xref: /openbmc/linux/net/sctp/socket.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  * Copyright (c) 2001-2002 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions interface with the sockets layer to implement the
13  * SCTP Extensions for the Sockets API.
14  *
15  * Note that the descriptions from the specification are USER level
16  * functions--this file is the functions which populate the struct proto
17  * for SCTP which is the BOTTOM of the sockets interface.
18  *
19  * Please send any bug reports or fixes you make to the
20  * email address(es):
21  *    lksctp developers <linux-sctp@vger.kernel.org>
22  *
23  * Written or modified by:
24  *    La Monte H.P. Yarroll <piggy@acm.org>
25  *    Narasimha Budihal     <narsi@refcode.org>
26  *    Karl Knutson          <karl@athena.chicago.il.us>
27  *    Jon Grimm             <jgrimm@us.ibm.com>
28  *    Xingang Guo           <xingang.guo@intel.com>
29  *    Daisy Chang           <daisyc@us.ibm.com>
30  *    Sridhar Samudrala     <samudrala@us.ibm.com>
31  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
32  *    Ardelle Fan	    <ardelle.fan@intel.com>
33  *    Ryan Layer	    <rmlayer@us.ibm.com>
34  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
35  *    Kevin Gao             <kevin.gao@intel.com>
36  */
37 
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55 
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69 
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 				size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 					union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 			    struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 			     struct sctp_association *assoc,
92 			     enum sctp_socket_type type);
93 
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97 
98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 	sctp_memory_pressure = 1;
101 }
102 
103 
104 /* Get the sndbuf space available at the time on the association.  */
105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 	struct sock *sk = asoc->base.sk;
108 
109 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 				       : sk_stream_wspace(sk);
111 }
112 
113 /* Increment the used sndbuf space count of the corresponding association by
114  * the size of the outgoing data chunk.
115  * Also, set the skb destructor for sndbuf accounting later.
116  *
117  * Since it is always 1-1 between chunk and skb, and also a new skb is always
118  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119  * destructor in the data chunk skb for the purpose of the sndbuf space
120  * tracking.
121  */
122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 	struct sctp_association *asoc = chunk->asoc;
125 	struct sock *sk = asoc->base.sk;
126 
127 	/* The sndbuf space is tracked per association.  */
128 	sctp_association_hold(asoc);
129 
130 	if (chunk->shkey)
131 		sctp_auth_shkey_hold(chunk->shkey);
132 
133 	skb_set_owner_w(chunk->skb, sk);
134 
135 	chunk->skb->destructor = sctp_wfree;
136 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
137 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
138 
139 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 	sk_mem_charge(sk, chunk->skb->truesize);
143 }
144 
145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 	skb_orphan(chunk->skb);
148 }
149 
150 #define traverse_and_process()	\
151 do {				\
152 	msg = chunk->msg;	\
153 	if (msg == prev_msg)	\
154 		continue;	\
155 	list_for_each_entry(c, &msg->chunks, frag_list) {	\
156 		if ((clear && asoc->base.sk == c->skb->sk) ||	\
157 		    (!clear && asoc->base.sk != c->skb->sk))	\
158 			cb(c);	\
159 	}			\
160 	prev_msg = msg;		\
161 } while (0)
162 
163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 				       bool clear,
165 				       void (*cb)(struct sctp_chunk *))
166 
167 {
168 	struct sctp_datamsg *msg, *prev_msg = NULL;
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_chunk *chunk, *c;
171 	struct sctp_transport *t;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			traverse_and_process();
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		traverse_and_process();
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		traverse_and_process();
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		traverse_and_process();
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		traverse_and_process();
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (id <= SCTP_ALL_ASSOC)
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && inet_port_requires_bind_service(net, snum) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if (sctp_get_port_local(sk, addr))
418 		return -EADDRINUSE;
419 
420 	/* Refresh ephemeral port.  */
421 	if (!bp->port)
422 		bp->port = inet_sk(sk)->inet_num;
423 
424 	/* Add the address to the bind address list.
425 	 * Use GFP_ATOMIC since BHs will be disabled.
426 	 */
427 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
428 				 SCTP_ADDR_SRC, GFP_ATOMIC);
429 
430 	if (ret) {
431 		sctp_put_port(sk);
432 		return ret;
433 	}
434 	/* Copy back into socket for getsockname() use. */
435 	inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
436 	sp->pf->to_sk_saddr(addr, sk);
437 
438 	return ret;
439 }
440 
441  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
442  *
443  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
444  * at any one time.  If a sender, after sending an ASCONF chunk, decides
445  * it needs to transfer another ASCONF Chunk, it MUST wait until the
446  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
447  * subsequent ASCONF. Note this restriction binds each side, so at any
448  * time two ASCONF may be in-transit on any given association (one sent
449  * from each endpoint).
450  */
451 static int sctp_send_asconf(struct sctp_association *asoc,
452 			    struct sctp_chunk *chunk)
453 {
454 	int retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct sctp_sock		*sp;
543 	struct sctp_endpoint		*ep;
544 	struct sctp_association		*asoc;
545 	struct sctp_bind_addr		*bp;
546 	struct sctp_chunk		*chunk;
547 	struct sctp_sockaddr_entry	*laddr;
548 	union sctp_addr			*addr;
549 	union sctp_addr			saveaddr;
550 	void				*addr_buf;
551 	struct sctp_af			*af;
552 	struct list_head		*p;
553 	int 				i;
554 	int 				retval = 0;
555 
556 	sp = sctp_sk(sk);
557 	ep = sp->ep;
558 
559 	if (!ep->asconf_enable)
560 		return retval;
561 
562 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
563 		 __func__, sk, addrs, addrcnt);
564 
565 	list_for_each_entry(asoc, &ep->asocs, asocs) {
566 		if (!asoc->peer.asconf_capable)
567 			continue;
568 
569 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
570 			continue;
571 
572 		if (!sctp_state(asoc, ESTABLISHED))
573 			continue;
574 
575 		/* Check if any address in the packed array of addresses is
576 		 * in the bind address list of the association. If so,
577 		 * do not send the asconf chunk to its peer, but continue with
578 		 * other associations.
579 		 */
580 		addr_buf = addrs;
581 		for (i = 0; i < addrcnt; i++) {
582 			addr = addr_buf;
583 			af = sctp_get_af_specific(addr->v4.sin_family);
584 			if (!af) {
585 				retval = -EINVAL;
586 				goto out;
587 			}
588 
589 			if (sctp_assoc_lookup_laddr(asoc, addr))
590 				break;
591 
592 			addr_buf += af->sockaddr_len;
593 		}
594 		if (i < addrcnt)
595 			continue;
596 
597 		/* Use the first valid address in bind addr list of
598 		 * association as Address Parameter of ASCONF CHUNK.
599 		 */
600 		bp = &asoc->base.bind_addr;
601 		p = bp->address_list.next;
602 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
603 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
604 						   addrcnt, SCTP_PARAM_ADD_IP);
605 		if (!chunk) {
606 			retval = -ENOMEM;
607 			goto out;
608 		}
609 
610 		/* Add the new addresses to the bind address list with
611 		 * use_as_src set to 0.
612 		 */
613 		addr_buf = addrs;
614 		for (i = 0; i < addrcnt; i++) {
615 			addr = addr_buf;
616 			af = sctp_get_af_specific(addr->v4.sin_family);
617 			memcpy(&saveaddr, addr, af->sockaddr_len);
618 			retval = sctp_add_bind_addr(bp, &saveaddr,
619 						    sizeof(saveaddr),
620 						    SCTP_ADDR_NEW, GFP_ATOMIC);
621 			addr_buf += af->sockaddr_len;
622 		}
623 		if (asoc->src_out_of_asoc_ok) {
624 			struct sctp_transport *trans;
625 
626 			list_for_each_entry(trans,
627 			    &asoc->peer.transport_addr_list, transports) {
628 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
629 				    2*asoc->pathmtu, 4380));
630 				trans->ssthresh = asoc->peer.i.a_rwnd;
631 				trans->rto = asoc->rto_initial;
632 				sctp_max_rto(asoc, trans);
633 				trans->rtt = trans->srtt = trans->rttvar = 0;
634 				/* Clear the source and route cache */
635 				sctp_transport_route(trans, NULL,
636 						     sctp_sk(asoc->base.sk));
637 			}
638 		}
639 		retval = sctp_send_asconf(asoc, chunk);
640 	}
641 
642 out:
643 	return retval;
644 }
645 
646 /* Remove a list of addresses from bind addresses list.  Do not remove the
647  * last address.
648  *
649  * Basically run through each address specified in the addrs/addrcnt
650  * array/length pair, determine if it is IPv6 or IPv4 and call
651  * sctp_del_bind() on it.
652  *
653  * If any of them fails, then the operation will be reversed and the
654  * ones that were removed will be added back.
655  *
656  * At least one address has to be left; if only one address is
657  * available, the operation will return -EBUSY.
658  *
659  * Only sctp_setsockopt_bindx() is supposed to call this function.
660  */
661 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
662 {
663 	struct sctp_sock *sp = sctp_sk(sk);
664 	struct sctp_endpoint *ep = sp->ep;
665 	int cnt;
666 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
667 	int retval = 0;
668 	void *addr_buf;
669 	union sctp_addr *sa_addr;
670 	struct sctp_af *af;
671 
672 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
673 		 __func__, sk, addrs, addrcnt);
674 
675 	addr_buf = addrs;
676 	for (cnt = 0; cnt < addrcnt; cnt++) {
677 		/* If the bind address list is empty or if there is only one
678 		 * bind address, there is nothing more to be removed (we need
679 		 * at least one address here).
680 		 */
681 		if (list_empty(&bp->address_list) ||
682 		    (sctp_list_single_entry(&bp->address_list))) {
683 			retval = -EBUSY;
684 			goto err_bindx_rem;
685 		}
686 
687 		sa_addr = addr_buf;
688 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
689 		if (!af) {
690 			retval = -EINVAL;
691 			goto err_bindx_rem;
692 		}
693 
694 		if (!af->addr_valid(sa_addr, sp, NULL)) {
695 			retval = -EADDRNOTAVAIL;
696 			goto err_bindx_rem;
697 		}
698 
699 		if (sa_addr->v4.sin_port &&
700 		    sa_addr->v4.sin_port != htons(bp->port)) {
701 			retval = -EINVAL;
702 			goto err_bindx_rem;
703 		}
704 
705 		if (!sa_addr->v4.sin_port)
706 			sa_addr->v4.sin_port = htons(bp->port);
707 
708 		/* FIXME - There is probably a need to check if sk->sk_saddr and
709 		 * sk->sk_rcv_addr are currently set to one of the addresses to
710 		 * be removed. This is something which needs to be looked into
711 		 * when we are fixing the outstanding issues with multi-homing
712 		 * socket routing and failover schemes. Refer to comments in
713 		 * sctp_do_bind(). -daisy
714 		 */
715 		retval = sctp_del_bind_addr(bp, sa_addr);
716 
717 		addr_buf += af->sockaddr_len;
718 err_bindx_rem:
719 		if (retval < 0) {
720 			/* Failed. Add the ones that has been removed back */
721 			if (cnt > 0)
722 				sctp_bindx_add(sk, addrs, cnt);
723 			return retval;
724 		}
725 	}
726 
727 	return retval;
728 }
729 
730 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
731  * the associations that are part of the endpoint indicating that a list of
732  * local addresses are removed from the endpoint.
733  *
734  * If any of the addresses is already in the bind address list of the
735  * association, we do not send the chunk for that association.  But it will not
736  * affect other associations.
737  *
738  * Only sctp_setsockopt_bindx() is supposed to call this function.
739  */
740 static int sctp_send_asconf_del_ip(struct sock		*sk,
741 				   struct sockaddr	*addrs,
742 				   int			addrcnt)
743 {
744 	struct sctp_sock	*sp;
745 	struct sctp_endpoint	*ep;
746 	struct sctp_association	*asoc;
747 	struct sctp_transport	*transport;
748 	struct sctp_bind_addr	*bp;
749 	struct sctp_chunk	*chunk;
750 	union sctp_addr		*laddr;
751 	void			*addr_buf;
752 	struct sctp_af		*af;
753 	struct sctp_sockaddr_entry *saddr;
754 	int 			i;
755 	int 			retval = 0;
756 	int			stored = 0;
757 
758 	chunk = NULL;
759 	sp = sctp_sk(sk);
760 	ep = sp->ep;
761 
762 	if (!ep->asconf_enable)
763 		return retval;
764 
765 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
766 		 __func__, sk, addrs, addrcnt);
767 
768 	list_for_each_entry(asoc, &ep->asocs, asocs) {
769 
770 		if (!asoc->peer.asconf_capable)
771 			continue;
772 
773 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
774 			continue;
775 
776 		if (!sctp_state(asoc, ESTABLISHED))
777 			continue;
778 
779 		/* Check if any address in the packed array of addresses is
780 		 * not present in the bind address list of the association.
781 		 * If so, do not send the asconf chunk to its peer, but
782 		 * continue with other associations.
783 		 */
784 		addr_buf = addrs;
785 		for (i = 0; i < addrcnt; i++) {
786 			laddr = addr_buf;
787 			af = sctp_get_af_specific(laddr->v4.sin_family);
788 			if (!af) {
789 				retval = -EINVAL;
790 				goto out;
791 			}
792 
793 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
794 				break;
795 
796 			addr_buf += af->sockaddr_len;
797 		}
798 		if (i < addrcnt)
799 			continue;
800 
801 		/* Find one address in the association's bind address list
802 		 * that is not in the packed array of addresses. This is to
803 		 * make sure that we do not delete all the addresses in the
804 		 * association.
805 		 */
806 		bp = &asoc->base.bind_addr;
807 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
808 					       addrcnt, sp);
809 		if ((laddr == NULL) && (addrcnt == 1)) {
810 			if (asoc->asconf_addr_del_pending)
811 				continue;
812 			asoc->asconf_addr_del_pending =
813 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
814 			if (asoc->asconf_addr_del_pending == NULL) {
815 				retval = -ENOMEM;
816 				goto out;
817 			}
818 			asoc->asconf_addr_del_pending->sa.sa_family =
819 				    addrs->sa_family;
820 			asoc->asconf_addr_del_pending->v4.sin_port =
821 				    htons(bp->port);
822 			if (addrs->sa_family == AF_INET) {
823 				struct sockaddr_in *sin;
824 
825 				sin = (struct sockaddr_in *)addrs;
826 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
827 			} else if (addrs->sa_family == AF_INET6) {
828 				struct sockaddr_in6 *sin6;
829 
830 				sin6 = (struct sockaddr_in6 *)addrs;
831 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
832 			}
833 
834 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
835 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
836 				 asoc->asconf_addr_del_pending);
837 
838 			asoc->src_out_of_asoc_ok = 1;
839 			stored = 1;
840 			goto skip_mkasconf;
841 		}
842 
843 		if (laddr == NULL)
844 			return -EINVAL;
845 
846 		/* We do not need RCU protection throughout this loop
847 		 * because this is done under a socket lock from the
848 		 * setsockopt call.
849 		 */
850 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
851 						   SCTP_PARAM_DEL_IP);
852 		if (!chunk) {
853 			retval = -ENOMEM;
854 			goto out;
855 		}
856 
857 skip_mkasconf:
858 		/* Reset use_as_src flag for the addresses in the bind address
859 		 * list that are to be deleted.
860 		 */
861 		addr_buf = addrs;
862 		for (i = 0; i < addrcnt; i++) {
863 			laddr = addr_buf;
864 			af = sctp_get_af_specific(laddr->v4.sin_family);
865 			list_for_each_entry(saddr, &bp->address_list, list) {
866 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
867 					saddr->state = SCTP_ADDR_DEL;
868 			}
869 			addr_buf += af->sockaddr_len;
870 		}
871 
872 		/* Update the route and saddr entries for all the transports
873 		 * as some of the addresses in the bind address list are
874 		 * about to be deleted and cannot be used as source addresses.
875 		 */
876 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
877 					transports) {
878 			sctp_transport_route(transport, NULL,
879 					     sctp_sk(asoc->base.sk));
880 		}
881 
882 		if (stored)
883 			/* We don't need to transmit ASCONF */
884 			continue;
885 		retval = sctp_send_asconf(asoc, chunk);
886 	}
887 out:
888 	return retval;
889 }
890 
891 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
892 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
893 {
894 	struct sock *sk = sctp_opt2sk(sp);
895 	union sctp_addr *addr;
896 	struct sctp_af *af;
897 
898 	/* It is safe to write port space in caller. */
899 	addr = &addrw->a;
900 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
901 	af = sctp_get_af_specific(addr->sa.sa_family);
902 	if (!af)
903 		return -EINVAL;
904 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
905 		return -EINVAL;
906 
907 	if (addrw->state == SCTP_ADDR_NEW)
908 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
909 	else
910 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
911 }
912 
913 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
914  *
915  * API 8.1
916  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
917  *                int flags);
918  *
919  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
920  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
921  * or IPv6 addresses.
922  *
923  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
924  * Section 3.1.2 for this usage.
925  *
926  * addrs is a pointer to an array of one or more socket addresses. Each
927  * address is contained in its appropriate structure (i.e. struct
928  * sockaddr_in or struct sockaddr_in6) the family of the address type
929  * must be used to distinguish the address length (note that this
930  * representation is termed a "packed array" of addresses). The caller
931  * specifies the number of addresses in the array with addrcnt.
932  *
933  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
934  * -1, and sets errno to the appropriate error code.
935  *
936  * For SCTP, the port given in each socket address must be the same, or
937  * sctp_bindx() will fail, setting errno to EINVAL.
938  *
939  * The flags parameter is formed from the bitwise OR of zero or more of
940  * the following currently defined flags:
941  *
942  * SCTP_BINDX_ADD_ADDR
943  *
944  * SCTP_BINDX_REM_ADDR
945  *
946  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
947  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
948  * addresses from the association. The two flags are mutually exclusive;
949  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
950  * not remove all addresses from an association; sctp_bindx() will
951  * reject such an attempt with EINVAL.
952  *
953  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
954  * additional addresses with an endpoint after calling bind().  Or use
955  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
956  * socket is associated with so that no new association accepted will be
957  * associated with those addresses. If the endpoint supports dynamic
958  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
959  * endpoint to send the appropriate message to the peer to change the
960  * peers address lists.
961  *
962  * Adding and removing addresses from a connected association is
963  * optional functionality. Implementations that do not support this
964  * functionality should return EOPNOTSUPP.
965  *
966  * Basically do nothing but copying the addresses from user to kernel
967  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
968  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
969  * from userspace.
970  *
971  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
972  * it.
973  *
974  * sk        The sk of the socket
975  * addrs     The pointer to the addresses in user land
976  * addrssize Size of the addrs buffer
977  * op        Operation to perform (add or remove, see the flags of
978  *           sctp_bindx)
979  *
980  * Returns 0 if ok, <0 errno code on error.
981  */
982 static int sctp_setsockopt_bindx(struct sock *sk,
983 				 struct sockaddr __user *addrs,
984 				 int addrs_size, int op)
985 {
986 	struct sockaddr *kaddrs;
987 	int err;
988 	int addrcnt = 0;
989 	int walk_size = 0;
990 	struct sockaddr *sa_addr;
991 	void *addr_buf;
992 	struct sctp_af *af;
993 
994 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
995 		 __func__, sk, addrs, addrs_size, op);
996 
997 	if (unlikely(addrs_size <= 0))
998 		return -EINVAL;
999 
1000 	kaddrs = memdup_user(addrs, addrs_size);
1001 	if (IS_ERR(kaddrs))
1002 		return PTR_ERR(kaddrs);
1003 
1004 	/* Walk through the addrs buffer and count the number of addresses. */
1005 	addr_buf = kaddrs;
1006 	while (walk_size < addrs_size) {
1007 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1008 			kfree(kaddrs);
1009 			return -EINVAL;
1010 		}
1011 
1012 		sa_addr = addr_buf;
1013 		af = sctp_get_af_specific(sa_addr->sa_family);
1014 
1015 		/* If the address family is not supported or if this address
1016 		 * causes the address buffer to overflow return EINVAL.
1017 		 */
1018 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1019 			kfree(kaddrs);
1020 			return -EINVAL;
1021 		}
1022 		addrcnt++;
1023 		addr_buf += af->sockaddr_len;
1024 		walk_size += af->sockaddr_len;
1025 	}
1026 
1027 	/* Do the work. */
1028 	switch (op) {
1029 	case SCTP_BINDX_ADD_ADDR:
1030 		/* Allow security module to validate bindx addresses. */
1031 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1032 						 (struct sockaddr *)kaddrs,
1033 						 addrs_size);
1034 		if (err)
1035 			goto out;
1036 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1037 		if (err)
1038 			goto out;
1039 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1040 		break;
1041 
1042 	case SCTP_BINDX_REM_ADDR:
1043 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1044 		if (err)
1045 			goto out;
1046 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1047 		break;
1048 
1049 	default:
1050 		err = -EINVAL;
1051 		break;
1052 	}
1053 
1054 out:
1055 	kfree(kaddrs);
1056 
1057 	return err;
1058 }
1059 
1060 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1061 				 const union sctp_addr *daddr,
1062 				 const struct sctp_initmsg *init,
1063 				 struct sctp_transport **tp)
1064 {
1065 	struct sctp_association *asoc;
1066 	struct sock *sk = ep->base.sk;
1067 	struct net *net = sock_net(sk);
1068 	enum sctp_scope scope;
1069 	int err;
1070 
1071 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1072 		return -EADDRNOTAVAIL;
1073 
1074 	if (!ep->base.bind_addr.port) {
1075 		if (sctp_autobind(sk))
1076 			return -EAGAIN;
1077 	} else {
1078 		if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1079 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1080 			return -EACCES;
1081 	}
1082 
1083 	scope = sctp_scope(daddr);
1084 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1085 	if (!asoc)
1086 		return -ENOMEM;
1087 
1088 	err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1089 	if (err < 0)
1090 		goto free;
1091 
1092 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1093 	if (!*tp) {
1094 		err = -ENOMEM;
1095 		goto free;
1096 	}
1097 
1098 	if (!init)
1099 		return 0;
1100 
1101 	if (init->sinit_num_ostreams) {
1102 		__u16 outcnt = init->sinit_num_ostreams;
1103 
1104 		asoc->c.sinit_num_ostreams = outcnt;
1105 		/* outcnt has been changed, need to re-init stream */
1106 		err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1107 		if (err)
1108 			goto free;
1109 	}
1110 
1111 	if (init->sinit_max_instreams)
1112 		asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1113 
1114 	if (init->sinit_max_attempts)
1115 		asoc->max_init_attempts = init->sinit_max_attempts;
1116 
1117 	if (init->sinit_max_init_timeo)
1118 		asoc->max_init_timeo =
1119 			msecs_to_jiffies(init->sinit_max_init_timeo);
1120 
1121 	return 0;
1122 free:
1123 	sctp_association_free(asoc);
1124 	return err;
1125 }
1126 
1127 static int sctp_connect_add_peer(struct sctp_association *asoc,
1128 				 union sctp_addr *daddr, int addr_len)
1129 {
1130 	struct sctp_endpoint *ep = asoc->ep;
1131 	struct sctp_association *old;
1132 	struct sctp_transport *t;
1133 	int err;
1134 
1135 	err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1136 	if (err)
1137 		return err;
1138 
1139 	old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1140 	if (old && old != asoc)
1141 		return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1142 							    : -EALREADY;
1143 
1144 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1145 		return -EADDRNOTAVAIL;
1146 
1147 	t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1148 	if (!t)
1149 		return -ENOMEM;
1150 
1151 	return 0;
1152 }
1153 
1154 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1155  *
1156  * Common routine for handling connect() and sctp_connectx().
1157  * Connect will come in with just a single address.
1158  */
1159 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1160 			  int addrs_size, int flags, sctp_assoc_t *assoc_id)
1161 {
1162 	struct sctp_sock *sp = sctp_sk(sk);
1163 	struct sctp_endpoint *ep = sp->ep;
1164 	struct sctp_transport *transport;
1165 	struct sctp_association *asoc;
1166 	void *addr_buf = kaddrs;
1167 	union sctp_addr *daddr;
1168 	struct sctp_af *af;
1169 	int walk_size, err;
1170 	long timeo;
1171 
1172 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1173 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1174 		return -EISCONN;
1175 
1176 	daddr = addr_buf;
1177 	af = sctp_get_af_specific(daddr->sa.sa_family);
1178 	if (!af || af->sockaddr_len > addrs_size)
1179 		return -EINVAL;
1180 
1181 	err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1182 	if (err)
1183 		return err;
1184 
1185 	asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1186 	if (asoc)
1187 		return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1188 							     : -EALREADY;
1189 
1190 	err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1191 	if (err)
1192 		return err;
1193 	asoc = transport->asoc;
1194 
1195 	addr_buf += af->sockaddr_len;
1196 	walk_size = af->sockaddr_len;
1197 	while (walk_size < addrs_size) {
1198 		err = -EINVAL;
1199 		if (walk_size + sizeof(sa_family_t) > addrs_size)
1200 			goto out_free;
1201 
1202 		daddr = addr_buf;
1203 		af = sctp_get_af_specific(daddr->sa.sa_family);
1204 		if (!af || af->sockaddr_len + walk_size > addrs_size)
1205 			goto out_free;
1206 
1207 		if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1208 			goto out_free;
1209 
1210 		err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1211 		if (err)
1212 			goto out_free;
1213 
1214 		addr_buf  += af->sockaddr_len;
1215 		walk_size += af->sockaddr_len;
1216 	}
1217 
1218 	/* In case the user of sctp_connectx() wants an association
1219 	 * id back, assign one now.
1220 	 */
1221 	if (assoc_id) {
1222 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1223 		if (err < 0)
1224 			goto out_free;
1225 	}
1226 
1227 	err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1228 	if (err < 0)
1229 		goto out_free;
1230 
1231 	/* Initialize sk's dport and daddr for getpeername() */
1232 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1233 	sp->pf->to_sk_daddr(daddr, sk);
1234 	sk->sk_err = 0;
1235 
1236 	if (assoc_id)
1237 		*assoc_id = asoc->assoc_id;
1238 
1239 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1240 	return sctp_wait_for_connect(asoc, &timeo);
1241 
1242 out_free:
1243 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1244 		 __func__, asoc, kaddrs, err);
1245 	sctp_association_free(asoc);
1246 	return err;
1247 }
1248 
1249 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1250  *
1251  * API 8.9
1252  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1253  * 			sctp_assoc_t *asoc);
1254  *
1255  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1256  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1257  * or IPv6 addresses.
1258  *
1259  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1260  * Section 3.1.2 for this usage.
1261  *
1262  * addrs is a pointer to an array of one or more socket addresses. Each
1263  * address is contained in its appropriate structure (i.e. struct
1264  * sockaddr_in or struct sockaddr_in6) the family of the address type
1265  * must be used to distengish the address length (note that this
1266  * representation is termed a "packed array" of addresses). The caller
1267  * specifies the number of addresses in the array with addrcnt.
1268  *
1269  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1270  * the association id of the new association.  On failure, sctp_connectx()
1271  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1272  * is not touched by the kernel.
1273  *
1274  * For SCTP, the port given in each socket address must be the same, or
1275  * sctp_connectx() will fail, setting errno to EINVAL.
1276  *
1277  * An application can use sctp_connectx to initiate an association with
1278  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1279  * allows a caller to specify multiple addresses at which a peer can be
1280  * reached.  The way the SCTP stack uses the list of addresses to set up
1281  * the association is implementation dependent.  This function only
1282  * specifies that the stack will try to make use of all the addresses in
1283  * the list when needed.
1284  *
1285  * Note that the list of addresses passed in is only used for setting up
1286  * the association.  It does not necessarily equal the set of addresses
1287  * the peer uses for the resulting association.  If the caller wants to
1288  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1289  * retrieve them after the association has been set up.
1290  *
1291  * Basically do nothing but copying the addresses from user to kernel
1292  * land and invoking either sctp_connectx(). This is used for tunneling
1293  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1294  *
1295  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1296  * it.
1297  *
1298  * sk        The sk of the socket
1299  * addrs     The pointer to the addresses in user land
1300  * addrssize Size of the addrs buffer
1301  *
1302  * Returns >=0 if ok, <0 errno code on error.
1303  */
1304 static int __sctp_setsockopt_connectx(struct sock *sk,
1305 				      struct sockaddr __user *addrs,
1306 				      int addrs_size,
1307 				      sctp_assoc_t *assoc_id)
1308 {
1309 	struct sockaddr *kaddrs;
1310 	int err = 0, flags = 0;
1311 
1312 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1313 		 __func__, sk, addrs, addrs_size);
1314 
1315 	/* make sure the 1st addr's sa_family is accessible later */
1316 	if (unlikely(addrs_size < sizeof(sa_family_t)))
1317 		return -EINVAL;
1318 
1319 	kaddrs = memdup_user(addrs, addrs_size);
1320 	if (IS_ERR(kaddrs))
1321 		return PTR_ERR(kaddrs);
1322 
1323 	/* Allow security module to validate connectx addresses. */
1324 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1325 					 (struct sockaddr *)kaddrs,
1326 					  addrs_size);
1327 	if (err)
1328 		goto out_free;
1329 
1330 	/* in-kernel sockets don't generally have a file allocated to them
1331 	 * if all they do is call sock_create_kern().
1332 	 */
1333 	if (sk->sk_socket->file)
1334 		flags = sk->sk_socket->file->f_flags;
1335 
1336 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1337 
1338 out_free:
1339 	kfree(kaddrs);
1340 
1341 	return err;
1342 }
1343 
1344 /*
1345  * This is an older interface.  It's kept for backward compatibility
1346  * to the option that doesn't provide association id.
1347  */
1348 static int sctp_setsockopt_connectx_old(struct sock *sk,
1349 					struct sockaddr __user *addrs,
1350 					int addrs_size)
1351 {
1352 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1353 }
1354 
1355 /*
1356  * New interface for the API.  The since the API is done with a socket
1357  * option, to make it simple we feed back the association id is as a return
1358  * indication to the call.  Error is always negative and association id is
1359  * always positive.
1360  */
1361 static int sctp_setsockopt_connectx(struct sock *sk,
1362 				    struct sockaddr __user *addrs,
1363 				    int addrs_size)
1364 {
1365 	sctp_assoc_t assoc_id = 0;
1366 	int err = 0;
1367 
1368 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1369 
1370 	if (err)
1371 		return err;
1372 	else
1373 		return assoc_id;
1374 }
1375 
1376 /*
1377  * New (hopefully final) interface for the API.
1378  * We use the sctp_getaddrs_old structure so that use-space library
1379  * can avoid any unnecessary allocations. The only different part
1380  * is that we store the actual length of the address buffer into the
1381  * addrs_num structure member. That way we can re-use the existing
1382  * code.
1383  */
1384 #ifdef CONFIG_COMPAT
1385 struct compat_sctp_getaddrs_old {
1386 	sctp_assoc_t	assoc_id;
1387 	s32		addr_num;
1388 	compat_uptr_t	addrs;		/* struct sockaddr * */
1389 };
1390 #endif
1391 
1392 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1393 				     char __user *optval,
1394 				     int __user *optlen)
1395 {
1396 	struct sctp_getaddrs_old param;
1397 	sctp_assoc_t assoc_id = 0;
1398 	int err = 0;
1399 
1400 #ifdef CONFIG_COMPAT
1401 	if (in_compat_syscall()) {
1402 		struct compat_sctp_getaddrs_old param32;
1403 
1404 		if (len < sizeof(param32))
1405 			return -EINVAL;
1406 		if (copy_from_user(&param32, optval, sizeof(param32)))
1407 			return -EFAULT;
1408 
1409 		param.assoc_id = param32.assoc_id;
1410 		param.addr_num = param32.addr_num;
1411 		param.addrs = compat_ptr(param32.addrs);
1412 	} else
1413 #endif
1414 	{
1415 		if (len < sizeof(param))
1416 			return -EINVAL;
1417 		if (copy_from_user(&param, optval, sizeof(param)))
1418 			return -EFAULT;
1419 	}
1420 
1421 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1422 					 param.addrs, param.addr_num,
1423 					 &assoc_id);
1424 	if (err == 0 || err == -EINPROGRESS) {
1425 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1426 			return -EFAULT;
1427 		if (put_user(sizeof(assoc_id), optlen))
1428 			return -EFAULT;
1429 	}
1430 
1431 	return err;
1432 }
1433 
1434 /* API 3.1.4 close() - UDP Style Syntax
1435  * Applications use close() to perform graceful shutdown (as described in
1436  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1437  * by a UDP-style socket.
1438  *
1439  * The syntax is
1440  *
1441  *   ret = close(int sd);
1442  *
1443  *   sd      - the socket descriptor of the associations to be closed.
1444  *
1445  * To gracefully shutdown a specific association represented by the
1446  * UDP-style socket, an application should use the sendmsg() call,
1447  * passing no user data, but including the appropriate flag in the
1448  * ancillary data (see Section xxxx).
1449  *
1450  * If sd in the close() call is a branched-off socket representing only
1451  * one association, the shutdown is performed on that association only.
1452  *
1453  * 4.1.6 close() - TCP Style Syntax
1454  *
1455  * Applications use close() to gracefully close down an association.
1456  *
1457  * The syntax is:
1458  *
1459  *    int close(int sd);
1460  *
1461  *      sd      - the socket descriptor of the association to be closed.
1462  *
1463  * After an application calls close() on a socket descriptor, no further
1464  * socket operations will succeed on that descriptor.
1465  *
1466  * API 7.1.4 SO_LINGER
1467  *
1468  * An application using the TCP-style socket can use this option to
1469  * perform the SCTP ABORT primitive.  The linger option structure is:
1470  *
1471  *  struct  linger {
1472  *     int     l_onoff;                // option on/off
1473  *     int     l_linger;               // linger time
1474  * };
1475  *
1476  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1477  * to 0, calling close() is the same as the ABORT primitive.  If the
1478  * value is set to a negative value, the setsockopt() call will return
1479  * an error.  If the value is set to a positive value linger_time, the
1480  * close() can be blocked for at most linger_time ms.  If the graceful
1481  * shutdown phase does not finish during this period, close() will
1482  * return but the graceful shutdown phase continues in the system.
1483  */
1484 static void sctp_close(struct sock *sk, long timeout)
1485 {
1486 	struct net *net = sock_net(sk);
1487 	struct sctp_endpoint *ep;
1488 	struct sctp_association *asoc;
1489 	struct list_head *pos, *temp;
1490 	unsigned int data_was_unread;
1491 
1492 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1493 
1494 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1495 	sk->sk_shutdown = SHUTDOWN_MASK;
1496 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1497 
1498 	ep = sctp_sk(sk)->ep;
1499 
1500 	/* Clean up any skbs sitting on the receive queue.  */
1501 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1502 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1503 
1504 	/* Walk all associations on an endpoint.  */
1505 	list_for_each_safe(pos, temp, &ep->asocs) {
1506 		asoc = list_entry(pos, struct sctp_association, asocs);
1507 
1508 		if (sctp_style(sk, TCP)) {
1509 			/* A closed association can still be in the list if
1510 			 * it belongs to a TCP-style listening socket that is
1511 			 * not yet accepted. If so, free it. If not, send an
1512 			 * ABORT or SHUTDOWN based on the linger options.
