6844 		params.assoc_id = SCTP_FUTURE_ASSOC;
6845 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6846 		len = sizeof(struct sctp_assoc_value);
6847 		if (copy_from_user(&params, optval, len))
6848 			return -EFAULT;
6849 	} else
6850 		return -EINVAL;
6851 
6852 	asoc = sctp_id2assoc(sk, params.assoc_id);
6853 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6854 	    sctp_style(sk, UDP))
6855 		return -EINVAL;
6856 
6857 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6858 
6859 	if (len == sizeof(int)) {
6860 		if (copy_to_user(optval, &params.assoc_value, len))
6861 			return -EFAULT;
6862 	} else {
6863 		if (copy_to_user(optval, &params, len))
6864 			return -EFAULT;
6865 	}
6866 
6867 	return 0;
6868 
6869 }
6870 
6871 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6872 				    char __user *optval, int __user *optlen)
6873 {
6874 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6875 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6876 	struct sctp_hmac_algo_param *hmacs;
6877 	__u16 data_len = 0;
6878 	u32 num_idents;
6879 	int i;
6880 
6881 	if (!ep->auth_enable)
6882 		return -EACCES;
6883 
6884 	hmacs = ep->auth_hmacs_list;
6885 	data_len = ntohs(hmacs->param_hdr.length) -
6886 		   sizeof(struct sctp_paramhdr);
6887 
6888 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6889 		return -EINVAL;
6890 
6891 	len = sizeof(struct sctp_hmacalgo) + data_len;
6892 	num_idents = data_len / sizeof(u16);
6893 
6894 	if (put_user(len, optlen))
6895 		return -EFAULT;
6896 	if (put_user(num_idents, &p->shmac_num_idents))
6897 		return -EFAULT;
6898 	for (i = 0; i < num_idents; i++) {
6899 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6900 
6901 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6902 			return -EFAULT;
6903 	}
6904 	return 0;
6905 }
6906 
6907 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6908 				    char __user *optval, int __user *optlen)
6909 {
6910 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6911 	struct sctp_authkeyid val;
6912 	struct sctp_association *asoc;
6913 
6914 	if (len < sizeof(struct sctp_authkeyid))
6915 		return -EINVAL;
6916 
6917 	len = sizeof(struct sctp_authkeyid);
6918 	if (copy_from_user(&val, optval, len))
6919 		return -EFAULT;
6920 
6921 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6922 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6923 		return -EINVAL;
6924 
6925 	if (asoc) {
6926 		if (!asoc->peer.auth_capable)
6927 			return -EACCES;
6928 		val.scact_keynumber = asoc->active_key_id;
6929 	} else {
6930 		if (!ep->auth_enable)
6931 			return -EACCES;
6932 		val.scact_keynumber = ep->active_key_id;
6933 	}
6934 
6935 	if (put_user(len, optlen))
6936 		return -EFAULT;
6937 	if (copy_to_user(optval, &val, len))
6938 		return -EFAULT;
6939 
6940 	return 0;
6941 }
6942 
6943 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6944 				    char __user *optval, int __user *optlen)
6945 {
6946 	struct sctp_authchunks __user *p = (void __user *)optval;
6947 	struct sctp_authchunks val;
6948 	struct sctp_association *asoc;
6949 	struct sctp_chunks_param *ch;
6950 	u32    num_chunks = 0;
6951 	char __user *to;
6952 
6953 	if (len < sizeof(struct sctp_authchunks))
6954 		return -EINVAL;
6955 
6956 	if (copy_from_user(&val, optval, sizeof(val)))
6957 		return -EFAULT;
6958 
6959 	to = p->gauth_chunks;
6960 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6961 	if (!asoc)
6962 		return -EINVAL;
6963 
6964 	if (!asoc->peer.auth_capable)
6965 		return -EACCES;
6966 
6967 	ch = asoc->peer.peer_chunks;
6968 	if (!ch)
6969 		goto num;
6970 
6971 	/* See if the user provided enough room for all the data */
6972 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6973 	if (len < num_chunks)
6974 		return -EINVAL;
6975 
6976 	if (copy_to_user(to, ch->chunks, num_chunks))
6977 		return -EFAULT;
6978 num:
6979 	len = sizeof(struct sctp_authchunks) + num_chunks;
6980 	if (put_user(len, optlen))
6981 		return -EFAULT;
6982 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6983 		return -EFAULT;
6984 	return 0;
6985 }
6986 
6987 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6988 				    char __user *optval, int __user *optlen)
6989 {
6990 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6991 	struct sctp_authchunks __user *p = (void __user *)optval;
6992 	struct sctp_authchunks val;
6993 	struct sctp_association *asoc;
6994 	struct sctp_chunks_param *ch;
6995 	u32    num_chunks = 0;
6996 	char __user *to;
6997 
6998 	if (len < sizeof(struct sctp_authchunks))
6999 		return -EINVAL;
7000 
7001 	if (copy_from_user(&val, optval, sizeof(val)))
7002 		return -EFAULT;
7003 
7004 	to = p->gauth_chunks;
7005 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7006 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7007 	    sctp_style(sk, UDP))
7008 		return -EINVAL;
7009 
7010 	if (asoc) {
7011 		if (!asoc->peer.auth_capable)
7012 			return -EACCES;
7013 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7014 	} else {
7015 		if (!ep->auth_enable)
7016 			return -EACCES;
7017 		ch = ep->auth_chunk_list;
7018 	}
7019 	if (!ch)
7020 		goto num;
7021 
7022 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7023 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
7024 		return -EINVAL;
7025 
7026 	if (copy_to_user(to, ch->chunks, num_chunks))
7027 		return -EFAULT;
7028 num:
7029 	len = sizeof(struct sctp_authchunks) + num_chunks;
7030 	if (put_user(len, optlen))
7031 		return -EFAULT;
7032 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7033 		return -EFAULT;
7034 
7035 	return 0;
7036 }
7037 
7038 /*
7039  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7040  * This option gets the current number of associations that are attached
7041  * to a one-to-many style socket.  The option value is an uint32_t.
7042  */
7043 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7044 				    char __user *optval, int __user *optlen)
7045 {
7046 	struct sctp_sock *sp = sctp_sk(sk);
7047 	struct sctp_association *asoc;
7048 	u32 val = 0;
7049 
7050 	if (sctp_style(sk, TCP))
7051 		return -EOPNOTSUPP;
7052 
7053 	if (len < sizeof(u32))
7054 		return -EINVAL;
7055 
7056 	len = sizeof(u32);
7057 
7058 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7059 		val++;
7060 	}
7061 
7062 	if (put_user(len, optlen))
7063 		return -EFAULT;
7064 	if (copy_to_user(optval, &val, len))
7065 		return -EFAULT;
7066 
7067 	return 0;
7068 }
7069 
7070 /*
7071  * 8.1.23 SCTP_AUTO_ASCONF
7072  * See the corresponding setsockopt entry as description
7073  */
7074 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7075 				   char __user *optval, int __user *optlen)
7076 {
7077 	int val = 0;
7078 
7079 	if (len < sizeof(int))
7080 		return -EINVAL;
7081 
7082 	len = sizeof(int);
7083 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7084 		val = 1;
7085 	if (put_user(len, optlen))
7086 		return -EFAULT;
7087 	if (copy_to_user(optval, &val, len))
7088 		return -EFAULT;
7089 	return 0;
7090 }
7091 
7092 /*
7093  * 8.2.6. Get the Current Identifiers of Associations
7094  *        (SCTP_GET_ASSOC_ID_LIST)
7095  *
7096  * This option gets the current list of SCTP association identifiers of
7097  * the SCTP associations handled by a one-to-many style socket.
7098  */
7099 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7100 				    char __user *optval, int __user *optlen)
7101 {
7102 	struct sctp_sock *sp = sctp_sk(sk);
7103 	struct sctp_association *asoc;
7104 	struct sctp_assoc_ids *ids;
7105 	u32 num = 0;
7106 
7107 	if (sctp_style(sk, TCP))
7108 		return -EOPNOTSUPP;
7109 
7110 	if (len < sizeof(struct sctp_assoc_ids))
7111 		return -EINVAL;
7112 
7113 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7114 		num++;
7115 	}
7116 
7117 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7118 		return -EINVAL;
7119 
7120 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7121 
7122 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7123 	if (unlikely(!ids))
7124 		return -ENOMEM;
7125 
7126 	ids->gaids_number_of_ids = num;
7127 	num = 0;
7128 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7129 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7130 	}
7131 
7132 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7133 		kfree(ids);
7134 		return -EFAULT;
7135 	}
7136 
7137 	kfree(ids);
7138 	return 0;
7139 }
7140 
7141 /*
7142  * SCTP_PEER_ADDR_THLDS
7143  *
7144  * This option allows us to fetch the partially failed threshold for one or all
7145  * transports in an association.  See Section 6.1 of:
7146  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7147  */
7148 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7149 					    char __user *optval, int len,
7150 					    int __user *optlen, bool v2)
7151 {
7152 	struct sctp_paddrthlds_v2 val;
7153 	struct sctp_transport *trans;
7154 	struct sctp_association *asoc;
7155 	int min;
7156 
7157 	min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7158 	if (len < min)
7159 		return -EINVAL;
7160 	len = min;
7161 	if (copy_from_user(&val, optval, len))
7162 		return -EFAULT;
7163 
7164 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7165 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7166 					       val.spt_assoc_id);
7167 		if (!trans)
7168 			return -ENOENT;
7169 
7170 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7171 		val.spt_pathpfthld = trans->pf_retrans;
7172 		val.spt_pathcpthld = trans->ps_retrans;
7173 
7174 		goto out;
7175 	}
7176 
7177 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7178 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7179 	    sctp_style(sk, UDP))
7180 		return -EINVAL;
7181 
7182 	if (asoc) {
7183 		val.spt_pathpfthld = asoc->pf_retrans;
7184 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7185 		val.spt_pathcpthld = asoc->ps_retrans;
7186 	} else {
7187 		struct sctp_sock *sp = sctp_sk(sk);
7188 
7189 		val.spt_pathpfthld = sp->pf_retrans;
7190 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7191 		val.spt_pathcpthld = sp->ps_retrans;
7192 	}
7193 
7194 out:
7195 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7196 		return -EFAULT;
7197 
7198 	return 0;
7199 }
7200 
7201 /*
7202  * SCTP_GET_ASSOC_STATS
7203  *
