xref: /openbmc/linux/net/sctp/socket.c (revision f35e839a)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 #include <linux/file.h>
74 
75 #include <net/ip.h>
76 #include <net/icmp.h>
77 #include <net/route.h>
78 #include <net/ipv6.h>
79 #include <net/inet_common.h>
80 
81 #include <linux/socket.h> /* for sa_family_t */
82 #include <linux/export.h>
83 #include <net/sock.h>
84 #include <net/sctp/sctp.h>
85 #include <net/sctp/sm.h>
86 
87 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
88  * any of the functions below as they are used to export functions
89  * used by a project regression testsuite.
90  */
91 
92 /* Forward declarations for internal helper functions. */
93 static int sctp_writeable(struct sock *sk);
94 static void sctp_wfree(struct sk_buff *skb);
95 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
96 				size_t msg_len);
97 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
98 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
99 static int sctp_wait_for_accept(struct sock *sk, long timeo);
100 static void sctp_wait_for_close(struct sock *sk, long timeo);
101 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
102 					union sctp_addr *addr, int len);
103 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
104 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
106 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
107 static int sctp_send_asconf(struct sctp_association *asoc,
108 			    struct sctp_chunk *chunk);
109 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
110 static int sctp_autobind(struct sock *sk);
111 static void sctp_sock_migrate(struct sock *, struct sock *,
112 			      struct sctp_association *, sctp_socket_type_t);
113 
114 extern struct kmem_cache *sctp_bucket_cachep;
115 extern long sysctl_sctp_mem[3];
116 extern int sysctl_sctp_rmem[3];
117 extern int sysctl_sctp_wmem[3];
118 
119 static int sctp_memory_pressure;
120 static atomic_long_t sctp_memory_allocated;
121 struct percpu_counter sctp_sockets_allocated;
122 
123 static void sctp_enter_memory_pressure(struct sock *sk)
124 {
125 	sctp_memory_pressure = 1;
126 }
127 
128 
129 /* Get the sndbuf space available at the time on the association.  */
130 static inline int sctp_wspace(struct sctp_association *asoc)
131 {
132 	int amt;
133 
134 	if (asoc->ep->sndbuf_policy)
135 		amt = asoc->sndbuf_used;
136 	else
137 		amt = sk_wmem_alloc_get(asoc->base.sk);
138 
139 	if (amt >= asoc->base.sk->sk_sndbuf) {
140 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
141 			amt = 0;
142 		else {
143 			amt = sk_stream_wspace(asoc->base.sk);
144 			if (amt < 0)
145 				amt = 0;
146 		}
147 	} else {
148 		amt = asoc->base.sk->sk_sndbuf - amt;
149 	}
150 	return amt;
151 }
152 
153 /* Increment the used sndbuf space count of the corresponding association by
154  * the size of the outgoing data chunk.
155  * Also, set the skb destructor for sndbuf accounting later.
156  *
157  * Since it is always 1-1 between chunk and skb, and also a new skb is always
158  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
159  * destructor in the data chunk skb for the purpose of the sndbuf space
160  * tracking.
161  */
162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
163 {
164 	struct sctp_association *asoc = chunk->asoc;
165 	struct sock *sk = asoc->base.sk;
166 
167 	/* The sndbuf space is tracked per association.  */
168 	sctp_association_hold(asoc);
169 
170 	skb_set_owner_w(chunk->skb, sk);
171 
172 	chunk->skb->destructor = sctp_wfree;
173 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
174 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
175 
176 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
177 				sizeof(struct sk_buff) +
178 				sizeof(struct sctp_chunk);
179 
180 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
181 	sk->sk_wmem_queued += chunk->skb->truesize;
182 	sk_mem_charge(sk, chunk->skb->truesize);
183 }
184 
185 /* Verify that this is a valid address. */
186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
187 				   int len)
188 {
189 	struct sctp_af *af;
190 
191 	/* Verify basic sockaddr. */
192 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
193 	if (!af)
194 		return -EINVAL;
195 
196 	/* Is this a valid SCTP address?  */
197 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
198 		return -EINVAL;
199 
200 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
201 		return -EINVAL;
202 
203 	return 0;
204 }
205 
206 /* Look up the association by its id.  If this is not a UDP-style
207  * socket, the ID field is always ignored.
208  */
209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
210 {
211 	struct sctp_association *asoc = NULL;
212 
213 	/* If this is not a UDP-style socket, assoc id should be ignored. */
214 	if (!sctp_style(sk, UDP)) {
215 		/* Return NULL if the socket state is not ESTABLISHED. It
216 		 * could be a TCP-style listening socket or a socket which
217 		 * hasn't yet called connect() to establish an association.
218 		 */
219 		if (!sctp_sstate(sk, ESTABLISHED))
220 			return NULL;
221 
222 		/* Get the first and the only association from the list. */
223 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
224 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
225 					  struct sctp_association, asocs);
226 		return asoc;
227 	}
228 
229 	/* Otherwise this is a UDP-style socket. */
230 	if (!id || (id == (sctp_assoc_t)-1))
231 		return NULL;
232 
233 	spin_lock_bh(&sctp_assocs_id_lock);
234 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
235 	spin_unlock_bh(&sctp_assocs_id_lock);
236 
237 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
238 		return NULL;
239 
240 	return asoc;
241 }
242 
243 /* Look up the transport from an address and an assoc id. If both address and
244  * id are specified, the associations matching the address and the id should be
245  * the same.
246  */
247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
248 					      struct sockaddr_storage *addr,
249 					      sctp_assoc_t id)
250 {
251 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
252 	struct sctp_transport *transport;
253 	union sctp_addr *laddr = (union sctp_addr *)addr;
254 
255 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
256 					       laddr,
257 					       &transport);
258 
259 	if (!addr_asoc)
260 		return NULL;
261 
262 	id_asoc = sctp_id2assoc(sk, id);
263 	if (id_asoc && (id_asoc != addr_asoc))
264 		return NULL;
265 
266 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
267 						(union sctp_addr *)addr);
268 
269 	return transport;
270 }
271 
272 /* API 3.1.2 bind() - UDP Style Syntax
273  * The syntax of bind() is,
274  *
275  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
276  *
277  *   sd      - the socket descriptor returned by socket().
278  *   addr    - the address structure (struct sockaddr_in or struct
279  *             sockaddr_in6 [RFC 2553]),
280  *   addr_len - the size of the address structure.
281  */
282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
283 {
284 	int retval = 0;
285 
286 	sctp_lock_sock(sk);
287 
288 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
289 			  sk, addr, addr_len);
290 
291 	/* Disallow binding twice. */
292 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
293 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
294 				      addr_len);
295 	else
296 		retval = -EINVAL;
297 
298 	sctp_release_sock(sk);
299 
300 	return retval;
301 }
302 
303 static long sctp_get_port_local(struct sock *, union sctp_addr *);
304 
305 /* Verify this is a valid sockaddr. */
306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
307 					union sctp_addr *addr, int len)
308 {
309 	struct sctp_af *af;
310 
311 	/* Check minimum size.  */
312 	if (len < sizeof (struct sockaddr))
313 		return NULL;
314 
315 	/* V4 mapped address are really of AF_INET family */
316 	if (addr->sa.sa_family == AF_INET6 &&
317 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
318 		if (!opt->pf->af_supported(AF_INET, opt))
319 			return NULL;
320 	} else {
321 		/* Does this PF support this AF? */
322 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
323 			return NULL;
324 	}
325 
326 	/* If we get this far, af is valid. */
327 	af = sctp_get_af_specific(addr->sa.sa_family);
328 
329 	if (len < af->sockaddr_len)
330 		return NULL;
331 
332 	return af;
333 }
334 
335 /* Bind a local address either to an endpoint or to an association.  */
336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
337 {
338 	struct net *net = sock_net(sk);
339 	struct sctp_sock *sp = sctp_sk(sk);
340 	struct sctp_endpoint *ep = sp->ep;
341 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
342 	struct sctp_af *af;
343 	unsigned short snum;
344 	int ret = 0;
345 
346 	/* Common sockaddr verification. */
347 	af = sctp_sockaddr_af(sp, addr, len);
348 	if (!af) {
349 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
350 				  sk, addr, len);
351 		return -EINVAL;
352 	}
353 
354 	snum = ntohs(addr->v4.sin_port);
355 
356 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
357 				 ", port: %d, new port: %d, len: %d)\n",
358 				 sk,
359 				 addr,
360 				 bp->port, snum,
361 				 len);
362 
363 	/* PF specific bind() address verification. */
364 	if (!sp->pf->bind_verify(sp, addr))
365 		return -EADDRNOTAVAIL;
366 
367 	/* We must either be unbound, or bind to the same port.
368 	 * It's OK to allow 0 ports if we are already bound.
369 	 * We'll just inhert an already bound port in this case
370 	 */
371 	if (bp->port) {
372 		if (!snum)
373 			snum = bp->port;
374 		else if (snum != bp->port) {
375 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
376 				  " New port %d does not match existing port "
377 				  "%d.\n", snum, bp->port);
378 			return -EINVAL;
379 		}
380 	}
381 
382 	if (snum && snum < PROT_SOCK &&
383 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
384 		return -EACCES;
385 
386 	/* See if the address matches any of the addresses we may have
387 	 * already bound before checking against other endpoints.
388 	 */
389 	if (sctp_bind_addr_match(bp, addr, sp))
390 		return -EINVAL;
391 
392 	/* Make sure we are allowed to bind here.
393 	 * The function sctp_get_port_local() does duplicate address
394 	 * detection.
395 	 */
396 	addr->v4.sin_port = htons(snum);
397 	if ((ret = sctp_get_port_local(sk, addr))) {
398 		return -EADDRINUSE;
399 	}
400 
401 	/* Refresh ephemeral port.  */
402 	if (!bp->port)
403 		bp->port = inet_sk(sk)->inet_num;
404 
405 	/* Add the address to the bind address list.
406 	 * Use GFP_ATOMIC since BHs will be disabled.
407 	 */
408 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
409 
410 	/* Copy back into socket for getsockname() use. */
411 	if (!ret) {
412 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
413 		af->to_sk_saddr(addr, sk);
414 	}
415 
416 	return ret;
417 }
418 
419  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
420  *
421  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
422  * at any one time.  If a sender, after sending an ASCONF chunk, decides
423  * it needs to transfer another ASCONF Chunk, it MUST wait until the
424  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
425  * subsequent ASCONF. Note this restriction binds each side, so at any
426  * time two ASCONF may be in-transit on any given association (one sent
427  * from each endpoint).
428  */
429 static int sctp_send_asconf(struct sctp_association *asoc,
430 			    struct sctp_chunk *chunk)
431 {
432 	struct net 	*net = sock_net(asoc->base.sk);
433 	int		retval = 0;
434 
435 	/* If there is an outstanding ASCONF chunk, queue it for later
436 	 * transmission.
437 	 */
438 	if (asoc->addip_last_asconf) {
439 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
440 		goto out;
441 	}
442 
443 	/* Hold the chunk until an ASCONF_ACK is received. */
444 	sctp_chunk_hold(chunk);
445 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
446 	if (retval)
447 		sctp_chunk_free(chunk);
448 	else
449 		asoc->addip_last_asconf = chunk;
450 
451 out:
452 	return retval;
453 }
454 
455 /* Add a list of addresses as bind addresses to local endpoint or
456  * association.
457  *
458  * Basically run through each address specified in the addrs/addrcnt
459  * array/length pair, determine if it is IPv6 or IPv4 and call
460  * sctp_do_bind() on it.
461  *
462  * If any of them fails, then the operation will be reversed and the
463  * ones that were added will be removed.
464  *
465  * Only sctp_setsockopt_bindx() is supposed to call this function.
466  */
467 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
468 {
469 	int cnt;
470 	int retval = 0;
471 	void *addr_buf;
472 	struct sockaddr *sa_addr;
473 	struct sctp_af *af;
474 
475 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
476 			  sk, addrs, addrcnt);
477 
478 	addr_buf = addrs;
479 	for (cnt = 0; cnt < addrcnt; cnt++) {
480 		/* The list may contain either IPv4 or IPv6 address;
481 		 * determine the address length for walking thru the list.
482 		 */
483 		sa_addr = addr_buf;
484 		af = sctp_get_af_specific(sa_addr->sa_family);
485 		if (!af) {
486 			retval = -EINVAL;
487 			goto err_bindx_add;
488 		}
489 
490 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
491 				      af->sockaddr_len);
492 
493 		addr_buf += af->sockaddr_len;
494 
495 err_bindx_add:
496 		if (retval < 0) {
497 			/* Failed. Cleanup the ones that have been added */
498 			if (cnt > 0)
499 				sctp_bindx_rem(sk, addrs, cnt);
500 			return retval;
501 		}
502 	}
503 
504 	return retval;
505 }
506 
507 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
508  * associations that are part of the endpoint indicating that a list of local
509  * addresses are added to the endpoint.
510  *
511  * If any of the addresses is already in the bind address list of the
512  * association, we do not send the chunk for that association.  But it will not
513  * affect other associations.
514  *
515  * Only sctp_setsockopt_bindx() is supposed to call this function.
516  */
517 static int sctp_send_asconf_add_ip(struct sock		*sk,
518 				   struct sockaddr	*addrs,
519 				   int 			addrcnt)
520 {
521 	struct net *net = sock_net(sk);
522 	struct sctp_sock		*sp;
523 	struct sctp_endpoint		*ep;
524 	struct sctp_association		*asoc;
525 	struct sctp_bind_addr		*bp;
526 	struct sctp_chunk		*chunk;
527 	struct sctp_sockaddr_entry	*laddr;
528 	union sctp_addr			*addr;
529 	union sctp_addr			saveaddr;
530 	void				*addr_buf;
531 	struct sctp_af			*af;
532 	struct list_head		*p;
533 	int 				i;
534 	int 				retval = 0;
535 
536 	if (!net->sctp.addip_enable)
537 		return retval;
538 
539 	sp = sctp_sk(sk);
540 	ep = sp->ep;
541 
542 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
543 			  __func__, sk, addrs, addrcnt);
544 
545 	list_for_each_entry(asoc, &ep->asocs, asocs) {
546 
547 		if (!asoc->peer.asconf_capable)
548 			continue;
549 
550 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
551 			continue;
552 
553 		if (!sctp_state(asoc, ESTABLISHED))
554 			continue;
555 
556 		/* Check if any address in the packed array of addresses is
557 		 * in the bind address list of the association. If so,
558 		 * do not send the asconf chunk to its peer, but continue with
559 		 * other associations.
560 		 */
561 		addr_buf = addrs;
562 		for (i = 0; i < addrcnt; i++) {
563 			addr = addr_buf;
564 			af = sctp_get_af_specific(addr->v4.sin_family);
565 			if (!af) {
566 				retval = -EINVAL;
567 				goto out;
568 			}
569 
570 			if (sctp_assoc_lookup_laddr(asoc, addr))
571 				break;
572 
573 			addr_buf += af->sockaddr_len;
574 		}
575 		if (i < addrcnt)
576 			continue;
577 
578 		/* Use the first valid address in bind addr list of
579 		 * association as Address Parameter of ASCONF CHUNK.
580 		 */
581 		bp = &asoc->base.bind_addr;
582 		p = bp->address_list.next;
583 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
584 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
585 						   addrcnt, SCTP_PARAM_ADD_IP);
586 		if (!chunk) {
587 			retval = -ENOMEM;
588 			goto out;
589 		}
590 
591 		/* Add the new addresses to the bind address list with
592 		 * use_as_src set to 0.
593 		 */
594 		addr_buf = addrs;
595 		for (i = 0; i < addrcnt; i++) {
596 			addr = addr_buf;
597 			af = sctp_get_af_specific(addr->v4.sin_family);
598 			memcpy(&saveaddr, addr, af->sockaddr_len);
599 			retval = sctp_add_bind_addr(bp, &saveaddr,
600 						    SCTP_ADDR_NEW, GFP_ATOMIC);
601 			addr_buf += af->sockaddr_len;
602 		}
603 		if (asoc->src_out_of_asoc_ok) {
604 			struct sctp_transport *trans;
605 
606 			list_for_each_entry(trans,
607 			    &asoc->peer.transport_addr_list, transports) {
608 				/* Clear the source and route cache */
609 				dst_release(trans->dst);
610 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
611 				    2*asoc->pathmtu, 4380));
612 				trans->ssthresh = asoc->peer.i.a_rwnd;
613 				trans->rto = asoc->rto_initial;
614 				sctp_max_rto(asoc, trans);
615 				trans->rtt = trans->srtt = trans->rttvar = 0;
616 				sctp_transport_route(trans, NULL,
617 				    sctp_sk(asoc->base.sk));
618 			}
619 		}
620 		retval = sctp_send_asconf(asoc, chunk);
621 	}
622 
623 out:
624 	return retval;
625 }
626 
627 /* Remove a list of addresses from bind addresses list.  Do not remove the
628  * last address.
629  *
630  * Basically run through each address specified in the addrs/addrcnt
631  * array/length pair, determine if it is IPv6 or IPv4 and call
632  * sctp_del_bind() on it.
633  *
634  * If any of them fails, then the operation will be reversed and the
635  * ones that were removed will be added back.
636  *
637  * At least one address has to be left; if only one address is
638  * available, the operation will return -EBUSY.
639  *
640  * Only sctp_setsockopt_bindx() is supposed to call this function.
641  */
642 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
643 {
644 	struct sctp_sock *sp = sctp_sk(sk);
645 	struct sctp_endpoint *ep = sp->ep;
646 	int cnt;
647 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
648 	int retval = 0;
649 	void *addr_buf;
650 	union sctp_addr *sa_addr;
651 	struct sctp_af *af;
652 
653 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
654 			  sk, addrs, addrcnt);
655 
656 	addr_buf = addrs;
657 	for (cnt = 0; cnt < addrcnt; cnt++) {
658 		/* If the bind address list is empty or if there is only one
659 		 * bind address, there is nothing more to be removed (we need
660 		 * at least one address here).
661 		 */
662 		if (list_empty(&bp->address_list) ||
663 		    (sctp_list_single_entry(&bp->address_list))) {
664 			retval = -EBUSY;
665 			goto err_bindx_rem;
666 		}
667 
668 		sa_addr = addr_buf;
669 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
670 		if (!af) {
671 			retval = -EINVAL;
672 			goto err_bindx_rem;
673 		}
674 
675 		if (!af->addr_valid(sa_addr, sp, NULL)) {
676 			retval = -EADDRNOTAVAIL;
677 			goto err_bindx_rem;
678 		}
679 
680 		if (sa_addr->v4.sin_port &&
681 		    sa_addr->v4.sin_port != htons(bp->port)) {
682 			retval = -EINVAL;
683 			goto err_bindx_rem;
684 		}
685 
686 		if (!sa_addr->v4.sin_port)
687 			sa_addr->v4.sin_port = htons(bp->port);
688 
689 		/* FIXME - There is probably a need to check if sk->sk_saddr and
690 		 * sk->sk_rcv_addr are currently set to one of the addresses to
691 		 * be removed. This is something which needs to be looked into
692 		 * when we are fixing the outstanding issues with multi-homing
693 		 * socket routing and failover schemes. Refer to comments in
694 		 * sctp_do_bind(). -daisy
695 		 */
696 		retval = sctp_del_bind_addr(bp, sa_addr);
697 
698 		addr_buf += af->sockaddr_len;
699 err_bindx_rem:
700 		if (retval < 0) {
701 			/* Failed. Add the ones that has been removed back */
702 			if (cnt > 0)
703 				sctp_bindx_add(sk, addrs, cnt);
704 			return retval;
705 		}
706 	}
707 
708 	return retval;
709 }
710 
711 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
712  * the associations that are part of the endpoint indicating that a list of
713  * local addresses are removed from the endpoint.
714  *
715  * If any of the addresses is already in the bind address list of the
716  * association, we do not send the chunk for that association.  But it will not
717  * affect other associations.
718  *
719  * Only sctp_setsockopt_bindx() is supposed to call this function.
720  */
721 static int sctp_send_asconf_del_ip(struct sock		*sk,
722 				   struct sockaddr	*addrs,
723 				   int			addrcnt)
724 {
725 	struct net *net = sock_net(sk);
726 	struct sctp_sock	*sp;
727 	struct sctp_endpoint	*ep;
728 	struct sctp_association	*asoc;
729 	struct sctp_transport	*transport;
730 	struct sctp_bind_addr	*bp;
731 	struct sctp_chunk	*chunk;
732 	union sctp_addr		*laddr;
733 	void			*addr_buf;
734 	struct sctp_af		*af;
735 	struct sctp_sockaddr_entry *saddr;
736 	int 			i;
737 	int 			retval = 0;
738 	int			stored = 0;
739 
740 	chunk = NULL;
741 	if (!net->sctp.addip_enable)
742 		return retval;
743 
744 	sp = sctp_sk(sk);
745 	ep = sp->ep;
746 
747 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
748 			  __func__, sk, addrs, addrcnt);
749 
750 	list_for_each_entry(asoc, &ep->asocs, asocs) {
751 
752 		if (!asoc->peer.asconf_capable)
753 			continue;
754 
755 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
756 			continue;
757 
758 		if (!sctp_state(asoc, ESTABLISHED))
759 			continue;
760 
761 		/* Check if any address in the packed array of addresses is
762 		 * not present in the bind address list of the association.
763 		 * If so, do not send the asconf chunk to its peer, but
764 		 * continue with other associations.
765 		 */
766 		addr_buf = addrs;
767 		for (i = 0; i < addrcnt; i++) {
768 			laddr = addr_buf;
769 			af = sctp_get_af_specific(laddr->v4.sin_family);
770 			if (!af) {
771 				retval = -EINVAL;
772 				goto out;
773 			}
774 
775 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
776 				break;
777 
778 			addr_buf += af->sockaddr_len;
779 		}
780 		if (i < addrcnt)
781 			continue;
782 
783 		/* Find one address in the association's bind address list
784 		 * that is not in the packed array of addresses. This is to
785 		 * make sure that we do not delete all the addresses in the
786 		 * association.
787 		 */
788 		bp = &asoc->base.bind_addr;
789 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
790 					       addrcnt, sp);
791 		if ((laddr == NULL) && (addrcnt == 1)) {
792 			if (asoc->asconf_addr_del_pending)
793 				continue;
794 			asoc->asconf_addr_del_pending =
795 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
796 			if (asoc->asconf_addr_del_pending == NULL) {
797 				retval = -ENOMEM;
798 				goto out;
799 			}
800 			asoc->asconf_addr_del_pending->sa.sa_family =
801 				    addrs->sa_family;
802 			asoc->asconf_addr_del_pending->v4.sin_port =
803 				    htons(bp->port);
804 			if (addrs->sa_family == AF_INET) {
805 				struct sockaddr_in *sin;
806 
807 				sin = (struct sockaddr_in *)addrs;
808 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
809 			} else if (addrs->sa_family == AF_INET6) {
810 				struct sockaddr_in6 *sin6;
811 
812 				sin6 = (struct sockaddr_in6 *)addrs;
813 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
814 			}
815 			SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
816 			    " at %p\n", asoc, asoc->asconf_addr_del_pending,
817 			    asoc->asconf_addr_del_pending);
818 			asoc->src_out_of_asoc_ok = 1;
819 			stored = 1;
820 			goto skip_mkasconf;
821 		}
822 
823 		/* We do not need RCU protection throughout this loop
824 		 * because this is done under a socket lock from the
825 		 * setsockopt call.
826 		 */
827 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
828 						   SCTP_PARAM_DEL_IP);
829 		if (!chunk) {
830 			retval = -ENOMEM;
831 			goto out;
832 		}
833 
834 skip_mkasconf:
835 		/* Reset use_as_src flag for the addresses in the bind address
836 		 * list that are to be deleted.
837 		 */
838 		addr_buf = addrs;
839 		for (i = 0; i < addrcnt; i++) {
840 			laddr = addr_buf;
841 			af = sctp_get_af_specific(laddr->v4.sin_family);
842 			list_for_each_entry(saddr, &bp->address_list, list) {
843 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
844 					saddr->state = SCTP_ADDR_DEL;
845 			}
846 			addr_buf += af->sockaddr_len;
847 		}
848 
849 		/* Update the route and saddr entries for all the transports
850 		 * as some of the addresses in the bind address list are
851 		 * about to be deleted and cannot be used as source addresses.
852 		 */
853 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
854 					transports) {
855 			dst_release(transport->dst);
856 			sctp_transport_route(transport, NULL,
857 					     sctp_sk(asoc->base.sk));
858 		}
859 
860 		if (stored)
861 			/* We don't need to transmit ASCONF */
862 			continue;
863 		retval = sctp_send_asconf(asoc, chunk);
864 	}
865 out:
866 	return retval;
867 }
868 
869 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
870 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
871 {
872 	struct sock *sk = sctp_opt2sk(sp);
873 	union sctp_addr *addr;
874 	struct sctp_af *af;
875 
876 	/* It is safe to write port space in caller. */
877 	addr = &addrw->a;
878 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
879 	af = sctp_get_af_specific(addr->sa.sa_family);
880 	if (!af)
881 		return -EINVAL;
882 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
883 		return -EINVAL;
884 
885 	if (addrw->state == SCTP_ADDR_NEW)
886 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
887 	else
888 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
889 }
890 
891 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
892  *
893  * API 8.1
894  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
895  *                int flags);
896  *
897  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
898  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
899  * or IPv6 addresses.
900  *
901  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
902  * Section 3.1.2 for this usage.
903  *
904  * addrs is a pointer to an array of one or more socket addresses. Each
905  * address is contained in its appropriate structure (i.e. struct
906  * sockaddr_in or struct sockaddr_in6) the family of the address type
907  * must be used to distinguish the address length (note that this
908  * representation is termed a "packed array" of addresses). The caller
909  * specifies the number of addresses in the array with addrcnt.
910  *
911  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
912  * -1, and sets errno to the appropriate error code.
913  *
914  * For SCTP, the port given in each socket address must be the same, or
915  * sctp_bindx() will fail, setting errno to EINVAL.
916  *
917  * The flags parameter is formed from the bitwise OR of zero or more of
918  * the following currently defined flags:
919  *
920  * SCTP_BINDX_ADD_ADDR
921  *
922  * SCTP_BINDX_REM_ADDR
923  *
924  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
925  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
926  * addresses from the association. The two flags are mutually exclusive;
927  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
928  * not remove all addresses from an association; sctp_bindx() will
929  * reject such an attempt with EINVAL.
930  *
931  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
932  * additional addresses with an endpoint after calling bind().  Or use
933  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
934  * socket is associated with so that no new association accepted will be
935  * associated with those addresses. If the endpoint supports dynamic
936  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
937  * endpoint to send the appropriate message to the peer to change the
938  * peers address lists.
939  *
940  * Adding and removing addresses from a connected association is
941  * optional functionality. Implementations that do not support this
942  * functionality should return EOPNOTSUPP.
943  *
944  * Basically do nothing but copying the addresses from user to kernel
945  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
946  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
947  * from userspace.
948  *
949  * We don't use copy_from_user() for optimization: we first do the
950  * sanity checks (buffer size -fast- and access check-healthy
951  * pointer); if all of those succeed, then we can alloc the memory
952  * (expensive operation) needed to copy the data to kernel. Then we do
953  * the copying without checking the user space area
954  * (__copy_from_user()).
955  *
956  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
957  * it.
