1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 #include <net/sctp/stream_sched.h> 83 84 /* Forward declarations for internal helper functions. */ 85 static int sctp_writeable(struct sock *sk); 86 static void sctp_wfree(struct sk_buff *skb); 87 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 88 size_t msg_len); 89 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 90 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 91 static int sctp_wait_for_accept(struct sock *sk, long timeo); 92 static void sctp_wait_for_close(struct sock *sk, long timeo); 93 static void sctp_destruct_sock(struct sock *sk); 94 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 95 union sctp_addr *addr, int len); 96 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 97 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf(struct sctp_association *asoc, 101 struct sctp_chunk *chunk); 102 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 103 static int sctp_autobind(struct sock *sk); 104 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 105 struct sctp_association *assoc, 106 enum sctp_socket_type type); 107 108 static unsigned long sctp_memory_pressure; 109 static atomic_long_t sctp_memory_allocated; 110 struct percpu_counter sctp_sockets_allocated; 111 112 static void sctp_enter_memory_pressure(struct sock *sk) 113 { 114 sctp_memory_pressure = 1; 115 } 116 117 118 /* Get the sndbuf space available at the time on the association. */ 119 static inline int sctp_wspace(struct sctp_association *asoc) 120 { 121 int amt; 122 123 if (asoc->ep->sndbuf_policy) 124 amt = asoc->sndbuf_used; 125 else 126 amt = sk_wmem_alloc_get(asoc->base.sk); 127 128 if (amt >= asoc->base.sk->sk_sndbuf) { 129 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 130 amt = 0; 131 else { 132 amt = sk_stream_wspace(asoc->base.sk); 133 if (amt < 0) 134 amt = 0; 135 } 136 } else { 137 amt = asoc->base.sk->sk_sndbuf - amt; 138 } 139 return amt; 140 } 141 142 /* Increment the used sndbuf space count of the corresponding association by 143 * the size of the outgoing data chunk. 144 * Also, set the skb destructor for sndbuf accounting later. 145 * 146 * Since it is always 1-1 between chunk and skb, and also a new skb is always 147 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 148 * destructor in the data chunk skb for the purpose of the sndbuf space 149 * tracking. 150 */ 151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 152 { 153 struct sctp_association *asoc = chunk->asoc; 154 struct sock *sk = asoc->base.sk; 155 156 /* The sndbuf space is tracked per association. */ 157 sctp_association_hold(asoc); 158 159 if (chunk->shkey) 160 sctp_auth_shkey_hold(chunk->shkey); 161 162 skb_set_owner_w(chunk->skb, sk); 163 164 chunk->skb->destructor = sctp_wfree; 165 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 166 skb_shinfo(chunk->skb)->destructor_arg = chunk; 167 168 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 169 sizeof(struct sk_buff) + 170 sizeof(struct sctp_chunk); 171 172 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 173 sk->sk_wmem_queued += chunk->skb->truesize; 174 sk_mem_charge(sk, chunk->skb->truesize); 175 } 176 177 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 178 { 179 skb_orphan(chunk->skb); 180 } 181 182 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 183 void (*cb)(struct sctp_chunk *)) 184 185 { 186 struct sctp_outq *q = &asoc->outqueue; 187 struct sctp_transport *t; 188 struct sctp_chunk *chunk; 189 190 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 191 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 192 cb(chunk); 193 194 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 195 cb(chunk); 196 197 list_for_each_entry(chunk, &q->sacked, transmitted_list) 198 cb(chunk); 199 200 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 201 cb(chunk); 202 203 list_for_each_entry(chunk, &q->out_chunk_list, list) 204 cb(chunk); 205 } 206 207 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 208 void (*cb)(struct sk_buff *, struct sock *)) 209 210 { 211 struct sk_buff *skb, *tmp; 212 213 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 214 cb(skb, sk); 215 216 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 217 cb(skb, sk); 218 219 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 220 cb(skb, sk); 221 } 222 223 /* Verify that this is a valid address. */ 224 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 225 int len) 226 { 227 struct sctp_af *af; 228 229 /* Verify basic sockaddr. */ 230 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 231 if (!af) 232 return -EINVAL; 233 234 /* Is this a valid SCTP address? */ 235 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 236 return -EINVAL; 237 238 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /* Look up the association by its id. If this is not a UDP-style 245 * socket, the ID field is always ignored. 246 */ 247 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 248 { 249 struct sctp_association *asoc = NULL; 250 251 /* If this is not a UDP-style socket, assoc id should be ignored. */ 252 if (!sctp_style(sk, UDP)) { 253 /* Return NULL if the socket state is not ESTABLISHED. It 254 * could be a TCP-style listening socket or a socket which 255 * hasn't yet called connect() to establish an association. 256 */ 257 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 258 return NULL; 259 260 /* Get the first and the only association from the list. */ 261 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 262 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 263 struct sctp_association, asocs); 264 return asoc; 265 } 266 267 /* Otherwise this is a UDP-style socket. */ 268 if (!id || (id == (sctp_assoc_t)-1)) 269 return NULL; 270 271 spin_lock_bh(&sctp_assocs_id_lock); 272 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 273 spin_unlock_bh(&sctp_assocs_id_lock); 274 275 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 276 return NULL; 277 278 return asoc; 279 } 280 281 /* Look up the transport from an address and an assoc id. If both address and 282 * id are specified, the associations matching the address and the id should be 283 * the same. 284 */ 285 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 286 struct sockaddr_storage *addr, 287 sctp_assoc_t id) 288 { 289 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 290 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 291 union sctp_addr *laddr = (union sctp_addr *)addr; 292 struct sctp_transport *transport; 293 294 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 295 return NULL; 296 297 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 298 laddr, 299 &transport); 300 301 if (!addr_asoc) 302 return NULL; 303 304 id_asoc = sctp_id2assoc(sk, id); 305 if (id_asoc && (id_asoc != addr_asoc)) 306 return NULL; 307 308 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 309 (union sctp_addr *)addr); 310 311 return transport; 312 } 313 314 /* API 3.1.2 bind() - UDP Style Syntax 315 * The syntax of bind() is, 316 * 317 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 318 * 319 * sd - the socket descriptor returned by socket(). 320 * addr - the address structure (struct sockaddr_in or struct 321 * sockaddr_in6 [RFC 2553]), 322 * addr_len - the size of the address structure. 323 */ 324 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 325 { 326 int retval = 0; 327 328 lock_sock(sk); 329 330 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 331 addr, addr_len); 332 333 /* Disallow binding twice. */ 334 if (!sctp_sk(sk)->ep->base.bind_addr.port) 335 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 336 addr_len); 337 else 338 retval = -EINVAL; 339 340 release_sock(sk); 341 342 return retval; 343 } 344 345 static long sctp_get_port_local(struct sock *, union sctp_addr *); 346 347 /* Verify this is a valid sockaddr. */ 348 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 349 union sctp_addr *addr, int len) 350 { 351 struct sctp_af *af; 352 353 /* Check minimum size. */ 354 if (len < sizeof (struct sockaddr)) 355 return NULL; 356 357 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 358 return NULL; 359 360 if (addr->sa.sa_family == AF_INET6) { 361 if (len < SIN6_LEN_RFC2133) 362 return NULL; 363 /* V4 mapped address are really of AF_INET family */ 364 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 365 !opt->pf->af_supported(AF_INET, opt)) 366 return NULL; 367 } 368 369 /* If we get this far, af is valid. */ 370 af = sctp_get_af_specific(addr->sa.sa_family); 371 372 if (len < af->sockaddr_len) 373 return NULL; 374 375 return af; 376 } 377 378 /* Bind a local address either to an endpoint or to an association. */ 379 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 380 { 381 struct net *net = sock_net(sk); 382 struct sctp_sock *sp = sctp_sk(sk); 383 struct sctp_endpoint *ep = sp->ep; 384 struct sctp_bind_addr *bp = &ep->base.bind_addr; 385 struct sctp_af *af; 386 unsigned short snum; 387 int ret = 0; 388 389 /* Common sockaddr verification. */ 390 af = sctp_sockaddr_af(sp, addr, len); 391 if (!af) { 392 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 393 __func__, sk, addr, len); 394 return -EINVAL; 395 } 396 397 snum = ntohs(addr->v4.sin_port); 398 399 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 400 __func__, sk, &addr->sa, bp->port, snum, len); 401 402 /* PF specific bind() address verification. */ 403 if (!sp->pf->bind_verify(sp, addr)) 404 return -EADDRNOTAVAIL; 405 406 /* We must either be unbound, or bind to the same port. 407 * It's OK to allow 0 ports if we are already bound. 408 * We'll just inhert an already bound port in this case 409 */ 410 if (bp->port) { 411 if (!snum) 412 snum = bp->port; 413 else if (snum != bp->port) { 414 pr_debug("%s: new port %d doesn't match existing port " 415 "%d\n", __func__, snum, bp->port); 416 return -EINVAL; 417 } 418 } 419 420 if (snum && snum < inet_prot_sock(net) && 421 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 422 return -EACCES; 423 424 /* See if the address matches any of the addresses we may have 425 * already bound before checking against other endpoints. 426 */ 427 if (sctp_bind_addr_match(bp, addr, sp)) 428 return -EINVAL; 429 430 /* Make sure we are allowed to bind here. 431 * The function sctp_get_port_local() does duplicate address 432 * detection. 433 */ 434 addr->v4.sin_port = htons(snum); 435 if ((ret = sctp_get_port_local(sk, addr))) { 436 return -EADDRINUSE; 437 } 438 439 /* Refresh ephemeral port. */ 440 if (!bp->port) 441 bp->port = inet_sk(sk)->inet_num; 442 443 /* Add the address to the bind address list. 444 * Use GFP_ATOMIC since BHs will be disabled. 445 */ 446 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 447 SCTP_ADDR_SRC, GFP_ATOMIC); 448 449 /* Copy back into socket for getsockname() use. */ 450 if (!ret) { 451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 452 sp->pf->to_sk_saddr(addr, sk); 453 } 454 455 return ret; 456 } 457 458 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 459 * 460 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 461 * at any one time. If a sender, after sending an ASCONF chunk, decides 462 * it needs to transfer another ASCONF Chunk, it MUST wait until the 463 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 464 * subsequent ASCONF. Note this restriction binds each side, so at any 465 * time two ASCONF may be in-transit on any given association (one sent 466 * from each endpoint). 467 */ 468 static int sctp_send_asconf(struct sctp_association *asoc, 469 struct sctp_chunk *chunk) 470 { 471 struct net *net = sock_net(asoc->base.sk); 472 int retval = 0; 473 474 /* If there is an outstanding ASCONF chunk, queue it for later 475 * transmission. 476 */ 477 if (asoc->addip_last_asconf) { 478 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 479 goto out; 480 } 481 482 /* Hold the chunk until an ASCONF_ACK is received. */ 483 sctp_chunk_hold(chunk); 484 retval = sctp_primitive_ASCONF(net, asoc, chunk); 485 if (retval) 486 sctp_chunk_free(chunk); 487 else 488 asoc->addip_last_asconf = chunk; 489 490 out: 491 return retval; 492 } 493 494 /* Add a list of addresses as bind addresses to local endpoint or 495 * association. 496 * 497 * Basically run through each address specified in the addrs/addrcnt 498 * array/length pair, determine if it is IPv6 or IPv4 and call 499 * sctp_do_bind() on it. 500 * 501 * If any of them fails, then the operation will be reversed and the 502 * ones that were added will be removed. 503 * 504 * Only sctp_setsockopt_bindx() is supposed to call this function. 505 */ 506 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 507 { 508 int cnt; 509 int retval = 0; 510 void *addr_buf; 511 struct sockaddr *sa_addr; 512 struct sctp_af *af; 513 514 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 515 addrs, addrcnt); 516 517 addr_buf = addrs; 518 for (cnt = 0; cnt < addrcnt; cnt++) { 519 /* The list may contain either IPv4 or IPv6 address; 520 * determine the address length for walking thru the list. 521 */ 522 sa_addr = addr_buf; 523 af = sctp_get_af_specific(sa_addr->sa_family); 524 if (!af) { 525 retval = -EINVAL; 526 goto err_bindx_add; 527 } 528 529 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 530 af->sockaddr_len); 531 532 addr_buf += af->sockaddr_len; 533 534 err_bindx_add: 535 if (retval < 0) { 536 /* Failed. Cleanup the ones that have been added */ 537 if (cnt > 0) 538 sctp_bindx_rem(sk, addrs, cnt); 539 return retval; 540 } 541 } 542 543 return retval; 544 } 545 546 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 547 * associations that are part of the endpoint indicating that a list of local 548 * addresses are added to the endpoint. 549 * 550 * If any of the addresses is already in the bind address list of the 551 * association, we do not send the chunk for that association. But it will not 552 * affect other associations. 553 * 554 * Only sctp_setsockopt_bindx() is supposed to call this function. 555 */ 556 static int sctp_send_asconf_add_ip(struct sock *sk, 557 struct sockaddr *addrs, 558 int addrcnt) 559 { 560 struct net *net = sock_net(sk); 561 struct sctp_sock *sp; 562 struct sctp_endpoint *ep; 563 struct sctp_association *asoc; 564 struct sctp_bind_addr *bp; 565 struct sctp_chunk *chunk; 566 struct sctp_sockaddr_entry *laddr; 567 union sctp_addr *addr; 568 union sctp_addr saveaddr; 569 void *addr_buf; 570 struct sctp_af *af; 571 struct list_head *p; 572 int i; 573 int retval = 0; 574 575 if (!net->sctp.addip_enable) 576 return retval; 577 578 sp = sctp_sk(sk); 579 ep = sp->ep; 580 581 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 582 __func__, sk, addrs, addrcnt); 583 584 list_for_each_entry(asoc, &ep->asocs, asocs) { 585 if (!asoc->peer.asconf_capable) 586 continue; 587 588 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 589 continue; 590 591 if (!sctp_state(asoc, ESTABLISHED)) 592 continue; 593 594 /* Check if any address in the packed array of addresses is 595 * in the bind address list of the association. If so, 596 * do not send the asconf chunk to its peer, but continue with 597 * other associations. 598 */ 599 addr_buf = addrs; 600 for (i = 0; i < addrcnt; i++) { 601 addr = addr_buf; 602 af = sctp_get_af_specific(addr->v4.sin_family); 603 if (!af) { 604 retval = -EINVAL; 605 goto out; 606 } 607 608 if (sctp_assoc_lookup_laddr(asoc, addr)) 609 break; 610 611 addr_buf += af->sockaddr_len; 612 } 613 if (i < addrcnt) 614 continue; 615 616 /* Use the first valid address in bind addr list of 617 * association as Address Parameter of ASCONF CHUNK. 618 */ 619 bp = &asoc->base.bind_addr; 620 p = bp->address_list.next; 621 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 622 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 623 addrcnt, SCTP_PARAM_ADD_IP); 624 if (!chunk) { 625 retval = -ENOMEM; 626 goto out; 627 } 628 629 /* Add the new addresses to the bind address list with 630 * use_as_src set to 0. 631 */ 632 addr_buf = addrs; 633 for (i = 0; i < addrcnt; i++) { 634 addr = addr_buf; 635 af = sctp_get_af_specific(addr->v4.sin_family); 636 memcpy(&saveaddr, addr, af->sockaddr_len); 637 retval = sctp_add_bind_addr(bp, &saveaddr, 638 sizeof(saveaddr), 639 SCTP_ADDR_NEW, GFP_ATOMIC); 640 addr_buf += af->sockaddr_len; 641 } 642 if (asoc->src_out_of_asoc_ok) { 643 struct sctp_transport *trans; 644 645 list_for_each_entry(trans, 646 &asoc->peer.transport_addr_list, transports) { 647 /* Clear the source and route cache */ 648 sctp_transport_dst_release(trans); 649 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 650 2*asoc->pathmtu, 4380)); 651 trans->ssthresh = asoc->peer.i.a_rwnd; 652 trans->rto = asoc->rto_initial; 653 sctp_max_rto(asoc, trans); 654 trans->rtt = trans->srtt = trans->rttvar = 0; 655 sctp_transport_route(trans, NULL, 656 sctp_sk(asoc->base.sk)); 657 } 658 } 659 retval = sctp_send_asconf(asoc, chunk); 660 } 661 662 out: 663 return retval; 664 } 665 666 /* Remove a list of addresses from bind addresses list. Do not remove the 667 * last address. 668 * 669 * Basically run through each address specified in the addrs/addrcnt 670 * array/length pair, determine if it is IPv6 or IPv4 and call 671 * sctp_del_bind() on it. 672 * 673 * If any of them fails, then the operation will be reversed and the 674 * ones that were removed will be added back. 675 * 676 * At least one address has to be left; if only one address is 677 * available, the operation will return -EBUSY. 678 * 679 * Only sctp_setsockopt_bindx() is supposed to call this function. 680 */ 681 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 682 { 683 struct sctp_sock *sp = sctp_sk(sk); 684 struct sctp_endpoint *ep = sp->ep; 685 int cnt; 686 struct sctp_bind_addr *bp = &ep->base.bind_addr; 687 int retval = 0; 688 void *addr_buf; 689 union sctp_addr *sa_addr; 690 struct sctp_af *af; 691 692 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 693 __func__, sk, addrs, addrcnt); 694 695 addr_buf = addrs; 696 for (cnt = 0; cnt < addrcnt; cnt++) { 697 /* If the bind address list is empty or if there is only one 698 * bind address, there is nothing more to be removed (we need 699 * at least one address here). 700 */ 701 if (list_empty(&bp->address_list) || 702 (sctp_list_single_entry(&bp->address_list))) { 703 retval = -EBUSY; 704 goto err_bindx_rem; 705 } 706 707 sa_addr = addr_buf; 708 af = sctp_get_af_specific(sa_addr->sa.sa_family); 709 if (!af) { 710 retval = -EINVAL; 711 goto err_bindx_rem; 712 } 713 714 if (!af->addr_valid(sa_addr, sp, NULL)) { 715 retval = -EADDRNOTAVAIL; 716 goto err_bindx_rem; 717 } 718 719 if (sa_addr->v4.sin_port && 720 sa_addr->v4.sin_port != htons(bp->port)) { 721 retval = -EINVAL; 722 goto err_bindx_rem; 723 } 724 725 if (!sa_addr->v4.sin_port) 726 sa_addr->v4.sin_port = htons(bp->port); 727 728 /* FIXME - There is probably a need to check if sk->sk_saddr and 729 * sk->sk_rcv_addr are currently set to one of the addresses to 730 * be removed. This is something which needs to be looked into 731 * when we are fixing the outstanding issues with multi-homing 732 * socket routing and failover schemes. Refer to comments in 733 * sctp_do_bind(). -daisy 734 */ 735 retval = sctp_del_bind_addr(bp, sa_addr); 736 737 addr_buf += af->sockaddr_len; 738 err_bindx_rem: 739 if (retval < 0) { 740 /* Failed. Add the ones that has been removed back */ 741 if (cnt > 0) 742 sctp_bindx_add(sk, addrs, cnt); 743 return retval; 744 } 745 } 746 747 return retval; 748 } 749 750 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 751 * the associations that are part of the endpoint indicating that a list of 752 * local addresses are removed from the endpoint. 753 * 754 * If any of the addresses is already in the bind address list of the 755 * association, we do not send the chunk for that association. But it will not 756 * affect other associations. 757 * 758 * Only sctp_setsockopt_bindx() is supposed to call this function. 759 */ 760 static int sctp_send_asconf_del_ip(struct sock *sk, 761 struct sockaddr *addrs, 762 int addrcnt) 763 { 764 struct net *net = sock_net(sk); 765 struct sctp_sock *sp; 766 struct sctp_endpoint *ep; 767 struct sctp_association *asoc; 768 struct sctp_transport *transport; 769 struct sctp_bind_addr *bp; 770 struct sctp_chunk *chunk; 771 union sctp_addr *laddr; 772 void *addr_buf; 773 struct sctp_af *af; 774 struct sctp_sockaddr_entry *saddr; 775 int i; 776 int retval = 0; 777 int stored = 0; 778 779 chunk = NULL; 780 if (!net->sctp.addip_enable) 781 return retval; 782 783 sp = sctp_sk(sk); 784 ep = sp->ep; 785 786 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 787 __func__, sk, addrs, addrcnt); 788 789 list_for_each_entry(asoc, &ep->asocs, asocs) { 790 791 if (!asoc->peer.asconf_capable) 792 continue; 793 794 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 795 continue; 796 797 if (!sctp_state(asoc, ESTABLISHED)) 798 continue; 799 800 /* Check if any address in the packed array of addresses is 801 * not present in the bind address list of the association. 802 * If so, do not send the asconf chunk to its peer, but 803 * continue with other associations. 804 */ 805 addr_buf = addrs; 806 for (i = 0; i < addrcnt; i++) { 807 laddr = addr_buf; 808 af = sctp_get_af_specific(laddr->v4.sin_family); 809 if (!af) { 810 retval = -EINVAL; 811 goto out; 812 } 813 814 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 815 break; 816 817 addr_buf += af->sockaddr_len; 818 } 819 if (i < addrcnt) 820 continue; 821 822 /* Find one address in the association's bind address list 823 * that is not in the packed array of addresses. This is to 824 * make sure that we do not delete all the addresses in the 825 * association. 826 */ 827 bp = &asoc->base.bind_addr; 828 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 829 addrcnt, sp); 830 if ((laddr == NULL) && (addrcnt == 1)) { 831 if (asoc->asconf_addr_del_pending) 832 continue; 833 asoc->asconf_addr_del_pending = 834 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 835 if (asoc->asconf_addr_del_pending == NULL) { 836 retval = -ENOMEM; 837 goto out; 838 } 839 asoc->asconf_addr_del_pending->sa.sa_family = 840 addrs->sa_family; 841 asoc->asconf_addr_del_pending->v4.sin_port = 842 htons(bp->port); 843 if (addrs->sa_family == AF_INET) { 844 struct sockaddr_in *sin; 845 846 sin = (struct sockaddr_in *)addrs; 847 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 848 } else if (addrs->sa_family == AF_INET6) { 849 struct sockaddr_in6 *sin6; 850 851 sin6 = (struct sockaddr_in6 *)addrs; 852 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 853 } 854 855 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 856 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 857 asoc->asconf_addr_del_pending); 858 859 asoc->src_out_of_asoc_ok = 1; 860 stored = 1; 861 goto skip_mkasconf; 862 } 863 864 if (laddr == NULL) 865 return -EINVAL; 866 867 /* We do not need RCU protection throughout this loop 868 * because this is done under a socket lock from the 869 * setsockopt call. 870 */ 871 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 872 SCTP_PARAM_DEL_IP); 873 if (!chunk) { 874 retval = -ENOMEM; 875 goto out; 876 } 877 878 skip_mkasconf: 879 /* Reset use_as_src flag for the addresses in the bind address 880 * list that are to be deleted. 881 */ 882 addr_buf = addrs; 883 for (i = 0; i < addrcnt; i++) { 884 laddr = addr_buf; 885 af = sctp_get_af_specific(laddr->v4.sin_family); 886 list_for_each_entry(saddr, &bp->address_list, list) { 887 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 888 saddr->state = SCTP_ADDR_DEL; 889 } 890 addr_buf += af->sockaddr_len; 891 } 892 893 /* Update the route and saddr entries for all the transports 894 * as some of the addresses in the bind address list are 895 * about to be deleted and cannot be used as source addresses. 896 */ 897 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 898 transports) { 899 sctp_transport_dst_release(transport); 900 sctp_transport_route(transport, NULL, 901 sctp_sk(asoc->base.sk)); 902 } 903 904 if (stored) 905 /* We don't need to transmit ASCONF */ 906 continue; 907 retval = sctp_send_asconf(asoc, chunk); 908 } 909 out: 910 return retval; 911 } 912 913 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 914 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 915 { 916 struct sock *sk = sctp_opt2sk(sp); 917 union sctp_addr *addr; 918 struct sctp_af *af; 919 920 /* It is safe to write port space in caller. */ 921 addr = &addrw->a; 922 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 923 af = sctp_get_af_specific(addr->sa.sa_family); 924 if (!af) 925 return -EINVAL; 926 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 927 return -EINVAL; 928 929 if (addrw->state == SCTP_ADDR_NEW) 930 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 931 else 932 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 933 } 934 935 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 936 * 937 * API 8.1 938 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 939 * int flags); 940 * 941 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 942 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 943 * or IPv6 addresses. 944 * 945 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 946 * Section 3.1.2 for this usage. 947 * 948 * addrs is a pointer to an array of one or more socket addresses. Each 949 * address is contained in its appropriate structure (i.e. struct 950 * sockaddr_in or struct sockaddr_in6) the family of the address type 951 * must be used to distinguish the address length (note that this 952 * representation is termed a "packed array" of addresses). The caller 953 * specifies the number of addresses in the array with addrcnt. 954 * 955 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 956 * -1, and sets errno to the appropriate error code. 957 * 958 * For SCTP, the port given in each socket address must be the same, or 959 * sctp_bindx() will fail, setting errno to EINVAL. 960 * 961 * The flags parameter is formed from the bitwise OR of zero or more of 962 * the following currently defined flags: 963 * 964 * SCTP_BINDX_ADD_ADDR 965 * 966 * SCTP_BINDX_REM_ADDR 967 * 968 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 969 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 970 * addresses from the association. The two flags are mutually exclusive; 971 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 972 * not remove all addresses from an association; sctp_bindx() will 973 * reject such an attempt with EINVAL. 974 * 975 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 976 * additional addresses with an endpoint after calling bind(). Or use 977 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 978 * socket is associated with so that no new association accepted will be 979 * associated with those addresses. If the endpoint supports dynamic 980 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 981 * endpoint to send the appropriate message to the peer to change the 982 * peers address lists. 983 * 984 * Adding and removing addresses from a connected association is 985 * optional functionality. Implementations that do not support this 986 * functionality should return EOPNOTSUPP. 987 * 988 * Basically do nothing but copying the addresses from user to kernel 989 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 990 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 991 * from userspace. 992 * 993 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 994 * it. 995 * 996 * sk The sk of the socket 997 * addrs The pointer to the addresses in user land 998 * addrssize Size of the addrs buffer 999 * op Operation to perform (add or remove, see the flags of 1000 * sctp_bindx) 1001 * 1002 * Returns 0 if ok, <0 errno code on error. 1003 */ 1004 static int sctp_setsockopt_bindx(struct sock *sk, 1005 struct sockaddr __user *addrs, 1006 int addrs_size, int op) 1007 { 1008 struct sockaddr *kaddrs; 1009 int err; 1010 int addrcnt = 0; 1011 int walk_size = 0; 1012 struct sockaddr *sa_addr; 1013 void *addr_buf; 1014 struct sctp_af *af; 1015 1016 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1017 __func__, sk, addrs, addrs_size, op); 1018 1019 if (unlikely(addrs_size <= 0)) 1020 return -EINVAL; 1021 1022 kaddrs = vmemdup_user(addrs, addrs_size); 1023 if (unlikely(IS_ERR(kaddrs))) 1024 return PTR_ERR(kaddrs); 1025 1026 /* Walk through the addrs buffer and count the number of addresses. */ 1027 addr_buf = kaddrs; 1028 while (walk_size < addrs_size) { 1029 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1030 kvfree(kaddrs); 1031 return -EINVAL; 1032 } 1033 1034 sa_addr = addr_buf; 1035 af = sctp_get_af_specific(sa_addr->sa_family); 1036 1037 /* If the address family is not supported or if this address 1038 * causes the address buffer to overflow return EINVAL. 1039 */ 1040 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1041 kvfree(kaddrs); 1042 return -EINVAL; 1043 } 1044 addrcnt++; 1045 addr_buf += af->sockaddr_len; 1046 walk_size += af->sockaddr_len; 1047 } 1048 1049 /* Do the work. */ 1050 switch (op) { 1051 case SCTP_BINDX_ADD_ADDR: 1052 /* Allow security module to validate bindx addresses. */ 1053 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1054 (struct sockaddr *)kaddrs, 1055 addrs_size); 1056 if (err) 1057 goto out; 1058 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1059 if (err) 1060 goto out; 1061 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1062 break; 1063 1064 case SCTP_BINDX_REM_ADDR: 1065 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1066 if (err) 1067 goto out; 1068 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1069 break; 1070 1071 default: 1072 err = -EINVAL; 1073 break; 1074 } 1075 1076 out: 1077 kvfree(kaddrs); 1078 1079 return err; 1080 } 1081 1082 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1083 * 1084 * Common routine for handling connect() and sctp_connectx(). 1085 * Connect will come in with just a single address. 1086 */ 1087 static int __sctp_connect(struct sock *sk, 1088 struct sockaddr *kaddrs, 1089 int addrs_size, int flags, 1090 sctp_assoc_t *assoc_id) 1091 { 1092 struct net *net = sock_net(sk); 1093 struct sctp_sock *sp; 1094 struct sctp_endpoint *ep; 1095 struct sctp_association *asoc = NULL; 1096 struct sctp_association *asoc2; 1097 struct sctp_transport *transport; 1098 union sctp_addr to; 1099 enum sctp_scope scope; 1100 long timeo; 1101 int err = 0; 1102 int addrcnt = 0; 1103 int walk_size = 0; 1104 union sctp_addr *sa_addr = NULL; 1105 void *addr_buf; 1106 unsigned short port; 1107 1108 sp = sctp_sk(sk); 1109 ep = sp->ep; 1110 1111 /* connect() cannot be done on a socket that is already in ESTABLISHED 1112 * state - UDP-style peeled off socket or a TCP-style socket that 1113 * is already connected. 1114 * It cannot be done even on a TCP-style listening socket. 1115 */ 1116 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1117 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1118 err = -EISCONN; 1119 goto out_free; 1120 } 1121 1122 /* Walk through the addrs buffer and count the number of addresses. */ 1123 addr_buf = kaddrs; 1124 while (walk_size < addrs_size) { 1125 struct sctp_af *af; 1126 1127 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1128 err = -EINVAL; 1129 goto out_free; 1130 } 1131 1132 sa_addr = addr_buf; 1133 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1134 1135 /* If the address family is not supported or if this address 1136 * causes the address buffer to overflow return EINVAL. 1137 */ 1138 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1139 err = -EINVAL; 1140 goto out_free; 1141 } 1142 1143 port = ntohs(sa_addr->v4.sin_port); 1144 1145 /* Save current address so we can work with it */ 1146 memcpy(&to, sa_addr, af->sockaddr_len); 1147 1148 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1149 if (err) 1150 goto out_free; 1151 1152 /* Make sure the destination port is correctly set 1153 * in all addresses. 1154 */ 1155 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1156 err = -EINVAL; 1157 goto out_free; 1158 } 1159 1160 /* Check if there already is a matching association on the 1161 * endpoint (other than the one created here). 1162 */ 1163 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1164 if (asoc2 && asoc2 != asoc) { 1165 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1166 err = -EISCONN; 1167 else 1168 err = -EALREADY; 1169 goto out_free; 1170 } 1171 1172 /* If we could not find a matching association on the endpoint, 1173 * make sure that there is no peeled-off association matching 1174 * the peer address even on another socket. 