7204  * This option retrieves local per endpoint statistics. It is modeled
7205  * after OpenSolaris' implementation
7206  */
7207 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7208 				       char __user *optval,
7209 				       int __user *optlen)
7210 {
7211 	struct sctp_assoc_stats sas;
7212 	struct sctp_association *asoc = NULL;
7213 
7214 	/* User must provide at least the assoc id */
7215 	if (len < sizeof(sctp_assoc_t))
7216 		return -EINVAL;
7217 
7218 	/* Allow the struct to grow and fill in as much as possible */
7219 	len = min_t(size_t, len, sizeof(sas));
7220 
7221 	if (copy_from_user(&sas, optval, len))
7222 		return -EFAULT;
7223 
7224 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7225 	if (!asoc)
7226 		return -EINVAL;
7227 
7228 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7229 	sas.sas_gapcnt = asoc->stats.gapcnt;
7230 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7231 	sas.sas_osacks = asoc->stats.osacks;
7232 	sas.sas_isacks = asoc->stats.isacks;
7233 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7234 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7235 	sas.sas_oodchunks = asoc->stats.oodchunks;
7236 	sas.sas_iodchunks = asoc->stats.iodchunks;
7237 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7238 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7239 	sas.sas_idupchunks = asoc->stats.idupchunks;
7240 	sas.sas_opackets = asoc->stats.opackets;
7241 	sas.sas_ipackets = asoc->stats.ipackets;
7242 
7243 	/* New high max rto observed, will return 0 if not a single
7244 	 * RTO update took place. obs_rto_ipaddr will be bogus
7245 	 * in such a case
7246 	 */
7247 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7248 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7249 		sizeof(struct sockaddr_storage));
7250 
7251 	/* Mark beginning of a new observation period */
7252 	asoc->stats.max_obs_rto = asoc->rto_min;
7253 
7254 	if (put_user(len, optlen))
7255 		return -EFAULT;
7256 
7257 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7258 
7259 	if (copy_to_user(optval, &sas, len))
7260 		return -EFAULT;
7261 
7262 	return 0;
7263 }
7264 
7265 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7266 				       char __user *optval,
7267 				       int __user *optlen)
7268 {
7269 	int val = 0;
7270 
7271 	if (len < sizeof(int))
7272 		return -EINVAL;
7273 
7274 	len = sizeof(int);
7275 	if (sctp_sk(sk)->recvrcvinfo)
7276 		val = 1;
7277 	if (put_user(len, optlen))
7278 		return -EFAULT;
7279 	if (copy_to_user(optval, &val, len))
7280 		return -EFAULT;
7281 
7282 	return 0;
7283 }
7284 
7285 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7286 				       char __user *optval,
7287 				       int __user *optlen)
7288 {
7289 	int val = 0;
7290 
7291 	if (len < sizeof(int))
7292 		return -EINVAL;
7293 
7294 	len = sizeof(int);
7295 	if (sctp_sk(sk)->recvnxtinfo)
7296 		val = 1;
7297 	if (put_user(len, optlen))
7298 		return -EFAULT;
7299 	if (copy_to_user(optval, &val, len))
7300 		return -EFAULT;
7301 
7302 	return 0;
7303 }
7304 
7305 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7306 					char __user *optval,
7307 					int __user *optlen)
7308 {
7309 	struct sctp_assoc_value params;
7310 	struct sctp_association *asoc;
7311 	int retval = -EFAULT;
7312 
7313 	if (len < sizeof(params)) {
7314 		retval = -EINVAL;
7315 		goto out;
7316 	}
7317 
7318 	len = sizeof(params);
7319 	if (copy_from_user(&params, optval, len))
7320 		goto out;
7321 
7322 	asoc = sctp_id2assoc(sk, params.assoc_id);
7323 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7324 	    sctp_style(sk, UDP)) {
7325 		retval = -EINVAL;
7326 		goto out;
7327 	}
7328 
7329 	params.assoc_value = asoc ? asoc->peer.prsctp_capable
7330 				  : sctp_sk(sk)->ep->prsctp_enable;
7331 
7332 	if (put_user(len, optlen))
7333 		goto out;
7334 
7335 	if (copy_to_user(optval, &params, len))
7336 		goto out;
7337 
7338 	retval = 0;
7339 
7340 out:
7341 	return retval;
7342 }
7343 
7344 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7345 					  char __user *optval,
7346 					  int __user *optlen)
7347 {
7348 	struct sctp_default_prinfo info;
7349 	struct sctp_association *asoc;
7350 	int retval = -EFAULT;
7351 
7352 	if (len < sizeof(info)) {
7353 		retval = -EINVAL;
7354 		goto out;
7355 	}
7356 
7357 	len = sizeof(info);
7358 	if (copy_from_user(&info, optval, len))
7359 		goto out;
7360 
7361 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7362 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7363 	    sctp_style(sk, UDP)) {
7364 		retval = -EINVAL;
7365 		goto out;
7366 	}
7367 
7368 	if (asoc) {
7369 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7370 		info.pr_value = asoc->default_timetolive;
7371 	} else {
7372 		struct sctp_sock *sp = sctp_sk(sk);
7373 
7374 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7375 		info.pr_value = sp->default_timetolive;
7376 	}
7377 
7378 	if (put_user(len, optlen))
7379 		goto out;
7380 
7381 	if (copy_to_user(optval, &info, len))
7382 		goto out;
7383 
7384 	retval = 0;
7385 
7386 out:
7387 	return retval;
7388 }
7389 
7390 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7391 					  char __user *optval,
7392 					  int __user *optlen)
7393 {
7394 	struct sctp_prstatus params;
7395 	struct sctp_association *asoc;
7396 	int policy;
7397 	int retval = -EINVAL;
7398 
7399 	if (len < sizeof(params))
7400 		goto out;
7401 
7402 	len = sizeof(params);
7403 	if (copy_from_user(&params, optval, len)) {
7404 		retval = -EFAULT;
7405 		goto out;
7406 	}
7407 
7408 	policy = params.sprstat_policy;
7409 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7410 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7411 		goto out;
7412 
7413 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7414 	if (!asoc)
7415 		goto out;
7416 
7417 	if (policy == SCTP_PR_SCTP_ALL) {
7418 		params.sprstat_abandoned_unsent = 0;
7419 		params.sprstat_abandoned_sent = 0;
7420 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7421 			params.sprstat_abandoned_unsent +=
7422 				asoc->abandoned_unsent[policy];
7423 			params.sprstat_abandoned_sent +=
7424 				asoc->abandoned_sent[policy];
7425 		}
7426 	} else {
7427 		params.sprstat_abandoned_unsent =
7428 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7429 		params.sprstat_abandoned_sent =
7430 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7431 	}
7432 
7433 	if (put_user(len, optlen)) {
7434 		retval = -EFAULT;
7435 		goto out;
7436 	}
7437 
7438 	if (copy_to_user(optval, &params, len)) {
7439 		retval = -EFAULT;
7440 		goto out;
7441 	}
7442 
7443 	retval = 0;
7444 
7445 out:
7446 	return retval;
7447 }
7448 
7449 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7450 					   char __user *optval,
7451 					   int __user *optlen)
7452 {
7453 	struct sctp_stream_out_ext *streamoute;
7454 	struct sctp_association *asoc;
7455 	struct sctp_prstatus params;
7456 	int retval = -EINVAL;
7457 	int policy;
7458 
7459 	if (len < sizeof(params))
7460 		goto out;
7461 
7462 	len = sizeof(params);
7463 	if (copy_from_user(&params, optval, len)) {
7464 		retval = -EFAULT;
7465 		goto out;
7466 	}
7467 
7468 	policy = params.sprstat_policy;
7469 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7470 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7471 		goto out;
7472 
7473 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7474 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7475 		goto out;
7476 
7477 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7478 	if (!streamoute) {
7479 		/* Not allocated yet, means all stats are 0 */
7480 		params.sprstat_abandoned_unsent = 0;
7481 		params.sprstat_abandoned_sent = 0;
7482 		retval = 0;
7483 		goto out;
7484 	}
7485 
7486 	if (policy == SCTP_PR_SCTP_ALL) {
7487 		params.sprstat_abandoned_unsent = 0;
7488 		params.sprstat_abandoned_sent = 0;
7489 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7490 			params.sprstat_abandoned_unsent +=
7491 				streamoute->abandoned_unsent[policy];
7492 			params.sprstat_abandoned_sent +=
7493 				streamoute->abandoned_sent[policy];
7494 		}
7495 	} else {
7496 		params.sprstat_abandoned_unsent =
7497 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7498 		params.sprstat_abandoned_sent =
7499 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7500 	}
7501 
7502 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7503 		retval = -EFAULT;
7504 		goto out;
7505 	}
7506 
7507 	retval = 0;
7508 
7509 out:
7510 	return retval;
7511 }
7512 
7513 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7514 					      char __user *optval,
7515 					      int __user *optlen)
7516 {
7517 	struct sctp_assoc_value params;
7518 	struct sctp_association *asoc;
7519 	int retval = -EFAULT;
7520 
7521 	if (len < sizeof(params)) {
7522 		retval = -EINVAL;
7523 		goto out;
7524 	}
7525 
7526 	len = sizeof(params);
7527 	if (copy_from_user(&params, optval, len))
7528 		goto out;
7529 
7530 	asoc = sctp_id2assoc(sk, params.assoc_id);
7531 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7532 	    sctp_style(sk, UDP)) {
7533 		retval = -EINVAL;
7534 		goto out;
7535 	}
7536 
7537 	params.assoc_value = asoc ? asoc->peer.reconf_capable
7538 				  : sctp_sk(sk)->ep->reconf_enable;
7539 
7540 	if (put_user(len, optlen))
7541 		goto out;
7542 
7543 	if (copy_to_user(optval, &params, len))
7544 		goto out;
7545 
7546 	retval = 0;
7547 
7548 out:
7549 	return retval;
7550 }
7551 
7552 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7553 					   char __user *optval,
7554 					   int __user *optlen)
7555 {
7556 	struct sctp_assoc_value params;
7557 	struct sctp_association *asoc;
7558 	int retval = -EFAULT;
7559 
7560 	if (len < sizeof(params)) {
7561 		retval = -EINVAL;
7562 		goto out;
7563 	}
7564 
7565 	len = sizeof(params);
7566 	if (copy_from_user(&params, optval, len))
7567 		goto out;
7568 
7569 	asoc = sctp_id2assoc(sk, params.assoc_id);
7570 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7571 	    sctp_style(sk, UDP)) {
7572 		retval = -EINVAL;
7573 		goto out;
7574 	}
7575 
7576 	params.assoc_value = asoc ? asoc->strreset_enable
7577 				  : sctp_sk(sk)->ep->strreset_enable;
7578 
7579 	if (put_user(len, optlen))
7580 		goto out;