1513 			 */
1514 			if (sctp_state(asoc, CLOSED)) {
1515 				sctp_association_free(asoc);
1516 				continue;
1517 			}
1518 		}
1519 
1520 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1521 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1522 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1523 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1524 			struct sctp_chunk *chunk;
1525 
1526 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1527 			sctp_primitive_ABORT(net, asoc, chunk);
1528 		} else
1529 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1530 	}
1531 
1532 	/* On a TCP-style socket, block for at most linger_time if set. */
1533 	if (sctp_style(sk, TCP) && timeout)
1534 		sctp_wait_for_close(sk, timeout);
1535 
1536 	/* This will run the backlog queue.  */
1537 	release_sock(sk);
1538 
1539 	/* Supposedly, no process has access to the socket, but
1540 	 * the net layers still may.
1541 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1542 	 * held and that should be grabbed before socket lock.
1543 	 */
1544 	spin_lock_bh(&net->sctp.addr_wq_lock);
1545 	bh_lock_sock_nested(sk);
1546 
1547 	/* Hold the sock, since sk_common_release() will put sock_put()
1548 	 * and we have just a little more cleanup.
1549 	 */
1550 	sock_hold(sk);
1551 	sk_common_release(sk);
1552 
1553 	bh_unlock_sock(sk);
1554 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1555 
1556 	sock_put(sk);
1557 
1558 	SCTP_DBG_OBJCNT_DEC(sock);
1559 }
1560 
1561 /* Handle EPIPE error. */
1562 static int sctp_error(struct sock *sk, int flags, int err)
1563 {
1564 	if (err == -EPIPE)
1565 		err = sock_error(sk) ? : -EPIPE;
1566 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1567 		send_sig(SIGPIPE, current, 0);
1568 	return err;
1569 }
1570 
1571 /* API 3.1.3 sendmsg() - UDP Style Syntax
1572  *
1573  * An application uses sendmsg() and recvmsg() calls to transmit data to
1574  * and receive data from its peer.
1575  *
1576  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1577  *                  int flags);
1578  *
1579  *  socket  - the socket descriptor of the endpoint.
1580  *  message - pointer to the msghdr structure which contains a single
1581  *            user message and possibly some ancillary data.
1582  *
1583  *            See Section 5 for complete description of the data
1584  *            structures.
1585  *
1586  *  flags   - flags sent or received with the user message, see Section
1587  *            5 for complete description of the flags.
1588  *
1589  * Note:  This function could use a rewrite especially when explicit
1590  * connect support comes in.
1591  */
1592 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1593 
1594 static int sctp_msghdr_parse(const struct msghdr *msg,
1595 			     struct sctp_cmsgs *cmsgs);
1596 
1597 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1598 			      struct sctp_sndrcvinfo *srinfo,
1599 			      const struct msghdr *msg, size_t msg_len)
1600 {
1601 	__u16 sflags;
1602 	int err;
1603 
1604 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1605 		return -EPIPE;
1606 
1607 	if (msg_len > sk->sk_sndbuf)
1608 		return -EMSGSIZE;
1609 
1610 	memset(cmsgs, 0, sizeof(*cmsgs));
1611 	err = sctp_msghdr_parse(msg, cmsgs);
1612 	if (err) {
1613 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1614 		return err;
1615 	}
1616 
1617 	memset(srinfo, 0, sizeof(*srinfo));
1618 	if (cmsgs->srinfo) {
1619 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1620 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1621 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1622 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1623 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1624 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1625 	}
1626 
1627 	if (cmsgs->sinfo) {
1628 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1629 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1630 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1631 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1632 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1633 	}
1634 
1635 	if (cmsgs->prinfo) {
1636 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1637 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1638 				   cmsgs->prinfo->pr_policy);
1639 	}
1640 
1641 	sflags = srinfo->sinfo_flags;
1642 	if (!sflags && msg_len)
1643 		return 0;
1644 
1645 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1646 		return -EINVAL;
1647 
1648 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1649 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1650 		return -EINVAL;
1651 
1652 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1653 		return -EINVAL;
1654 
1655 	return 0;
1656 }
1657 
1658 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1659 				 struct sctp_cmsgs *cmsgs,
1660 				 union sctp_addr *daddr,
1661 				 struct sctp_transport **tp)
1662 {
1663 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1664 	struct sctp_association *asoc;
1665 	struct cmsghdr *cmsg;
1666 	__be32 flowinfo = 0;
1667 	struct sctp_af *af;
1668 	int err;
1669 
1670 	*tp = NULL;
1671 
1672 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1673 		return -EINVAL;
1674 
1675 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1676 				    sctp_sstate(sk, CLOSING)))
1677 		return -EADDRNOTAVAIL;
1678 
1679 	/* Label connection socket for first association 1-to-many
1680 	 * style for client sequence socket()->sendmsg(). This
1681 	 * needs to be done before sctp_assoc_add_peer() as that will
1682 	 * set up the initial packet that needs to account for any
1683 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1684 	 */
1685 	af = sctp_get_af_specific(daddr->sa.sa_family);
1686 	if (!af)
1687 		return -EINVAL;
1688 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1689 					 (struct sockaddr *)daddr,
1690 					 af->sockaddr_len);
1691 	if (err < 0)
1692 		return err;
1693 
1694 	err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1695 	if (err)
1696 		return err;
1697 	asoc = (*tp)->asoc;
1698 
1699 	if (!cmsgs->addrs_msg)
1700 		return 0;
1701 
1702 	if (daddr->sa.sa_family == AF_INET6)
1703 		flowinfo = daddr->v6.sin6_flowinfo;
1704 
1705 	/* sendv addr list parse */
1706 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1707 		union sctp_addr _daddr;
1708 		int dlen;
1709 
1710 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1711 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1712 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1713 			continue;
1714 
1715 		daddr = &_daddr;
1716 		memset(daddr, 0, sizeof(*daddr));
1717 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1718 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1719 			if (dlen < sizeof(struct in_addr)) {
1720 				err = -EINVAL;
1721 				goto free;
1722 			}
1723 
1724 			dlen = sizeof(struct in_addr);
1725 			daddr->v4.sin_family = AF_INET;
1726 			daddr->v4.sin_port = htons(asoc->peer.port);
1727 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1728 		} else {
1729 			if (dlen < sizeof(struct in6_addr)) {
1730 				err = -EINVAL;
1731 				goto free;
1732 			}
1733 
1734 			dlen = sizeof(struct in6_addr);
1735 			daddr->v6.sin6_flowinfo = flowinfo;
1736 			daddr->v6.sin6_family = AF_INET6;
1737 			daddr->v6.sin6_port = htons(asoc->peer.port);
1738 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1739 		}
1740 
1741 		err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1742 		if (err)
1743 			goto free;
1744 	}
1745 
1746 	return 0;
1747 
1748 free:
1749 	sctp_association_free(asoc);
1750 	return err;
1751 }
1752 
1753 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1754 				     __u16 sflags, struct msghdr *msg,
1755 				     size_t msg_len)
1756 {
1757 	struct sock *sk = asoc->base.sk;
1758 	struct net *net = sock_net(sk);
1759 
1760 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1761 		return -EPIPE;
1762 
1763 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1764 	    !sctp_state(asoc, ESTABLISHED))
1765 		return 0;
1766 
1767 	if (sflags & SCTP_EOF) {
1768 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1769 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1770 
1771 		return 0;
1772 	}
1773 
1774 	if (sflags & SCTP_ABORT) {
1775 		struct sctp_chunk *chunk;
1776 
1777 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1778 		if (!chunk)
1779 			return -ENOMEM;
1780 
1781 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1782 		sctp_primitive_ABORT(net, asoc, chunk);
1783 		iov_iter_revert(&msg->msg_iter, msg_len);
1784 
1785 		return 0;
1786 	}
1787 
1788 	return 1;
1789 }
1790 
1791 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1792 				struct msghdr *msg, size_t msg_len,
1793 				struct sctp_transport *transport,
1794 				struct sctp_sndrcvinfo *sinfo)
1795 {
1796 	struct sock *sk = asoc->base.sk;
1797 	struct sctp_sock *sp = sctp_sk(sk);
1798 	struct net *net = sock_net(sk);
1799 	struct sctp_datamsg *datamsg;
1800 	bool wait_connect = false;
1801 	struct sctp_chunk *chunk;
1802 	long timeo;
1803 	int err;
1804 
1805 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1806 		err = -EINVAL;
1807 		goto err;
1808 	}
1809 
1810 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1811 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1812 		if (err)
1813 			goto err;
1814 	}
1815 
1816 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1817 		err = -EMSGSIZE;
1818 		goto err;
1819 	}
1820 
1821 	if (asoc->pmtu_pending) {
1822 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1823 			sctp_assoc_sync_pmtu(asoc);
1824 		asoc->pmtu_pending = 0;
1825 	}
1826 
1827 	if (sctp_wspace(asoc) < (int)msg_len)
1828 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1829 
1830 	if (sk_under_memory_pressure(sk))
1831 		sk_mem_reclaim(sk);
1832 
1833 	if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1834 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1835 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1836 		if (err)
1837 			goto err;
1838 	}
1839 
1840 	if (sctp_state(asoc, CLOSED)) {
1841 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1842 		if (err)
1843 			goto err;
1844 
1845 		if (asoc->ep->intl_enable) {
1846 			timeo = sock_sndtimeo(sk, 0);
1847 			err = sctp_wait_for_connect(asoc, &timeo);
1848 			if (err) {
1849 				err = -ESRCH;
1850 				goto err;
1851 			}
1852 		} else {
1853 			wait_connect = true;
1854 		}
1855 
1856 		pr_debug("%s: we associated primitively\n", __func__);
1857 	}
1858 
1859 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1860 	if (IS_ERR(datamsg)) {
1861 		err = PTR_ERR(datamsg);
1862 		goto err;
1863 	}
1864 
1865 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1866 
1867 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1868 		sctp_chunk_hold(chunk);
1869 		sctp_set_owner_w(chunk);
1870 		chunk->transport = transport;
1871 	}
1872 
1873 	err = sctp_primitive_SEND(net, asoc, datamsg);
1874 	if (err) {
1875 		sctp_datamsg_free(datamsg);
1876 		goto err;
1877 	}
1878 
1879 	pr_debug("%s: we sent primitively\n", __func__);
1880 
1881 	sctp_datamsg_put(datamsg);
1882 
1883 	if (unlikely(wait_connect)) {
1884 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1885 		sctp_wait_for_connect(asoc, &timeo);
1886 	}
1887 
1888 	err = msg_len;
1889 
1890 err:
1891 	return err;
1892 }
1893 
1894 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1895 					       const struct msghdr *msg,
1896 					       struct sctp_cmsgs *cmsgs)
1897 {
1898 	union sctp_addr *daddr = NULL;
1899 	int err;
1900 
1901 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1902 		int len = msg->msg_namelen;
1903 
1904 		if (len > sizeof(*daddr))
1905 			len = sizeof(*daddr);
1906 
1907 		daddr = (union sctp_addr *)msg->msg_name;
1908 
1909 		err = sctp_verify_addr(sk, daddr, len);
1910 		if (err)
1911 			return ERR_PTR(err);
1912 	}
1913 
1914 	return daddr;
1915 }
1916 
1917 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1918 				      struct sctp_sndrcvinfo *sinfo,
1919 				      struct sctp_cmsgs *cmsgs)
1920 {
1921 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
1922 		sinfo->sinfo_stream = asoc->default_stream;
1923 		sinfo->sinfo_ppid = asoc->default_ppid;
1924 		sinfo->sinfo_context = asoc->default_context;
1925 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1926 
1927 		if (!cmsgs->prinfo)
1928 			sinfo->sinfo_flags = asoc->default_flags;
1929 	}
1930 
1931 	if (!cmsgs->srinfo && !cmsgs->prinfo)
1932 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1933 
1934 	if (cmsgs->authinfo) {
1935 		/* Reuse sinfo_tsn to indicate that authinfo was set and
1936 		 * sinfo_ssn to save the keyid on tx path.
1937 		 */
1938 		sinfo->sinfo_tsn = 1;
1939 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1940 	}
1941 }
1942 
1943 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1944 {
1945 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1946 	struct sctp_transport *transport = NULL;
1947 	struct sctp_sndrcvinfo _sinfo, *sinfo;
1948 	struct sctp_association *asoc, *tmp;
1949 	struct sctp_cmsgs cmsgs;
1950 	union sctp_addr *daddr;
1951 	bool new = false;
1952 	__u16 sflags;
1953 	int err;
1954 
1955 	/* Parse and get snd_info */
1956 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1957 	if (err)
1958 		goto out;
1959 
1960 	sinfo  = &_sinfo;
1961 	sflags = sinfo->sinfo_flags;
1962 
1963 	/* Get daddr from msg */
1964 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1965 	if (IS_ERR(daddr)) {
1966 		err = PTR_ERR(daddr);
1967 		goto out;
1968 	}
1969 
1970 	lock_sock(sk);
1971 
1972 	/* SCTP_SENDALL process */
1973 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1974 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1975 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1976 							msg_len);
1977 			if (err == 0)
1978 				continue;
1979 			if (err < 0)
1980 				goto out_unlock;
1981 
1982 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1983 
1984 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1985 						   NULL, sinfo);
1986 			if (err < 0)
1987 				goto out_unlock;
1988 
1989 			iov_iter_revert(&msg->msg_iter, err);
1990 		}
1991 
1992 		goto out_unlock;
1993 	}
1994 
1995 	/* Get and check or create asoc */
1996 	if (daddr) {
1997 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1998 		if (asoc) {
1999 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2000 							msg_len);
2001 			if (err <= 0)
2002 				goto out_unlock;
2003 		} else {
2004 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2005 						    &transport);
2006 			if (err)
2007 				goto out_unlock;
2008 
2009 			asoc = transport->asoc;
2010 			new = true;
2011 		}
2012 
2013 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2014 			transport = NULL;
2015 	} else {
2016 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2017 		if (!asoc) {
2018 			err = -EPIPE;
2019 			goto out_unlock;
2020 		}
2021 
2022 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2023 		if (err <= 0)
2024 			goto out_unlock;
2025 	}
2026 
2027 	/* Update snd_info with the asoc */
2028 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2029 
2030 	/* Send msg to the asoc */
2031 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2032 	if (err < 0 && err != -ESRCH && new)
2033 		sctp_association_free(asoc);
2034 
2035 out_unlock:
2036 	release_sock(sk);
2037 out:
2038 	return sctp_error(sk, msg->msg_flags, err);
2039 }
2040 
2041 /* This is an extended version of skb_pull() that removes the data from the
2042  * start of a skb even when data is spread across the list of skb's in the
2043  * frag_list. len specifies the total amount of data that needs to be removed.
2044  * when 'len' bytes could be removed from the skb, it returns 0.
2045  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2046  * could not be removed.
2047  */
2048 static int sctp_skb_pull(struct sk_buff *skb, int len)
2049 {
2050 	struct sk_buff *list;
2051 	int skb_len = skb_headlen(skb);
2052 	int rlen;
2053 
2054 	if (len <= skb_len) {
2055 		__skb_pull(skb, len);
2056 		return 0;
2057 	}
2058 	len -= skb_len;
2059 	__skb_pull(skb, skb_len);
2060 
2061 	skb_walk_frags(skb, list) {
2062 		rlen = sctp_skb_pull(list, len);
2063 		skb->len -= (len-rlen);
2064 		skb->data_len -= (len-rlen);
2065 
2066 		if (!rlen)
2067 			return 0;
2068 
2069 		len = rlen;
2070 	}
2071 
2072 	return len;
2073 }
2074 
2075 /* API 3.1.3  recvmsg() - UDP Style Syntax
2076  *
2077  *  ssize_t recvmsg(int socket, struct msghdr *message,
2078  *                    int flags);
2079  *
2080  *  socket  - the socket descriptor of the endpoint.
2081  *  message - pointer to the msghdr structure which contains a single
2082  *            user message and possibly some ancillary data.
2083  *
2084  *            See Section 5 for complete description of the data
2085  *            structures.
2086  *
2087  *  flags   - flags sent or received with the user message, see Section
2088  *            5 for complete description of the flags.
2089  */
2090 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2091 			int noblock, int flags, int *addr_len)
2092 {
2093 	struct sctp_ulpevent *event = NULL;
2094 	struct sctp_sock *sp = sctp_sk(sk);
2095 	struct sk_buff *skb, *head_skb;
2096 	int copied;
2097 	int err = 0;
2098 	int skb_len;
2099 
2100 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2101 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2102 		 addr_len);
2103 
2104 	lock_sock(sk);
2105 
2106 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2107 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2108 		err = -ENOTCONN;
2109 		goto out;
2110 	}
2111 
2112 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2113 	if (!skb)
2114 		goto out;
2115 
2116 	/* Get the total length of the skb including any skb's in the
2117 	 * frag_list.
2118 	 */
2119 	skb_len = skb->len;
2120 
2121 	copied = skb_len;
2122 	if (copied > len)
2123 		copied = len;
2124 
2125 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2126 
2127 	event = sctp_skb2event(skb);
2128 
2129 	if (err)
2130 		goto out_free;
2131 
2132 	if (event->chunk && event->chunk->head_skb)
2133 		head_skb = event->chunk->head_skb;
2134 	else
2135 		head_skb = skb;
2136 	sock_recv_ts_and_drops(msg, sk, head_skb);
2137 	if (sctp_ulpevent_is_notification(event)) {
2138 		msg->msg_flags |= MSG_NOTIFICATION;
2139 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2140 	} else {
2141 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2142 	}
2143 
2144 	/* Check if we allow SCTP_NXTINFO. */
2145 	if (sp->recvnxtinfo)
2146 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2147 	/* Check if we allow SCTP_RCVINFO. */
2148 	if (sp->recvrcvinfo)
2149 		sctp_ulpevent_read_rcvinfo(event, msg);
2150 	/* Check if we allow SCTP_SNDRCVINFO. */
2151 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2152 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2153 
2154 	err = copied;
2155 
2156 	/* If skb's length exceeds the user's buffer, update the skb and
2157 	 * push it back to the receive_queue so that the next call to
2158 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2159 	 */
2160 	if (skb_len > copied) {
2161 		msg->msg_flags &= ~MSG_EOR;
2162 		if (flags & MSG_PEEK)
2163 			goto out_free;
2164 		sctp_skb_pull(skb, copied);
2165 		skb_queue_head(&sk->sk_receive_queue, skb);
2166 
2167 		/* When only partial message is copied to the user, increase
2168 		 * rwnd by that amount. If all the data in the skb is read,
2169 		 * rwnd is updated when the event is freed.
2170 		 */
2171 		if (!sctp_ulpevent_is_notification(event))
2172 			sctp_assoc_rwnd_increase(event->asoc, copied);
2173 		goto out;
2174 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2175 		   (event->msg_flags & MSG_EOR))
2176 		msg->msg_flags |= MSG_EOR;
2177 	else
2178 		msg->msg_flags &= ~MSG_EOR;
2179 
2180 out_free:
2181 	if (flags & MSG_PEEK) {
2182 		/* Release the skb reference acquired after peeking the skb in
2183 		 * sctp_skb_recv_datagram().
2184 		 */
2185 		kfree_skb(skb);
2186 	} else {
2187 		/* Free the event which includes releasing the reference to
2188 		 * the owner of the skb, freeing the skb and updating the
2189 		 * rwnd.
2190 		 */
2191 		sctp_ulpevent_free(event);
2192 	}
2193 out:
2194 	release_sock(sk);
2195 	return err;
2196 }
2197 
2198 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2199  *
2200  * This option is a on/off flag.  If enabled no SCTP message
2201  * fragmentation will be performed.  Instead if a message being sent
2202  * exceeds the current PMTU size, the message will NOT be sent and
2203  * instead a error will be indicated to the user.
2204  */
2205 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2206 					     char __user *optval,
2207 					     unsigned int optlen)
2208 {
2209 	int val;
2210 
2211 	if (optlen < sizeof(int))
2212 		return -EINVAL;
2213 
2214 	if (get_user(val, (int __user *)optval))
2215 		return -EFAULT;
2216 
2217 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2218 
2219 	return 0;
2220 }
2221 
2222 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2223 				  unsigned int optlen)
2224 {
2225 	struct sctp_event_subscribe subscribe;
2226 	__u8 *sn_type = (__u8 *)&subscribe;
2227 	struct sctp_sock *sp = sctp_sk(sk);
2228 	struct sctp_association *asoc;
2229 	int i;
2230 
2231 	if (optlen > sizeof(struct sctp_event_subscribe))
2232 		return -EINVAL;
2233 
2234 	if (copy_from_user(&subscribe, optval, optlen))
2235 		return -EFAULT;
2236 
2237 	for (i = 0; i < optlen; i++)
2238 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2239 				       sn_type[i]);
2240 
2241 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2242 		asoc->subscribe = sctp_sk(sk)->subscribe;
2243 
2244 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2245 	 * if there is no data to be sent or retransmit, the stack will
2246 	 * immediately send up this notification.
2247 	 */
2248 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2249 		struct sctp_ulpevent *event;
2250 
2251 		asoc = sctp_id2assoc(sk, 0);
2252 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2253 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2254 					GFP_USER | __GFP_NOWARN);
2255 			if (!event)
2256 				return -ENOMEM;
2257 
2258 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2259 		}
2260 	}
2261 
2262 	return 0;
2263 }
2264 
2265 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2266  *
2267  * This socket option is applicable to the UDP-style socket only.  When
2268  * set it will cause associations that are idle for more than the
2269  * specified number of seconds to automatically close.  An association
2270  * being idle is defined an association that has NOT sent or received
2271  * user data.  The special value of '0' indicates that no automatic
2272  * close of any associations should be performed.  The option expects an
2273  * integer defining the number of seconds of idle time before an
2274  * association is closed.
2275  */
2276 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2277 				     unsigned int optlen)
2278 {
2279 	struct sctp_sock *sp = sctp_sk(sk);
2280 	struct net *net = sock_net(sk);
2281 
2282 	/* Applicable to UDP-style socket only */
2283 	if (sctp_style(sk, TCP))
2284 		return -EOPNOTSUPP;
2285 	if (optlen != sizeof(int))
2286 		return -EINVAL;
2287 	if (copy_from_user(&sp->autoclose, optval, optlen))
2288 		return -EFAULT;
2289 
2290 	if (sp->autoclose > net->sctp.max_autoclose)
2291 		sp->autoclose = net->sctp.max_autoclose;
2292 
2293 	return 0;
2294 }
2295 
2296 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2297  *
2298  * Applications can enable or disable heartbeats for any peer address of
2299  * an association, modify an address's heartbeat interval, force a
2300  * heartbeat to be sent immediately, and adjust the address's maximum
2301  * number of retransmissions sent before an address is considered
2302  * unreachable.  The following structure is used to access and modify an
2303  * address's parameters:
2304  *
2305  *  struct sctp_paddrparams {
2306  *     sctp_assoc_t            spp_assoc_id;
2307  *     struct sockaddr_storage spp_address;
2308  *     uint32_t                spp_hbinterval;
2309  *     uint16_t                spp_pathmaxrxt;
2310  *     uint32_t                spp_pathmtu;
2311  *     uint32_t                spp_sackdelay;
2312  *     uint32_t                spp_flags;
2313  *     uint32_t                spp_ipv6_flowlabel;
2314  *     uint8_t                 spp_dscp;
2315  * };
2316  *
2317  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2318  *                     application, and identifies the association for
2319  *                     this query.
2320  *   spp_address     - This specifies which address is of interest.
2321  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2322  *                     in milliseconds.  If a  value of zero
2323  *                     is present in this field then no changes are to
2324  *                     be made to this parameter.
2325  *   spp_pathmaxrxt  - This contains the maximum number of
2326  *                     retransmissions before this address shall be
2327  *                     considered unreachable. If a  value of zero
2328  *                     is present in this field then no changes are to
2329  *                     be made to this parameter.
2330  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2331  *                     specified here will be the "fixed" path mtu.
2332  *                     Note that if the spp_address field is empty
2333  *                     then all associations on this address will
2334  *                     have this fixed path mtu set upon them.
2335  *
2336  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2337  *                     the number of milliseconds that sacks will be delayed
2338  *                     for. This value will apply to all addresses of an
2339  *                     association if the spp_address field is empty. Note
2340  *                     also, that if delayed sack is enabled and this
2341  *                     value is set to 0, no change is made to the last
2342  *                     recorded delayed sack timer value.
2343  *
2344  *   spp_flags       - These flags are used to control various features
2345  *                     on an association. The flag field may contain
2346  *                     zero or more of the following options.
2347  *
2348  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2349  *                     specified address. Note that if the address
2350  *                     field is empty all addresses for the association
2351  *                     have heartbeats enabled upon them.
2352  *
2353  *                     SPP_HB_DISABLE - Disable heartbeats on the
2354  *                     speicifed address. Note that if the address
2355  *                     field is empty all addresses for the association
2356  *                     will have their heartbeats disabled. Note also
2357  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2358  *                     mutually exclusive, only one of these two should
2359  *                     be specified. Enabling both fields will have
2360  *                     undetermined results.
2361  *
2362  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2363  *                     to be made immediately.
2364  *
2365  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2366  *                     heartbeat delayis to be set to the value of 0
2367  *                     milliseconds.
2368  *
2369  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2370  *                     discovery upon the specified address. Note that
2371  *                     if the address feild is empty then all addresses
2372  *                     on the association are effected.
2373  *
2374  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2375  *                     discovery upon the specified address. Note that
2376  *                     if the address feild is empty then all addresses
2377  *                     on the association are effected. Not also that
2378  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2379  *                     exclusive. Enabling both will have undetermined
2380  *                     results.
2381  *
2382  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2383  *                     on delayed sack. The time specified in spp_sackdelay
2384  *                     is used to specify the sack delay for this address. Note
2385  *                     that if spp_address is empty then all addresses will
2386  *                     enable delayed sack and take on the sack delay
2387  *                     value specified in spp_sackdelay.
2388  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2389  *                     off delayed sack. If the spp_address field is blank then
2390  *                     delayed sack is disabled for the entire association. Note
2391  *                     also that this field is mutually exclusive to
2392  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2393  *                     results.
2394  *
2395  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2396  *                     setting of the IPV6 flow label value.  The value is
2397  *                     contained in the spp_ipv6_flowlabel field.
2398  *                     Upon retrieval, this flag will be set to indicate that
2399  *                     the spp_ipv6_flowlabel field has a valid value returned.
2400  *                     If a specific destination address is set (in the
2401  *                     spp_address field), then the value returned is that of
2402  *                     the address.  If just an association is specified (and
2403  *                     no address), then the association's default flow label
2404  *                     is returned.  If neither an association nor a destination
2405  *                     is specified, then the socket's default flow label is
2406  *                     returned.  For non-IPv6 sockets, this flag will be left
2407  *                     cleared.
2408  *
2409  *                     SPP_DSCP:  Setting this flag enables the setting of the
2410  *                     Differentiated Services Code Point (DSCP) value
2411  *                     associated with either the association or a specific
2412  *                     address.  The value is obtained in the spp_dscp field.
2413  *                     Upon retrieval, this flag will be set to indicate that
2414  *                     the spp_dscp field has a valid value returned.  If a
2415  *                     specific destination address is set when called (in the
2416  *                     spp_address field), then that specific destination
2417  *                     address's DSCP value is returned.  If just an association
2418  *                     is specified, then the association's default DSCP is
2419  *                     returned.  If neither an association nor a destination is
2420  *                     specified, then the socket's default DSCP is returned.
2421  *
2422  *   spp_ipv6_flowlabel
2423  *                   - This field is used in conjunction with the
2424  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2425  *                     The 20 least significant bits are used for the flow
2426  *                     label.  This setting has precedence over any IPv6-layer
2427  *                     setting.
2428  *
2429  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2430  *                     and contains the DSCP.  The 6 most significant bits are
2431  *                     used for the DSCP.  This setting has precedence over any
2432  *                     IPv4- or IPv6- layer setting.
2433  */
2434 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2435 				       struct sctp_transport   *trans,
2436 				       struct sctp_association *asoc,
2437 				       struct sctp_sock        *sp,
2438 				       int                      hb_change,
2439 				       int                      pmtud_change,
2440 				       int                      sackdelay_change)
2441 {
2442 	int error;
2443 
2444 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2445 		error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2446 							trans->asoc, trans);
2447 		if (error)
2448 			return error;
2449 	}
2450 
2451 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2452 	 * this field is ignored.  Note also that a value of zero indicates
2453 	 * the current setting should be left unchanged.
2454 	 */
2455 	if (params->spp_flags & SPP_HB_ENABLE) {
2456 
2457 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2458 		 * set.  This lets us use 0 value when this flag
2459 		 * is set.
2460 		 */
2461 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2462 			params->spp_hbinterval = 0;
2463 
2464 		if (params->spp_hbinterval ||
2465 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2466 			if (trans) {
2467 				trans->hbinterval =
2468 				    msecs_to_jiffies(params->spp_hbinterval);
2469 			} else if (asoc) {
2470 				asoc->hbinterval =
2471 				    msecs_to_jiffies(params->spp_hbinterval);
2472 			} else {
2473 				sp->hbinterval = params->spp_hbinterval;
2474 			}
2475 		}
2476 	}
2477 
2478 	if (hb_change) {
2479 		if (trans) {
2480 			trans->param_flags =
2481 				(trans->param_flags & ~SPP_HB) | hb_change;
2482 		} else if (asoc) {
2483 			asoc->param_flags =
2484 				(asoc->param_flags & ~SPP_HB) | hb_change;
2485 		} else {
2486 			sp->param_flags =
2487 				(sp->param_flags & ~SPP_HB) | hb_change;
2488 		}
2489 	}
2490 
2491 	/* When Path MTU discovery is disabled the value specified here will
2492 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2493 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2494 	 * effect).
2495 	 */
2496 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2497 		if (trans) {
2498 			trans->pathmtu = params->spp_pathmtu;
2499 			sctp_assoc_sync_pmtu(asoc);
2500 		} else if (asoc) {
2501 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2502 		} else {
2503 			sp->pathmtu = params->spp_pathmtu;
2504 		}
2505 	}
2506 
2507 	if (pmtud_change) {
2508 		if (trans) {
2509 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2510 				(params->spp_flags & SPP_PMTUD_ENABLE);
2511 			trans->param_flags =
2512 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2513 			if (update) {
2514 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2515 				sctp_assoc_sync_pmtu(asoc);
2516 			}
2517 		} else if (asoc) {
2518 			asoc->param_flags =
2519 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2520 		} else {
2521 			sp->param_flags =
2522 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2523 		}
2524 	}
2525 
2526 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2527 	 * value of this field is ignored.  Note also that a value of zero
2528 	 * indicates the current setting should be left unchanged.
2529 	 */
2530 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2531 		if (trans) {
2532 			trans->sackdelay =
2533 				msecs_to_jiffies(params->spp_sackdelay);
2534 		} else if (asoc) {
2535 			asoc->sackdelay =
2536 				msecs_to_jiffies(params->spp_sackdelay);
2537 		} else {
2538 			sp->sackdelay = params->spp_sackdelay;
2539 		}
2540 	}
2541 
2542 	if (sackdelay_change) {
2543 		if (trans) {
2544 			trans->param_flags =
2545 				(trans->param_flags & ~SPP_SACKDELAY) |
2546 				sackdelay_change;
2547 		} else if (asoc) {
2548 			asoc->param_flags =
2549 				(asoc->param_flags & ~SPP_SACKDELAY) |
2550 				sackdelay_change;
2551 		} else {
2552 			sp->param_flags =
2553 				(sp->param_flags & ~SPP_SACKDELAY) |
2554 				sackdelay_change;
2555 		}
2556 	}
2557 
2558 	/* Note that a value of zero indicates the current setting should be
2559 	   left unchanged.
2560 	 */
2561 	if (params->spp_pathmaxrxt) {
2562 		if (trans) {
2563 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2564 		} else if (asoc) {
2565 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2566 		} else {
2567 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2568 		}
2569 	}
2570 
2571 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2572 		if (trans) {
2573 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2574 				trans->flowlabel = params->spp_ipv6_flowlabel &
2575 						   SCTP_FLOWLABEL_VAL_MASK;
2576 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2577 			}
2578 		} else if (asoc) {
2579 			struct sctp_transport *t;
2580 
2581 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2582 					    transports) {
2583 				if (t->ipaddr.sa.sa_family != AF_INET6)
2584 					continue;
2585 				t->flowlabel = params->spp_ipv6_flowlabel &
2586 					       SCTP_FLOWLABEL_VAL_MASK;
2587 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2588 			}
2589 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2590 					  SCTP_FLOWLABEL_VAL_MASK;
2591 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2592 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2593 			sp->flowlabel = params->spp_ipv6_flowlabel &
2594 					SCTP_FLOWLABEL_VAL_MASK;
2595 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2596 		}
2597 	}
2598 
2599 	if (params->spp_flags & SPP_DSCP) {
2600 		if (trans) {
2601 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2602 			trans->dscp |= SCTP_DSCP_SET_MASK;
2603 		} else if (asoc) {
2604 			struct sctp_transport *t;
2605 
2606 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2607 					    transports) {
2608 				t->dscp = params->spp_dscp &
2609 					  SCTP_DSCP_VAL_MASK;
2610 				t->dscp |= SCTP_DSCP_SET_MASK;
2611 			}
2612 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2613 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2614 		} else {
2615 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2616 			sp->dscp |= SCTP_DSCP_SET_MASK;
2617 		}
2618 	}
2619 
2620 	return 0;
2621 }
2622 
2623 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2624 					    char __user *optval,
2625 					    unsigned int optlen)
2626 {
2627 	struct sctp_paddrparams  params;
2628 	struct sctp_transport   *trans = NULL;
2629 	struct sctp_association *asoc = NULL;
2630 	struct sctp_sock        *sp = sctp_sk(sk);
2631 	int error;
2632 	int hb_change, pmtud_change, sackdelay_change;
2633 
2634 	if (optlen == sizeof(params)) {
2635 		if (copy_from_user(&params, optval, optlen))
2636 			return -EFAULT;
2637 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2638 					    spp_ipv6_flowlabel), 4)) {
2639 		if (copy_from_user(&params, optval, optlen))
2640 			return -EFAULT;
2641 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2642 			return -EINVAL;
2643 	} else {
2644 		return -EINVAL;
2645 	}
2646 
2647 	/* Validate flags and value parameters. */
2648 	hb_change        = params.spp_flags & SPP_HB;
2649 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2650 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2651 
2652 	if (hb_change        == SPP_HB ||
2653 	    pmtud_change     == SPP_PMTUD ||
2654 	    sackdelay_change == SPP_SACKDELAY ||
2655 	    params.spp_sackdelay > 500 ||
2656 	    (params.spp_pathmtu &&
2657 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2658 		return -EINVAL;
2659 
2660 	/* If an address other than INADDR_ANY is specified, and
2661 	 * no transport is found, then the request is invalid.
2662 	 */
2663 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2664 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2665 					       params.spp_assoc_id);
2666 		if (!trans)
2667 			return -EINVAL;
2668 	}
2669 
2670 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2671 	 * socket is a one to many style socket, and an association
2672 	 * was not found, then the id was invalid.
2673 	 */
2674 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2675 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
2676 	    sctp_style(sk, UDP))
2677 		return -EINVAL;
2678 
2679 	/* Heartbeat demand can only be sent on a transport or
2680 	 * association, but not a socket.
2681 	 */
2682 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2683 		return -EINVAL;
2684 
2685 	/* Process parameters. */
2686 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2687 					    hb_change, pmtud_change,
2688 					    sackdelay_change);
2689 
2690 	if (error)
2691 		return error;
2692 
2693 	/* If changes are for association, also apply parameters to each
2694 	 * transport.