958  *
959  * sk        The sk of the socket
960  * addrs     The pointer to the addresses in user land
961  * addrssize Size of the addrs buffer
962  * op        Operation to perform (add or remove, see the flags of
963  *           sctp_bindx)
964  *
965  * Returns 0 if ok, <0 errno code on error.
966  */
967 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
968 				      struct sockaddr __user *addrs,
969 				      int addrs_size, int op)
970 {
971 	struct sockaddr *kaddrs;
972 	int err;
973 	int addrcnt = 0;
974 	int walk_size = 0;
975 	struct sockaddr *sa_addr;
976 	void *addr_buf;
977 	struct sctp_af *af;
978 
979 	SCTP_DEBUG_PRINTK("sctp_setsockopt_bindx: sk %p addrs %p"
980 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
981 
982 	if (unlikely(addrs_size <= 0))
983 		return -EINVAL;
984 
985 	/* Check the user passed a healthy pointer.  */
986 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
987 		return -EFAULT;
988 
989 	/* Alloc space for the address array in kernel memory.  */
990 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
991 	if (unlikely(!kaddrs))
992 		return -ENOMEM;
993 
994 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
995 		kfree(kaddrs);
996 		return -EFAULT;
997 	}
998 
999 	/* Walk through the addrs buffer and count the number of addresses. */
1000 	addr_buf = kaddrs;
1001 	while (walk_size < addrs_size) {
1002 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1003 			kfree(kaddrs);
1004 			return -EINVAL;
1005 		}
1006 
1007 		sa_addr = addr_buf;
1008 		af = sctp_get_af_specific(sa_addr->sa_family);
1009 
1010 		/* If the address family is not supported or if this address
1011 		 * causes the address buffer to overflow return EINVAL.
1012 		 */
1013 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1014 			kfree(kaddrs);
1015 			return -EINVAL;
1016 		}
1017 		addrcnt++;
1018 		addr_buf += af->sockaddr_len;
1019 		walk_size += af->sockaddr_len;
1020 	}
1021 
1022 	/* Do the work. */
1023 	switch (op) {
1024 	case SCTP_BINDX_ADD_ADDR:
1025 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1026 		if (err)
1027 			goto out;
1028 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1029 		break;
1030 
1031 	case SCTP_BINDX_REM_ADDR:
1032 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1033 		if (err)
1034 			goto out;
1035 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1036 		break;
1037 
1038 	default:
1039 		err = -EINVAL;
1040 		break;
1041 	}
1042 
1043 out:
1044 	kfree(kaddrs);
1045 
1046 	return err;
1047 }
1048 
1049 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1050  *
1051  * Common routine for handling connect() and sctp_connectx().
1052  * Connect will come in with just a single address.
1053  */
1054 static int __sctp_connect(struct sock* sk,
1055 			  struct sockaddr *kaddrs,
1056 			  int addrs_size,
1057 			  sctp_assoc_t *assoc_id)
1058 {
1059 	struct net *net = sock_net(sk);
1060 	struct sctp_sock *sp;
1061 	struct sctp_endpoint *ep;
1062 	struct sctp_association *asoc = NULL;
1063 	struct sctp_association *asoc2;
1064 	struct sctp_transport *transport;
1065 	union sctp_addr to;
1066 	struct sctp_af *af;
1067 	sctp_scope_t scope;
1068 	long timeo;
1069 	int err = 0;
1070 	int addrcnt = 0;
1071 	int walk_size = 0;
1072 	union sctp_addr *sa_addr = NULL;
1073 	void *addr_buf;
1074 	unsigned short port;
1075 	unsigned int f_flags = 0;
1076 
1077 	sp = sctp_sk(sk);
1078 	ep = sp->ep;
1079 
1080 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1081 	 * state - UDP-style peeled off socket or a TCP-style socket that
1082 	 * is already connected.
1083 	 * It cannot be done even on a TCP-style listening socket.
1084 	 */
1085 	if (sctp_sstate(sk, ESTABLISHED) ||
1086 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1087 		err = -EISCONN;
1088 		goto out_free;
1089 	}
1090 
1091 	/* Walk through the addrs buffer and count the number of addresses. */
1092 	addr_buf = kaddrs;
1093 	while (walk_size < addrs_size) {
1094 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1095 			err = -EINVAL;
1096 			goto out_free;
1097 		}
1098 
1099 		sa_addr = addr_buf;
1100 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1101 
1102 		/* If the address family is not supported or if this address
1103 		 * causes the address buffer to overflow return EINVAL.
1104 		 */
1105 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1106 			err = -EINVAL;
1107 			goto out_free;
1108 		}
1109 
1110 		port = ntohs(sa_addr->v4.sin_port);
1111 
1112 		/* Save current address so we can work with it */
1113 		memcpy(&to, sa_addr, af->sockaddr_len);
1114 
1115 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1116 		if (err)
1117 			goto out_free;
1118 
1119 		/* Make sure the destination port is correctly set
1120 		 * in all addresses.
1121 		 */
1122 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1123 			err = -EINVAL;
1124 			goto out_free;
1125 		}
1126 
1127 		/* Check if there already is a matching association on the
1128 		 * endpoint (other than the one created here).
1129 		 */
1130 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1131 		if (asoc2 && asoc2 != asoc) {
1132 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1133 				err = -EISCONN;
1134 			else
1135 				err = -EALREADY;
1136 			goto out_free;
1137 		}
1138 
1139 		/* If we could not find a matching association on the endpoint,
1140 		 * make sure that there is no peeled-off association matching
1141 		 * the peer address even on another socket.
1142 		 */
1143 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1144 			err = -EADDRNOTAVAIL;
1145 			goto out_free;
1146 		}
1147 
1148 		if (!asoc) {
1149 			/* If a bind() or sctp_bindx() is not called prior to
1150 			 * an sctp_connectx() call, the system picks an
1151 			 * ephemeral port and will choose an address set
1152 			 * equivalent to binding with a wildcard address.
1153 			 */
1154 			if (!ep->base.bind_addr.port) {
1155 				if (sctp_autobind(sk)) {
1156 					err = -EAGAIN;
1157 					goto out_free;
1158 				}
1159 			} else {
1160 				/*
1161 				 * If an unprivileged user inherits a 1-many
1162 				 * style socket with open associations on a
1163 				 * privileged port, it MAY be permitted to
1164 				 * accept new associations, but it SHOULD NOT
1165 				 * be permitted to open new associations.
1166 				 */
1167 				if (ep->base.bind_addr.port < PROT_SOCK &&
1168 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1169 					err = -EACCES;
1170 					goto out_free;
1171 				}
1172 			}
1173 
1174 			scope = sctp_scope(&to);
1175 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1176 			if (!asoc) {
1177 				err = -ENOMEM;
1178 				goto out_free;
1179 			}
1180 
1181 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1182 							      GFP_KERNEL);
1183 			if (err < 0) {
1184 				goto out_free;
1185 			}
1186 
1187 		}
1188 
1189 		/* Prime the peer's transport structures.  */
1190 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1191 						SCTP_UNKNOWN);
1192 		if (!transport) {
1193 			err = -ENOMEM;
1194 			goto out_free;
1195 		}
1196 
1197 		addrcnt++;
1198 		addr_buf += af->sockaddr_len;
1199 		walk_size += af->sockaddr_len;
1200 	}
1201 
1202 	/* In case the user of sctp_connectx() wants an association
1203 	 * id back, assign one now.
1204 	 */
1205 	if (assoc_id) {
1206 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1207 		if (err < 0)
1208 			goto out_free;
1209 	}
1210 
1211 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1212 	if (err < 0) {
1213 		goto out_free;
1214 	}
1215 
1216 	/* Initialize sk's dport and daddr for getpeername() */
1217 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1218 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1219 	af->to_sk_daddr(sa_addr, sk);
1220 	sk->sk_err = 0;
1221 
1222 	/* in-kernel sockets don't generally have a file allocated to them
1223 	 * if all they do is call sock_create_kern().
1224 	 */
1225 	if (sk->sk_socket->file)
1226 		f_flags = sk->sk_socket->file->f_flags;
1227 
1228 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1229 
1230 	err = sctp_wait_for_connect(asoc, &timeo);
1231 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1232 		*assoc_id = asoc->assoc_id;
1233 
1234 	/* Don't free association on exit. */
1235 	asoc = NULL;
1236 
1237 out_free:
1238 
1239 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1240 			  " kaddrs: %p err: %d\n",
1241 			  asoc, kaddrs, err);
1242 	if (asoc) {
1243 		/* sctp_primitive_ASSOCIATE may have added this association
1244 		 * To the hash table, try to unhash it, just in case, its a noop
1245 		 * if it wasn't hashed so we're safe
1246 		 */
1247 		sctp_unhash_established(asoc);
1248 		sctp_association_free(asoc);
1249 	}
1250 	return err;
1251 }
1252 
1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1254  *
1255  * API 8.9
1256  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1257  * 			sctp_assoc_t *asoc);
1258  *
1259  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1260  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1261  * or IPv6 addresses.
1262  *
1263  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1264  * Section 3.1.2 for this usage.
1265  *
1266  * addrs is a pointer to an array of one or more socket addresses. Each
1267  * address is contained in its appropriate structure (i.e. struct
1268  * sockaddr_in or struct sockaddr_in6) the family of the address type
1269  * must be used to distengish the address length (note that this
1270  * representation is termed a "packed array" of addresses). The caller
1271  * specifies the number of addresses in the array with addrcnt.
1272  *
1273  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1274  * the association id of the new association.  On failure, sctp_connectx()
1275  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1276  * is not touched by the kernel.
1277  *
1278  * For SCTP, the port given in each socket address must be the same, or
1279  * sctp_connectx() will fail, setting errno to EINVAL.
1280  *
1281  * An application can use sctp_connectx to initiate an association with
1282  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1283  * allows a caller to specify multiple addresses at which a peer can be
1284  * reached.  The way the SCTP stack uses the list of addresses to set up
1285  * the association is implementation dependent.  This function only
1286  * specifies that the stack will try to make use of all the addresses in
1287  * the list when needed.
1288  *
1289  * Note that the list of addresses passed in is only used for setting up
1290  * the association.  It does not necessarily equal the set of addresses
1291  * the peer uses for the resulting association.  If the caller wants to
1292  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1293  * retrieve them after the association has been set up.
1294  *
1295  * Basically do nothing but copying the addresses from user to kernel
1296  * land and invoking either sctp_connectx(). This is used for tunneling
1297  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1298  *
1299  * We don't use copy_from_user() for optimization: we first do the
1300  * sanity checks (buffer size -fast- and access check-healthy
1301  * pointer); if all of those succeed, then we can alloc the memory
1302  * (expensive operation) needed to copy the data to kernel. Then we do
1303  * the copying without checking the user space area
1304  * (__copy_from_user()).
1305  *
1306  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1307  * it.
1308  *
1309  * sk        The sk of the socket
1310  * addrs     The pointer to the addresses in user land
1311  * addrssize Size of the addrs buffer
1312  *
1313  * Returns >=0 if ok, <0 errno code on error.
1314  */
1315 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1316 				      struct sockaddr __user *addrs,
1317 				      int addrs_size,
1318 				      sctp_assoc_t *assoc_id)
1319 {
1320 	int err = 0;
1321 	struct sockaddr *kaddrs;
1322 
1323 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1324 			  __func__, sk, addrs, addrs_size);
1325 
1326 	if (unlikely(addrs_size <= 0))
1327 		return -EINVAL;
1328 
1329 	/* Check the user passed a healthy pointer.  */
1330 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1331 		return -EFAULT;
1332 
1333 	/* Alloc space for the address array in kernel memory.  */
1334 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1335 	if (unlikely(!kaddrs))
1336 		return -ENOMEM;
1337 
1338 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1339 		err = -EFAULT;
1340 	} else {
1341 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1342 	}
1343 
1344 	kfree(kaddrs);
1345 
1346 	return err;
1347 }
1348 
1349 /*
1350  * This is an older interface.  It's kept for backward compatibility
1351  * to the option that doesn't provide association id.
1352  */
1353 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1354 				      struct sockaddr __user *addrs,
1355 				      int addrs_size)
1356 {
1357 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1358 }
1359 
1360 /*
1361  * New interface for the API.  The since the API is done with a socket
1362  * option, to make it simple we feed back the association id is as a return
1363  * indication to the call.  Error is always negative and association id is
1364  * always positive.
1365  */
1366 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1367 				      struct sockaddr __user *addrs,
1368 				      int addrs_size)
1369 {
1370 	sctp_assoc_t assoc_id = 0;
1371 	int err = 0;
1372 
1373 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1374 
1375 	if (err)
1376 		return err;
1377 	else
1378 		return assoc_id;
1379 }
1380 
1381 /*
1382  * New (hopefully final) interface for the API.
1383  * We use the sctp_getaddrs_old structure so that use-space library
1384  * can avoid any unnecessary allocations.   The only defferent part
1385  * is that we store the actual length of the address buffer into the
1386  * addrs_num structure member.  That way we can re-use the existing
1387  * code.
1388  */
1389 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1390 					char __user *optval,
1391 					int __user *optlen)
1392 {
1393 	struct sctp_getaddrs_old param;
1394 	sctp_assoc_t assoc_id = 0;
1395 	int err = 0;
1396 
1397 	if (len < sizeof(param))
1398 		return -EINVAL;
1399 
1400 	if (copy_from_user(&param, optval, sizeof(param)))
1401 		return -EFAULT;
1402 
1403 	err = __sctp_setsockopt_connectx(sk,
1404 			(struct sockaddr __user *)param.addrs,
1405 			param.addr_num, &assoc_id);
1406 
1407 	if (err == 0 || err == -EINPROGRESS) {
1408 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1409 			return -EFAULT;
1410 		if (put_user(sizeof(assoc_id), optlen))
1411 			return -EFAULT;
1412 	}
1413 
1414 	return err;
1415 }
1416 
1417 /* API 3.1.4 close() - UDP Style Syntax
1418  * Applications use close() to perform graceful shutdown (as described in
1419  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1420  * by a UDP-style socket.
1421  *
1422  * The syntax is
1423  *
1424  *   ret = close(int sd);
1425  *
1426  *   sd      - the socket descriptor of the associations to be closed.
1427  *
1428  * To gracefully shutdown a specific association represented by the
1429  * UDP-style socket, an application should use the sendmsg() call,
1430  * passing no user data, but including the appropriate flag in the
1431  * ancillary data (see Section xxxx).
1432  *
1433  * If sd in the close() call is a branched-off socket representing only
1434  * one association, the shutdown is performed on that association only.
1435  *
1436  * 4.1.6 close() - TCP Style Syntax
1437  *
1438  * Applications use close() to gracefully close down an association.
1439  *
1440  * The syntax is:
1441  *
1442  *    int close(int sd);
1443  *
1444  *      sd      - the socket descriptor of the association to be closed.
1445  *
1446  * After an application calls close() on a socket descriptor, no further
1447  * socket operations will succeed on that descriptor.
1448  *
1449  * API 7.1.4 SO_LINGER
1450  *
1451  * An application using the TCP-style socket can use this option to
1452  * perform the SCTP ABORT primitive.  The linger option structure is:
1453  *
1454  *  struct  linger {
1455  *     int     l_onoff;                // option on/off
1456  *     int     l_linger;               // linger time
1457  * };
1458  *
1459  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1460  * to 0, calling close() is the same as the ABORT primitive.  If the
1461  * value is set to a negative value, the setsockopt() call will return
1462  * an error.  If the value is set to a positive value linger_time, the
1463  * close() can be blocked for at most linger_time ms.  If the graceful
1464  * shutdown phase does not finish during this period, close() will
1465  * return but the graceful shutdown phase continues in the system.
1466  */
1467 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1468 {
1469 	struct net *net = sock_net(sk);
1470 	struct sctp_endpoint *ep;
1471 	struct sctp_association *asoc;
1472 	struct list_head *pos, *temp;
1473 	unsigned int data_was_unread;
1474 
1475 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1476 
1477 	sctp_lock_sock(sk);
1478 	sk->sk_shutdown = SHUTDOWN_MASK;
1479 	sk->sk_state = SCTP_SS_CLOSING;
1480 
1481 	ep = sctp_sk(sk)->ep;
1482 
1483 	/* Clean up any skbs sitting on the receive queue.  */
1484 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1485 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1486 
1487 	/* Walk all associations on an endpoint.  */
1488 	list_for_each_safe(pos, temp, &ep->asocs) {
1489 		asoc = list_entry(pos, struct sctp_association, asocs);
1490 
1491 		if (sctp_style(sk, TCP)) {
1492 			/* A closed association can still be in the list if
1493 			 * it belongs to a TCP-style listening socket that is
1494 			 * not yet accepted. If so, free it. If not, send an
1495 			 * ABORT or SHUTDOWN based on the linger options.
1496 			 */
1497 			if (sctp_state(asoc, CLOSED)) {
1498 				sctp_unhash_established(asoc);
1499 				sctp_association_free(asoc);
1500 				continue;
1501 			}
1502 		}
1503 
1504 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1505 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1506 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1507 			struct sctp_chunk *chunk;
1508 
1509 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1510 			if (chunk)
1511 				sctp_primitive_ABORT(net, asoc, chunk);
1512 		} else
1513 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1514 	}
1515 
1516 	/* On a TCP-style socket, block for at most linger_time if set. */
1517 	if (sctp_style(sk, TCP) && timeout)
1518 		sctp_wait_for_close(sk, timeout);
1519 
1520 	/* This will run the backlog queue.  */
1521 	sctp_release_sock(sk);
1522 
1523 	/* Supposedly, no process has access to the socket, but
1524 	 * the net layers still may.
1525 	 */
1526 	sctp_local_bh_disable();
1527 	sctp_bh_lock_sock(sk);
1528 
1529 	/* Hold the sock, since sk_common_release() will put sock_put()
1530 	 * and we have just a little more cleanup.
1531 	 */
1532 	sock_hold(sk);
1533 	sk_common_release(sk);
1534 
1535 	sctp_bh_unlock_sock(sk);
1536 	sctp_local_bh_enable();
1537 
1538 	sock_put(sk);
1539 
1540 	SCTP_DBG_OBJCNT_DEC(sock);
1541 }
1542 
1543 /* Handle EPIPE error. */
1544 static int sctp_error(struct sock *sk, int flags, int err)
1545 {
1546 	if (err == -EPIPE)
1547 		err = sock_error(sk) ? : -EPIPE;
1548 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1549 		send_sig(SIGPIPE, current, 0);
1550 	return err;
1551 }
1552 
1553 /* API 3.1.3 sendmsg() - UDP Style Syntax
1554  *
1555  * An application uses sendmsg() and recvmsg() calls to transmit data to
1556  * and receive data from its peer.
1557  *
1558  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1559  *                  int flags);
1560  *
1561  *  socket  - the socket descriptor of the endpoint.
1562  *  message - pointer to the msghdr structure which contains a single
1563  *            user message and possibly some ancillary data.
1564  *
1565  *            See Section 5 for complete description of the data
1566  *            structures.
1567  *
1568  *  flags   - flags sent or received with the user message, see Section
1569  *            5 for complete description of the flags.
1570  *
1571  * Note:  This function could use a rewrite especially when explicit
1572  * connect support comes in.
1573  */
1574 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1575 
1576 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1577 
1578 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1579 			     struct msghdr *msg, size_t msg_len)
1580 {
1581 	struct net *net = sock_net(sk);
1582 	struct sctp_sock *sp;
1583 	struct sctp_endpoint *ep;
1584 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1585 	struct sctp_transport *transport, *chunk_tp;
1586 	struct sctp_chunk *chunk;
1587 	union sctp_addr to;
1588 	struct sockaddr *msg_name = NULL;
1589 	struct sctp_sndrcvinfo default_sinfo;
1590 	struct sctp_sndrcvinfo *sinfo;
1591 	struct sctp_initmsg *sinit;
1592 	sctp_assoc_t associd = 0;
1593 	sctp_cmsgs_t cmsgs = { NULL };
1594 	int err;
1595 	sctp_scope_t scope;
1596 	long timeo;
1597 	__u16 sinfo_flags = 0;
1598 	struct sctp_datamsg *datamsg;
1599 	int msg_flags = msg->msg_flags;
1600 
1601 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1602 			  sk, msg, msg_len);
1603 
1604 	err = 0;
1605 	sp = sctp_sk(sk);
1606 	ep = sp->ep;
1607 
1608 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1609 
1610 	/* We cannot send a message over a TCP-style listening socket. */
1611 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1612 		err = -EPIPE;
1613 		goto out_nounlock;
1614 	}
1615 
1616 	/* Parse out the SCTP CMSGs.  */
1617 	err = sctp_msghdr_parse(msg, &cmsgs);
1618 
1619 	if (err) {
1620 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1621 		goto out_nounlock;
1622 	}
1623 
1624 	/* Fetch the destination address for this packet.  This
1625 	 * address only selects the association--it is not necessarily
1626 	 * the address we will send to.
1627 	 * For a peeled-off socket, msg_name is ignored.
1628 	 */
1629 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1630 		int msg_namelen = msg->msg_namelen;
1631 
1632 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1633 				       msg_namelen);
1634 		if (err)
1635 			return err;
1636 
1637 		if (msg_namelen > sizeof(to))
1638 			msg_namelen = sizeof(to);
1639 		memcpy(&to, msg->msg_name, msg_namelen);
1640 		msg_name = msg->msg_name;
1641 	}
1642 
1643 	sinfo = cmsgs.info;
1644 	sinit = cmsgs.init;
1645 
1646 	/* Did the user specify SNDRCVINFO?  */
1647 	if (sinfo) {
1648 		sinfo_flags = sinfo->sinfo_flags;
1649 		associd = sinfo->sinfo_assoc_id;
1650 	}
1651 
1652 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1653 			  msg_len, sinfo_flags);
1654 
1655 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1656 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1657 		err = -EINVAL;
1658 		goto out_nounlock;
1659 	}
1660 
1661 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1662 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1663 	 * If SCTP_ABORT is set, the message length could be non zero with
1664 	 * the msg_iov set to the user abort reason.
1665 	 */
1666 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1667 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1668 		err = -EINVAL;
1669 		goto out_nounlock;
1670 	}
1671 
1672 	/* If SCTP_ADDR_OVER is set, there must be an address
1673 	 * specified in msg_name.
1674 	 */
1675 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1676 		err = -EINVAL;
1677 		goto out_nounlock;
1678 	}
1679 
1680 	transport = NULL;
1681 
1682 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1683 
1684 	sctp_lock_sock(sk);
1685 
1686 	/* If a msg_name has been specified, assume this is to be used.  */
1687 	if (msg_name) {
1688 		/* Look for a matching association on the endpoint. */
1689 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1690 		if (!asoc) {
1691 			/* If we could not find a matching association on the
1692 			 * endpoint, make sure that it is not a TCP-style
1693 			 * socket that already has an association or there is
1694 			 * no peeled-off association on another socket.
1695 			 */
1696 			if ((sctp_style(sk, TCP) &&
1697 			     sctp_sstate(sk, ESTABLISHED)) ||
1698 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1699 				err = -EADDRNOTAVAIL;
1700 				goto out_unlock;
1701 			}
1702 		}
1703 	} else {
1704 		asoc = sctp_id2assoc(sk, associd);
1705 		if (!asoc) {
1706 			err = -EPIPE;
1707 			goto out_unlock;
1708 		}
1709 	}
1710 
1711 	if (asoc) {
1712 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1713 
1714 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1715 		 * socket that has an association in CLOSED state. This can
1716 		 * happen when an accepted socket has an association that is
1717 		 * already CLOSED.
1718 		 */
1719 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1720 			err = -EPIPE;
1721 			goto out_unlock;
1722 		}
1723 
1724 		if (sinfo_flags & SCTP_EOF) {
1725 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1726 					  asoc);
1727 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1728 			err = 0;
1729 			goto out_unlock;
1730 		}
1731 		if (sinfo_flags & SCTP_ABORT) {
1732 
1733 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1734 			if (!chunk) {
1735 				err = -ENOMEM;
1736 				goto out_unlock;
1737 			}
1738 
1739 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1740 			sctp_primitive_ABORT(net, asoc, chunk);
1741 			err = 0;
1742 			goto out_unlock;
1743 		}
1744 	}
1745 
1746 	/* Do we need to create the association?  */
1747 	if (!asoc) {
1748 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1749 
1750 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1751 			err = -EINVAL;
1752 			goto out_unlock;
1753 		}
1754 
1755 		/* Check for invalid stream against the stream counts,
1756 		 * either the default or the user specified stream counts.
1757 		 */
1758 		if (sinfo) {
1759 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1760 				/* Check against the defaults. */
1761 				if (sinfo->sinfo_stream >=
1762 				    sp->initmsg.sinit_num_ostreams) {
1763 					err = -EINVAL;
1764 					goto out_unlock;
1765 				}
1766 			} else {
1767 				/* Check against the requested.  */
1768 				if (sinfo->sinfo_stream >=
1769 				    sinit->sinit_num_ostreams) {
1770 					err = -EINVAL;
1771 					goto out_unlock;
1772 				}
1773 			}
1774 		}
1775 
1776 		/*
1777 		 * API 3.1.2 bind() - UDP Style Syntax
1778 		 * If a bind() or sctp_bindx() is not called prior to a
1779 		 * sendmsg() call that initiates a new association, the
1780 		 * system picks an ephemeral port and will choose an address
1781 		 * set equivalent to binding with a wildcard address.
1782 		 */
1783 		if (!ep->base.bind_addr.port) {
1784 			if (sctp_autobind(sk)) {
1785 				err = -EAGAIN;
1786 				goto out_unlock;
1787 			}
1788 		} else {
1789 			/*
1790 			 * If an unprivileged user inherits a one-to-many
1791 			 * style socket with open associations on a privileged
1792 			 * port, it MAY be permitted to accept new associations,
1793 			 * but it SHOULD NOT be permitted to open new
1794 			 * associations.
1795 			 */
1796 			if (ep->base.bind_addr.port < PROT_SOCK &&
1797 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1798 				err = -EACCES;
1799 				goto out_unlock;
1800 			}
1801 		}
1802 
1803 		scope = sctp_scope(&to);
1804 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1805 		if (!new_asoc) {
1806 			err = -ENOMEM;
1807 			goto out_unlock;
1808 		}
1809 		asoc = new_asoc;
1810 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1811 		if (err < 0) {
1812 			err = -ENOMEM;
1813 			goto out_free;
1814 		}
1815 
1816 		/* If the SCTP_INIT ancillary data is specified, set all
1817 		 * the association init values accordingly.
1818 		 */
1819 		if (sinit) {
1820 			if (sinit->sinit_num_ostreams) {
1821 				asoc->c.sinit_num_ostreams =
1822 					sinit->sinit_num_ostreams;
1823 			}
1824 			if (sinit->sinit_max_instreams) {
1825 				asoc->c.sinit_max_instreams =
1826 					sinit->sinit_max_instreams;
1827 			}
1828 			if (sinit->sinit_max_attempts) {
1829 				asoc->max_init_attempts
1830 					= sinit->sinit_max_attempts;
1831 			}
1832 			if (sinit->sinit_max_init_timeo) {
1833 				asoc->max_init_timeo =
1834 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1835 			}
1836 		}
1837 
1838 		/* Prime the peer's transport structures.  */
1839 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1840 		if (!transport) {
1841 			err = -ENOMEM;
1842 			goto out_free;
1843 		}
1844 	}
1845 
1846 	/* ASSERT: we have a valid association at this point.  */
1847 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1848 
1849 	if (!sinfo) {
1850 		/* If the user didn't specify SNDRCVINFO, make up one with
1851 		 * some defaults.
