1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/types.h> 63 #include <linux/kernel.h> 64 #include <linux/wait.h> 65 #include <linux/time.h> 66 #include <linux/ip.h> 67 #include <linux/capability.h> 68 #include <linux/fcntl.h> 69 #include <linux/poll.h> 70 #include <linux/init.h> 71 #include <linux/crypto.h> 72 #include <linux/slab.h> 73 74 #include <net/ip.h> 75 #include <net/icmp.h> 76 #include <net/route.h> 77 #include <net/ipv6.h> 78 #include <net/inet_common.h> 79 80 #include <linux/socket.h> /* for sa_family_t */ 81 #include <net/sock.h> 82 #include <net/sctp/sctp.h> 83 #include <net/sctp/sm.h> 84 85 /* WARNING: Please do not remove the SCTP_STATIC attribute to 86 * any of the functions below as they are used to export functions 87 * used by a project regression testsuite. 88 */ 89 90 /* Forward declarations for internal helper functions. */ 91 static int sctp_writeable(struct sock *sk); 92 static void sctp_wfree(struct sk_buff *skb); 93 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 94 size_t msg_len); 95 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 96 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 97 static int sctp_wait_for_accept(struct sock *sk, long timeo); 98 static void sctp_wait_for_close(struct sock *sk, long timeo); 99 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 100 union sctp_addr *addr, int len); 101 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 102 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 103 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 104 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 105 static int sctp_send_asconf(struct sctp_association *asoc, 106 struct sctp_chunk *chunk); 107 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 108 static int sctp_autobind(struct sock *sk); 109 static void sctp_sock_migrate(struct sock *, struct sock *, 110 struct sctp_association *, sctp_socket_type_t); 111 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 112 113 extern struct kmem_cache *sctp_bucket_cachep; 114 extern long sysctl_sctp_mem[3]; 115 extern int sysctl_sctp_rmem[3]; 116 extern int sysctl_sctp_wmem[3]; 117 118 static int sctp_memory_pressure; 119 static atomic_long_t sctp_memory_allocated; 120 struct percpu_counter sctp_sockets_allocated; 121 122 static void sctp_enter_memory_pressure(struct sock *sk) 123 { 124 sctp_memory_pressure = 1; 125 } 126 127 128 /* Get the sndbuf space available at the time on the association. */ 129 static inline int sctp_wspace(struct sctp_association *asoc) 130 { 131 int amt; 132 133 if (asoc->ep->sndbuf_policy) 134 amt = asoc->sndbuf_used; 135 else 136 amt = sk_wmem_alloc_get(asoc->base.sk); 137 138 if (amt >= asoc->base.sk->sk_sndbuf) { 139 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 140 amt = 0; 141 else { 142 amt = sk_stream_wspace(asoc->base.sk); 143 if (amt < 0) 144 amt = 0; 145 } 146 } else { 147 amt = asoc->base.sk->sk_sndbuf - amt; 148 } 149 return amt; 150 } 151 152 /* Increment the used sndbuf space count of the corresponding association by 153 * the size of the outgoing data chunk. 154 * Also, set the skb destructor for sndbuf accounting later. 155 * 156 * Since it is always 1-1 between chunk and skb, and also a new skb is always 157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 158 * destructor in the data chunk skb for the purpose of the sndbuf space 159 * tracking. 160 */ 161 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 162 { 163 struct sctp_association *asoc = chunk->asoc; 164 struct sock *sk = asoc->base.sk; 165 166 /* The sndbuf space is tracked per association. */ 167 sctp_association_hold(asoc); 168 169 skb_set_owner_w(chunk->skb, sk); 170 171 chunk->skb->destructor = sctp_wfree; 172 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 173 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 174 175 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 176 sizeof(struct sk_buff) + 177 sizeof(struct sctp_chunk); 178 179 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 180 sk->sk_wmem_queued += chunk->skb->truesize; 181 sk_mem_charge(sk, chunk->skb->truesize); 182 } 183 184 /* Verify that this is a valid address. */ 185 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 186 int len) 187 { 188 struct sctp_af *af; 189 190 /* Verify basic sockaddr. */ 191 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 192 if (!af) 193 return -EINVAL; 194 195 /* Is this a valid SCTP address? */ 196 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 197 return -EINVAL; 198 199 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 200 return -EINVAL; 201 202 return 0; 203 } 204 205 /* Look up the association by its id. If this is not a UDP-style 206 * socket, the ID field is always ignored. 