2695 	 */
2696 	if (!trans && asoc) {
2697 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2698 				transports) {
2699 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2700 						    hb_change, pmtud_change,
2701 						    sackdelay_change);
2702 		}
2703 	}
2704 
2705 	return 0;
2706 }
2707 
2708 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2709 {
2710 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2711 }
2712 
2713 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2714 {
2715 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2716 }
2717 
2718 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2719 					struct sctp_association *asoc)
2720 {
2721 	struct sctp_transport *trans;
2722 
2723 	if (params->sack_delay) {
2724 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2725 		asoc->param_flags =
2726 			sctp_spp_sackdelay_enable(asoc->param_flags);
2727 	}
2728 	if (params->sack_freq == 1) {
2729 		asoc->param_flags =
2730 			sctp_spp_sackdelay_disable(asoc->param_flags);
2731 	} else if (params->sack_freq > 1) {
2732 		asoc->sackfreq = params->sack_freq;
2733 		asoc->param_flags =
2734 			sctp_spp_sackdelay_enable(asoc->param_flags);
2735 	}
2736 
2737 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2738 			    transports) {
2739 		if (params->sack_delay) {
2740 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2741 			trans->param_flags =
2742 				sctp_spp_sackdelay_enable(trans->param_flags);
2743 		}
2744 		if (params->sack_freq == 1) {
2745 			trans->param_flags =
2746 				sctp_spp_sackdelay_disable(trans->param_flags);
2747 		} else if (params->sack_freq > 1) {
2748 			trans->sackfreq = params->sack_freq;
2749 			trans->param_flags =
2750 				sctp_spp_sackdelay_enable(trans->param_flags);
2751 		}
2752 	}
2753 }
2754 
2755 /*
2756  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2757  *
2758  * This option will effect the way delayed acks are performed.  This
2759  * option allows you to get or set the delayed ack time, in
2760  * milliseconds.  It also allows changing the delayed ack frequency.
2761  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2762  * the assoc_id is 0, then this sets or gets the endpoints default
2763  * values.  If the assoc_id field is non-zero, then the set or get
2764  * effects the specified association for the one to many model (the
2765  * assoc_id field is ignored by the one to one model).  Note that if
2766  * sack_delay or sack_freq are 0 when setting this option, then the
2767  * current values will remain unchanged.
2768  *
2769  * struct sctp_sack_info {
2770  *     sctp_assoc_t            sack_assoc_id;
2771  *     uint32_t                sack_delay;
2772  *     uint32_t                sack_freq;
2773  * };
2774  *
2775  * sack_assoc_id -  This parameter, indicates which association the user
2776  *    is performing an action upon.  Note that if this field's value is
2777  *    zero then the endpoints default value is changed (effecting future
2778  *    associations only).
2779  *
2780  * sack_delay -  This parameter contains the number of milliseconds that
2781  *    the user is requesting the delayed ACK timer be set to.  Note that
2782  *    this value is defined in the standard to be between 200 and 500
2783  *    milliseconds.
2784  *
2785  * sack_freq -  This parameter contains the number of packets that must
2786  *    be received before a sack is sent without waiting for the delay
2787  *    timer to expire.  The default value for this is 2, setting this
2788  *    value to 1 will disable the delayed sack algorithm.
2789  */
2790 
2791 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2792 				       char __user *optval, unsigned int optlen)
2793 {
2794 	struct sctp_sock *sp = sctp_sk(sk);
2795 	struct sctp_association *asoc;
2796 	struct sctp_sack_info params;
2797 
2798 	if (optlen == sizeof(struct sctp_sack_info)) {
2799 		if (copy_from_user(&params, optval, optlen))
2800 			return -EFAULT;
2801 
2802 		if (params.sack_delay == 0 && params.sack_freq == 0)
2803 			return 0;
2804 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2805 		pr_warn_ratelimited(DEPRECATED
2806 				    "%s (pid %d) "
2807 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2808 				    "Use struct sctp_sack_info instead\n",
2809 				    current->comm, task_pid_nr(current));
2810 		if (copy_from_user(&params, optval, optlen))
2811 			return -EFAULT;
2812 
2813 		if (params.sack_delay == 0)
2814 			params.sack_freq = 1;
2815 		else
2816 			params.sack_freq = 0;
2817 	} else
2818 		return -EINVAL;
2819 
2820 	/* Validate value parameter. */
2821 	if (params.sack_delay > 500)
2822 		return -EINVAL;
2823 
2824 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2825 	 * socket is a one to many style socket, and an association
2826 	 * was not found, then the id was invalid.
2827 	 */
2828 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2829 	if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC &&
2830 	    sctp_style(sk, UDP))
2831 		return -EINVAL;
2832 
2833 	if (asoc) {
2834 		sctp_apply_asoc_delayed_ack(&params, asoc);
2835 
2836 		return 0;
2837 	}
2838 
2839 	if (sctp_style(sk, TCP))
2840 		params.sack_assoc_id = SCTP_FUTURE_ASSOC;
2841 
2842 	if (params.sack_assoc_id == SCTP_FUTURE_ASSOC ||
2843 	    params.sack_assoc_id == SCTP_ALL_ASSOC) {
2844 		if (params.sack_delay) {
2845 			sp->sackdelay = params.sack_delay;
2846 			sp->param_flags =
2847 				sctp_spp_sackdelay_enable(sp->param_flags);
2848 		}
2849 		if (params.sack_freq == 1) {
2850 			sp->param_flags =
2851 				sctp_spp_sackdelay_disable(sp->param_flags);
2852 		} else if (params.sack_freq > 1) {
2853 			sp->sackfreq = params.sack_freq;
2854 			sp->param_flags =
2855 				sctp_spp_sackdelay_enable(sp->param_flags);
2856 		}
2857 	}
2858 
2859 	if (params.sack_assoc_id == SCTP_CURRENT_ASSOC ||
2860 	    params.sack_assoc_id == SCTP_ALL_ASSOC)
2861 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2862 			sctp_apply_asoc_delayed_ack(&params, asoc);
2863 
2864 	return 0;
2865 }
2866 
2867 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2868  *
2869  * Applications can specify protocol parameters for the default association
2870  * initialization.  The option name argument to setsockopt() and getsockopt()
2871  * is SCTP_INITMSG.
2872  *
2873  * Setting initialization parameters is effective only on an unconnected
2874  * socket (for UDP-style sockets only future associations are effected
2875  * by the change).  With TCP-style sockets, this option is inherited by
2876  * sockets derived from a listener socket.
2877  */
2878 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2879 {
2880 	struct sctp_initmsg sinit;
2881 	struct sctp_sock *sp = sctp_sk(sk);
2882 
2883 	if (optlen != sizeof(struct sctp_initmsg))
2884 		return -EINVAL;
2885 	if (copy_from_user(&sinit, optval, optlen))
2886 		return -EFAULT;
2887 
2888 	if (sinit.sinit_num_ostreams)
2889 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2890 	if (sinit.sinit_max_instreams)
2891 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2892 	if (sinit.sinit_max_attempts)
2893 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2894 	if (sinit.sinit_max_init_timeo)
2895 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2896 
2897 	return 0;
2898 }
2899 
2900 /*
2901  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2902  *
2903  *   Applications that wish to use the sendto() system call may wish to
2904  *   specify a default set of parameters that would normally be supplied
2905  *   through the inclusion of ancillary data.  This socket option allows
2906  *   such an application to set the default sctp_sndrcvinfo structure.
2907  *   The application that wishes to use this socket option simply passes
2908  *   in to this call the sctp_sndrcvinfo structure defined in Section
2909  *   5.2.2) The input parameters accepted by this call include
2910  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2911  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2912  *   to this call if the caller is using the UDP model.
2913  */
2914 static int sctp_setsockopt_default_send_param(struct sock *sk,
2915 					      char __user *optval,
2916 					      unsigned int optlen)
2917 {
2918 	struct sctp_sock *sp = sctp_sk(sk);
2919 	struct sctp_association *asoc;
2920 	struct sctp_sndrcvinfo info;
2921 
2922 	if (optlen != sizeof(info))
2923 		return -EINVAL;
2924 	if (copy_from_user(&info, optval, optlen))
2925 		return -EFAULT;
2926 	if (info.sinfo_flags &
2927 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2928 	      SCTP_ABORT | SCTP_EOF))
2929 		return -EINVAL;
2930 
2931 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2932 	if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC &&
2933 	    sctp_style(sk, UDP))
2934 		return -EINVAL;
2935 
2936 	if (asoc) {
2937 		asoc->default_stream = info.sinfo_stream;
2938 		asoc->default_flags = info.sinfo_flags;
2939 		asoc->default_ppid = info.sinfo_ppid;
2940 		asoc->default_context = info.sinfo_context;
2941 		asoc->default_timetolive = info.sinfo_timetolive;
2942 
2943 		return 0;
2944 	}
2945 
2946 	if (sctp_style(sk, TCP))
2947 		info.sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2948 
2949 	if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2950 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
2951 		sp->default_stream = info.sinfo_stream;
2952 		sp->default_flags = info.sinfo_flags;
2953 		sp->default_ppid = info.sinfo_ppid;
2954 		sp->default_context = info.sinfo_context;
2955 		sp->default_timetolive = info.sinfo_timetolive;
2956 	}
2957 
2958 	if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2959 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
2960 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2961 			asoc->default_stream = info.sinfo_stream;
2962 			asoc->default_flags = info.sinfo_flags;
2963 			asoc->default_ppid = info.sinfo_ppid;
2964 			asoc->default_context = info.sinfo_context;
2965 			asoc->default_timetolive = info.sinfo_timetolive;
2966 		}
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2973  * (SCTP_DEFAULT_SNDINFO)
2974  */
2975 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2976 					   char __user *optval,
2977 					   unsigned int optlen)
2978 {
2979 	struct sctp_sock *sp = sctp_sk(sk);
2980 	struct sctp_association *asoc;
2981 	struct sctp_sndinfo info;
2982 
2983 	if (optlen != sizeof(info))
2984 		return -EINVAL;
2985 	if (copy_from_user(&info, optval, optlen))
2986 		return -EFAULT;
2987 	if (info.snd_flags &
2988 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2989 	      SCTP_ABORT | SCTP_EOF))
2990 		return -EINVAL;
2991 
2992 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2993 	if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC &&
2994 	    sctp_style(sk, UDP))
2995 		return -EINVAL;
2996 
2997 	if (asoc) {
2998 		asoc->default_stream = info.snd_sid;
2999 		asoc->default_flags = info.snd_flags;
3000 		asoc->default_ppid = info.snd_ppid;
3001 		asoc->default_context = info.snd_context;
3002 
3003 		return 0;
3004 	}
3005 
3006 	if (sctp_style(sk, TCP))
3007 		info.snd_assoc_id = SCTP_FUTURE_ASSOC;
3008 
3009 	if (info.snd_assoc_id == SCTP_FUTURE_ASSOC ||
3010 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3011 		sp->default_stream = info.snd_sid;
3012 		sp->default_flags = info.snd_flags;
3013 		sp->default_ppid = info.snd_ppid;
3014 		sp->default_context = info.snd_context;
3015 	}
3016 
3017 	if (info.snd_assoc_id == SCTP_CURRENT_ASSOC ||
3018 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3019 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3020 			asoc->default_stream = info.snd_sid;
3021 			asoc->default_flags = info.snd_flags;
3022 			asoc->default_ppid = info.snd_ppid;
3023 			asoc->default_context = info.snd_context;
3024 		}
3025 	}
3026 
3027 	return 0;
3028 }
3029 
3030 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3031  *
3032  * Requests that the local SCTP stack use the enclosed peer address as
3033  * the association primary.  The enclosed address must be one of the
3034  * association peer's addresses.
3035  */
3036 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3037 					unsigned int optlen)
3038 {
3039 	struct sctp_prim prim;
3040 	struct sctp_transport *trans;
3041 	struct sctp_af *af;
3042 	int err;
3043 
3044 	if (optlen != sizeof(struct sctp_prim))
3045 		return -EINVAL;
3046 
3047 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3048 		return -EFAULT;
3049 
3050 	/* Allow security module to validate address but need address len. */
3051 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3052 	if (!af)
3053 		return -EINVAL;
3054 
3055 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3056 					 (struct sockaddr *)&prim.ssp_addr,
3057 					 af->sockaddr_len);
3058 	if (err)
3059 		return err;
3060 
3061 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3062 	if (!trans)
3063 		return -EINVAL;
3064 
3065 	sctp_assoc_set_primary(trans->asoc, trans);
3066 
3067 	return 0;
3068 }
3069 
3070 /*
3071  * 7.1.5 SCTP_NODELAY
3072  *
3073  * Turn on/off any Nagle-like algorithm.  This means that packets are
3074  * generally sent as soon as possible and no unnecessary delays are
3075  * introduced, at the cost of more packets in the network.  Expects an
3076  *  integer boolean flag.
3077  */
3078 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3079 				   unsigned int optlen)
3080 {
3081 	int val;
3082 
3083 	if (optlen < sizeof(int))
3084 		return -EINVAL;
3085 	if (get_user(val, (int __user *)optval))
3086 		return -EFAULT;
3087 
3088 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3089 	return 0;
3090 }
3091 
3092 /*
3093  *
3094  * 7.1.1 SCTP_RTOINFO
3095  *
3096  * The protocol parameters used to initialize and bound retransmission
3097  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3098  * and modify these parameters.
3099  * All parameters are time values, in milliseconds.  A value of 0, when
3100  * modifying the parameters, indicates that the current value should not
3101  * be changed.
3102  *
3103  */
3104 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3105 {
3106 	struct sctp_rtoinfo rtoinfo;
3107 	struct sctp_association *asoc;
3108 	unsigned long rto_min, rto_max;
3109 	struct sctp_sock *sp = sctp_sk(sk);
3110 
3111 	if (optlen != sizeof (struct sctp_rtoinfo))
3112 		return -EINVAL;
3113 
3114 	if (copy_from_user(&rtoinfo, optval, optlen))
3115 		return -EFAULT;
3116 
3117 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3118 
3119 	/* Set the values to the specific association */
3120 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
3121 	    sctp_style(sk, UDP))
3122 		return -EINVAL;
3123 
3124 	rto_max = rtoinfo.srto_max;
3125 	rto_min = rtoinfo.srto_min;
3126 
3127 	if (rto_max)
3128 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3129 	else
3130 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3131 
3132 	if (rto_min)
3133 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3134 	else
3135 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3136 
3137 	if (rto_min > rto_max)
3138 		return -EINVAL;
3139 
3140 	if (asoc) {
3141 		if (rtoinfo.srto_initial != 0)
3142 			asoc->rto_initial =
3143 				msecs_to_jiffies(rtoinfo.srto_initial);
3144 		asoc->rto_max = rto_max;
3145 		asoc->rto_min = rto_min;
3146 	} else {
3147 		/* If there is no association or the association-id = 0
3148 		 * set the values to the endpoint.
3149 		 */
3150 		if (rtoinfo.srto_initial != 0)
3151 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3152 		sp->rtoinfo.srto_max = rto_max;
3153 		sp->rtoinfo.srto_min = rto_min;
3154 	}
3155 
3156 	return 0;
3157 }
3158 
3159 /*
3160  *
3161  * 7.1.2 SCTP_ASSOCINFO
3162  *
3163  * This option is used to tune the maximum retransmission attempts
3164  * of the association.
3165  * Returns an error if the new association retransmission value is
3166  * greater than the sum of the retransmission value  of the peer.
3167  * See [SCTP] for more information.
3168  *
3169  */
3170 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3171 {
3172 
3173 	struct sctp_assocparams assocparams;
3174 	struct sctp_association *asoc;
3175 
3176 	if (optlen != sizeof(struct sctp_assocparams))
3177 		return -EINVAL;
3178 	if (copy_from_user(&assocparams, optval, optlen))
3179 		return -EFAULT;
3180 
3181 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3182 
3183 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3184 	    sctp_style(sk, UDP))
3185 		return -EINVAL;
3186 
3187 	/* Set the values to the specific association */
3188 	if (asoc) {
3189 		if (assocparams.sasoc_asocmaxrxt != 0) {
3190 			__u32 path_sum = 0;
3191 			int   paths = 0;
3192 			struct sctp_transport *peer_addr;
3193 
3194 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3195 					transports) {
3196 				path_sum += peer_addr->pathmaxrxt;
3197 				paths++;
3198 			}
3199 
3200 			/* Only validate asocmaxrxt if we have more than
3201 			 * one path/transport.  We do this because path
3202 			 * retransmissions are only counted when we have more
3203 			 * then one path.
3204 			 */
3205 			if (paths > 1 &&
3206 			    assocparams.sasoc_asocmaxrxt > path_sum)
3207 				return -EINVAL;
3208 
3209 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3210 		}
3211 
3212 		if (assocparams.sasoc_cookie_life != 0)
3213 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3214 	} else {
3215 		/* Set the values to the endpoint */
3216 		struct sctp_sock *sp = sctp_sk(sk);
3217 
3218 		if (assocparams.sasoc_asocmaxrxt != 0)
3219 			sp->assocparams.sasoc_asocmaxrxt =
3220 						assocparams.sasoc_asocmaxrxt;
3221 		if (assocparams.sasoc_cookie_life != 0)
3222 			sp->assocparams.sasoc_cookie_life =
3223 						assocparams.sasoc_cookie_life;
3224 	}
3225 	return 0;
3226 }
3227 
3228 /*
3229  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3230  *
3231  * This socket option is a boolean flag which turns on or off mapped V4
3232  * addresses.  If this option is turned on and the socket is type
3233  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3234  * If this option is turned off, then no mapping will be done of V4
3235  * addresses and a user will receive both PF_INET6 and PF_INET type
3236  * addresses on the socket.
3237  */
3238 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3239 {
3240 	int val;
3241 	struct sctp_sock *sp = sctp_sk(sk);
3242 
3243 	if (optlen < sizeof(int))
3244 		return -EINVAL;
3245 	if (get_user(val, (int __user *)optval))
3246 		return -EFAULT;
3247 	if (val)
3248 		sp->v4mapped = 1;
3249 	else
3250 		sp->v4mapped = 0;
3251 
3252 	return 0;
3253 }
3254 
3255 /*
3256  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3257  * This option will get or set the maximum size to put in any outgoing
3258  * SCTP DATA chunk.  If a message is larger than this size it will be
3259  * fragmented by SCTP into the specified size.  Note that the underlying
3260  * SCTP implementation may fragment into smaller sized chunks when the
3261  * PMTU of the underlying association is smaller than the value set by
3262  * the user.  The default value for this option is '0' which indicates
3263  * the user is NOT limiting fragmentation and only the PMTU will effect
3264  * SCTP's choice of DATA chunk size.  Note also that values set larger
3265  * than the maximum size of an IP datagram will effectively let SCTP
3266  * control fragmentation (i.e. the same as setting this option to 0).
3267  *
3268  * The following structure is used to access and modify this parameter:
3269  *
3270  * struct sctp_assoc_value {
3271  *   sctp_assoc_t assoc_id;
3272  *   uint32_t assoc_value;
3273  * };
3274  *
3275  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3276  *    For one-to-many style sockets this parameter indicates which
3277  *    association the user is performing an action upon.  Note that if
3278  *    this field's value is zero then the endpoints default value is
3279  *    changed (effecting future associations only).
3280  * assoc_value:  This parameter specifies the maximum size in bytes.
3281  */
3282 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3283 {
3284 	struct sctp_sock *sp = sctp_sk(sk);
3285 	struct sctp_assoc_value params;
3286 	struct sctp_association *asoc;
3287 	int val;
3288 
3289 	if (optlen == sizeof(int)) {
3290 		pr_warn_ratelimited(DEPRECATED
3291 				    "%s (pid %d) "
3292 				    "Use of int in maxseg socket option.\n"
3293 				    "Use struct sctp_assoc_value instead\n",
3294 				    current->comm, task_pid_nr(current));
3295 		if (copy_from_user(&val, optval, optlen))
3296 			return -EFAULT;
3297 		params.assoc_id = SCTP_FUTURE_ASSOC;
3298 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3299 		if (copy_from_user(&params, optval, optlen))
3300 			return -EFAULT;
3301 		val = params.assoc_value;
3302 	} else {
3303 		return -EINVAL;
3304 	}
3305 
3306 	asoc = sctp_id2assoc(sk, params.assoc_id);
3307 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
3308 	    sctp_style(sk, UDP))
3309 		return -EINVAL;
3310 
3311 	if (val) {
3312 		int min_len, max_len;
3313 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3314 				 sizeof(struct sctp_data_chunk);
3315 
3316 		min_len = sctp_min_frag_point(sp, datasize);
3317 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3318 
3319 		if (val < min_len || val > max_len)
3320 			return -EINVAL;
3321 	}
3322 
3323 	if (asoc) {
3324 		asoc->user_frag = val;
3325 		sctp_assoc_update_frag_point(asoc);
3326 	} else {
3327 		sp->user_frag = val;
3328 	}
3329 
3330 	return 0;
3331 }
3332 
3333 
3334 /*
3335  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3336  *
3337  *   Requests that the peer mark the enclosed address as the association
3338  *   primary. The enclosed address must be one of the association's
3339  *   locally bound addresses. The following structure is used to make a
3340  *   set primary request:
3341  */
3342 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3343 					     unsigned int optlen)
3344 {
3345 	struct sctp_sock	*sp;
3346 	struct sctp_association	*asoc = NULL;
3347 	struct sctp_setpeerprim	prim;
3348 	struct sctp_chunk	*chunk;
3349 	struct sctp_af		*af;
3350 	int 			err;
3351 
3352 	sp = sctp_sk(sk);
3353 
3354 	if (!sp->ep->asconf_enable)
3355 		return -EPERM;
3356 
3357 	if (optlen != sizeof(struct sctp_setpeerprim))
3358 		return -EINVAL;
3359 
3360 	if (copy_from_user(&prim, optval, optlen))
3361 		return -EFAULT;
3362 
3363 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3364 	if (!asoc)
3365 		return -EINVAL;
3366 
3367 	if (!asoc->peer.asconf_capable)
3368 		return -EPERM;
3369 
3370 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3371 		return -EPERM;
3372 
3373 	if (!sctp_state(asoc, ESTABLISHED))
3374 		return -ENOTCONN;
3375 
3376 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3377 	if (!af)
3378 		return -EINVAL;
3379 
3380 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3381 		return -EADDRNOTAVAIL;
3382 
3383 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3384 		return -EADDRNOTAVAIL;
3385 
3386 	/* Allow security module to validate address. */
3387 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3388 					 (struct sockaddr *)&prim.sspp_addr,
3389 					 af->sockaddr_len);
3390 	if (err)
3391 		return err;
3392 
3393 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3394 	chunk = sctp_make_asconf_set_prim(asoc,
3395 					  (union sctp_addr *)&prim.sspp_addr);
3396 	if (!chunk)
3397 		return -ENOMEM;
3398 
3399 	err = sctp_send_asconf(asoc, chunk);
3400 
3401 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3402 
3403 	return err;
3404 }
3405 
3406 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3407 					    unsigned int optlen)
3408 {
3409 	struct sctp_setadaptation adaptation;
3410 
3411 	if (optlen != sizeof(struct sctp_setadaptation))
3412 		return -EINVAL;
3413 	if (copy_from_user(&adaptation, optval, optlen))
3414 		return -EFAULT;
3415 
3416 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3417 
3418 	return 0;
3419 }
3420 
3421 /*
3422  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3423  *
3424  * The context field in the sctp_sndrcvinfo structure is normally only
3425  * used when a failed message is retrieved holding the value that was
3426  * sent down on the actual send call.  This option allows the setting of
3427  * a default context on an association basis that will be received on
3428  * reading messages from the peer.  This is especially helpful in the
3429  * one-2-many model for an application to keep some reference to an
3430  * internal state machine that is processing messages on the
3431  * association.  Note that the setting of this value only effects
3432  * received messages from the peer and does not effect the value that is
3433  * saved with outbound messages.
3434  */
3435 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3436 				   unsigned int optlen)
3437 {
3438 	struct sctp_sock *sp = sctp_sk(sk);
3439 	struct sctp_assoc_value params;
3440 	struct sctp_association *asoc;
3441 
3442 	if (optlen != sizeof(struct sctp_assoc_value))
3443 		return -EINVAL;
3444 	if (copy_from_user(&params, optval, optlen))
3445 		return -EFAULT;
3446 
3447 	asoc = sctp_id2assoc(sk, params.assoc_id);
3448 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3449 	    sctp_style(sk, UDP))
3450 		return -EINVAL;
3451 
3452 	if (asoc) {
3453 		asoc->default_rcv_context = params.assoc_value;
3454 
3455 		return 0;
3456 	}
3457 
3458 	if (sctp_style(sk, TCP))
3459 		params.assoc_id = SCTP_FUTURE_ASSOC;
3460 
3461 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3462 	    params.assoc_id == SCTP_ALL_ASSOC)
3463 		sp->default_rcv_context = params.assoc_value;
3464 
3465 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3466 	    params.assoc_id == SCTP_ALL_ASSOC)
3467 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3468 			asoc->default_rcv_context = params.assoc_value;
3469 
3470 	return 0;
3471 }
3472 
3473 /*
3474  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3475  *
3476  * This options will at a minimum specify if the implementation is doing
3477  * fragmented interleave.  Fragmented interleave, for a one to many
3478  * socket, is when subsequent calls to receive a message may return
3479  * parts of messages from different associations.  Some implementations
3480  * may allow you to turn this value on or off.  If so, when turned off,
3481  * no fragment interleave will occur (which will cause a head of line
3482  * blocking amongst multiple associations sharing the same one to many
3483  * socket).  When this option is turned on, then each receive call may
3484  * come from a different association (thus the user must receive data
3485  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3486  * association each receive belongs to.
3487  *
3488  * This option takes a boolean value.  A non-zero value indicates that
3489  * fragmented interleave is on.  A value of zero indicates that
3490  * fragmented interleave is off.
3491  *
3492  * Note that it is important that an implementation that allows this
3493  * option to be turned on, have it off by default.  Otherwise an unaware
3494  * application using the one to many model may become confused and act
3495  * incorrectly.
3496  */
3497 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3498 					       char __user *optval,
3499 					       unsigned int optlen)
3500 {
3501 	int val;
3502 
3503 	if (optlen != sizeof(int))
3504 		return -EINVAL;
3505 	if (get_user(val, (int __user *)optval))
3506 		return -EFAULT;
3507 
3508 	sctp_sk(sk)->frag_interleave = !!val;
3509 
3510 	if (!sctp_sk(sk)->frag_interleave)
3511 		sctp_sk(sk)->ep->intl_enable = 0;
3512 
3513 	return 0;
3514 }
3515 
3516 /*
3517  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3518  *       (SCTP_PARTIAL_DELIVERY_POINT)
3519  *
3520  * This option will set or get the SCTP partial delivery point.  This
3521  * point is the size of a message where the partial delivery API will be
3522  * invoked to help free up rwnd space for the peer.  Setting this to a
3523  * lower value will cause partial deliveries to happen more often.  The
3524  * calls argument is an integer that sets or gets the partial delivery
3525  * point.  Note also that the call will fail if the user attempts to set
3526  * this value larger than the socket receive buffer size.
3527  *
3528  * Note that any single message having a length smaller than or equal to
3529  * the SCTP partial delivery point will be delivered in one single read
3530  * call as long as the user provided buffer is large enough to hold the
3531  * message.
3532  */
3533 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3534 						  char __user *optval,
3535 						  unsigned int optlen)
3536 {
3537 	u32 val;
3538 
3539 	if (optlen != sizeof(u32))
3540 		return -EINVAL;
3541 	if (get_user(val, (int __user *)optval))
3542 		return -EFAULT;
3543 
3544 	/* Note: We double the receive buffer from what the user sets
3545 	 * it to be, also initial rwnd is based on rcvbuf/2.
3546 	 */
3547 	if (val > (sk->sk_rcvbuf >> 1))
3548 		return -EINVAL;
3549 
3550 	sctp_sk(sk)->pd_point = val;
3551 
3552 	return 0; /* is this the right error code? */
3553 }
3554 
3555 /*
3556  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3557  *
3558  * This option will allow a user to change the maximum burst of packets
3559  * that can be emitted by this association.  Note that the default value
3560  * is 4, and some implementations may restrict this setting so that it
3561  * can only be lowered.
3562  *
3563  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3564  * future associations inheriting the socket value.
3565  */
3566 static int sctp_setsockopt_maxburst(struct sock *sk,
3567 				    char __user *optval,
3568 				    unsigned int optlen)
3569 {
3570 	struct sctp_sock *sp = sctp_sk(sk);
3571 	struct sctp_assoc_value params;
3572 	struct sctp_association *asoc;
3573 
3574 	if (optlen == sizeof(int)) {
3575 		pr_warn_ratelimited(DEPRECATED
3576 				    "%s (pid %d) "
3577 				    "Use of int in max_burst socket option deprecated.\n"
3578 				    "Use struct sctp_assoc_value instead\n",
3579 				    current->comm, task_pid_nr(current));
3580 		if (copy_from_user(&params.assoc_value, optval, optlen))
3581 			return -EFAULT;
3582 		params.assoc_id = SCTP_FUTURE_ASSOC;
3583 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3584 		if (copy_from_user(&params, optval, optlen))
3585 			return -EFAULT;
3586 	} else
3587 		return -EINVAL;
3588 
3589 	asoc = sctp_id2assoc(sk, params.assoc_id);
3590 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3591 	    sctp_style(sk, UDP))
3592 		return -EINVAL;
3593 
3594 	if (asoc) {
3595 		asoc->max_burst = params.assoc_value;
3596 
3597 		return 0;
3598 	}
3599 
3600 	if (sctp_style(sk, TCP))
3601 		params.assoc_id = SCTP_FUTURE_ASSOC;
3602 
3603 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3604 	    params.assoc_id == SCTP_ALL_ASSOC)
3605 		sp->max_burst = params.assoc_value;
3606 
3607 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3608 	    params.assoc_id == SCTP_ALL_ASSOC)
3609 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3610 			asoc->max_burst = params.assoc_value;
3611 
3612 	return 0;
3613 }
3614 
3615 /*
3616  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3617  *
3618  * This set option adds a chunk type that the user is requesting to be
3619  * received only in an authenticated way.  Changes to the list of chunks
3620  * will only effect future associations on the socket.
3621  */
3622 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3623 				      char __user *optval,
3624 				      unsigned int optlen)
3625 {
3626 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3627 	struct sctp_authchunk val;
3628 
3629 	if (!ep->auth_enable)
3630 		return -EACCES;
3631 
3632 	if (optlen != sizeof(struct sctp_authchunk))
3633 		return -EINVAL;
3634 	if (copy_from_user(&val, optval, optlen))
3635 		return -EFAULT;
3636 
3637 	switch (val.sauth_chunk) {
3638 	case SCTP_CID_INIT:
3639 	case SCTP_CID_INIT_ACK:
3640 	case SCTP_CID_SHUTDOWN_COMPLETE:
3641 	case SCTP_CID_AUTH:
3642 		return -EINVAL;
3643 	}
3644 
3645 	/* add this chunk id to the endpoint */
3646 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3647 }
3648 
3649 /*
3650  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3651  *
3652  * This option gets or sets the list of HMAC algorithms that the local
3653  * endpoint requires the peer to use.
3654  */
3655 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3656 				      char __user *optval,
3657 				      unsigned int optlen)
3658 {
3659 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3660 	struct sctp_hmacalgo *hmacs;
3661 	u32 idents;
3662 	int err;
3663 
3664 	if (!ep->auth_enable)
3665 		return -EACCES;
3666 
3667 	if (optlen < sizeof(struct sctp_hmacalgo))
3668 		return -EINVAL;
3669 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3670 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3671 
3672 	hmacs = memdup_user(optval, optlen);
3673 	if (IS_ERR(hmacs))
3674 		return PTR_ERR(hmacs);
3675 
3676 	idents = hmacs->shmac_num_idents;
3677 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3678 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3679 		err = -EINVAL;
3680 		goto out;
3681 	}
3682 
3683 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3684 out:
3685 	kfree(hmacs);
3686 	return err;
3687 }
3688 
3689 /*
3690  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3691  *
3692  * This option will set a shared secret key which is used to build an
3693  * association shared key.
3694  */
3695 static int sctp_setsockopt_auth_key(struct sock *sk,
3696 				    char __user *optval,
3697 				    unsigned int optlen)
3698 {
3699 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3700 	struct sctp_authkey *authkey;
3701 	struct sctp_association *asoc;
3702 	int ret = -EINVAL;
3703 
3704 	if (optlen <= sizeof(struct sctp_authkey))
3705 		return -EINVAL;
3706 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3707 	 * this.
3708 	 */
3709 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3710 
3711 	authkey = memdup_user(optval, optlen);
3712 	if (IS_ERR(authkey))
3713 		return PTR_ERR(authkey);
3714 
3715 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3716 		goto out;
3717 
3718 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3719 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3720 	    sctp_style(sk, UDP))
3721 		goto out;
3722 
3723 	if (asoc) {
3724 		ret = sctp_auth_set_key(ep, asoc, authkey);
3725 		goto out;
3726 	}
3727 
3728 	if (sctp_style(sk, TCP))
3729 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3730 
3731 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3732 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3733 		ret = sctp_auth_set_key(ep, asoc, authkey);
3734 		if (ret)
3735 			goto out;
3736 	}
3737 
3738 	ret = 0;
3739 
3740 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3741 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3742 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3743 			int res = sctp_auth_set_key(ep, asoc, authkey);
3744 
3745 			if (res && !ret)
3746 				ret = res;
3747 		}
3748 	}
3749 
3750 out:
3751 	kzfree(authkey);
3752 	return ret;
3753 }
3754 
3755 /*
3756  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3757  *
3758  * This option will get or set the active shared key to be used to build
3759  * the association shared key.
3760  */
3761 static int sctp_setsockopt_active_key(struct sock *sk,
3762 				      char __user *optval,
3763 				      unsigned int optlen)
3764 {
3765 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3766 	struct sctp_association *asoc;
3767 	struct sctp_authkeyid val;
3768 	int ret = 0;
3769 
3770 	if (optlen != sizeof(struct sctp_authkeyid))
3771 		return -EINVAL;
3772 	if (copy_from_user(&val, optval, optlen))
3773 		return -EFAULT;
3774 
3775 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3776 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3777 	    sctp_style(sk, UDP))
3778 		return -EINVAL;
3779 
3780 	if (asoc)
3781 		return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3782 
3783 	if (sctp_style(sk, TCP))
3784 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3785 
3786 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3787 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3788 		ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3789 		if (ret)
3790 			return ret;
3791 	}
3792 
3793 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3794 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3795 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3796 			int res = sctp_auth_set_active_key(ep, asoc,
3797 							   val.scact_keynumber);
3798 
3799 			if (res && !ret)
3800 				ret = res;
3801 		}
3802 	}
3803 
3804 	return ret;
3805 }
3806 
3807 /*
3808  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3809  *
3810  * This set option will delete a shared secret key from use.
3811  */
3812 static int sctp_setsockopt_del_key(struct sock *sk,
3813 				   char __user *optval,
3814 				   unsigned int optlen)
3815 {
3816 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3817 	struct sctp_association *asoc;
3818 	struct sctp_authkeyid val;
3819 	int ret = 0;
3820 
3821 	if (optlen != sizeof(struct sctp_authkeyid))
3822 		return -EINVAL;
3823 	if (copy_from_user(&val, optval, optlen))
3824 		return -EFAULT;
3825 
3826 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3827 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3828 	    sctp_style(sk, UDP))
3829 		return -EINVAL;
3830 
3831 	if (asoc)
3832 		return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3833 
3834 	if (sctp_style(sk, TCP))
3835 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3836 
3837 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3838 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3839 		ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3840 		if (ret)
3841 			return ret;
3842 	}
3843 
3844 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3845 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3846 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3847 			int res = sctp_auth_del_key_id(ep, asoc,
3848 						       val.scact_keynumber);
3849 
3850 			if (res && !ret)
3851 				ret = res;
3852 		}
3853 	}
3854 
3855 	return ret;
3856 }
3857 
3858 /*
3859  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3860  *
3861  * This set option will deactivate a shared secret key.