7581 
7582 	if (copy_to_user(optval, &params, len))
7583 		goto out;
7584 
7585 	retval = 0;
7586 
7587 out:
7588 	return retval;
7589 }
7590 
7591 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7592 				     char __user *optval,
7593 				     int __user *optlen)
7594 {
7595 	struct sctp_assoc_value params;
7596 	struct sctp_association *asoc;
7597 	int retval = -EFAULT;
7598 
7599 	if (len < sizeof(params)) {
7600 		retval = -EINVAL;
7601 		goto out;
7602 	}
7603 
7604 	len = sizeof(params);
7605 	if (copy_from_user(&params, optval, len))
7606 		goto out;
7607 
7608 	asoc = sctp_id2assoc(sk, params.assoc_id);
7609 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7610 	    sctp_style(sk, UDP)) {
7611 		retval = -EINVAL;
7612 		goto out;
7613 	}
7614 
7615 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7616 				  : sctp_sk(sk)->default_ss;
7617 
7618 	if (put_user(len, optlen))
7619 		goto out;
7620 
7621 	if (copy_to_user(optval, &params, len))
7622 		goto out;
7623 
7624 	retval = 0;
7625 
7626 out:
7627 	return retval;
7628 }
7629 
7630 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7631 					   char __user *optval,
7632 					   int __user *optlen)
7633 {
7634 	struct sctp_stream_value params;
7635 	struct sctp_association *asoc;
7636 	int retval = -EFAULT;
7637 
7638 	if (len < sizeof(params)) {
7639 		retval = -EINVAL;
7640 		goto out;
7641 	}
7642 
7643 	len = sizeof(params);
7644 	if (copy_from_user(&params, optval, len))
7645 		goto out;
7646 
7647 	asoc = sctp_id2assoc(sk, params.assoc_id);
7648 	if (!asoc) {
7649 		retval = -EINVAL;
7650 		goto out;
7651 	}
7652 
7653 	retval = sctp_sched_get_value(asoc, params.stream_id,
7654 				      &params.stream_value);
7655 	if (retval)
7656 		goto out;
7657 
7658 	if (put_user(len, optlen)) {
7659 		retval = -EFAULT;
7660 		goto out;
7661 	}
7662 
7663 	if (copy_to_user(optval, &params, len)) {
7664 		retval = -EFAULT;
7665 		goto out;
7666 	}
7667 
7668 out:
7669 	return retval;
7670 }
7671 
7672 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7673 						  char __user *optval,
7674 						  int __user *optlen)
7675 {
7676 	struct sctp_assoc_value params;
7677 	struct sctp_association *asoc;
7678 	int retval = -EFAULT;
7679 
7680 	if (len < sizeof(params)) {
7681 		retval = -EINVAL;
7682 		goto out;
7683 	}
7684 
7685 	len = sizeof(params);
7686 	if (copy_from_user(&params, optval, len))
7687 		goto out;
7688 
7689 	asoc = sctp_id2assoc(sk, params.assoc_id);
7690 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7691 	    sctp_style(sk, UDP)) {
7692 		retval = -EINVAL;
7693 		goto out;
7694 	}
7695 
7696 	params.assoc_value = asoc ? asoc->peer.intl_capable
7697 				  : sctp_sk(sk)->ep->intl_enable;
7698 
7699 	if (put_user(len, optlen))
7700 		goto out;
7701 
7702 	if (copy_to_user(optval, &params, len))
7703 		goto out;
7704 
7705 	retval = 0;
7706 
7707 out:
7708 	return retval;
7709 }
7710 
7711 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7712 				      char __user *optval,
7713 				      int __user *optlen)
7714 {
7715 	int val;
7716 
7717 	if (len < sizeof(int))
7718 		return -EINVAL;
7719 
7720 	len = sizeof(int);
7721 	val = sctp_sk(sk)->reuse;
7722 	if (put_user(len, optlen))
7723 		return -EFAULT;
7724 
7725 	if (copy_to_user(optval, &val, len))
7726 		return -EFAULT;
7727 
7728 	return 0;
7729 }
7730 
7731 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7732 				 int __user *optlen)
7733 {
7734 	struct sctp_association *asoc;
7735 	struct sctp_event param;
7736 	__u16 subscribe;
7737 
7738 	if (len < sizeof(param))
7739 		return -EINVAL;
7740 
7741 	len = sizeof(param);
7742 	if (copy_from_user(&param, optval, len))
7743 		return -EFAULT;
7744 
7745 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7746 	    param.se_type > SCTP_SN_TYPE_MAX)
7747 		return -EINVAL;
7748 
7749 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7750 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7751 	    sctp_style(sk, UDP))
7752 		return -EINVAL;
7753 
7754 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7755 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7756 
7757 	if (put_user(len, optlen))
7758 		return -EFAULT;
7759 
7760 	if (copy_to_user(optval, &param, len))
7761 		return -EFAULT;
7762 
7763 	return 0;
7764 }
7765 
7766 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7767 					    char __user *optval,
7768 					    int __user *optlen)
7769 {
7770 	struct sctp_assoc_value params;
7771 	struct sctp_association *asoc;
7772 	int retval = -EFAULT;
7773 
7774 	if (len < sizeof(params)) {
7775 		retval = -EINVAL;
7776 		goto out;
7777 	}
7778 
7779 	len = sizeof(params);
7780 	if (copy_from_user(&params, optval, len))
7781 		goto out;
7782 
7783 	asoc = sctp_id2assoc(sk, params.assoc_id);
7784 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7785 	    sctp_style(sk, UDP)) {
7786 		retval = -EINVAL;
7787 		goto out;
7788 	}
7789 
7790 	params.assoc_value = asoc ? asoc->peer.asconf_capable
7791 				  : sctp_sk(sk)->ep->asconf_enable;
7792 
7793 	if (put_user(len, optlen))
7794 		goto out;
7795 
7796 	if (copy_to_user(optval, &params, len))
7797 		goto out;
7798 
7799 	retval = 0;
7800 
7801 out:
7802 	return retval;
7803 }
7804 
7805 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7806 					  char __user *optval,
7807 					  int __user *optlen)
7808 {
7809 	struct sctp_assoc_value params;
7810 	struct sctp_association *asoc;
7811 	int retval = -EFAULT;
7812 
7813 	if (len < sizeof(params)) {
7814 		retval = -EINVAL;
7815 		goto out;
7816 	}
7817 
7818 	len = sizeof(params);
7819 	if (copy_from_user(&params, optval, len))
7820 		goto out;
7821 
7822 	asoc = sctp_id2assoc(sk, params.assoc_id);
7823 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7824 	    sctp_style(sk, UDP)) {
7825 		retval = -EINVAL;
7826 		goto out;
7827 	}
7828 
7829 	params.assoc_value = asoc ? asoc->peer.auth_capable
7830 				  : sctp_sk(sk)->ep->auth_enable;
7831 
7832 	if (put_user(len, optlen))
7833 		goto out;
7834 
7835 	if (copy_to_user(optval, &params, len))
7836 		goto out;
7837 
7838 	retval = 0;
7839 
7840 out:
7841 	return retval;
7842 }
7843 
7844 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7845 					 char __user *optval,
7846 					 int __user *optlen)
7847 {
7848 	struct sctp_assoc_value params;
7849 	struct sctp_association *asoc;
7850 	int retval = -EFAULT;
7851 
7852 	if (len < sizeof(params)) {
7853 		retval = -EINVAL;
7854 		goto out;
7855 	}
7856 
7857 	len = sizeof(params);
7858 	if (copy_from_user(&params, optval, len))
7859 		goto out;
7860 
7861 	asoc = sctp_id2assoc(sk, params.assoc_id);
7862 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7863 	    sctp_style(sk, UDP)) {
7864 		retval = -EINVAL;
7865 		goto out;
7866 	}
7867 
7868 	params.assoc_value = asoc ? asoc->peer.ecn_capable
7869 				  : sctp_sk(sk)->ep->ecn_enable;
7870 
7871 	if (put_user(len, optlen))
7872 		goto out;
7873 
7874 	if (copy_to_user(optval, &params, len))
7875 		goto out;
7876 
7877 	retval = 0;
7878 
7879 out:
7880 	return retval;
7881 }
7882 
7883 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7884 				     char __user *optval,
7885 				     int __user *optlen)
7886 {
7887 	struct sctp_assoc_value params;
7888 	struct sctp_association *asoc;
7889 	int retval = -EFAULT;
7890 
7891 	if (len < sizeof(params)) {
7892 		retval = -EINVAL;
7893 		goto out;
7894 	}
7895 
7896 	len = sizeof(params);
7897 	if (copy_from_user(&params, optval, len))
7898 		goto out;
7899 
7900 	asoc = sctp_id2assoc(sk, params.assoc_id);
7901 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7902 	    sctp_style(sk, UDP)) {
7903 		retval = -EINVAL;
7904 		goto out;
7905 	}
7906 
7907 	params.assoc_value = asoc ? asoc->pf_expose
7908 				  : sctp_sk(sk)->pf_expose;
7909 
7910 	if (put_user(len, optlen))
7911 		goto out;
7912 
7913 	if (copy_to_user(optval, &params, len))
7914 		goto out;
7915 
7916 	retval = 0;
7917 
7918 out:
7919 	return retval;
7920 }
7921 
7922 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7923 				      char __user *optval, int __user *optlen)
7924 {
7925 	struct sctp_association *asoc;
7926 	struct sctp_udpencaps encap;
7927 	struct sctp_transport *t;
7928 	__be16 encap_port;
7929 
7930 	if (len < sizeof(encap))
7931 		return -EINVAL;
7932 
7933 	len = sizeof(encap);
7934 	if (copy_from_user(&encap, optval, len))
7935 		return -EFAULT;
7936 
7937 	/* If an address other than INADDR_ANY is specified, and
7938 	 * no transport is found, then the request is invalid.
7939 	 */
7940 	if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7941 		t = sctp_addr_id2transport(sk, &encap.sue_address,
7942 					   encap.sue_assoc_id);
7943 		if (!t) {
7944 			pr_debug("%s: failed no transport\n", __func__);
7945 			return -EINVAL;
7946 		}
7947 
7948 		encap_port = t->encap_port;
7949 		goto out;
7950 	}
7951 
7952 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7953 	 * socket is a one to many style socket, and an association
7954 	 * was not found, then the id was invalid.
7955 	 */
7956 	asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7957 	if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7958 	    sctp_style(sk, UDP)) {
7959 		pr_debug("%s: failed no association\n", __func__);
7960 		return -EINVAL;
7961 	}
7962 
7963 	if (asoc) {
7964 		encap_port = asoc->encap_port;
7965 		goto out;
7966 	}
7967 
7968 	encap_port = sctp_sk(sk)->encap_port;
7969 
7970 out:
7971 	encap.sue_port = (__force uint16_t)encap_port;
7972 	if (copy_to_user(optval, &encap, len))
7973 		return -EFAULT;
7974 
7975 	if (put_user(len, optlen))
7976 		return -EFAULT;
7977 
7978 	return 0;
7979 }
7980 
7981 static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
7982 					  char __user *optval,
7983 					  int __user *optlen)
7984 {
7985 	struct sctp_probeinterval params;
7986 	struct sctp_association *asoc;
7987 	struct sctp_transport *t;
7988 	__u32 probe_interval;
7989 
7990 	if (len < sizeof(params))
7991 		return -EINVAL;
7992 
7993 	len = sizeof(params);
7994 	if (copy_from_user(&params, optval, len))
7995 		return -EFAULT;
7996 
7997 	/* If an address other than INADDR_ANY is specified, and
7998 	 * no transport is found, then the request is invalid.