1852 		 */
1853 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1854 		default_sinfo.sinfo_stream = asoc->default_stream;
1855 		default_sinfo.sinfo_flags = asoc->default_flags;
1856 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1857 		default_sinfo.sinfo_context = asoc->default_context;
1858 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1859 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1860 		sinfo = &default_sinfo;
1861 	}
1862 
1863 	/* API 7.1.7, the sndbuf size per association bounds the
1864 	 * maximum size of data that can be sent in a single send call.
1865 	 */
1866 	if (msg_len > sk->sk_sndbuf) {
1867 		err = -EMSGSIZE;
1868 		goto out_free;
1869 	}
1870 
1871 	if (asoc->pmtu_pending)
1872 		sctp_assoc_pending_pmtu(sk, asoc);
1873 
1874 	/* If fragmentation is disabled and the message length exceeds the
1875 	 * association fragmentation point, return EMSGSIZE.  The I-D
1876 	 * does not specify what this error is, but this looks like
1877 	 * a great fit.
1878 	 */
1879 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1880 		err = -EMSGSIZE;
1881 		goto out_free;
1882 	}
1883 
1884 	/* Check for invalid stream. */
1885 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1886 		err = -EINVAL;
1887 		goto out_free;
1888 	}
1889 
1890 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1891 	if (!sctp_wspace(asoc)) {
1892 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1893 		if (err)
1894 			goto out_free;
1895 	}
1896 
1897 	/* If an address is passed with the sendto/sendmsg call, it is used
1898 	 * to override the primary destination address in the TCP model, or
1899 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1900 	 */
1901 	if ((sctp_style(sk, TCP) && msg_name) ||
1902 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1903 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1904 		if (!chunk_tp) {
1905 			err = -EINVAL;
1906 			goto out_free;
1907 		}
1908 	} else
1909 		chunk_tp = NULL;
1910 
1911 	/* Auto-connect, if we aren't connected already. */
1912 	if (sctp_state(asoc, CLOSED)) {
1913 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1914 		if (err < 0)
1915 			goto out_free;
1916 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1917 	}
1918 
1919 	/* Break the message into multiple chunks of maximum size. */
1920 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1921 	if (IS_ERR(datamsg)) {
1922 		err = PTR_ERR(datamsg);
1923 		goto out_free;
1924 	}
1925 
1926 	/* Now send the (possibly) fragmented message. */
1927 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1928 		sctp_chunk_hold(chunk);
1929 
1930 		/* Do accounting for the write space.  */
1931 		sctp_set_owner_w(chunk);
1932 
1933 		chunk->transport = chunk_tp;
1934 	}
1935 
1936 	/* Send it to the lower layers.  Note:  all chunks
1937 	 * must either fail or succeed.   The lower layer
1938 	 * works that way today.  Keep it that way or this
1939 	 * breaks.
1940 	 */
1941 	err = sctp_primitive_SEND(net, asoc, datamsg);
1942 	/* Did the lower layer accept the chunk? */
1943 	if (err)
1944 		sctp_datamsg_free(datamsg);
1945 	else
1946 		sctp_datamsg_put(datamsg);
1947 
1948 	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1949 
1950 	if (err)
1951 		goto out_free;
1952 	else
1953 		err = msg_len;
1954 
1955 	/* If we are already past ASSOCIATE, the lower
1956 	 * layers are responsible for association cleanup.
1957 	 */
1958 	goto out_unlock;
1959 
1960 out_free:
1961 	if (new_asoc) {
1962 		sctp_unhash_established(asoc);
1963 		sctp_association_free(asoc);
1964 	}
1965 out_unlock:
1966 	sctp_release_sock(sk);
1967 
1968 out_nounlock:
1969 	return sctp_error(sk, msg_flags, err);
1970 
1971 #if 0
1972 do_sock_err:
1973 	if (msg_len)
1974 		err = msg_len;
1975 	else
1976 		err = sock_error(sk);
1977 	goto out;
1978 
1979 do_interrupted:
1980 	if (msg_len)
1981 		err = msg_len;
1982 	goto out;
1983 #endif /* 0 */
1984 }
1985 
1986 /* This is an extended version of skb_pull() that removes the data from the
1987  * start of a skb even when data is spread across the list of skb's in the
1988  * frag_list. len specifies the total amount of data that needs to be removed.
1989  * when 'len' bytes could be removed from the skb, it returns 0.
1990  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1991  * could not be removed.
1992  */
1993 static int sctp_skb_pull(struct sk_buff *skb, int len)
1994 {
1995 	struct sk_buff *list;
1996 	int skb_len = skb_headlen(skb);
1997 	int rlen;
1998 
1999 	if (len <= skb_len) {
2000 		__skb_pull(skb, len);
2001 		return 0;
2002 	}
2003 	len -= skb_len;
2004 	__skb_pull(skb, skb_len);
2005 
2006 	skb_walk_frags(skb, list) {
2007 		rlen = sctp_skb_pull(list, len);
2008 		skb->len -= (len-rlen);
2009 		skb->data_len -= (len-rlen);
2010 
2011 		if (!rlen)
2012 			return 0;
2013 
2014 		len = rlen;
2015 	}
2016 
2017 	return len;
2018 }
2019 
2020 /* API 3.1.3  recvmsg() - UDP Style Syntax
2021  *
2022  *  ssize_t recvmsg(int socket, struct msghdr *message,
2023  *                    int flags);
2024  *
2025  *  socket  - the socket descriptor of the endpoint.
2026  *  message - pointer to the msghdr structure which contains a single
2027  *            user message and possibly some ancillary data.
2028  *
2029  *            See Section 5 for complete description of the data
2030  *            structures.
2031  *
2032  *  flags   - flags sent or received with the user message, see Section
2033  *            5 for complete description of the flags.
2034  */
2035 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2036 
2037 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2038 			     struct msghdr *msg, size_t len, int noblock,
2039 			     int flags, int *addr_len)
2040 {
2041 	struct sctp_ulpevent *event = NULL;
2042 	struct sctp_sock *sp = sctp_sk(sk);
2043 	struct sk_buff *skb;
2044 	int copied;
2045 	int err = 0;
2046 	int skb_len;
2047 
2048 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2049 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2050 			  "len", len, "knoblauch", noblock,
2051 			  "flags", flags, "addr_len", addr_len);
2052 
2053 	sctp_lock_sock(sk);
2054 
2055 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2056 		err = -ENOTCONN;
2057 		goto out;
2058 	}
2059 
2060 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2061 	if (!skb)
2062 		goto out;
2063 
2064 	/* Get the total length of the skb including any skb's in the
2065 	 * frag_list.
2066 	 */
2067 	skb_len = skb->len;
2068 
2069 	copied = skb_len;
2070 	if (copied > len)
2071 		copied = len;
2072 
2073 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2074 
2075 	event = sctp_skb2event(skb);
2076 
2077 	if (err)
2078 		goto out_free;
2079 
2080 	sock_recv_ts_and_drops(msg, sk, skb);
2081 	if (sctp_ulpevent_is_notification(event)) {
2082 		msg->msg_flags |= MSG_NOTIFICATION;
2083 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2084 	} else {
2085 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2086 	}
2087 
2088 	/* Check if we allow SCTP_SNDRCVINFO. */
2089 	if (sp->subscribe.sctp_data_io_event)
2090 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2091 #if 0
2092 	/* FIXME: we should be calling IP/IPv6 layers.  */
2093 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2094 		ip_cmsg_recv(msg, skb);
2095 #endif
2096 
2097 	err = copied;
2098 
2099 	/* If skb's length exceeds the user's buffer, update the skb and
2100 	 * push it back to the receive_queue so that the next call to
2101 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2102 	 */
2103 	if (skb_len > copied) {
2104 		msg->msg_flags &= ~MSG_EOR;
2105 		if (flags & MSG_PEEK)
2106 			goto out_free;
2107 		sctp_skb_pull(skb, copied);
2108 		skb_queue_head(&sk->sk_receive_queue, skb);
2109 
2110 		/* When only partial message is copied to the user, increase
2111 		 * rwnd by that amount. If all the data in the skb is read,
2112 		 * rwnd is updated when the event is freed.
2113 		 */
2114 		if (!sctp_ulpevent_is_notification(event))
2115 			sctp_assoc_rwnd_increase(event->asoc, copied);
2116 		goto out;
2117 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2118 		   (event->msg_flags & MSG_EOR))
2119 		msg->msg_flags |= MSG_EOR;
2120 	else
2121 		msg->msg_flags &= ~MSG_EOR;
2122 
2123 out_free:
2124 	if (flags & MSG_PEEK) {
2125 		/* Release the skb reference acquired after peeking the skb in
2126 		 * sctp_skb_recv_datagram().
2127 		 */
2128 		kfree_skb(skb);
2129 	} else {
2130 		/* Free the event which includes releasing the reference to
2131 		 * the owner of the skb, freeing the skb and updating the
2132 		 * rwnd.
2133 		 */
2134 		sctp_ulpevent_free(event);
2135 	}
2136 out:
2137 	sctp_release_sock(sk);
2138 	return err;
2139 }
2140 
2141 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2142  *
2143  * This option is a on/off flag.  If enabled no SCTP message
2144  * fragmentation will be performed.  Instead if a message being sent
2145  * exceeds the current PMTU size, the message will NOT be sent and
2146  * instead a error will be indicated to the user.
2147  */
2148 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2149 					     char __user *optval,
2150 					     unsigned int optlen)
2151 {
2152 	int val;
2153 
2154 	if (optlen < sizeof(int))
2155 		return -EINVAL;
2156 
2157 	if (get_user(val, (int __user *)optval))
2158 		return -EFAULT;
2159 
2160 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2161 
2162 	return 0;
2163 }
2164 
2165 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2166 				  unsigned int optlen)
2167 {
2168 	struct sctp_association *asoc;
2169 	struct sctp_ulpevent *event;
2170 
2171 	if (optlen > sizeof(struct sctp_event_subscribe))
2172 		return -EINVAL;
2173 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2174 		return -EFAULT;
2175 
2176 	/*
2177 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2178 	 * if there is no data to be sent or retransmit, the stack will
2179 	 * immediately send up this notification.
2180 	 */
2181 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2182 				       &sctp_sk(sk)->subscribe)) {
2183 		asoc = sctp_id2assoc(sk, 0);
2184 
2185 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2186 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2187 					GFP_ATOMIC);
2188 			if (!event)
2189 				return -ENOMEM;
2190 
2191 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2192 		}
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2199  *
2200  * This socket option is applicable to the UDP-style socket only.  When
2201  * set it will cause associations that are idle for more than the
2202  * specified number of seconds to automatically close.  An association
2203  * being idle is defined an association that has NOT sent or received
2204  * user data.  The special value of '0' indicates that no automatic
2205  * close of any associations should be performed.  The option expects an
2206  * integer defining the number of seconds of idle time before an
2207  * association is closed.
2208  */
2209 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2210 				     unsigned int optlen)
2211 {
2212 	struct sctp_sock *sp = sctp_sk(sk);
2213 
2214 	/* Applicable to UDP-style socket only */
2215 	if (sctp_style(sk, TCP))
2216 		return -EOPNOTSUPP;
2217 	if (optlen != sizeof(int))
2218 		return -EINVAL;
2219 	if (copy_from_user(&sp->autoclose, optval, optlen))
2220 		return -EFAULT;
2221 
2222 	return 0;
2223 }
2224 
2225 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2226  *
2227  * Applications can enable or disable heartbeats for any peer address of
2228  * an association, modify an address's heartbeat interval, force a
2229  * heartbeat to be sent immediately, and adjust the address's maximum
2230  * number of retransmissions sent before an address is considered
2231  * unreachable.  The following structure is used to access and modify an
2232  * address's parameters:
2233  *
2234  *  struct sctp_paddrparams {
2235  *     sctp_assoc_t            spp_assoc_id;
2236  *     struct sockaddr_storage spp_address;
2237  *     uint32_t                spp_hbinterval;
2238  *     uint16_t                spp_pathmaxrxt;
2239  *     uint32_t                spp_pathmtu;
2240  *     uint32_t                spp_sackdelay;
2241  *     uint32_t                spp_flags;
2242  * };
2243  *
2244  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2245  *                     application, and identifies the association for
2246  *                     this query.
2247  *   spp_address     - This specifies which address is of interest.
2248  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2249  *                     in milliseconds.  If a  value of zero
2250  *                     is present in this field then no changes are to
2251  *                     be made to this parameter.
2252  *   spp_pathmaxrxt  - This contains the maximum number of
2253  *                     retransmissions before this address shall be
2254  *                     considered unreachable. If a  value of zero
2255  *                     is present in this field then no changes are to
2256  *                     be made to this parameter.
2257  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2258  *                     specified here will be the "fixed" path mtu.
2259  *                     Note that if the spp_address field is empty
2260  *                     then all associations on this address will
2261  *                     have this fixed path mtu set upon them.
2262  *
2263  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2264  *                     the number of milliseconds that sacks will be delayed
2265  *                     for. This value will apply to all addresses of an
2266  *                     association if the spp_address field is empty. Note
2267  *                     also, that if delayed sack is enabled and this
2268  *                     value is set to 0, no change is made to the last
2269  *                     recorded delayed sack timer value.
2270  *
2271  *   spp_flags       - These flags are used to control various features
2272  *                     on an association. The flag field may contain
2273  *                     zero or more of the following options.
2274  *
2275  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2276  *                     specified address. Note that if the address
2277  *                     field is empty all addresses for the association
2278  *                     have heartbeats enabled upon them.
2279  *
2280  *                     SPP_HB_DISABLE - Disable heartbeats on the
2281  *                     speicifed address. Note that if the address
2282  *                     field is empty all addresses for the association
2283  *                     will have their heartbeats disabled. Note also
2284  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2285  *                     mutually exclusive, only one of these two should
2286  *                     be specified. Enabling both fields will have
2287  *                     undetermined results.
2288  *
2289  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2290  *                     to be made immediately.
2291  *
2292  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2293  *                     heartbeat delayis to be set to the value of 0
2294  *                     milliseconds.
2295  *
2296  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2297  *                     discovery upon the specified address. Note that
2298  *                     if the address feild is empty then all addresses
2299  *                     on the association are effected.
2300  *
2301  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2302  *                     discovery upon the specified address. Note that
2303  *                     if the address feild is empty then all addresses
2304  *                     on the association are effected. Not also that
2305  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2306  *                     exclusive. Enabling both will have undetermined
2307  *                     results.
2308  *
2309  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2310  *                     on delayed sack. The time specified in spp_sackdelay
2311  *                     is used to specify the sack delay for this address. Note
2312  *                     that if spp_address is empty then all addresses will
2313  *                     enable delayed sack and take on the sack delay
2314  *                     value specified in spp_sackdelay.
2315  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2316  *                     off delayed sack. If the spp_address field is blank then
2317  *                     delayed sack is disabled for the entire association. Note
2318  *                     also that this field is mutually exclusive to
2319  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2320  *                     results.
2321  */
2322 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2323 				       struct sctp_transport   *trans,
2324 				       struct sctp_association *asoc,
2325 				       struct sctp_sock        *sp,
2326 				       int                      hb_change,
2327 				       int                      pmtud_change,
2328 				       int                      sackdelay_change)
2329 {
2330 	int error;
2331 
2332 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2333 		struct net *net = sock_net(trans->asoc->base.sk);
2334 
2335 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2336 		if (error)
2337 			return error;
2338 	}
2339 
2340 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2341 	 * this field is ignored.  Note also that a value of zero indicates
2342 	 * the current setting should be left unchanged.
2343 	 */
2344 	if (params->spp_flags & SPP_HB_ENABLE) {
2345 
2346 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2347 		 * set.  This lets us use 0 value when this flag
2348 		 * is set.
2349 		 */
2350 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2351 			params->spp_hbinterval = 0;
2352 
2353 		if (params->spp_hbinterval ||
2354 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2355 			if (trans) {
2356 				trans->hbinterval =
2357 				    msecs_to_jiffies(params->spp_hbinterval);
2358 			} else if (asoc) {
2359 				asoc->hbinterval =
2360 				    msecs_to_jiffies(params->spp_hbinterval);
2361 			} else {
2362 				sp->hbinterval = params->spp_hbinterval;
2363 			}
2364 		}
2365 	}
2366 
2367 	if (hb_change) {
2368 		if (trans) {
2369 			trans->param_flags =
2370 				(trans->param_flags & ~SPP_HB) | hb_change;
2371 		} else if (asoc) {
2372 			asoc->param_flags =
2373 				(asoc->param_flags & ~SPP_HB) | hb_change;
2374 		} else {
2375 			sp->param_flags =
2376 				(sp->param_flags & ~SPP_HB) | hb_change;
2377 		}
2378 	}
2379 
2380 	/* When Path MTU discovery is disabled the value specified here will
2381 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2382 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2383 	 * effect).
2384 	 */
2385 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2386 		if (trans) {
2387 			trans->pathmtu = params->spp_pathmtu;
2388 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2389 		} else if (asoc) {
2390 			asoc->pathmtu = params->spp_pathmtu;
2391 			sctp_frag_point(asoc, params->spp_pathmtu);
2392 		} else {
2393 			sp->pathmtu = params->spp_pathmtu;
2394 		}
2395 	}
2396 
2397 	if (pmtud_change) {
2398 		if (trans) {
2399 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2400 				(params->spp_flags & SPP_PMTUD_ENABLE);
2401 			trans->param_flags =
2402 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2403 			if (update) {
2404 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2405 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2406 			}
2407 		} else if (asoc) {
2408 			asoc->param_flags =
2409 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2410 		} else {
2411 			sp->param_flags =
2412 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2413 		}
2414 	}
2415 
2416 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2417 	 * value of this field is ignored.  Note also that a value of zero
2418 	 * indicates the current setting should be left unchanged.
2419 	 */
2420 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2421 		if (trans) {
2422 			trans->sackdelay =
2423 				msecs_to_jiffies(params->spp_sackdelay);
2424 		} else if (asoc) {
2425 			asoc->sackdelay =
2426 				msecs_to_jiffies(params->spp_sackdelay);
2427 		} else {
2428 			sp->sackdelay = params->spp_sackdelay;
2429 		}
2430 	}
2431 
2432 	if (sackdelay_change) {
2433 		if (trans) {
2434 			trans->param_flags =
2435 				(trans->param_flags & ~SPP_SACKDELAY) |
2436 				sackdelay_change;
2437 		} else if (asoc) {
2438 			asoc->param_flags =
2439 				(asoc->param_flags & ~SPP_SACKDELAY) |
2440 				sackdelay_change;
2441 		} else {
2442 			sp->param_flags =
2443 				(sp->param_flags & ~SPP_SACKDELAY) |
2444 				sackdelay_change;
2445 		}
2446 	}
2447 
2448 	/* Note that a value of zero indicates the current setting should be
2449 	   left unchanged.
2450 	 */
2451 	if (params->spp_pathmaxrxt) {
2452 		if (trans) {
2453 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2454 		} else if (asoc) {
2455 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2456 		} else {
2457 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2458 		}
2459 	}
2460 
2461 	return 0;
2462 }
2463 
2464 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2465 					    char __user *optval,
2466 					    unsigned int optlen)
2467 {
2468 	struct sctp_paddrparams  params;
2469 	struct sctp_transport   *trans = NULL;
2470 	struct sctp_association *asoc = NULL;
2471 	struct sctp_sock        *sp = sctp_sk(sk);
2472 	int error;
2473 	int hb_change, pmtud_change, sackdelay_change;
2474 
2475 	if (optlen != sizeof(struct sctp_paddrparams))
2476 		return - EINVAL;
2477 
2478 	if (copy_from_user(&params, optval, optlen))
2479 		return -EFAULT;
2480 
2481 	/* Validate flags and value parameters. */
2482 	hb_change        = params.spp_flags & SPP_HB;
2483 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2484 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2485 
2486 	if (hb_change        == SPP_HB ||
2487 	    pmtud_change     == SPP_PMTUD ||
2488 	    sackdelay_change == SPP_SACKDELAY ||
2489 	    params.spp_sackdelay > 500 ||
2490 	    (params.spp_pathmtu &&
2491 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2492 		return -EINVAL;
2493 
2494 	/* If an address other than INADDR_ANY is specified, and
2495 	 * no transport is found, then the request is invalid.
2496 	 */
2497 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2498 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2499 					       params.spp_assoc_id);
2500 		if (!trans)
2501 			return -EINVAL;
2502 	}
2503 
2504 	/* Get association, if assoc_id != 0 and the socket is a one
2505 	 * to many style socket, and an association was not found, then
2506 	 * the id was invalid.
2507 	 */
2508 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2509 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2510 		return -EINVAL;
2511 
2512 	/* Heartbeat demand can only be sent on a transport or
2513 	 * association, but not a socket.
2514 	 */
2515 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2516 		return -EINVAL;
2517 
2518 	/* Process parameters. */
2519 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2520 					    hb_change, pmtud_change,
2521 					    sackdelay_change);
2522 
2523 	if (error)
2524 		return error;
2525 
2526 	/* If changes are for association, also apply parameters to each
2527 	 * transport.
2528 	 */
2529 	if (!trans && asoc) {
2530 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2531 				transports) {
2532 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2533 						    hb_change, pmtud_change,
2534 						    sackdelay_change);
2535 		}
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 /*
2542  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2543  *
2544  * This option will effect the way delayed acks are performed.  This
2545  * option allows you to get or set the delayed ack time, in
2546  * milliseconds.  It also allows changing the delayed ack frequency.
2547  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2548  * the assoc_id is 0, then this sets or gets the endpoints default
2549  * values.  If the assoc_id field is non-zero, then the set or get
2550  * effects the specified association for the one to many model (the
2551  * assoc_id field is ignored by the one to one model).  Note that if
2552  * sack_delay or sack_freq are 0 when setting this option, then the
2553  * current values will remain unchanged.
2554  *
2555  * struct sctp_sack_info {
2556  *     sctp_assoc_t            sack_assoc_id;
2557  *     uint32_t                sack_delay;
2558  *     uint32_t                sack_freq;
2559  * };
2560  *
2561  * sack_assoc_id -  This parameter, indicates which association the user
2562  *    is performing an action upon.  Note that if this field's value is
2563  *    zero then the endpoints default value is changed (effecting future
2564  *    associations only).
2565  *
2566  * sack_delay -  This parameter contains the number of milliseconds that
2567  *    the user is requesting the delayed ACK timer be set to.  Note that
2568  *    this value is defined in the standard to be between 200 and 500
2569  *    milliseconds.
2570  *
2571  * sack_freq -  This parameter contains the number of packets that must
2572  *    be received before a sack is sent without waiting for the delay
2573  *    timer to expire.  The default value for this is 2, setting this
2574  *    value to 1 will disable the delayed sack algorithm.
2575  */
2576 
2577 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2578 				       char __user *optval, unsigned int optlen)
2579 {
2580 	struct sctp_sack_info    params;
2581 	struct sctp_transport   *trans = NULL;
2582 	struct sctp_association *asoc = NULL;
2583 	struct sctp_sock        *sp = sctp_sk(sk);
2584 
2585 	if (optlen == sizeof(struct sctp_sack_info)) {
2586 		if (copy_from_user(&params, optval, optlen))
2587 			return -EFAULT;
2588 
2589 		if (params.sack_delay == 0 && params.sack_freq == 0)
2590 			return 0;
2591 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2592 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2593 		pr_warn("Use struct sctp_sack_info instead\n");
2594 		if (copy_from_user(&params, optval, optlen))
2595 			return -EFAULT;
2596 
2597 		if (params.sack_delay == 0)
2598 			params.sack_freq = 1;
2599 		else
2600 			params.sack_freq = 0;
2601 	} else
2602 		return - EINVAL;
2603 
2604 	/* Validate value parameter. */
2605 	if (params.sack_delay > 500)
2606 		return -EINVAL;
2607 
2608 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2609 	 * to many style socket, and an association was not found, then
2610 	 * the id was invalid.
2611 	 */
2612 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2613 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2614 		return -EINVAL;
2615 
2616 	if (params.sack_delay) {
2617 		if (asoc) {
2618 			asoc->sackdelay =
2619 				msecs_to_jiffies(params.sack_delay);
2620 			asoc->param_flags =
2621 				(asoc->param_flags & ~SPP_SACKDELAY) |
2622 				SPP_SACKDELAY_ENABLE;
2623 		} else {
2624 			sp->sackdelay = params.sack_delay;
2625 			sp->param_flags =
2626 				(sp->param_flags & ~SPP_SACKDELAY) |
2627 				SPP_SACKDELAY_ENABLE;
2628 		}
2629 	}
2630 
2631 	if (params.sack_freq == 1) {
2632 		if (asoc) {
2633 			asoc->param_flags =
2634 				(asoc->param_flags & ~SPP_SACKDELAY) |
2635 				SPP_SACKDELAY_DISABLE;
2636 		} else {
2637 			sp->param_flags =
2638 				(sp->param_flags & ~SPP_SACKDELAY) |
2639 				SPP_SACKDELAY_DISABLE;
2640 		}
2641 	} else if (params.sack_freq > 1) {
2642 		if (asoc) {
2643 			asoc->sackfreq = params.sack_freq;
2644 			asoc->param_flags =
2645 				(asoc->param_flags & ~SPP_SACKDELAY) |
2646 				SPP_SACKDELAY_ENABLE;
2647 		} else {
2648 			sp->sackfreq = params.sack_freq;
2649 			sp->param_flags =
2650 				(sp->param_flags & ~SPP_SACKDELAY) |
2651 				SPP_SACKDELAY_ENABLE;
2652 		}
2653 	}
2654 
2655 	/* If change is for association, also apply to each transport. */
2656 	if (asoc) {
2657 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2658 				transports) {
2659 			if (params.sack_delay) {
2660 				trans->sackdelay =
2661 					msecs_to_jiffies(params.sack_delay);
2662 				trans->param_flags =
2663 					(trans->param_flags & ~SPP_SACKDELAY) |
2664 					SPP_SACKDELAY_ENABLE;
2665 			}
2666 			if (params.sack_freq == 1) {
2667 				trans->param_flags =
2668 					(trans->param_flags & ~SPP_SACKDELAY) |
2669 					SPP_SACKDELAY_DISABLE;
2670 			} else if (params.sack_freq > 1) {
2671 				trans->sackfreq = params.sack_freq;
2672 				trans->param_flags =
2673 					(trans->param_flags & ~SPP_SACKDELAY) |
2674 					SPP_SACKDELAY_ENABLE;
2675 			}
2676 		}
2677 	}
2678 
2679 	return 0;
2680 }
2681 
2682 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2683  *
2684  * Applications can specify protocol parameters for the default association
2685  * initialization.  The option name argument to setsockopt() and getsockopt()
2686  * is SCTP_INITMSG.
2687  *
2688  * Setting initialization parameters is effective only on an unconnected
2689  * socket (for UDP-style sockets only future associations are effected
2690  * by the change).  With TCP-style sockets, this option is inherited by
2691  * sockets derived from a listener socket.