3862  */
3863 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3864 					  unsigned int optlen)
3865 {
3866 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3867 	struct sctp_association *asoc;
3868 	struct sctp_authkeyid val;
3869 	int ret = 0;
3870 
3871 	if (optlen != sizeof(struct sctp_authkeyid))
3872 		return -EINVAL;
3873 	if (copy_from_user(&val, optval, optlen))
3874 		return -EFAULT;
3875 
3876 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3877 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3878 	    sctp_style(sk, UDP))
3879 		return -EINVAL;
3880 
3881 	if (asoc)
3882 		return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3883 
3884 	if (sctp_style(sk, TCP))
3885 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3886 
3887 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3888 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3889 		ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3890 		if (ret)
3891 			return ret;
3892 	}
3893 
3894 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3895 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3896 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3897 			int res = sctp_auth_deact_key_id(ep, asoc,
3898 							 val.scact_keynumber);
3899 
3900 			if (res && !ret)
3901 				ret = res;
3902 		}
3903 	}
3904 
3905 	return ret;
3906 }
3907 
3908 /*
3909  * 8.1.23 SCTP_AUTO_ASCONF
3910  *
3911  * This option will enable or disable the use of the automatic generation of
3912  * ASCONF chunks to add and delete addresses to an existing association.  Note
3913  * that this option has two caveats namely: a) it only affects sockets that
3914  * are bound to all addresses available to the SCTP stack, and b) the system
3915  * administrator may have an overriding control that turns the ASCONF feature
3916  * off no matter what setting the socket option may have.
3917  * This option expects an integer boolean flag, where a non-zero value turns on
3918  * the option, and a zero value turns off the option.
3919  * Note. In this implementation, socket operation overrides default parameter
3920  * being set by sysctl as well as FreeBSD implementation
3921  */
3922 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3923 					unsigned int optlen)
3924 {
3925 	int val;
3926 	struct sctp_sock *sp = sctp_sk(sk);
3927 
3928 	if (optlen < sizeof(int))
3929 		return -EINVAL;
3930 	if (get_user(val, (int __user *)optval))
3931 		return -EFAULT;
3932 	if (!sctp_is_ep_boundall(sk) && val)
3933 		return -EINVAL;
3934 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3935 		return 0;
3936 
3937 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3938 	if (val == 0 && sp->do_auto_asconf) {
3939 		list_del(&sp->auto_asconf_list);
3940 		sp->do_auto_asconf = 0;
3941 	} else if (val && !sp->do_auto_asconf) {
3942 		list_add_tail(&sp->auto_asconf_list,
3943 		    &sock_net(sk)->sctp.auto_asconf_splist);
3944 		sp->do_auto_asconf = 1;
3945 	}
3946 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3947 	return 0;
3948 }
3949 
3950 /*
3951  * SCTP_PEER_ADDR_THLDS
3952  *
3953  * This option allows us to alter the partially failed threshold for one or all
3954  * transports in an association.  See Section 6.1 of:
3955  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3956  */
3957 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3958 					    char __user *optval,
3959 					    unsigned int optlen, bool v2)
3960 {
3961 	struct sctp_paddrthlds_v2 val;
3962 	struct sctp_transport *trans;
3963 	struct sctp_association *asoc;
3964 	int len;
3965 
3966 	len = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
3967 	if (optlen < len)
3968 		return -EINVAL;
3969 	if (copy_from_user(&val, optval, len))
3970 		return -EFAULT;
3971 
3972 	if (v2 && val.spt_pathpfthld > val.spt_pathcpthld)
3973 		return -EINVAL;
3974 
3975 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3976 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3977 					       val.spt_assoc_id);
3978 		if (!trans)
3979 			return -ENOENT;
3980 
3981 		if (val.spt_pathmaxrxt)
3982 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3983 		if (v2)
3984 			trans->ps_retrans = val.spt_pathcpthld;
3985 		trans->pf_retrans = val.spt_pathpfthld;
3986 
3987 		return 0;
3988 	}
3989 
3990 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3991 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
3992 	    sctp_style(sk, UDP))
3993 		return -EINVAL;
3994 
3995 	if (asoc) {
3996 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3997 				    transports) {
3998 			if (val.spt_pathmaxrxt)
3999 				trans->pathmaxrxt = val.spt_pathmaxrxt;
4000 			if (v2)
4001 				trans->ps_retrans = val.spt_pathcpthld;
4002 			trans->pf_retrans = val.spt_pathpfthld;
4003 		}
4004 
4005 		if (val.spt_pathmaxrxt)
4006 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
4007 		if (v2)
4008 			asoc->ps_retrans = val.spt_pathcpthld;
4009 		asoc->pf_retrans = val.spt_pathpfthld;
4010 	} else {
4011 		struct sctp_sock *sp = sctp_sk(sk);
4012 
4013 		if (val.spt_pathmaxrxt)
4014 			sp->pathmaxrxt = val.spt_pathmaxrxt;
4015 		if (v2)
4016 			sp->ps_retrans = val.spt_pathcpthld;
4017 		sp->pf_retrans = val.spt_pathpfthld;
4018 	}
4019 
4020 	return 0;
4021 }
4022 
4023 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
4024 				       char __user *optval,
4025 				       unsigned int optlen)
4026 {
4027 	int val;
4028 
4029 	if (optlen < sizeof(int))
4030 		return -EINVAL;
4031 	if (get_user(val, (int __user *) optval))
4032 		return -EFAULT;
4033 
4034 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
4035 
4036 	return 0;
4037 }
4038 
4039 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
4040 				       char __user *optval,
4041 				       unsigned int optlen)
4042 {
4043 	int val;
4044 
4045 	if (optlen < sizeof(int))
4046 		return -EINVAL;
4047 	if (get_user(val, (int __user *) optval))
4048 		return -EFAULT;
4049 
4050 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
4051 
4052 	return 0;
4053 }
4054 
4055 static int sctp_setsockopt_pr_supported(struct sock *sk,
4056 					char __user *optval,
4057 					unsigned int optlen)
4058 {
4059 	struct sctp_assoc_value params;
4060 	struct sctp_association *asoc;
4061 
4062 	if (optlen != sizeof(params))
4063 		return -EINVAL;
4064 
4065 	if (copy_from_user(&params, optval, optlen))
4066 		return -EFAULT;
4067 
4068 	asoc = sctp_id2assoc(sk, params.assoc_id);
4069 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4070 	    sctp_style(sk, UDP))
4071 		return -EINVAL;
4072 
4073 	sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
4074 
4075 	return 0;
4076 }
4077 
4078 static int sctp_setsockopt_default_prinfo(struct sock *sk,
4079 					  char __user *optval,
4080 					  unsigned int optlen)
4081 {
4082 	struct sctp_sock *sp = sctp_sk(sk);
4083 	struct sctp_default_prinfo info;
4084 	struct sctp_association *asoc;
4085 	int retval = -EINVAL;
4086 
4087 	if (optlen != sizeof(info))
4088 		goto out;
4089 
4090 	if (copy_from_user(&info, optval, sizeof(info))) {
4091 		retval = -EFAULT;
4092 		goto out;
4093 	}
4094 
4095 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
4096 		goto out;
4097 
4098 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
4099 		info.pr_value = 0;
4100 
4101 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
4102 	if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC &&
4103 	    sctp_style(sk, UDP))
4104 		goto out;
4105 
4106 	retval = 0;
4107 
4108 	if (asoc) {
4109 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4110 		asoc->default_timetolive = info.pr_value;
4111 		goto out;
4112 	}
4113 
4114 	if (sctp_style(sk, TCP))
4115 		info.pr_assoc_id = SCTP_FUTURE_ASSOC;
4116 
4117 	if (info.pr_assoc_id == SCTP_FUTURE_ASSOC ||
4118 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4119 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
4120 		sp->default_timetolive = info.pr_value;
4121 	}
4122 
4123 	if (info.pr_assoc_id == SCTP_CURRENT_ASSOC ||
4124 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4125 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4126 			SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4127 			asoc->default_timetolive = info.pr_value;
4128 		}
4129 	}
4130 
4131 out:
4132 	return retval;
4133 }
4134 
4135 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4136 					      char __user *optval,
4137 					      unsigned int optlen)
4138 {
4139 	struct sctp_assoc_value params;
4140 	struct sctp_association *asoc;
4141 	int retval = -EINVAL;
4142 
4143 	if (optlen != sizeof(params))
4144 		goto out;
4145 
4146 	if (copy_from_user(&params, optval, optlen)) {
4147 		retval = -EFAULT;
4148 		goto out;
4149 	}
4150 
4151 	asoc = sctp_id2assoc(sk, params.assoc_id);
4152 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4153 	    sctp_style(sk, UDP))
4154 		goto out;
4155 
4156 	sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value;
4157 
4158 	retval = 0;
4159 
4160 out:
4161 	return retval;
4162 }
4163 
4164 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4165 					   char __user *optval,
4166 					   unsigned int optlen)
4167 {
4168 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4169 	struct sctp_assoc_value params;
4170 	struct sctp_association *asoc;
4171 	int retval = -EINVAL;
4172 
4173 	if (optlen != sizeof(params))
4174 		goto out;
4175 
4176 	if (copy_from_user(&params, optval, optlen)) {
4177 		retval = -EFAULT;
4178 		goto out;
4179 	}
4180 
4181 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4182 		goto out;
4183 
4184 	asoc = sctp_id2assoc(sk, params.assoc_id);
4185 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4186 	    sctp_style(sk, UDP))
4187 		goto out;
4188 
4189 	retval = 0;
4190 
4191 	if (asoc) {
4192 		asoc->strreset_enable = params.assoc_value;
4193 		goto out;
4194 	}
4195 
4196 	if (sctp_style(sk, TCP))
4197 		params.assoc_id = SCTP_FUTURE_ASSOC;
4198 
4199 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4200 	    params.assoc_id == SCTP_ALL_ASSOC)
4201 		ep->strreset_enable = params.assoc_value;
4202 
4203 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4204 	    params.assoc_id == SCTP_ALL_ASSOC)
4205 		list_for_each_entry(asoc, &ep->asocs, asocs)
4206 			asoc->strreset_enable = params.assoc_value;
4207 
4208 out:
4209 	return retval;
4210 }
4211 
4212 static int sctp_setsockopt_reset_streams(struct sock *sk,
4213 					 char __user *optval,
4214 					 unsigned int optlen)
4215 {
4216 	struct sctp_reset_streams *params;
4217 	struct sctp_association *asoc;
4218 	int retval = -EINVAL;
4219 
4220 	if (optlen < sizeof(*params))
4221 		return -EINVAL;
4222 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4223 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4224 					     sizeof(__u16) * sizeof(*params));
4225 
4226 	params = memdup_user(optval, optlen);
4227 	if (IS_ERR(params))
4228 		return PTR_ERR(params);
4229 
4230 	if (params->srs_number_streams * sizeof(__u16) >
4231 	    optlen - sizeof(*params))
4232 		goto out;
4233 
4234 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4235 	if (!asoc)
4236 		goto out;
4237 
4238 	retval = sctp_send_reset_streams(asoc, params);
4239 
4240 out:
4241 	kfree(params);
4242 	return retval;
4243 }
4244 
4245 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4246 				       char __user *optval,
4247 				       unsigned int optlen)
4248 {
4249 	struct sctp_association *asoc;
4250 	sctp_assoc_t associd;
4251 	int retval = -EINVAL;
4252 
4253 	if (optlen != sizeof(associd))
4254 		goto out;
4255 
4256 	if (copy_from_user(&associd, optval, optlen)) {
4257 		retval = -EFAULT;
4258 		goto out;
4259 	}
4260 
4261 	asoc = sctp_id2assoc(sk, associd);
4262 	if (!asoc)
4263 		goto out;
4264 
4265 	retval = sctp_send_reset_assoc(asoc);
4266 
4267 out:
4268 	return retval;
4269 }
4270 
4271 static int sctp_setsockopt_add_streams(struct sock *sk,
4272 				       char __user *optval,
4273 				       unsigned int optlen)
4274 {
4275 	struct sctp_association *asoc;
4276 	struct sctp_add_streams params;
4277 	int retval = -EINVAL;
4278 
4279 	if (optlen != sizeof(params))
4280 		goto out;
4281 
4282 	if (copy_from_user(&params, optval, optlen)) {
4283 		retval = -EFAULT;
4284 		goto out;
4285 	}
4286 
4287 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4288 	if (!asoc)
4289 		goto out;
4290 
4291 	retval = sctp_send_add_streams(asoc, &params);
4292 
4293 out:
4294 	return retval;
4295 }
4296 
4297 static int sctp_setsockopt_scheduler(struct sock *sk,
4298 				     char __user *optval,
4299 				     unsigned int optlen)
4300 {
4301 	struct sctp_sock *sp = sctp_sk(sk);
4302 	struct sctp_association *asoc;
4303 	struct sctp_assoc_value params;
4304 	int retval = 0;
4305 
4306 	if (optlen < sizeof(params))
4307 		return -EINVAL;
4308 
4309 	optlen = sizeof(params);
4310 	if (copy_from_user(&params, optval, optlen))
4311 		return -EFAULT;
4312 
4313 	if (params.assoc_value > SCTP_SS_MAX)
4314 		return -EINVAL;
4315 
4316 	asoc = sctp_id2assoc(sk, params.assoc_id);
4317 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4318 	    sctp_style(sk, UDP))
4319 		return -EINVAL;
4320 
4321 	if (asoc)
4322 		return sctp_sched_set_sched(asoc, params.assoc_value);
4323 
4324 	if (sctp_style(sk, TCP))
4325 		params.assoc_id = SCTP_FUTURE_ASSOC;
4326 
4327 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4328 	    params.assoc_id == SCTP_ALL_ASSOC)
4329 		sp->default_ss = params.assoc_value;
4330 
4331 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4332 	    params.assoc_id == SCTP_ALL_ASSOC) {
4333 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4334 			int ret = sctp_sched_set_sched(asoc,
4335 						       params.assoc_value);
4336 
4337 			if (ret && !retval)
4338 				retval = ret;
4339 		}
4340 	}
4341 
4342 	return retval;
4343 }
4344 
4345 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4346 					   char __user *optval,
4347 					   unsigned int optlen)
4348 {
4349 	struct sctp_stream_value params;
4350 	struct sctp_association *asoc;
4351 	int retval = -EINVAL;
4352 
4353 	if (optlen < sizeof(params))
4354 		goto out;
4355 
4356 	optlen = sizeof(params);
4357 	if (copy_from_user(&params, optval, optlen)) {
4358 		retval = -EFAULT;
4359 		goto out;
4360 	}
4361 
4362 	asoc = sctp_id2assoc(sk, params.assoc_id);
4363 	if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC &&
4364 	    sctp_style(sk, UDP))
4365 		goto out;
4366 
4367 	if (asoc) {
4368 		retval = sctp_sched_set_value(asoc, params.stream_id,
4369 					      params.stream_value, GFP_KERNEL);
4370 		goto out;
4371 	}
4372 
4373 	retval = 0;
4374 
4375 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4376 		int ret = sctp_sched_set_value(asoc, params.stream_id,
4377 					       params.stream_value, GFP_KERNEL);
4378 		if (ret && !retval) /* try to return the 1st error. */
4379 			retval = ret;
4380 	}
4381 
4382 out:
4383 	return retval;
4384 }
4385 
4386 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4387 						  char __user *optval,
4388 						  unsigned int optlen)
4389 {
4390 	struct sctp_sock *sp = sctp_sk(sk);
4391 	struct sctp_assoc_value params;
4392 	struct sctp_association *asoc;
4393 	int retval = -EINVAL;
4394 
4395 	if (optlen < sizeof(params))
4396 		goto out;
4397 
4398 	optlen = sizeof(params);
4399 	if (copy_from_user(&params, optval, optlen)) {
4400 		retval = -EFAULT;
4401 		goto out;
4402 	}
4403 
4404 	asoc = sctp_id2assoc(sk, params.assoc_id);
4405 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4406 	    sctp_style(sk, UDP))
4407 		goto out;
4408 
4409 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4410 		retval = -EPERM;
4411 		goto out;
4412 	}
4413 
4414 	sp->ep->intl_enable = !!params.assoc_value;
4415 
4416 	retval = 0;
4417 
4418 out:
4419 	return retval;
4420 }
4421 
4422 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4423 				      unsigned int optlen)
4424 {
4425 	int val;
4426 
4427 	if (!sctp_style(sk, TCP))
4428 		return -EOPNOTSUPP;
4429 
4430 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4431 		return -EFAULT;
4432 
4433 	if (optlen < sizeof(int))
4434 		return -EINVAL;
4435 
4436 	if (get_user(val, (int __user *)optval))
4437 		return -EFAULT;
4438 
4439 	sctp_sk(sk)->reuse = !!val;
4440 
4441 	return 0;
4442 }
4443 
4444 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4445 					struct sctp_association *asoc)
4446 {
4447 	struct sctp_ulpevent *event;
4448 
4449 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4450 
4451 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4452 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4453 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4454 					GFP_USER | __GFP_NOWARN);
4455 			if (!event)
4456 				return -ENOMEM;
4457 
4458 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4459 		}
4460 	}
4461 
4462 	return 0;
4463 }
4464 
4465 static int sctp_setsockopt_event(struct sock *sk, char __user *optval,
4466 				 unsigned int optlen)
4467 {
4468 	struct sctp_sock *sp = sctp_sk(sk);
4469 	struct sctp_association *asoc;
4470 	struct sctp_event param;
4471 	int retval = 0;
4472 
4473 	if (optlen < sizeof(param))
4474 		return -EINVAL;
4475 
4476 	optlen = sizeof(param);
4477 	if (copy_from_user(&param, optval, optlen))
4478 		return -EFAULT;
4479 
4480 	if (param.se_type < SCTP_SN_TYPE_BASE ||
4481 	    param.se_type > SCTP_SN_TYPE_MAX)
4482 		return -EINVAL;
4483 
4484 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
4485 	if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC &&
4486 	    sctp_style(sk, UDP))
4487 		return -EINVAL;
4488 
4489 	if (asoc)
4490 		return sctp_assoc_ulpevent_type_set(&param, asoc);
4491 
4492 	if (sctp_style(sk, TCP))
4493 		param.se_assoc_id = SCTP_FUTURE_ASSOC;
4494 
4495 	if (param.se_assoc_id == SCTP_FUTURE_ASSOC ||
4496 	    param.se_assoc_id == SCTP_ALL_ASSOC)
4497 		sctp_ulpevent_type_set(&sp->subscribe,
4498 				       param.se_type, param.se_on);
4499 
4500 	if (param.se_assoc_id == SCTP_CURRENT_ASSOC ||
4501 	    param.se_assoc_id == SCTP_ALL_ASSOC) {
4502 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4503 			int ret = sctp_assoc_ulpevent_type_set(&param, asoc);
4504 
4505 			if (ret && !retval)
4506 				retval = ret;
4507 		}
4508 	}
4509 
4510 	return retval;
4511 }
4512 
4513 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4514 					    char __user *optval,
4515 					    unsigned int optlen)
4516 {
4517 	struct sctp_assoc_value params;
4518 	struct sctp_association *asoc;
4519 	struct sctp_endpoint *ep;
4520 	int retval = -EINVAL;
4521 
4522 	if (optlen != sizeof(params))
4523 		goto out;
4524 
4525 	if (copy_from_user(&params, optval, optlen)) {
4526 		retval = -EFAULT;
4527 		goto out;
4528 	}
4529 
4530 	asoc = sctp_id2assoc(sk, params.assoc_id);
4531 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4532 	    sctp_style(sk, UDP))
4533 		goto out;
4534 
4535 	ep = sctp_sk(sk)->ep;
4536 	ep->asconf_enable = !!params.assoc_value;
4537 
4538 	if (ep->asconf_enable && ep->auth_enable) {
4539 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4540 		sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4541 	}
4542 
4543 	retval = 0;
4544 
4545 out:
4546 	return retval;
4547 }
4548 
4549 static int sctp_setsockopt_auth_supported(struct sock *sk,
4550 					  char __user *optval,
4551 					  unsigned int optlen)
4552 {
4553 	struct sctp_assoc_value params;
4554 	struct sctp_association *asoc;
4555 	struct sctp_endpoint *ep;
4556 	int retval = -EINVAL;
4557 
4558 	if (optlen != sizeof(params))
4559 		goto out;
4560 
4561 	if (copy_from_user(&params, optval, optlen)) {
4562 		retval = -EFAULT;
4563 		goto out;
4564 	}
4565 
4566 	asoc = sctp_id2assoc(sk, params.assoc_id);
4567 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4568 	    sctp_style(sk, UDP))
4569 		goto out;
4570 
4571 	ep = sctp_sk(sk)->ep;
4572 	if (params.assoc_value) {
4573 		retval = sctp_auth_init(ep, GFP_KERNEL);
4574 		if (retval)
4575 			goto out;
4576 		if (ep->asconf_enable) {
4577 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4578 			sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4579 		}
4580 	}
4581 
4582 	ep->auth_enable = !!params.assoc_value;
4583 	retval = 0;
4584 
4585 out:
4586 	return retval;
4587 }
4588 
4589 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4590 					 char __user *optval,
4591 					 unsigned int optlen)
4592 {
4593 	struct sctp_assoc_value params;
4594 	struct sctp_association *asoc;
4595 	int retval = -EINVAL;
4596 
4597 	if (optlen != sizeof(params))
4598 		goto out;
4599 
4600 	if (copy_from_user(&params, optval, optlen)) {
4601 		retval = -EFAULT;
4602 		goto out;
4603 	}
4604 
4605 	asoc = sctp_id2assoc(sk, params.assoc_id);
4606 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4607 	    sctp_style(sk, UDP))
4608 		goto out;
4609 
4610 	sctp_sk(sk)->ep->ecn_enable = !!params.assoc_value;
4611 	retval = 0;
4612 
4613 out:
4614 	return retval;
4615 }
4616 
4617 static int sctp_setsockopt_pf_expose(struct sock *sk,
4618 				     char __user *optval,
4619 				     unsigned int optlen)
4620 {
4621 	struct sctp_assoc_value params;
4622 	struct sctp_association *asoc;
4623 	int retval = -EINVAL;
4624 
4625 	if (optlen != sizeof(params))
4626 		goto out;
4627 
4628 	if (copy_from_user(&params, optval, optlen)) {
4629 		retval = -EFAULT;
4630 		goto out;
4631 	}
4632 
4633 	if (params.assoc_value > SCTP_PF_EXPOSE_MAX)
4634 		goto out;
4635 
4636 	asoc = sctp_id2assoc(sk, params.assoc_id);
4637 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4638 	    sctp_style(sk, UDP))
4639 		goto out;
4640 
4641 	if (asoc)
4642 		asoc->pf_expose = params.assoc_value;
4643 	else
4644 		sctp_sk(sk)->pf_expose = params.assoc_value;
4645 	retval = 0;
4646 
4647 out:
4648 	return retval;
4649 }
4650 
4651 /* API 6.2 setsockopt(), getsockopt()
4652  *
4653  * Applications use setsockopt() and getsockopt() to set or retrieve
4654  * socket options.  Socket options are used to change the default
4655  * behavior of sockets calls.  They are described in Section 7.
4656  *
4657  * The syntax is:
4658  *
4659  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4660  *                    int __user *optlen);
4661  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4662  *                    int optlen);
4663  *
4664  *   sd      - the socket descript.
4665  *   level   - set to IPPROTO_SCTP for all SCTP options.
4666  *   optname - the option name.
4667  *   optval  - the buffer to store the value of the option.
4668  *   optlen  - the size of the buffer.
4669  */
4670 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4671 			   char __user *optval, unsigned int optlen)
4672 {
4673 	int retval = 0;
4674 
4675 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4676 
4677 	/* I can hardly begin to describe how wrong this is.  This is
4678 	 * so broken as to be worse than useless.  The API draft
4679 	 * REALLY is NOT helpful here...  I am not convinced that the
4680 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4681 	 * are at all well-founded.
4682 	 */
4683 	if (level != SOL_SCTP) {
4684 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4685 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4686 		goto out_nounlock;
4687 	}
4688 
4689 	lock_sock(sk);
4690 
4691 	switch (optname) {
4692 	case SCTP_SOCKOPT_BINDX_ADD:
4693 		/* 'optlen' is the size of the addresses buffer. */
4694 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4695 					       optlen, SCTP_BINDX_ADD_ADDR);
4696 		break;
4697 
4698 	case SCTP_SOCKOPT_BINDX_REM:
4699 		/* 'optlen' is the size of the addresses buffer. */
4700 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4701 					       optlen, SCTP_BINDX_REM_ADDR);
4702 		break;
4703 
4704 	case SCTP_SOCKOPT_CONNECTX_OLD:
4705 		/* 'optlen' is the size of the addresses buffer. */
4706 		retval = sctp_setsockopt_connectx_old(sk,
4707 					    (struct sockaddr __user *)optval,
4708 					    optlen);
4709 		break;
4710 
4711 	case SCTP_SOCKOPT_CONNECTX:
4712 		/* 'optlen' is the size of the addresses buffer. */
4713 		retval = sctp_setsockopt_connectx(sk,
4714 					    (struct sockaddr __user *)optval,
4715 					    optlen);
4716 		break;
4717 
4718 	case SCTP_DISABLE_FRAGMENTS:
4719 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4720 		break;
4721 
4722 	case SCTP_EVENTS:
4723 		retval = sctp_setsockopt_events(sk, optval, optlen);
4724 		break;
4725 
4726 	case SCTP_AUTOCLOSE:
4727 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4728 		break;
4729 
4730 	case SCTP_PEER_ADDR_PARAMS:
4731 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4732 		break;
4733 
4734 	case SCTP_DELAYED_SACK:
4735 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4736 		break;
4737 	case SCTP_PARTIAL_DELIVERY_POINT:
4738 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4739 		break;
4740 
4741 	case SCTP_INITMSG:
4742 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4743 		break;
4744 	case SCTP_DEFAULT_SEND_PARAM:
4745 		retval = sctp_setsockopt_default_send_param(sk, optval,
4746 							    optlen);
4747 		break;
4748 	case SCTP_DEFAULT_SNDINFO:
4749 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4750 		break;
4751 	case SCTP_PRIMARY_ADDR:
4752 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4753 		break;
4754 	case SCTP_SET_PEER_PRIMARY_ADDR:
4755 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4756 		break;
4757 	case SCTP_NODELAY:
4758 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4759 		break;
4760 	case SCTP_RTOINFO:
4761 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4762 		break;
4763 	case SCTP_ASSOCINFO:
4764 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4765 		break;
4766 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4767 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4768 		break;
4769 	case SCTP_MAXSEG:
4770 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4771 		break;
4772 	case SCTP_ADAPTATION_LAYER:
4773 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4774 		break;
4775 	case SCTP_CONTEXT:
4776 		retval = sctp_setsockopt_context(sk, optval, optlen);
4777 		break;
4778 	case SCTP_FRAGMENT_INTERLEAVE:
4779 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4780 		break;
4781 	case SCTP_MAX_BURST:
4782 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4783 		break;
4784 	case SCTP_AUTH_CHUNK:
4785 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4786 		break;
4787 	case SCTP_HMAC_IDENT:
4788 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4789 		break;
4790 	case SCTP_AUTH_KEY:
4791 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4792 		break;
4793 	case SCTP_AUTH_ACTIVE_KEY:
4794 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4795 		break;
4796 	case SCTP_AUTH_DELETE_KEY:
4797 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4798 		break;
4799 	case SCTP_AUTH_DEACTIVATE_KEY:
4800 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4801 		break;
4802 	case SCTP_AUTO_ASCONF:
4803 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4804 		break;
4805 	case SCTP_PEER_ADDR_THLDS:
4806 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen,
4807 							  false);
4808 		break;
4809 	case SCTP_PEER_ADDR_THLDS_V2:
4810 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen,
4811 							  true);
4812 		break;
4813 	case SCTP_RECVRCVINFO:
4814 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4815 		break;
4816 	case SCTP_RECVNXTINFO:
4817 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4818 		break;
4819 	case SCTP_PR_SUPPORTED:
4820 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4821 		break;
4822 	case SCTP_DEFAULT_PRINFO:
4823 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4824 		break;
4825 	case SCTP_RECONFIG_SUPPORTED:
4826 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4827 		break;
4828 	case SCTP_ENABLE_STREAM_RESET:
4829 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4830 		break;
4831 	case SCTP_RESET_STREAMS:
4832 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4833 		break;
4834 	case SCTP_RESET_ASSOC:
4835 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4836 		break;
4837 	case SCTP_ADD_STREAMS:
4838 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4839 		break;
4840 	case SCTP_STREAM_SCHEDULER:
4841 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4842 		break;
4843 	case SCTP_STREAM_SCHEDULER_VALUE:
4844 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4845 		break;
4846 	case SCTP_INTERLEAVING_SUPPORTED:
4847 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4848 								optlen);
4849 		break;
4850 	case SCTP_REUSE_PORT:
4851 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4852 		break;
4853 	case SCTP_EVENT:
4854 		retval = sctp_setsockopt_event(sk, optval, optlen);
4855 		break;
4856 	case SCTP_ASCONF_SUPPORTED:
4857 		retval = sctp_setsockopt_asconf_supported(sk, optval, optlen);
4858 		break;
4859 	case SCTP_AUTH_SUPPORTED:
4860 		retval = sctp_setsockopt_auth_supported(sk, optval, optlen);
4861 		break;
4862 	case SCTP_ECN_SUPPORTED:
4863 		retval = sctp_setsockopt_ecn_supported(sk, optval, optlen);
4864 		break;
4865 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4866 		retval = sctp_setsockopt_pf_expose(sk, optval, optlen);
4867 		break;
4868 	default:
4869 		retval = -ENOPROTOOPT;
4870 		break;
4871 	}
4872 
4873 	release_sock(sk);
4874 
4875 out_nounlock:
4876 	return retval;
4877 }
4878 
4879 /* API 3.1.6 connect() - UDP Style Syntax
4880  *
4881  * An application may use the connect() call in the UDP model to initiate an
4882  * association without sending data.
4883  *
4884  * The syntax is:
4885  *
4886  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4887  *
4888  * sd: the socket descriptor to have a new association added to.
4889  *
4890  * nam: the address structure (either struct sockaddr_in or struct
4891  *    sockaddr_in6 defined in RFC2553 [7]).
4892  *
4893  * len: the size of the address.
4894  */
4895 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4896 			int addr_len, int flags)
4897 {
4898 	struct sctp_af *af;
4899 	int err = -EINVAL;
4900 
4901 	lock_sock(sk);
4902 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4903 		 addr, addr_len);
4904 
4905 	/* Validate addr_len before calling common connect/connectx routine. */
4906 	af = sctp_get_af_specific(addr->sa_family);
4907 	if (af && addr_len >= af->sockaddr_len)
4908 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4909 
4910 	release_sock(sk);
4911 	return err;
4912 }
4913 
4914 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4915 		      int addr_len, int flags)
4916 {
4917 	if (addr_len < sizeof(uaddr->sa_family))
4918 		return -EINVAL;
4919 
4920 	if (uaddr->sa_family == AF_UNSPEC)
4921 		return -EOPNOTSUPP;
4922 
4923 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4924 }
4925 
4926 /* FIXME: Write comments. */
4927 static int sctp_disconnect(struct sock *sk, int flags)
4928 {
4929 	return -EOPNOTSUPP; /* STUB */
4930 }
4931 
4932 /* 4.1.4 accept() - TCP Style Syntax
4933  *
4934  * Applications use accept() call to remove an established SCTP
4935  * association from the accept queue of the endpoint.  A new socket
4936  * descriptor will be returned from accept() to represent the newly
4937  * formed association.
4938  */
4939 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4940 {
4941 	struct sctp_sock *sp;
4942 	struct sctp_endpoint *ep;
4943 	struct sock *newsk = NULL;
4944 	struct sctp_association *asoc;
4945 	long timeo;
4946 	int error = 0;
4947 
4948 	lock_sock(sk);
4949 
4950 	sp = sctp_sk(sk);
4951 	ep = sp->ep;
4952 
4953 	if (!sctp_style(sk, TCP)) {
4954 		error = -EOPNOTSUPP;
4955 		goto out;
4956 	}
4957 
4958 	if (!sctp_sstate(sk, LISTENING)) {
4959 		error = -EINVAL;
4960 		goto out;
4961 	}
4962 
4963 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4964 
4965 	error = sctp_wait_for_accept(sk, timeo);
4966 	if (error)
4967 		goto out;
4968 
4969 	/* We treat the list of associations on the endpoint as the accept
4970 	 * queue and pick the first association on the list.
4971 	 */
4972 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4973 
4974 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4975 	if (!newsk) {
4976 		error = -ENOMEM;
4977 		goto out;
4978 	}
4979 
4980 	/* Populate the fields of the newsk from the oldsk and migrate the
4981 	 * asoc to the newsk.
4982 	 */
4983 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4984 	if (error) {
4985 		sk_common_release(newsk);
4986 		newsk = NULL;
4987 	}
4988 
4989 out:
4990 	release_sock(sk);
4991 	*err = error;
4992 	return newsk;
4993 }
4994 
4995 /* The SCTP ioctl handler. */
4996 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4997 {
4998 	int rc = -ENOTCONN;
4999 
5000 	lock_sock(sk);
5001 
5002 	/*
5003 	 * SEQPACKET-style sockets in LISTENING state are valid, for
5004 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
5005 	 */
5006 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5007 		goto out;
5008 
5009 	switch (cmd) {
5010 	case SIOCINQ: {
5011 		struct sk_buff *skb;
5012 		unsigned int amount = 0;
5013 
5014 		skb = skb_peek(&sk->sk_receive_queue);
5015 		if (skb != NULL) {
5016 			/*
5017 			 * We will only return the amount of this packet since
5018 			 * that is all that will be read.
5019 			 */
5020 			amount = skb->len;
5021 		}
5022 		rc = put_user(amount, (int __user *)arg);
5023 		break;
5024 	}
5025 	default:
5026 		rc = -ENOIOCTLCMD;
5027 		break;
5028 	}
5029 out:
5030 	release_sock(sk);
5031 	return rc;
5032 }
5033 
5034 /* This is the function which gets called during socket creation to
5035  * initialized the SCTP-specific portion of the sock.
5036  * The sock structure should already be zero-filled memory.
5037  */
5038 static int sctp_init_sock(struct sock *sk)
5039 {
5040 	struct net *net = sock_net(sk);
5041 	struct sctp_sock *sp;
5042 
5043 	pr_debug("%s: sk:%p\n", __func__, sk);
5044 
5045 	sp = sctp_sk(sk);
5046 
5047 	/* Initialize the SCTP per socket area.  */
5048 	switch (sk->sk_type) {
5049 	case SOCK_SEQPACKET:
5050 		sp->type = SCTP_SOCKET_UDP;
5051 		break;
5052 	case SOCK_STREAM:
5053 		sp->type = SCTP_SOCKET_TCP;
5054 		break;
5055 	default:
5056 		return -ESOCKTNOSUPPORT;
5057 	}
5058 
5059 	sk->sk_gso_type = SKB_GSO_SCTP;
5060 
5061 	/* Initialize default send parameters. These parameters can be
5062 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
5063 	 */
5064 	sp->default_stream = 0;
5065 	sp->default_ppid = 0;
5066 	sp->default_flags = 0;
5067 	sp->default_context = 0;
5068 	sp->default_timetolive = 0;
5069 
5070 	sp->default_rcv_context = 0;
5071 	sp->max_burst = net->sctp.max_burst;
5072 
5073 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
5074 
5075 	/* Initialize default setup parameters. These parameters
5076 	 * can be modified with the SCTP_INITMSG socket option or
5077 	 * overridden by the SCTP_INIT CMSG.