1175 */ 1176 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1177 err = -EADDRNOTAVAIL; 1178 goto out_free; 1179 } 1180 1181 if (!asoc) { 1182 /* If a bind() or sctp_bindx() is not called prior to 1183 * an sctp_connectx() call, the system picks an 1184 * ephemeral port and will choose an address set 1185 * equivalent to binding with a wildcard address. 1186 */ 1187 if (!ep->base.bind_addr.port) { 1188 if (sctp_autobind(sk)) { 1189 err = -EAGAIN; 1190 goto out_free; 1191 } 1192 } else { 1193 /* 1194 * If an unprivileged user inherits a 1-many 1195 * style socket with open associations on a 1196 * privileged port, it MAY be permitted to 1197 * accept new associations, but it SHOULD NOT 1198 * be permitted to open new associations. 1199 */ 1200 if (ep->base.bind_addr.port < 1201 inet_prot_sock(net) && 1202 !ns_capable(net->user_ns, 1203 CAP_NET_BIND_SERVICE)) { 1204 err = -EACCES; 1205 goto out_free; 1206 } 1207 } 1208 1209 scope = sctp_scope(&to); 1210 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1211 if (!asoc) { 1212 err = -ENOMEM; 1213 goto out_free; 1214 } 1215 1216 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1217 GFP_KERNEL); 1218 if (err < 0) { 1219 goto out_free; 1220 } 1221 1222 } 1223 1224 /* Prime the peer's transport structures. */ 1225 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1226 SCTP_UNKNOWN); 1227 if (!transport) { 1228 err = -ENOMEM; 1229 goto out_free; 1230 } 1231 1232 addrcnt++; 1233 addr_buf += af->sockaddr_len; 1234 walk_size += af->sockaddr_len; 1235 } 1236 1237 /* In case the user of sctp_connectx() wants an association 1238 * id back, assign one now. 1239 */ 1240 if (assoc_id) { 1241 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1242 if (err < 0) 1243 goto out_free; 1244 } 1245 1246 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1247 if (err < 0) { 1248 goto out_free; 1249 } 1250 1251 /* Initialize sk's dport and daddr for getpeername() */ 1252 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1253 sp->pf->to_sk_daddr(sa_addr, sk); 1254 sk->sk_err = 0; 1255 1256 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1257 1258 if (assoc_id) 1259 *assoc_id = asoc->assoc_id; 1260 1261 err = sctp_wait_for_connect(asoc, &timeo); 1262 /* Note: the asoc may be freed after the return of 1263 * sctp_wait_for_connect. 1264 */ 1265 1266 /* Don't free association on exit. */ 1267 asoc = NULL; 1268 1269 out_free: 1270 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1271 __func__, asoc, kaddrs, err); 1272 1273 if (asoc) { 1274 /* sctp_primitive_ASSOCIATE may have added this association 1275 * To the hash table, try to unhash it, just in case, its a noop 1276 * if it wasn't hashed so we're safe 1277 */ 1278 sctp_association_free(asoc); 1279 } 1280 return err; 1281 } 1282 1283 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1284 * 1285 * API 8.9 1286 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1287 * sctp_assoc_t *asoc); 1288 * 1289 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1290 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1291 * or IPv6 addresses. 1292 * 1293 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1294 * Section 3.1.2 for this usage. 1295 * 1296 * addrs is a pointer to an array of one or more socket addresses. Each 1297 * address is contained in its appropriate structure (i.e. struct 1298 * sockaddr_in or struct sockaddr_in6) the family of the address type 1299 * must be used to distengish the address length (note that this 1300 * representation is termed a "packed array" of addresses). The caller 1301 * specifies the number of addresses in the array with addrcnt. 1302 * 1303 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1304 * the association id of the new association. On failure, sctp_connectx() 1305 * returns -1, and sets errno to the appropriate error code. The assoc_id 1306 * is not touched by the kernel. 1307 * 1308 * For SCTP, the port given in each socket address must be the same, or 1309 * sctp_connectx() will fail, setting errno to EINVAL. 1310 * 1311 * An application can use sctp_connectx to initiate an association with 1312 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1313 * allows a caller to specify multiple addresses at which a peer can be 1314 * reached. The way the SCTP stack uses the list of addresses to set up 1315 * the association is implementation dependent. This function only 1316 * specifies that the stack will try to make use of all the addresses in 1317 * the list when needed. 1318 * 1319 * Note that the list of addresses passed in is only used for setting up 1320 * the association. It does not necessarily equal the set of addresses 1321 * the peer uses for the resulting association. If the caller wants to 1322 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1323 * retrieve them after the association has been set up. 1324 * 1325 * Basically do nothing but copying the addresses from user to kernel 1326 * land and invoking either sctp_connectx(). This is used for tunneling 1327 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1328 * 1329 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1330 * it. 1331 * 1332 * sk The sk of the socket 1333 * addrs The pointer to the addresses in user land 1334 * addrssize Size of the addrs buffer 1335 * 1336 * Returns >=0 if ok, <0 errno code on error. 1337 */ 1338 static int __sctp_setsockopt_connectx(struct sock *sk, 1339 struct sockaddr __user *addrs, 1340 int addrs_size, 1341 sctp_assoc_t *assoc_id) 1342 { 1343 struct sockaddr *kaddrs; 1344 int err = 0, flags = 0; 1345 1346 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1347 __func__, sk, addrs, addrs_size); 1348 1349 if (unlikely(addrs_size <= 0)) 1350 return -EINVAL; 1351 1352 kaddrs = vmemdup_user(addrs, addrs_size); 1353 if (unlikely(IS_ERR(kaddrs))) 1354 return PTR_ERR(kaddrs); 1355 1356 /* Allow security module to validate connectx addresses. */ 1357 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1358 (struct sockaddr *)kaddrs, 1359 addrs_size); 1360 if (err) 1361 goto out_free; 1362 1363 /* in-kernel sockets don't generally have a file allocated to them 1364 * if all they do is call sock_create_kern(). 1365 */ 1366 if (sk->sk_socket->file) 1367 flags = sk->sk_socket->file->f_flags; 1368 1369 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1370 1371 out_free: 1372 kvfree(kaddrs); 1373 1374 return err; 1375 } 1376 1377 /* 1378 * This is an older interface. It's kept for backward compatibility 1379 * to the option that doesn't provide association id. 1380 */ 1381 static int sctp_setsockopt_connectx_old(struct sock *sk, 1382 struct sockaddr __user *addrs, 1383 int addrs_size) 1384 { 1385 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1386 } 1387 1388 /* 1389 * New interface for the API. The since the API is done with a socket 1390 * option, to make it simple we feed back the association id is as a return 1391 * indication to the call. Error is always negative and association id is 1392 * always positive. 1393 */ 1394 static int sctp_setsockopt_connectx(struct sock *sk, 1395 struct sockaddr __user *addrs, 1396 int addrs_size) 1397 { 1398 sctp_assoc_t assoc_id = 0; 1399 int err = 0; 1400 1401 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1402 1403 if (err) 1404 return err; 1405 else 1406 return assoc_id; 1407 } 1408 1409 /* 1410 * New (hopefully final) interface for the API. 1411 * We use the sctp_getaddrs_old structure so that use-space library 1412 * can avoid any unnecessary allocations. The only different part 1413 * is that we store the actual length of the address buffer into the 1414 * addrs_num structure member. That way we can re-use the existing 1415 * code. 1416 */ 1417 #ifdef CONFIG_COMPAT 1418 struct compat_sctp_getaddrs_old { 1419 sctp_assoc_t assoc_id; 1420 s32 addr_num; 1421 compat_uptr_t addrs; /* struct sockaddr * */ 1422 }; 1423 #endif 1424 1425 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1426 char __user *optval, 1427 int __user *optlen) 1428 { 1429 struct sctp_getaddrs_old param; 1430 sctp_assoc_t assoc_id = 0; 1431 int err = 0; 1432 1433 #ifdef CONFIG_COMPAT 1434 if (in_compat_syscall()) { 1435 struct compat_sctp_getaddrs_old param32; 1436 1437 if (len < sizeof(param32)) 1438 return -EINVAL; 1439 if (copy_from_user(¶m32, optval, sizeof(param32))) 1440 return -EFAULT; 1441 1442 param.assoc_id = param32.assoc_id; 1443 param.addr_num = param32.addr_num; 1444 param.addrs = compat_ptr(param32.addrs); 1445 } else 1446 #endif 1447 { 1448 if (len < sizeof(param)) 1449 return -EINVAL; 1450 if (copy_from_user(¶m, optval, sizeof(param))) 1451 return -EFAULT; 1452 } 1453 1454 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1455 param.addrs, param.addr_num, 1456 &assoc_id); 1457 if (err == 0 || err == -EINPROGRESS) { 1458 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1459 return -EFAULT; 1460 if (put_user(sizeof(assoc_id), optlen)) 1461 return -EFAULT; 1462 } 1463 1464 return err; 1465 } 1466 1467 /* API 3.1.4 close() - UDP Style Syntax 1468 * Applications use close() to perform graceful shutdown (as described in 1469 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1470 * by a UDP-style socket. 1471 * 1472 * The syntax is 1473 * 1474 * ret = close(int sd); 1475 * 1476 * sd - the socket descriptor of the associations to be closed. 1477 * 1478 * To gracefully shutdown a specific association represented by the 1479 * UDP-style socket, an application should use the sendmsg() call, 1480 * passing no user data, but including the appropriate flag in the 1481 * ancillary data (see Section xxxx). 1482 * 1483 * If sd in the close() call is a branched-off socket representing only 1484 * one association, the shutdown is performed on that association only. 1485 * 1486 * 4.1.6 close() - TCP Style Syntax 1487 * 1488 * Applications use close() to gracefully close down an association. 1489 * 1490 * The syntax is: 1491 * 1492 * int close(int sd); 1493 * 1494 * sd - the socket descriptor of the association to be closed. 1495 * 1496 * After an application calls close() on a socket descriptor, no further 1497 * socket operations will succeed on that descriptor. 1498 * 1499 * API 7.1.4 SO_LINGER 1500 * 1501 * An application using the TCP-style socket can use this option to 1502 * perform the SCTP ABORT primitive. The linger option structure is: 1503 * 1504 * struct linger { 1505 * int l_onoff; // option on/off 1506 * int l_linger; // linger time 1507 * }; 1508 * 1509 * To enable the option, set l_onoff to 1. If the l_linger value is set 1510 * to 0, calling close() is the same as the ABORT primitive. If the 1511 * value is set to a negative value, the setsockopt() call will return 1512 * an error. If the value is set to a positive value linger_time, the 1513 * close() can be blocked for at most linger_time ms. If the graceful 1514 * shutdown phase does not finish during this period, close() will 1515 * return but the graceful shutdown phase continues in the system. 1516 */ 1517 static void sctp_close(struct sock *sk, long timeout) 1518 { 1519 struct net *net = sock_net(sk); 1520 struct sctp_endpoint *ep; 1521 struct sctp_association *asoc; 1522 struct list_head *pos, *temp; 1523 unsigned int data_was_unread; 1524 1525 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1526 1527 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1528 sk->sk_shutdown = SHUTDOWN_MASK; 1529 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1530 1531 ep = sctp_sk(sk)->ep; 1532 1533 /* Clean up any skbs sitting on the receive queue. */ 1534 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1535 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1536 1537 /* Walk all associations on an endpoint. */ 1538 list_for_each_safe(pos, temp, &ep->asocs) { 1539 asoc = list_entry(pos, struct sctp_association, asocs); 1540 1541 if (sctp_style(sk, TCP)) { 1542 /* A closed association can still be in the list if 1543 * it belongs to a TCP-style listening socket that is 1544 * not yet accepted. If so, free it. If not, send an 1545 * ABORT or SHUTDOWN based on the linger options. 1546 */ 1547 if (sctp_state(asoc, CLOSED)) { 1548 sctp_association_free(asoc); 1549 continue; 1550 } 1551 } 1552 1553 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1554 !skb_queue_empty(&asoc->ulpq.reasm) || 1555 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1556 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1557 struct sctp_chunk *chunk; 1558 1559 chunk = sctp_make_abort_user(asoc, NULL, 0); 1560 sctp_primitive_ABORT(net, asoc, chunk); 1561 } else 1562 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1563 } 1564 1565 /* On a TCP-style socket, block for at most linger_time if set. */ 1566 if (sctp_style(sk, TCP) && timeout) 1567 sctp_wait_for_close(sk, timeout); 1568 1569 /* This will run the backlog queue. */ 1570 release_sock(sk); 1571 1572 /* Supposedly, no process has access to the socket, but 1573 * the net layers still may. 1574 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1575 * held and that should be grabbed before socket lock. 1576 */ 1577 spin_lock_bh(&net->sctp.addr_wq_lock); 1578 bh_lock_sock_nested(sk); 1579 1580 /* Hold the sock, since sk_common_release() will put sock_put() 1581 * and we have just a little more cleanup. 1582 */ 1583 sock_hold(sk); 1584 sk_common_release(sk); 1585 1586 bh_unlock_sock(sk); 1587 spin_unlock_bh(&net->sctp.addr_wq_lock); 1588 1589 sock_put(sk); 1590 1591 SCTP_DBG_OBJCNT_DEC(sock); 1592 } 1593 1594 /* Handle EPIPE error. */ 1595 static int sctp_error(struct sock *sk, int flags, int err) 1596 { 1597 if (err == -EPIPE) 1598 err = sock_error(sk) ? : -EPIPE; 1599 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1600 send_sig(SIGPIPE, current, 0); 1601 return err; 1602 } 1603 1604 /* API 3.1.3 sendmsg() - UDP Style Syntax 1605 * 1606 * An application uses sendmsg() and recvmsg() calls to transmit data to 1607 * and receive data from its peer. 1608 * 1609 * ssize_t sendmsg(int socket, const struct msghdr *message, 1610 * int flags); 1611 * 1612 * socket - the socket descriptor of the endpoint. 1613 * message - pointer to the msghdr structure which contains a single 1614 * user message and possibly some ancillary data. 1615 * 1616 * See Section 5 for complete description of the data 1617 * structures. 1618 * 1619 * flags - flags sent or received with the user message, see Section 1620 * 5 for complete description of the flags. 1621 * 1622 * Note: This function could use a rewrite especially when explicit 1623 * connect support comes in. 1624 */ 1625 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1626 1627 static int sctp_msghdr_parse(const struct msghdr *msg, 1628 struct sctp_cmsgs *cmsgs); 1629 1630 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1631 struct sctp_sndrcvinfo *srinfo, 1632 const struct msghdr *msg, size_t msg_len) 1633 { 1634 __u16 sflags; 1635 int err; 1636 1637 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1638 return -EPIPE; 1639 1640 if (msg_len > sk->sk_sndbuf) 1641 return -EMSGSIZE; 1642 1643 memset(cmsgs, 0, sizeof(*cmsgs)); 1644 err = sctp_msghdr_parse(msg, cmsgs); 1645 if (err) { 1646 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1647 return err; 1648 } 1649 1650 memset(srinfo, 0, sizeof(*srinfo)); 1651 if (cmsgs->srinfo) { 1652 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1653 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1654 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1655 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1656 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1657 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1658 } 1659 1660 if (cmsgs->sinfo) { 1661 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1662 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1663 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1664 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1665 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1666 } 1667 1668 if (cmsgs->prinfo) { 1669 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1670 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1671 cmsgs->prinfo->pr_policy); 1672 } 1673 1674 sflags = srinfo->sinfo_flags; 1675 if (!sflags && msg_len) 1676 return 0; 1677 1678 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1679 return -EINVAL; 1680 1681 if (((sflags & SCTP_EOF) && msg_len > 0) || 1682 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1683 return -EINVAL; 1684 1685 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1686 return -EINVAL; 1687 1688 return 0; 1689 } 1690 1691 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1692 struct sctp_cmsgs *cmsgs, 1693 union sctp_addr *daddr, 1694 struct sctp_transport **tp) 1695 { 1696 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1697 struct net *net = sock_net(sk); 1698 struct sctp_association *asoc; 1699 enum sctp_scope scope; 1700 struct cmsghdr *cmsg; 1701 struct sctp_af *af; 1702 int err; 1703 1704 *tp = NULL; 1705 1706 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1707 return -EINVAL; 1708 1709 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1710 sctp_sstate(sk, CLOSING))) 1711 return -EADDRNOTAVAIL; 1712 1713 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1714 return -EADDRNOTAVAIL; 1715 1716 if (!ep->base.bind_addr.port) { 1717 if (sctp_autobind(sk)) 1718 return -EAGAIN; 1719 } else { 1720 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1721 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1722 return -EACCES; 1723 } 1724 1725 scope = sctp_scope(daddr); 1726 1727 /* Label connection socket for first association 1-to-many 1728 * style for client sequence socket()->sendmsg(). This 1729 * needs to be done before sctp_assoc_add_peer() as that will 1730 * set up the initial packet that needs to account for any 1731 * security ip options (CIPSO/CALIPSO) added to the packet. 1732 */ 1733 af = sctp_get_af_specific(daddr->sa.sa_family); 1734 if (!af) 1735 return -EINVAL; 1736 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1737 (struct sockaddr *)daddr, 1738 af->sockaddr_len); 1739 if (err < 0) 1740 return err; 1741 1742 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1743 if (!asoc) 1744 return -ENOMEM; 1745 1746 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1747 err = -ENOMEM; 1748 goto free; 1749 } 1750 1751 if (cmsgs->init) { 1752 struct sctp_initmsg *init = cmsgs->init; 1753 1754 if (init->sinit_num_ostreams) { 1755 __u16 outcnt = init->sinit_num_ostreams; 1756 1757 asoc->c.sinit_num_ostreams = outcnt; 1758 /* outcnt has been changed, need to re-init stream */ 1759 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1760 GFP_KERNEL); 1761 if (err) 1762 goto free; 1763 } 1764 1765 if (init->sinit_max_instreams) 1766 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1767 1768 if (init->sinit_max_attempts) 1769 asoc->max_init_attempts = init->sinit_max_attempts; 1770 1771 if (init->sinit_max_init_timeo) 1772 asoc->max_init_timeo = 1773 msecs_to_jiffies(init->sinit_max_init_timeo); 1774 } 1775 1776 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1777 if (!*tp) { 1778 err = -ENOMEM; 1779 goto free; 1780 } 1781 1782 if (!cmsgs->addrs_msg) 1783 return 0; 1784 1785 /* sendv addr list parse */ 1786 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1787 struct sctp_transport *transport; 1788 struct sctp_association *old; 1789 union sctp_addr _daddr; 1790 int dlen; 1791 1792 if (cmsg->cmsg_level != IPPROTO_SCTP || 1793 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1794 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1795 continue; 1796 1797 daddr = &_daddr; 1798 memset(daddr, 0, sizeof(*daddr)); 1799 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1800 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1801 if (dlen < sizeof(struct in_addr)) { 1802 err = -EINVAL; 1803 goto free; 1804 } 1805 1806 dlen = sizeof(struct in_addr); 1807 daddr->v4.sin_family = AF_INET; 1808 daddr->v4.sin_port = htons(asoc->peer.port); 1809 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1810 } else { 1811 if (dlen < sizeof(struct in6_addr)) { 1812 err = -EINVAL; 1813 goto free; 1814 } 1815 1816 dlen = sizeof(struct in6_addr); 1817 daddr->v6.sin6_family = AF_INET6; 1818 daddr->v6.sin6_port = htons(asoc->peer.port); 1819 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1820 } 1821 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1822 if (err) 1823 goto free; 1824 1825 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1826 if (old && old != asoc) { 1827 if (old->state >= SCTP_STATE_ESTABLISHED) 1828 err = -EISCONN; 1829 else 1830 err = -EALREADY; 1831 goto free; 1832 } 1833 1834 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1835 err = -EADDRNOTAVAIL; 1836 goto free; 1837 } 1838 1839 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1840 SCTP_UNKNOWN); 1841 if (!transport) { 1842 err = -ENOMEM; 1843 goto free; 1844 } 1845 } 1846 1847 return 0; 1848 1849 free: 1850 sctp_association_free(asoc); 1851 return err; 1852 } 1853 1854 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1855 __u16 sflags, struct msghdr *msg, 1856 size_t msg_len) 1857 { 1858 struct sock *sk = asoc->base.sk; 1859 struct net *net = sock_net(sk); 1860 1861 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1862 return -EPIPE; 1863 1864 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1865 !sctp_state(asoc, ESTABLISHED)) 1866 return 0; 1867 1868 if (sflags & SCTP_EOF) { 1869 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1870 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1871 1872 return 0; 1873 } 1874 1875 if (sflags & SCTP_ABORT) { 1876 struct sctp_chunk *chunk; 1877 1878 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1879 if (!chunk) 1880 return -ENOMEM; 1881 1882 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1883 sctp_primitive_ABORT(net, asoc, chunk); 1884 1885 return 0; 1886 } 1887 1888 return 1; 1889 } 1890 1891 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1892 struct msghdr *msg, size_t msg_len, 1893 struct sctp_transport *transport, 1894 struct sctp_sndrcvinfo *sinfo) 1895 { 1896 struct sock *sk = asoc->base.sk; 1897 struct net *net = sock_net(sk); 1898 struct sctp_datamsg *datamsg; 1899 bool wait_connect = false; 1900 struct sctp_chunk *chunk; 1901 long timeo; 1902 int err; 1903 1904 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1905 err = -EINVAL; 1906 goto err; 1907 } 1908 1909 if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) { 1910 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1911 if (err) 1912 goto err; 1913 } 1914 1915 if (sctp_sk(sk)->disable_fragments && msg_len > asoc->frag_point) { 1916 err = -EMSGSIZE; 1917 goto err; 1918 } 1919 1920 if (asoc->pmtu_pending) 1921 sctp_assoc_pending_pmtu(asoc); 1922 1923 if (sctp_wspace(asoc) < msg_len) 1924 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1925 1926 if (!sctp_wspace(asoc)) { 1927 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1928 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1929 if (err) 1930 goto err; 1931 } 1932 1933 if (sctp_state(asoc, CLOSED)) { 1934 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1935 if (err) 1936 goto err; 1937 1938 if (sctp_sk(sk)->strm_interleave) { 1939 timeo = sock_sndtimeo(sk, 0); 1940 err = sctp_wait_for_connect(asoc, &timeo); 1941 if (err) 1942 goto err; 1943 } else { 1944 wait_connect = true; 1945 } 1946 1947 pr_debug("%s: we associated primitively\n", __func__); 1948 } 1949 1950 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1951 if (IS_ERR(datamsg)) { 1952 err = PTR_ERR(datamsg); 1953 goto err; 1954 } 1955 1956 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1957 1958 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1959 sctp_chunk_hold(chunk); 1960 sctp_set_owner_w(chunk); 1961 chunk->transport = transport; 1962 } 1963 1964 err = sctp_primitive_SEND(net, asoc, datamsg); 1965 if (err) { 1966 sctp_datamsg_free(datamsg); 1967 goto err; 1968 } 1969 1970 pr_debug("%s: we sent primitively\n", __func__); 1971 1972 sctp_datamsg_put(datamsg); 1973 1974 if (unlikely(wait_connect)) { 1975 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1976 sctp_wait_for_connect(asoc, &timeo); 1977 } 1978 1979 err = msg_len; 1980 1981 err: 1982 return err; 1983 } 1984 1985 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1986 const struct msghdr *msg, 1987 struct sctp_cmsgs *cmsgs) 1988 { 1989 union sctp_addr *daddr = NULL; 1990 int err; 1991 1992 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1993 int len = msg->msg_namelen; 1994 1995 if (len > sizeof(*daddr)) 1996 len = sizeof(*daddr); 1997 1998 daddr = (union sctp_addr *)msg->msg_name; 1999 2000 err = sctp_verify_addr(sk, daddr, len); 2001 if (err) 2002 return ERR_PTR(err); 2003 } 2004 2005 return daddr; 2006 } 2007 2008 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2009 struct sctp_sndrcvinfo *sinfo, 2010 struct sctp_cmsgs *cmsgs) 2011 { 2012 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2013 sinfo->sinfo_stream = asoc->default_stream; 2014 sinfo->sinfo_ppid = asoc->default_ppid; 2015 sinfo->sinfo_context = asoc->default_context; 2016 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2017 2018 if (!cmsgs->prinfo) 2019 sinfo->sinfo_flags = asoc->default_flags; 2020 } 2021 2022 if (!cmsgs->srinfo && !cmsgs->prinfo) 2023 sinfo->sinfo_timetolive = asoc->default_timetolive; 2024 2025 if (cmsgs->authinfo) { 2026 /* Reuse sinfo_tsn to indicate that authinfo was set and 2027 * sinfo_ssn to save the keyid on tx path. 2028 */ 2029 sinfo->sinfo_tsn = 1; 2030 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2031 } 2032 } 2033 2034 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2035 { 2036 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2037 struct sctp_transport *transport = NULL; 2038 struct sctp_sndrcvinfo _sinfo, *sinfo; 2039 struct sctp_association *asoc; 2040 struct sctp_cmsgs cmsgs; 2041 union sctp_addr *daddr; 2042 bool new = false; 2043 __u16 sflags; 2044 int err; 2045 2046 /* Parse and get snd_info */ 2047 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2048 if (err) 2049 goto out; 2050 2051 sinfo = &_sinfo; 2052 sflags = sinfo->sinfo_flags; 2053 2054 /* Get daddr from msg */ 2055 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2056 if (IS_ERR(daddr)) { 2057 err = PTR_ERR(daddr); 2058 goto out; 2059 } 2060 2061 lock_sock(sk); 2062 2063 /* SCTP_SENDALL process */ 2064 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2065 list_for_each_entry(asoc, &ep->asocs, asocs) { 2066 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2067 msg_len); 2068 if (err == 0) 2069 continue; 2070 if (err < 0) 2071 goto out_unlock; 2072 2073 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2074 2075 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2076 NULL, sinfo); 2077 if (err < 0) 2078 goto out_unlock; 2079 2080 iov_iter_revert(&msg->msg_iter, err); 2081 } 2082 2083 goto out_unlock; 2084 } 2085 2086 /* Get and check or create asoc */ 2087 if (daddr) { 2088 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2089 if (asoc) { 2090 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2091 msg_len); 2092 if (err <= 0) 2093 goto out_unlock; 2094 } else { 2095 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2096 &transport); 2097 if (err) 2098 goto out_unlock; 2099 2100 asoc = transport->asoc; 2101 new = true; 2102 } 2103 2104 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2105 transport = NULL; 2106 } else { 2107 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2108 if (!asoc) { 2109 err = -EPIPE; 2110 goto out_unlock; 2111 } 2112 2113 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2114 if (err <= 0) 2115 goto out_unlock; 2116 } 2117 2118 /* Update snd_info with the asoc */ 2119 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2120 2121 /* Send msg to the asoc */ 2122 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2123 if (err < 0 && err != -ESRCH && new) 2124 sctp_association_free(asoc); 2125 2126 out_unlock: 2127 release_sock(sk); 2128 out: 2129 return sctp_error(sk, msg->msg_flags, err); 2130 } 2131 2132 /* This is an extended version of skb_pull() that removes the data from the 2133 * start of a skb even when data is spread across the list of skb's in the 2134 * frag_list. len specifies the total amount of data that needs to be removed. 2135 * when 'len' bytes could be removed from the skb, it returns 0. 2136 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2137 * could not be removed. 2138 */ 2139 static int sctp_skb_pull(struct sk_buff *skb, int len) 2140 { 2141 struct sk_buff *list; 2142 int skb_len = skb_headlen(skb); 2143 int rlen; 2144 2145 if (len <= skb_len) { 2146 __skb_pull(skb, len); 2147 return 0; 2148 } 2149 len -= skb_len; 2150 __skb_pull(skb, skb_len); 2151 2152 skb_walk_frags(skb, list) { 2153 rlen = sctp_skb_pull(list, len); 2154 skb->len -= (len-rlen); 2155 skb->data_len -= (len-rlen); 2156 2157 if (!rlen) 2158 return 0; 2159 2160 len = rlen; 2161 } 2162 2163 return len; 2164 } 2165 2166 /* API 3.1.3 recvmsg() - UDP Style Syntax 2167 * 2168 * ssize_t recvmsg(int socket, struct msghdr *message, 2169 * int flags); 2170 * 2171 * socket - the socket descriptor of the endpoint. 2172 * message - pointer to the msghdr structure which contains a single 2173 * user message and possibly some ancillary data. 2174 * 2175 * See Section 5 for complete description of the data 2176 * structures. 2177 * 2178 * flags - flags sent or received with the user message, see Section 2179 * 5 for complete description of the flags. 2180 */ 2181 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2182 int noblock, int flags, int *addr_len) 2183 { 2184 struct sctp_ulpevent *event = NULL; 2185 struct sctp_sock *sp = sctp_sk(sk); 2186 struct sk_buff *skb, *head_skb; 2187 int copied; 2188 int err = 0; 2189 int skb_len; 2190 2191 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2192 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2193 addr_len); 2194 2195 lock_sock(sk); 2196 2197 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2198 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2199 err = -ENOTCONN; 2200 goto out; 2201 } 2202 2203 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2204 if (!skb) 2205 goto out; 2206 2207 /* Get the total length of the skb including any skb's in the 2208 * frag_list. 2209 */ 2210 skb_len = skb->len; 2211 2212 copied = skb_len; 2213 if (copied > len) 2214 copied = len; 2215 2216 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2217 2218 event = sctp_skb2event(skb); 2219 2220 if (err) 2221 goto out_free; 2222 2223 if (event->chunk && event->chunk->head_skb) 2224 head_skb = event->chunk->head_skb; 2225 else 2226 head_skb = skb; 2227 sock_recv_ts_and_drops(msg, sk, head_skb); 2228 if (sctp_ulpevent_is_notification(event)) { 2229 msg->msg_flags |= MSG_NOTIFICATION; 2230 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2231 } else { 2232 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2233 } 2234 2235 /* Check if we allow SCTP_NXTINFO. */ 2236 if (sp->recvnxtinfo) 2237 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2238 /* Check if we allow SCTP_RCVINFO. */ 2239 if (sp->recvrcvinfo) 2240 sctp_ulpevent_read_rcvinfo(event, msg); 2241 /* Check if we allow SCTP_SNDRCVINFO. */ 2242 if (sp->subscribe.sctp_data_io_event) 2243 sctp_ulpevent_read_sndrcvinfo(event, msg); 2244 2245 err = copied; 2246 2247 /* If skb's length exceeds the user's buffer, update the skb and 2248 * push it back to the receive_queue so that the next call to 2249 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2250 */ 2251 if (skb_len > copied) { 2252 msg->msg_flags &= ~MSG_EOR; 2253 if (flags & MSG_PEEK) 2254 goto out_free; 2255 sctp_skb_pull(skb, copied); 2256 skb_queue_head(&sk->sk_receive_queue, skb); 2257 2258 /* When only partial message is copied to the user, increase 2259 * rwnd by that amount. If all the data in the skb is read, 2260 * rwnd is updated when the event is freed. 2261 */ 2262 if (!sctp_ulpevent_is_notification(event)) 2263 sctp_assoc_rwnd_increase(event->asoc, copied); 2264 goto out; 2265 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2266 (event->msg_flags & MSG_EOR)) 2267 msg->msg_flags |= MSG_EOR; 2268 else 2269 msg->msg_flags &= ~MSG_EOR; 2270 2271 out_free: 2272 if (flags & MSG_PEEK) { 2273 /* Release the skb reference acquired after peeking the skb in 2274 * sctp_skb_recv_datagram(). 