2692  */
2693 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2694 {
2695 	struct sctp_initmsg sinit;
2696 	struct sctp_sock *sp = sctp_sk(sk);
2697 
2698 	if (optlen != sizeof(struct sctp_initmsg))
2699 		return -EINVAL;
2700 	if (copy_from_user(&sinit, optval, optlen))
2701 		return -EFAULT;
2702 
2703 	if (sinit.sinit_num_ostreams)
2704 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2705 	if (sinit.sinit_max_instreams)
2706 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2707 	if (sinit.sinit_max_attempts)
2708 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2709 	if (sinit.sinit_max_init_timeo)
2710 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2711 
2712 	return 0;
2713 }
2714 
2715 /*
2716  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2717  *
2718  *   Applications that wish to use the sendto() system call may wish to
2719  *   specify a default set of parameters that would normally be supplied
2720  *   through the inclusion of ancillary data.  This socket option allows
2721  *   such an application to set the default sctp_sndrcvinfo structure.
2722  *   The application that wishes to use this socket option simply passes
2723  *   in to this call the sctp_sndrcvinfo structure defined in Section
2724  *   5.2.2) The input parameters accepted by this call include
2725  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2726  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2727  *   to this call if the caller is using the UDP model.
2728  */
2729 static int sctp_setsockopt_default_send_param(struct sock *sk,
2730 					      char __user *optval,
2731 					      unsigned int optlen)
2732 {
2733 	struct sctp_sndrcvinfo info;
2734 	struct sctp_association *asoc;
2735 	struct sctp_sock *sp = sctp_sk(sk);
2736 
2737 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2738 		return -EINVAL;
2739 	if (copy_from_user(&info, optval, optlen))
2740 		return -EFAULT;
2741 
2742 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2743 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2744 		return -EINVAL;
2745 
2746 	if (asoc) {
2747 		asoc->default_stream = info.sinfo_stream;
2748 		asoc->default_flags = info.sinfo_flags;
2749 		asoc->default_ppid = info.sinfo_ppid;
2750 		asoc->default_context = info.sinfo_context;
2751 		asoc->default_timetolive = info.sinfo_timetolive;
2752 	} else {
2753 		sp->default_stream = info.sinfo_stream;
2754 		sp->default_flags = info.sinfo_flags;
2755 		sp->default_ppid = info.sinfo_ppid;
2756 		sp->default_context = info.sinfo_context;
2757 		sp->default_timetolive = info.sinfo_timetolive;
2758 	}
2759 
2760 	return 0;
2761 }
2762 
2763 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2764  *
2765  * Requests that the local SCTP stack use the enclosed peer address as
2766  * the association primary.  The enclosed address must be one of the
2767  * association peer's addresses.
2768  */
2769 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2770 					unsigned int optlen)
2771 {
2772 	struct sctp_prim prim;
2773 	struct sctp_transport *trans;
2774 
2775 	if (optlen != sizeof(struct sctp_prim))
2776 		return -EINVAL;
2777 
2778 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2779 		return -EFAULT;
2780 
2781 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2782 	if (!trans)
2783 		return -EINVAL;
2784 
2785 	sctp_assoc_set_primary(trans->asoc, trans);
2786 
2787 	return 0;
2788 }
2789 
2790 /*
2791  * 7.1.5 SCTP_NODELAY
2792  *
2793  * Turn on/off any Nagle-like algorithm.  This means that packets are
2794  * generally sent as soon as possible and no unnecessary delays are
2795  * introduced, at the cost of more packets in the network.  Expects an
2796  *  integer boolean flag.
2797  */
2798 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2799 				   unsigned int optlen)
2800 {
2801 	int val;
2802 
2803 	if (optlen < sizeof(int))
2804 		return -EINVAL;
2805 	if (get_user(val, (int __user *)optval))
2806 		return -EFAULT;
2807 
2808 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2809 	return 0;
2810 }
2811 
2812 /*
2813  *
2814  * 7.1.1 SCTP_RTOINFO
2815  *
2816  * The protocol parameters used to initialize and bound retransmission
2817  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2818  * and modify these parameters.
2819  * All parameters are time values, in milliseconds.  A value of 0, when
2820  * modifying the parameters, indicates that the current value should not
2821  * be changed.
2822  *
2823  */
2824 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2825 {
2826 	struct sctp_rtoinfo rtoinfo;
2827 	struct sctp_association *asoc;
2828 
2829 	if (optlen != sizeof (struct sctp_rtoinfo))
2830 		return -EINVAL;
2831 
2832 	if (copy_from_user(&rtoinfo, optval, optlen))
2833 		return -EFAULT;
2834 
2835 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2836 
2837 	/* Set the values to the specific association */
2838 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2839 		return -EINVAL;
2840 
2841 	if (asoc) {
2842 		if (rtoinfo.srto_initial != 0)
2843 			asoc->rto_initial =
2844 				msecs_to_jiffies(rtoinfo.srto_initial);
2845 		if (rtoinfo.srto_max != 0)
2846 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2847 		if (rtoinfo.srto_min != 0)
2848 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2849 	} else {
2850 		/* If there is no association or the association-id = 0
2851 		 * set the values to the endpoint.
2852 		 */
2853 		struct sctp_sock *sp = sctp_sk(sk);
2854 
2855 		if (rtoinfo.srto_initial != 0)
2856 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2857 		if (rtoinfo.srto_max != 0)
2858 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2859 		if (rtoinfo.srto_min != 0)
2860 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2861 	}
2862 
2863 	return 0;
2864 }
2865 
2866 /*
2867  *
2868  * 7.1.2 SCTP_ASSOCINFO
2869  *
2870  * This option is used to tune the maximum retransmission attempts
2871  * of the association.
2872  * Returns an error if the new association retransmission value is
2873  * greater than the sum of the retransmission value  of the peer.
2874  * See [SCTP] for more information.
2875  *
2876  */
2877 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2878 {
2879 
2880 	struct sctp_assocparams assocparams;
2881 	struct sctp_association *asoc;
2882 
2883 	if (optlen != sizeof(struct sctp_assocparams))
2884 		return -EINVAL;
2885 	if (copy_from_user(&assocparams, optval, optlen))
2886 		return -EFAULT;
2887 
2888 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2889 
2890 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2891 		return -EINVAL;
2892 
2893 	/* Set the values to the specific association */
2894 	if (asoc) {
2895 		if (assocparams.sasoc_asocmaxrxt != 0) {
2896 			__u32 path_sum = 0;
2897 			int   paths = 0;
2898 			struct sctp_transport *peer_addr;
2899 
2900 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2901 					transports) {
2902 				path_sum += peer_addr->pathmaxrxt;
2903 				paths++;
2904 			}
2905 
2906 			/* Only validate asocmaxrxt if we have more than
2907 			 * one path/transport.  We do this because path
2908 			 * retransmissions are only counted when we have more
2909 			 * then one path.
2910 			 */
2911 			if (paths > 1 &&
2912 			    assocparams.sasoc_asocmaxrxt > path_sum)
2913 				return -EINVAL;
2914 
2915 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2916 		}
2917 
2918 		if (assocparams.sasoc_cookie_life != 0) {
2919 			asoc->cookie_life.tv_sec =
2920 					assocparams.sasoc_cookie_life / 1000;
2921 			asoc->cookie_life.tv_usec =
2922 					(assocparams.sasoc_cookie_life % 1000)
2923 					* 1000;
2924 		}
2925 	} else {
2926 		/* Set the values to the endpoint */
2927 		struct sctp_sock *sp = sctp_sk(sk);
2928 
2929 		if (assocparams.sasoc_asocmaxrxt != 0)
2930 			sp->assocparams.sasoc_asocmaxrxt =
2931 						assocparams.sasoc_asocmaxrxt;
2932 		if (assocparams.sasoc_cookie_life != 0)
2933 			sp->assocparams.sasoc_cookie_life =
2934 						assocparams.sasoc_cookie_life;
2935 	}
2936 	return 0;
2937 }
2938 
2939 /*
2940  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2941  *
2942  * This socket option is a boolean flag which turns on or off mapped V4
2943  * addresses.  If this option is turned on and the socket is type
2944  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2945  * If this option is turned off, then no mapping will be done of V4
2946  * addresses and a user will receive both PF_INET6 and PF_INET type
2947  * addresses on the socket.
2948  */
2949 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2950 {
2951 	int val;
2952 	struct sctp_sock *sp = sctp_sk(sk);
2953 
2954 	if (optlen < sizeof(int))
2955 		return -EINVAL;
2956 	if (get_user(val, (int __user *)optval))
2957 		return -EFAULT;
2958 	if (val)
2959 		sp->v4mapped = 1;
2960 	else
2961 		sp->v4mapped = 0;
2962 
2963 	return 0;
2964 }
2965 
2966 /*
2967  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2968  * This option will get or set the maximum size to put in any outgoing
2969  * SCTP DATA chunk.  If a message is larger than this size it will be
2970  * fragmented by SCTP into the specified size.  Note that the underlying
2971  * SCTP implementation may fragment into smaller sized chunks when the
2972  * PMTU of the underlying association is smaller than the value set by
2973  * the user.  The default value for this option is '0' which indicates
2974  * the user is NOT limiting fragmentation and only the PMTU will effect
2975  * SCTP's choice of DATA chunk size.  Note also that values set larger
2976  * than the maximum size of an IP datagram will effectively let SCTP
2977  * control fragmentation (i.e. the same as setting this option to 0).
2978  *
2979  * The following structure is used to access and modify this parameter:
2980  *
2981  * struct sctp_assoc_value {
2982  *   sctp_assoc_t assoc_id;
2983  *   uint32_t assoc_value;
2984  * };
2985  *
2986  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2987  *    For one-to-many style sockets this parameter indicates which
2988  *    association the user is performing an action upon.  Note that if
2989  *    this field's value is zero then the endpoints default value is
2990  *    changed (effecting future associations only).
2991  * assoc_value:  This parameter specifies the maximum size in bytes.
2992  */
2993 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2994 {
2995 	struct sctp_assoc_value params;
2996 	struct sctp_association *asoc;
2997 	struct sctp_sock *sp = sctp_sk(sk);
2998 	int val;
2999 
3000 	if (optlen == sizeof(int)) {
3001 		pr_warn("Use of int in maxseg socket option deprecated\n");
3002 		pr_warn("Use struct sctp_assoc_value instead\n");
3003 		if (copy_from_user(&val, optval, optlen))
3004 			return -EFAULT;
3005 		params.assoc_id = 0;
3006 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3007 		if (copy_from_user(&params, optval, optlen))
3008 			return -EFAULT;
3009 		val = params.assoc_value;
3010 	} else
3011 		return -EINVAL;
3012 
3013 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3014 		return -EINVAL;
3015 
3016 	asoc = sctp_id2assoc(sk, params.assoc_id);
3017 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3018 		return -EINVAL;
3019 
3020 	if (asoc) {
3021 		if (val == 0) {
3022 			val = asoc->pathmtu;
3023 			val -= sp->pf->af->net_header_len;
3024 			val -= sizeof(struct sctphdr) +
3025 					sizeof(struct sctp_data_chunk);
3026 		}
3027 		asoc->user_frag = val;
3028 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3029 	} else {
3030 		sp->user_frag = val;
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 
3037 /*
3038  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3039  *
3040  *   Requests that the peer mark the enclosed address as the association
3041  *   primary. The enclosed address must be one of the association's
3042  *   locally bound addresses. The following structure is used to make a
3043  *   set primary request:
3044  */
3045 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3046 					     unsigned int optlen)
3047 {
3048 	struct net *net = sock_net(sk);
3049 	struct sctp_sock	*sp;
3050 	struct sctp_association	*asoc = NULL;
3051 	struct sctp_setpeerprim	prim;
3052 	struct sctp_chunk	*chunk;
3053 	struct sctp_af		*af;
3054 	int 			err;
3055 
3056 	sp = sctp_sk(sk);
3057 
3058 	if (!net->sctp.addip_enable)
3059 		return -EPERM;
3060 
3061 	if (optlen != sizeof(struct sctp_setpeerprim))
3062 		return -EINVAL;
3063 
3064 	if (copy_from_user(&prim, optval, optlen))
3065 		return -EFAULT;
3066 
3067 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3068 	if (!asoc)
3069 		return -EINVAL;
3070 
3071 	if (!asoc->peer.asconf_capable)
3072 		return -EPERM;
3073 
3074 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3075 		return -EPERM;
3076 
3077 	if (!sctp_state(asoc, ESTABLISHED))
3078 		return -ENOTCONN;
3079 
3080 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3081 	if (!af)
3082 		return -EINVAL;
3083 
3084 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3085 		return -EADDRNOTAVAIL;
3086 
3087 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3088 		return -EADDRNOTAVAIL;
3089 
3090 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3091 	chunk = sctp_make_asconf_set_prim(asoc,
3092 					  (union sctp_addr *)&prim.sspp_addr);
3093 	if (!chunk)
3094 		return -ENOMEM;
3095 
3096 	err = sctp_send_asconf(asoc, chunk);
3097 
3098 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3099 
3100 	return err;
3101 }
3102 
3103 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3104 					    unsigned int optlen)
3105 {
3106 	struct sctp_setadaptation adaptation;
3107 
3108 	if (optlen != sizeof(struct sctp_setadaptation))
3109 		return -EINVAL;
3110 	if (copy_from_user(&adaptation, optval, optlen))
3111 		return -EFAULT;
3112 
3113 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3114 
3115 	return 0;
3116 }
3117 
3118 /*
3119  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3120  *
3121  * The context field in the sctp_sndrcvinfo structure is normally only
3122  * used when a failed message is retrieved holding the value that was
3123  * sent down on the actual send call.  This option allows the setting of
3124  * a default context on an association basis that will be received on
3125  * reading messages from the peer.  This is especially helpful in the
3126  * one-2-many model for an application to keep some reference to an
3127  * internal state machine that is processing messages on the
3128  * association.  Note that the setting of this value only effects
3129  * received messages from the peer and does not effect the value that is
3130  * saved with outbound messages.
3131  */
3132 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3133 				   unsigned int optlen)
3134 {
3135 	struct sctp_assoc_value params;
3136 	struct sctp_sock *sp;
3137 	struct sctp_association *asoc;
3138 
3139 	if (optlen != sizeof(struct sctp_assoc_value))
3140 		return -EINVAL;
3141 	if (copy_from_user(&params, optval, optlen))
3142 		return -EFAULT;
3143 
3144 	sp = sctp_sk(sk);
3145 
3146 	if (params.assoc_id != 0) {
3147 		asoc = sctp_id2assoc(sk, params.assoc_id);
3148 		if (!asoc)
3149 			return -EINVAL;
3150 		asoc->default_rcv_context = params.assoc_value;
3151 	} else {
3152 		sp->default_rcv_context = params.assoc_value;
3153 	}
3154 
3155 	return 0;
3156 }
3157 
3158 /*
3159  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3160  *
3161  * This options will at a minimum specify if the implementation is doing
3162  * fragmented interleave.  Fragmented interleave, for a one to many
3163  * socket, is when subsequent calls to receive a message may return
3164  * parts of messages from different associations.  Some implementations
3165  * may allow you to turn this value on or off.  If so, when turned off,
3166  * no fragment interleave will occur (which will cause a head of line
3167  * blocking amongst multiple associations sharing the same one to many
3168  * socket).  When this option is turned on, then each receive call may
3169  * come from a different association (thus the user must receive data
3170  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3171  * association each receive belongs to.
3172  *
3173  * This option takes a boolean value.  A non-zero value indicates that
3174  * fragmented interleave is on.  A value of zero indicates that
3175  * fragmented interleave is off.
3176  *
3177  * Note that it is important that an implementation that allows this
3178  * option to be turned on, have it off by default.  Otherwise an unaware
3179  * application using the one to many model may become confused and act
3180  * incorrectly.
3181  */
3182 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3183 					       char __user *optval,
3184 					       unsigned int optlen)
3185 {
3186 	int val;
3187 
3188 	if (optlen != sizeof(int))
3189 		return -EINVAL;
3190 	if (get_user(val, (int __user *)optval))
3191 		return -EFAULT;
3192 
3193 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3194 
3195 	return 0;
3196 }
3197 
3198 /*
3199  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3200  *       (SCTP_PARTIAL_DELIVERY_POINT)
3201  *
3202  * This option will set or get the SCTP partial delivery point.  This
3203  * point is the size of a message where the partial delivery API will be
3204  * invoked to help free up rwnd space for the peer.  Setting this to a
3205  * lower value will cause partial deliveries to happen more often.  The
3206  * calls argument is an integer that sets or gets the partial delivery
3207  * point.  Note also that the call will fail if the user attempts to set
3208  * this value larger than the socket receive buffer size.
3209  *
3210  * Note that any single message having a length smaller than or equal to
3211  * the SCTP partial delivery point will be delivered in one single read
3212  * call as long as the user provided buffer is large enough to hold the
3213  * message.
3214  */
3215 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3216 						  char __user *optval,
3217 						  unsigned int optlen)
3218 {
3219 	u32 val;
3220 
3221 	if (optlen != sizeof(u32))
3222 		return -EINVAL;
3223 	if (get_user(val, (int __user *)optval))
3224 		return -EFAULT;
3225 
3226 	/* Note: We double the receive buffer from what the user sets
3227 	 * it to be, also initial rwnd is based on rcvbuf/2.
3228 	 */
3229 	if (val > (sk->sk_rcvbuf >> 1))
3230 		return -EINVAL;
3231 
3232 	sctp_sk(sk)->pd_point = val;
3233 
3234 	return 0; /* is this the right error code? */
3235 }
3236 
3237 /*
3238  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3239  *
3240  * This option will allow a user to change the maximum burst of packets
3241  * that can be emitted by this association.  Note that the default value
3242  * is 4, and some implementations may restrict this setting so that it
3243  * can only be lowered.
3244  *
3245  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3246  * future associations inheriting the socket value.
3247  */
3248 static int sctp_setsockopt_maxburst(struct sock *sk,
3249 				    char __user *optval,
3250 				    unsigned int optlen)
3251 {
3252 	struct sctp_assoc_value params;
3253 	struct sctp_sock *sp;
3254 	struct sctp_association *asoc;
3255 	int val;
3256 	int assoc_id = 0;
3257 
3258 	if (optlen == sizeof(int)) {
3259 		pr_warn("Use of int in max_burst socket option deprecated\n");
3260 		pr_warn("Use struct sctp_assoc_value instead\n");
3261 		if (copy_from_user(&val, optval, optlen))
3262 			return -EFAULT;
3263 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3264 		if (copy_from_user(&params, optval, optlen))
3265 			return -EFAULT;
3266 		val = params.assoc_value;
3267 		assoc_id = params.assoc_id;
3268 	} else
3269 		return -EINVAL;
3270 
3271 	sp = sctp_sk(sk);
3272 
3273 	if (assoc_id != 0) {
3274 		asoc = sctp_id2assoc(sk, assoc_id);
3275 		if (!asoc)
3276 			return -EINVAL;
3277 		asoc->max_burst = val;
3278 	} else
3279 		sp->max_burst = val;
3280 
3281 	return 0;
3282 }
3283 
3284 /*
3285  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3286  *
3287  * This set option adds a chunk type that the user is requesting to be
3288  * received only in an authenticated way.  Changes to the list of chunks
3289  * will only effect future associations on the socket.
3290  */
3291 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3292 				      char __user *optval,
3293 				      unsigned int optlen)
3294 {
3295 	struct net *net = sock_net(sk);
3296 	struct sctp_authchunk val;
3297 
3298 	if (!net->sctp.auth_enable)
3299 		return -EACCES;
3300 
3301 	if (optlen != sizeof(struct sctp_authchunk))
3302 		return -EINVAL;
3303 	if (copy_from_user(&val, optval, optlen))
3304 		return -EFAULT;
3305 
3306 	switch (val.sauth_chunk) {
3307 	case SCTP_CID_INIT:
3308 	case SCTP_CID_INIT_ACK:
3309 	case SCTP_CID_SHUTDOWN_COMPLETE:
3310 	case SCTP_CID_AUTH:
3311 		return -EINVAL;
3312 	}
3313 
3314 	/* add this chunk id to the endpoint */
3315 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3316 }
3317 
3318 /*
3319  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3320  *
3321  * This option gets or sets the list of HMAC algorithms that the local
3322  * endpoint requires the peer to use.
3323  */
3324 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3325 				      char __user *optval,
3326 				      unsigned int optlen)
3327 {
3328 	struct net *net = sock_net(sk);
3329 	struct sctp_hmacalgo *hmacs;
3330 	u32 idents;
3331 	int err;
3332 
3333 	if (!net->sctp.auth_enable)
3334 		return -EACCES;
3335 
3336 	if (optlen < sizeof(struct sctp_hmacalgo))
3337 		return -EINVAL;
3338 
3339 	hmacs= memdup_user(optval, optlen);
3340 	if (IS_ERR(hmacs))
3341 		return PTR_ERR(hmacs);
3342 
3343 	idents = hmacs->shmac_num_idents;
3344 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3345 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3346 		err = -EINVAL;
3347 		goto out;
3348 	}
3349 
3350 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3351 out:
3352 	kfree(hmacs);
3353 	return err;
3354 }
3355 
3356 /*
3357  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3358  *
3359  * This option will set a shared secret key which is used to build an
3360  * association shared key.
3361  */
3362 static int sctp_setsockopt_auth_key(struct sock *sk,
3363 				    char __user *optval,
3364 				    unsigned int optlen)
3365 {
3366 	struct net *net = sock_net(sk);
3367 	struct sctp_authkey *authkey;
3368 	struct sctp_association *asoc;
3369 	int ret;
3370 
3371 	if (!net->sctp.auth_enable)
3372 		return -EACCES;
3373 
3374 	if (optlen <= sizeof(struct sctp_authkey))
3375 		return -EINVAL;
3376 
3377 	authkey= memdup_user(optval, optlen);
3378 	if (IS_ERR(authkey))
3379 		return PTR_ERR(authkey);
3380 
3381 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3382 		ret = -EINVAL;
3383 		goto out;
3384 	}
3385 
3386 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3387 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3388 		ret = -EINVAL;
3389 		goto out;
3390 	}
3391 
3392 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3393 out:
3394 	kzfree(authkey);
3395 	return ret;
3396 }
3397 
3398 /*
3399  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3400  *
3401  * This option will get or set the active shared key to be used to build
3402  * the association shared key.
3403  */
3404 static int sctp_setsockopt_active_key(struct sock *sk,
3405 				      char __user *optval,
3406 				      unsigned int optlen)
3407 {
3408 	struct net *net = sock_net(sk);
3409 	struct sctp_authkeyid val;
3410 	struct sctp_association *asoc;
3411 
3412 	if (!net->sctp.auth_enable)
3413 		return -EACCES;
3414 
3415 	if (optlen != sizeof(struct sctp_authkeyid))
3416 		return -EINVAL;
3417 	if (copy_from_user(&val, optval, optlen))
3418 		return -EFAULT;
3419 
3420 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3421 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3422 		return -EINVAL;
3423 
3424 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3425 					val.scact_keynumber);
3426 }
3427 
3428 /*
3429  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3430  *
3431  * This set option will delete a shared secret key from use.
3432  */
3433 static int sctp_setsockopt_del_key(struct sock *sk,
3434 				   char __user *optval,
3435 				   unsigned int optlen)
3436 {
3437 	struct net *net = sock_net(sk);
3438 	struct sctp_authkeyid val;
3439 	struct sctp_association *asoc;
3440 
3441 	if (!net->sctp.auth_enable)
3442 		return -EACCES;
3443 
3444 	if (optlen != sizeof(struct sctp_authkeyid))
3445 		return -EINVAL;
3446 	if (copy_from_user(&val, optval, optlen))
3447 		return -EFAULT;
3448 
3449 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3450 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3451 		return -EINVAL;
3452 
3453 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3454 				    val.scact_keynumber);
3455 
3456 }
3457 
3458 /*
3459  * 8.1.23 SCTP_AUTO_ASCONF
3460  *
3461  * This option will enable or disable the use of the automatic generation of
3462  * ASCONF chunks to add and delete addresses to an existing association.  Note
3463  * that this option has two caveats namely: a) it only affects sockets that
3464  * are bound to all addresses available to the SCTP stack, and b) the system
3465  * administrator may have an overriding control that turns the ASCONF feature
3466  * off no matter what setting the socket option may have.
3467  * This option expects an integer boolean flag, where a non-zero value turns on
3468  * the option, and a zero value turns off the option.
3469  * Note. In this implementation, socket operation overrides default parameter
3470  * being set by sysctl as well as FreeBSD implementation
3471  */
3472 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3473 					unsigned int optlen)
3474 {
3475 	int val;
3476 	struct sctp_sock *sp = sctp_sk(sk);
3477 
3478 	if (optlen < sizeof(int))
3479 		return -EINVAL;
3480 	if (get_user(val, (int __user *)optval))
3481 		return -EFAULT;
3482 	if (!sctp_is_ep_boundall(sk) && val)
3483 		return -EINVAL;
3484 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3485 		return 0;
3486 
3487 	if (val == 0 && sp->do_auto_asconf) {
3488 		list_del(&sp->auto_asconf_list);
3489 		sp->do_auto_asconf = 0;
3490 	} else if (val && !sp->do_auto_asconf) {
3491 		list_add_tail(&sp->auto_asconf_list,
3492 		    &sock_net(sk)->sctp.auto_asconf_splist);
3493 		sp->do_auto_asconf = 1;
3494 	}
3495 	return 0;
3496 }
3497 
3498 
3499 /*
3500  * SCTP_PEER_ADDR_THLDS
3501  *
3502  * This option allows us to alter the partially failed threshold for one or all
3503  * transports in an association.  See Section 6.1 of:
3504  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3505  */
3506 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3507 					    char __user *optval,
3508 					    unsigned int optlen)
3509 {
3510 	struct sctp_paddrthlds val;
3511 	struct sctp_transport *trans;
3512 	struct sctp_association *asoc;
3513 
3514 	if (optlen < sizeof(struct sctp_paddrthlds))
3515 		return -EINVAL;
3516 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3517 			   sizeof(struct sctp_paddrthlds)))
3518 		return -EFAULT;
3519 
3520 
3521 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3522 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3523 		if (!asoc)
3524 			return -ENOENT;
3525 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3526 				    transports) {
3527 			if (val.spt_pathmaxrxt)
3528 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3529 			trans->pf_retrans = val.spt_pathpfthld;
3530 		}
3531 
3532 		if (val.spt_pathmaxrxt)
3533 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3534 		asoc->pf_retrans = val.spt_pathpfthld;
3535 	} else {
3536 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3537 					       val.spt_assoc_id);
3538 		if (!trans)
3539 			return -ENOENT;
3540 
3541 		if (val.spt_pathmaxrxt)
3542 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3543 		trans->pf_retrans = val.spt_pathpfthld;
3544 	}
3545 
3546 	return 0;
3547 }
3548 
3549 /* API 6.2 setsockopt(), getsockopt()
3550  *
3551  * Applications use setsockopt() and getsockopt() to set or retrieve
3552  * socket options.  Socket options are used to change the default
3553  * behavior of sockets calls.  They are described in Section 7.
3554  *
3555  * The syntax is:
3556  *
3557  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3558  *                    int __user *optlen);
3559  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3560  *                    int optlen);
3561  *
3562  *   sd      - the socket descript.
3563  *   level   - set to IPPROTO_SCTP for all SCTP options.
3564  *   optname - the option name.
3565  *   optval  - the buffer to store the value of the option.
3566  *   optlen  - the size of the buffer.
3567  */
3568 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3569 				char __user *optval, unsigned int optlen)
3570 {
3571 	int retval = 0;
3572 
3573 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3574 			  sk, optname);
3575 
3576 	/* I can hardly begin to describe how wrong this is.  This is
3577 	 * so broken as to be worse than useless.  The API draft
3578 	 * REALLY is NOT helpful here...  I am not convinced that the
3579 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3580 	 * are at all well-founded.