5078 	 */
5079 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
5080 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
5081 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
5082 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
5083 
5084 	/* Initialize default RTO related parameters.  These parameters can
5085 	 * be modified for with the SCTP_RTOINFO socket option.
5086 	 */
5087 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
5088 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
5089 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
5090 
5091 	/* Initialize default association related parameters. These parameters
5092 	 * can be modified with the SCTP_ASSOCINFO socket option.
5093 	 */
5094 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
5095 	sp->assocparams.sasoc_number_peer_destinations = 0;
5096 	sp->assocparams.sasoc_peer_rwnd = 0;
5097 	sp->assocparams.sasoc_local_rwnd = 0;
5098 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5099 
5100 	/* Initialize default event subscriptions. By default, all the
5101 	 * options are off.
5102 	 */
5103 	sp->subscribe = 0;
5104 
5105 	/* Default Peer Address Parameters.  These defaults can
5106 	 * be modified via SCTP_PEER_ADDR_PARAMS
5107 	 */
5108 	sp->hbinterval  = net->sctp.hb_interval;
5109 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
5110 	sp->pf_retrans  = net->sctp.pf_retrans;
5111 	sp->ps_retrans  = net->sctp.ps_retrans;
5112 	sp->pf_expose   = net->sctp.pf_expose;
5113 	sp->pathmtu     = 0; /* allow default discovery */
5114 	sp->sackdelay   = net->sctp.sack_timeout;
5115 	sp->sackfreq	= 2;
5116 	sp->param_flags = SPP_HB_ENABLE |
5117 			  SPP_PMTUD_ENABLE |
5118 			  SPP_SACKDELAY_ENABLE;
5119 	sp->default_ss = SCTP_SS_DEFAULT;
5120 
5121 	/* If enabled no SCTP message fragmentation will be performed.
5122 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5123 	 */
5124 	sp->disable_fragments = 0;
5125 
5126 	/* Enable Nagle algorithm by default.  */
5127 	sp->nodelay           = 0;
5128 
5129 	sp->recvrcvinfo = 0;
5130 	sp->recvnxtinfo = 0;
5131 
5132 	/* Enable by default. */
5133 	sp->v4mapped          = 1;
5134 
5135 	/* Auto-close idle associations after the configured
5136 	 * number of seconds.  A value of 0 disables this
5137 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
5138 	 * for UDP-style sockets only.
5139 	 */
5140 	sp->autoclose         = 0;
5141 
5142 	/* User specified fragmentation limit. */
5143 	sp->user_frag         = 0;
5144 
5145 	sp->adaptation_ind = 0;
5146 
5147 	sp->pf = sctp_get_pf_specific(sk->sk_family);
5148 
5149 	/* Control variables for partial data delivery. */
5150 	atomic_set(&sp->pd_mode, 0);
5151 	skb_queue_head_init(&sp->pd_lobby);
5152 	sp->frag_interleave = 0;
5153 
5154 	/* Create a per socket endpoint structure.  Even if we
5155 	 * change the data structure relationships, this may still
5156 	 * be useful for storing pre-connect address information.
5157 	 */
5158 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5159 	if (!sp->ep)
5160 		return -ENOMEM;
5161 
5162 	sp->hmac = NULL;
5163 
5164 	sk->sk_destruct = sctp_destruct_sock;
5165 
5166 	SCTP_DBG_OBJCNT_INC(sock);
5167 
5168 	local_bh_disable();
5169 	sk_sockets_allocated_inc(sk);
5170 	sock_prot_inuse_add(net, sk->sk_prot, 1);
5171 
5172 	/* Nothing can fail after this block, otherwise
5173 	 * sctp_destroy_sock() will be called without addr_wq_lock held
5174 	 */
5175 	if (net->sctp.default_auto_asconf) {
5176 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
5177 		list_add_tail(&sp->auto_asconf_list,
5178 		    &net->sctp.auto_asconf_splist);
5179 		sp->do_auto_asconf = 1;
5180 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5181 	} else {
5182 		sp->do_auto_asconf = 0;
5183 	}
5184 
5185 	local_bh_enable();
5186 
5187 	return 0;
5188 }
5189 
5190 /* Cleanup any SCTP per socket resources. Must be called with
5191  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5192  */
5193 static void sctp_destroy_sock(struct sock *sk)
5194 {
5195 	struct sctp_sock *sp;
5196 
5197 	pr_debug("%s: sk:%p\n", __func__, sk);
5198 
5199 	/* Release our hold on the endpoint. */
5200 	sp = sctp_sk(sk);
5201 	/* This could happen during socket init, thus we bail out
5202 	 * early, since the rest of the below is not setup either.
5203 	 */
5204 	if (sp->ep == NULL)
5205 		return;
5206 
5207 	if (sp->do_auto_asconf) {
5208 		sp->do_auto_asconf = 0;
5209 		list_del(&sp->auto_asconf_list);
5210 	}
5211 	sctp_endpoint_free(sp->ep);
5212 	local_bh_disable();
5213 	sk_sockets_allocated_dec(sk);
5214 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5215 	local_bh_enable();
5216 }
5217 
5218 /* Triggered when there are no references on the socket anymore */
5219 static void sctp_destruct_sock(struct sock *sk)
5220 {
5221 	struct sctp_sock *sp = sctp_sk(sk);
5222 
5223 	/* Free up the HMAC transform. */
5224 	crypto_free_shash(sp->hmac);
5225 
5226 	inet_sock_destruct(sk);
5227 }
5228 
5229 /* API 4.1.7 shutdown() - TCP Style Syntax
5230  *     int shutdown(int socket, int how);
5231  *
5232  *     sd      - the socket descriptor of the association to be closed.
5233  *     how     - Specifies the type of shutdown.  The  values  are
5234  *               as follows:
5235  *               SHUT_RD
5236  *                     Disables further receive operations. No SCTP
5237  *                     protocol action is taken.
5238  *               SHUT_WR
5239  *                     Disables further send operations, and initiates
5240  *                     the SCTP shutdown sequence.
5241  *               SHUT_RDWR
5242  *                     Disables further send  and  receive  operations
5243  *                     and initiates the SCTP shutdown sequence.
5244  */
5245 static void sctp_shutdown(struct sock *sk, int how)
5246 {
5247 	struct net *net = sock_net(sk);
5248 	struct sctp_endpoint *ep;
5249 
5250 	if (!sctp_style(sk, TCP))
5251 		return;
5252 
5253 	ep = sctp_sk(sk)->ep;
5254 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5255 		struct sctp_association *asoc;
5256 
5257 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5258 		asoc = list_entry(ep->asocs.next,
5259 				  struct sctp_association, asocs);
5260 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5261 	}
5262 }
5263 
5264 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5265 		       struct sctp_info *info)
5266 {
5267 	struct sctp_transport *prim;
5268 	struct list_head *pos;
5269 	int mask;
5270 
5271 	memset(info, 0, sizeof(*info));
5272 	if (!asoc) {
5273 		struct sctp_sock *sp = sctp_sk(sk);
5274 
5275 		info->sctpi_s_autoclose = sp->autoclose;
5276 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5277 		info->sctpi_s_pd_point = sp->pd_point;
5278 		info->sctpi_s_nodelay = sp->nodelay;
5279 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5280 		info->sctpi_s_v4mapped = sp->v4mapped;
5281 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5282 		info->sctpi_s_type = sp->type;
5283 
5284 		return 0;
5285 	}
5286 
5287 	info->sctpi_tag = asoc->c.my_vtag;
5288 	info->sctpi_state = asoc->state;
5289 	info->sctpi_rwnd = asoc->a_rwnd;
5290 	info->sctpi_unackdata = asoc->unack_data;
5291 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5292 	info->sctpi_instrms = asoc->stream.incnt;
5293 	info->sctpi_outstrms = asoc->stream.outcnt;
5294 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5295 		info->sctpi_inqueue++;
5296 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5297 		info->sctpi_outqueue++;
5298 	info->sctpi_overall_error = asoc->overall_error_count;
5299 	info->sctpi_max_burst = asoc->max_burst;
5300 	info->sctpi_maxseg = asoc->frag_point;
5301 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5302 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5303 
5304 	mask = asoc->peer.ecn_capable << 1;
5305 	mask = (mask | asoc->peer.ipv4_address) << 1;
5306 	mask = (mask | asoc->peer.ipv6_address) << 1;
5307 	mask = (mask | asoc->peer.hostname_address) << 1;
5308 	mask = (mask | asoc->peer.asconf_capable) << 1;
5309 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5310 	mask = (mask | asoc->peer.auth_capable);
5311 	info->sctpi_peer_capable = mask;
5312 	mask = asoc->peer.sack_needed << 1;
5313 	mask = (mask | asoc->peer.sack_generation) << 1;
5314 	mask = (mask | asoc->peer.zero_window_announced);
5315 	info->sctpi_peer_sack = mask;
5316 
5317 	info->sctpi_isacks = asoc->stats.isacks;
5318 	info->sctpi_osacks = asoc->stats.osacks;
5319 	info->sctpi_opackets = asoc->stats.opackets;
5320 	info->sctpi_ipackets = asoc->stats.ipackets;
5321 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5322 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5323 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5324 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5325 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5326 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5327 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5328 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5329 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5330 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5331 
5332 	prim = asoc->peer.primary_path;
5333 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5334 	info->sctpi_p_state = prim->state;
5335 	info->sctpi_p_cwnd = prim->cwnd;
5336 	info->sctpi_p_srtt = prim->srtt;
5337 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5338 	info->sctpi_p_hbinterval = prim->hbinterval;
5339 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5340 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5341 	info->sctpi_p_ssthresh = prim->ssthresh;
5342 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5343 	info->sctpi_p_flight_size = prim->flight_size;
5344 	info->sctpi_p_error = prim->error_count;
5345 
5346 	return 0;
5347 }
5348 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5349 
5350 /* use callback to avoid exporting the core structure */
5351 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5352 {
5353 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5354 
5355 	rhashtable_walk_start(iter);
5356 }
5357 
5358 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5359 {
5360 	rhashtable_walk_stop(iter);
5361 	rhashtable_walk_exit(iter);
5362 }
5363 
5364 struct sctp_transport *sctp_transport_get_next(struct net *net,
5365 					       struct rhashtable_iter *iter)
5366 {
5367 	struct sctp_transport *t;
5368 
5369 	t = rhashtable_walk_next(iter);
5370 	for (; t; t = rhashtable_walk_next(iter)) {
5371 		if (IS_ERR(t)) {
5372 			if (PTR_ERR(t) == -EAGAIN)
5373 				continue;
5374 			break;
5375 		}
5376 
5377 		if (!sctp_transport_hold(t))
5378 			continue;
5379 
5380 		if (net_eq(t->asoc->base.net, net) &&
5381 		    t->asoc->peer.primary_path == t)
5382 			break;
5383 
5384 		sctp_transport_put(t);
5385 	}
5386 
5387 	return t;
5388 }
5389 
5390 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5391 					      struct rhashtable_iter *iter,
5392 					      int pos)
5393 {
5394 	struct sctp_transport *t;
5395 
5396 	if (!pos)
5397 		return SEQ_START_TOKEN;
5398 
5399 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5400 		if (!--pos)
5401 			break;
5402 		sctp_transport_put(t);
5403 	}
5404 
5405 	return t;
5406 }
5407 
5408 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5409 			   void *p) {
5410 	int err = 0;
5411 	int hash = 0;
5412 	struct sctp_ep_common *epb;
5413 	struct sctp_hashbucket *head;
5414 
5415 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5416 	     hash++, head++) {
5417 		read_lock_bh(&head->lock);
5418 		sctp_for_each_hentry(epb, &head->chain) {
5419 			err = cb(sctp_ep(epb), p);
5420 			if (err)
5421 				break;
5422 		}
5423 		read_unlock_bh(&head->lock);
5424 	}
5425 
5426 	return err;
5427 }
5428 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5429 
5430 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5431 				  struct net *net,
5432 				  const union sctp_addr *laddr,
5433 				  const union sctp_addr *paddr, void *p)
5434 {
5435 	struct sctp_transport *transport;
5436 	int err;
5437 
5438 	rcu_read_lock();
5439 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5440 	rcu_read_unlock();
5441 	if (!transport)
5442 		return -ENOENT;
5443 
5444 	err = cb(transport, p);
5445 	sctp_transport_put(transport);
5446 
5447 	return err;
5448 }
5449 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5450 
5451 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5452 			    int (*cb_done)(struct sctp_transport *, void *),
5453 			    struct net *net, int *pos, void *p) {
5454 	struct rhashtable_iter hti;
5455 	struct sctp_transport *tsp;
5456 	int ret;
5457 
5458 again:
5459 	ret = 0;
5460 	sctp_transport_walk_start(&hti);
5461 
5462 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5463 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5464 		ret = cb(tsp, p);
5465 		if (ret)
5466 			break;
5467 		(*pos)++;
5468 		sctp_transport_put(tsp);
5469 	}
5470 	sctp_transport_walk_stop(&hti);
5471 
5472 	if (ret) {
5473 		if (cb_done && !cb_done(tsp, p)) {
5474 			(*pos)++;
5475 			sctp_transport_put(tsp);
5476 			goto again;
5477 		}
5478 		sctp_transport_put(tsp);
5479 	}
5480 
5481 	return ret;
5482 }
5483 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5484 
5485 /* 7.2.1 Association Status (SCTP_STATUS)
5486 
5487  * Applications can retrieve current status information about an
5488  * association, including association state, peer receiver window size,
5489  * number of unacked data chunks, and number of data chunks pending
5490  * receipt.  This information is read-only.
5491  */
5492 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5493 				       char __user *optval,
5494 				       int __user *optlen)
5495 {
5496 	struct sctp_status status;
5497 	struct sctp_association *asoc = NULL;
5498 	struct sctp_transport *transport;
5499 	sctp_assoc_t associd;
5500 	int retval = 0;
5501 
5502 	if (len < sizeof(status)) {
5503 		retval = -EINVAL;
5504 		goto out;
5505 	}
5506 
5507 	len = sizeof(status);
5508 	if (copy_from_user(&status, optval, len)) {
5509 		retval = -EFAULT;
5510 		goto out;
5511 	}
5512 
5513 	associd = status.sstat_assoc_id;
5514 	asoc = sctp_id2assoc(sk, associd);
5515 	if (!asoc) {
5516 		retval = -EINVAL;
5517 		goto out;
5518 	}
5519 
5520 	transport = asoc->peer.primary_path;
5521 
5522 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5523 	status.sstat_state = sctp_assoc_to_state(asoc);
5524 	status.sstat_rwnd =  asoc->peer.rwnd;
5525 	status.sstat_unackdata = asoc->unack_data;
5526 
5527 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5528 	status.sstat_instrms = asoc->stream.incnt;
5529 	status.sstat_outstrms = asoc->stream.outcnt;
5530 	status.sstat_fragmentation_point = asoc->frag_point;
5531 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5532 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5533 			transport->af_specific->sockaddr_len);
5534 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5535 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5536 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5537 	status.sstat_primary.spinfo_state = transport->state;
5538 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5539 	status.sstat_primary.spinfo_srtt = transport->srtt;
5540 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5541 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5542 
5543 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5544 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5545 
5546 	if (put_user(len, optlen)) {
5547 		retval = -EFAULT;
5548 		goto out;
5549 	}
5550 
5551 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5552 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5553 		 status.sstat_assoc_id);
5554 
5555 	if (copy_to_user(optval, &status, len)) {
5556 		retval = -EFAULT;
5557 		goto out;
5558 	}
5559 
5560 out:
5561 	return retval;
5562 }
5563 
5564 
5565 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5566  *
5567  * Applications can retrieve information about a specific peer address
5568  * of an association, including its reachability state, congestion
5569  * window, and retransmission timer values.  This information is
5570  * read-only.
5571  */
5572 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5573 					  char __user *optval,
5574 					  int __user *optlen)
5575 {
5576 	struct sctp_paddrinfo pinfo;
5577 	struct sctp_transport *transport;
5578 	int retval = 0;
5579 
5580 	if (len < sizeof(pinfo)) {
5581 		retval = -EINVAL;
5582 		goto out;
5583 	}
5584 
5585 	len = sizeof(pinfo);
5586 	if (copy_from_user(&pinfo, optval, len)) {
5587 		retval = -EFAULT;
5588 		goto out;
5589 	}
5590 
5591 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5592 					   pinfo.spinfo_assoc_id);
5593 	if (!transport) {
5594 		retval = -EINVAL;
5595 		goto out;
5596 	}
5597 
5598 	if (transport->state == SCTP_PF &&
5599 	    transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5600 		retval = -EACCES;
5601 		goto out;
5602 	}
5603 
5604 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5605 	pinfo.spinfo_state = transport->state;
5606 	pinfo.spinfo_cwnd = transport->cwnd;
5607 	pinfo.spinfo_srtt = transport->srtt;
5608 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5609 	pinfo.spinfo_mtu = transport->pathmtu;
5610 
5611 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5612 		pinfo.spinfo_state = SCTP_ACTIVE;
5613 
5614 	if (put_user(len, optlen)) {
5615 		retval = -EFAULT;
5616 		goto out;
5617 	}
5618 
5619 	if (copy_to_user(optval, &pinfo, len)) {
5620 		retval = -EFAULT;
5621 		goto out;
5622 	}
5623 
5624 out:
5625 	return retval;
5626 }
5627 
5628 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5629  *
5630  * This option is a on/off flag.  If enabled no SCTP message
5631  * fragmentation will be performed.  Instead if a message being sent
5632  * exceeds the current PMTU size, the message will NOT be sent and
5633  * instead a error will be indicated to the user.
5634  */
5635 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5636 					char __user *optval, int __user *optlen)
5637 {
5638 	int val;
5639 
5640 	if (len < sizeof(int))
5641 		return -EINVAL;
5642 
5643 	len = sizeof(int);
5644 	val = (sctp_sk(sk)->disable_fragments == 1);
5645 	if (put_user(len, optlen))
5646 		return -EFAULT;
5647 	if (copy_to_user(optval, &val, len))
5648 		return -EFAULT;
5649 	return 0;
5650 }
5651 
5652 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5653  *
5654  * This socket option is used to specify various notifications and
5655  * ancillary data the user wishes to receive.
5656  */
5657 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5658 				  int __user *optlen)
5659 {
5660 	struct sctp_event_subscribe subscribe;
5661 	__u8 *sn_type = (__u8 *)&subscribe;
5662 	int i;
5663 
5664 	if (len == 0)
5665 		return -EINVAL;
5666 	if (len > sizeof(struct sctp_event_subscribe))
5667 		len = sizeof(struct sctp_event_subscribe);
5668 	if (put_user(len, optlen))
5669 		return -EFAULT;
5670 
5671 	for (i = 0; i < len; i++)
5672 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5673 							SCTP_SN_TYPE_BASE + i);
5674 
5675 	if (copy_to_user(optval, &subscribe, len))
5676 		return -EFAULT;
5677 
5678 	return 0;
5679 }
5680 
5681 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5682  *
5683  * This socket option is applicable to the UDP-style socket only.  When
5684  * set it will cause associations that are idle for more than the
5685  * specified number of seconds to automatically close.  An association
5686  * being idle is defined an association that has NOT sent or received
5687  * user data.  The special value of '0' indicates that no automatic
5688  * close of any associations should be performed.  The option expects an
5689  * integer defining the number of seconds of idle time before an
5690  * association is closed.
5691  */
5692 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5693 {
5694 	/* Applicable to UDP-style socket only */
5695 	if (sctp_style(sk, TCP))
5696 		return -EOPNOTSUPP;
5697 	if (len < sizeof(int))
5698 		return -EINVAL;
5699 	len = sizeof(int);
5700 	if (put_user(len, optlen))
5701 		return -EFAULT;
5702 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5703 		return -EFAULT;
5704 	return 0;
5705 }
5706 
5707 /* Helper routine to branch off an association to a new socket.  */
5708 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5709 {
5710 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5711 	struct sctp_sock *sp = sctp_sk(sk);
5712 	struct socket *sock;
5713 	int err = 0;
5714 
5715 	/* Do not peel off from one netns to another one. */
5716 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5717 		return -EINVAL;
5718 
5719 	if (!asoc)
5720 		return -EINVAL;
5721 
5722 	/* An association cannot be branched off from an already peeled-off
5723 	 * socket, nor is this supported for tcp style sockets.
5724 	 */
5725 	if (!sctp_style(sk, UDP))
5726 		return -EINVAL;
5727 
5728 	/* Create a new socket.  */
5729 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5730 	if (err < 0)
5731 		return err;
5732 
5733 	sctp_copy_sock(sock->sk, sk, asoc);
5734 
5735 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5736 	 * Set the daddr and initialize id to something more random and also
5737 	 * copy over any ip options.
5738 	 */
5739 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5740 	sp->pf->copy_ip_options(sk, sock->sk);
5741 
5742 	/* Populate the fields of the newsk from the oldsk and migrate the
5743 	 * asoc to the newsk.
5744 	 */
5745 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5746 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5747 	if (err) {
5748 		sock_release(sock);
5749 		sock = NULL;
5750 	}
5751 
5752 	*sockp = sock;
5753 
5754 	return err;
5755 }
5756 EXPORT_SYMBOL(sctp_do_peeloff);
5757 
5758 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5759 					  struct file **newfile, unsigned flags)
5760 {
5761 	struct socket *newsock;
5762 	int retval;
5763 
5764 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5765 	if (retval < 0)
5766 		goto out;
5767 
5768 	/* Map the socket to an unused fd that can be returned to the user.  */
5769 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5770 	if (retval < 0) {
5771 		sock_release(newsock);
5772 		goto out;
5773 	}
5774 
5775 	*newfile = sock_alloc_file(newsock, 0, NULL);
5776 	if (IS_ERR(*newfile)) {
5777 		put_unused_fd(retval);
5778 		retval = PTR_ERR(*newfile);
5779 		*newfile = NULL;
5780 		return retval;
5781 	}
5782 
5783 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5784 		 retval);
5785 
5786 	peeloff->sd = retval;
5787 
5788 	if (flags & SOCK_NONBLOCK)
5789 		(*newfile)->f_flags |= O_NONBLOCK;
5790 out:
5791 	return retval;
5792 }
5793 
5794 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5795 {
5796 	sctp_peeloff_arg_t peeloff;
5797 	struct file *newfile = NULL;
5798 	int retval = 0;
5799 
5800 	if (len < sizeof(sctp_peeloff_arg_t))
5801 		return -EINVAL;
5802 	len = sizeof(sctp_peeloff_arg_t);
5803 	if (copy_from_user(&peeloff, optval, len))
5804 		return -EFAULT;
5805 
5806 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5807 	if (retval < 0)
5808 		goto out;
5809 
5810 	/* Return the fd mapped to the new socket.  */
5811 	if (put_user(len, optlen)) {
5812 		fput(newfile);
5813 		put_unused_fd(retval);
5814 		return -EFAULT;
5815 	}
5816 
5817 	if (copy_to_user(optval, &peeloff, len)) {
5818 		fput(newfile);
5819 		put_unused_fd(retval);
5820 		return -EFAULT;
5821 	}
5822 	fd_install(retval, newfile);
5823 out:
5824 	return retval;
5825 }
5826 
5827 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5828 					 char __user *optval, int __user *optlen)
5829 {
5830 	sctp_peeloff_flags_arg_t peeloff;
5831 	struct file *newfile = NULL;
5832 	int retval = 0;
5833 
5834 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5835 		return -EINVAL;
5836 	len = sizeof(sctp_peeloff_flags_arg_t);
5837 	if (copy_from_user(&peeloff, optval, len))
5838 		return -EFAULT;
5839 
5840 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5841 						&newfile, peeloff.flags);
5842 	if (retval < 0)
5843 		goto out;
5844 
5845 	/* Return the fd mapped to the new socket.  */
5846 	if (put_user(len, optlen)) {
5847 		fput(newfile);
5848 		put_unused_fd(retval);
5849 		return -EFAULT;
5850 	}
5851 
5852 	if (copy_to_user(optval, &peeloff, len)) {
5853 		fput(newfile);
5854 		put_unused_fd(retval);
5855 		return -EFAULT;
5856 	}
5857 	fd_install(retval, newfile);
5858 out:
5859 	return retval;
5860 }
5861 
5862 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5863  *
5864  * Applications can enable or disable heartbeats for any peer address of
5865  * an association, modify an address's heartbeat interval, force a
5866  * heartbeat to be sent immediately, and adjust the address's maximum
5867  * number of retransmissions sent before an address is considered
5868  * unreachable.  The following structure is used to access and modify an
5869  * address's parameters:
5870  *
5871  *  struct sctp_paddrparams {
5872  *     sctp_assoc_t            spp_assoc_id;
5873  *     struct sockaddr_storage spp_address;
5874  *     uint32_t                spp_hbinterval;
5875  *     uint16_t                spp_pathmaxrxt;
5876  *     uint32_t                spp_pathmtu;
5877  *     uint32_t                spp_sackdelay;
5878  *     uint32_t                spp_flags;
5879  * };
5880  *
5881  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5882  *                     application, and identifies the association for
5883  *                     this query.
5884  *   spp_address     - This specifies which address is of interest.
5885  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5886  *                     in milliseconds.  If a  value of zero
5887  *                     is present in this field then no changes are to
5888  *                     be made to this parameter.
5889  *   spp_pathmaxrxt  - This contains the maximum number of
5890  *                     retransmissions before this address shall be
5891  *                     considered unreachable. If a  value of zero
5892  *                     is present in this field then no changes are to
5893  *                     be made to this parameter.
5894  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5895  *                     specified here will be the "fixed" path mtu.
5896  *                     Note that if the spp_address field is empty
5897  *                     then all associations on this address will
5898  *                     have this fixed path mtu set upon them.
5899  *
5900  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5901  *                     the number of milliseconds that sacks will be delayed
5902  *                     for. This value will apply to all addresses of an
5903  *                     association if the spp_address field is empty. Note
5904  *                     also, that if delayed sack is enabled and this
5905  *                     value is set to 0, no change is made to the last
5906  *                     recorded delayed sack timer value.
5907  *
5908  *   spp_flags       - These flags are used to control various features
5909  *                     on an association. The flag field may contain
5910  *                     zero or more of the following options.
5911  *
5912  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5913  *                     specified address. Note that if the address
5914  *                     field is empty all addresses for the association
5915  *                     have heartbeats enabled upon them.
5916  *
5917  *                     SPP_HB_DISABLE - Disable heartbeats on the
5918  *                     speicifed address. Note that if the address
5919  *                     field is empty all addresses for the association
5920  *                     will have their heartbeats disabled. Note also
5921  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5922  *                     mutually exclusive, only one of these two should
5923  *                     be specified. Enabling both fields will have
5924  *                     undetermined results.
5925  *
5926  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5927  *                     to be made immediately.
5928  *
5929  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5930  *                     discovery upon the specified address. Note that
5931  *                     if the address feild is empty then all addresses
5932  *                     on the association are effected.
5933  *
5934  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5935  *                     discovery upon the specified address. Note that
5936  *                     if the address feild is empty then all addresses
5937  *                     on the association are effected. Not also that
5938  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5939  *                     exclusive. Enabling both will have undetermined
5940  *                     results.
5941  *
5942  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5943  *                     on delayed sack. The time specified in spp_sackdelay
5944  *                     is used to specify the sack delay for this address. Note
5945  *                     that if spp_address is empty then all addresses will
5946  *                     enable delayed sack and take on the sack delay
5947  *                     value specified in spp_sackdelay.
5948  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5949  *                     off delayed sack. If the spp_address field is blank then
5950  *                     delayed sack is disabled for the entire association. Note
5951  *                     also that this field is mutually exclusive to
5952  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5953  *                     results.
5954  *
5955  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5956  *                     setting of the IPV6 flow label value.  The value is
5957  *                     contained in the spp_ipv6_flowlabel field.
5958  *                     Upon retrieval, this flag will be set to indicate that
5959  *                     the spp_ipv6_flowlabel field has a valid value returned.
5960  *                     If a specific destination address is set (in the
5961  *                     spp_address field), then the value returned is that of
5962  *                     the address.  If just an association is specified (and
5963  *                     no address), then the association's default flow label
5964  *                     is returned.  If neither an association nor a destination
5965  *                     is specified, then the socket's default flow label is
5966  *                     returned.  For non-IPv6 sockets, this flag will be left
5967  *                     cleared.
5968  *
5969  *                     SPP_DSCP:  Setting this flag enables the setting of the
5970  *                     Differentiated Services Code Point (DSCP) value
5971  *                     associated with either the association or a specific
5972  *                     address.  The value is obtained in the spp_dscp field.
5973  *                     Upon retrieval, this flag will be set to indicate that
5974  *                     the spp_dscp field has a valid value returned.  If a
5975  *                     specific destination address is set when called (in the
5976  *                     spp_address field), then that specific destination
5977  *                     address's DSCP value is returned.  If just an association
5978  *                     is specified, then the association's default DSCP is
5979  *                     returned.  If neither an association nor a destination is
5980  *                     specified, then the socket's default DSCP is returned.
5981  *
5982  *   spp_ipv6_flowlabel
5983  *                   - This field is used in conjunction with the
5984  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5985  *                     The 20 least significant bits are used for the flow
5986  *                     label.  This setting has precedence over any IPv6-layer
5987  *                     setting.
5988  *
5989  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5990  *                     and contains the DSCP.  The 6 most significant bits are
5991  *                     used for the DSCP.  This setting has precedence over any
5992  *                     IPv4- or IPv6- layer setting.
5993  */
5994 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5995 					    char __user *optval, int __user *optlen)
5996 {
5997 	struct sctp_paddrparams  params;
5998 	struct sctp_transport   *trans = NULL;
5999 	struct sctp_association *asoc = NULL;
6000 	struct sctp_sock        *sp = sctp_sk(sk);
6001 
6002 	if (len >= sizeof(params))
6003 		len = sizeof(params);
6004 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
6005 				       spp_ipv6_flowlabel), 4))
6006 		len = ALIGN(offsetof(struct sctp_paddrparams,
6007 				     spp_ipv6_flowlabel), 4);
6008 	else
6009 		return -EINVAL;
6010 
6011 	if (copy_from_user(&params, optval, len))
6012 		return -EFAULT;
6013 
6014 	/* If an address other than INADDR_ANY is specified, and
6015 	 * no transport is found, then the request is invalid.
6016 	 */
6017 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
6018 		trans = sctp_addr_id2transport(sk, &params.spp_address,
6019 					       params.spp_assoc_id);
6020 		if (!trans) {
6021 			pr_debug("%s: failed no transport\n", __func__);
6022 			return -EINVAL;
6023 		}
6024 	}
6025 
6026 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
6027 	 * socket is a one to many style socket, and an association
6028 	 * was not found, then the id was invalid.
6029 	 */
6030 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
6031 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
6032 	    sctp_style(sk, UDP)) {
6033 		pr_debug("%s: failed no association\n", __func__);
6034 		return -EINVAL;
6035 	}
6036 
6037 	if (trans) {
6038 		/* Fetch transport values. */
6039 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
6040 		params.spp_pathmtu    = trans->pathmtu;
6041 		params.spp_pathmaxrxt = trans->pathmaxrxt;
6042 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
6043 
6044 		/*draft-11 doesn't say what to return in spp_flags*/
6045 		params.spp_flags      = trans->param_flags;
6046 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
6047 			params.spp_ipv6_flowlabel = trans->flowlabel &
6048 						    SCTP_FLOWLABEL_VAL_MASK;
6049 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
6050 		}
6051 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
6052 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
6053 			params.spp_flags |= SPP_DSCP;
6054 		}
6055 	} else if (asoc) {
6056 		/* Fetch association values. */
6057 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
6058 		params.spp_pathmtu    = asoc->pathmtu;
6059 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
6060 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
6061 
6062 		/*draft-11 doesn't say what to return in spp_flags*/
6063 		params.spp_flags      = asoc->param_flags;
6064 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
6065 			params.spp_ipv6_flowlabel = asoc->flowlabel &
6066 						    SCTP_FLOWLABEL_VAL_MASK;
6067 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
6068 		}
6069 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
6070 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
6071 			params.spp_flags |= SPP_DSCP;
6072 		}
6073 	} else {
6074 		/* Fetch socket values. */
6075 		params.spp_hbinterval = sp->hbinterval;
6076 		params.spp_pathmtu    = sp->pathmtu;
6077 		params.spp_sackdelay  = sp->sackdelay;
6078 		params.spp_pathmaxrxt = sp->pathmaxrxt;
6079 
6080 		/*draft-11 doesn't say what to return in spp_flags*/
6081 		params.spp_flags      = sp->param_flags;
6082 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
6083 			params.spp_ipv6_flowlabel = sp->flowlabel &
6084 						    SCTP_FLOWLABEL_VAL_MASK;
6085 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
6086 		}
6087 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
6088 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
6089 			params.spp_flags |= SPP_DSCP;
6090 		}
6091 	}
6092 
6093 	if (copy_to_user(optval, &params, len))
6094 		return -EFAULT;
6095 
6096 	if (put_user(len, optlen))
6097 		return -EFAULT;
6098 
6099 	return 0;
6100 }
6101 
6102 /*
6103  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
6104  *
6105  * This option will effect the way delayed acks are performed.  This
6106  * option allows you to get or set the delayed ack time, in
6107  * milliseconds.  It also allows changing the delayed ack frequency.
6108  * Changing the frequency to 1 disables the delayed sack algorithm.  If
6109  * the assoc_id is 0, then this sets or gets the endpoints default
6110  * values.  If the assoc_id field is non-zero, then the set or get
6111  * effects the specified association for the one to many model (the
6112  * assoc_id field is ignored by the one to one model).  Note that if
6113  * sack_delay or sack_freq are 0 when setting this option, then the
6114  * current values will remain unchanged.
6115  *
6116  * struct sctp_sack_info {
6117  *     sctp_assoc_t            sack_assoc_id;
6118  *     uint32_t                sack_delay;
6119  *     uint32_t                sack_freq;
6120  * };
6121  *
6122  * sack_assoc_id -  This parameter, indicates which association the user
6123  *    is performing an action upon.  Note that if this field's value is
6124  *    zero then the endpoints default value is changed (effecting future
6125  *    associations only).
6126  *
6127  * sack_delay -  This parameter contains the number of milliseconds that
6128  *    the user is requesting the delayed ACK timer be set to.  Note that
6129  *    this value is defined in the standard to be between 200 and 500
6130  *    milliseconds.
6131  *
6132  * sack_freq -  This parameter contains the number of packets that must
6133  *    be received before a sack is sent without waiting for the delay
6134  *    timer to expire.  The default value for this is 2, setting this
6135  *    value to 1 will disable the delayed sack algorithm.
6136  */
6137 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6138 					    char __user *optval,
6139 					    int __user *optlen)
6140 {
6141 	struct sctp_sack_info    params;
6142 	struct sctp_association *asoc = NULL;
6143 	struct sctp_sock        *sp = sctp_sk(sk);
6144 
6145 	if (len >= sizeof(struct sctp_sack_info)) {
6146 		len = sizeof(struct sctp_sack_info);
6147 
6148 		if (copy_from_user(&params, optval, len))
6149 			return -EFAULT;
6150 	} else if (len == sizeof(struct sctp_assoc_value)) {
6151 		pr_warn_ratelimited(DEPRECATED
6152 				    "%s (pid %d) "
6153 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6154 				    "Use struct sctp_sack_info instead\n",
6155 				    current->comm, task_pid_nr(current));
6156 		if (copy_from_user(&params, optval, len))
6157 			return -EFAULT;
6158 	} else
6159 		return -EINVAL;
6160 
6161 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6162 	 * socket is a one to many style socket, and an association
6163 	 * was not found, then the id was invalid.