7999 	 */
8000 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spi_address)) {
8001 		t = sctp_addr_id2transport(sk, &params.spi_address,
8002 					   params.spi_assoc_id);
8003 		if (!t) {
8004 			pr_debug("%s: failed no transport\n", __func__);
8005 			return -EINVAL;
8006 		}
8007 
8008 		probe_interval = jiffies_to_msecs(t->probe_interval);
8009 		goto out;
8010 	}
8011 
8012 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
8013 	 * socket is a one to many style socket, and an association
8014 	 * was not found, then the id was invalid.
8015 	 */
8016 	asoc = sctp_id2assoc(sk, params.spi_assoc_id);
8017 	if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
8018 	    sctp_style(sk, UDP)) {
8019 		pr_debug("%s: failed no association\n", __func__);
8020 		return -EINVAL;
8021 	}
8022 
8023 	if (asoc) {
8024 		probe_interval = jiffies_to_msecs(asoc->probe_interval);
8025 		goto out;
8026 	}
8027 
8028 	probe_interval = sctp_sk(sk)->probe_interval;
8029 
8030 out:
8031 	params.spi_interval = probe_interval;
8032 	if (copy_to_user(optval, &params, len))
8033 		return -EFAULT;
8034 
8035 	if (put_user(len, optlen))
8036 		return -EFAULT;
8037 
8038 	return 0;
8039 }
8040 
8041 static int sctp_getsockopt(struct sock *sk, int level, int optname,
8042 			   char __user *optval, int __user *optlen)
8043 {
8044 	int retval = 0;
8045 	int len;
8046 
8047 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8048 
8049 	/* I can hardly begin to describe how wrong this is.  This is
8050 	 * so broken as to be worse than useless.  The API draft
8051 	 * REALLY is NOT helpful here...  I am not convinced that the
8052 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8053 	 * are at all well-founded.
8054 	 */
8055 	if (level != SOL_SCTP) {
8056 		struct sctp_af *af = sctp_sk(sk)->pf->af;
8057 
8058 		retval = af->getsockopt(sk, level, optname, optval, optlen);
8059 		return retval;
8060 	}
8061 
8062 	if (get_user(len, optlen))
8063 		return -EFAULT;
8064 
8065 	if (len < 0)
8066 		return -EINVAL;
8067 
8068 	lock_sock(sk);
8069 
8070 	switch (optname) {
8071 	case SCTP_STATUS:
8072 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8073 		break;
8074 	case SCTP_DISABLE_FRAGMENTS:
8075 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8076 							   optlen);
8077 		break;
8078 	case SCTP_EVENTS:
8079 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
8080 		break;
8081 	case SCTP_AUTOCLOSE:
8082 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8083 		break;
8084 	case SCTP_SOCKOPT_PEELOFF:
8085 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8086 		break;
8087 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
8088 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8089 		break;
8090 	case SCTP_PEER_ADDR_PARAMS:
8091 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8092 							  optlen);
8093 		break;
8094 	case SCTP_DELAYED_SACK:
8095 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8096 							  optlen);
8097 		break;
8098 	case SCTP_INITMSG:
8099 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8100 		break;
8101 	case SCTP_GET_PEER_ADDRS:
8102 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8103 						    optlen);
8104 		break;
8105 	case SCTP_GET_LOCAL_ADDRS:
8106 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
8107 						     optlen);
8108 		break;
8109 	case SCTP_SOCKOPT_CONNECTX3:
8110 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8111 		break;
8112 	case SCTP_DEFAULT_SEND_PARAM:
8113 		retval = sctp_getsockopt_default_send_param(sk, len,
8114 							    optval, optlen);
8115 		break;
8116 	case SCTP_DEFAULT_SNDINFO:
8117 		retval = sctp_getsockopt_default_sndinfo(sk, len,
8118 							 optval, optlen);
8119 		break;
8120 	case SCTP_PRIMARY_ADDR:
8121 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8122 		break;
8123 	case SCTP_NODELAY:
8124 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8125 		break;
8126 	case SCTP_RTOINFO:
8127 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8128 		break;
8129 	case SCTP_ASSOCINFO:
8130 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8131 		break;
8132 	case SCTP_I_WANT_MAPPED_V4_ADDR:
8133 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8134 		break;
8135 	case SCTP_MAXSEG:
8136 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8137 		break;
8138 	case SCTP_GET_PEER_ADDR_INFO:
8139 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8140 							optlen);
8141 		break;
8142 	case SCTP_ADAPTATION_LAYER:
8143 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8144 							optlen);
8145 		break;
8146 	case SCTP_CONTEXT:
8147 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
8148 		break;
8149 	case SCTP_FRAGMENT_INTERLEAVE:
8150 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8151 							     optlen);
8152 		break;
8153 	case SCTP_PARTIAL_DELIVERY_POINT:
8154 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8155 								optlen);
8156 		break;
8157 	case SCTP_MAX_BURST:
8158 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8159 		break;
8160 	case SCTP_AUTH_KEY:
8161 	case SCTP_AUTH_CHUNK:
8162 	case SCTP_AUTH_DELETE_KEY:
8163 	case SCTP_AUTH_DEACTIVATE_KEY:
8164 		retval = -EOPNOTSUPP;
8165 		break;
8166 	case SCTP_HMAC_IDENT:
8167 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8168 		break;
8169 	case SCTP_AUTH_ACTIVE_KEY:
8170 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8171 		break;
8172 	case SCTP_PEER_AUTH_CHUNKS:
8173 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8174 							optlen);
8175 		break;
8176 	case SCTP_LOCAL_AUTH_CHUNKS:
8177 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8178 							optlen);
8179 		break;
8180 	case SCTP_GET_ASSOC_NUMBER:
8181 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8182 		break;
8183 	case SCTP_GET_ASSOC_ID_LIST:
8184 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8185 		break;
8186 	case SCTP_AUTO_ASCONF:
8187 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8188 		break;
8189 	case SCTP_PEER_ADDR_THLDS:
8190 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8191 							  optlen, false);
8192 		break;
8193 	case SCTP_PEER_ADDR_THLDS_V2:
8194 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8195 							  optlen, true);
8196 		break;
8197 	case SCTP_GET_ASSOC_STATS:
8198 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8199 		break;
8200 	case SCTP_RECVRCVINFO:
8201 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8202 		break;
8203 	case SCTP_RECVNXTINFO:
8204 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8205 		break;
8206 	case SCTP_PR_SUPPORTED:
8207 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8208 		break;
8209 	case SCTP_DEFAULT_PRINFO:
8210 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8211 							optlen);
8212 		break;
8213 	case SCTP_PR_ASSOC_STATUS:
8214 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8215 							optlen);
8216 		break;
8217 	case SCTP_PR_STREAM_STATUS:
8218 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8219 							 optlen);
8220 		break;
8221 	case SCTP_RECONFIG_SUPPORTED:
8222 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8223 							    optlen);
8224 		break;
8225 	case SCTP_ENABLE_STREAM_RESET:
8226 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8227 							 optlen);
8228 		break;
8229 	case SCTP_STREAM_SCHEDULER:
8230 		retval = sctp_getsockopt_scheduler(sk, len, optval,
8231 						   optlen);
8232 		break;
8233 	case SCTP_STREAM_SCHEDULER_VALUE:
8234 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8235 							 optlen);
8236 		break;
8237 	case SCTP_INTERLEAVING_SUPPORTED:
8238 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8239 								optlen);
8240 		break;
8241 	case SCTP_REUSE_PORT:
8242 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8243 		break;
8244 	case SCTP_EVENT:
8245 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
8246 		break;
8247 	case SCTP_ASCONF_SUPPORTED:
8248 		retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8249 							  optlen);
8250 		break;
8251 	case SCTP_AUTH_SUPPORTED:
8252 		retval = sctp_getsockopt_auth_supported(sk, len, optval,
8253 							optlen);
8254 		break;
8255 	case SCTP_ECN_SUPPORTED:
8256 		retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8257 		break;
8258 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8259 		retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8260 		break;
8261 	case SCTP_REMOTE_UDP_ENCAPS_PORT:
8262 		retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8263 		break;
8264 	case SCTP_PLPMTUD_PROBE_INTERVAL:
8265 		retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
8266 		break;
8267 	default:
8268 		retval = -ENOPROTOOPT;
8269 		break;
8270 	}
8271 
8272 	release_sock(sk);
8273 	return retval;
8274 }
8275 
8276 static int sctp_hash(struct sock *sk)
8277 {
8278 	/* STUB */
8279 	return 0;
8280 }
8281 
8282 static void sctp_unhash(struct sock *sk)
8283 {
8284 	/* STUB */
8285 }
8286 
8287 /* Check if port is acceptable.  Possibly find first available port.
8288  *
8289  * The port hash table (contained in the 'global' SCTP protocol storage
8290  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8291  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8292  * list (the list number is the port number hashed out, so as you
8293  * would expect from a hash function, all the ports in a given list have
8294  * such a number that hashes out to the same list number; you were
8295  * expecting that, right?); so each list has a set of ports, with a
8296  * link to the socket (struct sock) that uses it, the port number and
8297  * a fastreuse flag (FIXME: NPI ipg).
8298  */
8299 static struct sctp_bind_bucket *sctp_bucket_create(
8300 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8301 
8302 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8303 {
8304 	struct sctp_sock *sp = sctp_sk(sk);
8305 	bool reuse = (sk->sk_reuse || sp->reuse);
8306 	struct sctp_bind_hashbucket *head; /* hash list */
8307 	struct net *net = sock_net(sk);
8308 	kuid_t uid = sock_i_uid(sk);
8309 	struct sctp_bind_bucket *pp;
8310 	unsigned short snum;
8311 	int ret;
8312 
8313 	snum = ntohs(addr->v4.sin_port);
8314 
8315 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8316 
8317 	if (snum == 0) {
8318 		/* Search for an available port. */
8319 		int low, high, remaining, index;
8320 		unsigned int rover;
8321 
8322 		inet_get_local_port_range(net, &low, &high);
8323 		remaining = (high - low) + 1;
8324 		rover = prandom_u32() % remaining + low;
8325 
8326 		do {
8327 			rover++;
8328 			if ((rover < low) || (rover > high))
8329 				rover = low;
8330 			if (inet_is_local_reserved_port(net, rover))
8331 				continue;
8332 			index = sctp_phashfn(net, rover);
8333 			head = &sctp_port_hashtable[index];
8334 			spin_lock_bh(&head->lock);
8335 			sctp_for_each_hentry(pp, &head->chain)
8336 				if ((pp->port == rover) &&
8337 				    net_eq(net, pp->net))
8338 					goto next;
8339 			break;
8340 		next:
8341 			spin_unlock_bh(&head->lock);
8342 			cond_resched();
8343 		} while (--remaining > 0);
8344 
8345 		/* Exhausted local port range during search? */
8346 		ret = 1;
8347 		if (remaining <= 0)
8348 			return ret;
8349 
8350 		/* OK, here is the one we will use.  HEAD (the port
8351 		 * hash table list entry) is non-NULL and we hold it's
8352 		 * mutex.