2275 */ 2276 kfree_skb(skb); 2277 } else { 2278 /* Free the event which includes releasing the reference to 2279 * the owner of the skb, freeing the skb and updating the 2280 * rwnd. 2281 */ 2282 sctp_ulpevent_free(event); 2283 } 2284 out: 2285 release_sock(sk); 2286 return err; 2287 } 2288 2289 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2290 * 2291 * This option is a on/off flag. If enabled no SCTP message 2292 * fragmentation will be performed. Instead if a message being sent 2293 * exceeds the current PMTU size, the message will NOT be sent and 2294 * instead a error will be indicated to the user. 2295 */ 2296 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2297 char __user *optval, 2298 unsigned int optlen) 2299 { 2300 int val; 2301 2302 if (optlen < sizeof(int)) 2303 return -EINVAL; 2304 2305 if (get_user(val, (int __user *)optval)) 2306 return -EFAULT; 2307 2308 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2309 2310 return 0; 2311 } 2312 2313 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2314 unsigned int optlen) 2315 { 2316 struct sctp_association *asoc; 2317 struct sctp_ulpevent *event; 2318 2319 if (optlen > sizeof(struct sctp_event_subscribe)) 2320 return -EINVAL; 2321 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2322 return -EFAULT; 2323 2324 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2325 * if there is no data to be sent or retransmit, the stack will 2326 * immediately send up this notification. 2327 */ 2328 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2329 &sctp_sk(sk)->subscribe)) { 2330 asoc = sctp_id2assoc(sk, 0); 2331 2332 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2333 event = sctp_ulpevent_make_sender_dry_event(asoc, 2334 GFP_USER | __GFP_NOWARN); 2335 if (!event) 2336 return -ENOMEM; 2337 2338 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2339 } 2340 } 2341 2342 return 0; 2343 } 2344 2345 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2346 * 2347 * This socket option is applicable to the UDP-style socket only. When 2348 * set it will cause associations that are idle for more than the 2349 * specified number of seconds to automatically close. An association 2350 * being idle is defined an association that has NOT sent or received 2351 * user data. The special value of '0' indicates that no automatic 2352 * close of any associations should be performed. The option expects an 2353 * integer defining the number of seconds of idle time before an 2354 * association is closed. 2355 */ 2356 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2357 unsigned int optlen) 2358 { 2359 struct sctp_sock *sp = sctp_sk(sk); 2360 struct net *net = sock_net(sk); 2361 2362 /* Applicable to UDP-style socket only */ 2363 if (sctp_style(sk, TCP)) 2364 return -EOPNOTSUPP; 2365 if (optlen != sizeof(int)) 2366 return -EINVAL; 2367 if (copy_from_user(&sp->autoclose, optval, optlen)) 2368 return -EFAULT; 2369 2370 if (sp->autoclose > net->sctp.max_autoclose) 2371 sp->autoclose = net->sctp.max_autoclose; 2372 2373 return 0; 2374 } 2375 2376 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2377 * 2378 * Applications can enable or disable heartbeats for any peer address of 2379 * an association, modify an address's heartbeat interval, force a 2380 * heartbeat to be sent immediately, and adjust the address's maximum 2381 * number of retransmissions sent before an address is considered 2382 * unreachable. The following structure is used to access and modify an 2383 * address's parameters: 2384 * 2385 * struct sctp_paddrparams { 2386 * sctp_assoc_t spp_assoc_id; 2387 * struct sockaddr_storage spp_address; 2388 * uint32_t spp_hbinterval; 2389 * uint16_t spp_pathmaxrxt; 2390 * uint32_t spp_pathmtu; 2391 * uint32_t spp_sackdelay; 2392 * uint32_t spp_flags; 2393 * }; 2394 * 2395 * spp_assoc_id - (one-to-many style socket) This is filled in the 2396 * application, and identifies the association for 2397 * this query. 2398 * spp_address - This specifies which address is of interest. 2399 * spp_hbinterval - This contains the value of the heartbeat interval, 2400 * in milliseconds. If a value of zero 2401 * is present in this field then no changes are to 2402 * be made to this parameter. 2403 * spp_pathmaxrxt - This contains the maximum number of 2404 * retransmissions before this address shall be 2405 * considered unreachable. If a value of zero 2406 * is present in this field then no changes are to 2407 * be made to this parameter. 2408 * spp_pathmtu - When Path MTU discovery is disabled the value 2409 * specified here will be the "fixed" path mtu. 2410 * Note that if the spp_address field is empty 2411 * then all associations on this address will 2412 * have this fixed path mtu set upon them. 2413 * 2414 * spp_sackdelay - When delayed sack is enabled, this value specifies 2415 * the number of milliseconds that sacks will be delayed 2416 * for. This value will apply to all addresses of an 2417 * association if the spp_address field is empty. Note 2418 * also, that if delayed sack is enabled and this 2419 * value is set to 0, no change is made to the last 2420 * recorded delayed sack timer value. 2421 * 2422 * spp_flags - These flags are used to control various features 2423 * on an association. The flag field may contain 2424 * zero or more of the following options. 2425 * 2426 * SPP_HB_ENABLE - Enable heartbeats on the 2427 * specified address. Note that if the address 2428 * field is empty all addresses for the association 2429 * have heartbeats enabled upon them. 2430 * 2431 * SPP_HB_DISABLE - Disable heartbeats on the 2432 * speicifed address. Note that if the address 2433 * field is empty all addresses for the association 2434 * will have their heartbeats disabled. Note also 2435 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2436 * mutually exclusive, only one of these two should 2437 * be specified. Enabling both fields will have 2438 * undetermined results. 2439 * 2440 * SPP_HB_DEMAND - Request a user initiated heartbeat 2441 * to be made immediately. 2442 * 2443 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2444 * heartbeat delayis to be set to the value of 0 2445 * milliseconds. 2446 * 2447 * SPP_PMTUD_ENABLE - This field will enable PMTU 2448 * discovery upon the specified address. Note that 2449 * if the address feild is empty then all addresses 2450 * on the association are effected. 2451 * 2452 * SPP_PMTUD_DISABLE - This field will disable PMTU 2453 * discovery upon the specified address. Note that 2454 * if the address feild is empty then all addresses 2455 * on the association are effected. Not also that 2456 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2457 * exclusive. Enabling both will have undetermined 2458 * results. 2459 * 2460 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2461 * on delayed sack. The time specified in spp_sackdelay 2462 * is used to specify the sack delay for this address. Note 2463 * that if spp_address is empty then all addresses will 2464 * enable delayed sack and take on the sack delay 2465 * value specified in spp_sackdelay. 2466 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2467 * off delayed sack. If the spp_address field is blank then 2468 * delayed sack is disabled for the entire association. Note 2469 * also that this field is mutually exclusive to 2470 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2471 * results. 2472 */ 2473 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2474 struct sctp_transport *trans, 2475 struct sctp_association *asoc, 2476 struct sctp_sock *sp, 2477 int hb_change, 2478 int pmtud_change, 2479 int sackdelay_change) 2480 { 2481 int error; 2482 2483 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2484 struct net *net = sock_net(trans->asoc->base.sk); 2485 2486 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2487 if (error) 2488 return error; 2489 } 2490 2491 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2492 * this field is ignored. Note also that a value of zero indicates 2493 * the current setting should be left unchanged. 2494 */ 2495 if (params->spp_flags & SPP_HB_ENABLE) { 2496 2497 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2498 * set. This lets us use 0 value when this flag 2499 * is set. 2500 */ 2501 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2502 params->spp_hbinterval = 0; 2503 2504 if (params->spp_hbinterval || 2505 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2506 if (trans) { 2507 trans->hbinterval = 2508 msecs_to_jiffies(params->spp_hbinterval); 2509 } else if (asoc) { 2510 asoc->hbinterval = 2511 msecs_to_jiffies(params->spp_hbinterval); 2512 } else { 2513 sp->hbinterval = params->spp_hbinterval; 2514 } 2515 } 2516 } 2517 2518 if (hb_change) { 2519 if (trans) { 2520 trans->param_flags = 2521 (trans->param_flags & ~SPP_HB) | hb_change; 2522 } else if (asoc) { 2523 asoc->param_flags = 2524 (asoc->param_flags & ~SPP_HB) | hb_change; 2525 } else { 2526 sp->param_flags = 2527 (sp->param_flags & ~SPP_HB) | hb_change; 2528 } 2529 } 2530 2531 /* When Path MTU discovery is disabled the value specified here will 2532 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2533 * include the flag SPP_PMTUD_DISABLE for this field to have any 2534 * effect). 2535 */ 2536 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2537 if (trans) { 2538 trans->pathmtu = params->spp_pathmtu; 2539 sctp_assoc_sync_pmtu(asoc); 2540 } else if (asoc) { 2541 asoc->pathmtu = params->spp_pathmtu; 2542 } else { 2543 sp->pathmtu = params->spp_pathmtu; 2544 } 2545 } 2546 2547 if (pmtud_change) { 2548 if (trans) { 2549 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2550 (params->spp_flags & SPP_PMTUD_ENABLE); 2551 trans->param_flags = 2552 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2553 if (update) { 2554 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2555 sctp_assoc_sync_pmtu(asoc); 2556 } 2557 } else if (asoc) { 2558 asoc->param_flags = 2559 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2560 } else { 2561 sp->param_flags = 2562 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2563 } 2564 } 2565 2566 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2567 * value of this field is ignored. Note also that a value of zero 2568 * indicates the current setting should be left unchanged. 2569 */ 2570 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2571 if (trans) { 2572 trans->sackdelay = 2573 msecs_to_jiffies(params->spp_sackdelay); 2574 } else if (asoc) { 2575 asoc->sackdelay = 2576 msecs_to_jiffies(params->spp_sackdelay); 2577 } else { 2578 sp->sackdelay = params->spp_sackdelay; 2579 } 2580 } 2581 2582 if (sackdelay_change) { 2583 if (trans) { 2584 trans->param_flags = 2585 (trans->param_flags & ~SPP_SACKDELAY) | 2586 sackdelay_change; 2587 } else if (asoc) { 2588 asoc->param_flags = 2589 (asoc->param_flags & ~SPP_SACKDELAY) | 2590 sackdelay_change; 2591 } else { 2592 sp->param_flags = 2593 (sp->param_flags & ~SPP_SACKDELAY) | 2594 sackdelay_change; 2595 } 2596 } 2597 2598 /* Note that a value of zero indicates the current setting should be 2599 left unchanged. 2600 */ 2601 if (params->spp_pathmaxrxt) { 2602 if (trans) { 2603 trans->pathmaxrxt = params->spp_pathmaxrxt; 2604 } else if (asoc) { 2605 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2606 } else { 2607 sp->pathmaxrxt = params->spp_pathmaxrxt; 2608 } 2609 } 2610 2611 return 0; 2612 } 2613 2614 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2615 char __user *optval, 2616 unsigned int optlen) 2617 { 2618 struct sctp_paddrparams params; 2619 struct sctp_transport *trans = NULL; 2620 struct sctp_association *asoc = NULL; 2621 struct sctp_sock *sp = sctp_sk(sk); 2622 int error; 2623 int hb_change, pmtud_change, sackdelay_change; 2624 2625 if (optlen != sizeof(struct sctp_paddrparams)) 2626 return -EINVAL; 2627 2628 if (copy_from_user(¶ms, optval, optlen)) 2629 return -EFAULT; 2630 2631 /* Validate flags and value parameters. */ 2632 hb_change = params.spp_flags & SPP_HB; 2633 pmtud_change = params.spp_flags & SPP_PMTUD; 2634 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2635 2636 if (hb_change == SPP_HB || 2637 pmtud_change == SPP_PMTUD || 2638 sackdelay_change == SPP_SACKDELAY || 2639 params.spp_sackdelay > 500 || 2640 (params.spp_pathmtu && 2641 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2642 return -EINVAL; 2643 2644 /* If an address other than INADDR_ANY is specified, and 2645 * no transport is found, then the request is invalid. 2646 */ 2647 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2648 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2649 params.spp_assoc_id); 2650 if (!trans) 2651 return -EINVAL; 2652 } 2653 2654 /* Get association, if assoc_id != 0 and the socket is a one 2655 * to many style socket, and an association was not found, then 2656 * the id was invalid. 2657 */ 2658 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2659 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2660 return -EINVAL; 2661 2662 /* Heartbeat demand can only be sent on a transport or 2663 * association, but not a socket. 2664 */ 2665 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2666 return -EINVAL; 2667 2668 /* Process parameters. */ 2669 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2670 hb_change, pmtud_change, 2671 sackdelay_change); 2672 2673 if (error) 2674 return error; 2675 2676 /* If changes are for association, also apply parameters to each 2677 * transport. 2678 */ 2679 if (!trans && asoc) { 2680 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2681 transports) { 2682 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2683 hb_change, pmtud_change, 2684 sackdelay_change); 2685 } 2686 } 2687 2688 return 0; 2689 } 2690 2691 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2692 { 2693 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2694 } 2695 2696 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2697 { 2698 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2699 } 2700 2701 /* 2702 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2703 * 2704 * This option will effect the way delayed acks are performed. This 2705 * option allows you to get or set the delayed ack time, in 2706 * milliseconds. It also allows changing the delayed ack frequency. 2707 * Changing the frequency to 1 disables the delayed sack algorithm. If 2708 * the assoc_id is 0, then this sets or gets the endpoints default 2709 * values. If the assoc_id field is non-zero, then the set or get 2710 * effects the specified association for the one to many model (the 2711 * assoc_id field is ignored by the one to one model). Note that if 2712 * sack_delay or sack_freq are 0 when setting this option, then the 2713 * current values will remain unchanged. 2714 * 2715 * struct sctp_sack_info { 2716 * sctp_assoc_t sack_assoc_id; 2717 * uint32_t sack_delay; 2718 * uint32_t sack_freq; 2719 * }; 2720 * 2721 * sack_assoc_id - This parameter, indicates which association the user 2722 * is performing an action upon. Note that if this field's value is 2723 * zero then the endpoints default value is changed (effecting future 2724 * associations only). 2725 * 2726 * sack_delay - This parameter contains the number of milliseconds that 2727 * the user is requesting the delayed ACK timer be set to. Note that 2728 * this value is defined in the standard to be between 200 and 500 2729 * milliseconds. 2730 * 2731 * sack_freq - This parameter contains the number of packets that must 2732 * be received before a sack is sent without waiting for the delay 2733 * timer to expire. The default value for this is 2, setting this 2734 * value to 1 will disable the delayed sack algorithm. 2735 */ 2736 2737 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2738 char __user *optval, unsigned int optlen) 2739 { 2740 struct sctp_sack_info params; 2741 struct sctp_transport *trans = NULL; 2742 struct sctp_association *asoc = NULL; 2743 struct sctp_sock *sp = sctp_sk(sk); 2744 2745 if (optlen == sizeof(struct sctp_sack_info)) { 2746 if (copy_from_user(¶ms, optval, optlen)) 2747 return -EFAULT; 2748 2749 if (params.sack_delay == 0 && params.sack_freq == 0) 2750 return 0; 2751 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2752 pr_warn_ratelimited(DEPRECATED 2753 "%s (pid %d) " 2754 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2755 "Use struct sctp_sack_info instead\n", 2756 current->comm, task_pid_nr(current)); 2757 if (copy_from_user(¶ms, optval, optlen)) 2758 return -EFAULT; 2759 2760 if (params.sack_delay == 0) 2761 params.sack_freq = 1; 2762 else 2763 params.sack_freq = 0; 2764 } else 2765 return -EINVAL; 2766 2767 /* Validate value parameter. */ 2768 if (params.sack_delay > 500) 2769 return -EINVAL; 2770 2771 /* Get association, if sack_assoc_id != 0 and the socket is a one 2772 * to many style socket, and an association was not found, then 2773 * the id was invalid. 2774 */ 2775 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2776 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2777 return -EINVAL; 2778 2779 if (params.sack_delay) { 2780 if (asoc) { 2781 asoc->sackdelay = 2782 msecs_to_jiffies(params.sack_delay); 2783 asoc->param_flags = 2784 sctp_spp_sackdelay_enable(asoc->param_flags); 2785 } else { 2786 sp->sackdelay = params.sack_delay; 2787 sp->param_flags = 2788 sctp_spp_sackdelay_enable(sp->param_flags); 2789 } 2790 } 2791 2792 if (params.sack_freq == 1) { 2793 if (asoc) { 2794 asoc->param_flags = 2795 sctp_spp_sackdelay_disable(asoc->param_flags); 2796 } else { 2797 sp->param_flags = 2798 sctp_spp_sackdelay_disable(sp->param_flags); 2799 } 2800 } else if (params.sack_freq > 1) { 2801 if (asoc) { 2802 asoc->sackfreq = params.sack_freq; 2803 asoc->param_flags = 2804 sctp_spp_sackdelay_enable(asoc->param_flags); 2805 } else { 2806 sp->sackfreq = params.sack_freq; 2807 sp->param_flags = 2808 sctp_spp_sackdelay_enable(sp->param_flags); 2809 } 2810 } 2811 2812 /* If change is for association, also apply to each transport. */ 2813 if (asoc) { 2814 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2815 transports) { 2816 if (params.sack_delay) { 2817 trans->sackdelay = 2818 msecs_to_jiffies(params.sack_delay); 2819 trans->param_flags = 2820 sctp_spp_sackdelay_enable(trans->param_flags); 2821 } 2822 if (params.sack_freq == 1) { 2823 trans->param_flags = 2824 sctp_spp_sackdelay_disable(trans->param_flags); 2825 } else if (params.sack_freq > 1) { 2826 trans->sackfreq = params.sack_freq; 2827 trans->param_flags = 2828 sctp_spp_sackdelay_enable(trans->param_flags); 2829 } 2830 } 2831 } 2832 2833 return 0; 2834 } 2835 2836 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2837 * 2838 * Applications can specify protocol parameters for the default association 2839 * initialization. The option name argument to setsockopt() and getsockopt() 2840 * is SCTP_INITMSG. 2841 * 2842 * Setting initialization parameters is effective only on an unconnected 2843 * socket (for UDP-style sockets only future associations are effected 2844 * by the change). With TCP-style sockets, this option is inherited by 2845 * sockets derived from a listener socket. 2846 */ 2847 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2848 { 2849 struct sctp_initmsg sinit; 2850 struct sctp_sock *sp = sctp_sk(sk); 2851 2852 if (optlen != sizeof(struct sctp_initmsg)) 2853 return -EINVAL; 2854 if (copy_from_user(&sinit, optval, optlen)) 2855 return -EFAULT; 2856 2857 if (sinit.sinit_num_ostreams) 2858 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2859 if (sinit.sinit_max_instreams) 2860 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2861 if (sinit.sinit_max_attempts) 2862 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2863 if (sinit.sinit_max_init_timeo) 2864 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2865 2866 return 0; 2867 } 2868 2869 /* 2870 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2871 * 2872 * Applications that wish to use the sendto() system call may wish to 2873 * specify a default set of parameters that would normally be supplied 2874 * through the inclusion of ancillary data. This socket option allows 2875 * such an application to set the default sctp_sndrcvinfo structure. 2876 * The application that wishes to use this socket option simply passes 2877 * in to this call the sctp_sndrcvinfo structure defined in Section 2878 * 5.2.2) The input parameters accepted by this call include 2879 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2880 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2881 * to this call if the caller is using the UDP model. 2882 */ 2883 static int sctp_setsockopt_default_send_param(struct sock *sk, 2884 char __user *optval, 2885 unsigned int optlen) 2886 { 2887 struct sctp_sock *sp = sctp_sk(sk); 2888 struct sctp_association *asoc; 2889 struct sctp_sndrcvinfo info; 2890 2891 if (optlen != sizeof(info)) 2892 return -EINVAL; 2893 if (copy_from_user(&info, optval, optlen)) 2894 return -EFAULT; 2895 if (info.sinfo_flags & 2896 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2897 SCTP_ABORT | SCTP_EOF)) 2898 return -EINVAL; 2899 2900 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2901 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2902 return -EINVAL; 2903 if (asoc) { 2904 asoc->default_stream = info.sinfo_stream; 2905 asoc->default_flags = info.sinfo_flags; 2906 asoc->default_ppid = info.sinfo_ppid; 2907 asoc->default_context = info.sinfo_context; 2908 asoc->default_timetolive = info.sinfo_timetolive; 2909 } else { 2910 sp->default_stream = info.sinfo_stream; 2911 sp->default_flags = info.sinfo_flags; 2912 sp->default_ppid = info.sinfo_ppid; 2913 sp->default_context = info.sinfo_context; 2914 sp->default_timetolive = info.sinfo_timetolive; 2915 } 2916 2917 return 0; 2918 } 2919 2920 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2921 * (SCTP_DEFAULT_SNDINFO) 2922 */ 2923 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2924 char __user *optval, 2925 unsigned int optlen) 2926 { 2927 struct sctp_sock *sp = sctp_sk(sk); 2928 struct sctp_association *asoc; 2929 struct sctp_sndinfo info; 2930 2931 if (optlen != sizeof(info)) 2932 return -EINVAL; 2933 if (copy_from_user(&info, optval, optlen)) 2934 return -EFAULT; 2935 if (info.snd_flags & 2936 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2937 SCTP_ABORT | SCTP_EOF)) 2938 return -EINVAL; 2939 2940 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2941 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2942 return -EINVAL; 2943 if (asoc) { 2944 asoc->default_stream = info.snd_sid; 2945 asoc->default_flags = info.snd_flags; 2946 asoc->default_ppid = info.snd_ppid; 2947 asoc->default_context = info.snd_context; 2948 } else { 2949 sp->default_stream = info.snd_sid; 2950 sp->default_flags = info.snd_flags; 2951 sp->default_ppid = info.snd_ppid; 2952 sp->default_context = info.snd_context; 2953 } 2954 2955 return 0; 2956 } 2957 2958 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2959 * 2960 * Requests that the local SCTP stack use the enclosed peer address as 2961 * the association primary. The enclosed address must be one of the 2962 * association peer's addresses. 2963 */ 2964 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2965 unsigned int optlen) 2966 { 2967 struct sctp_prim prim; 2968 struct sctp_transport *trans; 2969 struct sctp_af *af; 2970 int err; 2971 2972 if (optlen != sizeof(struct sctp_prim)) 2973 return -EINVAL; 2974 2975 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2976 return -EFAULT; 2977 2978 /* Allow security module to validate address but need address len. */ 2979 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 2980 if (!af) 2981 return -EINVAL; 2982 2983 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 2984 (struct sockaddr *)&prim.ssp_addr, 2985 af->sockaddr_len); 2986 if (err) 2987 return err; 2988 2989 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2990 if (!trans) 2991 return -EINVAL; 2992 2993 sctp_assoc_set_primary(trans->asoc, trans); 2994 2995 return 0; 2996 } 2997 2998 /* 2999 * 7.1.5 SCTP_NODELAY 3000 * 3001 * Turn on/off any Nagle-like algorithm. This means that packets are 3002 * generally sent as soon as possible and no unnecessary delays are 3003 * introduced, at the cost of more packets in the network. Expects an 3004 * integer boolean flag. 3005 */ 3006 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3007 unsigned int optlen) 3008 { 3009 int val; 3010 3011 if (optlen < sizeof(int)) 3012 return -EINVAL; 3013 if (get_user(val, (int __user *)optval)) 3014 return -EFAULT; 3015 3016 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3017 return 0; 3018 } 3019 3020 /* 3021 * 3022 * 7.1.1 SCTP_RTOINFO 3023 * 3024 * The protocol parameters used to initialize and bound retransmission 3025 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3026 * and modify these parameters. 3027 * All parameters are time values, in milliseconds. A value of 0, when 3028 * modifying the parameters, indicates that the current value should not 3029 * be changed. 3030 * 3031 */ 3032 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3033 { 3034 struct sctp_rtoinfo rtoinfo; 3035 struct sctp_association *asoc; 3036 unsigned long rto_min, rto_max; 3037 struct sctp_sock *sp = sctp_sk(sk); 3038 3039 if (optlen != sizeof (struct sctp_rtoinfo)) 3040 return -EINVAL; 3041 3042 if (copy_from_user(&rtoinfo, optval, optlen)) 3043 return -EFAULT; 3044 3045 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3046 3047 /* Set the values to the specific association */ 3048 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3049 return -EINVAL; 3050 3051 rto_max = rtoinfo.srto_max; 3052 rto_min = rtoinfo.srto_min; 3053 3054 if (rto_max) 3055 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3056 else 3057 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3058 3059 if (rto_min) 3060 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3061 else 3062 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3063 3064 if (rto_min > rto_max) 3065 return -EINVAL; 3066 3067 if (asoc) { 3068 if (rtoinfo.srto_initial != 0) 3069 asoc->rto_initial = 3070 msecs_to_jiffies(rtoinfo.srto_initial); 3071 asoc->rto_max = rto_max; 3072 asoc->rto_min = rto_min; 3073 } else { 3074 /* If there is no association or the association-id = 0 3075 * set the values to the endpoint. 3076 */ 3077 if (rtoinfo.srto_initial != 0) 3078 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3079 sp->rtoinfo.srto_max = rto_max; 3080 sp->rtoinfo.srto_min = rto_min; 3081 } 3082 3083 return 0; 3084 } 3085 3086 /* 3087 * 3088 * 7.1.2 SCTP_ASSOCINFO 3089 * 3090 * This option is used to tune the maximum retransmission attempts 3091 * of the association. 3092 * Returns an error if the new association retransmission value is 3093 * greater than the sum of the retransmission value of the peer. 3094 * See [SCTP] for more information. 3095 * 3096 */ 3097 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3098 { 3099 3100 struct sctp_assocparams assocparams; 3101 struct sctp_association *asoc; 3102 3103 if (optlen != sizeof(struct sctp_assocparams)) 3104 return -EINVAL; 3105 if (copy_from_user(&assocparams, optval, optlen)) 3106 return -EFAULT; 3107 3108 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3109 3110 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3111 return -EINVAL; 3112 3113 /* Set the values to the specific association */ 3114 if (asoc) { 3115 if (assocparams.sasoc_asocmaxrxt != 0) { 3116 __u32 path_sum = 0; 3117 int paths = 0; 3118 struct sctp_transport *peer_addr; 3119 3120 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3121 transports) { 3122 path_sum += peer_addr->pathmaxrxt; 3123 paths++; 3124 } 3125 3126 /* Only validate asocmaxrxt if we have more than 3127 * one path/transport. We do this because path 3128 * retransmissions are only counted when we have more 3129 * then one path. 3130 */ 3131 if (paths > 1 && 3132 assocparams.sasoc_asocmaxrxt > path_sum) 3133 return -EINVAL; 3134 3135 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3136 } 3137 3138 if (assocparams.sasoc_cookie_life != 0) 3139 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3140 } else { 3141 /* Set the values to the endpoint */ 3142 struct sctp_sock *sp = sctp_sk(sk); 3143 3144 if (assocparams.sasoc_asocmaxrxt != 0) 3145 sp->assocparams.sasoc_asocmaxrxt = 3146 assocparams.sasoc_asocmaxrxt; 3147 if (assocparams.sasoc_cookie_life != 0) 3148 sp->assocparams.sasoc_cookie_life = 3149 assocparams.sasoc_cookie_life; 3150 } 3151 return 0; 3152 } 3153 3154 /* 3155 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3156 * 3157 * This socket option is a boolean flag which turns on or off mapped V4 3158 * addresses. If this option is turned on and the socket is type 3159 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3160 * If this option is turned off, then no mapping will be done of V4 3161 * addresses and a user will receive both PF_INET6 and PF_INET type 3162 * addresses on the socket. 3163 */ 3164 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3165 { 3166 int val; 3167 struct sctp_sock *sp = sctp_sk(sk); 3168 3169 if (optlen < sizeof(int)) 3170 return -EINVAL; 3171 if (get_user(val, (int __user *)optval)) 3172 return -EFAULT; 3173 if (val) 3174 sp->v4mapped = 1; 3175 else 3176 sp->v4mapped = 0; 3177 3178 return 0; 3179 } 3180 3181 /* 3182 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3183 * This option will get or set the maximum size to put in any outgoing 3184 * SCTP DATA chunk. If a message is larger than this size it will be 3185 * fragmented by SCTP into the specified size. Note that the underlying 3186 * SCTP implementation may fragment into smaller sized chunks when the 3187 * PMTU of the underlying association is smaller than the value set by 3188 * the user. The default value for this option is '0' which indicates 3189 * the user is NOT limiting fragmentation and only the PMTU will effect 3190 * SCTP's choice of DATA chunk size. Note also that values set larger 3191 * than the maximum size of an IP datagram will effectively let SCTP 3192 * control fragmentation (i.e. the same as setting this option to 0). 3193 * 3194 * The following structure is used to access and modify this parameter: 3195 * 3196 * struct sctp_assoc_value { 3197 * sctp_assoc_t assoc_id; 3198 * uint32_t assoc_value; 3199 * }; 3200 * 3201 * assoc_id: This parameter is ignored for one-to-one style sockets. 3202 * For one-to-many style sockets this parameter indicates which 3203 * association the user is performing an action upon. Note that if 3204 * this field's value is zero then the endpoints default value is 3205 * changed (effecting future associations only). 3206 * assoc_value: This parameter specifies the maximum size in bytes. 3207 */ 3208 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3209 { 3210 struct sctp_sock *sp = sctp_sk(sk); 3211 struct sctp_af *af = sp->pf->af; 3212 struct sctp_assoc_value params; 3213 struct sctp_association *asoc; 3214 int val; 3215 3216 if (optlen == sizeof(int)) { 3217 pr_warn_ratelimited(DEPRECATED 3218 "%s (pid %d) " 3219 "Use of int in maxseg socket option.