6164 	 */
6165 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6166 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6167 	    sctp_style(sk, UDP))
6168 		return -EINVAL;
6169 
6170 	if (asoc) {
6171 		/* Fetch association values. */
6172 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6173 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6174 			params.sack_freq = asoc->sackfreq;
6175 
6176 		} else {
6177 			params.sack_delay = 0;
6178 			params.sack_freq = 1;
6179 		}
6180 	} else {
6181 		/* Fetch socket values. */
6182 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6183 			params.sack_delay  = sp->sackdelay;
6184 			params.sack_freq = sp->sackfreq;
6185 		} else {
6186 			params.sack_delay  = 0;
6187 			params.sack_freq = 1;
6188 		}
6189 	}
6190 
6191 	if (copy_to_user(optval, &params, len))
6192 		return -EFAULT;
6193 
6194 	if (put_user(len, optlen))
6195 		return -EFAULT;
6196 
6197 	return 0;
6198 }
6199 
6200 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6201  *
6202  * Applications can specify protocol parameters for the default association
6203  * initialization.  The option name argument to setsockopt() and getsockopt()
6204  * is SCTP_INITMSG.
6205  *
6206  * Setting initialization parameters is effective only on an unconnected
6207  * socket (for UDP-style sockets only future associations are effected
6208  * by the change).  With TCP-style sockets, this option is inherited by
6209  * sockets derived from a listener socket.
6210  */
6211 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6212 {
6213 	if (len < sizeof(struct sctp_initmsg))
6214 		return -EINVAL;
6215 	len = sizeof(struct sctp_initmsg);
6216 	if (put_user(len, optlen))
6217 		return -EFAULT;
6218 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6219 		return -EFAULT;
6220 	return 0;
6221 }
6222 
6223 
6224 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6225 				      char __user *optval, int __user *optlen)
6226 {
6227 	struct sctp_association *asoc;
6228 	int cnt = 0;
6229 	struct sctp_getaddrs getaddrs;
6230 	struct sctp_transport *from;
6231 	void __user *to;
6232 	union sctp_addr temp;
6233 	struct sctp_sock *sp = sctp_sk(sk);
6234 	int addrlen;
6235 	size_t space_left;
6236 	int bytes_copied;
6237 
6238 	if (len < sizeof(struct sctp_getaddrs))
6239 		return -EINVAL;
6240 
6241 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6242 		return -EFAULT;
6243 
6244 	/* For UDP-style sockets, id specifies the association to query.  */
6245 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6246 	if (!asoc)
6247 		return -EINVAL;
6248 
6249 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6250 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6251 
6252 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6253 				transports) {
6254 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6255 		addrlen = sctp_get_pf_specific(sk->sk_family)
6256 			      ->addr_to_user(sp, &temp);
6257 		if (space_left < addrlen)
6258 			return -ENOMEM;
6259 		if (copy_to_user(to, &temp, addrlen))
6260 			return -EFAULT;
6261 		to += addrlen;
6262 		cnt++;
6263 		space_left -= addrlen;
6264 	}
6265 
6266 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6267 		return -EFAULT;
6268 	bytes_copied = ((char __user *)to) - optval;
6269 	if (put_user(bytes_copied, optlen))
6270 		return -EFAULT;
6271 
6272 	return 0;
6273 }
6274 
6275 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6276 			    size_t space_left, int *bytes_copied)
6277 {
6278 	struct sctp_sockaddr_entry *addr;
6279 	union sctp_addr temp;
6280 	int cnt = 0;
6281 	int addrlen;
6282 	struct net *net = sock_net(sk);
6283 
6284 	rcu_read_lock();
6285 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6286 		if (!addr->valid)
6287 			continue;
6288 
6289 		if ((PF_INET == sk->sk_family) &&
6290 		    (AF_INET6 == addr->a.sa.sa_family))
6291 			continue;
6292 		if ((PF_INET6 == sk->sk_family) &&
6293 		    inet_v6_ipv6only(sk) &&
6294 		    (AF_INET == addr->a.sa.sa_family))
6295 			continue;
6296 		memcpy(&temp, &addr->a, sizeof(temp));
6297 		if (!temp.v4.sin_port)
6298 			temp.v4.sin_port = htons(port);
6299 
6300 		addrlen = sctp_get_pf_specific(sk->sk_family)
6301 			      ->addr_to_user(sctp_sk(sk), &temp);
6302 
6303 		if (space_left < addrlen) {
6304 			cnt =  -ENOMEM;
6305 			break;
6306 		}
6307 		memcpy(to, &temp, addrlen);
6308 
6309 		to += addrlen;
6310 		cnt++;
6311 		space_left -= addrlen;
6312 		*bytes_copied += addrlen;
6313 	}
6314 	rcu_read_unlock();
6315 
6316 	return cnt;
6317 }
6318 
6319 
6320 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6321 				       char __user *optval, int __user *optlen)
6322 {
6323 	struct sctp_bind_addr *bp;
6324 	struct sctp_association *asoc;
6325 	int cnt = 0;
6326 	struct sctp_getaddrs getaddrs;
6327 	struct sctp_sockaddr_entry *addr;
6328 	void __user *to;
6329 	union sctp_addr temp;
6330 	struct sctp_sock *sp = sctp_sk(sk);
6331 	int addrlen;
6332 	int err = 0;
6333 	size_t space_left;
6334 	int bytes_copied = 0;
6335 	void *addrs;
6336 	void *buf;
6337 
6338 	if (len < sizeof(struct sctp_getaddrs))
6339 		return -EINVAL;
6340 
6341 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6342 		return -EFAULT;
6343 
6344 	/*
6345 	 *  For UDP-style sockets, id specifies the association to query.
6346 	 *  If the id field is set to the value '0' then the locally bound
6347 	 *  addresses are returned without regard to any particular
6348 	 *  association.
6349 	 */
6350 	if (0 == getaddrs.assoc_id) {
6351 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6352 	} else {
6353 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6354 		if (!asoc)
6355 			return -EINVAL;
6356 		bp = &asoc->base.bind_addr;
6357 	}
6358 
6359 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6360 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6361 
6362 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6363 	if (!addrs)
6364 		return -ENOMEM;
6365 
6366 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6367 	 * addresses from the global local address list.
6368 	 */
6369 	if (sctp_list_single_entry(&bp->address_list)) {
6370 		addr = list_entry(bp->address_list.next,
6371 				  struct sctp_sockaddr_entry, list);
6372 		if (sctp_is_any(sk, &addr->a)) {
6373 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6374 						space_left, &bytes_copied);
6375 			if (cnt < 0) {
6376 				err = cnt;
6377 				goto out;
6378 			}
6379 			goto copy_getaddrs;
6380 		}
6381 	}
6382 
6383 	buf = addrs;
6384 	/* Protection on the bound address list is not needed since
6385 	 * in the socket option context we hold a socket lock and
6386 	 * thus the bound address list can't change.
6387 	 */
6388 	list_for_each_entry(addr, &bp->address_list, list) {
6389 		memcpy(&temp, &addr->a, sizeof(temp));
6390 		addrlen = sctp_get_pf_specific(sk->sk_family)
6391 			      ->addr_to_user(sp, &temp);
6392 		if (space_left < addrlen) {
6393 			err =  -ENOMEM; /*fixme: right error?*/
6394 			goto out;
6395 		}
6396 		memcpy(buf, &temp, addrlen);
6397 		buf += addrlen;
6398 		bytes_copied += addrlen;
6399 		cnt++;
6400 		space_left -= addrlen;
6401 	}
6402 
6403 copy_getaddrs:
6404 	if (copy_to_user(to, addrs, bytes_copied)) {
6405 		err = -EFAULT;
6406 		goto out;
6407 	}
6408 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6409 		err = -EFAULT;
6410 		goto out;
6411 	}
6412 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6413 	 * but we can't change it anymore.
6414 	 */
6415 	if (put_user(bytes_copied, optlen))
6416 		err = -EFAULT;
6417 out:
6418 	kfree(addrs);
6419 	return err;
6420 }
6421 
6422 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6423  *
6424  * Requests that the local SCTP stack use the enclosed peer address as
6425  * the association primary.  The enclosed address must be one of the
6426  * association peer's addresses.
6427  */
6428 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6429 					char __user *optval, int __user *optlen)
6430 {
6431 	struct sctp_prim prim;
6432 	struct sctp_association *asoc;
6433 	struct sctp_sock *sp = sctp_sk(sk);
6434 
6435 	if (len < sizeof(struct sctp_prim))
6436 		return -EINVAL;
6437 
6438 	len = sizeof(struct sctp_prim);
6439 
6440 	if (copy_from_user(&prim, optval, len))
6441 		return -EFAULT;
6442 
6443 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6444 	if (!asoc)
6445 		return -EINVAL;
6446 
6447 	if (!asoc->peer.primary_path)
6448 		return -ENOTCONN;
6449 
6450 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6451 		asoc->peer.primary_path->af_specific->sockaddr_len);
6452 
6453 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6454 			(union sctp_addr *)&prim.ssp_addr);
6455 
6456 	if (put_user(len, optlen))
6457 		return -EFAULT;
6458 	if (copy_to_user(optval, &prim, len))
6459 		return -EFAULT;
6460 
6461 	return 0;
6462 }
6463 
6464 /*
6465  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6466  *
6467  * Requests that the local endpoint set the specified Adaptation Layer
6468  * Indication parameter for all future INIT and INIT-ACK exchanges.
6469  */
6470 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6471 				  char __user *optval, int __user *optlen)
6472 {
6473 	struct sctp_setadaptation adaptation;
6474 
6475 	if (len < sizeof(struct sctp_setadaptation))
6476 		return -EINVAL;
6477 
6478 	len = sizeof(struct sctp_setadaptation);
6479 
6480 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6481 
6482 	if (put_user(len, optlen))
6483 		return -EFAULT;
6484 	if (copy_to_user(optval, &adaptation, len))
6485 		return -EFAULT;
6486 
6487 	return 0;
6488 }
6489 
6490 /*
6491  *
6492  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6493  *
6494  *   Applications that wish to use the sendto() system call may wish to
6495  *   specify a default set of parameters that would normally be supplied
6496  *   through the inclusion of ancillary data.  This socket option allows
6497  *   such an application to set the default sctp_sndrcvinfo structure.
6498 
6499 
6500  *   The application that wishes to use this socket option simply passes
6501  *   in to this call the sctp_sndrcvinfo structure defined in Section
6502  *   5.2.2) The input parameters accepted by this call include
6503  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6504  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6505  *   to this call if the caller is using the UDP model.
6506  *
6507  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6508  */
6509 static int sctp_getsockopt_default_send_param(struct sock *sk,
6510 					int len, char __user *optval,
6511 					int __user *optlen)
6512 {
6513 	struct sctp_sock *sp = sctp_sk(sk);
6514 	struct sctp_association *asoc;
6515 	struct sctp_sndrcvinfo info;
6516 
6517 	if (len < sizeof(info))
6518 		return -EINVAL;
6519 
6520 	len = sizeof(info);
6521 
6522 	if (copy_from_user(&info, optval, len))
6523 		return -EFAULT;
6524 
6525 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6526 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6527 	    sctp_style(sk, UDP))
6528 		return -EINVAL;
6529 
6530 	if (asoc) {
6531 		info.sinfo_stream = asoc->default_stream;
6532 		info.sinfo_flags = asoc->default_flags;
6533 		info.sinfo_ppid = asoc->default_ppid;
6534 		info.sinfo_context = asoc->default_context;
6535 		info.sinfo_timetolive = asoc->default_timetolive;
6536 	} else {
6537 		info.sinfo_stream = sp->default_stream;
6538 		info.sinfo_flags = sp->default_flags;
6539 		info.sinfo_ppid = sp->default_ppid;
6540 		info.sinfo_context = sp->default_context;
6541 		info.sinfo_timetolive = sp->default_timetolive;
6542 	}
6543 
6544 	if (put_user(len, optlen))
6545 		return -EFAULT;
6546 	if (copy_to_user(optval, &info, len))
6547 		return -EFAULT;
6548 
6549 	return 0;
6550 }
6551 
6552 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6553  * (SCTP_DEFAULT_SNDINFO)
6554  */
6555 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6556 					   char __user *optval,
6557 					   int __user *optlen)
6558 {
6559 	struct sctp_sock *sp = sctp_sk(sk);
6560 	struct sctp_association *asoc;
6561 	struct sctp_sndinfo info;
6562 
6563 	if (len < sizeof(info))
6564 		return -EINVAL;
6565 
6566 	len = sizeof(info);
6567 
6568 	if (copy_from_user(&info, optval, len))
6569 		return -EFAULT;
6570 
6571 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6572 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6573 	    sctp_style(sk, UDP))
6574 		return -EINVAL;
6575 
6576 	if (asoc) {
6577 		info.snd_sid = asoc->default_stream;
6578 		info.snd_flags = asoc->default_flags;
6579 		info.snd_ppid = asoc->default_ppid;
6580 		info.snd_context = asoc->default_context;
6581 	} else {
6582 		info.snd_sid = sp->default_stream;
6583 		info.snd_flags = sp->default_flags;
6584 		info.snd_ppid = sp->default_ppid;
6585 		info.snd_context = sp->default_context;
6586 	}
6587 
6588 	if (put_user(len, optlen))
6589 		return -EFAULT;
6590 	if (copy_to_user(optval, &info, len))
6591 		return -EFAULT;
6592 
6593 	return 0;
6594 }
6595 
6596 /*
6597  *
6598  * 7.1.5 SCTP_NODELAY
6599  *
6600  * Turn on/off any Nagle-like algorithm.  This means that packets are
6601  * generally sent as soon as possible and no unnecessary delays are
6602  * introduced, at the cost of more packets in the network.  Expects an
6603  * integer boolean flag.
6604  */
6605 
6606 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6607 				   char __user *optval, int __user *optlen)
6608 {
6609 	int val;
6610 
6611 	if (len < sizeof(int))
6612 		return -EINVAL;
6613 
6614 	len = sizeof(int);
6615 	val = (sctp_sk(sk)->nodelay == 1);
6616 	if (put_user(len, optlen))
6617 		return -EFAULT;
6618 	if (copy_to_user(optval, &val, len))
6619 		return -EFAULT;
6620 	return 0;
6621 }
6622 
6623 /*
6624  *
6625  * 7.1.1 SCTP_RTOINFO
6626  *
6627  * The protocol parameters used to initialize and bound retransmission
6628  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6629  * and modify these parameters.
6630  * All parameters are time values, in milliseconds.  A value of 0, when
6631  * modifying the parameters, indicates that the current value should not
6632  * be changed.
6633  *
6634  */
6635 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6636 				char __user *optval,
6637 				int __user *optlen) {
6638 	struct sctp_rtoinfo rtoinfo;
6639 	struct sctp_association *asoc;
6640 
6641 	if (len < sizeof (struct sctp_rtoinfo))
6642 		return -EINVAL;
6643 
6644 	len = sizeof(struct sctp_rtoinfo);
6645 
6646 	if (copy_from_user(&rtoinfo, optval, len))
6647 		return -EFAULT;
6648 
6649 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6650 
6651 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6652 	    sctp_style(sk, UDP))
6653 		return -EINVAL;
6654 
6655 	/* Values corresponding to the specific association. */
6656 	if (asoc) {
6657 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6658 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6659 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6660 	} else {
6661 		/* Values corresponding to the endpoint. */
6662 		struct sctp_sock *sp = sctp_sk(sk);
6663 
6664 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6665 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6666 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6667 	}
6668 
6669 	if (put_user(len, optlen))
6670 		return -EFAULT;
6671 
6672 	if (copy_to_user(optval, &rtoinfo, len))
6673 		return -EFAULT;
6674 
6675 	return 0;
6676 }
6677 
6678 /*
6679  *
6680  * 7.1.2 SCTP_ASSOCINFO
6681  *
6682  * This option is used to tune the maximum retransmission attempts
6683  * of the association.
6684  * Returns an error if the new association retransmission value is
6685  * greater than the sum of the retransmission value  of the peer.
6686  * See [SCTP] for more information.
6687  *
6688  */
6689 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6690 				     char __user *optval,
6691 				     int __user *optlen)
6692 {
6693 
6694 	struct sctp_assocparams assocparams;
6695 	struct sctp_association *asoc;
6696 	struct list_head *pos;
6697 	int cnt = 0;
6698 
6699 	if (len < sizeof (struct sctp_assocparams))
6700 		return -EINVAL;
6701 
6702 	len = sizeof(struct sctp_assocparams);
6703 
6704 	if (copy_from_user(&assocparams, optval, len))
6705 		return -EFAULT;
6706 
6707 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6708 
6709 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6710 	    sctp_style(sk, UDP))
6711 		return -EINVAL;
6712 
6713 	/* Values correspoinding to the specific association */
6714 	if (asoc) {
6715 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6716 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6717 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6718 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6719 
6720 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6721 			cnt++;
6722 		}
6723 
6724 		assocparams.sasoc_number_peer_destinations = cnt;
6725 	} else {
6726 		/* Values corresponding to the endpoint */
6727 		struct sctp_sock *sp = sctp_sk(sk);
6728 
6729 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6730 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6731 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6732 		assocparams.sasoc_cookie_life =
6733 					sp->assocparams.sasoc_cookie_life;
6734 		assocparams.sasoc_number_peer_destinations =
6735 					sp->assocparams.
6736 					sasoc_number_peer_destinations;
6737 	}
6738 
6739 	if (put_user(len, optlen))
6740 		return -EFAULT;
6741 
6742 	if (copy_to_user(optval, &assocparams, len))
6743 		return -EFAULT;
6744 
6745 	return 0;
6746 }
6747 
6748 /*
6749  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6750  *
6751  * This socket option is a boolean flag which turns on or off mapped V4
6752  * addresses.  If this option is turned on and the socket is type
6753  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6754  * If this option is turned off, then no mapping will be done of V4
6755  * addresses and a user will receive both PF_INET6 and PF_INET type
6756  * addresses on the socket.
6757  */
6758 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6759 				    char __user *optval, int __user *optlen)
6760 {
6761 	int val;
6762 	struct sctp_sock *sp = sctp_sk(sk);
6763 
6764 	if (len < sizeof(int))
6765 		return -EINVAL;
6766 
6767 	len = sizeof(int);
6768 	val = sp->v4mapped;
6769 	if (put_user(len, optlen))
6770 		return -EFAULT;
6771 	if (copy_to_user(optval, &val, len))
6772 		return -EFAULT;
6773 
6774 	return 0;
6775 }
6776 
6777 /*
6778  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6779  * (chapter and verse is quoted at sctp_setsockopt_context())
6780  */
6781 static int sctp_getsockopt_context(struct sock *sk, int len,
6782 				   char __user *optval, int __user *optlen)
6783 {
6784 	struct sctp_assoc_value params;
6785 	struct sctp_association *asoc;
6786 
6787 	if (len < sizeof(struct sctp_assoc_value))
6788 		return -EINVAL;
6789 
6790 	len = sizeof(struct sctp_assoc_value);
6791 
6792 	if (copy_from_user(&params, optval, len))
6793 		return -EFAULT;
6794 
6795 	asoc = sctp_id2assoc(sk, params.assoc_id);
6796 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6797 	    sctp_style(sk, UDP))
6798 		return -EINVAL;
6799 
6800 	params.assoc_value = asoc ? asoc->default_rcv_context
6801 				  : sctp_sk(sk)->default_rcv_context;
6802 
6803 	if (put_user(len, optlen))
6804 		return -EFAULT;
6805 	if (copy_to_user(optval, &params, len))
6806 		return -EFAULT;
6807 
6808 	return 0;
6809 }
6810 
6811 /*
6812  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6813  * This option will get or set the maximum size to put in any outgoing
6814  * SCTP DATA chunk.  If a message is larger than this size it will be
6815  * fragmented by SCTP into the specified size.  Note that the underlying
6816  * SCTP implementation may fragment into smaller sized chunks when the
6817  * PMTU of the underlying association is smaller than the value set by
6818  * the user.  The default value for this option is '0' which indicates
6819  * the user is NOT limiting fragmentation and only the PMTU will effect
6820  * SCTP's choice of DATA chunk size.  Note also that values set larger
6821  * than the maximum size of an IP datagram will effectively let SCTP
6822  * control fragmentation (i.e. the same as setting this option to 0).
6823  *
6824  * The following structure is used to access and modify this parameter:
6825  *
6826  * struct sctp_assoc_value {
6827  *   sctp_assoc_t assoc_id;
6828  *   uint32_t assoc_value;
6829  * };
6830  *
6831  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6832  *    For one-to-many style sockets this parameter indicates which
6833  *    association the user is performing an action upon.  Note that if
6834  *    this field's value is zero then the endpoints default value is
6835  *    changed (effecting future associations only).
6836  * assoc_value:  This parameter specifies the maximum size in bytes.
6837  */
6838 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6839 				  char __user *optval, int __user *optlen)
6840 {
6841 	struct sctp_assoc_value params;
6842 	struct sctp_association *asoc;
6843 
6844 	if (len == sizeof(int)) {
6845 		pr_warn_ratelimited(DEPRECATED
6846 				    "%s (pid %d) "
6847 				    "Use of int in maxseg socket option.\n"
6848 				    "Use struct sctp_assoc_value instead\n",
6849 				    current->comm, task_pid_nr(current));
6850 		params.assoc_id = SCTP_FUTURE_ASSOC;
6851 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6852 		len = sizeof(struct sctp_assoc_value);
6853 		if (copy_from_user(&params, optval, len))
6854 			return -EFAULT;
6855 	} else
6856 		return -EINVAL;
6857 
6858 	asoc = sctp_id2assoc(sk, params.assoc_id);
6859 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6860 	    sctp_style(sk, UDP))
6861 		return -EINVAL;
6862 
6863 	if (asoc)
6864 		params.assoc_value = asoc->frag_point;
6865 	else
6866 		params.assoc_value = sctp_sk(sk)->user_frag;
6867 
6868 	if (put_user(len, optlen))
6869 		return -EFAULT;
6870 	if (len == sizeof(int)) {
6871 		if (copy_to_user(optval, &params.assoc_value, len))
6872 			return -EFAULT;
6873 	} else {
6874 		if (copy_to_user(optval, &params, len))
6875 			return -EFAULT;
6876 	}
6877 
6878 	return 0;
6879 }
6880 
6881 /*
6882  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6883  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6884  */
6885 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6886 					       char __user *optval, int __user *optlen)
6887 {
6888 	int val;
6889 
6890 	if (len < sizeof(int))
6891 		return -EINVAL;
6892 
6893 	len = sizeof(int);
6894 
6895 	val = sctp_sk(sk)->frag_interleave;
6896 	if (put_user(len, optlen))
6897 		return -EFAULT;
6898 	if (copy_to_user(optval, &val, len))
6899 		return -EFAULT;
6900 
6901 	return 0;
6902 }
6903 
6904 /*
6905  * 7.1.25.  Set or Get the sctp partial delivery point
6906  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6907  */
6908 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6909 						  char __user *optval,
6910 						  int __user *optlen)
6911 {
6912 	u32 val;
6913 
6914 	if (len < sizeof(u32))
6915 		return -EINVAL;
6916 
6917 	len = sizeof(u32);
6918 
6919 	val = sctp_sk(sk)->pd_point;
6920 	if (put_user(len, optlen))
6921 		return -EFAULT;
6922 	if (copy_to_user(optval, &val, len))
6923 		return -EFAULT;
6924 
6925 	return 0;
6926 }
6927 
6928 /*
6929  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6930  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6931  */
6932 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6933 				    char __user *optval,
6934 				    int __user *optlen)
6935 {
6936 	struct sctp_assoc_value params;
6937 	struct sctp_association *asoc;
6938 
6939 	if (len == sizeof(int)) {
6940 		pr_warn_ratelimited(DEPRECATED
6941 				    "%s (pid %d) "
6942 				    "Use of int in max_burst socket option.\n"
6943 				    "Use struct sctp_assoc_value instead\n",
6944 				    current->comm, task_pid_nr(current));
6945 		params.assoc_id = SCTP_FUTURE_ASSOC;
6946 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6947 		len = sizeof(struct sctp_assoc_value);
6948 		if (copy_from_user(&params, optval, len))
6949 			return -EFAULT;
6950 	} else
6951 		return -EINVAL;
6952 
6953 	asoc = sctp_id2assoc(sk, params.assoc_id);
6954 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6955 	    sctp_style(sk, UDP))
6956 		return -EINVAL;
6957 
6958 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6959 
6960 	if (len == sizeof(int)) {
6961 		if (copy_to_user(optval, &params.assoc_value, len))
6962 			return -EFAULT;
6963 	} else {
6964 		if (copy_to_user(optval, &params, len))
6965 			return -EFAULT;
6966 	}
6967 
6968 	return 0;
6969 
6970 }
6971 
6972 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6973 				    char __user *optval, int __user *optlen)
6974 {
6975 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6976 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6977 	struct sctp_hmac_algo_param *hmacs;
6978 	__u16 data_len = 0;
6979 	u32 num_idents;
6980 	int i;
6981 
6982 	if (!ep->auth_enable)
6983 		return -EACCES;
6984 
6985 	hmacs = ep->auth_hmacs_list;
6986 	data_len = ntohs(hmacs->param_hdr.length) -
6987 		   sizeof(struct sctp_paramhdr);
6988 
6989 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6990 		return -EINVAL;
6991 
6992 	len = sizeof(struct sctp_hmacalgo) + data_len;
6993 	num_idents = data_len / sizeof(u16);
6994 
6995 	if (put_user(len, optlen))
6996 		return -EFAULT;
6997 	if (put_user(num_idents, &p->shmac_num_idents))
6998 		return -EFAULT;
6999 	for (i = 0; i < num_idents; i++) {
7000 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
7001 
7002 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
7003 			return -EFAULT;
7004 	}
7005 	return 0;
7006 }
7007 
7008 static int sctp_getsockopt_active_key(struct sock *sk, int len,
7009 				    char __user *optval, int __user *optlen)
7010 {
7011 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7012 	struct sctp_authkeyid val;
7013 	struct sctp_association *asoc;
7014 
7015 	if (len < sizeof(struct sctp_authkeyid))
7016 		return -EINVAL;
7017 
7018 	len = sizeof(struct sctp_authkeyid);
7019 	if (copy_from_user(&val, optval, len))
7020 		return -EFAULT;
7021 
7022 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
7023 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
7024 		return -EINVAL;
7025 
7026 	if (asoc) {
7027 		if (!asoc->peer.auth_capable)
7028 			return -EACCES;
7029 		val.scact_keynumber = asoc->active_key_id;
7030 	} else {
7031 		if (!ep->auth_enable)
7032 			return -EACCES;
7033 		val.scact_keynumber = ep->active_key_id;
7034 	}
7035 
7036 	if (put_user(len, optlen))
7037 		return -EFAULT;
7038 	if (copy_to_user(optval, &val, len))
7039 		return -EFAULT;
7040 
7041 	return 0;
7042 }
7043 
7044 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
7045 				    char __user *optval, int __user *optlen)
7046 {
7047 	struct sctp_authchunks __user *p = (void __user *)optval;
7048 	struct sctp_authchunks val;
7049 	struct sctp_association *asoc;
7050 	struct sctp_chunks_param *ch;
7051 	u32    num_chunks = 0;
7052 	char __user *to;
7053 
7054 	if (len < sizeof(struct sctp_authchunks))
7055 		return -EINVAL;
7056 
7057 	if (copy_from_user(&val, optval, sizeof(val)))
7058 		return -EFAULT;
7059 
7060 	to = p->gauth_chunks;
7061 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7062 	if (!asoc)
7063 		return -EINVAL;
7064 
7065 	if (!asoc->peer.auth_capable)
7066 		return -EACCES;
7067 
7068 	ch = asoc->peer.peer_chunks;
7069 	if (!ch)
7070 		goto num;
7071 
7072 	/* See if the user provided enough room for all the data */
7073 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7074 	if (len < num_chunks)
7075 		return -EINVAL;
7076 
7077 	if (copy_to_user(to, ch->chunks, num_chunks))
7078 		return -EFAULT;
7079 num:
7080 	len = sizeof(struct sctp_authchunks) + num_chunks;
7081 	if (put_user(len, optlen))
7082 		return -EFAULT;
7083 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7084 		return -EFAULT;
7085 	return 0;
7086 }
7087 
7088 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
7089 				    char __user *optval, int __user *optlen)
7090 {
7091 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7092 	struct sctp_authchunks __user *p = (void __user *)optval;
7093 	struct sctp_authchunks val;
7094 	struct sctp_association *asoc;
7095 	struct sctp_chunks_param *ch;
7096 	u32    num_chunks = 0;
7097 	char __user *to;
7098 
7099 	if (len < sizeof(struct sctp_authchunks))
7100 		return -EINVAL;
7101 
7102 	if (copy_from_user(&val, optval, sizeof(val)))
7103 		return -EFAULT;
7104 
7105 	to = p->gauth_chunks;
7106 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7107 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7108 	    sctp_style(sk, UDP))
7109 		return -EINVAL;
7110 
7111 	if (asoc) {
7112 		if (!asoc->peer.auth_capable)
7113 			return -EACCES;
7114 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7115 	} else {
7116 		if (!ep->auth_enable)
7117 			return -EACCES;
7118 		ch = ep->auth_chunk_list;
7119 	}
7120 	if (!ch)
7121 		goto num;
7122 
7123 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7124 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
7125 		return -EINVAL;
7126 
7127 	if (copy_to_user(to, ch->chunks, num_chunks))
7128 		return -EFAULT;
7129 num:
7130 	len = sizeof(struct sctp_authchunks) + num_chunks;
7131 	if (put_user(len, optlen))
7132 		return -EFAULT;
7133 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7134 		return -EFAULT;
7135 
7136 	return 0;
7137 }
7138 
7139 /*
7140  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7141  * This option gets the current number of associations that are attached
7142  * to a one-to-many style socket.  The option value is an uint32_t.
7143  */
7144 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7145 				    char __user *optval, int __user *optlen)
7146 {
7147 	struct sctp_sock *sp = sctp_sk(sk);
7148 	struct sctp_association *asoc;
7149 	u32 val = 0;
7150 
7151 	if (sctp_style(sk, TCP))
7152 		return -EOPNOTSUPP;
7153 
7154 	if (len < sizeof(u32))
7155 		return -EINVAL;
7156 
7157 	len = sizeof(u32);
7158 
7159 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7160 		val++;
7161 	}
7162 
7163 	if (put_user(len, optlen))
7164 		return -EFAULT;
7165 	if (copy_to_user(optval, &val, len))
7166 		return -EFAULT;
7167 
7168 	return 0;
7169 }
7170 
7171 /*
7172  * 8.1.23 SCTP_AUTO_ASCONF
7173  * See the corresponding setsockopt entry as description
7174  */
7175 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7176 				   char __user *optval, int __user *optlen)
7177 {
7178 	int val = 0;
7179 
7180 	if (len < sizeof(int))
7181 		return -EINVAL;
7182 
7183 	len = sizeof(int);
7184 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7185 		val = 1;
7186 	if (put_user(len, optlen))
7187 		return -EFAULT;
7188 	if (copy_to_user(optval, &val, len))
7189 		return -EFAULT;
7190 	return 0;
7191 }
7192 
7193 /*
7194  * 8.2.6. Get the Current Identifiers of Associations
7195  *        (SCTP_GET_ASSOC_ID_LIST)
7196  *
7197  * This option gets the current list of SCTP association identifiers of
7198  * the SCTP associations handled by a one-to-many style socket.