8353 		 */
8354 		snum = rover;
8355 	} else {
8356 		/* We are given an specific port number; we verify
8357 		 * that it is not being used. If it is used, we will
8358 		 * exahust the search in the hash list corresponding
8359 		 * to the port number (snum) - we detect that with the
8360 		 * port iterator, pp being NULL.
8361 		 */
8362 		head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8363 		spin_lock_bh(&head->lock);
8364 		sctp_for_each_hentry(pp, &head->chain) {
8365 			if ((pp->port == snum) && net_eq(pp->net, net))
8366 				goto pp_found;
8367 		}
8368 	}
8369 	pp = NULL;
8370 	goto pp_not_found;
8371 pp_found:
8372 	if (!hlist_empty(&pp->owner)) {
8373 		/* We had a port hash table hit - there is an
8374 		 * available port (pp != NULL) and it is being
8375 		 * used by other socket (pp->owner not empty); that other
8376 		 * socket is going to be sk2.
8377 		 */
8378 		struct sock *sk2;
8379 
8380 		pr_debug("%s: found a possible match\n", __func__);
8381 
8382 		if ((pp->fastreuse && reuse &&
8383 		     sk->sk_state != SCTP_SS_LISTENING) ||
8384 		    (pp->fastreuseport && sk->sk_reuseport &&
8385 		     uid_eq(pp->fastuid, uid)))
8386 			goto success;
8387 
8388 		/* Run through the list of sockets bound to the port
8389 		 * (pp->port) [via the pointers bind_next and
8390 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8391 		 * we get the endpoint they describe and run through
8392 		 * the endpoint's list of IP (v4 or v6) addresses,
8393 		 * comparing each of the addresses with the address of
8394 		 * the socket sk. If we find a match, then that means
8395 		 * that this port/socket (sk) combination are already
8396 		 * in an endpoint.
8397 		 */
8398 		sk_for_each_bound(sk2, &pp->owner) {
8399 			struct sctp_sock *sp2 = sctp_sk(sk2);
8400 			struct sctp_endpoint *ep2 = sp2->ep;
8401 
8402 			if (sk == sk2 ||
8403 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8404 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8405 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8406 			     uid_eq(uid, sock_i_uid(sk2))))
8407 				continue;
8408 
8409 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8410 						    addr, sp2, sp)) {
8411 				ret = 1;
8412 				goto fail_unlock;
8413 			}
8414 		}
8415 
8416 		pr_debug("%s: found a match\n", __func__);
8417 	}
8418 pp_not_found:
8419 	/* If there was a hash table miss, create a new port.  */
8420 	ret = 1;
8421 	if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8422 		goto fail_unlock;
8423 
8424 	/* In either case (hit or miss), make sure fastreuse is 1 only
8425 	 * if sk->sk_reuse is too (that is, if the caller requested
8426 	 * SO_REUSEADDR on this socket -sk-).
8427 	 */
8428 	if (hlist_empty(&pp->owner)) {
8429 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8430 			pp->fastreuse = 1;
8431 		else
8432 			pp->fastreuse = 0;
8433 
8434 		if (sk->sk_reuseport) {
8435 			pp->fastreuseport = 1;
8436 			pp->fastuid = uid;
8437 		} else {
8438 			pp->fastreuseport = 0;
8439 		}
8440 	} else {
8441 		if (pp->fastreuse &&
8442 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8443 			pp->fastreuse = 0;
8444 
8445 		if (pp->fastreuseport &&
8446 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8447 			pp->fastreuseport = 0;
8448 	}
8449 
8450 	/* We are set, so fill up all the data in the hash table
8451 	 * entry, tie the socket list information with the rest of the
8452 	 * sockets FIXME: Blurry, NPI (ipg).
8453 	 */
8454 success:
8455 	if (!sp->bind_hash) {
8456 		inet_sk(sk)->inet_num = snum;
8457 		sk_add_bind_node(sk, &pp->owner);
8458 		sp->bind_hash = pp;
8459 	}
8460 	ret = 0;
8461 
8462 fail_unlock:
8463 	spin_unlock_bh(&head->lock);
8464 	return ret;
8465 }
8466 
8467 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8468  * port is requested.
8469  */
8470 static int sctp_get_port(struct sock *sk, unsigned short snum)
8471 {
8472 	union sctp_addr addr;
8473 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8474 
8475 	/* Set up a dummy address struct from the sk. */
8476 	af->from_sk(&addr, sk);
8477 	addr.v4.sin_port = htons(snum);
8478 
8479 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8480 	return sctp_get_port_local(sk, &addr);
8481 }
8482 
8483 /*
8484  *  Move a socket to LISTENING state.
8485  */
8486 static int sctp_listen_start(struct sock *sk, int backlog)
8487 {
8488 	struct sctp_sock *sp = sctp_sk(sk);
8489 	struct sctp_endpoint *ep = sp->ep;
8490 	struct crypto_shash *tfm = NULL;
8491 	char alg[32];
8492 
8493 	/* Allocate HMAC for generating cookie. */
8494 	if (!sp->hmac && sp->sctp_hmac_alg) {
8495 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8496 		tfm = crypto_alloc_shash(alg, 0, 0);
8497 		if (IS_ERR(tfm)) {
8498 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8499 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8500 			return -ENOSYS;
8501 		}
8502 		sctp_sk(sk)->hmac = tfm;
8503 	}
8504 
8505 	/*
8506 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8507 	 * call that allows new associations to be accepted, the system
8508 	 * picks an ephemeral port and will choose an address set equivalent
8509 	 * to binding with a wildcard address.
8510 	 *
8511 	 * This is not currently spelled out in the SCTP sockets
8512 	 * extensions draft, but follows the practice as seen in TCP
8513 	 * sockets.
8514 	 *
8515 	 */
8516 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8517 	if (!ep->base.bind_addr.port) {
8518 		if (sctp_autobind(sk))
8519 			return -EAGAIN;
8520 	} else {
8521 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8522 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8523 			return -EADDRINUSE;
8524 		}
8525 	}
8526 
8527 	WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8528 	return sctp_hash_endpoint(ep);
8529 }
8530 
8531 /*
8532  * 4.1.3 / 5.1.3 listen()
8533  *
8534  *   By default, new associations are not accepted for UDP style sockets.
8535  *   An application uses listen() to mark a socket as being able to
8536  *   accept new associations.
8537  *
8538  *   On TCP style sockets, applications use listen() to ready the SCTP
8539  *   endpoint for accepting inbound associations.
8540  *
8541  *   On both types of endpoints a backlog of '0' disables listening.
8542  *
8543  *  Move a socket to LISTENING state.
8544  */
8545 int sctp_inet_listen(struct socket *sock, int backlog)
8546 {
8547 	struct sock *sk = sock->sk;
8548 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8549 	int err = -EINVAL;
8550 
8551 	if (unlikely(backlog < 0))
8552 		return err;
8553 
8554 	lock_sock(sk);
8555 
8556 	/* Peeled-off sockets are not allowed to listen().  */
8557 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8558 		goto out;
8559 
8560 	if (sock->state != SS_UNCONNECTED)
8561 		goto out;
8562 
8563 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8564 		goto out;
8565 
8566 	/* If backlog is zero, disable listening. */
8567 	if (!backlog) {
8568 		if (sctp_sstate(sk, CLOSED))
8569 			goto out;
8570 
8571 		err = 0;
8572 		sctp_unhash_endpoint(ep);
8573 		sk->sk_state = SCTP_SS_CLOSED;
8574 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8575 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8576 		goto out;
8577 	}
8578 
8579 	/* If we are already listening, just update the backlog */
8580 	if (sctp_sstate(sk, LISTENING))
8581 		WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8582 	else {
8583 		err = sctp_listen_start(sk, backlog);
8584 		if (err)
8585 			goto out;
8586 	}
8587 
8588 	err = 0;
8589 out:
8590 	release_sock(sk);
8591 	return err;
8592 }
8593 
8594 /*
8595  * This function is done by modeling the current datagram_poll() and the
8596  * tcp_poll().  Note that, based on these implementations, we don't
8597  * lock the socket in this function, even though it seems that,
8598  * ideally, locking or some other mechanisms can be used to ensure
8599  * the integrity of the counters (sndbuf and wmem_alloc) used
8600  * in this place.  We assume that we don't need locks either until proven
8601  * otherwise.
8602  *
8603  * Another thing to note is that we include the Async I/O support
8604  * here, again, by modeling the current TCP/UDP code.  We don't have
8605  * a good way to test with it yet.
8606  */
8607 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8608 {
8609 	struct sock *sk = sock->sk;
8610 	struct sctp_sock *sp = sctp_sk(sk);
8611 	__poll_t mask;
8612 
8613 	poll_wait(file, sk_sleep(sk), wait);
8614 
8615 	sock_rps_record_flow(sk);
8616 
8617 	/* A TCP-style listening socket becomes readable when the accept queue
8618 	 * is not empty.
8619 	 */
8620 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8621 		return (!list_empty(&sp->ep->asocs)) ?
8622 			(EPOLLIN | EPOLLRDNORM) : 0;
8623 
8624 	mask = 0;
8625 
8626 	/* Is there any exceptional events?  */
8627 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8628 		mask |= EPOLLERR |
8629 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8630 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8631 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8632 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8633 		mask |= EPOLLHUP;
8634 
8635 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8636 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8637 		mask |= EPOLLIN | EPOLLRDNORM;
8638 
8639 	/* The association is either gone or not ready.  */
8640 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8641 		return mask;
8642 
8643 	/* Is it writable?  */
8644 	if (sctp_writeable(sk)) {
8645 		mask |= EPOLLOUT | EPOLLWRNORM;
8646 	} else {
8647 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8648 		/*
8649 		 * Since the socket is not locked, the buffer
8650 		 * might be made available after the writeable check and
8651 		 * before the bit is set.  This could cause a lost I/O
8652 		 * signal.  tcp_poll() has a race breaker for this race
8653 		 * condition.  Based on their implementation, we put
8654 		 * in the following code to cover it as well.