\n" 3220 "Use struct sctp_assoc_value instead\n", 3221 current->comm, task_pid_nr(current)); 3222 if (copy_from_user(&val, optval, optlen)) 3223 return -EFAULT; 3224 params.assoc_id = 0; 3225 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3226 if (copy_from_user(¶ms, optval, optlen)) 3227 return -EFAULT; 3228 val = params.assoc_value; 3229 } else { 3230 return -EINVAL; 3231 } 3232 3233 if (val) { 3234 int min_len, max_len; 3235 3236 min_len = SCTP_DEFAULT_MINSEGMENT - af->net_header_len; 3237 min_len -= af->ip_options_len(sk); 3238 min_len -= sizeof(struct sctphdr) + 3239 sizeof(struct sctp_data_chunk); 3240 3241 max_len = SCTP_MAX_CHUNK_LEN - sizeof(struct sctp_data_chunk); 3242 3243 if (val < min_len || val > max_len) 3244 return -EINVAL; 3245 } 3246 3247 asoc = sctp_id2assoc(sk, params.assoc_id); 3248 if (asoc) { 3249 if (val == 0) { 3250 val = asoc->pathmtu - af->net_header_len; 3251 val -= af->ip_options_len(sk); 3252 val -= sizeof(struct sctphdr) + 3253 sctp_datachk_len(&asoc->stream); 3254 } 3255 asoc->user_frag = val; 3256 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3257 } else { 3258 if (params.assoc_id && sctp_style(sk, UDP)) 3259 return -EINVAL; 3260 sp->user_frag = val; 3261 } 3262 3263 return 0; 3264 } 3265 3266 3267 /* 3268 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3269 * 3270 * Requests that the peer mark the enclosed address as the association 3271 * primary. The enclosed address must be one of the association's 3272 * locally bound addresses. The following structure is used to make a 3273 * set primary request: 3274 */ 3275 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3276 unsigned int optlen) 3277 { 3278 struct net *net = sock_net(sk); 3279 struct sctp_sock *sp; 3280 struct sctp_association *asoc = NULL; 3281 struct sctp_setpeerprim prim; 3282 struct sctp_chunk *chunk; 3283 struct sctp_af *af; 3284 int err; 3285 3286 sp = sctp_sk(sk); 3287 3288 if (!net->sctp.addip_enable) 3289 return -EPERM; 3290 3291 if (optlen != sizeof(struct sctp_setpeerprim)) 3292 return -EINVAL; 3293 3294 if (copy_from_user(&prim, optval, optlen)) 3295 return -EFAULT; 3296 3297 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3298 if (!asoc) 3299 return -EINVAL; 3300 3301 if (!asoc->peer.asconf_capable) 3302 return -EPERM; 3303 3304 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3305 return -EPERM; 3306 3307 if (!sctp_state(asoc, ESTABLISHED)) 3308 return -ENOTCONN; 3309 3310 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3311 if (!af) 3312 return -EINVAL; 3313 3314 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3315 return -EADDRNOTAVAIL; 3316 3317 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3318 return -EADDRNOTAVAIL; 3319 3320 /* Allow security module to validate address. */ 3321 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3322 (struct sockaddr *)&prim.sspp_addr, 3323 af->sockaddr_len); 3324 if (err) 3325 return err; 3326 3327 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3328 chunk = sctp_make_asconf_set_prim(asoc, 3329 (union sctp_addr *)&prim.sspp_addr); 3330 if (!chunk) 3331 return -ENOMEM; 3332 3333 err = sctp_send_asconf(asoc, chunk); 3334 3335 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3336 3337 return err; 3338 } 3339 3340 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3341 unsigned int optlen) 3342 { 3343 struct sctp_setadaptation adaptation; 3344 3345 if (optlen != sizeof(struct sctp_setadaptation)) 3346 return -EINVAL; 3347 if (copy_from_user(&adaptation, optval, optlen)) 3348 return -EFAULT; 3349 3350 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3351 3352 return 0; 3353 } 3354 3355 /* 3356 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3357 * 3358 * The context field in the sctp_sndrcvinfo structure is normally only 3359 * used when a failed message is retrieved holding the value that was 3360 * sent down on the actual send call. This option allows the setting of 3361 * a default context on an association basis that will be received on 3362 * reading messages from the peer. This is especially helpful in the 3363 * one-2-many model for an application to keep some reference to an 3364 * internal state machine that is processing messages on the 3365 * association. Note that the setting of this value only effects 3366 * received messages from the peer and does not effect the value that is 3367 * saved with outbound messages. 3368 */ 3369 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3370 unsigned int optlen) 3371 { 3372 struct sctp_assoc_value params; 3373 struct sctp_sock *sp; 3374 struct sctp_association *asoc; 3375 3376 if (optlen != sizeof(struct sctp_assoc_value)) 3377 return -EINVAL; 3378 if (copy_from_user(¶ms, optval, optlen)) 3379 return -EFAULT; 3380 3381 sp = sctp_sk(sk); 3382 3383 if (params.assoc_id != 0) { 3384 asoc = sctp_id2assoc(sk, params.assoc_id); 3385 if (!asoc) 3386 return -EINVAL; 3387 asoc->default_rcv_context = params.assoc_value; 3388 } else { 3389 sp->default_rcv_context = params.assoc_value; 3390 } 3391 3392 return 0; 3393 } 3394 3395 /* 3396 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3397 * 3398 * This options will at a minimum specify if the implementation is doing 3399 * fragmented interleave. Fragmented interleave, for a one to many 3400 * socket, is when subsequent calls to receive a message may return 3401 * parts of messages from different associations. Some implementations 3402 * may allow you to turn this value on or off. If so, when turned off, 3403 * no fragment interleave will occur (which will cause a head of line 3404 * blocking amongst multiple associations sharing the same one to many 3405 * socket). When this option is turned on, then each receive call may 3406 * come from a different association (thus the user must receive data 3407 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3408 * association each receive belongs to. 3409 * 3410 * This option takes a boolean value. A non-zero value indicates that 3411 * fragmented interleave is on. A value of zero indicates that 3412 * fragmented interleave is off. 3413 * 3414 * Note that it is important that an implementation that allows this 3415 * option to be turned on, have it off by default. Otherwise an unaware 3416 * application using the one to many model may become confused and act 3417 * incorrectly. 3418 */ 3419 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3420 char __user *optval, 3421 unsigned int optlen) 3422 { 3423 int val; 3424 3425 if (optlen != sizeof(int)) 3426 return -EINVAL; 3427 if (get_user(val, (int __user *)optval)) 3428 return -EFAULT; 3429 3430 sctp_sk(sk)->frag_interleave = !!val; 3431 3432 if (!sctp_sk(sk)->frag_interleave) 3433 sctp_sk(sk)->strm_interleave = 0; 3434 3435 return 0; 3436 } 3437 3438 /* 3439 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3440 * (SCTP_PARTIAL_DELIVERY_POINT) 3441 * 3442 * This option will set or get the SCTP partial delivery point. This 3443 * point is the size of a message where the partial delivery API will be 3444 * invoked to help free up rwnd space for the peer. Setting this to a 3445 * lower value will cause partial deliveries to happen more often. The 3446 * calls argument is an integer that sets or gets the partial delivery 3447 * point. Note also that the call will fail if the user attempts to set 3448 * this value larger than the socket receive buffer size. 3449 * 3450 * Note that any single message having a length smaller than or equal to 3451 * the SCTP partial delivery point will be delivered in one single read 3452 * call as long as the user provided buffer is large enough to hold the 3453 * message. 3454 */ 3455 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3456 char __user *optval, 3457 unsigned int optlen) 3458 { 3459 u32 val; 3460 3461 if (optlen != sizeof(u32)) 3462 return -EINVAL; 3463 if (get_user(val, (int __user *)optval)) 3464 return -EFAULT; 3465 3466 /* Note: We double the receive buffer from what the user sets 3467 * it to be, also initial rwnd is based on rcvbuf/2. 3468 */ 3469 if (val > (sk->sk_rcvbuf >> 1)) 3470 return -EINVAL; 3471 3472 sctp_sk(sk)->pd_point = val; 3473 3474 return 0; /* is this the right error code? */ 3475 } 3476 3477 /* 3478 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3479 * 3480 * This option will allow a user to change the maximum burst of packets 3481 * that can be emitted by this association. Note that the default value 3482 * is 4, and some implementations may restrict this setting so that it 3483 * can only be lowered. 3484 * 3485 * NOTE: This text doesn't seem right. Do this on a socket basis with 3486 * future associations inheriting the socket value. 3487 */ 3488 static int sctp_setsockopt_maxburst(struct sock *sk, 3489 char __user *optval, 3490 unsigned int optlen) 3491 { 3492 struct sctp_assoc_value params; 3493 struct sctp_sock *sp; 3494 struct sctp_association *asoc; 3495 int val; 3496 int assoc_id = 0; 3497 3498 if (optlen == sizeof(int)) { 3499 pr_warn_ratelimited(DEPRECATED 3500 "%s (pid %d) " 3501 "Use of int in max_burst socket option deprecated.\n" 3502 "Use struct sctp_assoc_value instead\n", 3503 current->comm, task_pid_nr(current)); 3504 if (copy_from_user(&val, optval, optlen)) 3505 return -EFAULT; 3506 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3507 if (copy_from_user(¶ms, optval, optlen)) 3508 return -EFAULT; 3509 val = params.assoc_value; 3510 assoc_id = params.assoc_id; 3511 } else 3512 return -EINVAL; 3513 3514 sp = sctp_sk(sk); 3515 3516 if (assoc_id != 0) { 3517 asoc = sctp_id2assoc(sk, assoc_id); 3518 if (!asoc) 3519 return -EINVAL; 3520 asoc->max_burst = val; 3521 } else 3522 sp->max_burst = val; 3523 3524 return 0; 3525 } 3526 3527 /* 3528 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3529 * 3530 * This set option adds a chunk type that the user is requesting to be 3531 * received only in an authenticated way. Changes to the list of chunks 3532 * will only effect future associations on the socket. 3533 */ 3534 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3535 char __user *optval, 3536 unsigned int optlen) 3537 { 3538 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3539 struct sctp_authchunk val; 3540 3541 if (!ep->auth_enable) 3542 return -EACCES; 3543 3544 if (optlen != sizeof(struct sctp_authchunk)) 3545 return -EINVAL; 3546 if (copy_from_user(&val, optval, optlen)) 3547 return -EFAULT; 3548 3549 switch (val.sauth_chunk) { 3550 case SCTP_CID_INIT: 3551 case SCTP_CID_INIT_ACK: 3552 case SCTP_CID_SHUTDOWN_COMPLETE: 3553 case SCTP_CID_AUTH: 3554 return -EINVAL; 3555 } 3556 3557 /* add this chunk id to the endpoint */ 3558 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3559 } 3560 3561 /* 3562 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3563 * 3564 * This option gets or sets the list of HMAC algorithms that the local 3565 * endpoint requires the peer to use. 3566 */ 3567 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3568 char __user *optval, 3569 unsigned int optlen) 3570 { 3571 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3572 struct sctp_hmacalgo *hmacs; 3573 u32 idents; 3574 int err; 3575 3576 if (!ep->auth_enable) 3577 return -EACCES; 3578 3579 if (optlen < sizeof(struct sctp_hmacalgo)) 3580 return -EINVAL; 3581 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3582 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3583 3584 hmacs = memdup_user(optval, optlen); 3585 if (IS_ERR(hmacs)) 3586 return PTR_ERR(hmacs); 3587 3588 idents = hmacs->shmac_num_idents; 3589 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3590 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3591 err = -EINVAL; 3592 goto out; 3593 } 3594 3595 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3596 out: 3597 kfree(hmacs); 3598 return err; 3599 } 3600 3601 /* 3602 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3603 * 3604 * This option will set a shared secret key which is used to build an 3605 * association shared key. 3606 */ 3607 static int sctp_setsockopt_auth_key(struct sock *sk, 3608 char __user *optval, 3609 unsigned int optlen) 3610 { 3611 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3612 struct sctp_authkey *authkey; 3613 struct sctp_association *asoc; 3614 int ret; 3615 3616 if (!ep->auth_enable) 3617 return -EACCES; 3618 3619 if (optlen <= sizeof(struct sctp_authkey)) 3620 return -EINVAL; 3621 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3622 * this. 3623 */ 3624 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3625 sizeof(struct sctp_authkey)); 3626 3627 authkey = memdup_user(optval, optlen); 3628 if (IS_ERR(authkey)) 3629 return PTR_ERR(authkey); 3630 3631 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3632 ret = -EINVAL; 3633 goto out; 3634 } 3635 3636 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3637 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3638 ret = -EINVAL; 3639 goto out; 3640 } 3641 3642 ret = sctp_auth_set_key(ep, asoc, authkey); 3643 out: 3644 kzfree(authkey); 3645 return ret; 3646 } 3647 3648 /* 3649 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3650 * 3651 * This option will get or set the active shared key to be used to build 3652 * the association shared key. 3653 */ 3654 static int sctp_setsockopt_active_key(struct sock *sk, 3655 char __user *optval, 3656 unsigned int optlen) 3657 { 3658 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3659 struct sctp_authkeyid val; 3660 struct sctp_association *asoc; 3661 3662 if (!ep->auth_enable) 3663 return -EACCES; 3664 3665 if (optlen != sizeof(struct sctp_authkeyid)) 3666 return -EINVAL; 3667 if (copy_from_user(&val, optval, optlen)) 3668 return -EFAULT; 3669 3670 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3671 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3672 return -EINVAL; 3673 3674 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3675 } 3676 3677 /* 3678 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3679 * 3680 * This set option will delete a shared secret key from use. 3681 */ 3682 static int sctp_setsockopt_del_key(struct sock *sk, 3683 char __user *optval, 3684 unsigned int optlen) 3685 { 3686 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3687 struct sctp_authkeyid val; 3688 struct sctp_association *asoc; 3689 3690 if (!ep->auth_enable) 3691 return -EACCES; 3692 3693 if (optlen != sizeof(struct sctp_authkeyid)) 3694 return -EINVAL; 3695 if (copy_from_user(&val, optval, optlen)) 3696 return -EFAULT; 3697 3698 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3699 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3700 return -EINVAL; 3701 3702 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3703 3704 } 3705 3706 /* 3707 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3708 * 3709 * This set option will deactivate a shared secret key. 3710 */ 3711 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3712 unsigned int optlen) 3713 { 3714 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3715 struct sctp_authkeyid val; 3716 struct sctp_association *asoc; 3717 3718 if (!ep->auth_enable) 3719 return -EACCES; 3720 3721 if (optlen != sizeof(struct sctp_authkeyid)) 3722 return -EINVAL; 3723 if (copy_from_user(&val, optval, optlen)) 3724 return -EFAULT; 3725 3726 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3727 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3728 return -EINVAL; 3729 3730 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3731 } 3732 3733 /* 3734 * 8.1.23 SCTP_AUTO_ASCONF 3735 * 3736 * This option will enable or disable the use of the automatic generation of 3737 * ASCONF chunks to add and delete addresses to an existing association. Note 3738 * that this option has two caveats namely: a) it only affects sockets that 3739 * are bound to all addresses available to the SCTP stack, and b) the system 3740 * administrator may have an overriding control that turns the ASCONF feature 3741 * off no matter what setting the socket option may have. 3742 * This option expects an integer boolean flag, where a non-zero value turns on 3743 * the option, and a zero value turns off the option. 3744 * Note. In this implementation, socket operation overrides default parameter 3745 * being set by sysctl as well as FreeBSD implementation 3746 */ 3747 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3748 unsigned int optlen) 3749 { 3750 int val; 3751 struct sctp_sock *sp = sctp_sk(sk); 3752 3753 if (optlen < sizeof(int)) 3754 return -EINVAL; 3755 if (get_user(val, (int __user *)optval)) 3756 return -EFAULT; 3757 if (!sctp_is_ep_boundall(sk) && val) 3758 return -EINVAL; 3759 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3760 return 0; 3761 3762 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3763 if (val == 0 && sp->do_auto_asconf) { 3764 list_del(&sp->auto_asconf_list); 3765 sp->do_auto_asconf = 0; 3766 } else if (val && !sp->do_auto_asconf) { 3767 list_add_tail(&sp->auto_asconf_list, 3768 &sock_net(sk)->sctp.auto_asconf_splist); 3769 sp->do_auto_asconf = 1; 3770 } 3771 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3772 return 0; 3773 } 3774 3775 /* 3776 * SCTP_PEER_ADDR_THLDS 3777 * 3778 * This option allows us to alter the partially failed threshold for one or all 3779 * transports in an association. See Section 6.1 of: 3780 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3781 */ 3782 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3783 char __user *optval, 3784 unsigned int optlen) 3785 { 3786 struct sctp_paddrthlds val; 3787 struct sctp_transport *trans; 3788 struct sctp_association *asoc; 3789 3790 if (optlen < sizeof(struct sctp_paddrthlds)) 3791 return -EINVAL; 3792 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3793 sizeof(struct sctp_paddrthlds))) 3794 return -EFAULT; 3795 3796 3797 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3798 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3799 if (!asoc) 3800 return -ENOENT; 3801 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3802 transports) { 3803 if (val.spt_pathmaxrxt) 3804 trans->pathmaxrxt = val.spt_pathmaxrxt; 3805 trans->pf_retrans = val.spt_pathpfthld; 3806 } 3807 3808 if (val.spt_pathmaxrxt) 3809 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3810 asoc->pf_retrans = val.spt_pathpfthld; 3811 } else { 3812 trans = sctp_addr_id2transport(sk, &val.spt_address, 3813 val.spt_assoc_id); 3814 if (!trans) 3815 return -ENOENT; 3816 3817 if (val.spt_pathmaxrxt) 3818 trans->pathmaxrxt = val.spt_pathmaxrxt; 3819 trans->pf_retrans = val.spt_pathpfthld; 3820 } 3821 3822 return 0; 3823 } 3824 3825 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3826 char __user *optval, 3827 unsigned int optlen) 3828 { 3829 int val; 3830 3831 if (optlen < sizeof(int)) 3832 return -EINVAL; 3833 if (get_user(val, (int __user *) optval)) 3834 return -EFAULT; 3835 3836 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3837 3838 return 0; 3839 } 3840 3841 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3842 char __user *optval, 3843 unsigned int optlen) 3844 { 3845 int val; 3846 3847 if (optlen < sizeof(int)) 3848 return -EINVAL; 3849 if (get_user(val, (int __user *) optval)) 3850 return -EFAULT; 3851 3852 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3853 3854 return 0; 3855 } 3856 3857 static int sctp_setsockopt_pr_supported(struct sock *sk, 3858 char __user *optval, 3859 unsigned int optlen) 3860 { 3861 struct sctp_assoc_value params; 3862 struct sctp_association *asoc; 3863 int retval = -EINVAL; 3864 3865 if (optlen != sizeof(params)) 3866 goto out; 3867 3868 if (copy_from_user(¶ms, optval, optlen)) { 3869 retval = -EFAULT; 3870 goto out; 3871 } 3872 3873 asoc = sctp_id2assoc(sk, params.assoc_id); 3874 if (asoc) { 3875 asoc->prsctp_enable = !!params.assoc_value; 3876 } else if (!params.assoc_id) { 3877 struct sctp_sock *sp = sctp_sk(sk); 3878 3879 sp->ep->prsctp_enable = !!params.assoc_value; 3880 } else { 3881 goto out; 3882 } 3883 3884 retval = 0; 3885 3886 out: 3887 return retval; 3888 } 3889 3890 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3891 char __user *optval, 3892 unsigned int optlen) 3893 { 3894 struct sctp_default_prinfo info; 3895 struct sctp_association *asoc; 3896 int retval = -EINVAL; 3897 3898 if (optlen != sizeof(info)) 3899 goto out; 3900 3901 if (copy_from_user(&info, optval, sizeof(info))) { 3902 retval = -EFAULT; 3903 goto out; 3904 } 3905 3906 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3907 goto out; 3908 3909 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3910 info.pr_value = 0; 3911 3912 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3913 if (asoc) { 3914 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3915 asoc->default_timetolive = info.pr_value; 3916 } else if (!info.pr_assoc_id) { 3917 struct sctp_sock *sp = sctp_sk(sk); 3918 3919 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3920 sp->default_timetolive = info.pr_value; 3921 } else { 3922 goto out; 3923 } 3924 3925 retval = 0; 3926 3927 out: 3928 return retval; 3929 } 3930 3931 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3932 char __user *optval, 3933 unsigned int optlen) 3934 { 3935 struct sctp_assoc_value params; 3936 struct sctp_association *asoc; 3937 int retval = -EINVAL; 3938 3939 if (optlen != sizeof(params)) 3940 goto out; 3941 3942 if (copy_from_user(¶ms, optval, optlen)) { 3943 retval = -EFAULT; 3944 goto out; 3945 } 3946 3947 asoc = sctp_id2assoc(sk, params.assoc_id); 3948 if (asoc) { 3949 asoc->reconf_enable = !!params.assoc_value; 3950 } else if (!params.assoc_id) { 3951 struct sctp_sock *sp = sctp_sk(sk); 3952 3953 sp->ep->reconf_enable = !!params.assoc_value; 3954 } else { 3955 goto out; 3956 } 3957 3958 retval = 0; 3959 3960 out: 3961 return retval; 3962 } 3963 3964 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3965 char __user *optval, 3966 unsigned int optlen) 3967 { 3968 struct sctp_assoc_value params; 3969 struct sctp_association *asoc; 3970 int retval = -EINVAL; 3971 3972 if (optlen != sizeof(params)) 3973 goto out; 3974 3975 if (copy_from_user(¶ms, optval, optlen)) { 3976 retval = -EFAULT; 3977 goto out; 3978 } 3979 3980 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3981 goto out; 3982 3983 asoc = sctp_id2assoc(sk, params.assoc_id); 3984 if (asoc) { 3985 asoc->strreset_enable = params.assoc_value; 3986 } else if (!params.assoc_id) { 3987 struct sctp_sock *sp = sctp_sk(sk); 3988 3989 sp->ep->strreset_enable = params.assoc_value; 3990 } else { 3991 goto out; 3992 } 3993 3994 retval = 0; 3995 3996 out: 3997 return retval; 3998 } 3999 4000 static int sctp_setsockopt_reset_streams(struct sock *sk, 4001 char __user *optval, 4002 unsigned int optlen) 4003 { 4004 struct sctp_reset_streams *params; 4005 struct sctp_association *asoc; 4006 int retval = -EINVAL; 4007 4008 if (optlen < sizeof(*params)) 4009 return -EINVAL; 4010 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4011 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4012 sizeof(__u16) * sizeof(*params)); 4013 4014 params = memdup_user(optval, optlen); 4015 if (IS_ERR(params)) 4016 return PTR_ERR(params); 4017 4018 if (params->srs_number_streams * sizeof(__u16) > 4019 optlen - sizeof(*params)) 4020 goto out; 4021 4022 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4023 if (!asoc) 4024 goto out; 4025 4026 retval = sctp_send_reset_streams(asoc, params); 4027 4028 out: 4029 kfree(params); 4030 return retval; 4031 } 4032 4033 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4034 char __user *optval, 4035 unsigned int optlen) 4036 { 4037 struct sctp_association *asoc; 4038 sctp_assoc_t associd; 4039 int retval = -EINVAL; 4040 4041 if (optlen != sizeof(associd)) 4042 goto out; 4043 4044 if (copy_from_user(&associd, optval, optlen)) { 4045 retval = -EFAULT; 4046 goto out; 4047 } 4048 4049 asoc = sctp_id2assoc(sk, associd); 4050 if (!asoc) 4051 goto out; 4052 4053 retval = sctp_send_reset_assoc(asoc); 4054 4055 out: 4056 return retval; 4057 } 4058 4059 static int sctp_setsockopt_add_streams(struct sock *sk, 4060 char __user *optval, 4061 unsigned int optlen) 4062 { 4063 struct sctp_association *asoc; 4064 struct sctp_add_streams params; 4065 int retval = -EINVAL; 4066 4067 if (optlen != sizeof(params)) 4068 goto out; 4069 4070 if (copy_from_user(¶ms, optval, optlen)) { 4071 retval = -EFAULT; 4072 goto out; 4073 } 4074 4075 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4076 if (!asoc) 4077 goto out; 4078 4079 retval = sctp_send_add_streams(asoc, ¶ms); 4080 4081 out: 4082 return retval; 4083 } 4084 4085 static int sctp_setsockopt_scheduler(struct sock *sk, 4086 char __user *optval, 4087 unsigned int optlen) 4088 { 4089 struct sctp_association *asoc; 4090 struct sctp_assoc_value params; 4091 int retval = -EINVAL; 4092 4093 if (optlen < sizeof(params)) 4094 goto out; 4095 4096 optlen = sizeof(params); 4097 if (copy_from_user(¶ms, optval, optlen)) { 4098 retval = -EFAULT; 4099 goto out; 4100 } 4101 4102 if (params.assoc_value > SCTP_SS_MAX) 4103 goto out; 4104 4105 asoc = sctp_id2assoc(sk, params.assoc_id); 4106 if (!asoc) 4107 goto out; 4108 4109 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4110 4111 out: 4112 return retval; 4113 } 4114 4115 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4116 char __user *optval, 4117 unsigned int optlen) 4118 { 4119 struct sctp_association *asoc; 4120 struct sctp_stream_value params; 4121 int retval = -EINVAL; 4122 4123 if (optlen < sizeof(params)) 4124 goto out; 4125 4126 optlen = sizeof(params); 4127 if (copy_from_user(¶ms, optval, optlen)) { 4128 retval = -EFAULT; 4129 goto out; 4130 } 4131 4132 asoc = sctp_id2assoc(sk, params.assoc_id); 4133 if (!asoc) 4134 goto out; 4135 4136 retval = sctp_sched_set_value(asoc, params.stream_id, 4137 params.stream_value, GFP_KERNEL); 4138 4139 out: 4140 return retval; 4141 } 4142 4143 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4144 char __user *optval, 4145 unsigned int optlen) 4146 { 4147 struct sctp_sock *sp = sctp_sk(sk); 4148 struct net *net = sock_net(sk); 4149 struct sctp_assoc_value params; 4150 int retval = -EINVAL; 4151 4152 if (optlen < sizeof(params)) 4153 goto out; 4154 4155 optlen = sizeof(params); 4156 if (copy_from_user(¶ms, optval, optlen)) { 4157 retval = -EFAULT; 4158 goto out; 4159 } 4160 4161 if (params.assoc_id) 4162 goto out; 4163 4164 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4165 retval = -EPERM; 4166 goto out; 4167 } 4168 4169 sp->strm_interleave = !!params.assoc_value; 4170 4171 retval = 0; 4172 4173 out: 4174 return retval; 4175 } 4176 4177 /* API 6.2 setsockopt(), getsockopt() 4178 * 4179 * Applications use setsockopt() and getsockopt() to set or retrieve 4180 * socket options. Socket options are used to change the default 4181 * behavior of sockets calls. They are described in Section 7. 4182 * 4183 * The syntax is: 4184 * 4185 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4186 * int __user *optlen); 4187 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4188 * int optlen); 4189 * 4190 * sd - the socket descript. 4191 * level - set to IPPROTO_SCTP for all SCTP options. 4192 * optname - the option name. 4193 * optval - the buffer to store the value of the option. 4194 * optlen - the size of the buffer. 4195 */ 4196 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4197 char __user *optval, unsigned int optlen) 4198 { 4199 int retval = 0; 4200 4201 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4202 4203 /* I can hardly begin to describe how wrong this is. This is 4204 * so broken as to be worse than useless. The API draft 4205 * REALLY is NOT helpful here... I am not convinced that the 4206 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4207 * are at all well-founded. 4208 */ 4209 if (level != SOL_SCTP) { 4210 struct sctp_af *af = sctp_sk(sk)->pf->af; 4211 retval = af->setsockopt(sk, level, optname, optval, optlen); 4212 goto out_nounlock; 4213 } 4214 4215 lock_sock(sk); 4216 4217 switch (optname) { 4218 case SCTP_SOCKOPT_BINDX_ADD: 4219 /* 'optlen' is the size of the addresses buffer. */ 4220 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4221 optlen, SCTP_BINDX_ADD_ADDR); 4222 break; 4223 4224 case SCTP_SOCKOPT_BINDX_REM: 4225 /* 'optlen' is the size of the addresses buffer. */ 4226 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4227 optlen, SCTP_BINDX_REM_ADDR); 4228 break; 4229 4230 case SCTP_SOCKOPT_CONNECTX_OLD: 4231 /* 'optlen' is the size of the addresses buffer. */ 4232 retval = sctp_setsockopt_connectx_old(sk, 4233 (struct sockaddr __user *)optval, 4234 optlen); 4235 break; 4236 4237 case SCTP_SOCKOPT_CONNECTX: 4238 /* 'optlen' is the size of the addresses buffer. */ 4239 retval = sctp_setsockopt_connectx(sk, 4240 (struct sockaddr __user *)optval, 4241 optlen); 4242 break; 4243 4244 case SCTP_DISABLE_FRAGMENTS: 4245 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4246 break; 4247 4248 case SCTP_EVENTS: 4249 retval = sctp_setsockopt_events(sk, optval, optlen); 4250 break; 4251 4252 case SCTP_AUTOCLOSE: 4253 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4254 break; 4255 4256 case SCTP_PEER_ADDR_PARAMS: 4257 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4258 break; 4259 4260 case SCTP_DELAYED_SACK: 4261 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4262 break; 4263 case SCTP_PARTIAL_DELIVERY_POINT: 4264 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4265 break; 4266 4267 case SCTP_INITMSG: 4268 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4269 break; 4270 case SCTP_DEFAULT_SEND_PARAM: 4271 retval = sctp_setsockopt_default_send_param(sk, optval, 4272 optlen); 4273 break; 4274 case SCTP_DEFAULT_SNDINFO: 4275 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4276 break; 4277 case SCTP_PRIMARY_ADDR: 4278 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4279 break; 4280 case SCTP_SET_PEER_PRIMARY_ADDR: 4281 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4282 break; 4283 case SCTP_NODELAY: 4284 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4285 break; 4286 case SCTP_RTOINFO: 4287 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4288 break; 4289 case SCTP_ASSOCINFO: 4290 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4291 break; 4292 case SCTP_I_WANT_MAPPED_V4_ADDR: 4293 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4294 break; 4295 case SCTP_MAXSEG: 4296 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4297 break; 4298 case SCTP_ADAPTATION_LAYER: 4299 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4300 break; 4301 case SCTP_CONTEXT: 4302 retval = sctp_setsockopt_context(sk, optval, optlen); 4303 break; 4304 case SCTP_FRAGMENT_INTERLEAVE: 4305 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4306 break; 4307 case SCTP_MAX_BURST: 4308 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4309 break; 4310 case SCTP_AUTH_CHUNK: 4311 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4312 break; 4313 case SCTP_HMAC_IDENT: 4314 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4315 break; 4316 case SCTP_AUTH_KEY: 4317 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4318 break; 4319 case SCTP_AUTH_ACTIVE_KEY: 4320 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4321 break; 4322 case SCTP_AUTH_DELETE_KEY: 4323 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4324 break; 4325 case SCTP_AUTH_DEACTIVATE_KEY: 4326 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4327 break; 4328 case SCTP_AUTO_ASCONF: 4329 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4330 break; 4331 case SCTP_PEER_ADDR_THLDS: 4332 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4333 break; 4334 case SCTP_RECVRCVINFO: 4335 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4336 break; 4337 case SCTP_RECVNXTINFO: 4338 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4339 break; 4340 case SCTP_PR_SUPPORTED: 4341 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4342 break; 4343 case SCTP_DEFAULT_PRINFO: 4344 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4345 break; 4346 case SCTP_RECONFIG_SUPPORTED: 4347 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4348 break; 4349 case SCTP_ENABLE_STREAM_RESET: 4350 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4351 break; 4352 case SCTP_RESET_STREAMS: 4353 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4354 break; 4355 case SCTP_RESET_ASSOC: 4356 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4357 break; 4358 case SCTP_ADD_STREAMS: 4359 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4360 break; 4361 case SCTP_STREAM_SCHEDULER: 4362 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4363 break; 4364 case SCTP_STREAM_SCHEDULER_VALUE: 4365 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4366 break; 4367 case SCTP_INTERLEAVING_SUPPORTED: 4368 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4369 optlen); 4370 break; 4371 default: 4372 retval = -ENOPROTOOPT; 4373 break; 4374 } 4375 4376 release_sock(sk); 4377 4378 out_nounlock: 4379 return retval; 4380 } 4381 4382 /* API 3.1.6 connect() - UDP Style Syntax 4383 * 4384 * An application may use the connect() call in the UDP model to initiate an 4385 * association without sending data. 4386 * 4387 * The syntax is: 4388 * 4389 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4390 * 4391 * sd: the socket descriptor to have a new association added to. 4392 * 4393 * nam: the address structure (either struct sockaddr_in or struct 4394 * sockaddr_in6 defined in RFC2553 [7]). 4395 * 4396 * len: the size of the address. 