7199  */
7200 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7201 				    char __user *optval, int __user *optlen)
7202 {
7203 	struct sctp_sock *sp = sctp_sk(sk);
7204 	struct sctp_association *asoc;
7205 	struct sctp_assoc_ids *ids;
7206 	u32 num = 0;
7207 
7208 	if (sctp_style(sk, TCP))
7209 		return -EOPNOTSUPP;
7210 
7211 	if (len < sizeof(struct sctp_assoc_ids))
7212 		return -EINVAL;
7213 
7214 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7215 		num++;
7216 	}
7217 
7218 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7219 		return -EINVAL;
7220 
7221 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7222 
7223 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7224 	if (unlikely(!ids))
7225 		return -ENOMEM;
7226 
7227 	ids->gaids_number_of_ids = num;
7228 	num = 0;
7229 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7230 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7231 	}
7232 
7233 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7234 		kfree(ids);
7235 		return -EFAULT;
7236 	}
7237 
7238 	kfree(ids);
7239 	return 0;
7240 }
7241 
7242 /*
7243  * SCTP_PEER_ADDR_THLDS
7244  *
7245  * This option allows us to fetch the partially failed threshold for one or all
7246  * transports in an association.  See Section 6.1 of:
7247  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7248  */
7249 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7250 					    char __user *optval, int len,
7251 					    int __user *optlen, bool v2)
7252 {
7253 	struct sctp_paddrthlds_v2 val;
7254 	struct sctp_transport *trans;
7255 	struct sctp_association *asoc;
7256 	int min;
7257 
7258 	min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7259 	if (len < min)
7260 		return -EINVAL;
7261 	len = min;
7262 	if (copy_from_user(&val, optval, len))
7263 		return -EFAULT;
7264 
7265 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7266 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7267 					       val.spt_assoc_id);
7268 		if (!trans)
7269 			return -ENOENT;
7270 
7271 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7272 		val.spt_pathpfthld = trans->pf_retrans;
7273 		val.spt_pathcpthld = trans->ps_retrans;
7274 
7275 		goto out;
7276 	}
7277 
7278 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7279 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7280 	    sctp_style(sk, UDP))
7281 		return -EINVAL;
7282 
7283 	if (asoc) {
7284 		val.spt_pathpfthld = asoc->pf_retrans;
7285 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7286 		val.spt_pathcpthld = asoc->ps_retrans;
7287 	} else {
7288 		struct sctp_sock *sp = sctp_sk(sk);
7289 
7290 		val.spt_pathpfthld = sp->pf_retrans;
7291 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7292 		val.spt_pathcpthld = sp->ps_retrans;
7293 	}
7294 
7295 out:
7296 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7297 		return -EFAULT;
7298 
7299 	return 0;
7300 }
7301 
7302 /*
7303  * SCTP_GET_ASSOC_STATS
7304  *
7305  * This option retrieves local per endpoint statistics. It is modeled
7306  * after OpenSolaris' implementation
7307  */
7308 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7309 				       char __user *optval,
7310 				       int __user *optlen)
7311 {
7312 	struct sctp_assoc_stats sas;
7313 	struct sctp_association *asoc = NULL;
7314 
7315 	/* User must provide at least the assoc id */
7316 	if (len < sizeof(sctp_assoc_t))
7317 		return -EINVAL;
7318 
7319 	/* Allow the struct to grow and fill in as much as possible */
7320 	len = min_t(size_t, len, sizeof(sas));
7321 
7322 	if (copy_from_user(&sas, optval, len))
7323 		return -EFAULT;
7324 
7325 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7326 	if (!asoc)
7327 		return -EINVAL;
7328 
7329 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7330 	sas.sas_gapcnt = asoc->stats.gapcnt;
7331 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7332 	sas.sas_osacks = asoc->stats.osacks;
7333 	sas.sas_isacks = asoc->stats.isacks;
7334 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7335 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7336 	sas.sas_oodchunks = asoc->stats.oodchunks;
7337 	sas.sas_iodchunks = asoc->stats.iodchunks;
7338 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7339 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7340 	sas.sas_idupchunks = asoc->stats.idupchunks;
7341 	sas.sas_opackets = asoc->stats.opackets;
7342 	sas.sas_ipackets = asoc->stats.ipackets;
7343 
7344 	/* New high max rto observed, will return 0 if not a single
7345 	 * RTO update took place. obs_rto_ipaddr will be bogus
7346 	 * in such a case
7347 	 */
7348 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7349 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7350 		sizeof(struct sockaddr_storage));
7351 
7352 	/* Mark beginning of a new observation period */
7353 	asoc->stats.max_obs_rto = asoc->rto_min;
7354 
7355 	if (put_user(len, optlen))
7356 		return -EFAULT;
7357 
7358 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7359 
7360 	if (copy_to_user(optval, &sas, len))
7361 		return -EFAULT;
7362 
7363 	return 0;
7364 }
7365 
7366 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7367 				       char __user *optval,
7368 				       int __user *optlen)
7369 {
7370 	int val = 0;
7371 
7372 	if (len < sizeof(int))
7373 		return -EINVAL;
7374 
7375 	len = sizeof(int);
7376 	if (sctp_sk(sk)->recvrcvinfo)
7377 		val = 1;
7378 	if (put_user(len, optlen))
7379 		return -EFAULT;
7380 	if (copy_to_user(optval, &val, len))
7381 		return -EFAULT;
7382 
7383 	return 0;
7384 }
7385 
7386 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7387 				       char __user *optval,
7388 				       int __user *optlen)
7389 {
7390 	int val = 0;
7391 
7392 	if (len < sizeof(int))
7393 		return -EINVAL;
7394 
7395 	len = sizeof(int);
7396 	if (sctp_sk(sk)->recvnxtinfo)
7397 		val = 1;
7398 	if (put_user(len, optlen))
7399 		return -EFAULT;
7400 	if (copy_to_user(optval, &val, len))
7401 		return -EFAULT;
7402 
7403 	return 0;
7404 }
7405 
7406 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7407 					char __user *optval,
7408 					int __user *optlen)
7409 {
7410 	struct sctp_assoc_value params;
7411 	struct sctp_association *asoc;
7412 	int retval = -EFAULT;
7413 
7414 	if (len < sizeof(params)) {
7415 		retval = -EINVAL;
7416 		goto out;
7417 	}
7418 
7419 	len = sizeof(params);
7420 	if (copy_from_user(&params, optval, len))
7421 		goto out;
7422 
7423 	asoc = sctp_id2assoc(sk, params.assoc_id);
7424 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7425 	    sctp_style(sk, UDP)) {
7426 		retval = -EINVAL;
7427 		goto out;
7428 	}
7429 
7430 	params.assoc_value = asoc ? asoc->peer.prsctp_capable
7431 				  : sctp_sk(sk)->ep->prsctp_enable;
7432 
7433 	if (put_user(len, optlen))
7434 		goto out;
7435 
7436 	if (copy_to_user(optval, &params, len))
7437 		goto out;
7438 
7439 	retval = 0;
7440 
7441 out:
7442 	return retval;
7443 }
7444 
7445 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7446 					  char __user *optval,
7447 					  int __user *optlen)
7448 {
7449 	struct sctp_default_prinfo info;
7450 	struct sctp_association *asoc;
7451 	int retval = -EFAULT;
7452 
7453 	if (len < sizeof(info)) {
7454 		retval = -EINVAL;
7455 		goto out;
7456 	}
7457 
7458 	len = sizeof(info);
7459 	if (copy_from_user(&info, optval, len))
7460 		goto out;
7461 
7462 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7463 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7464 	    sctp_style(sk, UDP)) {
7465 		retval = -EINVAL;
7466 		goto out;
7467 	}
7468 
7469 	if (asoc) {
7470 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7471 		info.pr_value = asoc->default_timetolive;
7472 	} else {
7473 		struct sctp_sock *sp = sctp_sk(sk);
7474 
7475 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7476 		info.pr_value = sp->default_timetolive;
7477 	}
7478 
7479 	if (put_user(len, optlen))
7480 		goto out;
7481 
7482 	if (copy_to_user(optval, &info, len))
7483 		goto out;
7484 
7485 	retval = 0;
7486 
7487 out:
7488 	return retval;
7489 }
7490 
7491 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7492 					  char __user *optval,
7493 					  int __user *optlen)
7494 {
7495 	struct sctp_prstatus params;
7496 	struct sctp_association *asoc;
7497 	int policy;
7498 	int retval = -EINVAL;
7499 
7500 	if (len < sizeof(params))
7501 		goto out;
7502 
7503 	len = sizeof(params);
7504 	if (copy_from_user(&params, optval, len)) {
7505 		retval = -EFAULT;
7506 		goto out;
7507 	}
7508 
7509 	policy = params.sprstat_policy;
7510 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7511 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7512 		goto out;
7513 
7514 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7515 	if (!asoc)
7516 		goto out;
7517 
7518 	if (policy == SCTP_PR_SCTP_ALL) {
7519 		params.sprstat_abandoned_unsent = 0;
7520 		params.sprstat_abandoned_sent = 0;
7521 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7522 			params.sprstat_abandoned_unsent +=
7523 				asoc->abandoned_unsent[policy];
7524 			params.sprstat_abandoned_sent +=
7525 				asoc->abandoned_sent[policy];
7526 		}
7527 	} else {
7528 		params.sprstat_abandoned_unsent =
7529 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7530 		params.sprstat_abandoned_sent =
7531 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7532 	}
7533 
7534 	if (put_user(len, optlen)) {
7535 		retval = -EFAULT;
7536 		goto out;
7537 	}
7538 
7539 	if (copy_to_user(optval, &params, len)) {
7540 		retval = -EFAULT;
7541 		goto out;
7542 	}
7543 
7544 	retval = 0;
7545 
7546 out:
7547 	return retval;
7548 }
7549 
7550 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7551 					   char __user *optval,
7552 					   int __user *optlen)
7553 {
7554 	struct sctp_stream_out_ext *streamoute;
7555 	struct sctp_association *asoc;
7556 	struct sctp_prstatus params;
7557 	int retval = -EINVAL;
7558 	int policy;
7559 
7560 	if (len < sizeof(params))
7561 		goto out;
7562 
7563 	len = sizeof(params);
7564 	if (copy_from_user(&params, optval, len)) {
7565 		retval = -EFAULT;
7566 		goto out;
7567 	}
7568 
7569 	policy = params.sprstat_policy;
7570 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7571 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7572 		goto out;
7573 
7574 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7575 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7576 		goto out;
7577 
7578 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7579 	if (!streamoute) {
7580 		/* Not allocated yet, means all stats are 0 */
7581 		params.sprstat_abandoned_unsent = 0;
7582 		params.sprstat_abandoned_sent = 0;
7583 		retval = 0;
7584 		goto out;
7585 	}
7586 
7587 	if (policy == SCTP_PR_SCTP_ALL) {
7588 		params.sprstat_abandoned_unsent = 0;
7589 		params.sprstat_abandoned_sent = 0;
7590 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7591 			params.sprstat_abandoned_unsent +=
7592 				streamoute->abandoned_unsent[policy];
7593 			params.sprstat_abandoned_sent +=
7594 				streamoute->abandoned_sent[policy];
7595 		}
7596 	} else {
7597 		params.sprstat_abandoned_unsent =
7598 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7599 		params.sprstat_abandoned_sent =
7600 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7601 	}
7602 
7603 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7604 		retval = -EFAULT;
7605 		goto out;
7606 	}
7607 
7608 	retval = 0;
7609 
7610 out:
7611 	return retval;
7612 }
7613 
7614 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7615 					      char __user *optval,
7616 					      int __user *optlen)
7617 {
7618 	struct sctp_assoc_value params;
7619 	struct sctp_association *asoc;
7620 	int retval = -EFAULT;
7621 
7622 	if (len < sizeof(params)) {
7623 		retval = -EINVAL;
7624 		goto out;
7625 	}
7626 
7627 	len = sizeof(params);
7628 	if (copy_from_user(&params, optval, len))
7629 		goto out;
7630 
7631 	asoc = sctp_id2assoc(sk, params.assoc_id);
7632 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7633 	    sctp_style(sk, UDP)) {
7634 		retval = -EINVAL;
7635 		goto out;
7636 	}
7637 
7638 	params.assoc_value = asoc ? asoc->peer.reconf_capable
7639 				  : sctp_sk(sk)->ep->reconf_enable;
7640 
7641 	if (put_user(len, optlen))
7642 		goto out;
7643 
7644 	if (copy_to_user(optval, &params, len))
7645 		goto out;
7646 
7647 	retval = 0;
7648 
7649 out:
7650 	return retval;
7651 }
7652 
7653 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7654 					   char __user *optval,
7655 					   int __user *optlen)
7656 {
7657 	struct sctp_assoc_value params;
7658 	struct sctp_association *asoc;
7659 	int retval = -EFAULT;
7660 
7661 	if (len < sizeof(params)) {
7662 		retval = -EINVAL;
7663 		goto out;
7664 	}
7665 
7666 	len = sizeof(params);
7667 	if (copy_from_user(&params, optval, len))
7668 		goto out;
7669 
7670 	asoc = sctp_id2assoc(sk, params.assoc_id);
7671 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7672 	    sctp_style(sk, UDP)) {
7673 		retval = -EINVAL;
7674 		goto out;
7675 	}
7676 
7677 	params.assoc_value = asoc ? asoc->strreset_enable
7678 				  : sctp_sk(sk)->ep->strreset_enable;
7679 
7680 	if (put_user(len, optlen))
7681 		goto out;
7682 
7683 	if (copy_to_user(optval, &params, len))
7684 		goto out;
7685 
7686 	retval = 0;
7687 
7688 out:
7689 	return retval;
7690 }
7691 
7692 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7693 				     char __user *optval,
7694 				     int __user *optlen)
7695 {
7696 	struct sctp_assoc_value params;
7697 	struct sctp_association *asoc;
7698 	int retval = -EFAULT;
7699 
7700 	if (len < sizeof(params)) {
7701 		retval = -EINVAL;
7702 		goto out;
7703 	}
7704 
7705 	len = sizeof(params);
7706 	if (copy_from_user(&params, optval, len))
7707 		goto out;
7708 
7709 	asoc = sctp_id2assoc(sk, params.assoc_id);
7710 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7711 	    sctp_style(sk, UDP)) {
7712 		retval = -EINVAL;
7713 		goto out;
7714 	}
7715 
7716 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7717 				  : sctp_sk(sk)->default_ss;
7718 
7719 	if (put_user(len, optlen))
7720 		goto out;
7721 
7722 	if (copy_to_user(optval, &params, len))
7723 		goto out;
7724 
7725 	retval = 0;
7726 
7727 out:
7728 	return retval;
7729 }
7730 
7731 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7732 					   char __user *optval,
7733 					   int __user *optlen)
7734 {
7735 	struct sctp_stream_value params;
7736 	struct sctp_association *asoc;
7737 	int retval = -EFAULT;
7738 
7739 	if (len < sizeof(params)) {
7740 		retval = -EINVAL;
7741 		goto out;
7742 	}
7743 
7744 	len = sizeof(params);
7745 	if (copy_from_user(&params, optval, len))
7746 		goto out;
7747 
7748 	asoc = sctp_id2assoc(sk, params.assoc_id);
7749 	if (!asoc) {
7750 		retval = -EINVAL;
7751 		goto out;
7752 	}
7753 
7754 	retval = sctp_sched_get_value(asoc, params.stream_id,
7755 				      &params.stream_value);
7756 	if (retval)
7757 		goto out;
7758 
7759 	if (put_user(len, optlen)) {
7760 		retval = -EFAULT;
7761 		goto out;
7762 	}
7763 
7764 	if (copy_to_user(optval, &params, len)) {
7765 		retval = -EFAULT;
7766 		goto out;
7767 	}
7768 
7769 out:
7770 	return retval;
7771 }
7772 
7773 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7774 						  char __user *optval,
7775 						  int __user *optlen)
7776 {
7777 	struct sctp_assoc_value params;
7778 	struct sctp_association *asoc;
7779 	int retval = -EFAULT;
7780 
7781 	if (len < sizeof(params)) {
7782 		retval = -EINVAL;
7783 		goto out;
7784 	}
7785 
7786 	len = sizeof(params);
7787 	if (copy_from_user(&params, optval, len))
7788 		goto out;
7789 
7790 	asoc = sctp_id2assoc(sk, params.assoc_id);
7791 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7792 	    sctp_style(sk, UDP)) {
7793 		retval = -EINVAL;
7794 		goto out;
7795 	}
7796 
7797 	params.assoc_value = asoc ? asoc->peer.intl_capable
7798 				  : sctp_sk(sk)->ep->intl_enable;
7799 
7800 	if (put_user(len, optlen))
7801 		goto out;
7802 
7803 	if (copy_to_user(optval, &params, len))
7804 		goto out;
7805 
7806 	retval = 0;
7807 
7808 out:
7809 	return retval;
7810 }
7811 
7812 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7813 				      char __user *optval,
7814 				      int __user *optlen)
7815 {
7816 	int val;
7817 
7818 	if (len < sizeof(int))
7819 		return -EINVAL;
7820 
7821 	len = sizeof(int);
7822 	val = sctp_sk(sk)->reuse;
7823 	if (put_user(len, optlen))
7824 		return -EFAULT;
7825 
7826 	if (copy_to_user(optval, &val, len))
7827 		return -EFAULT;
7828 
7829 	return 0;
7830 }
7831 
7832 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7833 				 int __user *optlen)
7834 {
7835 	struct sctp_association *asoc;
7836 	struct sctp_event param;
7837 	__u16 subscribe;
7838 
7839 	if (len < sizeof(param))
7840 		return -EINVAL;
7841 
7842 	len = sizeof(param);
7843 	if (copy_from_user(&param, optval, len))
7844 		return -EFAULT;
7845 
7846 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7847 	    param.se_type > SCTP_SN_TYPE_MAX)
7848 		return -EINVAL;
7849 
7850 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7851 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7852 	    sctp_style(sk, UDP))
7853 		return -EINVAL;
7854 
7855 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7856 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7857 
7858 	if (put_user(len, optlen))
7859 		return -EFAULT;
7860 
7861 	if (copy_to_user(optval, &param, len))
7862 		return -EFAULT;
7863 
7864 	return 0;
7865 }
7866 
7867 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7868 					    char __user *optval,
7869 					    int __user *optlen)
7870 {
7871 	struct sctp_assoc_value params;
7872 	struct sctp_association *asoc;
7873 	int retval = -EFAULT;
7874 
7875 	if (len < sizeof(params)) {
7876 		retval = -EINVAL;
7877 		goto out;
7878 	}
7879 
7880 	len = sizeof(params);
7881 	if (copy_from_user(&params, optval, len))
7882 		goto out;
7883 
7884 	asoc = sctp_id2assoc(sk, params.assoc_id);
7885 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7886 	    sctp_style(sk, UDP)) {
7887 		retval = -EINVAL;
7888 		goto out;
7889 	}
7890 
7891 	params.assoc_value = asoc ? asoc->peer.asconf_capable
7892 				  : sctp_sk(sk)->ep->asconf_enable;
7893 
7894 	if (put_user(len, optlen))
7895 		goto out;
7896 
7897 	if (copy_to_user(optval, &params, len))
7898 		goto out;
7899 
7900 	retval = 0;
7901 
7902 out:
7903 	return retval;
7904 }
7905 
7906 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7907 					  char __user *optval,
7908 					  int __user *optlen)
7909 {
7910 	struct sctp_assoc_value params;
7911 	struct sctp_association *asoc;
7912 	int retval = -EFAULT;
7913 
7914 	if (len < sizeof(params)) {
7915 		retval = -EINVAL;
7916 		goto out;
7917 	}
7918 
7919 	len = sizeof(params);
7920 	if (copy_from_user(&params, optval, len))
7921 		goto out;
7922 
7923 	asoc = sctp_id2assoc(sk, params.assoc_id);
7924 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7925 	    sctp_style(sk, UDP)) {
7926 		retval = -EINVAL;
7927 		goto out;
7928 	}
7929 
7930 	params.assoc_value = asoc ? asoc->peer.auth_capable
7931 				  : sctp_sk(sk)->ep->auth_enable;
7932 
7933 	if (put_user(len, optlen))
7934 		goto out;
7935 
7936 	if (copy_to_user(optval, &params, len))
7937 		goto out;
7938 
7939 	retval = 0;
7940 
7941 out:
7942 	return retval;
7943 }
7944 
7945 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7946 					 char __user *optval,
7947 					 int __user *optlen)
7948 {
7949 	struct sctp_assoc_value params;
7950 	struct sctp_association *asoc;
7951 	int retval = -EFAULT;
7952 
7953 	if (len < sizeof(params)) {
7954 		retval = -EINVAL;
7955 		goto out;
7956 	}
7957 
7958 	len = sizeof(params);
7959 	if (copy_from_user(&params, optval, len))
7960 		goto out;
7961 
7962 	asoc = sctp_id2assoc(sk, params.assoc_id);
7963 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7964 	    sctp_style(sk, UDP)) {
7965 		retval = -EINVAL;
7966 		goto out;
7967 	}
7968 
7969 	params.assoc_value = asoc ? asoc->peer.ecn_capable
7970 				  : sctp_sk(sk)->ep->ecn_enable;
7971 
7972 	if (put_user(len, optlen))
7973 		goto out;
7974 
7975 	if (copy_to_user(optval, &params, len))
7976 		goto out;
7977 
7978 	retval = 0;
7979 
7980 out:
7981 	return retval;
7982 }
7983 
7984 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7985 				     char __user *optval,
7986 				     int __user *optlen)
7987 {
7988 	struct sctp_assoc_value params;
7989 	struct sctp_association *asoc;
7990 	int retval = -EFAULT;
7991 
7992 	if (len < sizeof(params)) {
7993 		retval = -EINVAL;
7994 		goto out;
7995 	}
7996 
7997 	len = sizeof(params);
7998 	if (copy_from_user(&params, optval, len))
7999 		goto out;
8000 
8001 	asoc = sctp_id2assoc(sk, params.assoc_id);
8002 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
8003 	    sctp_style(sk, UDP)) {
8004 		retval = -EINVAL;
8005 		goto out;
8006 	}
8007 
8008 	params.assoc_value = asoc ? asoc->pf_expose
8009 				  : sctp_sk(sk)->pf_expose;
8010 
8011 	if (put_user(len, optlen))
8012 		goto out;
8013 
8014 	if (copy_to_user(optval, &params, len))
8015 		goto out;
8016 
8017 	retval = 0;
8018 
8019 out:
8020 	return retval;
8021 }
8022 
8023 static int sctp_getsockopt(struct sock *sk, int level, int optname,
8024 			   char __user *optval, int __user *optlen)
8025 {
8026 	int retval = 0;
8027 	int len;
8028 
8029 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8030 
8031 	/* I can hardly begin to describe how wrong this is.  This is
8032 	 * so broken as to be worse than useless.  The API draft
8033 	 * REALLY is NOT helpful here...  I am not convinced that the
8034 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8035 	 * are at all well-founded.
8036 	 */
8037 	if (level != SOL_SCTP) {
8038 		struct sctp_af *af = sctp_sk(sk)->pf->af;
8039 
8040 		retval = af->getsockopt(sk, level, optname, optval, optlen);
8041 		return retval;
8042 	}
8043 
8044 	if (get_user(len, optlen))
8045 		return -EFAULT;
8046 
8047 	if (len < 0)
8048 		return -EINVAL;
8049 
8050 	lock_sock(sk);
8051 
8052 	switch (optname) {
8053 	case SCTP_STATUS:
8054 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8055 		break;
8056 	case SCTP_DISABLE_FRAGMENTS:
8057 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8058 							   optlen);
8059 		break;
8060 	case SCTP_EVENTS:
8061 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
8062 		break;
8063 	case SCTP_AUTOCLOSE:
8064 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8065 		break;
8066 	case SCTP_SOCKOPT_PEELOFF:
8067 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8068 		break;
8069 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
8070 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8071 		break;
8072 	case SCTP_PEER_ADDR_PARAMS:
8073 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8074 							  optlen);
8075 		break;
8076 	case SCTP_DELAYED_SACK:
8077 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8078 							  optlen);
8079 		break;
8080 	case SCTP_INITMSG:
8081 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8082 		break;
8083 	case SCTP_GET_PEER_ADDRS:
8084 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8085 						    optlen);
8086 		break;
8087 	case SCTP_GET_LOCAL_ADDRS:
8088 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
8089 						     optlen);
8090 		break;
8091 	case SCTP_SOCKOPT_CONNECTX3:
8092 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8093 		break;
8094 	case SCTP_DEFAULT_SEND_PARAM:
8095 		retval = sctp_getsockopt_default_send_param(sk, len,
8096 							    optval, optlen);
8097 		break;
8098 	case SCTP_DEFAULT_SNDINFO:
8099 		retval = sctp_getsockopt_default_sndinfo(sk, len,
8100 							 optval, optlen);
8101 		break;
8102 	case SCTP_PRIMARY_ADDR:
8103 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8104 		break;
8105 	case SCTP_NODELAY:
8106 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8107 		break;
8108 	case SCTP_RTOINFO:
8109 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8110 		break;
8111 	case SCTP_ASSOCINFO:
8112 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8113 		break;
8114 	case SCTP_I_WANT_MAPPED_V4_ADDR:
8115 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8116 		break;
8117 	case SCTP_MAXSEG:
8118 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8119 		break;
8120 	case SCTP_GET_PEER_ADDR_INFO:
8121 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8122 							optlen);
8123 		break;
8124 	case SCTP_ADAPTATION_LAYER:
8125 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8126 							optlen);
8127 		break;
8128 	case SCTP_CONTEXT:
8129 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
8130 		break;
8131 	case SCTP_FRAGMENT_INTERLEAVE:
8132 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8133 							     optlen);
8134 		break;
8135 	case SCTP_PARTIAL_DELIVERY_POINT:
8136 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8137 								optlen);
8138 		break;
8139 	case SCTP_MAX_BURST:
8140 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8141 		break;
8142 	case SCTP_AUTH_KEY:
8143 	case SCTP_AUTH_CHUNK:
8144 	case SCTP_AUTH_DELETE_KEY:
8145 	case SCTP_AUTH_DEACTIVATE_KEY:
8146 		retval = -EOPNOTSUPP;
8147 		break;
8148 	case SCTP_HMAC_IDENT:
8149 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8150 		break;
8151 	case SCTP_AUTH_ACTIVE_KEY:
8152 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8153 		break;
8154 	case SCTP_PEER_AUTH_CHUNKS:
8155 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8156 							optlen);
8157 		break;
8158 	case SCTP_LOCAL_AUTH_CHUNKS:
8159 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8160 							optlen);
8161 		break;
8162 	case SCTP_GET_ASSOC_NUMBER:
8163 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8164 		break;
8165 	case SCTP_GET_ASSOC_ID_LIST:
8166 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8167 		break;
8168 	case SCTP_AUTO_ASCONF:
8169 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8170 		break;
8171 	case SCTP_PEER_ADDR_THLDS:
8172 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8173 							  optlen, false);
8174 		break;
8175 	case SCTP_PEER_ADDR_THLDS_V2:
8176 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8177 							  optlen, true);
8178 		break;
8179 	case SCTP_GET_ASSOC_STATS:
8180 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8181 		break;
8182 	case SCTP_RECVRCVINFO:
8183 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8184 		break;
8185 	case SCTP_RECVNXTINFO:
8186 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8187 		break;
8188 	case SCTP_PR_SUPPORTED:
8189 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8190 		break;
8191 	case SCTP_DEFAULT_PRINFO:
8192 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8193 							optlen);
8194 		break;
8195 	case SCTP_PR_ASSOC_STATUS:
8196 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8197 							optlen);
8198 		break;
8199 	case SCTP_PR_STREAM_STATUS:
8200 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8201 							 optlen);
8202 		break;
8203 	case SCTP_RECONFIG_SUPPORTED:
8204 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8205 							    optlen);
8206 		break;
8207 	case SCTP_ENABLE_STREAM_RESET:
8208 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8209 							 optlen);
8210 		break;
8211 	case SCTP_STREAM_SCHEDULER:
8212 		retval = sctp_getsockopt_scheduler(sk, len, optval,
8213 						   optlen);
8214 		break;
8215 	case SCTP_STREAM_SCHEDULER_VALUE:
8216 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8217 							 optlen);
8218 		break;
8219 	case SCTP_INTERLEAVING_SUPPORTED:
8220 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8221 								optlen);
8222 		break;
8223 	case SCTP_REUSE_PORT:
8224 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8225 		break;
8226 	case SCTP_EVENT:
8227 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
8228 		break;
8229 	case SCTP_ASCONF_SUPPORTED:
8230 		retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8231 							  optlen);
8232 		break;
8233 	case SCTP_AUTH_SUPPORTED:
8234 		retval = sctp_getsockopt_auth_supported(sk, len, optval,
8235 							optlen);
8236 		break;
8237 	case SCTP_ECN_SUPPORTED:
8238 		retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8239 		break;
8240 	case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8241 		retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8242 		break;
8243 	default:
8244 		retval = -ENOPROTOOPT;
8245 		break;
8246 	}
8247 
8248 	release_sock(sk);
8249 	return retval;
8250 }
8251 
8252 static int sctp_hash(struct sock *sk)
8253 {
8254 	/* STUB */
8255 	return 0;
8256 }
8257 
8258 static void sctp_unhash(struct sock *sk)
8259 {
8260 	/* STUB */
8261 }
8262 
8263 /* Check if port is acceptable.  Possibly find first available port.
8264  *
8265  * The port hash table (contained in the 'global' SCTP protocol storage
8266  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8267  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8268  * list (the list number is the port number hashed out, so as you
8269  * would expect from a hash function, all the ports in a given list have
8270  * such a number that hashes out to the same list number; you were
8271  * expecting that, right?); so each list has a set of ports, with a
8272  * link to the socket (struct sock) that uses it, the port number and
8273  * a fastreuse flag (FIXME: NPI ipg).
8274  */
8275 static struct sctp_bind_bucket *sctp_bucket_create(
8276 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8277 
8278 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8279 {
8280 	struct sctp_sock *sp = sctp_sk(sk);
8281 	bool reuse = (sk->sk_reuse || sp->reuse);
8282 	struct sctp_bind_hashbucket *head; /* hash list */
8283 	struct net *net = sock_net(sk);
8284 	kuid_t uid = sock_i_uid(sk);
8285 	struct sctp_bind_bucket *pp;
8286 	unsigned short snum;
8287 	int ret;
8288 
8289 	snum = ntohs(addr->v4.sin_port);
8290 
8291 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8292 
8293 	local_bh_disable();
8294 
8295 	if (snum == 0) {
8296 		/* Search for an available port. */
8297 		int low, high, remaining, index;
8298 		unsigned int rover;
8299 
8300 		inet_get_local_port_range(net, &low, &high);
8301 		remaining = (high - low) + 1;
8302 		rover = prandom_u32() % remaining + low;
8303 
8304 		do {
8305 			rover++;
8306 			if ((rover < low) || (rover > high))
8307 				rover = low;
8308 			if (inet_is_local_reserved_port(net, rover))
8309 				continue;
8310 			index = sctp_phashfn(net, rover);
8311 			head = &sctp_port_hashtable[index];
8312 			spin_lock(&head->lock);
8313 			sctp_for_each_hentry(pp, &head->chain)
8314 				if ((pp->port == rover) &&
8315 				    net_eq(net, pp->net))
8316 					goto next;
8317 			break;
8318 		next:
8319 			spin_unlock(&head->lock);
8320 		} while (--remaining > 0);
8321 
8322 		/* Exhausted local port range during search? */
8323 		ret = 1;
8324 		if (remaining <= 0)
8325 			goto fail;
8326 
8327 		/* OK, here is the one we will use.  HEAD (the port
8328 		 * hash table list entry) is non-NULL and we hold it's
8329 		 * mutex.
8330 		 */
8331 		snum = rover;
8332 	} else {
8333 		/* We are given an specific port number; we verify
8334 		 * that it is not being used. If it is used, we will
8335 		 * exahust the search in the hash list corresponding
8336 		 * to the port number (snum) - we detect that with the
8337 		 * port iterator, pp being NULL.
8338 		 */
8339 		head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8340 		spin_lock(&head->lock);
8341 		sctp_for_each_hentry(pp, &head->chain) {
8342 			if ((pp->port == snum) && net_eq(pp->net, net))
8343 				goto pp_found;
8344 		}
8345 	}
8346 	pp = NULL;
8347 	goto pp_not_found;
8348 pp_found:
8349 	if (!hlist_empty(&pp->owner)) {
8350 		/* We had a port hash table hit - there is an
8351 		 * available port (pp != NULL) and it is being
8352 		 * used by other socket (pp->owner not empty); that other
8353 		 * socket is going to be sk2.
8354 		 */
8355 		struct sock *sk2;
8356 
8357 		pr_debug("%s: found a possible match\n", __func__);
8358 
8359 		if ((pp->fastreuse && reuse &&
8360 		     sk->sk_state != SCTP_SS_LISTENING) ||
8361 		    (pp->fastreuseport && sk->sk_reuseport &&
8362 		     uid_eq(pp->fastuid, uid)))
8363 			goto success;
8364 
8365 		/* Run through the list of sockets bound to the port
8366 		 * (pp->port) [via the pointers bind_next and
8367 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8368 		 * we get the endpoint they describe and run through
8369 		 * the endpoint's list of IP (v4 or v6) addresses,
8370 		 * comparing each of the addresses with the address of
8371 		 * the socket sk. If we find a match, then that means
8372 		 * that this port/socket (sk) combination are already
8373 		 * in an endpoint.
8374 		 */
8375 		sk_for_each_bound(sk2, &pp->owner) {
8376 			struct sctp_sock *sp2 = sctp_sk(sk2);
8377 			struct sctp_endpoint *ep2 = sp2->ep;
8378 
8379 			if (sk == sk2 ||
8380 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8381 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8382 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8383 			     uid_eq(uid, sock_i_uid(sk2))))
8384 				continue;
8385 
8386 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8387 						    addr, sp2, sp)) {
8388 				ret = 1;
8389 				goto fail_unlock;
8390 			}
8391 		}
8392 
8393 		pr_debug("%s: found a match\n", __func__);
8394 	}
8395 pp_not_found:
8396 	/* If there was a hash table miss, create a new port.  */
8397 	ret = 1;
8398 	if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8399 		goto fail_unlock;
8400 
8401 	/* In either case (hit or miss), make sure fastreuse is 1 only
8402 	 * if sk->sk_reuse is too (that is, if the caller requested
8403 	 * SO_REUSEADDR on this socket -sk-).
8404 	 */
8405 	if (hlist_empty(&pp->owner)) {
8406 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8407 			pp->fastreuse = 1;
8408 		else
8409 			pp->fastreuse = 0;
8410 
8411 		if (sk->sk_reuseport) {
8412 			pp->fastreuseport = 1;
8413 			pp->fastuid = uid;
8414 		} else {
8415 			pp->fastreuseport = 0;
8416 		}
8417 	} else {
8418 		if (pp->fastreuse &&
8419 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8420 			pp->fastreuse = 0;
8421 
8422 		if (pp->fastreuseport &&
8423 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8424 			pp->fastreuseport = 0;
8425 	}
8426 
8427 	/* We are set, so fill up all the data in the hash table
8428 	 * entry, tie the socket list information with the rest of the
8429 	 * sockets FIXME: Blurry, NPI (ipg).
8430 	 */
8431 success:
8432 	if (!sp->bind_hash) {
8433 		inet_sk(sk)->inet_num = snum;
8434 		sk_add_bind_node(sk, &pp->owner);
8435 		sp->bind_hash = pp;
8436 	}
8437 	ret = 0;
8438 
8439 fail_unlock:
8440 	spin_unlock(&head->lock);
8441 
8442 fail:
8443 	local_bh_enable();
8444 	return ret;
8445 }
8446 
8447 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8448  * port is requested.
8449  */
8450 static int sctp_get_port(struct sock *sk, unsigned short snum)
8451 {
8452 	union sctp_addr addr;
8453 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8454 
8455 	/* Set up a dummy address struct from the sk. */
8456 	af->from_sk(&addr, sk);
8457 	addr.v4.sin_port = htons(snum);
8458 
8459 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8460 	return sctp_get_port_local(sk, &addr);
8461 }
8462 
8463 /*
8464  *  Move a socket to LISTENING state.
8465  */
8466 static int sctp_listen_start(struct sock *sk, int backlog)
8467 {
8468 	struct sctp_sock *sp = sctp_sk(sk);
8469 	struct sctp_endpoint *ep = sp->ep;
8470 	struct crypto_shash *tfm = NULL;
8471 	char alg[32];
8472 
8473 	/* Allocate HMAC for generating cookie. */
8474 	if (!sp->hmac && sp->sctp_hmac_alg) {
8475 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8476 		tfm = crypto_alloc_shash(alg, 0, 0);
8477 		if (IS_ERR(tfm)) {
8478 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8479 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8480 			return -ENOSYS;
8481 		}
8482 		sctp_sk(sk)->hmac = tfm;
8483 	}
8484 
8485 	/*
8486 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8487 	 * call that allows new associations to be accepted, the system
8488 	 * picks an ephemeral port and will choose an address set equivalent
8489 	 * to binding with a wildcard address.
8490 	 *
8491 	 * This is not currently spelled out in the SCTP sockets
8492 	 * extensions draft, but follows the practice as seen in TCP
8493 	 * sockets.
8494 	 *
8495 	 */
8496 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8497 	if (!ep->base.bind_addr.port) {
8498 		if (sctp_autobind(sk))
8499 			return -EAGAIN;
8500 	} else {
8501 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8502 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8503 			return -EADDRINUSE;
8504 		}
8505 	}
8506 
8507 	WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8508 	return sctp_hash_endpoint(ep);
8509 }
8510 
8511 /*
8512  * 4.1.3 / 5.1.3 listen()
8513  *
8514  *   By default, new associations are not accepted for UDP style sockets.
8515  *   An application uses listen() to mark a socket as being able to
8516  *   accept new associations.
8517  *
8518  *   On TCP style sockets, applications use listen() to ready the SCTP
8519  *   endpoint for accepting inbound associations.
8520  *
8521  *   On both types of endpoints a backlog of '0' disables listening.
8522  *
8523  *  Move a socket to LISTENING state.
8524  */
8525 int sctp_inet_listen(struct socket *sock, int backlog)
8526 {
8527 	struct sock *sk = sock->sk;
8528 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8529 	int err = -EINVAL;
8530 
8531 	if (unlikely(backlog < 0))
8532 		return err;
8533 
8534 	lock_sock(sk);
8535 
8536 	/* Peeled-off sockets are not allowed to listen().  */
8537 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8538 		goto out;
8539 
8540 	if (sock->state != SS_UNCONNECTED)
8541 		goto out;
8542 
8543 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8544 		goto out;
8545 
8546 	/* If backlog is zero, disable listening. */
8547 	if (!backlog) {
8548 		if (sctp_sstate(sk, CLOSED))
8549 			goto out;
8550 
8551 		err = 0;
8552 		sctp_unhash_endpoint(ep);
8553 		sk->sk_state = SCTP_SS_CLOSED;
8554 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8555 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8556 		goto out;
8557 	}
8558 
8559 	/* If we are already listening, just update the backlog */
8560 	if (sctp_sstate(sk, LISTENING))
8561 		WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8562 	else {
8563 		err = sctp_listen_start(sk, backlog);
8564 		if (err)
8565 			goto out;
8566 	}
8567 
8568 	err = 0;
8569 out:
8570 	release_sock(sk);
8571 	return err;
8572 }
8573 
8574 /*
8575  * This function is done by modeling the current datagram_poll() and the
8576  * tcp_poll().  Note that, based on these implementations, we don't
8577  * lock the socket in this function, even though it seems that,
8578  * ideally, locking or some other mechanisms can be used to ensure
8579  * the integrity of the counters (sndbuf and wmem_alloc) used
8580  * in this place.  We assume that we don't need locks either until proven
8581  * otherwise.