3581 	 */
3582 	if (level != SOL_SCTP) {
3583 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3584 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3585 		goto out_nounlock;
3586 	}
3587 
3588 	sctp_lock_sock(sk);
3589 
3590 	switch (optname) {
3591 	case SCTP_SOCKOPT_BINDX_ADD:
3592 		/* 'optlen' is the size of the addresses buffer. */
3593 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3594 					       optlen, SCTP_BINDX_ADD_ADDR);
3595 		break;
3596 
3597 	case SCTP_SOCKOPT_BINDX_REM:
3598 		/* 'optlen' is the size of the addresses buffer. */
3599 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3600 					       optlen, SCTP_BINDX_REM_ADDR);
3601 		break;
3602 
3603 	case SCTP_SOCKOPT_CONNECTX_OLD:
3604 		/* 'optlen' is the size of the addresses buffer. */
3605 		retval = sctp_setsockopt_connectx_old(sk,
3606 					    (struct sockaddr __user *)optval,
3607 					    optlen);
3608 		break;
3609 
3610 	case SCTP_SOCKOPT_CONNECTX:
3611 		/* 'optlen' is the size of the addresses buffer. */
3612 		retval = sctp_setsockopt_connectx(sk,
3613 					    (struct sockaddr __user *)optval,
3614 					    optlen);
3615 		break;
3616 
3617 	case SCTP_DISABLE_FRAGMENTS:
3618 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3619 		break;
3620 
3621 	case SCTP_EVENTS:
3622 		retval = sctp_setsockopt_events(sk, optval, optlen);
3623 		break;
3624 
3625 	case SCTP_AUTOCLOSE:
3626 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3627 		break;
3628 
3629 	case SCTP_PEER_ADDR_PARAMS:
3630 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3631 		break;
3632 
3633 	case SCTP_DELAYED_SACK:
3634 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3635 		break;
3636 	case SCTP_PARTIAL_DELIVERY_POINT:
3637 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3638 		break;
3639 
3640 	case SCTP_INITMSG:
3641 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3642 		break;
3643 	case SCTP_DEFAULT_SEND_PARAM:
3644 		retval = sctp_setsockopt_default_send_param(sk, optval,
3645 							    optlen);
3646 		break;
3647 	case SCTP_PRIMARY_ADDR:
3648 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3649 		break;
3650 	case SCTP_SET_PEER_PRIMARY_ADDR:
3651 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3652 		break;
3653 	case SCTP_NODELAY:
3654 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3655 		break;
3656 	case SCTP_RTOINFO:
3657 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3658 		break;
3659 	case SCTP_ASSOCINFO:
3660 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3661 		break;
3662 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3663 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3664 		break;
3665 	case SCTP_MAXSEG:
3666 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3667 		break;
3668 	case SCTP_ADAPTATION_LAYER:
3669 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3670 		break;
3671 	case SCTP_CONTEXT:
3672 		retval = sctp_setsockopt_context(sk, optval, optlen);
3673 		break;
3674 	case SCTP_FRAGMENT_INTERLEAVE:
3675 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3676 		break;
3677 	case SCTP_MAX_BURST:
3678 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3679 		break;
3680 	case SCTP_AUTH_CHUNK:
3681 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3682 		break;
3683 	case SCTP_HMAC_IDENT:
3684 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3685 		break;
3686 	case SCTP_AUTH_KEY:
3687 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3688 		break;
3689 	case SCTP_AUTH_ACTIVE_KEY:
3690 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3691 		break;
3692 	case SCTP_AUTH_DELETE_KEY:
3693 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3694 		break;
3695 	case SCTP_AUTO_ASCONF:
3696 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3697 		break;
3698 	case SCTP_PEER_ADDR_THLDS:
3699 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3700 		break;
3701 	default:
3702 		retval = -ENOPROTOOPT;
3703 		break;
3704 	}
3705 
3706 	sctp_release_sock(sk);
3707 
3708 out_nounlock:
3709 	return retval;
3710 }
3711 
3712 /* API 3.1.6 connect() - UDP Style Syntax
3713  *
3714  * An application may use the connect() call in the UDP model to initiate an
3715  * association without sending data.
3716  *
3717  * The syntax is:
3718  *
3719  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3720  *
3721  * sd: the socket descriptor to have a new association added to.
3722  *
3723  * nam: the address structure (either struct sockaddr_in or struct
3724  *    sockaddr_in6 defined in RFC2553 [7]).
3725  *
3726  * len: the size of the address.
3727  */
3728 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3729 			     int addr_len)
3730 {
3731 	int err = 0;
3732 	struct sctp_af *af;
3733 
3734 	sctp_lock_sock(sk);
3735 
3736 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3737 			  __func__, sk, addr, addr_len);
3738 
3739 	/* Validate addr_len before calling common connect/connectx routine. */
3740 	af = sctp_get_af_specific(addr->sa_family);
3741 	if (!af || addr_len < af->sockaddr_len) {
3742 		err = -EINVAL;
3743 	} else {
3744 		/* Pass correct addr len to common routine (so it knows there
3745 		 * is only one address being passed.
3746 		 */
3747 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3748 	}
3749 
3750 	sctp_release_sock(sk);
3751 	return err;
3752 }
3753 
3754 /* FIXME: Write comments. */
3755 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3756 {
3757 	return -EOPNOTSUPP; /* STUB */
3758 }
3759 
3760 /* 4.1.4 accept() - TCP Style Syntax
3761  *
3762  * Applications use accept() call to remove an established SCTP
3763  * association from the accept queue of the endpoint.  A new socket
3764  * descriptor will be returned from accept() to represent the newly
3765  * formed association.
3766  */
3767 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3768 {
3769 	struct sctp_sock *sp;
3770 	struct sctp_endpoint *ep;
3771 	struct sock *newsk = NULL;
3772 	struct sctp_association *asoc;
3773 	long timeo;
3774 	int error = 0;
3775 
3776 	sctp_lock_sock(sk);
3777 
3778 	sp = sctp_sk(sk);
3779 	ep = sp->ep;
3780 
3781 	if (!sctp_style(sk, TCP)) {
3782 		error = -EOPNOTSUPP;
3783 		goto out;
3784 	}
3785 
3786 	if (!sctp_sstate(sk, LISTENING)) {
3787 		error = -EINVAL;
3788 		goto out;
3789 	}
3790 
3791 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3792 
3793 	error = sctp_wait_for_accept(sk, timeo);
3794 	if (error)
3795 		goto out;
3796 
3797 	/* We treat the list of associations on the endpoint as the accept
3798 	 * queue and pick the first association on the list.
3799 	 */
3800 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3801 
3802 	newsk = sp->pf->create_accept_sk(sk, asoc);
3803 	if (!newsk) {
3804 		error = -ENOMEM;
3805 		goto out;
3806 	}
3807 
3808 	/* Populate the fields of the newsk from the oldsk and migrate the
3809 	 * asoc to the newsk.
3810 	 */
3811 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3812 
3813 out:
3814 	sctp_release_sock(sk);
3815 	*err = error;
3816 	return newsk;
3817 }
3818 
3819 /* The SCTP ioctl handler. */
3820 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3821 {
3822 	int rc = -ENOTCONN;
3823 
3824 	sctp_lock_sock(sk);
3825 
3826 	/*
3827 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3828 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3829 	 */
3830 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3831 		goto out;
3832 
3833 	switch (cmd) {
3834 	case SIOCINQ: {
3835 		struct sk_buff *skb;
3836 		unsigned int amount = 0;
3837 
3838 		skb = skb_peek(&sk->sk_receive_queue);
3839 		if (skb != NULL) {
3840 			/*
3841 			 * We will only return the amount of this packet since
3842 			 * that is all that will be read.
3843 			 */
3844 			amount = skb->len;
3845 		}
3846 		rc = put_user(amount, (int __user *)arg);
3847 		break;
3848 	}
3849 	default:
3850 		rc = -ENOIOCTLCMD;
3851 		break;
3852 	}
3853 out:
3854 	sctp_release_sock(sk);
3855 	return rc;
3856 }
3857 
3858 /* This is the function which gets called during socket creation to
3859  * initialized the SCTP-specific portion of the sock.
3860  * The sock structure should already be zero-filled memory.
3861  */
3862 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3863 {
3864 	struct net *net = sock_net(sk);
3865 	struct sctp_endpoint *ep;
3866 	struct sctp_sock *sp;
3867 
3868 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3869 
3870 	sp = sctp_sk(sk);
3871 
3872 	/* Initialize the SCTP per socket area.  */
3873 	switch (sk->sk_type) {
3874 	case SOCK_SEQPACKET:
3875 		sp->type = SCTP_SOCKET_UDP;
3876 		break;
3877 	case SOCK_STREAM:
3878 		sp->type = SCTP_SOCKET_TCP;
3879 		break;
3880 	default:
3881 		return -ESOCKTNOSUPPORT;
3882 	}
3883 
3884 	/* Initialize default send parameters. These parameters can be
3885 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3886 	 */
3887 	sp->default_stream = 0;
3888 	sp->default_ppid = 0;
3889 	sp->default_flags = 0;
3890 	sp->default_context = 0;
3891 	sp->default_timetolive = 0;
3892 
3893 	sp->default_rcv_context = 0;
3894 	sp->max_burst = net->sctp.max_burst;
3895 
3896 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3897 
3898 	/* Initialize default setup parameters. These parameters
3899 	 * can be modified with the SCTP_INITMSG socket option or
3900 	 * overridden by the SCTP_INIT CMSG.
3901 	 */
3902 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3903 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3904 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3905 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3906 
3907 	/* Initialize default RTO related parameters.  These parameters can
3908 	 * be modified for with the SCTP_RTOINFO socket option.
3909 	 */
3910 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3911 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3912 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3913 
3914 	/* Initialize default association related parameters. These parameters
3915 	 * can be modified with the SCTP_ASSOCINFO socket option.
3916 	 */
3917 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3918 	sp->assocparams.sasoc_number_peer_destinations = 0;
3919 	sp->assocparams.sasoc_peer_rwnd = 0;
3920 	sp->assocparams.sasoc_local_rwnd = 0;
3921 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3922 
3923 	/* Initialize default event subscriptions. By default, all the
3924 	 * options are off.
3925 	 */
3926 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3927 
3928 	/* Default Peer Address Parameters.  These defaults can
3929 	 * be modified via SCTP_PEER_ADDR_PARAMS
3930 	 */
3931 	sp->hbinterval  = net->sctp.hb_interval;
3932 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3933 	sp->pathmtu     = 0; // allow default discovery
3934 	sp->sackdelay   = net->sctp.sack_timeout;
3935 	sp->sackfreq	= 2;
3936 	sp->param_flags = SPP_HB_ENABLE |
3937 			  SPP_PMTUD_ENABLE |
3938 			  SPP_SACKDELAY_ENABLE;
3939 
3940 	/* If enabled no SCTP message fragmentation will be performed.
3941 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3942 	 */
3943 	sp->disable_fragments = 0;
3944 
3945 	/* Enable Nagle algorithm by default.  */
3946 	sp->nodelay           = 0;
3947 
3948 	/* Enable by default. */
3949 	sp->v4mapped          = 1;
3950 
3951 	/* Auto-close idle associations after the configured
3952 	 * number of seconds.  A value of 0 disables this
3953 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3954 	 * for UDP-style sockets only.
3955 	 */
3956 	sp->autoclose         = 0;
3957 
3958 	/* User specified fragmentation limit. */
3959 	sp->user_frag         = 0;
3960 
3961 	sp->adaptation_ind = 0;
3962 
3963 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3964 
3965 	/* Control variables for partial data delivery. */
3966 	atomic_set(&sp->pd_mode, 0);
3967 	skb_queue_head_init(&sp->pd_lobby);
3968 	sp->frag_interleave = 0;
3969 
3970 	/* Create a per socket endpoint structure.  Even if we
3971 	 * change the data structure relationships, this may still
3972 	 * be useful for storing pre-connect address information.
3973 	 */
3974 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3975 	if (!ep)
3976 		return -ENOMEM;
3977 
3978 	sp->ep = ep;
3979 	sp->hmac = NULL;
3980 
3981 	SCTP_DBG_OBJCNT_INC(sock);
3982 
3983 	local_bh_disable();
3984 	percpu_counter_inc(&sctp_sockets_allocated);
3985 	sock_prot_inuse_add(net, sk->sk_prot, 1);
3986 	if (net->sctp.default_auto_asconf) {
3987 		list_add_tail(&sp->auto_asconf_list,
3988 		    &net->sctp.auto_asconf_splist);
3989 		sp->do_auto_asconf = 1;
3990 	} else
3991 		sp->do_auto_asconf = 0;
3992 	local_bh_enable();
3993 
3994 	return 0;
3995 }
3996 
3997 /* Cleanup any SCTP per socket resources.  */
3998 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3999 {
4000 	struct sctp_sock *sp;
4001 
4002 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
4003 
4004 	/* Release our hold on the endpoint. */
4005 	sp = sctp_sk(sk);
4006 	if (sp->do_auto_asconf) {
4007 		sp->do_auto_asconf = 0;
4008 		list_del(&sp->auto_asconf_list);
4009 	}
4010 	sctp_endpoint_free(sp->ep);
4011 	local_bh_disable();
4012 	percpu_counter_dec(&sctp_sockets_allocated);
4013 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4014 	local_bh_enable();
4015 }
4016 
4017 /* API 4.1.7 shutdown() - TCP Style Syntax
4018  *     int shutdown(int socket, int how);
4019  *
4020  *     sd      - the socket descriptor of the association to be closed.
4021  *     how     - Specifies the type of shutdown.  The  values  are
4022  *               as follows:
4023  *               SHUT_RD
4024  *                     Disables further receive operations. No SCTP
4025  *                     protocol action is taken.
4026  *               SHUT_WR
4027  *                     Disables further send operations, and initiates
4028  *                     the SCTP shutdown sequence.
4029  *               SHUT_RDWR
4030  *                     Disables further send  and  receive  operations
4031  *                     and initiates the SCTP shutdown sequence.
4032  */
4033 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
4034 {
4035 	struct net *net = sock_net(sk);
4036 	struct sctp_endpoint *ep;
4037 	struct sctp_association *asoc;
4038 
4039 	if (!sctp_style(sk, TCP))
4040 		return;
4041 
4042 	if (how & SEND_SHUTDOWN) {
4043 		ep = sctp_sk(sk)->ep;
4044 		if (!list_empty(&ep->asocs)) {
4045 			asoc = list_entry(ep->asocs.next,
4046 					  struct sctp_association, asocs);
4047 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4048 		}
4049 	}
4050 }
4051 
4052 /* 7.2.1 Association Status (SCTP_STATUS)
4053 
4054  * Applications can retrieve current status information about an
4055  * association, including association state, peer receiver window size,
4056  * number of unacked data chunks, and number of data chunks pending
4057  * receipt.  This information is read-only.
4058  */
4059 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4060 				       char __user *optval,
4061 				       int __user *optlen)
4062 {
4063 	struct sctp_status status;
4064 	struct sctp_association *asoc = NULL;
4065 	struct sctp_transport *transport;
4066 	sctp_assoc_t associd;
4067 	int retval = 0;
4068 
4069 	if (len < sizeof(status)) {
4070 		retval = -EINVAL;
4071 		goto out;
4072 	}
4073 
4074 	len = sizeof(status);
4075 	if (copy_from_user(&status, optval, len)) {
4076 		retval = -EFAULT;
4077 		goto out;
4078 	}
4079 
4080 	associd = status.sstat_assoc_id;
4081 	asoc = sctp_id2assoc(sk, associd);
4082 	if (!asoc) {
4083 		retval = -EINVAL;
4084 		goto out;
4085 	}
4086 
4087 	transport = asoc->peer.primary_path;
4088 
4089 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4090 	status.sstat_state = asoc->state;
4091 	status.sstat_rwnd =  asoc->peer.rwnd;
4092 	status.sstat_unackdata = asoc->unack_data;
4093 
4094 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4095 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4096 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4097 	status.sstat_fragmentation_point = asoc->frag_point;
4098 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4099 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4100 			transport->af_specific->sockaddr_len);
4101 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4102 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4103 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4104 	status.sstat_primary.spinfo_state = transport->state;
4105 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4106 	status.sstat_primary.spinfo_srtt = transport->srtt;
4107 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4108 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4109 
4110 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4111 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4112 
4113 	if (put_user(len, optlen)) {
4114 		retval = -EFAULT;
4115 		goto out;
4116 	}
4117 
4118 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4119 			  len, status.sstat_state, status.sstat_rwnd,
4120 			  status.sstat_assoc_id);
4121 
4122 	if (copy_to_user(optval, &status, len)) {
4123 		retval = -EFAULT;
4124 		goto out;
4125 	}
4126 
4127 out:
4128 	return retval;
4129 }
4130 
4131 
4132 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4133  *
4134  * Applications can retrieve information about a specific peer address
4135  * of an association, including its reachability state, congestion
4136  * window, and retransmission timer values.  This information is
4137  * read-only.
4138  */
4139 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4140 					  char __user *optval,
4141 					  int __user *optlen)
4142 {
4143 	struct sctp_paddrinfo pinfo;
4144 	struct sctp_transport *transport;
4145 	int retval = 0;
4146 
4147 	if (len < sizeof(pinfo)) {
4148 		retval = -EINVAL;
4149 		goto out;
4150 	}
4151 
4152 	len = sizeof(pinfo);
4153 	if (copy_from_user(&pinfo, optval, len)) {
4154 		retval = -EFAULT;
4155 		goto out;
4156 	}
4157 
4158 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4159 					   pinfo.spinfo_assoc_id);
4160 	if (!transport)
4161 		return -EINVAL;
4162 
4163 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4164 	pinfo.spinfo_state = transport->state;
4165 	pinfo.spinfo_cwnd = transport->cwnd;
4166 	pinfo.spinfo_srtt = transport->srtt;
4167 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4168 	pinfo.spinfo_mtu = transport->pathmtu;
4169 
4170 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4171 		pinfo.spinfo_state = SCTP_ACTIVE;
4172 
4173 	if (put_user(len, optlen)) {
4174 		retval = -EFAULT;
4175 		goto out;
4176 	}
4177 
4178 	if (copy_to_user(optval, &pinfo, len)) {
4179 		retval = -EFAULT;
4180 		goto out;
4181 	}
4182 
4183 out:
4184 	return retval;
4185 }
4186 
4187 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4188  *
4189  * This option is a on/off flag.  If enabled no SCTP message
4190  * fragmentation will be performed.  Instead if a message being sent
4191  * exceeds the current PMTU size, the message will NOT be sent and
4192  * instead a error will be indicated to the user.
4193  */
4194 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4195 					char __user *optval, int __user *optlen)
4196 {
4197 	int val;
4198 
4199 	if (len < sizeof(int))
4200 		return -EINVAL;
4201 
4202 	len = sizeof(int);
4203 	val = (sctp_sk(sk)->disable_fragments == 1);
4204 	if (put_user(len, optlen))
4205 		return -EFAULT;
4206 	if (copy_to_user(optval, &val, len))
4207 		return -EFAULT;
4208 	return 0;
4209 }
4210 
4211 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4212  *
4213  * This socket option is used to specify various notifications and
4214  * ancillary data the user wishes to receive.
4215  */
4216 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4217 				  int __user *optlen)
4218 {
4219 	if (len <= 0)
4220 		return -EINVAL;
4221 	if (len > sizeof(struct sctp_event_subscribe))
4222 		len = sizeof(struct sctp_event_subscribe);
4223 	if (put_user(len, optlen))
4224 		return -EFAULT;
4225 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4226 		return -EFAULT;
4227 	return 0;
4228 }
4229 
4230 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4231  *
4232  * This socket option is applicable to the UDP-style socket only.  When
4233  * set it will cause associations that are idle for more than the
4234  * specified number of seconds to automatically close.  An association
4235  * being idle is defined an association that has NOT sent or received
4236  * user data.  The special value of '0' indicates that no automatic
4237  * close of any associations should be performed.  The option expects an
4238  * integer defining the number of seconds of idle time before an
4239  * association is closed.
4240  */
4241 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4242 {
4243 	/* Applicable to UDP-style socket only */
4244 	if (sctp_style(sk, TCP))
4245 		return -EOPNOTSUPP;
4246 	if (len < sizeof(int))
4247 		return -EINVAL;
4248 	len = sizeof(int);
4249 	if (put_user(len, optlen))
4250 		return -EFAULT;
4251 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4252 		return -EFAULT;
4253 	return 0;
4254 }
4255 
4256 /* Helper routine to branch off an association to a new socket.  */
4257 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4258 {
4259 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4260 	struct socket *sock;
4261 	struct sctp_af *af;
4262 	int err = 0;
4263 
4264 	if (!asoc)
4265 		return -EINVAL;
4266 
4267 	/* An association cannot be branched off from an already peeled-off
4268 	 * socket, nor is this supported for tcp style sockets.
4269 	 */
4270 	if (!sctp_style(sk, UDP))
4271 		return -EINVAL;
4272 
4273 	/* Create a new socket.  */
4274 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4275 	if (err < 0)
4276 		return err;
4277 
4278 	sctp_copy_sock(sock->sk, sk, asoc);
4279 
4280 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4281 	 * Set the daddr and initialize id to something more random
4282 	 */
4283 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4284 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4285 
4286 	/* Populate the fields of the newsk from the oldsk and migrate the
4287 	 * asoc to the newsk.
4288 	 */
4289 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4290 
4291 	*sockp = sock;
4292 
4293 	return err;
4294 }
4295 EXPORT_SYMBOL(sctp_do_peeloff);
4296 
4297 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4298 {
4299 	sctp_peeloff_arg_t peeloff;
4300 	struct socket *newsock;
4301 	struct file *newfile;
4302 	int retval = 0;
4303 
4304 	if (len < sizeof(sctp_peeloff_arg_t))
4305 		return -EINVAL;
4306 	len = sizeof(sctp_peeloff_arg_t);
4307 	if (copy_from_user(&peeloff, optval, len))
4308 		return -EFAULT;
4309 
4310 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4311 	if (retval < 0)
4312 		goto out;
4313 
4314 	/* Map the socket to an unused fd that can be returned to the user.  */
4315 	retval = get_unused_fd();
4316 	if (retval < 0) {
4317 		sock_release(newsock);
4318 		goto out;
4319 	}
4320 
4321 	newfile = sock_alloc_file(newsock, 0, NULL);
4322 	if (unlikely(IS_ERR(newfile))) {
4323 		put_unused_fd(retval);
4324 		sock_release(newsock);
4325 		return PTR_ERR(newfile);
4326 	}
4327 
4328 	SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n",
4329 			  __func__, sk, newsock->sk, retval);
4330 
4331 	/* Return the fd mapped to the new socket.  */
4332 	if (put_user(len, optlen)) {
4333 		fput(newfile);
4334 		put_unused_fd(retval);
4335 		return -EFAULT;
4336 	}
4337 	peeloff.sd = retval;
4338 	if (copy_to_user(optval, &peeloff, len)) {
4339 		fput(newfile);
4340 		put_unused_fd(retval);
4341 		return -EFAULT;
4342 	}
4343 	fd_install(retval, newfile);
4344 out:
4345 	return retval;
4346 }
4347 
4348 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4349  *
4350  * Applications can enable or disable heartbeats for any peer address of
4351  * an association, modify an address's heartbeat interval, force a
4352  * heartbeat to be sent immediately, and adjust the address's maximum
4353  * number of retransmissions sent before an address is considered
4354  * unreachable.  The following structure is used to access and modify an
4355  * address's parameters:
4356  *
4357  *  struct sctp_paddrparams {
4358  *     sctp_assoc_t            spp_assoc_id;
4359  *     struct sockaddr_storage spp_address;
4360  *     uint32_t                spp_hbinterval;
4361  *     uint16_t                spp_pathmaxrxt;
4362  *     uint32_t                spp_pathmtu;
4363  *     uint32_t                spp_sackdelay;
4364  *     uint32_t                spp_flags;
4365  * };
4366  *
4367  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4368  *                     application, and identifies the association for
4369  *                     this query.
4370  *   spp_address     - This specifies which address is of interest.
4371  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4372  *                     in milliseconds.  If a  value of zero
4373  *                     is present in this field then no changes are to
4374  *                     be made to this parameter.
4375  *   spp_pathmaxrxt  - This contains the maximum number of
4376  *                     retransmissions before this address shall be
4377  *                     considered unreachable. If a  value of zero
4378  *                     is present in this field then no changes are to
4379  *                     be made to this parameter.
4380  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4381  *                     specified here will be the "fixed" path mtu.
4382  *                     Note that if the spp_address field is empty
4383  *                     then all associations on this address will
4384  *                     have this fixed path mtu set upon them.
4385  *
4386  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4387  *                     the number of milliseconds that sacks will be delayed
4388  *                     for. This value will apply to all addresses of an
4389  *                     association if the spp_address field is empty. Note
4390  *                     also, that if delayed sack is enabled and this
4391  *                     value is set to 0, no change is made to the last
4392  *                     recorded delayed sack timer value.
4393  *
4394  *   spp_flags       - These flags are used to control various features
4395  *                     on an association. The flag field may contain
4396  *                     zero or more of the following options.
4397  *
4398  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4399  *                     specified address. Note that if the address
4400  *                     field is empty all addresses for the association
4401  *                     have heartbeats enabled upon them.
4402  *
4403  *                     SPP_HB_DISABLE - Disable heartbeats on the
4404  *                     speicifed address. Note that if the address
4405  *                     field is empty all addresses for the association
4406  *                     will have their heartbeats disabled. Note also
4407  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4408  *                     mutually exclusive, only one of these two should
4409  *                     be specified. Enabling both fields will have
4410  *                     undetermined results.
4411  *
4412  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4413  *                     to be made immediately.
4414  *
4415  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4416  *                     discovery upon the specified address. Note that
4417  *                     if the address feild is empty then all addresses
4418  *                     on the association are effected.
4419  *
4420  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4421  *                     discovery upon the specified address. Note that
4422  *                     if the address feild is empty then all addresses
4423  *                     on the association are effected. Not also that
4424  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4425  *                     exclusive. Enabling both will have undetermined
4426  *                     results.
4427  *
4428  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4429  *                     on delayed sack. The time specified in spp_sackdelay
4430  *                     is used to specify the sack delay for this address. Note
4431  *                     that if spp_address is empty then all addresses will
4432  *                     enable delayed sack and take on the sack delay
4433  *                     value specified in spp_sackdelay.
4434  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4435  *                     off delayed sack. If the spp_address field is blank then
4436  *                     delayed sack is disabled for the entire association. Note
4437  *                     also that this field is mutually exclusive to
4438  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4439  *                     results.
4440  */
4441 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4442 					    char __user *optval, int __user *optlen)
4443 {
4444 	struct sctp_paddrparams  params;
4445 	struct sctp_transport   *trans = NULL;
4446 	struct sctp_association *asoc = NULL;
4447 	struct sctp_sock        *sp = sctp_sk(sk);
4448 
4449 	if (len < sizeof(struct sctp_paddrparams))
4450 		return -EINVAL;
4451 	len = sizeof(struct sctp_paddrparams);
4452 	if (copy_from_user(&params, optval, len))
4453 		return -EFAULT;
4454 
4455 	/* If an address other than INADDR_ANY is specified, and
4456 	 * no transport is found, then the request is invalid.