8655 		 */
8656 		if (sctp_writeable(sk))
8657 			mask |= EPOLLOUT | EPOLLWRNORM;
8658 	}
8659 	return mask;
8660 }
8661 
8662 /********************************************************************
8663  * 2nd Level Abstractions
8664  ********************************************************************/
8665 
8666 static struct sctp_bind_bucket *sctp_bucket_create(
8667 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8668 {
8669 	struct sctp_bind_bucket *pp;
8670 
8671 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8672 	if (pp) {
8673 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8674 		pp->port = snum;
8675 		pp->fastreuse = 0;
8676 		INIT_HLIST_HEAD(&pp->owner);
8677 		pp->net = net;
8678 		hlist_add_head(&pp->node, &head->chain);
8679 	}
8680 	return pp;
8681 }
8682 
8683 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8684 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8685 {
8686 	if (pp && hlist_empty(&pp->owner)) {
8687 		__hlist_del(&pp->node);
8688 		kmem_cache_free(sctp_bucket_cachep, pp);
8689 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8690 	}
8691 }
8692 
8693 /* Release this socket's reference to a local port.  */
8694 static inline void __sctp_put_port(struct sock *sk)
8695 {
8696 	struct sctp_bind_hashbucket *head =
8697 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8698 						  inet_sk(sk)->inet_num)];
8699 	struct sctp_bind_bucket *pp;
8700 
8701 	spin_lock(&head->lock);
8702 	pp = sctp_sk(sk)->bind_hash;
8703 	__sk_del_bind_node(sk);
8704 	sctp_sk(sk)->bind_hash = NULL;
8705 	inet_sk(sk)->inet_num = 0;
8706 	sctp_bucket_destroy(pp);
8707 	spin_unlock(&head->lock);
8708 }
8709 
8710 void sctp_put_port(struct sock *sk)
8711 {
8712 	local_bh_disable();
8713 	__sctp_put_port(sk);
8714 	local_bh_enable();
8715 }
8716 
8717 /*
8718  * The system picks an ephemeral port and choose an address set equivalent
8719  * to binding with a wildcard address.
8720  * One of those addresses will be the primary address for the association.
8721  * This automatically enables the multihoming capability of SCTP.
8722  */
8723 static int sctp_autobind(struct sock *sk)
8724 {
8725 	union sctp_addr autoaddr;
8726 	struct sctp_af *af;
8727 	__be16 port;
8728 
8729 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8730 	af = sctp_sk(sk)->pf->af;
8731 
8732 	port = htons(inet_sk(sk)->inet_num);
8733 	af->inaddr_any(&autoaddr, port);
8734 
8735 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8736 }
8737 
8738 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8739  *
8740  * From RFC 2292
8741  * 4.2 The cmsghdr Structure *
8742  *
8743  * When ancillary data is sent or received, any number of ancillary data
8744  * objects can be specified by the msg_control and msg_controllen members of
8745  * the msghdr structure, because each object is preceded by
8746  * a cmsghdr structure defining the object's length (the cmsg_len member).
8747  * Historically Berkeley-derived implementations have passed only one object
8748  * at a time, but this API allows multiple objects to be
8749  * passed in a single call to sendmsg() or recvmsg(). The following example
8750  * shows two ancillary data objects in a control buffer.
8751  *
8752  *   |<--------------------------- msg_controllen -------------------------->|
8753  *   |                                                                       |
8754  *
8755  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8756  *
8757  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8758  *   |                                   |                                   |
8759  *
8760  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8761  *
8762  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8763  *   |                                |  |                                |  |
8764  *
8765  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8766  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8767  *
8768  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8769  *
8770  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8771  *    ^
8772  *    |
8773  *
8774  * msg_control
8775  * points here
8776  */
8777 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8778 {
8779 	struct msghdr *my_msg = (struct msghdr *)msg;
8780 	struct cmsghdr *cmsg;
8781 
8782 	for_each_cmsghdr(cmsg, my_msg) {
8783 		if (!CMSG_OK(my_msg, cmsg))
8784 			return -EINVAL;
8785 
8786 		/* Should we parse this header or ignore?  */
8787 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8788 			continue;
8789 
8790 		/* Strictly check lengths following example in SCM code.  */
8791 		switch (cmsg->cmsg_type) {
8792 		case SCTP_INIT:
8793 			/* SCTP Socket API Extension
8794 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8795 			 *
8796 			 * This cmsghdr structure provides information for
8797 			 * initializing new SCTP associations with sendmsg().
8798 			 * The SCTP_INITMSG socket option uses this same data
8799 			 * structure.  This structure is not used for
8800 			 * recvmsg().
8801 			 *
8802 			 * cmsg_level    cmsg_type      cmsg_data[]
8803 			 * ------------  ------------   ----------------------
8804 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8805 			 */
8806 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8807 				return -EINVAL;
8808 
8809 			cmsgs->init = CMSG_DATA(cmsg);
8810 			break;
8811 
8812 		case SCTP_SNDRCV:
8813 			/* SCTP Socket API Extension
8814 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8815 			 *
8816 			 * This cmsghdr structure specifies SCTP options for
8817 			 * sendmsg() and describes SCTP header information
8818 			 * about a received message through recvmsg().
8819 			 *
8820 			 * cmsg_level    cmsg_type      cmsg_data[]
8821 			 * ------------  ------------   ----------------------
8822 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8823 			 */
8824 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8825 				return -EINVAL;
8826 
8827 			cmsgs->srinfo = CMSG_DATA(cmsg);
8828 
8829 			if (cmsgs->srinfo->sinfo_flags &
8830 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8831 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8832 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8833 				return -EINVAL;
8834 			break;
8835 
8836 		case SCTP_SNDINFO:
8837 			/* SCTP Socket API Extension
8838 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8839 			 *
8840 			 * This cmsghdr structure specifies SCTP options for
8841 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8842 			 * SCTP_SNDRCV which has been deprecated.
8843 			 *
8844 			 * cmsg_level    cmsg_type      cmsg_data[]
8845 			 * ------------  ------------   ---------------------
8846 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8847 			 */
8848 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8849 				return -EINVAL;
8850 
8851 			cmsgs->sinfo = CMSG_DATA(cmsg);
8852 
8853 			if (cmsgs->sinfo->snd_flags &
8854 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8855 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8856 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8857 				return -EINVAL;
8858 			break;
8859 		case SCTP_PRINFO:
8860 			/* SCTP Socket API Extension
8861 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8862 			 *
8863 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8864 			 *
8865 			 * cmsg_level    cmsg_type      cmsg_data[]
8866 			 * ------------  ------------   ---------------------
8867 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8868 			 */
8869 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8870 				return -EINVAL;
8871 
8872 			cmsgs->prinfo = CMSG_DATA(cmsg);
8873 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8874 				return -EINVAL;
8875 
8876 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8877 				cmsgs->prinfo->pr_value = 0;
8878 			break;
8879 		case SCTP_AUTHINFO:
8880 			/* SCTP Socket API Extension
8881 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8882 			 *
8883 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8884 			 *
8885 			 * cmsg_level    cmsg_type      cmsg_data[]
8886 			 * ------------  ------------   ---------------------
8887 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8888 			 */
8889 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8890 				return -EINVAL;
8891 
8892 			cmsgs->authinfo = CMSG_DATA(cmsg);
8893 			break;
8894 		case SCTP_DSTADDRV4:
8895 		case SCTP_DSTADDRV6:
8896 			/* SCTP Socket API Extension
8897 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8898 			 *
8899 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8900 			 *
8901 			 * cmsg_level    cmsg_type         cmsg_data[]
8902 			 * ------------  ------------   ---------------------
8903 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8904 			 * ------------  ------------   ---------------------
8905 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8906 			 */
8907 			cmsgs->addrs_msg = my_msg;
8908 			break;
8909 		default:
8910 			return -EINVAL;
8911 		}
8912 	}
8913 
8914 	return 0;
8915 }
8916 
8917 /*
8918  * Wait for a packet..
8919  * Note: This function is the same function as in core/datagram.c
8920  * with a few modifications to make lksctp work.
8921  */
8922 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8923 {
8924 	int error;
8925 	DEFINE_WAIT(wait);
8926 
8927 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8928 
8929 	/* Socket errors? */
8930 	error = sock_error(sk);
8931 	if (error)
8932 		goto out;
8933 
8934 	if (!skb_queue_empty(&sk->sk_receive_queue))
8935 		goto ready;
8936 
8937 	/* Socket shut down?  */
8938 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8939 		goto out;
8940 
8941 	/* Sequenced packets can come disconnected.  If so we report the
8942 	 * problem.
8943 	 */
8944 	error = -ENOTCONN;
8945 
8946 	/* Is there a good reason to think that we may receive some data?  */
8947 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8948 		goto out;
8949 
8950 	/* Handle signals.  */
8951 	if (signal_pending(current))
8952 		goto interrupted;
8953 
8954 	/* Let another process have a go.  Since we are going to sleep
8955 	 * anyway.  Note: This may cause odd behaviors if the message
8956 	 * does not fit in the user's buffer, but this seems to be the
8957 	 * only way to honor MSG_DONTWAIT realistically.
8958 	 */
8959 	release_sock(sk);
8960 	*timeo_p = schedule_timeout(*timeo_p);
8961 	lock_sock(sk);
8962 
8963 ready:
8964 	finish_wait(sk_sleep(sk), &wait);
8965 	return 0;
8966 
8967 interrupted:
8968 	error = sock_intr_errno(*timeo_p);
8969 
8970 out:
8971 	finish_wait(sk_sleep(sk), &wait);
8972 	*err = error;
8973 	return error;
8974 }
8975 
8976 /* Receive a datagram.
8977  * Note: This is pretty much the same routine as in core/datagram.c
8978  * with a few changes to make lksctp work.
8979  */
8980 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err)
8981 {
8982 	int error;
8983 	struct sk_buff *skb;
8984 	long timeo;
8985 
8986 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
8987 
8988 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8989 		 MAX_SCHEDULE_TIMEOUT);
8990 
8991 	do {
8992 		/* Again only user level code calls this function,
8993 		 * so nothing interrupt level
8994 		 * will suddenly eat the receive_queue.
8995 		 *
8996 		 *  Look at current nfs client by the way...
8997 		 *  However, this function was correct in any case. 8)
8998 		 */
8999 		if (flags & MSG_PEEK) {
9000 			skb = skb_peek(&sk->sk_receive_queue);
9001 			if (skb)
9002 				refcount_inc(&skb->users);
9003 		} else {
9004 			skb = __skb_dequeue(&sk->sk_receive_queue);
9005 		}
9006 
9007 		if (skb)
9008 			return skb;
9009 
9010 		/* Caller is allowed not to check sk->sk_err before calling. */
9011 		error = sock_error(sk);
9012 		if (error)
9013 			goto no_packet;
9014 
9015 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9016 			break;
9017 
9018 		if (sk_can_busy_loop(sk)) {
9019 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
9020 
9021 			if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
9022 				continue;
9023 		}
9024 
9025 		/* User doesn't want to wait.  */
9026 		error = -EAGAIN;
9027 		if (!timeo)
9028 			goto no_packet;
9029 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
9030 
9031 	return NULL;
9032 
9033 no_packet:
9034 	*err = error;
9035 	return NULL;
9036 }
9037 
9038 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
9039 static void __sctp_write_space(struct sctp_association *asoc)
9040 {
9041 	struct sock *sk = asoc->base.sk;
9042 
9043 	if (sctp_wspace(asoc) <= 0)
9044 		return;
9045 
9046 	if (waitqueue_active(&asoc->wait))
9047 		wake_up_interruptible(&asoc->wait);
9048 
9049 	if (sctp_writeable(sk)) {
9050 		struct socket_wq *wq;
9051 
9052 		rcu_read_lock();
9053 		wq = rcu_dereference(sk->sk_wq);
9054 		if (wq) {
9055 			if (waitqueue_active(&wq->wait))
9056 				wake_up_interruptible(&wq->wait);
9057 
9058 			/* Note that we try to include the Async I/O support
9059 			 * here by modeling from the current TCP/UDP code.