4397 */ 4398 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4399 int addr_len, int flags) 4400 { 4401 struct inet_sock *inet = inet_sk(sk); 4402 struct sctp_af *af; 4403 int err = 0; 4404 4405 lock_sock(sk); 4406 4407 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4408 addr, addr_len); 4409 4410 /* We may need to bind the socket. */ 4411 if (!inet->inet_num) { 4412 if (sk->sk_prot->get_port(sk, 0)) { 4413 release_sock(sk); 4414 return -EAGAIN; 4415 } 4416 inet->inet_sport = htons(inet->inet_num); 4417 } 4418 4419 /* Validate addr_len before calling common connect/connectx routine. */ 4420 af = sctp_get_af_specific(addr->sa_family); 4421 if (!af || addr_len < af->sockaddr_len) { 4422 err = -EINVAL; 4423 } else { 4424 /* Pass correct addr len to common routine (so it knows there 4425 * is only one address being passed. 4426 */ 4427 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4428 } 4429 4430 release_sock(sk); 4431 return err; 4432 } 4433 4434 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4435 int addr_len, int flags) 4436 { 4437 if (addr_len < sizeof(uaddr->sa_family)) 4438 return -EINVAL; 4439 4440 if (uaddr->sa_family == AF_UNSPEC) 4441 return -EOPNOTSUPP; 4442 4443 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4444 } 4445 4446 /* FIXME: Write comments. */ 4447 static int sctp_disconnect(struct sock *sk, int flags) 4448 { 4449 return -EOPNOTSUPP; /* STUB */ 4450 } 4451 4452 /* 4.1.4 accept() - TCP Style Syntax 4453 * 4454 * Applications use accept() call to remove an established SCTP 4455 * association from the accept queue of the endpoint. A new socket 4456 * descriptor will be returned from accept() to represent the newly 4457 * formed association. 4458 */ 4459 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4460 { 4461 struct sctp_sock *sp; 4462 struct sctp_endpoint *ep; 4463 struct sock *newsk = NULL; 4464 struct sctp_association *asoc; 4465 long timeo; 4466 int error = 0; 4467 4468 lock_sock(sk); 4469 4470 sp = sctp_sk(sk); 4471 ep = sp->ep; 4472 4473 if (!sctp_style(sk, TCP)) { 4474 error = -EOPNOTSUPP; 4475 goto out; 4476 } 4477 4478 if (!sctp_sstate(sk, LISTENING)) { 4479 error = -EINVAL; 4480 goto out; 4481 } 4482 4483 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4484 4485 error = sctp_wait_for_accept(sk, timeo); 4486 if (error) 4487 goto out; 4488 4489 /* We treat the list of associations on the endpoint as the accept 4490 * queue and pick the first association on the list. 4491 */ 4492 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4493 4494 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4495 if (!newsk) { 4496 error = -ENOMEM; 4497 goto out; 4498 } 4499 4500 /* Populate the fields of the newsk from the oldsk and migrate the 4501 * asoc to the newsk. 4502 */ 4503 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4504 4505 out: 4506 release_sock(sk); 4507 *err = error; 4508 return newsk; 4509 } 4510 4511 /* The SCTP ioctl handler. */ 4512 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4513 { 4514 int rc = -ENOTCONN; 4515 4516 lock_sock(sk); 4517 4518 /* 4519 * SEQPACKET-style sockets in LISTENING state are valid, for 4520 * SCTP, so only discard TCP-style sockets in LISTENING state. 4521 */ 4522 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4523 goto out; 4524 4525 switch (cmd) { 4526 case SIOCINQ: { 4527 struct sk_buff *skb; 4528 unsigned int amount = 0; 4529 4530 skb = skb_peek(&sk->sk_receive_queue); 4531 if (skb != NULL) { 4532 /* 4533 * We will only return the amount of this packet since 4534 * that is all that will be read. 4535 */ 4536 amount = skb->len; 4537 } 4538 rc = put_user(amount, (int __user *)arg); 4539 break; 4540 } 4541 default: 4542 rc = -ENOIOCTLCMD; 4543 break; 4544 } 4545 out: 4546 release_sock(sk); 4547 return rc; 4548 } 4549 4550 /* This is the function which gets called during socket creation to 4551 * initialized the SCTP-specific portion of the sock. 4552 * The sock structure should already be zero-filled memory. 4553 */ 4554 static int sctp_init_sock(struct sock *sk) 4555 { 4556 struct net *net = sock_net(sk); 4557 struct sctp_sock *sp; 4558 4559 pr_debug("%s: sk:%p\n", __func__, sk); 4560 4561 sp = sctp_sk(sk); 4562 4563 /* Initialize the SCTP per socket area. */ 4564 switch (sk->sk_type) { 4565 case SOCK_SEQPACKET: 4566 sp->type = SCTP_SOCKET_UDP; 4567 break; 4568 case SOCK_STREAM: 4569 sp->type = SCTP_SOCKET_TCP; 4570 break; 4571 default: 4572 return -ESOCKTNOSUPPORT; 4573 } 4574 4575 sk->sk_gso_type = SKB_GSO_SCTP; 4576 4577 /* Initialize default send parameters. These parameters can be 4578 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4579 */ 4580 sp->default_stream = 0; 4581 sp->default_ppid = 0; 4582 sp->default_flags = 0; 4583 sp->default_context = 0; 4584 sp->default_timetolive = 0; 4585 4586 sp->default_rcv_context = 0; 4587 sp->max_burst = net->sctp.max_burst; 4588 4589 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4590 4591 /* Initialize default setup parameters. These parameters 4592 * can be modified with the SCTP_INITMSG socket option or 4593 * overridden by the SCTP_INIT CMSG. 4594 */ 4595 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4596 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4597 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4598 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4599 4600 /* Initialize default RTO related parameters. These parameters can 4601 * be modified for with the SCTP_RTOINFO socket option. 4602 */ 4603 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4604 sp->rtoinfo.srto_max = net->sctp.rto_max; 4605 sp->rtoinfo.srto_min = net->sctp.rto_min; 4606 4607 /* Initialize default association related parameters. These parameters 4608 * can be modified with the SCTP_ASSOCINFO socket option. 4609 */ 4610 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4611 sp->assocparams.sasoc_number_peer_destinations = 0; 4612 sp->assocparams.sasoc_peer_rwnd = 0; 4613 sp->assocparams.sasoc_local_rwnd = 0; 4614 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4615 4616 /* Initialize default event subscriptions. By default, all the 4617 * options are off. 4618 */ 4619 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4620 4621 /* Default Peer Address Parameters. These defaults can 4622 * be modified via SCTP_PEER_ADDR_PARAMS 4623 */ 4624 sp->hbinterval = net->sctp.hb_interval; 4625 sp->pathmaxrxt = net->sctp.max_retrans_path; 4626 sp->pathmtu = 0; /* allow default discovery */ 4627 sp->sackdelay = net->sctp.sack_timeout; 4628 sp->sackfreq = 2; 4629 sp->param_flags = SPP_HB_ENABLE | 4630 SPP_PMTUD_ENABLE | 4631 SPP_SACKDELAY_ENABLE; 4632 4633 /* If enabled no SCTP message fragmentation will be performed. 4634 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4635 */ 4636 sp->disable_fragments = 0; 4637 4638 /* Enable Nagle algorithm by default. */ 4639 sp->nodelay = 0; 4640 4641 sp->recvrcvinfo = 0; 4642 sp->recvnxtinfo = 0; 4643 4644 /* Enable by default. */ 4645 sp->v4mapped = 1; 4646 4647 /* Auto-close idle associations after the configured 4648 * number of seconds. A value of 0 disables this 4649 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4650 * for UDP-style sockets only. 4651 */ 4652 sp->autoclose = 0; 4653 4654 /* User specified fragmentation limit. */ 4655 sp->user_frag = 0; 4656 4657 sp->adaptation_ind = 0; 4658 4659 sp->pf = sctp_get_pf_specific(sk->sk_family); 4660 4661 /* Control variables for partial data delivery. */ 4662 atomic_set(&sp->pd_mode, 0); 4663 skb_queue_head_init(&sp->pd_lobby); 4664 sp->frag_interleave = 0; 4665 4666 /* Create a per socket endpoint structure. Even if we 4667 * change the data structure relationships, this may still 4668 * be useful for storing pre-connect address information. 4669 */ 4670 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4671 if (!sp->ep) 4672 return -ENOMEM; 4673 4674 sp->hmac = NULL; 4675 4676 sk->sk_destruct = sctp_destruct_sock; 4677 4678 SCTP_DBG_OBJCNT_INC(sock); 4679 4680 local_bh_disable(); 4681 sk_sockets_allocated_inc(sk); 4682 sock_prot_inuse_add(net, sk->sk_prot, 1); 4683 4684 /* Nothing can fail after this block, otherwise 4685 * sctp_destroy_sock() will be called without addr_wq_lock held 4686 */ 4687 if (net->sctp.default_auto_asconf) { 4688 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4689 list_add_tail(&sp->auto_asconf_list, 4690 &net->sctp.auto_asconf_splist); 4691 sp->do_auto_asconf = 1; 4692 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4693 } else { 4694 sp->do_auto_asconf = 0; 4695 } 4696 4697 local_bh_enable(); 4698 4699 return 0; 4700 } 4701 4702 /* Cleanup any SCTP per socket resources. Must be called with 4703 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4704 */ 4705 static void sctp_destroy_sock(struct sock *sk) 4706 { 4707 struct sctp_sock *sp; 4708 4709 pr_debug("%s: sk:%p\n", __func__, sk); 4710 4711 /* Release our hold on the endpoint. */ 4712 sp = sctp_sk(sk); 4713 /* This could happen during socket init, thus we bail out 4714 * early, since the rest of the below is not setup either. 4715 */ 4716 if (sp->ep == NULL) 4717 return; 4718 4719 if (sp->do_auto_asconf) { 4720 sp->do_auto_asconf = 0; 4721 list_del(&sp->auto_asconf_list); 4722 } 4723 sctp_endpoint_free(sp->ep); 4724 local_bh_disable(); 4725 sk_sockets_allocated_dec(sk); 4726 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4727 local_bh_enable(); 4728 } 4729 4730 /* Triggered when there are no references on the socket anymore */ 4731 static void sctp_destruct_sock(struct sock *sk) 4732 { 4733 struct sctp_sock *sp = sctp_sk(sk); 4734 4735 /* Free up the HMAC transform. */ 4736 crypto_free_shash(sp->hmac); 4737 4738 inet_sock_destruct(sk); 4739 } 4740 4741 /* API 4.1.7 shutdown() - TCP Style Syntax 4742 * int shutdown(int socket, int how); 4743 * 4744 * sd - the socket descriptor of the association to be closed. 4745 * how - Specifies the type of shutdown. The values are 4746 * as follows: 4747 * SHUT_RD 4748 * Disables further receive operations. No SCTP 4749 * protocol action is taken. 4750 * SHUT_WR 4751 * Disables further send operations, and initiates 4752 * the SCTP shutdown sequence. 4753 * SHUT_RDWR 4754 * Disables further send and receive operations 4755 * and initiates the SCTP shutdown sequence. 4756 */ 4757 static void sctp_shutdown(struct sock *sk, int how) 4758 { 4759 struct net *net = sock_net(sk); 4760 struct sctp_endpoint *ep; 4761 4762 if (!sctp_style(sk, TCP)) 4763 return; 4764 4765 ep = sctp_sk(sk)->ep; 4766 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4767 struct sctp_association *asoc; 4768 4769 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4770 asoc = list_entry(ep->asocs.next, 4771 struct sctp_association, asocs); 4772 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4773 } 4774 } 4775 4776 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4777 struct sctp_info *info) 4778 { 4779 struct sctp_transport *prim; 4780 struct list_head *pos; 4781 int mask; 4782 4783 memset(info, 0, sizeof(*info)); 4784 if (!asoc) { 4785 struct sctp_sock *sp = sctp_sk(sk); 4786 4787 info->sctpi_s_autoclose = sp->autoclose; 4788 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4789 info->sctpi_s_pd_point = sp->pd_point; 4790 info->sctpi_s_nodelay = sp->nodelay; 4791 info->sctpi_s_disable_fragments = sp->disable_fragments; 4792 info->sctpi_s_v4mapped = sp->v4mapped; 4793 info->sctpi_s_frag_interleave = sp->frag_interleave; 4794 info->sctpi_s_type = sp->type; 4795 4796 return 0; 4797 } 4798 4799 info->sctpi_tag = asoc->c.my_vtag; 4800 info->sctpi_state = asoc->state; 4801 info->sctpi_rwnd = asoc->a_rwnd; 4802 info->sctpi_unackdata = asoc->unack_data; 4803 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4804 info->sctpi_instrms = asoc->stream.incnt; 4805 info->sctpi_outstrms = asoc->stream.outcnt; 4806 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4807 info->sctpi_inqueue++; 4808 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4809 info->sctpi_outqueue++; 4810 info->sctpi_overall_error = asoc->overall_error_count; 4811 info->sctpi_max_burst = asoc->max_burst; 4812 info->sctpi_maxseg = asoc->frag_point; 4813 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4814 info->sctpi_peer_tag = asoc->c.peer_vtag; 4815 4816 mask = asoc->peer.ecn_capable << 1; 4817 mask = (mask | asoc->peer.ipv4_address) << 1; 4818 mask = (mask | asoc->peer.ipv6_address) << 1; 4819 mask = (mask | asoc->peer.hostname_address) << 1; 4820 mask = (mask | asoc->peer.asconf_capable) << 1; 4821 mask = (mask | asoc->peer.prsctp_capable) << 1; 4822 mask = (mask | asoc->peer.auth_capable); 4823 info->sctpi_peer_capable = mask; 4824 mask = asoc->peer.sack_needed << 1; 4825 mask = (mask | asoc->peer.sack_generation) << 1; 4826 mask = (mask | asoc->peer.zero_window_announced); 4827 info->sctpi_peer_sack = mask; 4828 4829 info->sctpi_isacks = asoc->stats.isacks; 4830 info->sctpi_osacks = asoc->stats.osacks; 4831 info->sctpi_opackets = asoc->stats.opackets; 4832 info->sctpi_ipackets = asoc->stats.ipackets; 4833 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4834 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4835 info->sctpi_idupchunks = asoc->stats.idupchunks; 4836 info->sctpi_gapcnt = asoc->stats.gapcnt; 4837 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4838 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4839 info->sctpi_oodchunks = asoc->stats.oodchunks; 4840 info->sctpi_iodchunks = asoc->stats.iodchunks; 4841 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4842 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4843 4844 prim = asoc->peer.primary_path; 4845 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4846 info->sctpi_p_state = prim->state; 4847 info->sctpi_p_cwnd = prim->cwnd; 4848 info->sctpi_p_srtt = prim->srtt; 4849 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4850 info->sctpi_p_hbinterval = prim->hbinterval; 4851 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4852 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4853 info->sctpi_p_ssthresh = prim->ssthresh; 4854 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4855 info->sctpi_p_flight_size = prim->flight_size; 4856 info->sctpi_p_error = prim->error_count; 4857 4858 return 0; 4859 } 4860 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4861 4862 /* use callback to avoid exporting the core structure */ 4863 void sctp_transport_walk_start(struct rhashtable_iter *iter) 4864 { 4865 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4866 4867 rhashtable_walk_start(iter); 4868 } 4869 4870 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4871 { 4872 rhashtable_walk_stop(iter); 4873 rhashtable_walk_exit(iter); 4874 } 4875 4876 struct sctp_transport *sctp_transport_get_next(struct net *net, 4877 struct rhashtable_iter *iter) 4878 { 4879 struct sctp_transport *t; 4880 4881 t = rhashtable_walk_next(iter); 4882 for (; t; t = rhashtable_walk_next(iter)) { 4883 if (IS_ERR(t)) { 4884 if (PTR_ERR(t) == -EAGAIN) 4885 continue; 4886 break; 4887 } 4888 4889 if (net_eq(sock_net(t->asoc->base.sk), net) && 4890 t->asoc->peer.primary_path == t) 4891 break; 4892 } 4893 4894 return t; 4895 } 4896 4897 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4898 struct rhashtable_iter *iter, 4899 int pos) 4900 { 4901 void *obj = SEQ_START_TOKEN; 4902 4903 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4904 !IS_ERR(obj)) 4905 pos--; 4906 4907 return obj; 4908 } 4909 4910 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4911 void *p) { 4912 int err = 0; 4913 int hash = 0; 4914 struct sctp_ep_common *epb; 4915 struct sctp_hashbucket *head; 4916 4917 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4918 hash++, head++) { 4919 read_lock_bh(&head->lock); 4920 sctp_for_each_hentry(epb, &head->chain) { 4921 err = cb(sctp_ep(epb), p); 4922 if (err) 4923 break; 4924 } 4925 read_unlock_bh(&head->lock); 4926 } 4927 4928 return err; 4929 } 4930 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4931 4932 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4933 struct net *net, 4934 const union sctp_addr *laddr, 4935 const union sctp_addr *paddr, void *p) 4936 { 4937 struct sctp_transport *transport; 4938 int err; 4939 4940 rcu_read_lock(); 4941 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4942 rcu_read_unlock(); 4943 if (!transport) 4944 return -ENOENT; 4945 4946 err = cb(transport, p); 4947 sctp_transport_put(transport); 4948 4949 return err; 4950 } 4951 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4952 4953 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4954 int (*cb_done)(struct sctp_transport *, void *), 4955 struct net *net, int *pos, void *p) { 4956 struct rhashtable_iter hti; 4957 struct sctp_transport *tsp; 4958 int ret; 4959 4960 again: 4961 ret = 0; 4962 sctp_transport_walk_start(&hti); 4963 4964 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 4965 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 4966 if (!sctp_transport_hold(tsp)) 4967 continue; 4968 ret = cb(tsp, p); 4969 if (ret) 4970 break; 4971 (*pos)++; 4972 sctp_transport_put(tsp); 4973 } 4974 sctp_transport_walk_stop(&hti); 4975 4976 if (ret) { 4977 if (cb_done && !cb_done(tsp, p)) { 4978 (*pos)++; 4979 sctp_transport_put(tsp); 4980 goto again; 4981 } 4982 sctp_transport_put(tsp); 4983 } 4984 4985 return ret; 4986 } 4987 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4988 4989 /* 7.2.1 Association Status (SCTP_STATUS) 4990 4991 * Applications can retrieve current status information about an 4992 * association, including association state, peer receiver window size, 4993 * number of unacked data chunks, and number of data chunks pending 4994 * receipt. This information is read-only. 4995 */ 4996 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4997 char __user *optval, 4998 int __user *optlen) 4999 { 5000 struct sctp_status status; 5001 struct sctp_association *asoc = NULL; 5002 struct sctp_transport *transport; 5003 sctp_assoc_t associd; 5004 int retval = 0; 5005 5006 if (len < sizeof(status)) { 5007 retval = -EINVAL; 5008 goto out; 5009 } 5010 5011 len = sizeof(status); 5012 if (copy_from_user(&status, optval, len)) { 5013 retval = -EFAULT; 5014 goto out; 5015 } 5016 5017 associd = status.sstat_assoc_id; 5018 asoc = sctp_id2assoc(sk, associd); 5019 if (!asoc) { 5020 retval = -EINVAL; 5021 goto out; 5022 } 5023 5024 transport = asoc->peer.primary_path; 5025 5026 status.sstat_assoc_id = sctp_assoc2id(asoc); 5027 status.sstat_state = sctp_assoc_to_state(asoc); 5028 status.sstat_rwnd = asoc->peer.rwnd; 5029 status.sstat_unackdata = asoc->unack_data; 5030 5031 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5032 status.sstat_instrms = asoc->stream.incnt; 5033 status.sstat_outstrms = asoc->stream.outcnt; 5034 status.sstat_fragmentation_point = asoc->frag_point; 5035 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5036 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5037 transport->af_specific->sockaddr_len); 5038 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5039 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5040 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5041 status.sstat_primary.spinfo_state = transport->state; 5042 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5043 status.sstat_primary.spinfo_srtt = transport->srtt; 5044 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5045 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5046 5047 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5048 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5049 5050 if (put_user(len, optlen)) { 5051 retval = -EFAULT; 5052 goto out; 5053 } 5054 5055 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5056 __func__, len, status.sstat_state, status.sstat_rwnd, 5057 status.sstat_assoc_id); 5058 5059 if (copy_to_user(optval, &status, len)) { 5060 retval = -EFAULT; 5061 goto out; 5062 } 5063 5064 out: 5065 return retval; 5066 } 5067 5068 5069 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5070 * 5071 * Applications can retrieve information about a specific peer address 5072 * of an association, including its reachability state, congestion 5073 * window, and retransmission timer values. This information is 5074 * read-only. 5075 */ 5076 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5077 char __user *optval, 5078 int __user *optlen) 5079 { 5080 struct sctp_paddrinfo pinfo; 5081 struct sctp_transport *transport; 5082 int retval = 0; 5083 5084 if (len < sizeof(pinfo)) { 5085 retval = -EINVAL; 5086 goto out; 5087 } 5088 5089 len = sizeof(pinfo); 5090 if (copy_from_user(&pinfo, optval, len)) { 5091 retval = -EFAULT; 5092 goto out; 5093 } 5094 5095 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5096 pinfo.spinfo_assoc_id); 5097 if (!transport) 5098 return -EINVAL; 5099 5100 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5101 pinfo.spinfo_state = transport->state; 5102 pinfo.spinfo_cwnd = transport->cwnd; 5103 pinfo.spinfo_srtt = transport->srtt; 5104 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5105 pinfo.spinfo_mtu = transport->pathmtu; 5106 5107 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5108 pinfo.spinfo_state = SCTP_ACTIVE; 5109 5110 if (put_user(len, optlen)) { 5111 retval = -EFAULT; 5112 goto out; 5113 } 5114 5115 if (copy_to_user(optval, &pinfo, len)) { 5116 retval = -EFAULT; 5117 goto out; 5118 } 5119 5120 out: 5121 return retval; 5122 } 5123 5124 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5125 * 5126 * This option is a on/off flag. If enabled no SCTP message 5127 * fragmentation will be performed. Instead if a message being sent 5128 * exceeds the current PMTU size, the message will NOT be sent and 5129 * instead a error will be indicated to the user. 5130 */ 5131 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5132 char __user *optval, int __user *optlen) 5133 { 5134 int val; 5135 5136 if (len < sizeof(int)) 5137 return -EINVAL; 5138 5139 len = sizeof(int); 5140 val = (sctp_sk(sk)->disable_fragments == 1); 5141 if (put_user(len, optlen)) 5142 return -EFAULT; 5143 if (copy_to_user(optval, &val, len)) 5144 return -EFAULT; 5145 return 0; 5146 } 5147 5148 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5149 * 5150 * This socket option is used to specify various notifications and 5151 * ancillary data the user wishes to receive. 5152 */ 5153 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5154 int __user *optlen) 5155 { 5156 if (len == 0) 5157 return -EINVAL; 5158 if (len > sizeof(struct sctp_event_subscribe)) 5159 len = sizeof(struct sctp_event_subscribe); 5160 if (put_user(len, optlen)) 5161 return -EFAULT; 5162 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 5163 return -EFAULT; 5164 return 0; 5165 } 5166 5167 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5168 * 5169 * This socket option is applicable to the UDP-style socket only. When 5170 * set it will cause associations that are idle for more than the 5171 * specified number of seconds to automatically close. An association 5172 * being idle is defined an association that has NOT sent or received 5173 * user data. The special value of '0' indicates that no automatic 5174 * close of any associations should be performed. The option expects an 5175 * integer defining the number of seconds of idle time before an 5176 * association is closed. 5177 */ 5178 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5179 { 5180 /* Applicable to UDP-style socket only */ 5181 if (sctp_style(sk, TCP)) 5182 return -EOPNOTSUPP; 5183 if (len < sizeof(int)) 5184 return -EINVAL; 5185 len = sizeof(int); 5186 if (put_user(len, optlen)) 5187 return -EFAULT; 5188 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5189 return -EFAULT; 5190 return 0; 5191 } 5192 5193 /* Helper routine to branch off an association to a new socket. */ 5194 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5195 { 5196 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5197 struct sctp_sock *sp = sctp_sk(sk); 5198 struct socket *sock; 5199 int err = 0; 5200 5201 /* Do not peel off from one netns to another one. */ 5202 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5203 return -EINVAL; 5204 5205 if (!asoc) 5206 return -EINVAL; 5207 5208 /* An association cannot be branched off from an already peeled-off 5209 * socket, nor is this supported for tcp style sockets. 5210 */ 5211 if (!sctp_style(sk, UDP)) 5212 return -EINVAL; 5213 5214 /* Create a new socket. */ 5215 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5216 if (err < 0) 5217 return err; 5218 5219 sctp_copy_sock(sock->sk, sk, asoc); 5220 5221 /* Make peeled-off sockets more like 1-1 accepted sockets. 5222 * Set the daddr and initialize id to something more random and also 5223 * copy over any ip options. 5224 */ 5225 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5226 sp->pf->copy_ip_options(sk, sock->sk); 5227 5228 /* Populate the fields of the newsk from the oldsk and migrate the 5229 * asoc to the newsk. 5230 */ 5231 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5232 5233 *sockp = sock; 5234 5235 return err; 5236 } 5237 EXPORT_SYMBOL(sctp_do_peeloff); 5238 5239 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5240 struct file **newfile, unsigned flags) 5241 { 5242 struct socket *newsock; 5243 int retval; 5244 5245 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5246 if (retval < 0) 5247 goto out; 5248 5249 /* Map the socket to an unused fd that can be returned to the user. */ 5250 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5251 if (retval < 0) { 5252 sock_release(newsock); 5253 goto out; 5254 } 5255 5256 *newfile = sock_alloc_file(newsock, 0, NULL); 5257 if (IS_ERR(*newfile)) { 5258 put_unused_fd(retval); 5259 retval = PTR_ERR(*newfile); 5260 *newfile = NULL; 5261 return retval; 5262 } 5263 5264 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5265 retval); 5266 5267 peeloff->sd = retval; 5268 5269 if (flags & SOCK_NONBLOCK) 5270 (*newfile)->f_flags |= O_NONBLOCK; 5271 out: 5272 return retval; 5273 } 5274 5275 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5276 { 5277 sctp_peeloff_arg_t peeloff; 5278 struct file *newfile = NULL; 5279 int retval = 0; 5280 5281 if (len < sizeof(sctp_peeloff_arg_t)) 5282 return -EINVAL; 5283 len = sizeof(sctp_peeloff_arg_t); 5284 if (copy_from_user(&peeloff, optval, len)) 5285 return -EFAULT; 5286 5287 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5288 if (retval < 0) 5289 goto out; 5290 5291 /* Return the fd mapped to the new socket. */ 5292 if (put_user(len, optlen)) { 5293 fput(newfile); 5294 put_unused_fd(retval); 5295 return -EFAULT; 5296 } 5297 5298 if (copy_to_user(optval, &peeloff, len)) { 5299 fput(newfile); 5300 put_unused_fd(retval); 5301 return -EFAULT; 5302 } 5303 fd_install(retval, newfile); 5304 out: 5305 return retval; 5306 } 5307 5308 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5309 char __user *optval, int __user *optlen) 5310 { 5311 sctp_peeloff_flags_arg_t peeloff; 5312 struct file *newfile = NULL; 5313 int retval = 0; 5314 5315 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5316 return -EINVAL; 5317 len = sizeof(sctp_peeloff_flags_arg_t); 5318 if (copy_from_user(&peeloff, optval, len)) 5319 return -EFAULT; 5320 5321 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5322 &newfile, peeloff.flags); 5323 if (retval < 0) 5324 goto out; 5325 5326 /* Return the fd mapped to the new socket. */ 5327 if (put_user(len, optlen)) { 5328 fput(newfile); 5329 put_unused_fd(retval); 5330 return -EFAULT; 5331 } 5332 5333 if (copy_to_user(optval, &peeloff, len)) { 5334 fput(newfile); 5335 put_unused_fd(retval); 5336 return -EFAULT; 5337 } 5338 fd_install(retval, newfile); 5339 out: 5340 return retval; 5341 } 5342 5343 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5344 * 5345 * Applications can enable or disable heartbeats for any peer address of 5346 * an association, modify an address's heartbeat interval, force a 5347 * heartbeat to be sent immediately, and adjust the address's maximum 5348 * number of retransmissions sent before an address is considered 5349 * unreachable. The following structure is used to access and modify an 5350 * address's parameters: 5351 * 5352 * struct sctp_paddrparams { 5353 * sctp_assoc_t spp_assoc_id; 5354 * struct sockaddr_storage spp_address; 5355 * uint32_t spp_hbinterval; 5356 * uint16_t spp_pathmaxrxt; 5357 * uint32_t spp_pathmtu; 5358 * uint32_t spp_sackdelay; 5359 * uint32_t spp_flags; 5360 * }; 5361 * 5362 * spp_assoc_id - (one-to-many style socket) This is filled in the 5363 * application, and identifies the association for 5364 * this query. 5365 * spp_address - This specifies which address is of interest. 5366 * spp_hbinterval - This contains the value of the heartbeat interval, 5367 * in milliseconds. If a value of zero 5368 * is present in this field then no changes are to 5369 * be made to this parameter. 5370 * spp_pathmaxrxt - This contains the maximum number of 5371 * retransmissions before this address shall be 5372 * considered unreachable. If a value of zero 5373 * is present in this field then no changes are to 5374 * be made to this parameter. 5375 * spp_pathmtu - When Path MTU discovery is disabled the value 5376 * specified here will be the "fixed" path mtu. 5377 * Note that if the spp_address field is empty 5378 * then all associations on this address will 5379 * have this fixed path mtu set upon them. 5380 * 5381 * spp_sackdelay - When delayed sack is enabled, this value specifies 5382 * the number of milliseconds that sacks will be delayed 5383 * for. This value will apply to all addresses of an 5384 * association if the spp_address field is empty. Note 5385 * also, that if delayed sack is enabled and this 5386 * value is set to 0, no change is made to the last 5387 * recorded delayed sack timer value. 5388 * 5389 * spp_flags - These flags are used to control various features 5390 * on an association. The flag field may contain 5391 * zero or more of the following options. 5392 * 5393 * SPP_HB_ENABLE - Enable heartbeats on the 5394 * specified address. Note that if the address 5395 * field is empty all addresses for the association 5396 * have heartbeats enabled upon them. 5397 * 5398 * SPP_HB_DISABLE - Disable heartbeats on the 5399 * speicifed address. Note that if the address 5400 * field is empty all addresses for the association 5401 * will have their heartbeats disabled. Note also 5402 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5403 * mutually exclusive, only one of these two should 5404 * be specified. Enabling both fields will have 5405 * undetermined results. 5406 * 5407 * SPP_HB_DEMAND - Request a user initiated heartbeat 5408 * to be made immediately. 5409 * 5410 * SPP_PMTUD_ENABLE - This field will enable PMTU 5411 * discovery upon the specified address. Note that 5412 * if the address feild is empty then all addresses 5413 * on the association are effected. 5414 * 5415 * SPP_PMTUD_DISABLE - This field will disable PMTU 5416 * discovery upon the specified address. Note that 5417 * if the address feild is empty then all addresses 5418 * on the association are effected. Not also that 5419 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5420 * exclusive. Enabling both will have undetermined 5421 * results. 5422 * 5423 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5424 * on delayed sack. The time specified in spp_sackdelay 5425 * is used to specify the sack delay for this address. Note 5426 * that if spp_address is empty then all addresses will 5427 * enable delayed sack and take on the sack delay 5428 * value specified in spp_sackdelay. 5429 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5430 * off delayed sack. If the spp_address field is blank then 5431 * delayed sack is disabled for the entire association. Note 5432 * also that this field is mutually exclusive to 5433 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5434 * results. 5435 */ 5436 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5437 char __user *optval, int __user *optlen) 5438 { 5439 struct sctp_paddrparams params; 5440 struct sctp_transport *trans = NULL; 5441 struct sctp_association *asoc = NULL; 5442 struct sctp_sock *sp = sctp_sk(sk); 5443 5444 if (len < sizeof(struct sctp_paddrparams)) 5445 return -EINVAL; 5446 len = sizeof(struct sctp_paddrparams); 5447 if (copy_from_user(¶ms, optval, len)) 5448 return -EFAULT; 5449 5450 /* If an address other than INADDR_ANY is specified, and 5451 * no transport is found, then the request is invalid. 