4457 	 */
4458 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4459 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4460 					       params.spp_assoc_id);
4461 		if (!trans) {
4462 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4463 			return -EINVAL;
4464 		}
4465 	}
4466 
4467 	/* Get association, if assoc_id != 0 and the socket is a one
4468 	 * to many style socket, and an association was not found, then
4469 	 * the id was invalid.
4470 	 */
4471 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4472 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4473 		SCTP_DEBUG_PRINTK("Failed no association\n");
4474 		return -EINVAL;
4475 	}
4476 
4477 	if (trans) {
4478 		/* Fetch transport values. */
4479 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4480 		params.spp_pathmtu    = trans->pathmtu;
4481 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4482 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4483 
4484 		/*draft-11 doesn't say what to return in spp_flags*/
4485 		params.spp_flags      = trans->param_flags;
4486 	} else if (asoc) {
4487 		/* Fetch association values. */
4488 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4489 		params.spp_pathmtu    = asoc->pathmtu;
4490 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4491 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4492 
4493 		/*draft-11 doesn't say what to return in spp_flags*/
4494 		params.spp_flags      = asoc->param_flags;
4495 	} else {
4496 		/* Fetch socket values. */
4497 		params.spp_hbinterval = sp->hbinterval;
4498 		params.spp_pathmtu    = sp->pathmtu;
4499 		params.spp_sackdelay  = sp->sackdelay;
4500 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4501 
4502 		/*draft-11 doesn't say what to return in spp_flags*/
4503 		params.spp_flags      = sp->param_flags;
4504 	}
4505 
4506 	if (copy_to_user(optval, &params, len))
4507 		return -EFAULT;
4508 
4509 	if (put_user(len, optlen))
4510 		return -EFAULT;
4511 
4512 	return 0;
4513 }
4514 
4515 /*
4516  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4517  *
4518  * This option will effect the way delayed acks are performed.  This
4519  * option allows you to get or set the delayed ack time, in
4520  * milliseconds.  It also allows changing the delayed ack frequency.
4521  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4522  * the assoc_id is 0, then this sets or gets the endpoints default
4523  * values.  If the assoc_id field is non-zero, then the set or get
4524  * effects the specified association for the one to many model (the
4525  * assoc_id field is ignored by the one to one model).  Note that if
4526  * sack_delay or sack_freq are 0 when setting this option, then the
4527  * current values will remain unchanged.
4528  *
4529  * struct sctp_sack_info {
4530  *     sctp_assoc_t            sack_assoc_id;
4531  *     uint32_t                sack_delay;
4532  *     uint32_t                sack_freq;
4533  * };
4534  *
4535  * sack_assoc_id -  This parameter, indicates which association the user
4536  *    is performing an action upon.  Note that if this field's value is
4537  *    zero then the endpoints default value is changed (effecting future
4538  *    associations only).
4539  *
4540  * sack_delay -  This parameter contains the number of milliseconds that
4541  *    the user is requesting the delayed ACK timer be set to.  Note that
4542  *    this value is defined in the standard to be between 200 and 500
4543  *    milliseconds.
4544  *
4545  * sack_freq -  This parameter contains the number of packets that must
4546  *    be received before a sack is sent without waiting for the delay
4547  *    timer to expire.  The default value for this is 2, setting this
4548  *    value to 1 will disable the delayed sack algorithm.
4549  */
4550 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4551 					    char __user *optval,
4552 					    int __user *optlen)
4553 {
4554 	struct sctp_sack_info    params;
4555 	struct sctp_association *asoc = NULL;
4556 	struct sctp_sock        *sp = sctp_sk(sk);
4557 
4558 	if (len >= sizeof(struct sctp_sack_info)) {
4559 		len = sizeof(struct sctp_sack_info);
4560 
4561 		if (copy_from_user(&params, optval, len))
4562 			return -EFAULT;
4563 	} else if (len == sizeof(struct sctp_assoc_value)) {
4564 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4565 		pr_warn("Use struct sctp_sack_info instead\n");
4566 		if (copy_from_user(&params, optval, len))
4567 			return -EFAULT;
4568 	} else
4569 		return - EINVAL;
4570 
4571 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4572 	 * to many style socket, and an association was not found, then
4573 	 * the id was invalid.
4574 	 */
4575 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4576 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4577 		return -EINVAL;
4578 
4579 	if (asoc) {
4580 		/* Fetch association values. */
4581 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4582 			params.sack_delay = jiffies_to_msecs(
4583 				asoc->sackdelay);
4584 			params.sack_freq = asoc->sackfreq;
4585 
4586 		} else {
4587 			params.sack_delay = 0;
4588 			params.sack_freq = 1;
4589 		}
4590 	} else {
4591 		/* Fetch socket values. */
4592 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4593 			params.sack_delay  = sp->sackdelay;
4594 			params.sack_freq = sp->sackfreq;
4595 		} else {
4596 			params.sack_delay  = 0;
4597 			params.sack_freq = 1;
4598 		}
4599 	}
4600 
4601 	if (copy_to_user(optval, &params, len))
4602 		return -EFAULT;
4603 
4604 	if (put_user(len, optlen))
4605 		return -EFAULT;
4606 
4607 	return 0;
4608 }
4609 
4610 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4611  *
4612  * Applications can specify protocol parameters for the default association
4613  * initialization.  The option name argument to setsockopt() and getsockopt()
4614  * is SCTP_INITMSG.
4615  *
4616  * Setting initialization parameters is effective only on an unconnected
4617  * socket (for UDP-style sockets only future associations are effected
4618  * by the change).  With TCP-style sockets, this option is inherited by
4619  * sockets derived from a listener socket.
4620  */
4621 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4622 {
4623 	if (len < sizeof(struct sctp_initmsg))
4624 		return -EINVAL;
4625 	len = sizeof(struct sctp_initmsg);
4626 	if (put_user(len, optlen))
4627 		return -EFAULT;
4628 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4629 		return -EFAULT;
4630 	return 0;
4631 }
4632 
4633 
4634 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4635 				      char __user *optval, int __user *optlen)
4636 {
4637 	struct sctp_association *asoc;
4638 	int cnt = 0;
4639 	struct sctp_getaddrs getaddrs;
4640 	struct sctp_transport *from;
4641 	void __user *to;
4642 	union sctp_addr temp;
4643 	struct sctp_sock *sp = sctp_sk(sk);
4644 	int addrlen;
4645 	size_t space_left;
4646 	int bytes_copied;
4647 
4648 	if (len < sizeof(struct sctp_getaddrs))
4649 		return -EINVAL;
4650 
4651 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4652 		return -EFAULT;
4653 
4654 	/* For UDP-style sockets, id specifies the association to query.  */
4655 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4656 	if (!asoc)
4657 		return -EINVAL;
4658 
4659 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4660 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4661 
4662 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4663 				transports) {
4664 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4665 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4666 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4667 		if (space_left < addrlen)
4668 			return -ENOMEM;
4669 		if (copy_to_user(to, &temp, addrlen))
4670 			return -EFAULT;
4671 		to += addrlen;
4672 		cnt++;
4673 		space_left -= addrlen;
4674 	}
4675 
4676 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4677 		return -EFAULT;
4678 	bytes_copied = ((char __user *)to) - optval;
4679 	if (put_user(bytes_copied, optlen))
4680 		return -EFAULT;
4681 
4682 	return 0;
4683 }
4684 
4685 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4686 			    size_t space_left, int *bytes_copied)
4687 {
4688 	struct sctp_sockaddr_entry *addr;
4689 	union sctp_addr temp;
4690 	int cnt = 0;
4691 	int addrlen;
4692 	struct net *net = sock_net(sk);
4693 
4694 	rcu_read_lock();
4695 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4696 		if (!addr->valid)
4697 			continue;
4698 
4699 		if ((PF_INET == sk->sk_family) &&
4700 		    (AF_INET6 == addr->a.sa.sa_family))
4701 			continue;
4702 		if ((PF_INET6 == sk->sk_family) &&
4703 		    inet_v6_ipv6only(sk) &&
4704 		    (AF_INET == addr->a.sa.sa_family))
4705 			continue;
4706 		memcpy(&temp, &addr->a, sizeof(temp));
4707 		if (!temp.v4.sin_port)
4708 			temp.v4.sin_port = htons(port);
4709 
4710 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4711 								&temp);
4712 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4713 		if (space_left < addrlen) {
4714 			cnt =  -ENOMEM;
4715 			break;
4716 		}
4717 		memcpy(to, &temp, addrlen);
4718 
4719 		to += addrlen;
4720 		cnt ++;
4721 		space_left -= addrlen;
4722 		*bytes_copied += addrlen;
4723 	}
4724 	rcu_read_unlock();
4725 
4726 	return cnt;
4727 }
4728 
4729 
4730 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4731 				       char __user *optval, int __user *optlen)
4732 {
4733 	struct sctp_bind_addr *bp;
4734 	struct sctp_association *asoc;
4735 	int cnt = 0;
4736 	struct sctp_getaddrs getaddrs;
4737 	struct sctp_sockaddr_entry *addr;
4738 	void __user *to;
4739 	union sctp_addr temp;
4740 	struct sctp_sock *sp = sctp_sk(sk);
4741 	int addrlen;
4742 	int err = 0;
4743 	size_t space_left;
4744 	int bytes_copied = 0;
4745 	void *addrs;
4746 	void *buf;
4747 
4748 	if (len < sizeof(struct sctp_getaddrs))
4749 		return -EINVAL;
4750 
4751 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4752 		return -EFAULT;
4753 
4754 	/*
4755 	 *  For UDP-style sockets, id specifies the association to query.
4756 	 *  If the id field is set to the value '0' then the locally bound
4757 	 *  addresses are returned without regard to any particular
4758 	 *  association.
4759 	 */
4760 	if (0 == getaddrs.assoc_id) {
4761 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4762 	} else {
4763 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4764 		if (!asoc)
4765 			return -EINVAL;
4766 		bp = &asoc->base.bind_addr;
4767 	}
4768 
4769 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4770 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4771 
4772 	addrs = kmalloc(space_left, GFP_KERNEL);
4773 	if (!addrs)
4774 		return -ENOMEM;
4775 
4776 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4777 	 * addresses from the global local address list.
4778 	 */
4779 	if (sctp_list_single_entry(&bp->address_list)) {
4780 		addr = list_entry(bp->address_list.next,
4781 				  struct sctp_sockaddr_entry, list);
4782 		if (sctp_is_any(sk, &addr->a)) {
4783 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4784 						space_left, &bytes_copied);
4785 			if (cnt < 0) {
4786 				err = cnt;
4787 				goto out;
4788 			}
4789 			goto copy_getaddrs;
4790 		}
4791 	}
4792 
4793 	buf = addrs;
4794 	/* Protection on the bound address list is not needed since
4795 	 * in the socket option context we hold a socket lock and
4796 	 * thus the bound address list can't change.
4797 	 */
4798 	list_for_each_entry(addr, &bp->address_list, list) {
4799 		memcpy(&temp, &addr->a, sizeof(temp));
4800 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4801 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4802 		if (space_left < addrlen) {
4803 			err =  -ENOMEM; /*fixme: right error?*/
4804 			goto out;
4805 		}
4806 		memcpy(buf, &temp, addrlen);
4807 		buf += addrlen;
4808 		bytes_copied += addrlen;
4809 		cnt ++;
4810 		space_left -= addrlen;
4811 	}
4812 
4813 copy_getaddrs:
4814 	if (copy_to_user(to, addrs, bytes_copied)) {
4815 		err = -EFAULT;
4816 		goto out;
4817 	}
4818 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4819 		err = -EFAULT;
4820 		goto out;
4821 	}
4822 	if (put_user(bytes_copied, optlen))
4823 		err = -EFAULT;
4824 out:
4825 	kfree(addrs);
4826 	return err;
4827 }
4828 
4829 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4830  *
4831  * Requests that the local SCTP stack use the enclosed peer address as
4832  * the association primary.  The enclosed address must be one of the
4833  * association peer's addresses.
4834  */
4835 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4836 					char __user *optval, int __user *optlen)
4837 {
4838 	struct sctp_prim prim;
4839 	struct sctp_association *asoc;
4840 	struct sctp_sock *sp = sctp_sk(sk);
4841 
4842 	if (len < sizeof(struct sctp_prim))
4843 		return -EINVAL;
4844 
4845 	len = sizeof(struct sctp_prim);
4846 
4847 	if (copy_from_user(&prim, optval, len))
4848 		return -EFAULT;
4849 
4850 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4851 	if (!asoc)
4852 		return -EINVAL;
4853 
4854 	if (!asoc->peer.primary_path)
4855 		return -ENOTCONN;
4856 
4857 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4858 		asoc->peer.primary_path->af_specific->sockaddr_len);
4859 
4860 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4861 			(union sctp_addr *)&prim.ssp_addr);
4862 
4863 	if (put_user(len, optlen))
4864 		return -EFAULT;
4865 	if (copy_to_user(optval, &prim, len))
4866 		return -EFAULT;
4867 
4868 	return 0;
4869 }
4870 
4871 /*
4872  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4873  *
4874  * Requests that the local endpoint set the specified Adaptation Layer
4875  * Indication parameter for all future INIT and INIT-ACK exchanges.
4876  */
4877 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4878 				  char __user *optval, int __user *optlen)
4879 {
4880 	struct sctp_setadaptation adaptation;
4881 
4882 	if (len < sizeof(struct sctp_setadaptation))
4883 		return -EINVAL;
4884 
4885 	len = sizeof(struct sctp_setadaptation);
4886 
4887 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4888 
4889 	if (put_user(len, optlen))
4890 		return -EFAULT;
4891 	if (copy_to_user(optval, &adaptation, len))
4892 		return -EFAULT;
4893 
4894 	return 0;
4895 }
4896 
4897 /*
4898  *
4899  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4900  *
4901  *   Applications that wish to use the sendto() system call may wish to
4902  *   specify a default set of parameters that would normally be supplied
4903  *   through the inclusion of ancillary data.  This socket option allows
4904  *   such an application to set the default sctp_sndrcvinfo structure.
4905 
4906 
4907  *   The application that wishes to use this socket option simply passes
4908  *   in to this call the sctp_sndrcvinfo structure defined in Section
4909  *   5.2.2) The input parameters accepted by this call include
4910  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4911  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4912  *   to this call if the caller is using the UDP model.
4913  *
4914  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4915  */
4916 static int sctp_getsockopt_default_send_param(struct sock *sk,
4917 					int len, char __user *optval,
4918 					int __user *optlen)
4919 {
4920 	struct sctp_sndrcvinfo info;
4921 	struct sctp_association *asoc;
4922 	struct sctp_sock *sp = sctp_sk(sk);
4923 
4924 	if (len < sizeof(struct sctp_sndrcvinfo))
4925 		return -EINVAL;
4926 
4927 	len = sizeof(struct sctp_sndrcvinfo);
4928 
4929 	if (copy_from_user(&info, optval, len))
4930 		return -EFAULT;
4931 
4932 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4933 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4934 		return -EINVAL;
4935 
4936 	if (asoc) {
4937 		info.sinfo_stream = asoc->default_stream;
4938 		info.sinfo_flags = asoc->default_flags;
4939 		info.sinfo_ppid = asoc->default_ppid;
4940 		info.sinfo_context = asoc->default_context;
4941 		info.sinfo_timetolive = asoc->default_timetolive;
4942 	} else {
4943 		info.sinfo_stream = sp->default_stream;
4944 		info.sinfo_flags = sp->default_flags;
4945 		info.sinfo_ppid = sp->default_ppid;
4946 		info.sinfo_context = sp->default_context;
4947 		info.sinfo_timetolive = sp->default_timetolive;
4948 	}
4949 
4950 	if (put_user(len, optlen))
4951 		return -EFAULT;
4952 	if (copy_to_user(optval, &info, len))
4953 		return -EFAULT;
4954 
4955 	return 0;
4956 }
4957 
4958 /*
4959  *
4960  * 7.1.5 SCTP_NODELAY
4961  *
4962  * Turn on/off any Nagle-like algorithm.  This means that packets are
4963  * generally sent as soon as possible and no unnecessary delays are
4964  * introduced, at the cost of more packets in the network.  Expects an
4965  * integer boolean flag.
4966  */
4967 
4968 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4969 				   char __user *optval, int __user *optlen)
4970 {
4971 	int val;
4972 
4973 	if (len < sizeof(int))
4974 		return -EINVAL;
4975 
4976 	len = sizeof(int);
4977 	val = (sctp_sk(sk)->nodelay == 1);
4978 	if (put_user(len, optlen))
4979 		return -EFAULT;
4980 	if (copy_to_user(optval, &val, len))
4981 		return -EFAULT;
4982 	return 0;
4983 }
4984 
4985 /*
4986  *
4987  * 7.1.1 SCTP_RTOINFO
4988  *
4989  * The protocol parameters used to initialize and bound retransmission
4990  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4991  * and modify these parameters.
4992  * All parameters are time values, in milliseconds.  A value of 0, when
4993  * modifying the parameters, indicates that the current value should not
4994  * be changed.
4995  *
4996  */
4997 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4998 				char __user *optval,
4999 				int __user *optlen) {
5000 	struct sctp_rtoinfo rtoinfo;
5001 	struct sctp_association *asoc;
5002 
5003 	if (len < sizeof (struct sctp_rtoinfo))
5004 		return -EINVAL;
5005 
5006 	len = sizeof(struct sctp_rtoinfo);
5007 
5008 	if (copy_from_user(&rtoinfo, optval, len))
5009 		return -EFAULT;
5010 
5011 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5012 
5013 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5014 		return -EINVAL;
5015 
5016 	/* Values corresponding to the specific association. */
5017 	if (asoc) {
5018 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5019 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5020 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5021 	} else {
5022 		/* Values corresponding to the endpoint. */
5023 		struct sctp_sock *sp = sctp_sk(sk);
5024 
5025 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5026 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5027 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5028 	}
5029 
5030 	if (put_user(len, optlen))
5031 		return -EFAULT;
5032 
5033 	if (copy_to_user(optval, &rtoinfo, len))
5034 		return -EFAULT;
5035 
5036 	return 0;
5037 }
5038 
5039 /*
5040  *
5041  * 7.1.2 SCTP_ASSOCINFO
5042  *
5043  * This option is used to tune the maximum retransmission attempts
5044  * of the association.
5045  * Returns an error if the new association retransmission value is
5046  * greater than the sum of the retransmission value  of the peer.
5047  * See [SCTP] for more information.
5048  *
5049  */
5050 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5051 				     char __user *optval,
5052 				     int __user *optlen)
5053 {
5054 
5055 	struct sctp_assocparams assocparams;
5056 	struct sctp_association *asoc;
5057 	struct list_head *pos;
5058 	int cnt = 0;
5059 
5060 	if (len < sizeof (struct sctp_assocparams))
5061 		return -EINVAL;
5062 
5063 	len = sizeof(struct sctp_assocparams);
5064 
5065 	if (copy_from_user(&assocparams, optval, len))
5066 		return -EFAULT;
5067 
5068 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5069 
5070 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5071 		return -EINVAL;
5072 
5073 	/* Values correspoinding to the specific association */
5074 	if (asoc) {
5075 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5076 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5077 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5078 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
5079 						* 1000) +
5080 						(asoc->cookie_life.tv_usec
5081 						/ 1000);
5082 
5083 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5084 			cnt ++;
5085 		}
5086 
5087 		assocparams.sasoc_number_peer_destinations = cnt;
5088 	} else {
5089 		/* Values corresponding to the endpoint */
5090 		struct sctp_sock *sp = sctp_sk(sk);
5091 
5092 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5093 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5094 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5095 		assocparams.sasoc_cookie_life =
5096 					sp->assocparams.sasoc_cookie_life;
5097 		assocparams.sasoc_number_peer_destinations =
5098 					sp->assocparams.
5099 					sasoc_number_peer_destinations;
5100 	}
5101 
5102 	if (put_user(len, optlen))
5103 		return -EFAULT;
5104 
5105 	if (copy_to_user(optval, &assocparams, len))
5106 		return -EFAULT;
5107 
5108 	return 0;
5109 }
5110 
5111 /*
5112  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5113  *
5114  * This socket option is a boolean flag which turns on or off mapped V4
5115  * addresses.  If this option is turned on and the socket is type
5116  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5117  * If this option is turned off, then no mapping will be done of V4
5118  * addresses and a user will receive both PF_INET6 and PF_INET type
5119  * addresses on the socket.
5120  */
5121 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5122 				    char __user *optval, int __user *optlen)
5123 {
5124 	int val;
5125 	struct sctp_sock *sp = sctp_sk(sk);
5126 
5127 	if (len < sizeof(int))
5128 		return -EINVAL;
5129 
5130 	len = sizeof(int);
5131 	val = sp->v4mapped;
5132 	if (put_user(len, optlen))
5133 		return -EFAULT;
5134 	if (copy_to_user(optval, &val, len))
5135 		return -EFAULT;
5136 
5137 	return 0;
5138 }
5139 
5140 /*
5141  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5142  * (chapter and verse is quoted at sctp_setsockopt_context())
5143  */
5144 static int sctp_getsockopt_context(struct sock *sk, int len,
5145 				   char __user *optval, int __user *optlen)
5146 {
5147 	struct sctp_assoc_value params;
5148 	struct sctp_sock *sp;
5149 	struct sctp_association *asoc;
5150 
5151 	if (len < sizeof(struct sctp_assoc_value))
5152 		return -EINVAL;
5153 
5154 	len = sizeof(struct sctp_assoc_value);
5155 
5156 	if (copy_from_user(&params, optval, len))
5157 		return -EFAULT;
5158 
5159 	sp = sctp_sk(sk);
5160 
5161 	if (params.assoc_id != 0) {
5162 		asoc = sctp_id2assoc(sk, params.assoc_id);
5163 		if (!asoc)
5164 			return -EINVAL;
5165 		params.assoc_value = asoc->default_rcv_context;
5166 	} else {
5167 		params.assoc_value = sp->default_rcv_context;
5168 	}
5169 
5170 	if (put_user(len, optlen))
5171 		return -EFAULT;
5172 	if (copy_to_user(optval, &params, len))
5173 		return -EFAULT;
5174 
5175 	return 0;
5176 }
5177 
5178 /*
5179  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5180  * This option will get or set the maximum size to put in any outgoing
5181  * SCTP DATA chunk.  If a message is larger than this size it will be
5182  * fragmented by SCTP into the specified size.  Note that the underlying
5183  * SCTP implementation may fragment into smaller sized chunks when the
5184  * PMTU of the underlying association is smaller than the value set by
5185  * the user.  The default value for this option is '0' which indicates
5186  * the user is NOT limiting fragmentation and only the PMTU will effect
5187  * SCTP's choice of DATA chunk size.  Note also that values set larger
5188  * than the maximum size of an IP datagram will effectively let SCTP
5189  * control fragmentation (i.e. the same as setting this option to 0).
5190  *
5191  * The following structure is used to access and modify this parameter:
5192  *
5193  * struct sctp_assoc_value {
5194  *   sctp_assoc_t assoc_id;
5195  *   uint32_t assoc_value;
5196  * };
5197  *
5198  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5199  *    For one-to-many style sockets this parameter indicates which
5200  *    association the user is performing an action upon.  Note that if
5201  *    this field's value is zero then the endpoints default value is
5202  *    changed (effecting future associations only).
5203  * assoc_value:  This parameter specifies the maximum size in bytes.