9060 			 * We have not tested with it yet.
9061 			 */
9062 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9063 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
9064 		}
9065 		rcu_read_unlock();
9066 	}
9067 }
9068 
9069 static void sctp_wake_up_waiters(struct sock *sk,
9070 				 struct sctp_association *asoc)
9071 {
9072 	struct sctp_association *tmp = asoc;
9073 
9074 	/* We do accounting for the sndbuf space per association,
9075 	 * so we only need to wake our own association.
9076 	 */
9077 	if (asoc->ep->sndbuf_policy)
9078 		return __sctp_write_space(asoc);
9079 
9080 	/* If association goes down and is just flushing its
9081 	 * outq, then just normally notify others.
9082 	 */
9083 	if (asoc->base.dead)
9084 		return sctp_write_space(sk);
9085 
9086 	/* Accounting for the sndbuf space is per socket, so we
9087 	 * need to wake up others, try to be fair and in case of
9088 	 * other associations, let them have a go first instead
9089 	 * of just doing a sctp_write_space() call.
9090 	 *
9091 	 * Note that we reach sctp_wake_up_waiters() only when
9092 	 * associations free up queued chunks, thus we are under
9093 	 * lock and the list of associations on a socket is
9094 	 * guaranteed not to change.
9095 	 */
9096 	for (tmp = list_next_entry(tmp, asocs); 1;
9097 	     tmp = list_next_entry(tmp, asocs)) {
9098 		/* Manually skip the head element. */
9099 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9100 			continue;
9101 		/* Wake up association. */
9102 		__sctp_write_space(tmp);
9103 		/* We've reached the end. */
9104 		if (tmp == asoc)
9105 			break;
9106 	}
9107 }
9108 
9109 /* Do accounting for the sndbuf space.
9110  * Decrement the used sndbuf space of the corresponding association by the
9111  * data size which was just transmitted(freed).
9112  */
9113 static void sctp_wfree(struct sk_buff *skb)
9114 {
9115 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9116 	struct sctp_association *asoc = chunk->asoc;
9117 	struct sock *sk = asoc->base.sk;
9118 
9119 	sk_mem_uncharge(sk, skb->truesize);
9120 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
9121 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9122 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9123 				      &sk->sk_wmem_alloc));
9124 
9125 	if (chunk->shkey) {
9126 		struct sctp_shared_key *shkey = chunk->shkey;
9127 
9128 		/* refcnt == 2 and !list_empty mean after this release, it's
9129 		 * not being used anywhere, and it's time to notify userland
9130 		 * that this shkey can be freed if it's been deactivated.
9131 		 */
9132 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
9133 		    refcount_read(&shkey->refcnt) == 2) {
9134 			struct sctp_ulpevent *ev;
9135 
9136 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9137 							SCTP_AUTH_FREE_KEY,
9138 							GFP_KERNEL);
9139 			if (ev)
9140 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9141 		}
9142 		sctp_auth_shkey_release(chunk->shkey);
9143 	}
9144 
9145 	sock_wfree(skb);
9146 	sctp_wake_up_waiters(sk, asoc);
9147 
9148 	sctp_association_put(asoc);
9149 }
9150 
9151 /* Do accounting for the receive space on the socket.
9152  * Accounting for the association is done in ulpevent.c
9153  * We set this as a destructor for the cloned data skbs so that
9154  * accounting is done at the correct time.
9155  */
9156 void sctp_sock_rfree(struct sk_buff *skb)
9157 {
9158 	struct sock *sk = skb->sk;
9159 	struct sctp_ulpevent *event = sctp_skb2event(skb);
9160 
9161 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9162 
9163 	/*
9164 	 * Mimic the behavior of sock_rfree
9165 	 */
9166 	sk_mem_uncharge(sk, event->rmem_len);
9167 }
9168 
9169 
9170 /* Helper function to wait for space in the sndbuf.  */
9171 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9172 				size_t msg_len)
9173 {
9174 	struct sock *sk = asoc->base.sk;
9175 	long current_timeo = *timeo_p;
9176 	DEFINE_WAIT(wait);
9177 	int err = 0;
9178 
9179 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9180 		 *timeo_p, msg_len);
9181 
9182 	/* Increment the association's refcnt.  */
9183 	sctp_association_hold(asoc);
9184 
9185 	/* Wait on the association specific sndbuf space. */
9186 	for (;;) {
9187 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9188 					  TASK_INTERRUPTIBLE);
9189 		if (asoc->base.dead)
9190 			goto do_dead;
9191 		if (!*timeo_p)
9192 			goto do_nonblock;
9193 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9194 			goto do_error;
9195 		if (signal_pending(current))
9196 			goto do_interrupted;
9197 		if (sk_under_memory_pressure(sk))
9198 			sk_mem_reclaim(sk);
9199 		if ((int)msg_len <= sctp_wspace(asoc) &&
9200 		    sk_wmem_schedule(sk, msg_len))
9201 			break;
9202 
9203 		/* Let another process have a go.  Since we are going
9204 		 * to sleep anyway.
9205 		 */
9206 		release_sock(sk);
9207 		current_timeo = schedule_timeout(current_timeo);
9208 		lock_sock(sk);
9209 		if (sk != asoc->base.sk)
9210 			goto do_error;
9211 
9212 		*timeo_p = current_timeo;
9213 	}
9214 
9215 out:
9216 	finish_wait(&asoc->wait, &wait);
9217 
9218 	/* Release the association's refcnt.  */
9219 	sctp_association_put(asoc);
9220 
9221 	return err;
9222 
9223 do_dead:
9224 	err = -ESRCH;
9225 	goto out;
9226 
9227 do_error:
9228 	err = -EPIPE;
9229 	goto out;
9230 
9231 do_interrupted:
9232 	err = sock_intr_errno(*timeo_p);
9233 	goto out;
9234 
9235 do_nonblock:
9236 	err = -EAGAIN;
9237 	goto out;
9238 }
9239 
9240 void sctp_data_ready(struct sock *sk)
9241 {
9242 	struct socket_wq *wq;
9243 
9244 	rcu_read_lock();
9245 	wq = rcu_dereference(sk->sk_wq);
9246 	if (skwq_has_sleeper(wq))
9247 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9248 						EPOLLRDNORM | EPOLLRDBAND);
9249 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9250 	rcu_read_unlock();
9251 }
9252 
9253 /* If socket sndbuf has changed, wake up all per association waiters.  */
9254 void sctp_write_space(struct sock *sk)
9255 {
9256 	struct sctp_association *asoc;
9257 
9258 	/* Wake up the tasks in each wait queue.  */
9259 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9260 		__sctp_write_space(asoc);
9261 	}
9262 }
9263 
9264 /* Is there any sndbuf space available on the socket?
9265  *
9266  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9267  * associations on the same socket.  For a UDP-style socket with
9268  * multiple associations, it is possible for it to be "unwriteable"
9269  * prematurely.  I assume that this is acceptable because
9270  * a premature "unwriteable" is better than an accidental "writeable" which
9271  * would cause an unwanted block under certain circumstances.  For the 1-1
9272  * UDP-style sockets or TCP-style sockets, this code should work.
9273  *  - Daisy
9274  */
9275 static bool sctp_writeable(struct sock *sk)
9276 {
9277 	return sk->sk_sndbuf > sk->sk_wmem_queued;
9278 }
9279 
9280 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9281  * returns immediately with EINPROGRESS.
9282  */
9283 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9284 {
9285 	struct sock *sk = asoc->base.sk;
9286 	int err = 0;
9287 	long current_timeo = *timeo_p;
9288 	DEFINE_WAIT(wait);
9289 
9290 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9291 
9292 	/* Increment the association's refcnt.  */
9293 	sctp_association_hold(asoc);
9294 
9295 	for (;;) {
9296 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9297 					  TASK_INTERRUPTIBLE);
9298 		if (!*timeo_p)
9299 			goto do_nonblock;
9300 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9301 			break;
9302 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9303 		    asoc->base.dead)
9304 			goto do_error;
9305 		if (signal_pending(current))
9306 			goto do_interrupted;
9307 
9308 		if (sctp_state(asoc, ESTABLISHED))
9309 			break;
9310 
9311 		/* Let another process have a go.  Since we are going
9312 		 * to sleep anyway.
9313 		 */
9314 		release_sock(sk);
9315 		current_timeo = schedule_timeout(current_timeo);
9316 		lock_sock(sk);
9317 
9318 		*timeo_p = current_timeo;
9319 	}
9320 
9321 out:
9322 	finish_wait(&asoc->wait, &wait);
9323 
9324 	/* Release the association's refcnt.  */
9325 	sctp_association_put(asoc);
9326 
9327 	return err;
9328 
9329 do_error:
9330 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9331 		err = -ETIMEDOUT;
9332 	else
9333 		err = -ECONNREFUSED;
9334 	goto out;
9335 
9336 do_interrupted:
9337 	err = sock_intr_errno(*timeo_p);
9338 	goto out;
9339 
9340 do_nonblock:
9341 	err = -EINPROGRESS;
9342 	goto out;
9343 }
9344 
9345 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9346 {
9347 	struct sctp_endpoint *ep;
9348 	int err = 0;
9349 	DEFINE_WAIT(wait);
9350 
9351 	ep = sctp_sk(sk)->ep;
9352 
9353 
9354 	for (;;) {
9355 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9356 					  TASK_INTERRUPTIBLE);
9357 
9358 		if (list_empty(&ep->asocs)) {
9359 			release_sock(sk);
9360 			timeo = schedule_timeout(timeo);
9361 			lock_sock(sk);
9362 		}
9363 
9364 		err = -EINVAL;
9365 		if (!sctp_sstate(sk, LISTENING))
9366 			break;
9367 
9368 		err = 0;
9369 		if (!list_empty(&ep->asocs))
9370 			break;
9371 
9372 		err = sock_intr_errno(timeo);
9373 		if (signal_pending(current))
9374 			break;
9375 
9376 		err = -EAGAIN;
9377 		if (!timeo)
9378 			break;
9379 	}
9380 
9381 	finish_wait(sk_sleep(sk), &wait);
9382 
9383 	return err;
9384 }
9385 
9386 static void sctp_wait_for_close(struct sock *sk, long timeout)
9387 {
9388 	DEFINE_WAIT(wait);
9389 
9390 	do {
9391 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9392 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9393 			break;
9394 		release_sock(sk);
9395 		timeout = schedule_timeout(timeout);
9396 		lock_sock(sk);
9397 	} while (!signal_pending(current) && timeout);
9398 
9399 	finish_wait(sk_sleep(sk), &wait);
9400 }
9401 
9402 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9403 {
9404 	struct sk_buff *frag;
9405 
9406 	if (!skb->data_len)
9407 		goto done;
9408 
9409 	/* Don't forget the fragments. */
9410 	skb_walk_frags(skb, frag)
9411 		sctp_skb_set_owner_r_frag(frag, sk);
9412 
9413 done:
9414 	sctp_skb_set_owner_r(skb, sk);
9415 }
9416 
9417 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9418 		    struct sctp_association *asoc)
9419 {
9420 	struct inet_sock *inet = inet_sk(sk);
9421 	struct inet_sock *newinet;
9422 	struct sctp_sock *sp = sctp_sk(sk);
9423 
9424 	newsk->sk_type = sk->sk_type;
9425 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9426 	newsk->sk_flags = sk->sk_flags;
9427 	newsk->sk_tsflags = sk->sk_tsflags;
9428 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9429 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9430 	newsk->sk_reuse = sk->sk_reuse;
9431 	sctp_sk(newsk)->reuse = sp->reuse;
9432 
9433 	newsk->sk_shutdown = sk->sk_shutdown;
9434 	newsk->sk_destruct = sctp_destruct_sock;
9435 	newsk->sk_family = sk->sk_family;
9436 	newsk->sk_protocol = IPPROTO_SCTP;
9437 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9438 	newsk->sk_sndbuf = sk->sk_sndbuf;
9439 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9440 	newsk->sk_lingertime = sk->sk_lingertime;
9441 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9442 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9443 	newsk->sk_rxhash = sk->sk_rxhash;
9444 
9445 	newinet = inet_sk(newsk);
9446 
9447 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9448 	 * getsockname() and getpeername()
9449 	 */
9450 	newinet->inet_sport = inet->inet_sport;
9451 	newinet->inet_saddr = inet->inet_saddr;
9452 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9453 	newinet->inet_dport = htons(asoc->peer.port);
9454 	newinet->pmtudisc = inet->pmtudisc;
9455 	newinet->inet_id = prandom_u32();
9456 
9457 	newinet->uc_ttl = inet->uc_ttl;
9458 	newinet->mc_loop = 1;
9459 	newinet->mc_ttl = 1;
9460 	newinet->mc_index = 0;
9461 	newinet->mc_list = NULL;
9462 
9463 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9464 		net_enable_timestamp();
9465 
9466 	/* Set newsk security attributes from original sk and connection
9467 	 * security attribute from asoc.