5452 */ 5453 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5454 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5455 params.spp_assoc_id); 5456 if (!trans) { 5457 pr_debug("%s: failed no transport\n", __func__); 5458 return -EINVAL; 5459 } 5460 } 5461 5462 /* Get association, if assoc_id != 0 and the socket is a one 5463 * to many style socket, and an association was not found, then 5464 * the id was invalid. 5465 */ 5466 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5467 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5468 pr_debug("%s: failed no association\n", __func__); 5469 return -EINVAL; 5470 } 5471 5472 if (trans) { 5473 /* Fetch transport values. */ 5474 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5475 params.spp_pathmtu = trans->pathmtu; 5476 params.spp_pathmaxrxt = trans->pathmaxrxt; 5477 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5478 5479 /*draft-11 doesn't say what to return in spp_flags*/ 5480 params.spp_flags = trans->param_flags; 5481 } else if (asoc) { 5482 /* Fetch association values. */ 5483 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5484 params.spp_pathmtu = asoc->pathmtu; 5485 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5486 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5487 5488 /*draft-11 doesn't say what to return in spp_flags*/ 5489 params.spp_flags = asoc->param_flags; 5490 } else { 5491 /* Fetch socket values. */ 5492 params.spp_hbinterval = sp->hbinterval; 5493 params.spp_pathmtu = sp->pathmtu; 5494 params.spp_sackdelay = sp->sackdelay; 5495 params.spp_pathmaxrxt = sp->pathmaxrxt; 5496 5497 /*draft-11 doesn't say what to return in spp_flags*/ 5498 params.spp_flags = sp->param_flags; 5499 } 5500 5501 if (copy_to_user(optval, ¶ms, len)) 5502 return -EFAULT; 5503 5504 if (put_user(len, optlen)) 5505 return -EFAULT; 5506 5507 return 0; 5508 } 5509 5510 /* 5511 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5512 * 5513 * This option will effect the way delayed acks are performed. This 5514 * option allows you to get or set the delayed ack time, in 5515 * milliseconds. It also allows changing the delayed ack frequency. 5516 * Changing the frequency to 1 disables the delayed sack algorithm. If 5517 * the assoc_id is 0, then this sets or gets the endpoints default 5518 * values. If the assoc_id field is non-zero, then the set or get 5519 * effects the specified association for the one to many model (the 5520 * assoc_id field is ignored by the one to one model). Note that if 5521 * sack_delay or sack_freq are 0 when setting this option, then the 5522 * current values will remain unchanged. 5523 * 5524 * struct sctp_sack_info { 5525 * sctp_assoc_t sack_assoc_id; 5526 * uint32_t sack_delay; 5527 * uint32_t sack_freq; 5528 * }; 5529 * 5530 * sack_assoc_id - This parameter, indicates which association the user 5531 * is performing an action upon. Note that if this field's value is 5532 * zero then the endpoints default value is changed (effecting future 5533 * associations only). 5534 * 5535 * sack_delay - This parameter contains the number of milliseconds that 5536 * the user is requesting the delayed ACK timer be set to. Note that 5537 * this value is defined in the standard to be between 200 and 500 5538 * milliseconds. 5539 * 5540 * sack_freq - This parameter contains the number of packets that must 5541 * be received before a sack is sent without waiting for the delay 5542 * timer to expire. The default value for this is 2, setting this 5543 * value to 1 will disable the delayed sack algorithm. 5544 */ 5545 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5546 char __user *optval, 5547 int __user *optlen) 5548 { 5549 struct sctp_sack_info params; 5550 struct sctp_association *asoc = NULL; 5551 struct sctp_sock *sp = sctp_sk(sk); 5552 5553 if (len >= sizeof(struct sctp_sack_info)) { 5554 len = sizeof(struct sctp_sack_info); 5555 5556 if (copy_from_user(¶ms, optval, len)) 5557 return -EFAULT; 5558 } else if (len == sizeof(struct sctp_assoc_value)) { 5559 pr_warn_ratelimited(DEPRECATED 5560 "%s (pid %d) " 5561 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5562 "Use struct sctp_sack_info instead\n", 5563 current->comm, task_pid_nr(current)); 5564 if (copy_from_user(¶ms, optval, len)) 5565 return -EFAULT; 5566 } else 5567 return -EINVAL; 5568 5569 /* Get association, if sack_assoc_id != 0 and the socket is a one 5570 * to many style socket, and an association was not found, then 5571 * the id was invalid. 5572 */ 5573 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5574 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5575 return -EINVAL; 5576 5577 if (asoc) { 5578 /* Fetch association values. */ 5579 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5580 params.sack_delay = jiffies_to_msecs( 5581 asoc->sackdelay); 5582 params.sack_freq = asoc->sackfreq; 5583 5584 } else { 5585 params.sack_delay = 0; 5586 params.sack_freq = 1; 5587 } 5588 } else { 5589 /* Fetch socket values. */ 5590 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5591 params.sack_delay = sp->sackdelay; 5592 params.sack_freq = sp->sackfreq; 5593 } else { 5594 params.sack_delay = 0; 5595 params.sack_freq = 1; 5596 } 5597 } 5598 5599 if (copy_to_user(optval, ¶ms, len)) 5600 return -EFAULT; 5601 5602 if (put_user(len, optlen)) 5603 return -EFAULT; 5604 5605 return 0; 5606 } 5607 5608 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5609 * 5610 * Applications can specify protocol parameters for the default association 5611 * initialization. The option name argument to setsockopt() and getsockopt() 5612 * is SCTP_INITMSG. 5613 * 5614 * Setting initialization parameters is effective only on an unconnected 5615 * socket (for UDP-style sockets only future associations are effected 5616 * by the change). With TCP-style sockets, this option is inherited by 5617 * sockets derived from a listener socket. 5618 */ 5619 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5620 { 5621 if (len < sizeof(struct sctp_initmsg)) 5622 return -EINVAL; 5623 len = sizeof(struct sctp_initmsg); 5624 if (put_user(len, optlen)) 5625 return -EFAULT; 5626 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5627 return -EFAULT; 5628 return 0; 5629 } 5630 5631 5632 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5633 char __user *optval, int __user *optlen) 5634 { 5635 struct sctp_association *asoc; 5636 int cnt = 0; 5637 struct sctp_getaddrs getaddrs; 5638 struct sctp_transport *from; 5639 void __user *to; 5640 union sctp_addr temp; 5641 struct sctp_sock *sp = sctp_sk(sk); 5642 int addrlen; 5643 size_t space_left; 5644 int bytes_copied; 5645 5646 if (len < sizeof(struct sctp_getaddrs)) 5647 return -EINVAL; 5648 5649 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5650 return -EFAULT; 5651 5652 /* For UDP-style sockets, id specifies the association to query. */ 5653 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5654 if (!asoc) 5655 return -EINVAL; 5656 5657 to = optval + offsetof(struct sctp_getaddrs, addrs); 5658 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5659 5660 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5661 transports) { 5662 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5663 addrlen = sctp_get_pf_specific(sk->sk_family) 5664 ->addr_to_user(sp, &temp); 5665 if (space_left < addrlen) 5666 return -ENOMEM; 5667 if (copy_to_user(to, &temp, addrlen)) 5668 return -EFAULT; 5669 to += addrlen; 5670 cnt++; 5671 space_left -= addrlen; 5672 } 5673 5674 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5675 return -EFAULT; 5676 bytes_copied = ((char __user *)to) - optval; 5677 if (put_user(bytes_copied, optlen)) 5678 return -EFAULT; 5679 5680 return 0; 5681 } 5682 5683 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5684 size_t space_left, int *bytes_copied) 5685 { 5686 struct sctp_sockaddr_entry *addr; 5687 union sctp_addr temp; 5688 int cnt = 0; 5689 int addrlen; 5690 struct net *net = sock_net(sk); 5691 5692 rcu_read_lock(); 5693 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5694 if (!addr->valid) 5695 continue; 5696 5697 if ((PF_INET == sk->sk_family) && 5698 (AF_INET6 == addr->a.sa.sa_family)) 5699 continue; 5700 if ((PF_INET6 == sk->sk_family) && 5701 inet_v6_ipv6only(sk) && 5702 (AF_INET == addr->a.sa.sa_family)) 5703 continue; 5704 memcpy(&temp, &addr->a, sizeof(temp)); 5705 if (!temp.v4.sin_port) 5706 temp.v4.sin_port = htons(port); 5707 5708 addrlen = sctp_get_pf_specific(sk->sk_family) 5709 ->addr_to_user(sctp_sk(sk), &temp); 5710 5711 if (space_left < addrlen) { 5712 cnt = -ENOMEM; 5713 break; 5714 } 5715 memcpy(to, &temp, addrlen); 5716 5717 to += addrlen; 5718 cnt++; 5719 space_left -= addrlen; 5720 *bytes_copied += addrlen; 5721 } 5722 rcu_read_unlock(); 5723 5724 return cnt; 5725 } 5726 5727 5728 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5729 char __user *optval, int __user *optlen) 5730 { 5731 struct sctp_bind_addr *bp; 5732 struct sctp_association *asoc; 5733 int cnt = 0; 5734 struct sctp_getaddrs getaddrs; 5735 struct sctp_sockaddr_entry *addr; 5736 void __user *to; 5737 union sctp_addr temp; 5738 struct sctp_sock *sp = sctp_sk(sk); 5739 int addrlen; 5740 int err = 0; 5741 size_t space_left; 5742 int bytes_copied = 0; 5743 void *addrs; 5744 void *buf; 5745 5746 if (len < sizeof(struct sctp_getaddrs)) 5747 return -EINVAL; 5748 5749 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5750 return -EFAULT; 5751 5752 /* 5753 * For UDP-style sockets, id specifies the association to query. 5754 * If the id field is set to the value '0' then the locally bound 5755 * addresses are returned without regard to any particular 5756 * association. 5757 */ 5758 if (0 == getaddrs.assoc_id) { 5759 bp = &sctp_sk(sk)->ep->base.bind_addr; 5760 } else { 5761 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5762 if (!asoc) 5763 return -EINVAL; 5764 bp = &asoc->base.bind_addr; 5765 } 5766 5767 to = optval + offsetof(struct sctp_getaddrs, addrs); 5768 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5769 5770 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5771 if (!addrs) 5772 return -ENOMEM; 5773 5774 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5775 * addresses from the global local address list. 5776 */ 5777 if (sctp_list_single_entry(&bp->address_list)) { 5778 addr = list_entry(bp->address_list.next, 5779 struct sctp_sockaddr_entry, list); 5780 if (sctp_is_any(sk, &addr->a)) { 5781 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5782 space_left, &bytes_copied); 5783 if (cnt < 0) { 5784 err = cnt; 5785 goto out; 5786 } 5787 goto copy_getaddrs; 5788 } 5789 } 5790 5791 buf = addrs; 5792 /* Protection on the bound address list is not needed since 5793 * in the socket option context we hold a socket lock and 5794 * thus the bound address list can't change. 5795 */ 5796 list_for_each_entry(addr, &bp->address_list, list) { 5797 memcpy(&temp, &addr->a, sizeof(temp)); 5798 addrlen = sctp_get_pf_specific(sk->sk_family) 5799 ->addr_to_user(sp, &temp); 5800 if (space_left < addrlen) { 5801 err = -ENOMEM; /*fixme: right error?*/ 5802 goto out; 5803 } 5804 memcpy(buf, &temp, addrlen); 5805 buf += addrlen; 5806 bytes_copied += addrlen; 5807 cnt++; 5808 space_left -= addrlen; 5809 } 5810 5811 copy_getaddrs: 5812 if (copy_to_user(to, addrs, bytes_copied)) { 5813 err = -EFAULT; 5814 goto out; 5815 } 5816 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5817 err = -EFAULT; 5818 goto out; 5819 } 5820 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 5821 * but we can't change it anymore. 5822 */ 5823 if (put_user(bytes_copied, optlen)) 5824 err = -EFAULT; 5825 out: 5826 kfree(addrs); 5827 return err; 5828 } 5829 5830 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5831 * 5832 * Requests that the local SCTP stack use the enclosed peer address as 5833 * the association primary. The enclosed address must be one of the 5834 * association peer's addresses. 5835 */ 5836 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5837 char __user *optval, int __user *optlen) 5838 { 5839 struct sctp_prim prim; 5840 struct sctp_association *asoc; 5841 struct sctp_sock *sp = sctp_sk(sk); 5842 5843 if (len < sizeof(struct sctp_prim)) 5844 return -EINVAL; 5845 5846 len = sizeof(struct sctp_prim); 5847 5848 if (copy_from_user(&prim, optval, len)) 5849 return -EFAULT; 5850 5851 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5852 if (!asoc) 5853 return -EINVAL; 5854 5855 if (!asoc->peer.primary_path) 5856 return -ENOTCONN; 5857 5858 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5859 asoc->peer.primary_path->af_specific->sockaddr_len); 5860 5861 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5862 (union sctp_addr *)&prim.ssp_addr); 5863 5864 if (put_user(len, optlen)) 5865 return -EFAULT; 5866 if (copy_to_user(optval, &prim, len)) 5867 return -EFAULT; 5868 5869 return 0; 5870 } 5871 5872 /* 5873 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5874 * 5875 * Requests that the local endpoint set the specified Adaptation Layer 5876 * Indication parameter for all future INIT and INIT-ACK exchanges. 5877 */ 5878 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5879 char __user *optval, int __user *optlen) 5880 { 5881 struct sctp_setadaptation adaptation; 5882 5883 if (len < sizeof(struct sctp_setadaptation)) 5884 return -EINVAL; 5885 5886 len = sizeof(struct sctp_setadaptation); 5887 5888 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5889 5890 if (put_user(len, optlen)) 5891 return -EFAULT; 5892 if (copy_to_user(optval, &adaptation, len)) 5893 return -EFAULT; 5894 5895 return 0; 5896 } 5897 5898 /* 5899 * 5900 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5901 * 5902 * Applications that wish to use the sendto() system call may wish to 5903 * specify a default set of parameters that would normally be supplied 5904 * through the inclusion of ancillary data. This socket option allows 5905 * such an application to set the default sctp_sndrcvinfo structure. 5906 5907 5908 * The application that wishes to use this socket option simply passes 5909 * in to this call the sctp_sndrcvinfo structure defined in Section 5910 * 5.2.2) The input parameters accepted by this call include 5911 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5912 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5913 * to this call if the caller is using the UDP model. 5914 * 5915 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5916 */ 5917 static int sctp_getsockopt_default_send_param(struct sock *sk, 5918 int len, char __user *optval, 5919 int __user *optlen) 5920 { 5921 struct sctp_sock *sp = sctp_sk(sk); 5922 struct sctp_association *asoc; 5923 struct sctp_sndrcvinfo info; 5924 5925 if (len < sizeof(info)) 5926 return -EINVAL; 5927 5928 len = sizeof(info); 5929 5930 if (copy_from_user(&info, optval, len)) 5931 return -EFAULT; 5932 5933 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5934 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5935 return -EINVAL; 5936 if (asoc) { 5937 info.sinfo_stream = asoc->default_stream; 5938 info.sinfo_flags = asoc->default_flags; 5939 info.sinfo_ppid = asoc->default_ppid; 5940 info.sinfo_context = asoc->default_context; 5941 info.sinfo_timetolive = asoc->default_timetolive; 5942 } else { 5943 info.sinfo_stream = sp->default_stream; 5944 info.sinfo_flags = sp->default_flags; 5945 info.sinfo_ppid = sp->default_ppid; 5946 info.sinfo_context = sp->default_context; 5947 info.sinfo_timetolive = sp->default_timetolive; 5948 } 5949 5950 if (put_user(len, optlen)) 5951 return -EFAULT; 5952 if (copy_to_user(optval, &info, len)) 5953 return -EFAULT; 5954 5955 return 0; 5956 } 5957 5958 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5959 * (SCTP_DEFAULT_SNDINFO) 5960 */ 5961 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5962 char __user *optval, 5963 int __user *optlen) 5964 { 5965 struct sctp_sock *sp = sctp_sk(sk); 5966 struct sctp_association *asoc; 5967 struct sctp_sndinfo info; 5968 5969 if (len < sizeof(info)) 5970 return -EINVAL; 5971 5972 len = sizeof(info); 5973 5974 if (copy_from_user(&info, optval, len)) 5975 return -EFAULT; 5976 5977 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5978 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5979 return -EINVAL; 5980 if (asoc) { 5981 info.snd_sid = asoc->default_stream; 5982 info.snd_flags = asoc->default_flags; 5983 info.snd_ppid = asoc->default_ppid; 5984 info.snd_context = asoc->default_context; 5985 } else { 5986 info.snd_sid = sp->default_stream; 5987 info.snd_flags = sp->default_flags; 5988 info.snd_ppid = sp->default_ppid; 5989 info.snd_context = sp->default_context; 5990 } 5991 5992 if (put_user(len, optlen)) 5993 return -EFAULT; 5994 if (copy_to_user(optval, &info, len)) 5995 return -EFAULT; 5996 5997 return 0; 5998 } 5999 6000 /* 6001 * 6002 * 7.1.5 SCTP_NODELAY 6003 * 6004 * Turn on/off any Nagle-like algorithm. This means that packets are 6005 * generally sent as soon as possible and no unnecessary delays are 6006 * introduced, at the cost of more packets in the network. Expects an 6007 * integer boolean flag. 6008 */ 6009 6010 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6011 char __user *optval, int __user *optlen) 6012 { 6013 int val; 6014 6015 if (len < sizeof(int)) 6016 return -EINVAL; 6017 6018 len = sizeof(int); 6019 val = (sctp_sk(sk)->nodelay == 1); 6020 if (put_user(len, optlen)) 6021 return -EFAULT; 6022 if (copy_to_user(optval, &val, len)) 6023 return -EFAULT; 6024 return 0; 6025 } 6026 6027 /* 6028 * 6029 * 7.1.1 SCTP_RTOINFO 6030 * 6031 * The protocol parameters used to initialize and bound retransmission 6032 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6033 * and modify these parameters. 6034 * All parameters are time values, in milliseconds. A value of 0, when 6035 * modifying the parameters, indicates that the current value should not 6036 * be changed. 6037 * 6038 */ 6039 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6040 char __user *optval, 6041 int __user *optlen) { 6042 struct sctp_rtoinfo rtoinfo; 6043 struct sctp_association *asoc; 6044 6045 if (len < sizeof (struct sctp_rtoinfo)) 6046 return -EINVAL; 6047 6048 len = sizeof(struct sctp_rtoinfo); 6049 6050 if (copy_from_user(&rtoinfo, optval, len)) 6051 return -EFAULT; 6052 6053 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6054 6055 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 6056 return -EINVAL; 6057 6058 /* Values corresponding to the specific association. */ 6059 if (asoc) { 6060 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6061 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6062 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6063 } else { 6064 /* Values corresponding to the endpoint. */ 6065 struct sctp_sock *sp = sctp_sk(sk); 6066 6067 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6068 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6069 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6070 } 6071 6072 if (put_user(len, optlen)) 6073 return -EFAULT; 6074 6075 if (copy_to_user(optval, &rtoinfo, len)) 6076 return -EFAULT; 6077 6078 return 0; 6079 } 6080 6081 /* 6082 * 6083 * 7.1.2 SCTP_ASSOCINFO 6084 * 6085 * This option is used to tune the maximum retransmission attempts 6086 * of the association. 6087 * Returns an error if the new association retransmission value is 6088 * greater than the sum of the retransmission value of the peer. 6089 * See [SCTP] for more information. 6090 * 6091 */ 6092 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6093 char __user *optval, 6094 int __user *optlen) 6095 { 6096 6097 struct sctp_assocparams assocparams; 6098 struct sctp_association *asoc; 6099 struct list_head *pos; 6100 int cnt = 0; 6101 6102 if (len < sizeof (struct sctp_assocparams)) 6103 return -EINVAL; 6104 6105 len = sizeof(struct sctp_assocparams); 6106 6107 if (copy_from_user(&assocparams, optval, len)) 6108 return -EFAULT; 6109 6110 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6111 6112 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6113 return -EINVAL; 6114 6115 /* Values correspoinding to the specific association */ 6116 if (asoc) { 6117 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6118 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6119 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6120 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6121 6122 list_for_each(pos, &asoc->peer.transport_addr_list) { 6123 cnt++; 6124 } 6125 6126 assocparams.sasoc_number_peer_destinations = cnt; 6127 } else { 6128 /* Values corresponding to the endpoint */ 6129 struct sctp_sock *sp = sctp_sk(sk); 6130 6131 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6132 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6133 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6134 assocparams.sasoc_cookie_life = 6135 sp->assocparams.sasoc_cookie_life; 6136 assocparams.sasoc_number_peer_destinations = 6137 sp->assocparams. 6138 sasoc_number_peer_destinations; 6139 } 6140 6141 if (put_user(len, optlen)) 6142 return -EFAULT; 6143 6144 if (copy_to_user(optval, &assocparams, len)) 6145 return -EFAULT; 6146 6147 return 0; 6148 } 6149 6150 /* 6151 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6152 * 6153 * This socket option is a boolean flag which turns on or off mapped V4 6154 * addresses. If this option is turned on and the socket is type 6155 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6156 * If this option is turned off, then no mapping will be done of V4 6157 * addresses and a user will receive both PF_INET6 and PF_INET type 6158 * addresses on the socket. 6159 */ 6160 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6161 char __user *optval, int __user *optlen) 6162 { 6163 int val; 6164 struct sctp_sock *sp = sctp_sk(sk); 6165 6166 if (len < sizeof(int)) 6167 return -EINVAL; 6168 6169 len = sizeof(int); 6170 val = sp->v4mapped; 6171 if (put_user(len, optlen)) 6172 return -EFAULT; 6173 if (copy_to_user(optval, &val, len)) 6174 return -EFAULT; 6175 6176 return 0; 6177 } 6178 6179 /* 6180 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6181 * (chapter and verse is quoted at sctp_setsockopt_context()) 6182 */ 6183 static int sctp_getsockopt_context(struct sock *sk, int len, 6184 char __user *optval, int __user *optlen) 6185 { 6186 struct sctp_assoc_value params; 6187 struct sctp_sock *sp; 6188 struct sctp_association *asoc; 6189 6190 if (len < sizeof(struct sctp_assoc_value)) 6191 return -EINVAL; 6192 6193 len = sizeof(struct sctp_assoc_value); 6194 6195 if (copy_from_user(¶ms, optval, len)) 6196 return -EFAULT; 6197 6198 sp = sctp_sk(sk); 6199 6200 if (params.assoc_id != 0) { 6201 asoc = sctp_id2assoc(sk, params.assoc_id); 6202 if (!asoc) 6203 return -EINVAL; 6204 params.assoc_value = asoc->default_rcv_context; 6205 } else { 6206 params.assoc_value = sp->default_rcv_context; 6207 } 6208 6209 if (put_user(len, optlen)) 6210 return -EFAULT; 6211 if (copy_to_user(optval, ¶ms, len)) 6212 return -EFAULT; 6213 6214 return 0; 6215 } 6216 6217 /* 6218 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6219 * This option will get or set the maximum size to put in any outgoing 6220 * SCTP DATA chunk. If a message is larger than this size it will be 6221 * fragmented by SCTP into the specified size. Note that the underlying 6222 * SCTP implementation may fragment into smaller sized chunks when the 6223 * PMTU of the underlying association is smaller than the value set by 6224 * the user. The default value for this option is '0' which indicates 6225 * the user is NOT limiting fragmentation and only the PMTU will effect 6226 * SCTP's choice of DATA chunk size. Note also that values set larger 6227 * than the maximum size of an IP datagram will effectively let SCTP 6228 * control fragmentation (i.e. the same as setting this option to 0). 6229 * 6230 * The following structure is used to access and modify this parameter: 6231 * 6232 * struct sctp_assoc_value { 6233 * sctp_assoc_t assoc_id; 6234 * uint32_t assoc_value; 6235 * }; 6236 * 6237 * assoc_id: This parameter is ignored for one-to-one style sockets. 6238 * For one-to-many style sockets this parameter indicates which 6239 * association the user is performing an action upon. Note that if 6240 * this field's value is zero then the endpoints default value is 6241 * changed (effecting future associations only). 6242 * assoc_value: This parameter specifies the maximum size in bytes. 6243 */ 6244 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6245 char __user *optval, int __user *optlen) 6246 { 6247 struct sctp_assoc_value params; 6248 struct sctp_association *asoc; 6249 6250 if (len == sizeof(int)) { 6251 pr_warn_ratelimited(DEPRECATED 6252 "%s (pid %d) " 6253 "Use of int in maxseg socket option.\n" 6254 "Use struct sctp_assoc_value instead\n", 6255 current->comm, task_pid_nr(current)); 6256 params.assoc_id = 0; 6257 } else if (len >= sizeof(struct sctp_assoc_value)) { 6258 len = sizeof(struct sctp_assoc_value); 6259 if (copy_from_user(¶ms, optval, len)) 6260 return -EFAULT; 6261 } else 6262 return -EINVAL; 6263 6264 asoc = sctp_id2assoc(sk, params.assoc_id); 6265 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6266 return -EINVAL; 6267 6268 if (asoc) 6269 params.assoc_value = asoc->frag_point; 6270 else 6271 params.assoc_value = sctp_sk(sk)->user_frag; 6272 6273 if (put_user(len, optlen)) 6274 return -EFAULT; 6275 if (len == sizeof(int)) { 6276 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6277 return -EFAULT; 6278 } else { 6279 if (copy_to_user(optval, ¶ms, len)) 6280 return -EFAULT; 6281 } 6282 6283 return 0; 6284 } 6285 6286 /* 6287 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6288 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6289 */ 6290 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6291 char __user *optval, int __user *optlen) 6292 { 6293 int val; 6294 6295 if (len < sizeof(int)) 6296 return -EINVAL; 6297 6298 len = sizeof(int); 6299 6300 val = sctp_sk(sk)->frag_interleave; 6301 if (put_user(len, optlen)) 6302 return -EFAULT; 6303 if (copy_to_user(optval, &val, len)) 6304 return -EFAULT; 6305 6306 return 0; 6307 } 6308 6309 /* 6310 * 7.1.25. Set or Get the sctp partial delivery point 6311 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6312 */ 6313 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6314 char __user *optval, 6315 int __user *optlen) 6316 { 6317 u32 val; 6318 6319 if (len < sizeof(u32)) 6320 return -EINVAL; 6321 6322 len = sizeof(u32); 6323 6324 val = sctp_sk(sk)->pd_point; 6325 if (put_user(len, optlen)) 6326 return -EFAULT; 6327 if (copy_to_user(optval, &val, len)) 6328 return -EFAULT; 6329 6330 return 0; 6331 } 6332 6333 /* 6334 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6335 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6336 */ 6337 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6338 char __user *optval, 6339 int __user *optlen) 6340 { 6341 struct sctp_assoc_value params; 6342 struct sctp_sock *sp; 6343 struct sctp_association *asoc; 6344 6345 if (len == sizeof(int)) { 6346 pr_warn_ratelimited(DEPRECATED 6347 "%s (pid %d) " 6348 "Use of int in max_burst socket option.\n" 6349 "Use struct sctp_assoc_value instead\n", 6350 current->comm, task_pid_nr(current)); 6351 params.assoc_id = 0; 6352 } else if (len >= sizeof(struct sctp_assoc_value)) { 6353 len = sizeof(struct sctp_assoc_value); 6354 if (copy_from_user(¶ms, optval, len)) 6355 return -EFAULT; 6356 } else 6357 return -EINVAL; 6358 6359 sp = sctp_sk(sk); 6360 6361 if (params.assoc_id != 0) { 6362 asoc = sctp_id2assoc(sk, params.assoc_id); 6363 if (!asoc) 6364 return -EINVAL; 6365 params.assoc_value = asoc->max_burst; 6366 } else 6367 params.assoc_value = sp->max_burst; 6368 6369 if (len == sizeof(int)) { 6370 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6371 return -EFAULT; 6372 } else { 6373 if (copy_to_user(optval, ¶ms, len)) 6374 return -EFAULT; 6375 } 6376 6377 return 0; 6378 6379 } 6380 6381 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6382 char __user *optval, int __user *optlen) 6383 { 6384 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6385 struct sctp_hmacalgo __user *p = (void __user *)optval; 6386 struct sctp_hmac_algo_param *hmacs; 6387 __u16 data_len = 0; 6388 u32 num_idents; 6389 int i; 6390 6391 if (!ep->auth_enable) 6392 return -EACCES; 6393 6394 hmacs = ep->auth_hmacs_list; 6395 data_len = ntohs(hmacs->param_hdr.length) - 6396 sizeof(struct sctp_paramhdr); 6397 6398 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6399 return -EINVAL; 6400 6401 len = sizeof(struct sctp_hmacalgo) + data_len; 6402 num_idents = data_len / sizeof(u16); 6403 6404 if (put_user(len, optlen)) 6405 return -EFAULT; 6406 if (put_user(num_idents, &p->shmac_num_idents)) 6407 return -EFAULT; 6408 for (i = 0; i < num_idents; i++) { 6409 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6410 6411 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6412 return -EFAULT; 6413 } 6414 return 0; 6415 } 6416 6417 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6418 char __user *optval, int __user *optlen) 6419 { 6420 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6421 struct sctp_authkeyid val; 6422 struct sctp_association *asoc; 6423 6424 if (!ep->auth_enable) 6425 return -EACCES; 6426 6427 if (len < sizeof(struct sctp_authkeyid)) 6428 return -EINVAL; 6429 6430 len = sizeof(struct sctp_authkeyid); 6431 if (copy_from_user(&val, optval, len)) 6432 return -EFAULT; 6433 6434 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6435 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6436 return -EINVAL; 6437 6438 if (asoc) 6439 val.scact_keynumber = asoc->active_key_id; 6440 else 6441 val.scact_keynumber = ep->active_key_id; 6442 6443 if (put_user(len, optlen)) 6444 return -EFAULT; 6445 if (copy_to_user(optval, &val, len)) 6446 return -EFAULT; 6447 6448 return 0; 6449 } 6450 6451 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6452 char __user *optval, int __user *optlen) 6453 { 6454 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6455 struct sctp_authchunks __user *p = (void __user *)optval; 6456 struct sctp_authchunks val; 6457 struct sctp_association *asoc; 6458 struct sctp_chunks_param *ch; 6459 u32 num_chunks = 0; 6460 char __user *to; 6461 6462 if (!ep->auth_enable) 6463 return -EACCES; 6464 6465 if (len < sizeof(struct sctp_authchunks)) 6466 return -EINVAL; 6467 6468 if (copy_from_user(&val, optval, sizeof(val))) 6469 return -EFAULT; 6470 6471 to = p->gauth_chunks; 6472 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6473 if (!asoc) 6474 return -EINVAL; 6475 6476 ch = asoc->peer.peer_chunks; 6477 if (!ch) 6478 goto num; 6479 6480 /* See if the user provided enough room for all the data */ 6481 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6482 if (len < num_chunks) 6483 return -EINVAL; 6484 6485 if (copy_to_user(to, ch->chunks, num_chunks)) 6486 return -EFAULT; 6487 num: 6488 len = sizeof(struct sctp_authchunks) + num_chunks; 6489 if (put_user(len, optlen)) 6490 return -EFAULT; 6491 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6492 return -EFAULT; 6493 return 0; 6494 } 6495 6496 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6497 char __user *optval, int __user *optlen) 6498 { 6499 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6500 struct sctp_authchunks __user *p = (void __user *)optval; 6501 struct sctp_authchunks val; 6502 struct sctp_association *asoc; 6503 struct sctp_chunks_param *ch; 6504 u32 num_chunks = 0; 6505 char __user *to; 6506 6507 if (!ep->auth_enable) 6508 return -EACCES; 6509 6510 if (len < sizeof(struct sctp_authchunks)) 6511 return -EINVAL; 6512 6513 if (copy_from_user(&val, optval, sizeof(val))) 6514 return -EFAULT; 6515 6516 to = p->gauth_chunks; 6517 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6518 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6519 return -EINVAL; 6520 6521 if (asoc) 6522 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6523 else 6524 ch = ep->auth_chunk_list; 6525 6526 if (!ch) 6527 goto num; 6528 6529 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6530 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6531 return -EINVAL; 6532 6533 if (copy_to_user(to, ch->chunks, num_chunks)) 6534 return -EFAULT; 6535 num: 6536 len = sizeof(struct sctp_authchunks) + num_chunks; 6537 if (put_user(len, optlen)) 6538 return -EFAULT; 6539 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6540 return -EFAULT; 6541 6542 return 0; 6543 } 6544 6545 /* 6546 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6547 * This option gets the current number of associations that are attached 6548 * to a one-to-many style socket. The option value is an uint32_t. 6549 */ 6550 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6551 char __user *optval, int __user *optlen) 6552 { 6553 struct sctp_sock *sp = sctp_sk(sk); 6554 struct sctp_association *asoc; 6555 u32 val = 0; 6556 6557 if (sctp_style(sk, TCP)) 6558 return -EOPNOTSUPP; 6559 6560 if (len < sizeof(u32)) 6561 return -EINVAL; 6562 6563 len = sizeof(u32); 6564 6565 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6566 val++; 6567 } 6568 6569 if (put_user(len, optlen)) 6570 return -EFAULT; 6571 if (copy_to_user(optval, &val, len)) 6572 return -EFAULT; 6573 6574 return 0; 6575 } 6576 6577 /* 6578 * 8.1.23 SCTP_AUTO_ASCONF 6579 * See the corresponding setsockopt entry as description 6580 */ 6581 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6582 char __user *optval, int __user *optlen) 6583 { 6584 int val = 0; 6585 6586 if (len < sizeof(int)) 6587 return -EINVAL; 6588 6589 len = sizeof(int); 6590 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6591 val = 1; 6592 if (put_user(len, optlen)) 6593 return -EFAULT; 6594 if (copy_to_user(optval, &val, len)) 6595 return -EFAULT; 6596 return 0; 6597 } 6598 6599 /* 6600 * 8.2.6. Get the Current Identifiers of Associations 6601 * (SCTP_GET_ASSOC_ID_LIST) 6602 * 6603 * This option gets the current list of SCTP association identifiers of 6604 * the SCTP associations handled by a one-to-many style socket. 