5204  */
5205 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5206 				  char __user *optval, int __user *optlen)
5207 {
5208 	struct sctp_assoc_value params;
5209 	struct sctp_association *asoc;
5210 
5211 	if (len == sizeof(int)) {
5212 		pr_warn("Use of int in maxseg socket option deprecated\n");
5213 		pr_warn("Use struct sctp_assoc_value instead\n");
5214 		params.assoc_id = 0;
5215 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5216 		len = sizeof(struct sctp_assoc_value);
5217 		if (copy_from_user(&params, optval, sizeof(params)))
5218 			return -EFAULT;
5219 	} else
5220 		return -EINVAL;
5221 
5222 	asoc = sctp_id2assoc(sk, params.assoc_id);
5223 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5224 		return -EINVAL;
5225 
5226 	if (asoc)
5227 		params.assoc_value = asoc->frag_point;
5228 	else
5229 		params.assoc_value = sctp_sk(sk)->user_frag;
5230 
5231 	if (put_user(len, optlen))
5232 		return -EFAULT;
5233 	if (len == sizeof(int)) {
5234 		if (copy_to_user(optval, &params.assoc_value, len))
5235 			return -EFAULT;
5236 	} else {
5237 		if (copy_to_user(optval, &params, len))
5238 			return -EFAULT;
5239 	}
5240 
5241 	return 0;
5242 }
5243 
5244 /*
5245  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5246  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5247  */
5248 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5249 					       char __user *optval, int __user *optlen)
5250 {
5251 	int val;
5252 
5253 	if (len < sizeof(int))
5254 		return -EINVAL;
5255 
5256 	len = sizeof(int);
5257 
5258 	val = sctp_sk(sk)->frag_interleave;
5259 	if (put_user(len, optlen))
5260 		return -EFAULT;
5261 	if (copy_to_user(optval, &val, len))
5262 		return -EFAULT;
5263 
5264 	return 0;
5265 }
5266 
5267 /*
5268  * 7.1.25.  Set or Get the sctp partial delivery point
5269  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5270  */
5271 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5272 						  char __user *optval,
5273 						  int __user *optlen)
5274 {
5275 	u32 val;
5276 
5277 	if (len < sizeof(u32))
5278 		return -EINVAL;
5279 
5280 	len = sizeof(u32);
5281 
5282 	val = sctp_sk(sk)->pd_point;
5283 	if (put_user(len, optlen))
5284 		return -EFAULT;
5285 	if (copy_to_user(optval, &val, len))
5286 		return -EFAULT;
5287 
5288 	return 0;
5289 }
5290 
5291 /*
5292  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5293  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5294  */
5295 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5296 				    char __user *optval,
5297 				    int __user *optlen)
5298 {
5299 	struct sctp_assoc_value params;
5300 	struct sctp_sock *sp;
5301 	struct sctp_association *asoc;
5302 
5303 	if (len == sizeof(int)) {
5304 		pr_warn("Use of int in max_burst socket option deprecated\n");
5305 		pr_warn("Use struct sctp_assoc_value instead\n");
5306 		params.assoc_id = 0;
5307 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5308 		len = sizeof(struct sctp_assoc_value);
5309 		if (copy_from_user(&params, optval, len))
5310 			return -EFAULT;
5311 	} else
5312 		return -EINVAL;
5313 
5314 	sp = sctp_sk(sk);
5315 
5316 	if (params.assoc_id != 0) {
5317 		asoc = sctp_id2assoc(sk, params.assoc_id);
5318 		if (!asoc)
5319 			return -EINVAL;
5320 		params.assoc_value = asoc->max_burst;
5321 	} else
5322 		params.assoc_value = sp->max_burst;
5323 
5324 	if (len == sizeof(int)) {
5325 		if (copy_to_user(optval, &params.assoc_value, len))
5326 			return -EFAULT;
5327 	} else {
5328 		if (copy_to_user(optval, &params, len))
5329 			return -EFAULT;
5330 	}
5331 
5332 	return 0;
5333 
5334 }
5335 
5336 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5337 				    char __user *optval, int __user *optlen)
5338 {
5339 	struct net *net = sock_net(sk);
5340 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5341 	struct sctp_hmac_algo_param *hmacs;
5342 	__u16 data_len = 0;
5343 	u32 num_idents;
5344 
5345 	if (!net->sctp.auth_enable)
5346 		return -EACCES;
5347 
5348 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5349 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5350 
5351 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5352 		return -EINVAL;
5353 
5354 	len = sizeof(struct sctp_hmacalgo) + data_len;
5355 	num_idents = data_len / sizeof(u16);
5356 
5357 	if (put_user(len, optlen))
5358 		return -EFAULT;
5359 	if (put_user(num_idents, &p->shmac_num_idents))
5360 		return -EFAULT;
5361 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5362 		return -EFAULT;
5363 	return 0;
5364 }
5365 
5366 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5367 				    char __user *optval, int __user *optlen)
5368 {
5369 	struct net *net = sock_net(sk);
5370 	struct sctp_authkeyid val;
5371 	struct sctp_association *asoc;
5372 
5373 	if (!net->sctp.auth_enable)
5374 		return -EACCES;
5375 
5376 	if (len < sizeof(struct sctp_authkeyid))
5377 		return -EINVAL;
5378 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5379 		return -EFAULT;
5380 
5381 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5382 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5383 		return -EINVAL;
5384 
5385 	if (asoc)
5386 		val.scact_keynumber = asoc->active_key_id;
5387 	else
5388 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5389 
5390 	len = sizeof(struct sctp_authkeyid);
5391 	if (put_user(len, optlen))
5392 		return -EFAULT;
5393 	if (copy_to_user(optval, &val, len))
5394 		return -EFAULT;
5395 
5396 	return 0;
5397 }
5398 
5399 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5400 				    char __user *optval, int __user *optlen)
5401 {
5402 	struct net *net = sock_net(sk);
5403 	struct sctp_authchunks __user *p = (void __user *)optval;
5404 	struct sctp_authchunks val;
5405 	struct sctp_association *asoc;
5406 	struct sctp_chunks_param *ch;
5407 	u32    num_chunks = 0;
5408 	char __user *to;
5409 
5410 	if (!net->sctp.auth_enable)
5411 		return -EACCES;
5412 
5413 	if (len < sizeof(struct sctp_authchunks))
5414 		return -EINVAL;
5415 
5416 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5417 		return -EFAULT;
5418 
5419 	to = p->gauth_chunks;
5420 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5421 	if (!asoc)
5422 		return -EINVAL;
5423 
5424 	ch = asoc->peer.peer_chunks;
5425 	if (!ch)
5426 		goto num;
5427 
5428 	/* See if the user provided enough room for all the data */
5429 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5430 	if (len < num_chunks)
5431 		return -EINVAL;
5432 
5433 	if (copy_to_user(to, ch->chunks, num_chunks))
5434 		return -EFAULT;
5435 num:
5436 	len = sizeof(struct sctp_authchunks) + num_chunks;
5437 	if (put_user(len, optlen)) return -EFAULT;
5438 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5439 		return -EFAULT;
5440 	return 0;
5441 }
5442 
5443 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5444 				    char __user *optval, int __user *optlen)
5445 {
5446 	struct net *net = sock_net(sk);
5447 	struct sctp_authchunks __user *p = (void __user *)optval;
5448 	struct sctp_authchunks val;
5449 	struct sctp_association *asoc;
5450 	struct sctp_chunks_param *ch;
5451 	u32    num_chunks = 0;
5452 	char __user *to;
5453 
5454 	if (!net->sctp.auth_enable)
5455 		return -EACCES;
5456 
5457 	if (len < sizeof(struct sctp_authchunks))
5458 		return -EINVAL;
5459 
5460 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5461 		return -EFAULT;
5462 
5463 	to = p->gauth_chunks;
5464 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5465 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5466 		return -EINVAL;
5467 
5468 	if (asoc)
5469 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5470 	else
5471 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5472 
5473 	if (!ch)
5474 		goto num;
5475 
5476 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5477 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5478 		return -EINVAL;
5479 
5480 	if (copy_to_user(to, ch->chunks, num_chunks))
5481 		return -EFAULT;
5482 num:
5483 	len = sizeof(struct sctp_authchunks) + num_chunks;
5484 	if (put_user(len, optlen))
5485 		return -EFAULT;
5486 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5487 		return -EFAULT;
5488 
5489 	return 0;
5490 }
5491 
5492 /*
5493  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5494  * This option gets the current number of associations that are attached
5495  * to a one-to-many style socket.  The option value is an uint32_t.
5496  */
5497 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5498 				    char __user *optval, int __user *optlen)
5499 {
5500 	struct sctp_sock *sp = sctp_sk(sk);
5501 	struct sctp_association *asoc;
5502 	u32 val = 0;
5503 
5504 	if (sctp_style(sk, TCP))
5505 		return -EOPNOTSUPP;
5506 
5507 	if (len < sizeof(u32))
5508 		return -EINVAL;
5509 
5510 	len = sizeof(u32);
5511 
5512 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5513 		val++;
5514 	}
5515 
5516 	if (put_user(len, optlen))
5517 		return -EFAULT;
5518 	if (copy_to_user(optval, &val, len))
5519 		return -EFAULT;
5520 
5521 	return 0;
5522 }
5523 
5524 /*
5525  * 8.1.23 SCTP_AUTO_ASCONF
5526  * See the corresponding setsockopt entry as description
5527  */
5528 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5529 				   char __user *optval, int __user *optlen)
5530 {
5531 	int val = 0;
5532 
5533 	if (len < sizeof(int))
5534 		return -EINVAL;
5535 
5536 	len = sizeof(int);
5537 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5538 		val = 1;
5539 	if (put_user(len, optlen))
5540 		return -EFAULT;
5541 	if (copy_to_user(optval, &val, len))
5542 		return -EFAULT;
5543 	return 0;
5544 }
5545 
5546 /*
5547  * 8.2.6. Get the Current Identifiers of Associations
5548  *        (SCTP_GET_ASSOC_ID_LIST)
5549  *
5550  * This option gets the current list of SCTP association identifiers of
5551  * the SCTP associations handled by a one-to-many style socket.
5552  */
5553 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5554 				    char __user *optval, int __user *optlen)
5555 {
5556 	struct sctp_sock *sp = sctp_sk(sk);
5557 	struct sctp_association *asoc;
5558 	struct sctp_assoc_ids *ids;
5559 	u32 num = 0;
5560 
5561 	if (sctp_style(sk, TCP))
5562 		return -EOPNOTSUPP;
5563 
5564 	if (len < sizeof(struct sctp_assoc_ids))
5565 		return -EINVAL;
5566 
5567 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5568 		num++;
5569 	}
5570 
5571 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5572 		return -EINVAL;
5573 
5574 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5575 
5576 	ids = kmalloc(len, GFP_KERNEL);
5577 	if (unlikely(!ids))
5578 		return -ENOMEM;
5579 
5580 	ids->gaids_number_of_ids = num;
5581 	num = 0;
5582 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5583 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5584 	}
5585 
5586 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5587 		kfree(ids);
5588 		return -EFAULT;
5589 	}
5590 
5591 	kfree(ids);
5592 	return 0;
5593 }
5594 
5595 /*
5596  * SCTP_PEER_ADDR_THLDS
5597  *
5598  * This option allows us to fetch the partially failed threshold for one or all
5599  * transports in an association.  See Section 6.1 of:
5600  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5601  */
5602 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5603 					    char __user *optval,
5604 					    int len,
5605 					    int __user *optlen)
5606 {
5607 	struct sctp_paddrthlds val;
5608 	struct sctp_transport *trans;
5609 	struct sctp_association *asoc;
5610 
5611 	if (len < sizeof(struct sctp_paddrthlds))
5612 		return -EINVAL;
5613 	len = sizeof(struct sctp_paddrthlds);
5614 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5615 		return -EFAULT;
5616 
5617 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5618 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5619 		if (!asoc)
5620 			return -ENOENT;
5621 
5622 		val.spt_pathpfthld = asoc->pf_retrans;
5623 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5624 	} else {
5625 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5626 					       val.spt_assoc_id);
5627 		if (!trans)
5628 			return -ENOENT;
5629 
5630 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5631 		val.spt_pathpfthld = trans->pf_retrans;
5632 	}
5633 
5634 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5635 		return -EFAULT;
5636 
5637 	return 0;
5638 }
5639 
5640 /*
5641  * SCTP_GET_ASSOC_STATS
5642  *
5643  * This option retrieves local per endpoint statistics. It is modeled
5644  * after OpenSolaris' implementation
5645  */
5646 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5647 				       char __user *optval,
5648 				       int __user *optlen)
5649 {
5650 	struct sctp_assoc_stats sas;
5651 	struct sctp_association *asoc = NULL;
5652 
5653 	/* User must provide at least the assoc id */
5654 	if (len < sizeof(sctp_assoc_t))
5655 		return -EINVAL;
5656 
5657 	/* Allow the struct to grow and fill in as much as possible */
5658 	len = min_t(size_t, len, sizeof(sas));
5659 
5660 	if (copy_from_user(&sas, optval, len))
5661 		return -EFAULT;
5662 
5663 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5664 	if (!asoc)
5665 		return -EINVAL;
5666 
5667 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5668 	sas.sas_gapcnt = asoc->stats.gapcnt;
5669 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5670 	sas.sas_osacks = asoc->stats.osacks;
5671 	sas.sas_isacks = asoc->stats.isacks;
5672 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5673 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5674 	sas.sas_oodchunks = asoc->stats.oodchunks;
5675 	sas.sas_iodchunks = asoc->stats.iodchunks;
5676 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5677 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5678 	sas.sas_idupchunks = asoc->stats.idupchunks;
5679 	sas.sas_opackets = asoc->stats.opackets;
5680 	sas.sas_ipackets = asoc->stats.ipackets;
5681 
5682 	/* New high max rto observed, will return 0 if not a single
5683 	 * RTO update took place. obs_rto_ipaddr will be bogus
5684 	 * in such a case
5685 	 */
5686 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5687 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5688 		sizeof(struct sockaddr_storage));
5689 
5690 	/* Mark beginning of a new observation period */
5691 	asoc->stats.max_obs_rto = asoc->rto_min;
5692 
5693 	if (put_user(len, optlen))
5694 		return -EFAULT;
5695 
5696 	SCTP_DEBUG_PRINTK("sctp_getsockopt_assoc_stat(%d): %d\n",
5697 			  len, sas.sas_assoc_id);
5698 
5699 	if (copy_to_user(optval, &sas, len))
5700 		return -EFAULT;
5701 
5702 	return 0;
5703 }
5704 
5705 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5706 				char __user *optval, int __user *optlen)
5707 {
5708 	int retval = 0;
5709 	int len;
5710 
5711 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5712 			  sk, optname);
5713 
5714 	/* I can hardly begin to describe how wrong this is.  This is
5715 	 * so broken as to be worse than useless.  The API draft
5716 	 * REALLY is NOT helpful here...  I am not convinced that the
5717 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5718 	 * are at all well-founded.
5719 	 */
5720 	if (level != SOL_SCTP) {
5721 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5722 
5723 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5724 		return retval;
5725 	}
5726 
5727 	if (get_user(len, optlen))
5728 		return -EFAULT;
5729 
5730 	sctp_lock_sock(sk);
5731 
5732 	switch (optname) {
5733 	case SCTP_STATUS:
5734 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5735 		break;
5736 	case SCTP_DISABLE_FRAGMENTS:
5737 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5738 							   optlen);
5739 		break;
5740 	case SCTP_EVENTS:
5741 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5742 		break;
5743 	case SCTP_AUTOCLOSE:
5744 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5745 		break;
5746 	case SCTP_SOCKOPT_PEELOFF:
5747 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5748 		break;
5749 	case SCTP_PEER_ADDR_PARAMS:
5750 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5751 							  optlen);
5752 		break;
5753 	case SCTP_DELAYED_SACK:
5754 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5755 							  optlen);
5756 		break;
5757 	case SCTP_INITMSG:
5758 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5759 		break;
5760 	case SCTP_GET_PEER_ADDRS:
5761 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5762 						    optlen);
5763 		break;
5764 	case SCTP_GET_LOCAL_ADDRS:
5765 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5766 						     optlen);
5767 		break;
5768 	case SCTP_SOCKOPT_CONNECTX3:
5769 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5770 		break;
5771 	case SCTP_DEFAULT_SEND_PARAM:
5772 		retval = sctp_getsockopt_default_send_param(sk, len,
5773 							    optval, optlen);
5774 		break;
5775 	case SCTP_PRIMARY_ADDR:
5776 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5777 		break;
5778 	case SCTP_NODELAY:
5779 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5780 		break;
5781 	case SCTP_RTOINFO:
5782 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5783 		break;
5784 	case SCTP_ASSOCINFO:
5785 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5786 		break;
5787 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5788 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5789 		break;
5790 	case SCTP_MAXSEG:
5791 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5792 		break;
5793 	case SCTP_GET_PEER_ADDR_INFO:
5794 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5795 							optlen);
5796 		break;
5797 	case SCTP_ADAPTATION_LAYER:
5798 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5799 							optlen);
5800 		break;
5801 	case SCTP_CONTEXT:
5802 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5803 		break;
5804 	case SCTP_FRAGMENT_INTERLEAVE:
5805 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5806 							     optlen);
5807 		break;
5808 	case SCTP_PARTIAL_DELIVERY_POINT:
5809 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5810 								optlen);
5811 		break;
5812 	case SCTP_MAX_BURST:
5813 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5814 		break;
5815 	case SCTP_AUTH_KEY:
5816 	case SCTP_AUTH_CHUNK:
5817 	case SCTP_AUTH_DELETE_KEY:
5818 		retval = -EOPNOTSUPP;
5819 		break;
5820 	case SCTP_HMAC_IDENT:
5821 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5822 		break;
5823 	case SCTP_AUTH_ACTIVE_KEY:
5824 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5825 		break;
5826 	case SCTP_PEER_AUTH_CHUNKS:
5827 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5828 							optlen);
5829 		break;
5830 	case SCTP_LOCAL_AUTH_CHUNKS:
5831 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5832 							optlen);
5833 		break;
5834 	case SCTP_GET_ASSOC_NUMBER:
5835 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5836 		break;
5837 	case SCTP_GET_ASSOC_ID_LIST:
5838 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5839 		break;
5840 	case SCTP_AUTO_ASCONF:
5841 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5842 		break;
5843 	case SCTP_PEER_ADDR_THLDS:
5844 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5845 		break;
5846 	case SCTP_GET_ASSOC_STATS:
5847 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5848 		break;
5849 	default:
5850 		retval = -ENOPROTOOPT;
5851 		break;
5852 	}
5853 
5854 	sctp_release_sock(sk);
5855 	return retval;
5856 }
5857 
5858 static void sctp_hash(struct sock *sk)
5859 {
5860 	/* STUB */
5861 }
5862 
5863 static void sctp_unhash(struct sock *sk)
5864 {
5865 	/* STUB */
5866 }
5867 
5868 /* Check if port is acceptable.  Possibly find first available port.
5869  *
5870  * The port hash table (contained in the 'global' SCTP protocol storage
5871  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5872  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5873  * list (the list number is the port number hashed out, so as you
5874  * would expect from a hash function, all the ports in a given list have
5875  * such a number that hashes out to the same list number; you were
5876  * expecting that, right?); so each list has a set of ports, with a
5877  * link to the socket (struct sock) that uses it, the port number and
5878  * a fastreuse flag (FIXME: NPI ipg).
5879  */
5880 static struct sctp_bind_bucket *sctp_bucket_create(
5881 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5882 
5883 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5884 {
5885 	struct sctp_bind_hashbucket *head; /* hash list */
5886 	struct sctp_bind_bucket *pp;
5887 	unsigned short snum;
5888 	int ret;
5889 
5890 	snum = ntohs(addr->v4.sin_port);
5891 
5892 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5893 	sctp_local_bh_disable();
5894 
5895 	if (snum == 0) {
5896 		/* Search for an available port. */
5897 		int low, high, remaining, index;
5898 		unsigned int rover;
5899 
5900 		inet_get_local_port_range(&low, &high);
5901 		remaining = (high - low) + 1;
5902 		rover = net_random() % remaining + low;
5903 
5904 		do {
5905 			rover++;
5906 			if ((rover < low) || (rover > high))
5907 				rover = low;
5908 			if (inet_is_reserved_local_port(rover))
5909 				continue;
5910 			index = sctp_phashfn(sock_net(sk), rover);
5911 			head = &sctp_port_hashtable[index];
5912 			sctp_spin_lock(&head->lock);
5913 			sctp_for_each_hentry(pp, &head->chain)
5914 				if ((pp->port == rover) &&
5915 				    net_eq(sock_net(sk), pp->net))
5916 					goto next;
5917 			break;
5918 		next:
5919 			sctp_spin_unlock(&head->lock);
5920 		} while (--remaining > 0);
5921 
5922 		/* Exhausted local port range during search? */
5923 		ret = 1;
5924 		if (remaining <= 0)
5925 			goto fail;
5926 
5927 		/* OK, here is the one we will use.  HEAD (the port
5928 		 * hash table list entry) is non-NULL and we hold it's
5929 		 * mutex.
5930 		 */
5931 		snum = rover;
5932 	} else {
5933 		/* We are given an specific port number; we verify
5934 		 * that it is not being used. If it is used, we will
5935 		 * exahust the search in the hash list corresponding
5936 		 * to the port number (snum) - we detect that with the
5937 		 * port iterator, pp being NULL.
5938 		 */
5939 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5940 		sctp_spin_lock(&head->lock);
5941 		sctp_for_each_hentry(pp, &head->chain) {
5942 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5943 				goto pp_found;
5944 		}
5945 	}
5946 	pp = NULL;
5947 	goto pp_not_found;
5948 pp_found:
5949 	if (!hlist_empty(&pp->owner)) {
5950 		/* We had a port hash table hit - there is an
5951 		 * available port (pp != NULL) and it is being
5952 		 * used by other socket (pp->owner not empty); that other
5953 		 * socket is going to be sk2.
5954 		 */
5955 		int reuse = sk->sk_reuse;
5956 		struct sock *sk2;
5957 
5958 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5959 		if (pp->fastreuse && sk->sk_reuse &&
5960 			sk->sk_state != SCTP_SS_LISTENING)
5961 			goto success;
5962 
5963 		/* Run through the list of sockets bound to the port
5964 		 * (pp->port) [via the pointers bind_next and
5965 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5966 		 * we get the endpoint they describe and run through
5967 		 * the endpoint's list of IP (v4 or v6) addresses,
5968 		 * comparing each of the addresses with the address of
5969 		 * the socket sk. If we find a match, then that means
5970 		 * that this port/socket (sk) combination are already
5971 		 * in an endpoint.
5972 		 */
5973 		sk_for_each_bound(sk2, &pp->owner) {
5974 			struct sctp_endpoint *ep2;
5975 			ep2 = sctp_sk(sk2)->ep;
5976 
5977 			if (sk == sk2 ||
5978 			    (reuse && sk2->sk_reuse &&
5979 			     sk2->sk_state != SCTP_SS_LISTENING))
5980 				continue;
5981 
5982 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5983 						 sctp_sk(sk2), sctp_sk(sk))) {
5984 				ret = (long)sk2;
5985 				goto fail_unlock;
5986 			}
5987 		}
5988 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5989 	}
5990 pp_not_found:
5991 	/* If there was a hash table miss, create a new port.  */
5992 	ret = 1;
5993 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
5994 		goto fail_unlock;
5995 
5996 	/* In either case (hit or miss), make sure fastreuse is 1 only
5997 	 * if sk->sk_reuse is too (that is, if the caller requested
5998 	 * SO_REUSEADDR on this socket -sk-).
5999 	 */
6000 	if (hlist_empty(&pp->owner)) {
6001 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6002 			pp->fastreuse = 1;
6003 		else
6004 			pp->fastreuse = 0;
6005 	} else if (pp->fastreuse &&
6006 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6007 		pp->fastreuse = 0;
6008 
6009 	/* We are set, so fill up all the data in the hash table
6010 	 * entry, tie the socket list information with the rest of the
6011 	 * sockets FIXME: Blurry, NPI (ipg).
6012 	 */
6013 success:
6014 	if (!sctp_sk(sk)->bind_hash) {
6015 		inet_sk(sk)->inet_num = snum;
6016 		sk_add_bind_node(sk, &pp->owner);
6017 		sctp_sk(sk)->bind_hash = pp;
6018 	}
6019 	ret = 0;
6020 
6021 fail_unlock:
6022 	sctp_spin_unlock(&head->lock);
6023 
6024 fail:
6025 	sctp_local_bh_enable();
6026 	return ret;
6027 }
6028 
6029 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6030  * port is requested.
6031  */
6032 static int sctp_get_port(struct sock *sk, unsigned short snum)
6033 {
6034 	long ret;
6035 	union sctp_addr addr;
6036 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6037 
6038 	/* Set up a dummy address struct from the sk. */
6039 	af->from_sk(&addr, sk);
6040 	addr.v4.sin_port = htons(snum);
6041 
6042 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6043 	ret = sctp_get_port_local(sk, &addr);
6044 
6045 	return ret ? 1 : 0;
6046 }
6047 
6048 /*
6049  *  Move a socket to LISTENING state.
6050  */
6051 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
6052 {
6053 	struct sctp_sock *sp = sctp_sk(sk);
6054 	struct sctp_endpoint *ep = sp->ep;
6055 	struct crypto_hash *tfm = NULL;
6056 	char alg[32];
6057 
6058 	/* Allocate HMAC for generating cookie. */
6059 	if (!sp->hmac && sp->sctp_hmac_alg) {
6060 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6061 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6062 		if (IS_ERR(tfm)) {
6063 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6064 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6065 			return -ENOSYS;
6066 		}
6067 		sctp_sk(sk)->hmac = tfm;
6068 	}
6069 
6070 	/*
6071 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6072 	 * call that allows new associations to be accepted, the system
6073 	 * picks an ephemeral port and will choose an address set equivalent
6074 	 * to binding with a wildcard address.
6075 	 *
6076 	 * This is not currently spelled out in the SCTP sockets
6077 	 * extensions draft, but follows the practice as seen in TCP
6078 	 * sockets.
6079 	 *
6080 	 */
6081 	sk->sk_state = SCTP_SS_LISTENING;
6082 	if (!ep->base.bind_addr.port) {
6083 		if (sctp_autobind(sk))
6084 			return -EAGAIN;
6085 	} else {
6086 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6087 			sk->sk_state = SCTP_SS_CLOSED;
6088 			return -EADDRINUSE;
6089 		}
6090 	}
6091 
6092 	sk->sk_max_ack_backlog = backlog;
6093 	sctp_hash_endpoint(ep);
6094 	return 0;
6095 }
6096 
6097 /*
6098  * 4.1.3 / 5.1.3 listen()
6099  *
6100  *   By default, new associations are not accepted for UDP style sockets.
6101  *   An application uses listen() to mark a socket as being able to
6102  *   accept new associations.
6103  *
6104  *   On TCP style sockets, applications use listen() to ready the SCTP
6105  *   endpoint for accepting inbound associations.
6106  *
6107  *   On both types of endpoints a backlog of '0' disables listening.
6108  *
6109  *  Move a socket to LISTENING state.
6110  */
6111 int sctp_inet_listen(struct socket *sock, int backlog)
6112 {
6113 	struct sock *sk = sock->sk;
6114 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6115 	int err = -EINVAL;
6116 
6117 	if (unlikely(backlog < 0))
6118 		return err;
6119 
6120 	sctp_lock_sock(sk);
6121 
6122 	/* Peeled-off sockets are not allowed to listen().  */
6123 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6124 		goto out;
6125 
6126 	if (sock->state != SS_UNCONNECTED)
6127 		goto out;
6128 
6129 	/* If backlog is zero, disable listening. */
6130 	if (!backlog) {
6131 		if (sctp_sstate(sk, CLOSED))
6132 			goto out;
6133 
6134 		err = 0;
6135 		sctp_unhash_endpoint(ep);
6136 		sk->sk_state = SCTP_SS_CLOSED;
6137 		if (sk->sk_reuse)
6138 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6139 		goto out;
6140 	}
6141 
6142 	/* If we are already listening, just update the backlog */
6143 	if (sctp_sstate(sk, LISTENING))
6144 		sk->sk_max_ack_backlog = backlog;
6145 	else {
6146 		err = sctp_listen_start(sk, backlog);
6147 		if (err)
6148 			goto out;
6149 	}
6150 
6151 	err = 0;
6152 out:
6153 	sctp_release_sock(sk);
6154 	return err;
6155 }
6156 
6157 /*
6158  * This function is done by modeling the current datagram_poll() and the
6159  * tcp_poll().  Note that, based on these implementations, we don't
6160  * lock the socket in this function, even though it seems that,
6161  * ideally, locking or some other mechanisms can be used to ensure
6162  * the integrity of the counters (sndbuf and wmem_alloc) used
6163  * in this place.  We assume that we don't need locks either until proven
6164  * otherwise.
6165  *
6166  * Another thing to note is that we include the Async I/O support
6167  * here, again, by modeling the current TCP/UDP code.  We don't have
6168  * a good way to test with it yet.
6169  */
6170 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6171 {
6172 	struct sock *sk = sock->sk;
6173 	struct sctp_sock *sp = sctp_sk(sk);
6174 	unsigned int mask;
6175 
6176 	poll_wait(file, sk_sleep(sk), wait);
6177 
6178 	/* A TCP-style listening socket becomes readable when the accept queue
6179 	 * is not empty.
6180 	 */
6181 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6182 		return (!list_empty(&sp->ep->asocs)) ?
6183 			(POLLIN | POLLRDNORM) : 0;
6184 
6185 	mask = 0;
6186 
6187 	/* Is there any exceptional events?  */
6188 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6189 		mask |= POLLERR |
6190 			sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0;
6191 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6192 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6193 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6194 		mask |= POLLHUP;
6195 
6196 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6197 	if (!skb_queue_empty(&sk->sk_receive_queue))
6198 		mask |= POLLIN | POLLRDNORM;
6199 
6200 	/* The association is either gone or not ready.  */
6201 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6202 		return mask;
6203 
6204 	/* Is it writable?  */
6205 	if (sctp_writeable(sk)) {
6206 		mask |= POLLOUT | POLLWRNORM;
6207 	} else {
6208 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6209 		/*
6210 		 * Since the socket is not locked, the buffer
6211 		 * might be made available after the writeable check and
6212 		 * before the bit is set.  This could cause a lost I/O
6213 		 * signal.  tcp_poll() has a race breaker for this race
6214 		 * condition.  Based on their implementation, we put
6215 		 * in the following code to cover it as well.