9468 	 */
9469 	security_sctp_sk_clone(asoc, sk, newsk);
9470 }
9471 
9472 static inline void sctp_copy_descendant(struct sock *sk_to,
9473 					const struct sock *sk_from)
9474 {
9475 	size_t ancestor_size = sizeof(struct inet_sock);
9476 
9477 	ancestor_size += sk_from->sk_prot->obj_size;
9478 	ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9479 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9480 }
9481 
9482 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9483  * and its messages to the newsk.
9484  */
9485 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9486 			     struct sctp_association *assoc,
9487 			     enum sctp_socket_type type)
9488 {
9489 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9490 	struct sctp_sock *newsp = sctp_sk(newsk);
9491 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9492 	struct sctp_endpoint *newep = newsp->ep;
9493 	struct sk_buff *skb, *tmp;
9494 	struct sctp_ulpevent *event;
9495 	struct sctp_bind_hashbucket *head;
9496 	int err;
9497 
9498 	/* Migrate socket buffer sizes and all the socket level options to the
9499 	 * new socket.
9500 	 */
9501 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9502 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9503 	/* Brute force copy old sctp opt. */
9504 	sctp_copy_descendant(newsk, oldsk);
9505 
9506 	/* Restore the ep value that was overwritten with the above structure
9507 	 * copy.
9508 	 */
9509 	newsp->ep = newep;
9510 	newsp->hmac = NULL;
9511 
9512 	/* Hook this new socket in to the bind_hash list. */
9513 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9514 						 inet_sk(oldsk)->inet_num)];
9515 	spin_lock_bh(&head->lock);
9516 	pp = sctp_sk(oldsk)->bind_hash;
9517 	sk_add_bind_node(newsk, &pp->owner);
9518 	sctp_sk(newsk)->bind_hash = pp;
9519 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9520 	spin_unlock_bh(&head->lock);
9521 
9522 	/* Copy the bind_addr list from the original endpoint to the new
9523 	 * endpoint so that we can handle restarts properly
9524 	 */
9525 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9526 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9527 	if (err)
9528 		return err;
9529 
9530 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9531 	 * that net->sctp.auth_enable has been changed to 0 by users and
9532 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9533 	 */
9534 	if (oldsp->ep->auth_hmacs) {
9535 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9536 		if (err)
9537 			return err;
9538 	}
9539 
9540 	sctp_auto_asconf_init(newsp);
9541 
9542 	/* Move any messages in the old socket's receive queue that are for the
9543 	 * peeled off association to the new socket's receive queue.
9544 	 */
9545 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9546 		event = sctp_skb2event(skb);
9547 		if (event->asoc == assoc) {
9548 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9549 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9550 			sctp_skb_set_owner_r_frag(skb, newsk);
9551 		}
9552 	}
9553 
9554 	/* Clean up any messages pending delivery due to partial
9555 	 * delivery.   Three cases:
9556 	 * 1) No partial deliver;  no work.
9557 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9558 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9559 	 */
9560 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9561 
9562 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9563 		struct sk_buff_head *queue;
9564 
9565 		/* Decide which queue to move pd_lobby skbs to. */
9566 		if (assoc->ulpq.pd_mode) {
9567 			queue = &newsp->pd_lobby;
9568 		} else
9569 			queue = &newsk->sk_receive_queue;
9570 
9571 		/* Walk through the pd_lobby, looking for skbs that
9572 		 * need moved to the new socket.
9573 		 */
9574 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9575 			event = sctp_skb2event(skb);
9576 			if (event->asoc == assoc) {
9577 				__skb_unlink(skb, &oldsp->pd_lobby);
9578 				__skb_queue_tail(queue, skb);
9579 				sctp_skb_set_owner_r_frag(skb, newsk);
9580 			}
9581 		}
9582 
9583 		/* Clear up any skbs waiting for the partial
9584 		 * delivery to finish.
9585 		 */
9586 		if (assoc->ulpq.pd_mode)
9587 			sctp_clear_pd(oldsk, NULL);
9588 
9589 	}
9590 
9591 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9592 
9593 	/* Set the type of socket to indicate that it is peeled off from the
9594 	 * original UDP-style socket or created with the accept() call on a
9595 	 * TCP-style socket..
9596 	 */
9597 	newsp->type = type;
9598 
9599 	/* Mark the new socket "in-use" by the user so that any packets
9600 	 * that may arrive on the association after we've moved it are
9601 	 * queued to the backlog.  This prevents a potential race between
9602 	 * backlog processing on the old socket and new-packet processing
9603 	 * on the new socket.
9604 	 *
9605 	 * The caller has just allocated newsk so we can guarantee that other
9606 	 * paths won't try to lock it and then oldsk.
9607 	 */
9608 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9609 	sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9610 	sctp_assoc_migrate(assoc, newsk);
9611 	sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9612 
9613 	/* If the association on the newsk is already closed before accept()
9614 	 * is called, set RCV_SHUTDOWN flag.
9615 	 */
9616 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9617 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9618 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9619 	} else {
9620 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9621 	}
9622 
9623 	release_sock(newsk);
9624 
9625 	return 0;
9626 }
9627 
9628 
9629 /* This proto struct describes the ULP interface for SCTP.  */
9630 struct proto sctp_prot = {
9631 	.name        =	"SCTP",
9632 	.owner       =	THIS_MODULE,
9633 	.close       =	sctp_close,
9634 	.disconnect  =	sctp_disconnect,
9635 	.accept      =	sctp_accept,
9636 	.ioctl       =	sctp_ioctl,
9637 	.init        =	sctp_init_sock,
9638 	.destroy     =	sctp_destroy_sock,
9639 	.shutdown    =	sctp_shutdown,
9640 	.setsockopt  =	sctp_setsockopt,
9641 	.getsockopt  =	sctp_getsockopt,
9642 	.sendmsg     =	sctp_sendmsg,
9643 	.recvmsg     =	sctp_recvmsg,
9644 	.bind        =	sctp_bind,
9645 	.bind_add    =  sctp_bind_add,
9646 	.backlog_rcv =	sctp_backlog_rcv,
9647 	.hash        =	sctp_hash,
9648 	.unhash      =	sctp_unhash,
9649 	.no_autobind =	true,
9650 	.obj_size    =  sizeof(struct sctp_sock),
9651 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9652 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9653 				offsetof(struct sctp_sock, subscribe) +
9654 				sizeof_field(struct sctp_sock, initmsg),
9655 	.sysctl_mem  =  sysctl_sctp_mem,
9656 	.sysctl_rmem =  sysctl_sctp_rmem,
9657 	.sysctl_wmem =  sysctl_sctp_wmem,
9658 	.memory_pressure = &sctp_memory_pressure,
9659 	.enter_memory_pressure = sctp_enter_memory_pressure,
9660 	.memory_allocated = &sctp_memory_allocated,
9661 	.sockets_allocated = &sctp_sockets_allocated,
9662 };
9663 
9664 #if IS_ENABLED(CONFIG_IPV6)
9665 
9666 #include <net/transp_v6.h>
9667 static void sctp_v6_destroy_sock(struct sock *sk)
9668 {
9669 	sctp_destroy_sock(sk);
9670 	inet6_destroy_sock(sk);
9671 }
9672 
9673 struct proto sctpv6_prot = {
9674 	.name		= "SCTPv6",
9675 	.owner		= THIS_MODULE,
9676 	.close		= sctp_close,
9677 	.disconnect	= sctp_disconnect,
9678 	.accept		= sctp_accept,
9679 	.ioctl		= sctp_ioctl,
9680 	.init		= sctp_init_sock,
9681 	.destroy	= sctp_v6_destroy_sock,
9682 	.shutdown	= sctp_shutdown,
9683 	.setsockopt	= sctp_setsockopt,
9684 	.getsockopt	= sctp_getsockopt,
9685 	.sendmsg	= sctp_sendmsg,
9686 	.recvmsg	= sctp_recvmsg,
9687 	.bind		= sctp_bind,
9688 	.bind_add	= sctp_bind_add,
9689 	.backlog_rcv	= sctp_backlog_rcv,
9690 	.hash		= sctp_hash,
9691 	.unhash		= sctp_unhash,
9692 	.no_autobind	= true,
9693 	.obj_size	= sizeof(struct sctp6_sock),
9694 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9695 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9696 				offsetof(struct sctp6_sock, sctp.subscribe) +
9697 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9698 	.sysctl_mem	= sysctl_sctp_mem,
9699 	.sysctl_rmem	= sysctl_sctp_rmem,
9700 	.sysctl_wmem	= sysctl_sctp_wmem,
9701 	.memory_pressure = &sctp_memory_pressure,
9702 	.enter_memory_pressure = sctp_enter_memory_pressure,
9703 	.memory_allocated = &sctp_memory_allocated,
9704 	.sockets_allocated = &sctp_sockets_allocated,
9705 };
9706 #endif /* IS_ENABLED(CONFIG_IPV6) */
9707