6605 */ 6606 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6607 char __user *optval, int __user *optlen) 6608 { 6609 struct sctp_sock *sp = sctp_sk(sk); 6610 struct sctp_association *asoc; 6611 struct sctp_assoc_ids *ids; 6612 u32 num = 0; 6613 6614 if (sctp_style(sk, TCP)) 6615 return -EOPNOTSUPP; 6616 6617 if (len < sizeof(struct sctp_assoc_ids)) 6618 return -EINVAL; 6619 6620 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6621 num++; 6622 } 6623 6624 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6625 return -EINVAL; 6626 6627 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6628 6629 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6630 if (unlikely(!ids)) 6631 return -ENOMEM; 6632 6633 ids->gaids_number_of_ids = num; 6634 num = 0; 6635 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6636 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6637 } 6638 6639 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6640 kfree(ids); 6641 return -EFAULT; 6642 } 6643 6644 kfree(ids); 6645 return 0; 6646 } 6647 6648 /* 6649 * SCTP_PEER_ADDR_THLDS 6650 * 6651 * This option allows us to fetch the partially failed threshold for one or all 6652 * transports in an association. See Section 6.1 of: 6653 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6654 */ 6655 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6656 char __user *optval, 6657 int len, 6658 int __user *optlen) 6659 { 6660 struct sctp_paddrthlds val; 6661 struct sctp_transport *trans; 6662 struct sctp_association *asoc; 6663 6664 if (len < sizeof(struct sctp_paddrthlds)) 6665 return -EINVAL; 6666 len = sizeof(struct sctp_paddrthlds); 6667 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6668 return -EFAULT; 6669 6670 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6671 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6672 if (!asoc) 6673 return -ENOENT; 6674 6675 val.spt_pathpfthld = asoc->pf_retrans; 6676 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6677 } else { 6678 trans = sctp_addr_id2transport(sk, &val.spt_address, 6679 val.spt_assoc_id); 6680 if (!trans) 6681 return -ENOENT; 6682 6683 val.spt_pathmaxrxt = trans->pathmaxrxt; 6684 val.spt_pathpfthld = trans->pf_retrans; 6685 } 6686 6687 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6688 return -EFAULT; 6689 6690 return 0; 6691 } 6692 6693 /* 6694 * SCTP_GET_ASSOC_STATS 6695 * 6696 * This option retrieves local per endpoint statistics. It is modeled 6697 * after OpenSolaris' implementation 6698 */ 6699 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6700 char __user *optval, 6701 int __user *optlen) 6702 { 6703 struct sctp_assoc_stats sas; 6704 struct sctp_association *asoc = NULL; 6705 6706 /* User must provide at least the assoc id */ 6707 if (len < sizeof(sctp_assoc_t)) 6708 return -EINVAL; 6709 6710 /* Allow the struct to grow and fill in as much as possible */ 6711 len = min_t(size_t, len, sizeof(sas)); 6712 6713 if (copy_from_user(&sas, optval, len)) 6714 return -EFAULT; 6715 6716 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6717 if (!asoc) 6718 return -EINVAL; 6719 6720 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6721 sas.sas_gapcnt = asoc->stats.gapcnt; 6722 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6723 sas.sas_osacks = asoc->stats.osacks; 6724 sas.sas_isacks = asoc->stats.isacks; 6725 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6726 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6727 sas.sas_oodchunks = asoc->stats.oodchunks; 6728 sas.sas_iodchunks = asoc->stats.iodchunks; 6729 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6730 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6731 sas.sas_idupchunks = asoc->stats.idupchunks; 6732 sas.sas_opackets = asoc->stats.opackets; 6733 sas.sas_ipackets = asoc->stats.ipackets; 6734 6735 /* New high max rto observed, will return 0 if not a single 6736 * RTO update took place. obs_rto_ipaddr will be bogus 6737 * in such a case 6738 */ 6739 sas.sas_maxrto = asoc->stats.max_obs_rto; 6740 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6741 sizeof(struct sockaddr_storage)); 6742 6743 /* Mark beginning of a new observation period */ 6744 asoc->stats.max_obs_rto = asoc->rto_min; 6745 6746 if (put_user(len, optlen)) 6747 return -EFAULT; 6748 6749 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6750 6751 if (copy_to_user(optval, &sas, len)) 6752 return -EFAULT; 6753 6754 return 0; 6755 } 6756 6757 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6758 char __user *optval, 6759 int __user *optlen) 6760 { 6761 int val = 0; 6762 6763 if (len < sizeof(int)) 6764 return -EINVAL; 6765 6766 len = sizeof(int); 6767 if (sctp_sk(sk)->recvrcvinfo) 6768 val = 1; 6769 if (put_user(len, optlen)) 6770 return -EFAULT; 6771 if (copy_to_user(optval, &val, len)) 6772 return -EFAULT; 6773 6774 return 0; 6775 } 6776 6777 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6778 char __user *optval, 6779 int __user *optlen) 6780 { 6781 int val = 0; 6782 6783 if (len < sizeof(int)) 6784 return -EINVAL; 6785 6786 len = sizeof(int); 6787 if (sctp_sk(sk)->recvnxtinfo) 6788 val = 1; 6789 if (put_user(len, optlen)) 6790 return -EFAULT; 6791 if (copy_to_user(optval, &val, len)) 6792 return -EFAULT; 6793 6794 return 0; 6795 } 6796 6797 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6798 char __user *optval, 6799 int __user *optlen) 6800 { 6801 struct sctp_assoc_value params; 6802 struct sctp_association *asoc; 6803 int retval = -EFAULT; 6804 6805 if (len < sizeof(params)) { 6806 retval = -EINVAL; 6807 goto out; 6808 } 6809 6810 len = sizeof(params); 6811 if (copy_from_user(¶ms, optval, len)) 6812 goto out; 6813 6814 asoc = sctp_id2assoc(sk, params.assoc_id); 6815 if (asoc) { 6816 params.assoc_value = asoc->prsctp_enable; 6817 } else if (!params.assoc_id) { 6818 struct sctp_sock *sp = sctp_sk(sk); 6819 6820 params.assoc_value = sp->ep->prsctp_enable; 6821 } else { 6822 retval = -EINVAL; 6823 goto out; 6824 } 6825 6826 if (put_user(len, optlen)) 6827 goto out; 6828 6829 if (copy_to_user(optval, ¶ms, len)) 6830 goto out; 6831 6832 retval = 0; 6833 6834 out: 6835 return retval; 6836 } 6837 6838 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6839 char __user *optval, 6840 int __user *optlen) 6841 { 6842 struct sctp_default_prinfo info; 6843 struct sctp_association *asoc; 6844 int retval = -EFAULT; 6845 6846 if (len < sizeof(info)) { 6847 retval = -EINVAL; 6848 goto out; 6849 } 6850 6851 len = sizeof(info); 6852 if (copy_from_user(&info, optval, len)) 6853 goto out; 6854 6855 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6856 if (asoc) { 6857 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6858 info.pr_value = asoc->default_timetolive; 6859 } else if (!info.pr_assoc_id) { 6860 struct sctp_sock *sp = sctp_sk(sk); 6861 6862 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6863 info.pr_value = sp->default_timetolive; 6864 } else { 6865 retval = -EINVAL; 6866 goto out; 6867 } 6868 6869 if (put_user(len, optlen)) 6870 goto out; 6871 6872 if (copy_to_user(optval, &info, len)) 6873 goto out; 6874 6875 retval = 0; 6876 6877 out: 6878 return retval; 6879 } 6880 6881 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6882 char __user *optval, 6883 int __user *optlen) 6884 { 6885 struct sctp_prstatus params; 6886 struct sctp_association *asoc; 6887 int policy; 6888 int retval = -EINVAL; 6889 6890 if (len < sizeof(params)) 6891 goto out; 6892 6893 len = sizeof(params); 6894 if (copy_from_user(¶ms, optval, len)) { 6895 retval = -EFAULT; 6896 goto out; 6897 } 6898 6899 policy = params.sprstat_policy; 6900 if (policy & ~SCTP_PR_SCTP_MASK) 6901 goto out; 6902 6903 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6904 if (!asoc) 6905 goto out; 6906 6907 if (policy == SCTP_PR_SCTP_NONE) { 6908 params.sprstat_abandoned_unsent = 0; 6909 params.sprstat_abandoned_sent = 0; 6910 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6911 params.sprstat_abandoned_unsent += 6912 asoc->abandoned_unsent[policy]; 6913 params.sprstat_abandoned_sent += 6914 asoc->abandoned_sent[policy]; 6915 } 6916 } else { 6917 params.sprstat_abandoned_unsent = 6918 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6919 params.sprstat_abandoned_sent = 6920 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6921 } 6922 6923 if (put_user(len, optlen)) { 6924 retval = -EFAULT; 6925 goto out; 6926 } 6927 6928 if (copy_to_user(optval, ¶ms, len)) { 6929 retval = -EFAULT; 6930 goto out; 6931 } 6932 6933 retval = 0; 6934 6935 out: 6936 return retval; 6937 } 6938 6939 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6940 char __user *optval, 6941 int __user *optlen) 6942 { 6943 struct sctp_stream_out_ext *streamoute; 6944 struct sctp_association *asoc; 6945 struct sctp_prstatus params; 6946 int retval = -EINVAL; 6947 int policy; 6948 6949 if (len < sizeof(params)) 6950 goto out; 6951 6952 len = sizeof(params); 6953 if (copy_from_user(¶ms, optval, len)) { 6954 retval = -EFAULT; 6955 goto out; 6956 } 6957 6958 policy = params.sprstat_policy; 6959 if (policy & ~SCTP_PR_SCTP_MASK) 6960 goto out; 6961 6962 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6963 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6964 goto out; 6965 6966 streamoute = asoc->stream.out[params.sprstat_sid].ext; 6967 if (!streamoute) { 6968 /* Not allocated yet, means all stats are 0 */ 6969 params.sprstat_abandoned_unsent = 0; 6970 params.sprstat_abandoned_sent = 0; 6971 retval = 0; 6972 goto out; 6973 } 6974 6975 if (policy == SCTP_PR_SCTP_NONE) { 6976 params.sprstat_abandoned_unsent = 0; 6977 params.sprstat_abandoned_sent = 0; 6978 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6979 params.sprstat_abandoned_unsent += 6980 streamoute->abandoned_unsent[policy]; 6981 params.sprstat_abandoned_sent += 6982 streamoute->abandoned_sent[policy]; 6983 } 6984 } else { 6985 params.sprstat_abandoned_unsent = 6986 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6987 params.sprstat_abandoned_sent = 6988 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6989 } 6990 6991 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6992 retval = -EFAULT; 6993 goto out; 6994 } 6995 6996 retval = 0; 6997 6998 out: 6999 return retval; 7000 } 7001 7002 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7003 char __user *optval, 7004 int __user *optlen) 7005 { 7006 struct sctp_assoc_value params; 7007 struct sctp_association *asoc; 7008 int retval = -EFAULT; 7009 7010 if (len < sizeof(params)) { 7011 retval = -EINVAL; 7012 goto out; 7013 } 7014 7015 len = sizeof(params); 7016 if (copy_from_user(¶ms, optval, len)) 7017 goto out; 7018 7019 asoc = sctp_id2assoc(sk, params.assoc_id); 7020 if (asoc) { 7021 params.assoc_value = asoc->reconf_enable; 7022 } else if (!params.assoc_id) { 7023 struct sctp_sock *sp = sctp_sk(sk); 7024 7025 params.assoc_value = sp->ep->reconf_enable; 7026 } else { 7027 retval = -EINVAL; 7028 goto out; 7029 } 7030 7031 if (put_user(len, optlen)) 7032 goto out; 7033 7034 if (copy_to_user(optval, ¶ms, len)) 7035 goto out; 7036 7037 retval = 0; 7038 7039 out: 7040 return retval; 7041 } 7042 7043 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7044 char __user *optval, 7045 int __user *optlen) 7046 { 7047 struct sctp_assoc_value params; 7048 struct sctp_association *asoc; 7049 int retval = -EFAULT; 7050 7051 if (len < sizeof(params)) { 7052 retval = -EINVAL; 7053 goto out; 7054 } 7055 7056 len = sizeof(params); 7057 if (copy_from_user(¶ms, optval, len)) 7058 goto out; 7059 7060 asoc = sctp_id2assoc(sk, params.assoc_id); 7061 if (asoc) { 7062 params.assoc_value = asoc->strreset_enable; 7063 } else if (!params.assoc_id) { 7064 struct sctp_sock *sp = sctp_sk(sk); 7065 7066 params.assoc_value = sp->ep->strreset_enable; 7067 } else { 7068 retval = -EINVAL; 7069 goto out; 7070 } 7071 7072 if (put_user(len, optlen)) 7073 goto out; 7074 7075 if (copy_to_user(optval, ¶ms, len)) 7076 goto out; 7077 7078 retval = 0; 7079 7080 out: 7081 return retval; 7082 } 7083 7084 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7085 char __user *optval, 7086 int __user *optlen) 7087 { 7088 struct sctp_assoc_value params; 7089 struct sctp_association *asoc; 7090 int retval = -EFAULT; 7091 7092 if (len < sizeof(params)) { 7093 retval = -EINVAL; 7094 goto out; 7095 } 7096 7097 len = sizeof(params); 7098 if (copy_from_user(¶ms, optval, len)) 7099 goto out; 7100 7101 asoc = sctp_id2assoc(sk, params.assoc_id); 7102 if (!asoc) { 7103 retval = -EINVAL; 7104 goto out; 7105 } 7106 7107 params.assoc_value = sctp_sched_get_sched(asoc); 7108 7109 if (put_user(len, optlen)) 7110 goto out; 7111 7112 if (copy_to_user(optval, ¶ms, len)) 7113 goto out; 7114 7115 retval = 0; 7116 7117 out: 7118 return retval; 7119 } 7120 7121 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7122 char __user *optval, 7123 int __user *optlen) 7124 { 7125 struct sctp_stream_value params; 7126 struct sctp_association *asoc; 7127 int retval = -EFAULT; 7128 7129 if (len < sizeof(params)) { 7130 retval = -EINVAL; 7131 goto out; 7132 } 7133 7134 len = sizeof(params); 7135 if (copy_from_user(¶ms, optval, len)) 7136 goto out; 7137 7138 asoc = sctp_id2assoc(sk, params.assoc_id); 7139 if (!asoc) { 7140 retval = -EINVAL; 7141 goto out; 7142 } 7143 7144 retval = sctp_sched_get_value(asoc, params.stream_id, 7145 ¶ms.stream_value); 7146 if (retval) 7147 goto out; 7148 7149 if (put_user(len, optlen)) { 7150 retval = -EFAULT; 7151 goto out; 7152 } 7153 7154 if (copy_to_user(optval, ¶ms, len)) { 7155 retval = -EFAULT; 7156 goto out; 7157 } 7158 7159 out: 7160 return retval; 7161 } 7162 7163 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7164 char __user *optval, 7165 int __user *optlen) 7166 { 7167 struct sctp_assoc_value params; 7168 struct sctp_association *asoc; 7169 int retval = -EFAULT; 7170 7171 if (len < sizeof(params)) { 7172 retval = -EINVAL; 7173 goto out; 7174 } 7175 7176 len = sizeof(params); 7177 if (copy_from_user(¶ms, optval, len)) 7178 goto out; 7179 7180 asoc = sctp_id2assoc(sk, params.assoc_id); 7181 if (asoc) { 7182 params.assoc_value = asoc->intl_enable; 7183 } else if (!params.assoc_id) { 7184 struct sctp_sock *sp = sctp_sk(sk); 7185 7186 params.assoc_value = sp->strm_interleave; 7187 } else { 7188 retval = -EINVAL; 7189 goto out; 7190 } 7191 7192 if (put_user(len, optlen)) 7193 goto out; 7194 7195 if (copy_to_user(optval, ¶ms, len)) 7196 goto out; 7197 7198 retval = 0; 7199 7200 out: 7201 return retval; 7202 } 7203 7204 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7205 char __user *optval, int __user *optlen) 7206 { 7207 int retval = 0; 7208 int len; 7209 7210 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7211 7212 /* I can hardly begin to describe how wrong this is. This is 7213 * so broken as to be worse than useless. The API draft 7214 * REALLY is NOT helpful here... I am not convinced that the 7215 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7216 * are at all well-founded. 7217 */ 7218 if (level != SOL_SCTP) { 7219 struct sctp_af *af = sctp_sk(sk)->pf->af; 7220 7221 retval = af->getsockopt(sk, level, optname, optval, optlen); 7222 return retval; 7223 } 7224 7225 if (get_user(len, optlen)) 7226 return -EFAULT; 7227 7228 if (len < 0) 7229 return -EINVAL; 7230 7231 lock_sock(sk); 7232 7233 switch (optname) { 7234 case SCTP_STATUS: 7235 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7236 break; 7237 case SCTP_DISABLE_FRAGMENTS: 7238 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7239 optlen); 7240 break; 7241 case SCTP_EVENTS: 7242 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7243 break; 7244 case SCTP_AUTOCLOSE: 7245 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7246 break; 7247 case SCTP_SOCKOPT_PEELOFF: 7248 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7249 break; 7250 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7251 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7252 break; 7253 case SCTP_PEER_ADDR_PARAMS: 7254 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7255 optlen); 7256 break; 7257 case SCTP_DELAYED_SACK: 7258 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7259 optlen); 7260 break; 7261 case SCTP_INITMSG: 7262 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7263 break; 7264 case SCTP_GET_PEER_ADDRS: 7265 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7266 optlen); 7267 break; 7268 case SCTP_GET_LOCAL_ADDRS: 7269 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7270 optlen); 7271 break; 7272 case SCTP_SOCKOPT_CONNECTX3: 7273 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7274 break; 7275 case SCTP_DEFAULT_SEND_PARAM: 7276 retval = sctp_getsockopt_default_send_param(sk, len, 7277 optval, optlen); 7278 break; 7279 case SCTP_DEFAULT_SNDINFO: 7280 retval = sctp_getsockopt_default_sndinfo(sk, len, 7281 optval, optlen); 7282 break; 7283 case SCTP_PRIMARY_ADDR: 7284 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7285 break; 7286 case SCTP_NODELAY: 7287 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7288 break; 7289 case SCTP_RTOINFO: 7290 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7291 break; 7292 case SCTP_ASSOCINFO: 7293 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7294 break; 7295 case SCTP_I_WANT_MAPPED_V4_ADDR: 7296 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7297 break; 7298 case SCTP_MAXSEG: 7299 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7300 break; 7301 case SCTP_GET_PEER_ADDR_INFO: 7302 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7303 optlen); 7304 break; 7305 case SCTP_ADAPTATION_LAYER: 7306 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7307 optlen); 7308 break; 7309 case SCTP_CONTEXT: 7310 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7311 break; 7312 case SCTP_FRAGMENT_INTERLEAVE: 7313 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7314 optlen); 7315 break; 7316 case SCTP_PARTIAL_DELIVERY_POINT: 7317 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7318 optlen); 7319 break; 7320 case SCTP_MAX_BURST: 7321 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7322 break; 7323 case SCTP_AUTH_KEY: 7324 case SCTP_AUTH_CHUNK: 7325 case SCTP_AUTH_DELETE_KEY: 7326 case SCTP_AUTH_DEACTIVATE_KEY: 7327 retval = -EOPNOTSUPP; 7328 break; 7329 case SCTP_HMAC_IDENT: 7330 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7331 break; 7332 case SCTP_AUTH_ACTIVE_KEY: 7333 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7334 break; 7335 case SCTP_PEER_AUTH_CHUNKS: 7336 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7337 optlen); 7338 break; 7339 case SCTP_LOCAL_AUTH_CHUNKS: 7340 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7341 optlen); 7342 break; 7343 case SCTP_GET_ASSOC_NUMBER: 7344 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7345 break; 7346 case SCTP_GET_ASSOC_ID_LIST: 7347 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7348 break; 7349 case SCTP_AUTO_ASCONF: 7350 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7351 break; 7352 case SCTP_PEER_ADDR_THLDS: 7353 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7354 break; 7355 case SCTP_GET_ASSOC_STATS: 7356 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7357 break; 7358 case SCTP_RECVRCVINFO: 7359 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7360 break; 7361 case SCTP_RECVNXTINFO: 7362 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7363 break; 7364 case SCTP_PR_SUPPORTED: 7365 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7366 break; 7367 case SCTP_DEFAULT_PRINFO: 7368 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7369 optlen); 7370 break; 7371 case SCTP_PR_ASSOC_STATUS: 7372 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7373 optlen); 7374 break; 7375 case SCTP_PR_STREAM_STATUS: 7376 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7377 optlen); 7378 break; 7379 case SCTP_RECONFIG_SUPPORTED: 7380 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7381 optlen); 7382 break; 7383 case SCTP_ENABLE_STREAM_RESET: 7384 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7385 optlen); 7386 break; 7387 case SCTP_STREAM_SCHEDULER: 7388 retval = sctp_getsockopt_scheduler(sk, len, optval, 7389 optlen); 7390 break; 7391 case SCTP_STREAM_SCHEDULER_VALUE: 7392 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7393 optlen); 7394 break; 7395 case SCTP_INTERLEAVING_SUPPORTED: 7396 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7397 optlen); 7398 break; 7399 default: 7400 retval = -ENOPROTOOPT; 7401 break; 7402 } 7403 7404 release_sock(sk); 7405 return retval; 7406 } 7407 7408 static int sctp_hash(struct sock *sk) 7409 { 7410 /* STUB */ 7411 return 0; 7412 } 7413 7414 static void sctp_unhash(struct sock *sk) 7415 { 7416 /* STUB */ 7417 } 7418 7419 /* Check if port is acceptable. Possibly find first available port. 7420 * 7421 * The port hash table (contained in the 'global' SCTP protocol storage 7422 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7423 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7424 * list (the list number is the port number hashed out, so as you 7425 * would expect from a hash function, all the ports in a given list have 7426 * such a number that hashes out to the same list number; you were 7427 * expecting that, right?); so each list has a set of ports, with a 7428 * link to the socket (struct sock) that uses it, the port number and 7429 * a fastreuse flag (FIXME: NPI ipg). 7430 */ 7431 static struct sctp_bind_bucket *sctp_bucket_create( 7432 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7433 7434 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7435 { 7436 struct sctp_bind_hashbucket *head; /* hash list */ 7437 struct sctp_bind_bucket *pp; 7438 unsigned short snum; 7439 int ret; 7440 7441 snum = ntohs(addr->v4.sin_port); 7442 7443 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7444 7445 local_bh_disable(); 7446 7447 if (snum == 0) { 7448 /* Search for an available port. */ 7449 int low, high, remaining, index; 7450 unsigned int rover; 7451 struct net *net = sock_net(sk); 7452 7453 inet_get_local_port_range(net, &low, &high); 7454 remaining = (high - low) + 1; 7455 rover = prandom_u32() % remaining + low; 7456 7457 do { 7458 rover++; 7459 if ((rover < low) || (rover > high)) 7460 rover = low; 7461 if (inet_is_local_reserved_port(net, rover)) 7462 continue; 7463 index = sctp_phashfn(sock_net(sk), rover); 7464 head = &sctp_port_hashtable[index]; 7465 spin_lock(&head->lock); 7466 sctp_for_each_hentry(pp, &head->chain) 7467 if ((pp->port == rover) && 7468 net_eq(sock_net(sk), pp->net)) 7469 goto next; 7470 break; 7471 next: 7472 spin_unlock(&head->lock); 7473 } while (--remaining > 0); 7474 7475 /* Exhausted local port range during search? */ 7476 ret = 1; 7477 if (remaining <= 0) 7478 goto fail; 7479 7480 /* OK, here is the one we will use. HEAD (the port 7481 * hash table list entry) is non-NULL and we hold it's 7482 * mutex. 7483 */ 7484 snum = rover; 7485 } else { 7486 /* We are given an specific port number; we verify 7487 * that it is not being used. If it is used, we will 7488 * exahust the search in the hash list corresponding 7489 * to the port number (snum) - we detect that with the 7490 * port iterator, pp being NULL. 7491 */ 7492 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7493 spin_lock(&head->lock); 7494 sctp_for_each_hentry(pp, &head->chain) { 7495 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7496 goto pp_found; 7497 } 7498 } 7499 pp = NULL; 7500 goto pp_not_found; 7501 pp_found: 7502 if (!hlist_empty(&pp->owner)) { 7503 /* We had a port hash table hit - there is an 7504 * available port (pp != NULL) and it is being 7505 * used by other socket (pp->owner not empty); that other 7506 * socket is going to be sk2. 7507 */ 7508 int reuse = sk->sk_reuse; 7509 struct sock *sk2; 7510 7511 pr_debug("%s: found a possible match\n", __func__); 7512 7513 if (pp->fastreuse && sk->sk_reuse && 7514 sk->sk_state != SCTP_SS_LISTENING) 7515 goto success; 7516 7517 /* Run through the list of sockets bound to the port 7518 * (pp->port) [via the pointers bind_next and 7519 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7520 * we get the endpoint they describe and run through 7521 * the endpoint's list of IP (v4 or v6) addresses, 7522 * comparing each of the addresses with the address of 7523 * the socket sk. If we find a match, then that means 7524 * that this port/socket (sk) combination are already 7525 * in an endpoint. 7526 */ 7527 sk_for_each_bound(sk2, &pp->owner) { 7528 struct sctp_endpoint *ep2; 7529 ep2 = sctp_sk(sk2)->ep; 7530 7531 if (sk == sk2 || 7532 (reuse && sk2->sk_reuse && 7533 sk2->sk_state != SCTP_SS_LISTENING)) 7534 continue; 7535 7536 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7537 sctp_sk(sk2), sctp_sk(sk))) { 7538 ret = (long)sk2; 7539 goto fail_unlock; 7540 } 7541 } 7542 7543 pr_debug("%s: found a match\n", __func__); 7544 } 7545 pp_not_found: 7546 /* If there was a hash table miss, create a new port. */ 7547 ret = 1; 7548 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7549 goto fail_unlock; 7550 7551 /* In either case (hit or miss), make sure fastreuse is 1 only 7552 * if sk->sk_reuse is too (that is, if the caller requested 7553 * SO_REUSEADDR on this socket -sk-). 7554 */ 7555 if (hlist_empty(&pp->owner)) { 7556 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7557 pp->fastreuse = 1; 7558 else 7559 pp->fastreuse = 0; 7560 } else if (pp->fastreuse && 7561 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7562 pp->fastreuse = 0; 7563 7564 /* We are set, so fill up all the data in the hash table 7565 * entry, tie the socket list information with the rest of the 7566 * sockets FIXME: Blurry, NPI (ipg). 7567 */ 7568 success: 7569 if (!sctp_sk(sk)->bind_hash) { 7570 inet_sk(sk)->inet_num = snum; 7571 sk_add_bind_node(sk, &pp->owner); 7572 sctp_sk(sk)->bind_hash = pp; 7573 } 7574 ret = 0; 7575 7576 fail_unlock: 7577 spin_unlock(&head->lock); 7578 7579 fail: 7580 local_bh_enable(); 7581 return ret; 7582 } 7583 7584 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7585 * port is requested. 7586 */ 7587 static int sctp_get_port(struct sock *sk, unsigned short snum) 7588 { 7589 union sctp_addr addr; 7590 struct sctp_af *af = sctp_sk(sk)->pf->af; 7591 7592 /* Set up a dummy address struct from the sk. */ 7593 af->from_sk(&addr, sk); 7594 addr.v4.sin_port = htons(snum); 7595 7596 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7597 return !!sctp_get_port_local(sk, &addr); 7598 } 7599 7600 /* 7601 * Move a socket to LISTENING state. 7602 */ 7603 static int sctp_listen_start(struct sock *sk, int backlog) 7604 { 7605 struct sctp_sock *sp = sctp_sk(sk); 7606 struct sctp_endpoint *ep = sp->ep; 7607 struct crypto_shash *tfm = NULL; 7608 char alg[32]; 7609 7610 /* Allocate HMAC for generating cookie. */ 7611 if (!sp->hmac && sp->sctp_hmac_alg) { 7612 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7613 tfm = crypto_alloc_shash(alg, 0, 0); 7614 if (IS_ERR(tfm)) { 7615 net_info_ratelimited("failed to load transform for %s: %ld\n", 7616 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7617 return -ENOSYS; 7618 } 7619 sctp_sk(sk)->hmac = tfm; 7620 } 7621 7622 /* 7623 * If a bind() or sctp_bindx() is not called prior to a listen() 7624 * call that allows new associations to be accepted, the system 7625 * picks an ephemeral port and will choose an address set equivalent 7626 * to binding with a wildcard address. 7627 * 7628 * This is not currently spelled out in the SCTP sockets 7629 * extensions draft, but follows the practice as seen in TCP 7630 * sockets. 7631 * 7632 */ 7633 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7634 if (!ep->base.bind_addr.port) { 7635 if (sctp_autobind(sk)) 7636 return -EAGAIN; 7637 } else { 7638 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7639 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7640 return -EADDRINUSE; 7641 } 7642 } 7643 7644 sk->sk_max_ack_backlog = backlog; 7645 sctp_hash_endpoint(ep); 7646 return 0; 7647 } 7648 7649 /* 7650 * 4.1.3 / 5.1.3 listen() 7651 * 7652 * By default, new associations are not accepted for UDP style sockets. 7653 * An application uses listen() to mark a socket as being able to 7654 * accept new associations. 7655 * 7656 * On TCP style sockets, applications use listen() to ready the SCTP 7657 * endpoint for accepting inbound associations. 7658 * 7659 * On both types of endpoints a backlog of '0' disables listening. 7660 * 7661 * Move a socket to LISTENING state. 7662 */ 7663 int sctp_inet_listen(struct socket *sock, int backlog) 7664 { 7665 struct sock *sk = sock->sk; 7666 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7667 int err = -EINVAL; 7668 7669 if (unlikely(backlog < 0)) 7670 return err; 7671 7672 lock_sock(sk); 7673 7674 /* Peeled-off sockets are not allowed to listen(). */ 7675 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7676 goto out; 7677 7678 if (sock->state != SS_UNCONNECTED) 7679 goto out; 7680 7681 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7682 goto out; 7683 7684 /* If backlog is zero, disable listening. */ 7685 if (!backlog) { 7686 if (sctp_sstate(sk, CLOSED)) 7687 goto out; 7688 7689 err = 0; 7690 sctp_unhash_endpoint(ep); 7691 sk->sk_state = SCTP_SS_CLOSED; 7692 if (sk->sk_reuse) 7693 sctp_sk(sk)->bind_hash->fastreuse = 1; 7694 goto out; 7695 } 7696 7697 /* If we are already listening, just update the backlog */ 7698 if (sctp_sstate(sk, LISTENING)) 7699 sk->sk_max_ack_backlog = backlog; 7700 else { 7701 err = sctp_listen_start(sk, backlog); 7702 if (err) 7703 goto out; 7704 } 7705 7706 err = 0; 7707 out: 7708 release_sock(sk); 7709 return err; 7710 } 7711 7712 /* 7713 * This function is done by modeling the current datagram_poll() and the 7714 * tcp_poll(). Note that, based on these implementations, we don't 7715 * lock the socket in this function, even though it seems that, 7716 * ideally, locking or some other mechanisms can be used to ensure 7717 * the integrity of the counters (sndbuf and wmem_alloc) used 7718 * in this place. We assume that we don't need locks either until proven 7719 * otherwise. 7720 * 7721 * Another thing to note is that we include the Async I/O support 7722 * here, again, by modeling the current TCP/UDP code. We don't have 7723 * a good way to test with it yet. 7724 */ 7725 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7726 { 7727 struct sock *sk = sock->sk; 7728 struct sctp_sock *sp = sctp_sk(sk); 7729 __poll_t mask; 7730 7731 poll_wait(file, sk_sleep(sk), wait); 7732 7733 sock_rps_record_flow(sk); 7734 7735 /* A TCP-style listening socket becomes readable when the accept queue 7736 * is not empty. 7737 */ 7738 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7739 return (!list_empty(&sp->ep->asocs)) ? 