8582  *
8583  * Another thing to note is that we include the Async I/O support
8584  * here, again, by modeling the current TCP/UDP code.  We don't have
8585  * a good way to test with it yet.
8586  */
8587 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8588 {
8589 	struct sock *sk = sock->sk;
8590 	struct sctp_sock *sp = sctp_sk(sk);
8591 	__poll_t mask;
8592 
8593 	poll_wait(file, sk_sleep(sk), wait);
8594 
8595 	sock_rps_record_flow(sk);
8596 
8597 	/* A TCP-style listening socket becomes readable when the accept queue
8598 	 * is not empty.
8599 	 */
8600 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8601 		return (!list_empty(&sp->ep->asocs)) ?
8602 			(EPOLLIN | EPOLLRDNORM) : 0;
8603 
8604 	mask = 0;
8605 
8606 	/* Is there any exceptional events?  */
8607 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8608 		mask |= EPOLLERR |
8609 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8610 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8611 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8612 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8613 		mask |= EPOLLHUP;
8614 
8615 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8616 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8617 		mask |= EPOLLIN | EPOLLRDNORM;
8618 
8619 	/* The association is either gone or not ready.  */
8620 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8621 		return mask;
8622 
8623 	/* Is it writable?  */
8624 	if (sctp_writeable(sk)) {
8625 		mask |= EPOLLOUT | EPOLLWRNORM;
8626 	} else {
8627 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8628 		/*
8629 		 * Since the socket is not locked, the buffer
8630 		 * might be made available after the writeable check and
8631 		 * before the bit is set.  This could cause a lost I/O
8632 		 * signal.  tcp_poll() has a race breaker for this race
8633 		 * condition.  Based on their implementation, we put
8634 		 * in the following code to cover it as well.
8635 		 */
8636 		if (sctp_writeable(sk))
8637 			mask |= EPOLLOUT | EPOLLWRNORM;
8638 	}
8639 	return mask;
8640 }
8641 
8642 /********************************************************************
8643  * 2nd Level Abstractions
8644  ********************************************************************/
8645 
8646 static struct sctp_bind_bucket *sctp_bucket_create(
8647 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8648 {
8649 	struct sctp_bind_bucket *pp;
8650 
8651 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8652 	if (pp) {
8653 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8654 		pp->port = snum;
8655 		pp->fastreuse = 0;
8656 		INIT_HLIST_HEAD(&pp->owner);
8657 		pp->net = net;
8658 		hlist_add_head(&pp->node, &head->chain);
8659 	}
8660 	return pp;
8661 }
8662 
8663 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8664 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8665 {
8666 	if (pp && hlist_empty(&pp->owner)) {
8667 		__hlist_del(&pp->node);
8668 		kmem_cache_free(sctp_bucket_cachep, pp);
8669 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8670 	}
8671 }
8672 
8673 /* Release this socket's reference to a local port.  */
8674 static inline void __sctp_put_port(struct sock *sk)
8675 {
8676 	struct sctp_bind_hashbucket *head =
8677 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8678 						  inet_sk(sk)->inet_num)];
8679 	struct sctp_bind_bucket *pp;
8680 
8681 	spin_lock(&head->lock);
8682 	pp = sctp_sk(sk)->bind_hash;
8683 	__sk_del_bind_node(sk);
8684 	sctp_sk(sk)->bind_hash = NULL;
8685 	inet_sk(sk)->inet_num = 0;
8686 	sctp_bucket_destroy(pp);
8687 	spin_unlock(&head->lock);
8688 }
8689 
8690 void sctp_put_port(struct sock *sk)
8691 {
8692 	local_bh_disable();
8693 	__sctp_put_port(sk);
8694 	local_bh_enable();
8695 }
8696 
8697 /*
8698  * The system picks an ephemeral port and choose an address set equivalent
8699  * to binding with a wildcard address.
8700  * One of those addresses will be the primary address for the association.
8701  * This automatically enables the multihoming capability of SCTP.
8702  */
8703 static int sctp_autobind(struct sock *sk)
8704 {
8705 	union sctp_addr autoaddr;
8706 	struct sctp_af *af;
8707 	__be16 port;
8708 
8709 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8710 	af = sctp_sk(sk)->pf->af;
8711 
8712 	port = htons(inet_sk(sk)->inet_num);
8713 	af->inaddr_any(&autoaddr, port);
8714 
8715 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8716 }
8717 
8718 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8719  *
8720  * From RFC 2292
8721  * 4.2 The cmsghdr Structure *
8722  *
8723  * When ancillary data is sent or received, any number of ancillary data
8724  * objects can be specified by the msg_control and msg_controllen members of
8725  * the msghdr structure, because each object is preceded by
8726  * a cmsghdr structure defining the object's length (the cmsg_len member).
8727  * Historically Berkeley-derived implementations have passed only one object
8728  * at a time, but this API allows multiple objects to be
8729  * passed in a single call to sendmsg() or recvmsg(). The following example
8730  * shows two ancillary data objects in a control buffer.
8731  *
8732  *   |<--------------------------- msg_controllen -------------------------->|
8733  *   |                                                                       |
8734  *
8735  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8736  *
8737  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8738  *   |                                   |                                   |
8739  *
8740  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8741  *
8742  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8743  *   |                                |  |                                |  |
8744  *
8745  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8746  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8747  *
8748  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8749  *
8750  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8751  *    ^
8752  *    |
8753  *
8754  * msg_control
8755  * points here
8756  */
8757 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8758 {
8759 	struct msghdr *my_msg = (struct msghdr *)msg;
8760 	struct cmsghdr *cmsg;
8761 
8762 	for_each_cmsghdr(cmsg, my_msg) {
8763 		if (!CMSG_OK(my_msg, cmsg))
8764 			return -EINVAL;
8765 
8766 		/* Should we parse this header or ignore?  */
8767 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8768 			continue;
8769 
8770 		/* Strictly check lengths following example in SCM code.  */
8771 		switch (cmsg->cmsg_type) {
8772 		case SCTP_INIT:
8773 			/* SCTP Socket API Extension
8774 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8775 			 *
8776 			 * This cmsghdr structure provides information for
8777 			 * initializing new SCTP associations with sendmsg().
8778 			 * The SCTP_INITMSG socket option uses this same data
8779 			 * structure.  This structure is not used for
8780 			 * recvmsg().
8781 			 *
8782 			 * cmsg_level    cmsg_type      cmsg_data[]
8783 			 * ------------  ------------   ----------------------
8784 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8785 			 */
8786 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8787 				return -EINVAL;
8788 
8789 			cmsgs->init = CMSG_DATA(cmsg);
8790 			break;
8791 
8792 		case SCTP_SNDRCV:
8793 			/* SCTP Socket API Extension
8794 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8795 			 *
8796 			 * This cmsghdr structure specifies SCTP options for
8797 			 * sendmsg() and describes SCTP header information
8798 			 * about a received message through recvmsg().
8799 			 *
8800 			 * cmsg_level    cmsg_type      cmsg_data[]
8801 			 * ------------  ------------   ----------------------
8802 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8803 			 */
8804 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8805 				return -EINVAL;
8806 
8807 			cmsgs->srinfo = CMSG_DATA(cmsg);
8808 
8809 			if (cmsgs->srinfo->sinfo_flags &
8810 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8811 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8812 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8813 				return -EINVAL;
8814 			break;
8815 
8816 		case SCTP_SNDINFO:
8817 			/* SCTP Socket API Extension
8818 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8819 			 *
8820 			 * This cmsghdr structure specifies SCTP options for
8821 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8822 			 * SCTP_SNDRCV which has been deprecated.
8823 			 *
8824 			 * cmsg_level    cmsg_type      cmsg_data[]
8825 			 * ------------  ------------   ---------------------
8826 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8827 			 */
8828 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8829 				return -EINVAL;
8830 
8831 			cmsgs->sinfo = CMSG_DATA(cmsg);
8832 
8833 			if (cmsgs->sinfo->snd_flags &
8834 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8835 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8836 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8837 				return -EINVAL;
8838 			break;
8839 		case SCTP_PRINFO:
8840 			/* SCTP Socket API Extension
8841 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8842 			 *
8843 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8844 			 *
8845 			 * cmsg_level    cmsg_type      cmsg_data[]
8846 			 * ------------  ------------   ---------------------
8847 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8848 			 */
8849 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8850 				return -EINVAL;
8851 
8852 			cmsgs->prinfo = CMSG_DATA(cmsg);
8853 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8854 				return -EINVAL;
8855 
8856 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8857 				cmsgs->prinfo->pr_value = 0;
8858 			break;
8859 		case SCTP_AUTHINFO:
8860 			/* SCTP Socket API Extension
8861 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8862 			 *
8863 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8864 			 *
8865 			 * cmsg_level    cmsg_type      cmsg_data[]
8866 			 * ------------  ------------   ---------------------
8867 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8868 			 */
8869 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8870 				return -EINVAL;
8871 
8872 			cmsgs->authinfo = CMSG_DATA(cmsg);
8873 			break;
8874 		case SCTP_DSTADDRV4:
8875 		case SCTP_DSTADDRV6:
8876 			/* SCTP Socket API Extension
8877 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8878 			 *
8879 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8880 			 *
8881 			 * cmsg_level    cmsg_type         cmsg_data[]
8882 			 * ------------  ------------   ---------------------
8883 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8884 			 * ------------  ------------   ---------------------
8885 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8886 			 */
8887 			cmsgs->addrs_msg = my_msg;
8888 			break;
8889 		default:
8890 			return -EINVAL;
8891 		}
8892 	}
8893 
8894 	return 0;
8895 }
8896 
8897 /*
8898  * Wait for a packet..
8899  * Note: This function is the same function as in core/datagram.c
8900  * with a few modifications to make lksctp work.
8901  */
8902 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8903 {
8904 	int error;
8905 	DEFINE_WAIT(wait);
8906 
8907 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8908 
8909 	/* Socket errors? */
8910 	error = sock_error(sk);
8911 	if (error)
8912 		goto out;
8913 
8914 	if (!skb_queue_empty(&sk->sk_receive_queue))
8915 		goto ready;
8916 
8917 	/* Socket shut down?  */
8918 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8919 		goto out;
8920 
8921 	/* Sequenced packets can come disconnected.  If so we report the
8922 	 * problem.
8923 	 */
8924 	error = -ENOTCONN;
8925 
8926 	/* Is there a good reason to think that we may receive some data?  */
8927 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8928 		goto out;
8929 
8930 	/* Handle signals.  */
8931 	if (signal_pending(current))
8932 		goto interrupted;
8933 
8934 	/* Let another process have a go.  Since we are going to sleep
8935 	 * anyway.  Note: This may cause odd behaviors if the message
8936 	 * does not fit in the user's buffer, but this seems to be the
8937 	 * only way to honor MSG_DONTWAIT realistically.
8938 	 */
8939 	release_sock(sk);
8940 	*timeo_p = schedule_timeout(*timeo_p);
8941 	lock_sock(sk);
8942 
8943 ready:
8944 	finish_wait(sk_sleep(sk), &wait);
8945 	return 0;
8946 
8947 interrupted:
8948 	error = sock_intr_errno(*timeo_p);
8949 
8950 out:
8951 	finish_wait(sk_sleep(sk), &wait);
8952 	*err = error;
8953 	return error;
8954 }
8955 
8956 /* Receive a datagram.
8957  * Note: This is pretty much the same routine as in core/datagram.c
8958  * with a few changes to make lksctp work.
8959  */
8960 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8961 				       int noblock, int *err)
8962 {
8963 	int error;
8964 	struct sk_buff *skb;
8965 	long timeo;
8966 
8967 	timeo = sock_rcvtimeo(sk, noblock);
8968 
8969 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8970 		 MAX_SCHEDULE_TIMEOUT);
8971 
8972 	do {
8973 		/* Again only user level code calls this function,
8974 		 * so nothing interrupt level
8975 		 * will suddenly eat the receive_queue.
8976 		 *
8977 		 *  Look at current nfs client by the way...
8978 		 *  However, this function was correct in any case. 8)
8979 		 */
8980 		if (flags & MSG_PEEK) {
8981 			skb = skb_peek(&sk->sk_receive_queue);
8982 			if (skb)
8983 				refcount_inc(&skb->users);
8984 		} else {
8985 			skb = __skb_dequeue(&sk->sk_receive_queue);
8986 		}
8987 
8988 		if (skb)
8989 			return skb;
8990 
8991 		/* Caller is allowed not to check sk->sk_err before calling. */
8992 		error = sock_error(sk);
8993 		if (error)
8994 			goto no_packet;
8995 
8996 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8997 			break;
8998 
8999 		if (sk_can_busy_loop(sk)) {
9000 			sk_busy_loop(sk, noblock);
9001 
9002 			if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
9003 				continue;
9004 		}
9005 
9006 		/* User doesn't want to wait.  */
9007 		error = -EAGAIN;
9008 		if (!timeo)
9009 			goto no_packet;
9010 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
9011 
9012 	return NULL;
9013 
9014 no_packet:
9015 	*err = error;
9016 	return NULL;
9017 }
9018 
9019 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
9020 static void __sctp_write_space(struct sctp_association *asoc)
9021 {
9022 	struct sock *sk = asoc->base.sk;
9023 
9024 	if (sctp_wspace(asoc) <= 0)
9025 		return;
9026 
9027 	if (waitqueue_active(&asoc->wait))
9028 		wake_up_interruptible(&asoc->wait);
9029 
9030 	if (sctp_writeable(sk)) {
9031 		struct socket_wq *wq;
9032 
9033 		rcu_read_lock();
9034 		wq = rcu_dereference(sk->sk_wq);
9035 		if (wq) {
9036 			if (waitqueue_active(&wq->wait))
9037 				wake_up_interruptible(&wq->wait);
9038 
9039 			/* Note that we try to include the Async I/O support
9040 			 * here by modeling from the current TCP/UDP code.
9041 			 * We have not tested with it yet.
9042 			 */
9043 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9044 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
9045 		}
9046 		rcu_read_unlock();
9047 	}
9048 }
9049 
9050 static void sctp_wake_up_waiters(struct sock *sk,
9051 				 struct sctp_association *asoc)
9052 {
9053 	struct sctp_association *tmp = asoc;
9054 
9055 	/* We do accounting for the sndbuf space per association,
9056 	 * so we only need to wake our own association.
9057 	 */
9058 	if (asoc->ep->sndbuf_policy)
9059 		return __sctp_write_space(asoc);
9060 
9061 	/* If association goes down and is just flushing its
9062 	 * outq, then just normally notify others.
9063 	 */
9064 	if (asoc->base.dead)
9065 		return sctp_write_space(sk);
9066 
9067 	/* Accounting for the sndbuf space is per socket, so we
9068 	 * need to wake up others, try to be fair and in case of
9069 	 * other associations, let them have a go first instead
9070 	 * of just doing a sctp_write_space() call.
9071 	 *
9072 	 * Note that we reach sctp_wake_up_waiters() only when
9073 	 * associations free up queued chunks, thus we are under
9074 	 * lock and the list of associations on a socket is
9075 	 * guaranteed not to change.
9076 	 */
9077 	for (tmp = list_next_entry(tmp, asocs); 1;
9078 	     tmp = list_next_entry(tmp, asocs)) {
9079 		/* Manually skip the head element. */
9080 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9081 			continue;
9082 		/* Wake up association. */
9083 		__sctp_write_space(tmp);
9084 		/* We've reached the end. */
9085 		if (tmp == asoc)
9086 			break;
9087 	}
9088 }
9089 
9090 /* Do accounting for the sndbuf space.
9091  * Decrement the used sndbuf space of the corresponding association by the
9092  * data size which was just transmitted(freed).
9093  */
9094 static void sctp_wfree(struct sk_buff *skb)
9095 {
9096 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9097 	struct sctp_association *asoc = chunk->asoc;
9098 	struct sock *sk = asoc->base.sk;
9099 
9100 	sk_mem_uncharge(sk, skb->truesize);
9101 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
9102 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9103 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9104 				      &sk->sk_wmem_alloc));
9105 
9106 	if (chunk->shkey) {
9107 		struct sctp_shared_key *shkey = chunk->shkey;
9108 
9109 		/* refcnt == 2 and !list_empty mean after this release, it's
9110 		 * not being used anywhere, and it's time to notify userland
9111 		 * that this shkey can be freed if it's been deactivated.
9112 		 */
9113 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
9114 		    refcount_read(&shkey->refcnt) == 2) {
9115 			struct sctp_ulpevent *ev;
9116 
9117 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9118 							SCTP_AUTH_FREE_KEY,
9119 							GFP_KERNEL);
9120 			if (ev)
9121 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9122 		}
9123 		sctp_auth_shkey_release(chunk->shkey);
9124 	}
9125 
9126 	sock_wfree(skb);
9127 	sctp_wake_up_waiters(sk, asoc);
9128 
9129 	sctp_association_put(asoc);
9130 }
9131 
9132 /* Do accounting for the receive space on the socket.
9133  * Accounting for the association is done in ulpevent.c
9134  * We set this as a destructor for the cloned data skbs so that
9135  * accounting is done at the correct time.
9136  */
9137 void sctp_sock_rfree(struct sk_buff *skb)
9138 {
9139 	struct sock *sk = skb->sk;
9140 	struct sctp_ulpevent *event = sctp_skb2event(skb);
9141 
9142 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9143 
9144 	/*
9145 	 * Mimic the behavior of sock_rfree
9146 	 */
9147 	sk_mem_uncharge(sk, event->rmem_len);
9148 }
9149 
9150 
9151 /* Helper function to wait for space in the sndbuf.  */
9152 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9153 				size_t msg_len)
9154 {
9155 	struct sock *sk = asoc->base.sk;
9156 	long current_timeo = *timeo_p;
9157 	DEFINE_WAIT(wait);
9158 	int err = 0;
9159 
9160 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9161 		 *timeo_p, msg_len);
9162 
9163 	/* Increment the association's refcnt.  */
9164 	sctp_association_hold(asoc);
9165 
9166 	/* Wait on the association specific sndbuf space. */
9167 	for (;;) {
9168 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9169 					  TASK_INTERRUPTIBLE);
9170 		if (asoc->base.dead)
9171 			goto do_dead;
9172 		if (!*timeo_p)
9173 			goto do_nonblock;
9174 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9175 			goto do_error;
9176 		if (signal_pending(current))
9177 			goto do_interrupted;
9178 		if (sk_under_memory_pressure(sk))
9179 			sk_mem_reclaim(sk);
9180 		if ((int)msg_len <= sctp_wspace(asoc) &&
9181 		    sk_wmem_schedule(sk, msg_len))
9182 			break;
9183 
9184 		/* Let another process have a go.  Since we are going
9185 		 * to sleep anyway.
9186 		 */
9187 		release_sock(sk);
9188 		current_timeo = schedule_timeout(current_timeo);
9189 		lock_sock(sk);
9190 		if (sk != asoc->base.sk)
9191 			goto do_error;
9192 
9193 		*timeo_p = current_timeo;
9194 	}
9195 
9196 out:
9197 	finish_wait(&asoc->wait, &wait);
9198 
9199 	/* Release the association's refcnt.  */
9200 	sctp_association_put(asoc);
9201 
9202 	return err;
9203 
9204 do_dead:
9205 	err = -ESRCH;
9206 	goto out;
9207 
9208 do_error:
9209 	err = -EPIPE;
9210 	goto out;
9211 
9212 do_interrupted:
9213 	err = sock_intr_errno(*timeo_p);
9214 	goto out;
9215 
9216 do_nonblock:
9217 	err = -EAGAIN;
9218 	goto out;
9219 }
9220 
9221 void sctp_data_ready(struct sock *sk)
9222 {
9223 	struct socket_wq *wq;
9224 
9225 	rcu_read_lock();
9226 	wq = rcu_dereference(sk->sk_wq);
9227 	if (skwq_has_sleeper(wq))
9228 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9229 						EPOLLRDNORM | EPOLLRDBAND);
9230 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9231 	rcu_read_unlock();
9232 }
9233 
9234 /* If socket sndbuf has changed, wake up all per association waiters.  */
9235 void sctp_write_space(struct sock *sk)
9236 {
9237 	struct sctp_association *asoc;
9238 
9239 	/* Wake up the tasks in each wait queue.  */
9240 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9241 		__sctp_write_space(asoc);
9242 	}
9243 }
9244 
9245 /* Is there any sndbuf space available on the socket?
9246  *
9247  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9248  * associations on the same socket.  For a UDP-style socket with
9249  * multiple associations, it is possible for it to be "unwriteable"
9250  * prematurely.  I assume that this is acceptable because
9251  * a premature "unwriteable" is better than an accidental "writeable" which
9252  * would cause an unwanted block under certain circumstances.  For the 1-1
9253  * UDP-style sockets or TCP-style sockets, this code should work.
9254  *  - Daisy
9255  */
9256 static bool sctp_writeable(struct sock *sk)
9257 {
9258 	return sk->sk_sndbuf > sk->sk_wmem_queued;
9259 }
9260 
9261 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9262  * returns immediately with EINPROGRESS.
9263  */
9264 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9265 {
9266 	struct sock *sk = asoc->base.sk;
9267 	int err = 0;
9268 	long current_timeo = *timeo_p;
9269 	DEFINE_WAIT(wait);
9270 
9271 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9272 
9273 	/* Increment the association's refcnt.  */
9274 	sctp_association_hold(asoc);
9275 
9276 	for (;;) {
9277 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9278 					  TASK_INTERRUPTIBLE);
9279 		if (!*timeo_p)
9280 			goto do_nonblock;
9281 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9282 			break;
9283 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9284 		    asoc->base.dead)
9285 			goto do_error;
9286 		if (signal_pending(current))
9287 			goto do_interrupted;
9288 
9289 		if (sctp_state(asoc, ESTABLISHED))
9290 			break;
9291 
9292 		/* Let another process have a go.  Since we are going
9293 		 * to sleep anyway.
9294 		 */
9295 		release_sock(sk);
9296 		current_timeo = schedule_timeout(current_timeo);
9297 		lock_sock(sk);
9298 
9299 		*timeo_p = current_timeo;
9300 	}
9301 
9302 out:
9303 	finish_wait(&asoc->wait, &wait);
9304 
9305 	/* Release the association's refcnt.  */
9306 	sctp_association_put(asoc);
9307 
9308 	return err;
9309 
9310 do_error:
9311 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9312 		err = -ETIMEDOUT;
9313 	else
9314 		err = -ECONNREFUSED;
9315 	goto out;
9316 
9317 do_interrupted:
9318 	err = sock_intr_errno(*timeo_p);
9319 	goto out;
9320 
9321 do_nonblock:
9322 	err = -EINPROGRESS;
9323 	goto out;
9324 }
9325 
9326 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9327 {
9328 	struct sctp_endpoint *ep;
9329 	int err = 0;
9330 	DEFINE_WAIT(wait);
9331 
9332 	ep = sctp_sk(sk)->ep;
9333 
9334 
9335 	for (;;) {
9336 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9337 					  TASK_INTERRUPTIBLE);
9338 
9339 		if (list_empty(&ep->asocs)) {
9340 			release_sock(sk);
9341 			timeo = schedule_timeout(timeo);
9342 			lock_sock(sk);
9343 		}
9344 
9345 		err = -EINVAL;
9346 		if (!sctp_sstate(sk, LISTENING))
9347 			break;
9348 
9349 		err = 0;
9350 		if (!list_empty(&ep->asocs))
9351 			break;
9352 
9353 		err = sock_intr_errno(timeo);
9354 		if (signal_pending(current))
9355 			break;
9356 
9357 		err = -EAGAIN;
9358 		if (!timeo)
9359 			break;
9360 	}
9361 
9362 	finish_wait(sk_sleep(sk), &wait);
9363 
9364 	return err;
9365 }
9366 
9367 static void sctp_wait_for_close(struct sock *sk, long timeout)
9368 {
9369 	DEFINE_WAIT(wait);
9370 
9371 	do {
9372 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9373 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9374 			break;
9375 		release_sock(sk);
9376 		timeout = schedule_timeout(timeout);
9377 		lock_sock(sk);
9378 	} while (!signal_pending(current) && timeout);
9379 
9380 	finish_wait(sk_sleep(sk), &wait);
9381 }
9382 
9383 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9384 {
9385 	struct sk_buff *frag;
9386 
9387 	if (!skb->data_len)
9388 		goto done;
9389 
9390 	/* Don't forget the fragments. */
9391 	skb_walk_frags(skb, frag)
9392 		sctp_skb_set_owner_r_frag(frag, sk);
9393 
9394 done:
9395 	sctp_skb_set_owner_r(skb, sk);
9396 }
9397 
9398 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9399 		    struct sctp_association *asoc)
9400 {
9401 	struct inet_sock *inet = inet_sk(sk);
9402 	struct inet_sock *newinet;
9403 	struct sctp_sock *sp = sctp_sk(sk);
9404 	struct sctp_endpoint *ep = sp->ep;
9405 
9406 	newsk->sk_type = sk->sk_type;
9407 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9408 	newsk->sk_flags = sk->sk_flags;
9409 	newsk->sk_tsflags = sk->sk_tsflags;
9410 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9411 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9412 	newsk->sk_reuse = sk->sk_reuse;
9413 	sctp_sk(newsk)->reuse = sp->reuse;
9414 
9415 	newsk->sk_shutdown = sk->sk_shutdown;
9416 	newsk->sk_destruct = sctp_destruct_sock;
9417 	newsk->sk_family = sk->sk_family;
9418 	newsk->sk_protocol = IPPROTO_SCTP;
9419 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9420 	newsk->sk_sndbuf = sk->sk_sndbuf;
9421 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9422 	newsk->sk_lingertime = sk->sk_lingertime;
9423 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9424 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9425 	newsk->sk_rxhash = sk->sk_rxhash;
9426 
9427 	newinet = inet_sk(newsk);
9428 
9429 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9430 	 * getsockname() and getpeername()
9431 	 */
9432 	newinet->inet_sport = inet->inet_sport;
9433 	newinet->inet_saddr = inet->inet_saddr;
9434 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9435 	newinet->inet_dport = htons(asoc->peer.port);
9436 	newinet->pmtudisc = inet->pmtudisc;
9437 	newinet->inet_id = prandom_u32();
9438 
9439 	newinet->uc_ttl = inet->uc_ttl;
9440 	newinet->mc_loop = 1;
9441 	newinet->mc_ttl = 1;
9442 	newinet->mc_index = 0;
9443 	newinet->mc_list = NULL;
9444 
9445 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9446 		net_enable_timestamp();
9447 
9448 	/* Set newsk security attributes from orginal sk and connection
9449 	 * security attribute from ep.
9450 	 */
9451 	security_sctp_sk_clone(ep, sk, newsk);
9452 }
9453 
9454 static inline void sctp_copy_descendant(struct sock *sk_to,
9455 					const struct sock *sk_from)
9456 {
9457 	int ancestor_size = sizeof(struct inet_sock) +
9458 			    sizeof(struct sctp_sock) -
9459 			    offsetof(struct sctp_sock, pd_lobby);
9460 
9461 	if (sk_from->sk_family == PF_INET6)
9462 		ancestor_size += sizeof(struct ipv6_pinfo);
9463 
9464 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9465 }
9466 
9467 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9468  * and its messages to the newsk.
9469  */
9470 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9471 			     struct sctp_association *assoc,
9472 			     enum sctp_socket_type type)
9473 {
9474 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9475 	struct sctp_sock *newsp = sctp_sk(newsk);
9476 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9477 	struct sctp_endpoint *newep = newsp->ep;
9478 	struct sk_buff *skb, *tmp;
9479 	struct sctp_ulpevent *event;
9480 	struct sctp_bind_hashbucket *head;
9481 	int err;
9482 
9483 	/* Migrate socket buffer sizes and all the socket level options to the
9484 	 * new socket.
9485 	 */
9486 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9487 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9488 	/* Brute force copy old sctp opt. */
9489 	sctp_copy_descendant(newsk, oldsk);
9490 
9491 	/* Restore the ep value that was overwritten with the above structure
9492 	 * copy.
9493 	 */
9494 	newsp->ep = newep;
9495 	newsp->hmac = NULL;
9496 
9497 	/* Hook this new socket in to the bind_hash list. */
9498 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9499 						 inet_sk(oldsk)->inet_num)];
9500 	spin_lock_bh(&head->lock);
9501 	pp = sctp_sk(oldsk)->bind_hash;
9502 	sk_add_bind_node(newsk, &pp->owner);
9503 	sctp_sk(newsk)->bind_hash = pp;
9504 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9505 	spin_unlock_bh(&head->lock);
9506 
9507 	/* Copy the bind_addr list from the original endpoint to the new
9508 	 * endpoint so that we can handle restarts properly
9509 	 */
9510 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9511 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9512 	if (err)
9513 		return err;
9514 
9515 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9516 	 * that net->sctp.auth_enable has been changed to 0 by users and
9517 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9518 	 */
9519 	if (oldsp->ep->auth_hmacs) {
9520 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9521 		if (err)
9522 			return err;
9523 	}
9524 
9525 	/* Move any messages in the old socket's receive queue that are for the
9526 	 * peeled off association to the new socket's receive queue.
9527 	 */
9528 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9529 		event = sctp_skb2event(skb);
9530 		if (event->asoc == assoc) {
9531 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9532 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9533 			sctp_skb_set_owner_r_frag(skb, newsk);
9534 		}
9535 	}
9536 
9537 	/* Clean up any messages pending delivery due to partial
9538 	 * delivery.   Three cases:
9539 	 * 1) No partial deliver;  no work.
9540 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9541 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9542 	 */
9543 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9544 
9545 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9546 		struct sk_buff_head *queue;
9547 
9548 		/* Decide which queue to move pd_lobby skbs to. */
9549 		if (assoc->ulpq.pd_mode) {
9550 			queue = &newsp->pd_lobby;
9551 		} else
9552 			queue = &newsk->sk_receive_queue;
9553 
9554 		/* Walk through the pd_lobby, looking for skbs that
9555 		 * need moved to the new socket.
9556 		 */
9557 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9558 			event = sctp_skb2event(skb);
9559 			if (event->asoc == assoc) {
9560 				__skb_unlink(skb, &oldsp->pd_lobby);
9561 				__skb_queue_tail(queue, skb);
9562 				sctp_skb_set_owner_r_frag(skb, newsk);
9563 			}
9564 		}
9565 
9566 		/* Clear up any skbs waiting for the partial
9567 		 * delivery to finish.
9568 		 */
9569 		if (assoc->ulpq.pd_mode)
9570 			sctp_clear_pd(oldsk, NULL);
9571 
9572 	}
9573 
9574 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9575 
9576 	/* Set the type of socket to indicate that it is peeled off from the
9577 	 * original UDP-style socket or created with the accept() call on a
9578 	 * TCP-style socket..
9579 	 */
9580 	newsp->type = type;
9581 
9582 	/* Mark the new socket "in-use" by the user so that any packets
9583 	 * that may arrive on the association after we've moved it are
9584 	 * queued to the backlog.  This prevents a potential race between
9585 	 * backlog processing on the old socket and new-packet processing
9586 	 * on the new socket.
9587 	 *
9588 	 * The caller has just allocated newsk so we can guarantee that other
9589 	 * paths won't try to lock it and then oldsk.
9590 	 */
9591 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9592 	sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9593 	sctp_assoc_migrate(assoc, newsk);
9594 	sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9595 
9596 	/* If the association on the newsk is already closed before accept()
9597 	 * is called, set RCV_SHUTDOWN flag.
9598 	 */
9599 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9600 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9601 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9602 	} else {
9603 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9604 	}
9605 
9606 	release_sock(newsk);
9607 
9608 	return 0;
9609 }
9610 
9611 
9612 /* This proto struct describes the ULP interface for SCTP.  */
9613 struct proto sctp_prot = {
9614 	.name        =	"SCTP",
9615 	.owner       =	THIS_MODULE,
9616 	.close       =	sctp_close,
9617 	.disconnect  =	sctp_disconnect,
9618 	.accept      =	sctp_accept,
9619 	.ioctl       =	sctp_ioctl,
9620 	.init        =	sctp_init_sock,
9621 	.destroy     =	sctp_destroy_sock,
9622 	.shutdown    =	sctp_shutdown,
9623 	.setsockopt  =	sctp_setsockopt,
9624 	.getsockopt  =	sctp_getsockopt,
9625 	.sendmsg     =	sctp_sendmsg,
9626 	.recvmsg     =	sctp_recvmsg,
9627 	.bind        =	sctp_bind,
9628 	.backlog_rcv =	sctp_backlog_rcv,
9629 	.hash        =	sctp_hash,
9630 	.unhash      =	sctp_unhash,
9631 	.no_autobind =	true,
9632 	.obj_size    =  sizeof(struct sctp_sock),
9633 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9634 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9635 				offsetof(struct sctp_sock, subscribe) +
9636 				sizeof_field(struct sctp_sock, initmsg),
9637 	.sysctl_mem  =  sysctl_sctp_mem,
9638 	.sysctl_rmem =  sysctl_sctp_rmem,
9639 	.sysctl_wmem =  sysctl_sctp_wmem,
9640 	.memory_pressure = &sctp_memory_pressure,
9641 	.enter_memory_pressure = sctp_enter_memory_pressure,
9642 	.memory_allocated = &sctp_memory_allocated,
9643 	.sockets_allocated = &sctp_sockets_allocated,
9644 };
9645 
9646 #if IS_ENABLED(CONFIG_IPV6)
9647 
9648 #include <net/transp_v6.h>
9649 static void sctp_v6_destroy_sock(struct sock *sk)
9650 {
9651 	sctp_destroy_sock(sk);
9652 	inet6_destroy_sock(sk);
9653 }
9654 
9655 struct proto sctpv6_prot = {
9656 	.name		= "SCTPv6",
9657 	.owner		= THIS_MODULE,
9658 	.close		= sctp_close,
9659 	.disconnect	= sctp_disconnect,
9660 	.accept		= sctp_accept,
9661 	.ioctl		= sctp_ioctl,
9662 	.init		= sctp_init_sock,
9663 	.destroy	= sctp_v6_destroy_sock,
9664 	.shutdown	= sctp_shutdown,
9665 	.setsockopt	= sctp_setsockopt,
9666 	.getsockopt	= sctp_getsockopt,
9667 	.sendmsg	= sctp_sendmsg,
9668 	.recvmsg	= sctp_recvmsg,
9669 	.bind		= sctp_bind,
9670 	.backlog_rcv	= sctp_backlog_rcv,
9671 	.hash		= sctp_hash,
9672 	.unhash		= sctp_unhash,
9673 	.no_autobind	= true,
9674 	.obj_size	= sizeof(struct sctp6_sock),
9675 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9676 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9677 				offsetof(struct sctp6_sock, sctp.subscribe) +
9678 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9679 	.sysctl_mem	= sysctl_sctp_mem,
9680 	.sysctl_rmem	= sysctl_sctp_rmem,
9681 	.sysctl_wmem	= sysctl_sctp_wmem,
9682 	.memory_pressure = &sctp_memory_pressure,
9683 	.enter_memory_pressure = sctp_enter_memory_pressure,
9684 	.memory_allocated = &sctp_memory_allocated,
9685 	.sockets_allocated = &sctp_sockets_allocated,
9686 };
9687 #endif /* IS_ENABLED(CONFIG_IPV6) */
9688