6216 		 */
6217 		if (sctp_writeable(sk))
6218 			mask |= POLLOUT | POLLWRNORM;
6219 	}
6220 	return mask;
6221 }
6222 
6223 /********************************************************************
6224  * 2nd Level Abstractions
6225  ********************************************************************/
6226 
6227 static struct sctp_bind_bucket *sctp_bucket_create(
6228 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6229 {
6230 	struct sctp_bind_bucket *pp;
6231 
6232 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6233 	if (pp) {
6234 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6235 		pp->port = snum;
6236 		pp->fastreuse = 0;
6237 		INIT_HLIST_HEAD(&pp->owner);
6238 		pp->net = net;
6239 		hlist_add_head(&pp->node, &head->chain);
6240 	}
6241 	return pp;
6242 }
6243 
6244 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6245 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6246 {
6247 	if (pp && hlist_empty(&pp->owner)) {
6248 		__hlist_del(&pp->node);
6249 		kmem_cache_free(sctp_bucket_cachep, pp);
6250 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6251 	}
6252 }
6253 
6254 /* Release this socket's reference to a local port.  */
6255 static inline void __sctp_put_port(struct sock *sk)
6256 {
6257 	struct sctp_bind_hashbucket *head =
6258 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6259 						  inet_sk(sk)->inet_num)];
6260 	struct sctp_bind_bucket *pp;
6261 
6262 	sctp_spin_lock(&head->lock);
6263 	pp = sctp_sk(sk)->bind_hash;
6264 	__sk_del_bind_node(sk);
6265 	sctp_sk(sk)->bind_hash = NULL;
6266 	inet_sk(sk)->inet_num = 0;
6267 	sctp_bucket_destroy(pp);
6268 	sctp_spin_unlock(&head->lock);
6269 }
6270 
6271 void sctp_put_port(struct sock *sk)
6272 {
6273 	sctp_local_bh_disable();
6274 	__sctp_put_port(sk);
6275 	sctp_local_bh_enable();
6276 }
6277 
6278 /*
6279  * The system picks an ephemeral port and choose an address set equivalent
6280  * to binding with a wildcard address.
6281  * One of those addresses will be the primary address for the association.
6282  * This automatically enables the multihoming capability of SCTP.
6283  */
6284 static int sctp_autobind(struct sock *sk)
6285 {
6286 	union sctp_addr autoaddr;
6287 	struct sctp_af *af;
6288 	__be16 port;
6289 
6290 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6291 	af = sctp_sk(sk)->pf->af;
6292 
6293 	port = htons(inet_sk(sk)->inet_num);
6294 	af->inaddr_any(&autoaddr, port);
6295 
6296 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6297 }
6298 
6299 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6300  *
6301  * From RFC 2292
6302  * 4.2 The cmsghdr Structure *
6303  *
6304  * When ancillary data is sent or received, any number of ancillary data
6305  * objects can be specified by the msg_control and msg_controllen members of
6306  * the msghdr structure, because each object is preceded by
6307  * a cmsghdr structure defining the object's length (the cmsg_len member).
6308  * Historically Berkeley-derived implementations have passed only one object
6309  * at a time, but this API allows multiple objects to be
6310  * passed in a single call to sendmsg() or recvmsg(). The following example
6311  * shows two ancillary data objects in a control buffer.
6312  *
6313  *   |<--------------------------- msg_controllen -------------------------->|
6314  *   |                                                                       |
6315  *
6316  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6317  *
6318  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6319  *   |                                   |                                   |
6320  *
6321  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6322  *
6323  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6324  *   |                                |  |                                |  |
6325  *
6326  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6327  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6328  *
6329  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6330  *
6331  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6332  *    ^
6333  *    |
6334  *
6335  * msg_control
6336  * points here
6337  */
6338 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6339 				  sctp_cmsgs_t *cmsgs)
6340 {
6341 	struct cmsghdr *cmsg;
6342 	struct msghdr *my_msg = (struct msghdr *)msg;
6343 
6344 	for (cmsg = CMSG_FIRSTHDR(msg);
6345 	     cmsg != NULL;
6346 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6347 		if (!CMSG_OK(my_msg, cmsg))
6348 			return -EINVAL;
6349 
6350 		/* Should we parse this header or ignore?  */
6351 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6352 			continue;
6353 
6354 		/* Strictly check lengths following example in SCM code.  */
6355 		switch (cmsg->cmsg_type) {
6356 		case SCTP_INIT:
6357 			/* SCTP Socket API Extension
6358 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6359 			 *
6360 			 * This cmsghdr structure provides information for
6361 			 * initializing new SCTP associations with sendmsg().
6362 			 * The SCTP_INITMSG socket option uses this same data
6363 			 * structure.  This structure is not used for
6364 			 * recvmsg().
6365 			 *
6366 			 * cmsg_level    cmsg_type      cmsg_data[]
6367 			 * ------------  ------------   ----------------------
6368 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6369 			 */
6370 			if (cmsg->cmsg_len !=
6371 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6372 				return -EINVAL;
6373 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6374 			break;
6375 
6376 		case SCTP_SNDRCV:
6377 			/* SCTP Socket API Extension
6378 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6379 			 *
6380 			 * This cmsghdr structure specifies SCTP options for
6381 			 * sendmsg() and describes SCTP header information
6382 			 * about a received message through recvmsg().
6383 			 *
6384 			 * cmsg_level    cmsg_type      cmsg_data[]
6385 			 * ------------  ------------   ----------------------
6386 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6387 			 */
6388 			if (cmsg->cmsg_len !=
6389 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6390 				return -EINVAL;
6391 
6392 			cmsgs->info =
6393 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6394 
6395 			/* Minimally, validate the sinfo_flags. */
6396 			if (cmsgs->info->sinfo_flags &
6397 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6398 			      SCTP_ABORT | SCTP_EOF))
6399 				return -EINVAL;
6400 			break;
6401 
6402 		default:
6403 			return -EINVAL;
6404 		}
6405 	}
6406 	return 0;
6407 }
6408 
6409 /*
6410  * Wait for a packet..
6411  * Note: This function is the same function as in core/datagram.c
6412  * with a few modifications to make lksctp work.
6413  */
6414 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6415 {
6416 	int error;
6417 	DEFINE_WAIT(wait);
6418 
6419 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6420 
6421 	/* Socket errors? */
6422 	error = sock_error(sk);
6423 	if (error)
6424 		goto out;
6425 
6426 	if (!skb_queue_empty(&sk->sk_receive_queue))
6427 		goto ready;
6428 
6429 	/* Socket shut down?  */
6430 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6431 		goto out;
6432 
6433 	/* Sequenced packets can come disconnected.  If so we report the
6434 	 * problem.
6435 	 */
6436 	error = -ENOTCONN;
6437 
6438 	/* Is there a good reason to think that we may receive some data?  */
6439 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6440 		goto out;
6441 
6442 	/* Handle signals.  */
6443 	if (signal_pending(current))
6444 		goto interrupted;
6445 
6446 	/* Let another process have a go.  Since we are going to sleep
6447 	 * anyway.  Note: This may cause odd behaviors if the message
6448 	 * does not fit in the user's buffer, but this seems to be the
6449 	 * only way to honor MSG_DONTWAIT realistically.
6450 	 */
6451 	sctp_release_sock(sk);
6452 	*timeo_p = schedule_timeout(*timeo_p);
6453 	sctp_lock_sock(sk);
6454 
6455 ready:
6456 	finish_wait(sk_sleep(sk), &wait);
6457 	return 0;
6458 
6459 interrupted:
6460 	error = sock_intr_errno(*timeo_p);
6461 
6462 out:
6463 	finish_wait(sk_sleep(sk), &wait);
6464 	*err = error;
6465 	return error;
6466 }
6467 
6468 /* Receive a datagram.
6469  * Note: This is pretty much the same routine as in core/datagram.c
6470  * with a few changes to make lksctp work.
6471  */
6472 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6473 					      int noblock, int *err)
6474 {
6475 	int error;
6476 	struct sk_buff *skb;
6477 	long timeo;
6478 
6479 	timeo = sock_rcvtimeo(sk, noblock);
6480 
6481 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6482 			  timeo, MAX_SCHEDULE_TIMEOUT);
6483 
6484 	do {
6485 		/* Again only user level code calls this function,
6486 		 * so nothing interrupt level
6487 		 * will suddenly eat the receive_queue.
6488 		 *
6489 		 *  Look at current nfs client by the way...
6490 		 *  However, this function was correct in any case. 8)
6491 		 */
6492 		if (flags & MSG_PEEK) {
6493 			spin_lock_bh(&sk->sk_receive_queue.lock);
6494 			skb = skb_peek(&sk->sk_receive_queue);
6495 			if (skb)
6496 				atomic_inc(&skb->users);
6497 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6498 		} else {
6499 			skb = skb_dequeue(&sk->sk_receive_queue);
6500 		}
6501 
6502 		if (skb)
6503 			return skb;
6504 
6505 		/* Caller is allowed not to check sk->sk_err before calling. */
6506 		error = sock_error(sk);
6507 		if (error)
6508 			goto no_packet;
6509 
6510 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6511 			break;
6512 
6513 		/* User doesn't want to wait.  */
6514 		error = -EAGAIN;
6515 		if (!timeo)
6516 			goto no_packet;
6517 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6518 
6519 	return NULL;
6520 
6521 no_packet:
6522 	*err = error;
6523 	return NULL;
6524 }
6525 
6526 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6527 static void __sctp_write_space(struct sctp_association *asoc)
6528 {
6529 	struct sock *sk = asoc->base.sk;
6530 	struct socket *sock = sk->sk_socket;
6531 
6532 	if ((sctp_wspace(asoc) > 0) && sock) {
6533 		if (waitqueue_active(&asoc->wait))
6534 			wake_up_interruptible(&asoc->wait);
6535 
6536 		if (sctp_writeable(sk)) {
6537 			wait_queue_head_t *wq = sk_sleep(sk);
6538 
6539 			if (wq && waitqueue_active(wq))
6540 				wake_up_interruptible(wq);
6541 
6542 			/* Note that we try to include the Async I/O support
6543 			 * here by modeling from the current TCP/UDP code.
6544 			 * We have not tested with it yet.
6545 			 */
6546 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6547 				sock_wake_async(sock,
6548 						SOCK_WAKE_SPACE, POLL_OUT);
6549 		}
6550 	}
6551 }
6552 
6553 /* Do accounting for the sndbuf space.
6554  * Decrement the used sndbuf space of the corresponding association by the
6555  * data size which was just transmitted(freed).
6556  */
6557 static void sctp_wfree(struct sk_buff *skb)
6558 {
6559 	struct sctp_association *asoc;
6560 	struct sctp_chunk *chunk;
6561 	struct sock *sk;
6562 
6563 	/* Get the saved chunk pointer.  */
6564 	chunk = *((struct sctp_chunk **)(skb->cb));
6565 	asoc = chunk->asoc;
6566 	sk = asoc->base.sk;
6567 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6568 				sizeof(struct sk_buff) +
6569 				sizeof(struct sctp_chunk);
6570 
6571 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6572 
6573 	/*
6574 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6575 	 */
6576 	sk->sk_wmem_queued   -= skb->truesize;
6577 	sk_mem_uncharge(sk, skb->truesize);
6578 
6579 	sock_wfree(skb);
6580 	__sctp_write_space(asoc);
6581 
6582 	sctp_association_put(asoc);
6583 }
6584 
6585 /* Do accounting for the receive space on the socket.
6586  * Accounting for the association is done in ulpevent.c
6587  * We set this as a destructor for the cloned data skbs so that
6588  * accounting is done at the correct time.
6589  */
6590 void sctp_sock_rfree(struct sk_buff *skb)
6591 {
6592 	struct sock *sk = skb->sk;
6593 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6594 
6595 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6596 
6597 	/*
6598 	 * Mimic the behavior of sock_rfree
6599 	 */
6600 	sk_mem_uncharge(sk, event->rmem_len);
6601 }
6602 
6603 
6604 /* Helper function to wait for space in the sndbuf.  */
6605 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6606 				size_t msg_len)
6607 {
6608 	struct sock *sk = asoc->base.sk;
6609 	int err = 0;
6610 	long current_timeo = *timeo_p;
6611 	DEFINE_WAIT(wait);
6612 
6613 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6614 			  asoc, (long)(*timeo_p), msg_len);
6615 
6616 	/* Increment the association's refcnt.  */
6617 	sctp_association_hold(asoc);
6618 
6619 	/* Wait on the association specific sndbuf space. */
6620 	for (;;) {
6621 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6622 					  TASK_INTERRUPTIBLE);
6623 		if (!*timeo_p)
6624 			goto do_nonblock;
6625 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6626 		    asoc->base.dead)
6627 			goto do_error;
6628 		if (signal_pending(current))
6629 			goto do_interrupted;
6630 		if (msg_len <= sctp_wspace(asoc))
6631 			break;
6632 
6633 		/* Let another process have a go.  Since we are going
6634 		 * to sleep anyway.
6635 		 */
6636 		sctp_release_sock(sk);
6637 		current_timeo = schedule_timeout(current_timeo);
6638 		BUG_ON(sk != asoc->base.sk);
6639 		sctp_lock_sock(sk);
6640 
6641 		*timeo_p = current_timeo;
6642 	}
6643 
6644 out:
6645 	finish_wait(&asoc->wait, &wait);
6646 
6647 	/* Release the association's refcnt.  */
6648 	sctp_association_put(asoc);
6649 
6650 	return err;
6651 
6652 do_error:
6653 	err = -EPIPE;
6654 	goto out;
6655 
6656 do_interrupted:
6657 	err = sock_intr_errno(*timeo_p);
6658 	goto out;
6659 
6660 do_nonblock:
6661 	err = -EAGAIN;
6662 	goto out;
6663 }
6664 
6665 void sctp_data_ready(struct sock *sk, int len)
6666 {
6667 	struct socket_wq *wq;
6668 
6669 	rcu_read_lock();
6670 	wq = rcu_dereference(sk->sk_wq);
6671 	if (wq_has_sleeper(wq))
6672 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6673 						POLLRDNORM | POLLRDBAND);
6674 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6675 	rcu_read_unlock();
6676 }
6677 
6678 /* If socket sndbuf has changed, wake up all per association waiters.  */
6679 void sctp_write_space(struct sock *sk)
6680 {
6681 	struct sctp_association *asoc;
6682 
6683 	/* Wake up the tasks in each wait queue.  */
6684 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6685 		__sctp_write_space(asoc);
6686 	}
6687 }
6688 
6689 /* Is there any sndbuf space available on the socket?
6690  *
6691  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6692  * associations on the same socket.  For a UDP-style socket with
6693  * multiple associations, it is possible for it to be "unwriteable"
6694  * prematurely.  I assume that this is acceptable because
6695  * a premature "unwriteable" is better than an accidental "writeable" which
6696  * would cause an unwanted block under certain circumstances.  For the 1-1
6697  * UDP-style sockets or TCP-style sockets, this code should work.
6698  *  - Daisy
6699  */
6700 static int sctp_writeable(struct sock *sk)
6701 {
6702 	int amt = 0;
6703 
6704 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6705 	if (amt < 0)
6706 		amt = 0;
6707 	return amt;
6708 }
6709 
6710 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6711  * returns immediately with EINPROGRESS.
6712  */
6713 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6714 {
6715 	struct sock *sk = asoc->base.sk;
6716 	int err = 0;
6717 	long current_timeo = *timeo_p;
6718 	DEFINE_WAIT(wait);
6719 
6720 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6721 			  (long)(*timeo_p));
6722 
6723 	/* Increment the association's refcnt.  */
6724 	sctp_association_hold(asoc);
6725 
6726 	for (;;) {
6727 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6728 					  TASK_INTERRUPTIBLE);
6729 		if (!*timeo_p)
6730 			goto do_nonblock;
6731 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6732 			break;
6733 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6734 		    asoc->base.dead)
6735 			goto do_error;
6736 		if (signal_pending(current))
6737 			goto do_interrupted;
6738 
6739 		if (sctp_state(asoc, ESTABLISHED))
6740 			break;
6741 
6742 		/* Let another process have a go.  Since we are going
6743 		 * to sleep anyway.
6744 		 */
6745 		sctp_release_sock(sk);
6746 		current_timeo = schedule_timeout(current_timeo);
6747 		sctp_lock_sock(sk);
6748 
6749 		*timeo_p = current_timeo;
6750 	}
6751 
6752 out:
6753 	finish_wait(&asoc->wait, &wait);
6754 
6755 	/* Release the association's refcnt.  */
6756 	sctp_association_put(asoc);
6757 
6758 	return err;
6759 
6760 do_error:
6761 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6762 		err = -ETIMEDOUT;
6763 	else
6764 		err = -ECONNREFUSED;
6765 	goto out;
6766 
6767 do_interrupted:
6768 	err = sock_intr_errno(*timeo_p);
6769 	goto out;
6770 
6771 do_nonblock:
6772 	err = -EINPROGRESS;
6773 	goto out;
6774 }
6775 
6776 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6777 {
6778 	struct sctp_endpoint *ep;
6779 	int err = 0;
6780 	DEFINE_WAIT(wait);
6781 
6782 	ep = sctp_sk(sk)->ep;
6783 
6784 
6785 	for (;;) {
6786 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6787 					  TASK_INTERRUPTIBLE);
6788 
6789 		if (list_empty(&ep->asocs)) {
6790 			sctp_release_sock(sk);
6791 			timeo = schedule_timeout(timeo);
6792 			sctp_lock_sock(sk);
6793 		}
6794 
6795 		err = -EINVAL;
6796 		if (!sctp_sstate(sk, LISTENING))
6797 			break;
6798 
6799 		err = 0;
6800 		if (!list_empty(&ep->asocs))
6801 			break;
6802 
6803 		err = sock_intr_errno(timeo);
6804 		if (signal_pending(current))
6805 			break;
6806 
6807 		err = -EAGAIN;
6808 		if (!timeo)
6809 			break;
6810 	}
6811 
6812 	finish_wait(sk_sleep(sk), &wait);
6813 
6814 	return err;
6815 }
6816 
6817 static void sctp_wait_for_close(struct sock *sk, long timeout)
6818 {
6819 	DEFINE_WAIT(wait);
6820 
6821 	do {
6822 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6823 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6824 			break;
6825 		sctp_release_sock(sk);
6826 		timeout = schedule_timeout(timeout);
6827 		sctp_lock_sock(sk);
6828 	} while (!signal_pending(current) && timeout);
6829 
6830 	finish_wait(sk_sleep(sk), &wait);
6831 }
6832 
6833 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6834 {
6835 	struct sk_buff *frag;
6836 
6837 	if (!skb->data_len)
6838 		goto done;
6839 
6840 	/* Don't forget the fragments. */
6841 	skb_walk_frags(skb, frag)
6842 		sctp_skb_set_owner_r_frag(frag, sk);
6843 
6844 done:
6845 	sctp_skb_set_owner_r(skb, sk);
6846 }
6847 
6848 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6849 		    struct sctp_association *asoc)
6850 {
6851 	struct inet_sock *inet = inet_sk(sk);
6852 	struct inet_sock *newinet;
6853 
6854 	newsk->sk_type = sk->sk_type;
6855 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6856 	newsk->sk_flags = sk->sk_flags;
6857 	newsk->sk_no_check = sk->sk_no_check;
6858 	newsk->sk_reuse = sk->sk_reuse;
6859 
6860 	newsk->sk_shutdown = sk->sk_shutdown;
6861 	newsk->sk_destruct = inet_sock_destruct;
6862 	newsk->sk_family = sk->sk_family;
6863 	newsk->sk_protocol = IPPROTO_SCTP;
6864 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6865 	newsk->sk_sndbuf = sk->sk_sndbuf;
6866 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6867 	newsk->sk_lingertime = sk->sk_lingertime;
6868 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6869 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6870 
6871 	newinet = inet_sk(newsk);
6872 
6873 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6874 	 * getsockname() and getpeername()
6875 	 */
6876 	newinet->inet_sport = inet->inet_sport;
6877 	newinet->inet_saddr = inet->inet_saddr;
6878 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6879 	newinet->inet_dport = htons(asoc->peer.port);
6880 	newinet->pmtudisc = inet->pmtudisc;
6881 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6882 
6883 	newinet->uc_ttl = inet->uc_ttl;
6884 	newinet->mc_loop = 1;
6885 	newinet->mc_ttl = 1;
6886 	newinet->mc_index = 0;
6887 	newinet->mc_list = NULL;
6888 }
6889 
6890 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6891  * and its messages to the newsk.
6892  */
6893 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6894 			      struct sctp_association *assoc,
6895 			      sctp_socket_type_t type)
6896 {
6897 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6898 	struct sctp_sock *newsp = sctp_sk(newsk);
6899 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6900 	struct sctp_endpoint *newep = newsp->ep;
6901 	struct sk_buff *skb, *tmp;
6902 	struct sctp_ulpevent *event;
6903 	struct sctp_bind_hashbucket *head;
6904 	struct list_head tmplist;
6905 
6906 	/* Migrate socket buffer sizes and all the socket level options to the
6907 	 * new socket.
6908 	 */
6909 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6910 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6911 	/* Brute force copy old sctp opt. */
6912 	if (oldsp->do_auto_asconf) {
6913 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6914 		inet_sk_copy_descendant(newsk, oldsk);
6915 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6916 	} else
6917 		inet_sk_copy_descendant(newsk, oldsk);
6918 
6919 	/* Restore the ep value that was overwritten with the above structure
6920 	 * copy.
6921 	 */
6922 	newsp->ep = newep;
6923 	newsp->hmac = NULL;
6924 
6925 	/* Hook this new socket in to the bind_hash list. */
6926 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6927 						 inet_sk(oldsk)->inet_num)];
6928 	sctp_local_bh_disable();
6929 	sctp_spin_lock(&head->lock);
6930 	pp = sctp_sk(oldsk)->bind_hash;
6931 	sk_add_bind_node(newsk, &pp->owner);
6932 	sctp_sk(newsk)->bind_hash = pp;
6933 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6934 	sctp_spin_unlock(&head->lock);
6935 	sctp_local_bh_enable();
6936 
6937 	/* Copy the bind_addr list from the original endpoint to the new
6938 	 * endpoint so that we can handle restarts properly
6939 	 */
6940 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6941 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6942 
6943 	/* Move any messages in the old socket's receive queue that are for the
6944 	 * peeled off association to the new socket's receive queue.
6945 	 */
6946 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6947 		event = sctp_skb2event(skb);
6948 		if (event->asoc == assoc) {
6949 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6950 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6951 			sctp_skb_set_owner_r_frag(skb, newsk);
6952 		}
6953 	}
6954 
6955 	/* Clean up any messages pending delivery due to partial
6956 	 * delivery.   Three cases:
6957 	 * 1) No partial deliver;  no work.
6958 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6959 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6960 	 */
6961 	skb_queue_head_init(&newsp->pd_lobby);
6962 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6963 
6964 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6965 		struct sk_buff_head *queue;
6966 
6967 		/* Decide which queue to move pd_lobby skbs to. */
6968 		if (assoc->ulpq.pd_mode) {
6969 			queue = &newsp->pd_lobby;
6970 		} else
6971 			queue = &newsk->sk_receive_queue;
6972 
6973 		/* Walk through the pd_lobby, looking for skbs that
6974 		 * need moved to the new socket.
6975 		 */
6976 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6977 			event = sctp_skb2event(skb);
6978 			if (event->asoc == assoc) {
6979 				__skb_unlink(skb, &oldsp->pd_lobby);
6980 				__skb_queue_tail(queue, skb);
6981 				sctp_skb_set_owner_r_frag(skb, newsk);
6982 			}
6983 		}
6984 
6985 		/* Clear up any skbs waiting for the partial
6986 		 * delivery to finish.
6987 		 */
6988 		if (assoc->ulpq.pd_mode)
6989 			sctp_clear_pd(oldsk, NULL);
6990 
6991 	}
6992 
6993 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6994 		sctp_skb_set_owner_r_frag(skb, newsk);
6995 
6996 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6997 		sctp_skb_set_owner_r_frag(skb, newsk);
6998 
6999 	/* Set the type of socket to indicate that it is peeled off from the
7000 	 * original UDP-style socket or created with the accept() call on a
7001 	 * TCP-style socket..
7002 	 */
7003 	newsp->type = type;
7004 
7005 	/* Mark the new socket "in-use" by the user so that any packets
7006 	 * that may arrive on the association after we've moved it are
7007 	 * queued to the backlog.  This prevents a potential race between
7008 	 * backlog processing on the old socket and new-packet processing
7009 	 * on the new socket.
7010 	 *
7011 	 * The caller has just allocated newsk so we can guarantee that other
7012 	 * paths won't try to lock it and then oldsk.
7013 	 */
7014 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7015 	sctp_assoc_migrate(assoc, newsk);
7016 
7017 	/* If the association on the newsk is already closed before accept()
7018 	 * is called, set RCV_SHUTDOWN flag.
7019 	 */
7020 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7021 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7022 
7023 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7024 	sctp_release_sock(newsk);
7025 }
7026 
7027 
7028 /* This proto struct describes the ULP interface for SCTP.  */
7029 struct proto sctp_prot = {
7030 	.name        =	"SCTP",
7031 	.owner       =	THIS_MODULE,
7032 	.close       =	sctp_close,
7033 	.connect     =	sctp_connect,
7034 	.disconnect  =	sctp_disconnect,
7035 	.accept      =	sctp_accept,
7036 	.ioctl       =	sctp_ioctl,
7037 	.init        =	sctp_init_sock,
7038 	.destroy     =	sctp_destroy_sock,
7039 	.shutdown    =	sctp_shutdown,
7040 	.setsockopt  =	sctp_setsockopt,
7041 	.getsockopt  =	sctp_getsockopt,
7042 	.sendmsg     =	sctp_sendmsg,
7043 	.recvmsg     =	sctp_recvmsg,
7044 	.bind        =	sctp_bind,
7045 	.backlog_rcv =	sctp_backlog_rcv,
7046 	.hash        =	sctp_hash,
7047 	.unhash      =	sctp_unhash,
7048 	.get_port    =	sctp_get_port,
7049 	.obj_size    =  sizeof(struct sctp_sock),
7050 	.sysctl_mem  =  sysctl_sctp_mem,
7051 	.sysctl_rmem =  sysctl_sctp_rmem,
7052 	.sysctl_wmem =  sysctl_sctp_wmem,
7053 	.memory_pressure = &sctp_memory_pressure,
7054 	.enter_memory_pressure = sctp_enter_memory_pressure,
7055 	.memory_allocated = &sctp_memory_allocated,
7056 	.sockets_allocated = &sctp_sockets_allocated,
7057 };
7058 
7059 #if IS_ENABLED(CONFIG_IPV6)
7060 
7061 struct proto sctpv6_prot = {
7062 	.name		= "SCTPv6",
7063 	.owner		= THIS_MODULE,
7064 	.close		= sctp_close,
7065 	.connect	= sctp_connect,
7066 	.disconnect	= sctp_disconnect,
7067 	.accept		= sctp_accept,
7068 	.ioctl		= sctp_ioctl,
7069 	.init		= sctp_init_sock,
7070 	.destroy	= sctp_destroy_sock,
7071 	.shutdown	= sctp_shutdown,
7072 	.setsockopt	= sctp_setsockopt,
7073 	.getsockopt	= sctp_getsockopt,
7074 	.sendmsg	= sctp_sendmsg,
7075 	.recvmsg	= sctp_recvmsg,
7076 	.bind		= sctp_bind,
7077 	.backlog_rcv	= sctp_backlog_rcv,
7078 	.hash		= sctp_hash,
7079 	.unhash		= sctp_unhash,
7080 	.get_port	= sctp_get_port,
7081 	.obj_size	= sizeof(struct sctp6_sock),
7082 	.sysctl_mem	= sysctl_sctp_mem,
7083 	.sysctl_rmem	= sysctl_sctp_rmem,
7084 	.sysctl_wmem	= sysctl_sctp_wmem,
7085 	.memory_pressure = &sctp_memory_pressure,
7086 	.enter_memory_pressure = sctp_enter_memory_pressure,
7087 	.memory_allocated = &sctp_memory_allocated,
7088 	.sockets_allocated = &sctp_sockets_allocated,
7089 };
7090 #endif /* IS_ENABLED(CONFIG_IPV6) */
7091