7740 (EPOLLIN | EPOLLRDNORM) : 0; 7741 7742 mask = 0; 7743 7744 /* Is there any exceptional events? */ 7745 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7746 mask |= EPOLLERR | 7747 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 7748 if (sk->sk_shutdown & RCV_SHUTDOWN) 7749 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 7750 if (sk->sk_shutdown == SHUTDOWN_MASK) 7751 mask |= EPOLLHUP; 7752 7753 /* Is it readable? Reconsider this code with TCP-style support. */ 7754 if (!skb_queue_empty(&sk->sk_receive_queue)) 7755 mask |= EPOLLIN | EPOLLRDNORM; 7756 7757 /* The association is either gone or not ready. */ 7758 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7759 return mask; 7760 7761 /* Is it writable? */ 7762 if (sctp_writeable(sk)) { 7763 mask |= EPOLLOUT | EPOLLWRNORM; 7764 } else { 7765 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7766 /* 7767 * Since the socket is not locked, the buffer 7768 * might be made available after the writeable check and 7769 * before the bit is set. This could cause a lost I/O 7770 * signal. tcp_poll() has a race breaker for this race 7771 * condition. Based on their implementation, we put 7772 * in the following code to cover it as well. 7773 */ 7774 if (sctp_writeable(sk)) 7775 mask |= EPOLLOUT | EPOLLWRNORM; 7776 } 7777 return mask; 7778 } 7779 7780 /******************************************************************** 7781 * 2nd Level Abstractions 7782 ********************************************************************/ 7783 7784 static struct sctp_bind_bucket *sctp_bucket_create( 7785 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7786 { 7787 struct sctp_bind_bucket *pp; 7788 7789 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7790 if (pp) { 7791 SCTP_DBG_OBJCNT_INC(bind_bucket); 7792 pp->port = snum; 7793 pp->fastreuse = 0; 7794 INIT_HLIST_HEAD(&pp->owner); 7795 pp->net = net; 7796 hlist_add_head(&pp->node, &head->chain); 7797 } 7798 return pp; 7799 } 7800 7801 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7802 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7803 { 7804 if (pp && hlist_empty(&pp->owner)) { 7805 __hlist_del(&pp->node); 7806 kmem_cache_free(sctp_bucket_cachep, pp); 7807 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7808 } 7809 } 7810 7811 /* Release this socket's reference to a local port. */ 7812 static inline void __sctp_put_port(struct sock *sk) 7813 { 7814 struct sctp_bind_hashbucket *head = 7815 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7816 inet_sk(sk)->inet_num)]; 7817 struct sctp_bind_bucket *pp; 7818 7819 spin_lock(&head->lock); 7820 pp = sctp_sk(sk)->bind_hash; 7821 __sk_del_bind_node(sk); 7822 sctp_sk(sk)->bind_hash = NULL; 7823 inet_sk(sk)->inet_num = 0; 7824 sctp_bucket_destroy(pp); 7825 spin_unlock(&head->lock); 7826 } 7827 7828 void sctp_put_port(struct sock *sk) 7829 { 7830 local_bh_disable(); 7831 __sctp_put_port(sk); 7832 local_bh_enable(); 7833 } 7834 7835 /* 7836 * The system picks an ephemeral port and choose an address set equivalent 7837 * to binding with a wildcard address. 7838 * One of those addresses will be the primary address for the association. 7839 * This automatically enables the multihoming capability of SCTP. 7840 */ 7841 static int sctp_autobind(struct sock *sk) 7842 { 7843 union sctp_addr autoaddr; 7844 struct sctp_af *af; 7845 __be16 port; 7846 7847 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7848 af = sctp_sk(sk)->pf->af; 7849 7850 port = htons(inet_sk(sk)->inet_num); 7851 af->inaddr_any(&autoaddr, port); 7852 7853 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7854 } 7855 7856 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7857 * 7858 * From RFC 2292 7859 * 4.2 The cmsghdr Structure * 7860 * 7861 * When ancillary data is sent or received, any number of ancillary data 7862 * objects can be specified by the msg_control and msg_controllen members of 7863 * the msghdr structure, because each object is preceded by 7864 * a cmsghdr structure defining the object's length (the cmsg_len member). 7865 * Historically Berkeley-derived implementations have passed only one object 7866 * at a time, but this API allows multiple objects to be 7867 * passed in a single call to sendmsg() or recvmsg(). The following example 7868 * shows two ancillary data objects in a control buffer. 7869 * 7870 * |<--------------------------- msg_controllen -------------------------->| 7871 * | | 7872 * 7873 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7874 * 7875 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7876 * | | | 7877 * 7878 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7879 * 7880 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7881 * | | | | | 7882 * 7883 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7884 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7885 * 7886 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7887 * 7888 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7889 * ^ 7890 * | 7891 * 7892 * msg_control 7893 * points here 7894 */ 7895 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7896 { 7897 struct msghdr *my_msg = (struct msghdr *)msg; 7898 struct cmsghdr *cmsg; 7899 7900 for_each_cmsghdr(cmsg, my_msg) { 7901 if (!CMSG_OK(my_msg, cmsg)) 7902 return -EINVAL; 7903 7904 /* Should we parse this header or ignore? */ 7905 if (cmsg->cmsg_level != IPPROTO_SCTP) 7906 continue; 7907 7908 /* Strictly check lengths following example in SCM code. */ 7909 switch (cmsg->cmsg_type) { 7910 case SCTP_INIT: 7911 /* SCTP Socket API Extension 7912 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7913 * 7914 * This cmsghdr structure provides information for 7915 * initializing new SCTP associations with sendmsg(). 7916 * The SCTP_INITMSG socket option uses this same data 7917 * structure. This structure is not used for 7918 * recvmsg(). 7919 * 7920 * cmsg_level cmsg_type cmsg_data[] 7921 * ------------ ------------ ---------------------- 7922 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7923 */ 7924 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7925 return -EINVAL; 7926 7927 cmsgs->init = CMSG_DATA(cmsg); 7928 break; 7929 7930 case SCTP_SNDRCV: 7931 /* SCTP Socket API Extension 7932 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7933 * 7934 * This cmsghdr structure specifies SCTP options for 7935 * sendmsg() and describes SCTP header information 7936 * about a received message through recvmsg(). 7937 * 7938 * cmsg_level cmsg_type cmsg_data[] 7939 * ------------ ------------ ---------------------- 7940 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7941 */ 7942 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7943 return -EINVAL; 7944 7945 cmsgs->srinfo = CMSG_DATA(cmsg); 7946 7947 if (cmsgs->srinfo->sinfo_flags & 7948 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7949 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 7950 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 7951 return -EINVAL; 7952 break; 7953 7954 case SCTP_SNDINFO: 7955 /* SCTP Socket API Extension 7956 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7957 * 7958 * This cmsghdr structure specifies SCTP options for 7959 * sendmsg(). This structure and SCTP_RCVINFO replaces 7960 * SCTP_SNDRCV which has been deprecated. 7961 * 7962 * cmsg_level cmsg_type cmsg_data[] 7963 * ------------ ------------ --------------------- 7964 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7965 */ 7966 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7967 return -EINVAL; 7968 7969 cmsgs->sinfo = CMSG_DATA(cmsg); 7970 7971 if (cmsgs->sinfo->snd_flags & 7972 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7973 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 7974 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 7975 return -EINVAL; 7976 break; 7977 case SCTP_PRINFO: 7978 /* SCTP Socket API Extension 7979 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 7980 * 7981 * This cmsghdr structure specifies SCTP options for sendmsg(). 7982 * 7983 * cmsg_level cmsg_type cmsg_data[] 7984 * ------------ ------------ --------------------- 7985 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 7986 */ 7987 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 7988 return -EINVAL; 7989 7990 cmsgs->prinfo = CMSG_DATA(cmsg); 7991 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 7992 return -EINVAL; 7993 7994 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 7995 cmsgs->prinfo->pr_value = 0; 7996 break; 7997 case SCTP_AUTHINFO: 7998 /* SCTP Socket API Extension 7999 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8000 * 8001 * This cmsghdr structure specifies SCTP options for sendmsg(). 8002 * 8003 * cmsg_level cmsg_type cmsg_data[] 8004 * ------------ ------------ --------------------- 8005 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8006 */ 8007 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8008 return -EINVAL; 8009 8010 cmsgs->authinfo = CMSG_DATA(cmsg); 8011 break; 8012 case SCTP_DSTADDRV4: 8013 case SCTP_DSTADDRV6: 8014 /* SCTP Socket API Extension 8015 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8016 * 8017 * This cmsghdr structure specifies SCTP options for sendmsg(). 8018 * 8019 * cmsg_level cmsg_type cmsg_data[] 8020 * ------------ ------------ --------------------- 8021 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8022 * ------------ ------------ --------------------- 8023 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8024 */ 8025 cmsgs->addrs_msg = my_msg; 8026 break; 8027 default: 8028 return -EINVAL; 8029 } 8030 } 8031 8032 return 0; 8033 } 8034 8035 /* 8036 * Wait for a packet.. 8037 * Note: This function is the same function as in core/datagram.c 8038 * with a few modifications to make lksctp work. 8039 */ 8040 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8041 { 8042 int error; 8043 DEFINE_WAIT(wait); 8044 8045 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8046 8047 /* Socket errors? */ 8048 error = sock_error(sk); 8049 if (error) 8050 goto out; 8051 8052 if (!skb_queue_empty(&sk->sk_receive_queue)) 8053 goto ready; 8054 8055 /* Socket shut down? */ 8056 if (sk->sk_shutdown & RCV_SHUTDOWN) 8057 goto out; 8058 8059 /* Sequenced packets can come disconnected. If so we report the 8060 * problem. 8061 */ 8062 error = -ENOTCONN; 8063 8064 /* Is there a good reason to think that we may receive some data? */ 8065 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8066 goto out; 8067 8068 /* Handle signals. */ 8069 if (signal_pending(current)) 8070 goto interrupted; 8071 8072 /* Let another process have a go. Since we are going to sleep 8073 * anyway. Note: This may cause odd behaviors if the message 8074 * does not fit in the user's buffer, but this seems to be the 8075 * only way to honor MSG_DONTWAIT realistically. 8076 */ 8077 release_sock(sk); 8078 *timeo_p = schedule_timeout(*timeo_p); 8079 lock_sock(sk); 8080 8081 ready: 8082 finish_wait(sk_sleep(sk), &wait); 8083 return 0; 8084 8085 interrupted: 8086 error = sock_intr_errno(*timeo_p); 8087 8088 out: 8089 finish_wait(sk_sleep(sk), &wait); 8090 *err = error; 8091 return error; 8092 } 8093 8094 /* Receive a datagram. 8095 * Note: This is pretty much the same routine as in core/datagram.c 8096 * with a few changes to make lksctp work. 8097 */ 8098 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8099 int noblock, int *err) 8100 { 8101 int error; 8102 struct sk_buff *skb; 8103 long timeo; 8104 8105 timeo = sock_rcvtimeo(sk, noblock); 8106 8107 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8108 MAX_SCHEDULE_TIMEOUT); 8109 8110 do { 8111 /* Again only user level code calls this function, 8112 * so nothing interrupt level 8113 * will suddenly eat the receive_queue. 8114 * 8115 * Look at current nfs client by the way... 8116 * However, this function was correct in any case. 8) 8117 */ 8118 if (flags & MSG_PEEK) { 8119 skb = skb_peek(&sk->sk_receive_queue); 8120 if (skb) 8121 refcount_inc(&skb->users); 8122 } else { 8123 skb = __skb_dequeue(&sk->sk_receive_queue); 8124 } 8125 8126 if (skb) 8127 return skb; 8128 8129 /* Caller is allowed not to check sk->sk_err before calling. */ 8130 error = sock_error(sk); 8131 if (error) 8132 goto no_packet; 8133 8134 if (sk->sk_shutdown & RCV_SHUTDOWN) 8135 break; 8136 8137 if (sk_can_busy_loop(sk)) { 8138 sk_busy_loop(sk, noblock); 8139 8140 if (!skb_queue_empty(&sk->sk_receive_queue)) 8141 continue; 8142 } 8143 8144 /* User doesn't want to wait. */ 8145 error = -EAGAIN; 8146 if (!timeo) 8147 goto no_packet; 8148 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8149 8150 return NULL; 8151 8152 no_packet: 8153 *err = error; 8154 return NULL; 8155 } 8156 8157 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8158 static void __sctp_write_space(struct sctp_association *asoc) 8159 { 8160 struct sock *sk = asoc->base.sk; 8161 8162 if (sctp_wspace(asoc) <= 0) 8163 return; 8164 8165 if (waitqueue_active(&asoc->wait)) 8166 wake_up_interruptible(&asoc->wait); 8167 8168 if (sctp_writeable(sk)) { 8169 struct socket_wq *wq; 8170 8171 rcu_read_lock(); 8172 wq = rcu_dereference(sk->sk_wq); 8173 if (wq) { 8174 if (waitqueue_active(&wq->wait)) 8175 wake_up_interruptible(&wq->wait); 8176 8177 /* Note that we try to include the Async I/O support 8178 * here by modeling from the current TCP/UDP code. 8179 * We have not tested with it yet. 8180 */ 8181 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8182 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8183 } 8184 rcu_read_unlock(); 8185 } 8186 } 8187 8188 static void sctp_wake_up_waiters(struct sock *sk, 8189 struct sctp_association *asoc) 8190 { 8191 struct sctp_association *tmp = asoc; 8192 8193 /* We do accounting for the sndbuf space per association, 8194 * so we only need to wake our own association. 8195 */ 8196 if (asoc->ep->sndbuf_policy) 8197 return __sctp_write_space(asoc); 8198 8199 /* If association goes down and is just flushing its 8200 * outq, then just normally notify others. 8201 */ 8202 if (asoc->base.dead) 8203 return sctp_write_space(sk); 8204 8205 /* Accounting for the sndbuf space is per socket, so we 8206 * need to wake up others, try to be fair and in case of 8207 * other associations, let them have a go first instead 8208 * of just doing a sctp_write_space() call. 8209 * 8210 * Note that we reach sctp_wake_up_waiters() only when 8211 * associations free up queued chunks, thus we are under 8212 * lock and the list of associations on a socket is 8213 * guaranteed not to change. 8214 */ 8215 for (tmp = list_next_entry(tmp, asocs); 1; 8216 tmp = list_next_entry(tmp, asocs)) { 8217 /* Manually skip the head element. */ 8218 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8219 continue; 8220 /* Wake up association. */ 8221 __sctp_write_space(tmp); 8222 /* We've reached the end. */ 8223 if (tmp == asoc) 8224 break; 8225 } 8226 } 8227 8228 /* Do accounting for the sndbuf space. 8229 * Decrement the used sndbuf space of the corresponding association by the 8230 * data size which was just transmitted(freed). 8231 */ 8232 static void sctp_wfree(struct sk_buff *skb) 8233 { 8234 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8235 struct sctp_association *asoc = chunk->asoc; 8236 struct sock *sk = asoc->base.sk; 8237 8238 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 8239 sizeof(struct sk_buff) + 8240 sizeof(struct sctp_chunk); 8241 8242 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 8243 8244 /* 8245 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 8246 */ 8247 sk->sk_wmem_queued -= skb->truesize; 8248 sk_mem_uncharge(sk, skb->truesize); 8249 8250 if (chunk->shkey) { 8251 struct sctp_shared_key *shkey = chunk->shkey; 8252 8253 /* refcnt == 2 and !list_empty mean after this release, it's 8254 * not being used anywhere, and it's time to notify userland 8255 * that this shkey can be freed if it's been deactivated. 8256 */ 8257 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8258 refcount_read(&shkey->refcnt) == 2) { 8259 struct sctp_ulpevent *ev; 8260 8261 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8262 SCTP_AUTH_FREE_KEY, 8263 GFP_KERNEL); 8264 if (ev) 8265 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8266 } 8267 sctp_auth_shkey_release(chunk->shkey); 8268 } 8269 8270 sock_wfree(skb); 8271 sctp_wake_up_waiters(sk, asoc); 8272 8273 sctp_association_put(asoc); 8274 } 8275 8276 /* Do accounting for the receive space on the socket. 8277 * Accounting for the association is done in ulpevent.c 8278 * We set this as a destructor for the cloned data skbs so that 8279 * accounting is done at the correct time. 8280 */ 8281 void sctp_sock_rfree(struct sk_buff *skb) 8282 { 8283 struct sock *sk = skb->sk; 8284 struct sctp_ulpevent *event = sctp_skb2event(skb); 8285 8286 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8287 8288 /* 8289 * Mimic the behavior of sock_rfree 8290 */ 8291 sk_mem_uncharge(sk, event->rmem_len); 8292 } 8293 8294 8295 /* Helper function to wait for space in the sndbuf. */ 8296 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8297 size_t msg_len) 8298 { 8299 struct sock *sk = asoc->base.sk; 8300 long current_timeo = *timeo_p; 8301 DEFINE_WAIT(wait); 8302 int err = 0; 8303 8304 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8305 *timeo_p, msg_len); 8306 8307 /* Increment the association's refcnt. */ 8308 sctp_association_hold(asoc); 8309 8310 /* Wait on the association specific sndbuf space. */ 8311 for (;;) { 8312 prepare_to_wait_exclusive(&asoc->wait, &wait, 8313 TASK_INTERRUPTIBLE); 8314 if (asoc->base.dead) 8315 goto do_dead; 8316 if (!*timeo_p) 8317 goto do_nonblock; 8318 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8319 goto do_error; 8320 if (signal_pending(current)) 8321 goto do_interrupted; 8322 if (msg_len <= sctp_wspace(asoc)) 8323 break; 8324 8325 /* Let another process have a go. Since we are going 8326 * to sleep anyway. 8327 */ 8328 release_sock(sk); 8329 current_timeo = schedule_timeout(current_timeo); 8330 lock_sock(sk); 8331 if (sk != asoc->base.sk) 8332 goto do_error; 8333 8334 *timeo_p = current_timeo; 8335 } 8336 8337 out: 8338 finish_wait(&asoc->wait, &wait); 8339 8340 /* Release the association's refcnt. */ 8341 sctp_association_put(asoc); 8342 8343 return err; 8344 8345 do_dead: 8346 err = -ESRCH; 8347 goto out; 8348 8349 do_error: 8350 err = -EPIPE; 8351 goto out; 8352 8353 do_interrupted: 8354 err = sock_intr_errno(*timeo_p); 8355 goto out; 8356 8357 do_nonblock: 8358 err = -EAGAIN; 8359 goto out; 8360 } 8361 8362 void sctp_data_ready(struct sock *sk) 8363 { 8364 struct socket_wq *wq; 8365 8366 rcu_read_lock(); 8367 wq = rcu_dereference(sk->sk_wq); 8368 if (skwq_has_sleeper(wq)) 8369 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8370 EPOLLRDNORM | EPOLLRDBAND); 8371 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8372 rcu_read_unlock(); 8373 } 8374 8375 /* If socket sndbuf has changed, wake up all per association waiters. */ 8376 void sctp_write_space(struct sock *sk) 8377 { 8378 struct sctp_association *asoc; 8379 8380 /* Wake up the tasks in each wait queue. */ 8381 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8382 __sctp_write_space(asoc); 8383 } 8384 } 8385 8386 /* Is there any sndbuf space available on the socket? 8387 * 8388 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8389 * associations on the same socket. For a UDP-style socket with 8390 * multiple associations, it is possible for it to be "unwriteable" 8391 * prematurely. I assume that this is acceptable because 8392 * a premature "unwriteable" is better than an accidental "writeable" which 8393 * would cause an unwanted block under certain circumstances. For the 1-1 8394 * UDP-style sockets or TCP-style sockets, this code should work. 8395 * - Daisy 8396 */ 8397 static int sctp_writeable(struct sock *sk) 8398 { 8399 int amt = 0; 8400 8401 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 8402 if (amt < 0) 8403 amt = 0; 8404 return amt; 8405 } 8406 8407 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8408 * returns immediately with EINPROGRESS. 8409 */ 8410 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8411 { 8412 struct sock *sk = asoc->base.sk; 8413 int err = 0; 8414 long current_timeo = *timeo_p; 8415 DEFINE_WAIT(wait); 8416 8417 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8418 8419 /* Increment the association's refcnt. */ 8420 sctp_association_hold(asoc); 8421 8422 for (;;) { 8423 prepare_to_wait_exclusive(&asoc->wait, &wait, 8424 TASK_INTERRUPTIBLE); 8425 if (!*timeo_p) 8426 goto do_nonblock; 8427 if (sk->sk_shutdown & RCV_SHUTDOWN) 8428 break; 8429 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8430 asoc->base.dead) 8431 goto do_error; 8432 if (signal_pending(current)) 8433 goto do_interrupted; 8434 8435 if (sctp_state(asoc, ESTABLISHED)) 8436 break; 8437 8438 /* Let another process have a go. Since we are going 8439 * to sleep anyway. 8440 */ 8441 release_sock(sk); 8442 current_timeo = schedule_timeout(current_timeo); 8443 lock_sock(sk); 8444 8445 *timeo_p = current_timeo; 8446 } 8447 8448 out: 8449 finish_wait(&asoc->wait, &wait); 8450 8451 /* Release the association's refcnt. */ 8452 sctp_association_put(asoc); 8453 8454 return err; 8455 8456 do_error: 8457 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8458 err = -ETIMEDOUT; 8459 else 8460 err = -ECONNREFUSED; 8461 goto out; 8462 8463 do_interrupted: 8464 err = sock_intr_errno(*timeo_p); 8465 goto out; 8466 8467 do_nonblock: 8468 err = -EINPROGRESS; 8469 goto out; 8470 } 8471 8472 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8473 { 8474 struct sctp_endpoint *ep; 8475 int err = 0; 8476 DEFINE_WAIT(wait); 8477 8478 ep = sctp_sk(sk)->ep; 8479 8480 8481 for (;;) { 8482 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8483 TASK_INTERRUPTIBLE); 8484 8485 if (list_empty(&ep->asocs)) { 8486 release_sock(sk); 8487 timeo = schedule_timeout(timeo); 8488 lock_sock(sk); 8489 } 8490 8491 err = -EINVAL; 8492 if (!sctp_sstate(sk, LISTENING)) 8493 break; 8494 8495 err = 0; 8496 if (!list_empty(&ep->asocs)) 8497 break; 8498 8499 err = sock_intr_errno(timeo); 8500 if (signal_pending(current)) 8501 break; 8502 8503 err = -EAGAIN; 8504 if (!timeo) 8505 break; 8506 } 8507 8508 finish_wait(sk_sleep(sk), &wait); 8509 8510 return err; 8511 } 8512 8513 static void sctp_wait_for_close(struct sock *sk, long timeout) 8514 { 8515 DEFINE_WAIT(wait); 8516 8517 do { 8518 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8519 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8520 break; 8521 release_sock(sk); 8522 timeout = schedule_timeout(timeout); 8523 lock_sock(sk); 8524 } while (!signal_pending(current) && timeout); 8525 8526 finish_wait(sk_sleep(sk), &wait); 8527 } 8528 8529 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8530 { 8531 struct sk_buff *frag; 8532 8533 if (!skb->data_len) 8534 goto done; 8535 8536 /* Don't forget the fragments. */ 8537 skb_walk_frags(skb, frag) 8538 sctp_skb_set_owner_r_frag(frag, sk); 8539 8540 done: 8541 sctp_skb_set_owner_r(skb, sk); 8542 } 8543 8544 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8545 struct sctp_association *asoc) 8546 { 8547 struct inet_sock *inet = inet_sk(sk); 8548 struct inet_sock *newinet; 8549 struct sctp_sock *sp = sctp_sk(sk); 8550 struct sctp_endpoint *ep = sp->ep; 8551 8552 newsk->sk_type = sk->sk_type; 8553 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8554 newsk->sk_flags = sk->sk_flags; 8555 newsk->sk_tsflags = sk->sk_tsflags; 8556 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8557 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8558 newsk->sk_reuse = sk->sk_reuse; 8559 8560 newsk->sk_shutdown = sk->sk_shutdown; 8561 newsk->sk_destruct = sctp_destruct_sock; 8562 newsk->sk_family = sk->sk_family; 8563 newsk->sk_protocol = IPPROTO_SCTP; 8564 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8565 newsk->sk_sndbuf = sk->sk_sndbuf; 8566 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8567 newsk->sk_lingertime = sk->sk_lingertime; 8568 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8569 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8570 newsk->sk_rxhash = sk->sk_rxhash; 8571 8572 newinet = inet_sk(newsk); 8573 8574 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8575 * getsockname() and getpeername() 8576 */ 8577 newinet->inet_sport = inet->inet_sport; 8578 newinet->inet_saddr = inet->inet_saddr; 8579 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8580 newinet->inet_dport = htons(asoc->peer.port); 8581 newinet->pmtudisc = inet->pmtudisc; 8582 newinet->inet_id = asoc->next_tsn ^ jiffies; 8583 8584 newinet->uc_ttl = inet->uc_ttl; 8585 newinet->mc_loop = 1; 8586 newinet->mc_ttl = 1; 8587 newinet->mc_index = 0; 8588 newinet->mc_list = NULL; 8589 8590 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8591 net_enable_timestamp(); 8592 8593 /* Set newsk security attributes from orginal sk and connection 8594 * security attribute from ep. 8595 */ 8596 security_sctp_sk_clone(ep, sk, newsk); 8597 } 8598 8599 static inline void sctp_copy_descendant(struct sock *sk_to, 8600 const struct sock *sk_from) 8601 { 8602 int ancestor_size = sizeof(struct inet_sock) + 8603 sizeof(struct sctp_sock) - 8604 offsetof(struct sctp_sock, auto_asconf_list); 8605 8606 if (sk_from->sk_family == PF_INET6) 8607 ancestor_size += sizeof(struct ipv6_pinfo); 8608 8609 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8610 } 8611 8612 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8613 * and its messages to the newsk. 8614 */ 8615 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8616 struct sctp_association *assoc, 8617 enum sctp_socket_type type) 8618 { 8619 struct sctp_sock *oldsp = sctp_sk(oldsk); 8620 struct sctp_sock *newsp = sctp_sk(newsk); 8621 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8622 struct sctp_endpoint *newep = newsp->ep; 8623 struct sk_buff *skb, *tmp; 8624 struct sctp_ulpevent *event; 8625 struct sctp_bind_hashbucket *head; 8626 8627 /* Migrate socket buffer sizes and all the socket level options to the 8628 * new socket. 8629 */ 8630 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8631 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8632 /* Brute force copy old sctp opt. */ 8633 sctp_copy_descendant(newsk, oldsk); 8634 8635 /* Restore the ep value that was overwritten with the above structure 8636 * copy. 8637 */ 8638 newsp->ep = newep; 8639 newsp->hmac = NULL; 8640 8641 /* Hook this new socket in to the bind_hash list. */ 8642 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8643 inet_sk(oldsk)->inet_num)]; 8644 spin_lock_bh(&head->lock); 8645 pp = sctp_sk(oldsk)->bind_hash; 8646 sk_add_bind_node(newsk, &pp->owner); 8647 sctp_sk(newsk)->bind_hash = pp; 8648 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8649 spin_unlock_bh(&head->lock); 8650 8651 /* Copy the bind_addr list from the original endpoint to the new 8652 * endpoint so that we can handle restarts properly 8653 */ 8654 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8655 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8656 8657 /* Move any messages in the old socket's receive queue that are for the 8658 * peeled off association to the new socket's receive queue. 8659 */ 8660 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8661 event = sctp_skb2event(skb); 8662 if (event->asoc == assoc) { 8663 __skb_unlink(skb, &oldsk->sk_receive_queue); 8664 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8665 sctp_skb_set_owner_r_frag(skb, newsk); 8666 } 8667 } 8668 8669 /* Clean up any messages pending delivery due to partial 8670 * delivery. Three cases: 8671 * 1) No partial deliver; no work. 8672 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8673 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8674 */ 8675 skb_queue_head_init(&newsp->pd_lobby); 8676 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8677 8678 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8679 struct sk_buff_head *queue; 8680 8681 /* Decide which queue to move pd_lobby skbs to. */ 8682 if (assoc->ulpq.pd_mode) { 8683 queue = &newsp->pd_lobby; 8684 } else 8685 queue = &newsk->sk_receive_queue; 8686 8687 /* Walk through the pd_lobby, looking for skbs that 8688 * need moved to the new socket. 8689 */ 8690 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8691 event = sctp_skb2event(skb); 8692 if (event->asoc == assoc) { 8693 __skb_unlink(skb, &oldsp->pd_lobby); 8694 __skb_queue_tail(queue, skb); 8695 sctp_skb_set_owner_r_frag(skb, newsk); 8696 } 8697 } 8698 8699 /* Clear up any skbs waiting for the partial 8700 * delivery to finish. 8701 */ 8702 if (assoc->ulpq.pd_mode) 8703 sctp_clear_pd(oldsk, NULL); 8704 8705 } 8706 8707 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 8708 8709 /* Set the type of socket to indicate that it is peeled off from the 8710 * original UDP-style socket or created with the accept() call on a 8711 * TCP-style socket.. 8712 */ 8713 newsp->type = type; 8714 8715 /* Mark the new socket "in-use" by the user so that any packets 8716 * that may arrive on the association after we've moved it are 8717 * queued to the backlog. This prevents a potential race between 8718 * backlog processing on the old socket and new-packet processing 8719 * on the new socket. 8720 * 8721 * The caller has just allocated newsk so we can guarantee that other 8722 * paths won't try to lock it and then oldsk. 8723 */ 8724 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8725 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8726 sctp_assoc_migrate(assoc, newsk); 8727 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8728 8729 /* If the association on the newsk is already closed before accept() 8730 * is called, set RCV_SHUTDOWN flag. 8731 */ 8732 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8733 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 8734 newsk->sk_shutdown |= RCV_SHUTDOWN; 8735 } else { 8736 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 8737 } 8738 8739 release_sock(newsk); 8740 } 8741 8742 8743 /* This proto struct describes the ULP interface for SCTP. */ 8744 struct proto sctp_prot = { 8745 .name = "SCTP", 8746 .owner = THIS_MODULE, 8747 .close = sctp_close, 8748 .disconnect = sctp_disconnect, 8749 .accept = sctp_accept, 8750 .ioctl = sctp_ioctl, 8751 .init = sctp_init_sock, 8752 .destroy = sctp_destroy_sock, 8753 .shutdown = sctp_shutdown, 8754 .setsockopt = sctp_setsockopt, 8755 .getsockopt = sctp_getsockopt, 8756 .sendmsg = sctp_sendmsg, 8757 .recvmsg = sctp_recvmsg, 8758 .bind = sctp_bind, 8759 .backlog_rcv = sctp_backlog_rcv, 8760 .hash = sctp_hash, 8761 .unhash = sctp_unhash, 8762 .get_port = sctp_get_port, 8763 .obj_size = sizeof(struct sctp_sock), 8764 .useroffset = offsetof(struct sctp_sock, subscribe), 8765 .usersize = offsetof(struct sctp_sock, initmsg) - 8766 offsetof(struct sctp_sock, subscribe) + 8767 sizeof_field(struct sctp_sock, initmsg), 8768 .sysctl_mem = sysctl_sctp_mem, 8769 .sysctl_rmem = sysctl_sctp_rmem, 8770 .sysctl_wmem = sysctl_sctp_wmem, 8771 .memory_pressure = &sctp_memory_pressure, 8772 .enter_memory_pressure = sctp_enter_memory_pressure, 8773 .memory_allocated = &sctp_memory_allocated, 8774 .sockets_allocated = &sctp_sockets_allocated, 8775 }; 8776 8777 #if IS_ENABLED(CONFIG_IPV6) 8778 8779 #include <net/transp_v6.h> 8780 static void sctp_v6_destroy_sock(struct sock *sk) 8781 { 8782 sctp_destroy_sock(sk); 8783 inet6_destroy_sock(sk); 8784 } 8785 8786 struct proto sctpv6_prot = { 8787 .name = "SCTPv6", 8788 .owner = THIS_MODULE, 8789 .close = sctp_close, 8790 .disconnect = sctp_disconnect, 8791 .accept = sctp_accept, 8792 .ioctl = sctp_ioctl, 8793 .init = sctp_init_sock, 8794 .destroy = sctp_v6_destroy_sock, 8795 .shutdown = sctp_shutdown, 8796 .setsockopt = sctp_setsockopt, 8797 .getsockopt = sctp_getsockopt, 8798 .sendmsg = sctp_sendmsg, 8799 .recvmsg = sctp_recvmsg, 8800 .bind = sctp_bind, 8801 .backlog_rcv = sctp_backlog_rcv, 8802 .hash = sctp_hash, 8803 .unhash = sctp_unhash, 8804 .get_port = sctp_get_port, 8805 .obj_size = sizeof(struct sctp6_sock), 8806 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 8807 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 8808 offsetof(struct sctp6_sock, sctp.subscribe) + 8809 sizeof_field(struct sctp6_sock, sctp.initmsg), 8810 .sysctl_mem = sysctl_sctp_mem, 8811 .sysctl_rmem = sysctl_sctp_rmem, 8812 .sysctl_wmem = sysctl_sctp_wmem, 8813 .memory_pressure = &sctp_memory_pressure, 8814 .enter_memory_pressure = sctp_enter_memory_pressure, 8815 .memory_allocated = &sctp_memory_allocated, 8816 .sockets_allocated = &sctp_sockets_allocated, 8817 }; 8818 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8819