207 */ 208 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 209 { 210 struct sctp_association *asoc = NULL; 211 212 /* If this is not a UDP-style socket, assoc id should be ignored. */ 213 if (!sctp_style(sk, UDP)) { 214 /* Return NULL if the socket state is not ESTABLISHED. It 215 * could be a TCP-style listening socket or a socket which 216 * hasn't yet called connect() to establish an association. 217 */ 218 if (!sctp_sstate(sk, ESTABLISHED)) 219 return NULL; 220 221 /* Get the first and the only association from the list. */ 222 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 223 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 224 struct sctp_association, asocs); 225 return asoc; 226 } 227 228 /* Otherwise this is a UDP-style socket. */ 229 if (!id || (id == (sctp_assoc_t)-1)) 230 return NULL; 231 232 spin_lock_bh(&sctp_assocs_id_lock); 233 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 234 spin_unlock_bh(&sctp_assocs_id_lock); 235 236 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 237 return NULL; 238 239 return asoc; 240 } 241 242 /* Look up the transport from an address and an assoc id. If both address and 243 * id are specified, the associations matching the address and the id should be 244 * the same. 245 */ 246 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 247 struct sockaddr_storage *addr, 248 sctp_assoc_t id) 249 { 250 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 251 struct sctp_transport *transport; 252 union sctp_addr *laddr = (union sctp_addr *)addr; 253 254 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 255 laddr, 256 &transport); 257 258 if (!addr_asoc) 259 return NULL; 260 261 id_asoc = sctp_id2assoc(sk, id); 262 if (id_asoc && (id_asoc != addr_asoc)) 263 return NULL; 264 265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 266 (union sctp_addr *)addr); 267 268 return transport; 269 } 270 271 /* API 3.1.2 bind() - UDP Style Syntax 272 * The syntax of bind() is, 273 * 274 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 275 * 276 * sd - the socket descriptor returned by socket(). 277 * addr - the address structure (struct sockaddr_in or struct 278 * sockaddr_in6 [RFC 2553]), 279 * addr_len - the size of the address structure. 280 */ 281 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 282 { 283 int retval = 0; 284 285 sctp_lock_sock(sk); 286 287 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 288 sk, addr, addr_len); 289 290 /* Disallow binding twice. */ 291 if (!sctp_sk(sk)->ep->base.bind_addr.port) 292 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 293 addr_len); 294 else 295 retval = -EINVAL; 296 297 sctp_release_sock(sk); 298 299 return retval; 300 } 301 302 static long sctp_get_port_local(struct sock *, union sctp_addr *); 303 304 /* Verify this is a valid sockaddr. */ 305 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 306 union sctp_addr *addr, int len) 307 { 308 struct sctp_af *af; 309 310 /* Check minimum size. */ 311 if (len < sizeof (struct sockaddr)) 312 return NULL; 313 314 /* V4 mapped address are really of AF_INET family */ 315 if (addr->sa.sa_family == AF_INET6 && 316 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 317 if (!opt->pf->af_supported(AF_INET, opt)) 318 return NULL; 319 } else { 320 /* Does this PF support this AF? */ 321 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 322 return NULL; 323 } 324 325 /* If we get this far, af is valid. */ 326 af = sctp_get_af_specific(addr->sa.sa_family); 327 328 if (len < af->sockaddr_len) 329 return NULL; 330 331 return af; 332 } 333 334 /* Bind a local address either to an endpoint or to an association. */ 335 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 336 { 337 struct sctp_sock *sp = sctp_sk(sk); 338 struct sctp_endpoint *ep = sp->ep; 339 struct sctp_bind_addr *bp = &ep->base.bind_addr; 340 struct sctp_af *af; 341 unsigned short snum; 342 int ret = 0; 343 344 /* Common sockaddr verification. */ 345 af = sctp_sockaddr_af(sp, addr, len); 346 if (!af) { 347 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 348 sk, addr, len); 349 return -EINVAL; 350 } 351 352 snum = ntohs(addr->v4.sin_port); 353 354 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 355 ", port: %d, new port: %d, len: %d)\n", 356 sk, 357 addr, 358 bp->port, snum, 359 len); 360 361 /* PF specific bind() address verification. */ 362 if (!sp->pf->bind_verify(sp, addr)) 363 return -EADDRNOTAVAIL; 364 365 /* We must either be unbound, or bind to the same port. 366 * It's OK to allow 0 ports if we are already bound. 367 * We'll just inhert an already bound port in this case 368 */ 369 if (bp->port) { 370 if (!snum) 371 snum = bp->port; 372 else if (snum != bp->port) { 373 SCTP_DEBUG_PRINTK("sctp_do_bind:" 374 " New port %d does not match existing port " 375 "%d.\n", snum, bp->port); 376 return -EINVAL; 377 } 378 } 379 380 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 381 return -EACCES; 382 383 /* See if the address matches any of the addresses we may have 384 * already bound before checking against other endpoints. 385 */ 386 if (sctp_bind_addr_match(bp, addr, sp)) 387 return -EINVAL; 388 389 /* Make sure we are allowed to bind here. 390 * The function sctp_get_port_local() does duplicate address 391 * detection. 392 */ 393 addr->v4.sin_port = htons(snum); 394 if ((ret = sctp_get_port_local(sk, addr))) { 395 return -EADDRINUSE; 396 } 397 398 /* Refresh ephemeral port. */ 399 if (!bp->port) 400 bp->port = inet_sk(sk)->inet_num; 401 402 /* Add the address to the bind address list. 403 * Use GFP_ATOMIC since BHs will be disabled. 404 */ 405 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 406 407 /* Copy back into socket for getsockname() use. */ 408 if (!ret) { 409 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 410 af->to_sk_saddr(addr, sk); 411 } 412 413 return ret; 414 } 415 416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 417 * 418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 419 * at any one time. If a sender, after sending an ASCONF chunk, decides 420 * it needs to transfer another ASCONF Chunk, it MUST wait until the 421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 422 * subsequent ASCONF. Note this restriction binds each side, so at any 423 * time two ASCONF may be in-transit on any given association (one sent 424 * from each endpoint). 425 */ 426 static int sctp_send_asconf(struct sctp_association *asoc, 427 struct sctp_chunk *chunk) 428 { 429 int retval = 0; 430 431 /* If there is an outstanding ASCONF chunk, queue it for later 432 * transmission. 433 */ 434 if (asoc->addip_last_asconf) { 435 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 436 goto out; 437 } 438 439 /* Hold the chunk until an ASCONF_ACK is received. */ 440 sctp_chunk_hold(chunk); 441 retval = sctp_primitive_ASCONF(asoc, chunk); 442 if (retval) 443 sctp_chunk_free(chunk); 444 else 445 asoc->addip_last_asconf = chunk; 446 447 out: 448 return retval; 449 } 450 451 /* Add a list of addresses as bind addresses to local endpoint or 452 * association. 453 * 454 * Basically run through each address specified in the addrs/addrcnt 455 * array/length pair, determine if it is IPv6 or IPv4 and call 456 * sctp_do_bind() on it. 457 * 458 * If any of them fails, then the operation will be reversed and the 459 * ones that were added will be removed. 460 * 461 * Only sctp_setsockopt_bindx() is supposed to call this function. 462 */ 463 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 464 { 465 int cnt; 466 int retval = 0; 467 void *addr_buf; 468 struct sockaddr *sa_addr; 469 struct sctp_af *af; 470 471 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 472 sk, addrs, addrcnt); 473 474 addr_buf = addrs; 475 for (cnt = 0; cnt < addrcnt; cnt++) { 476 /* The list may contain either IPv4 or IPv6 address; 477 * determine the address length for walking thru the list. 478 */ 479 sa_addr = (struct sockaddr *)addr_buf; 480 af = sctp_get_af_specific(sa_addr->sa_family); 481 if (!af) { 482 retval = -EINVAL; 483 goto err_bindx_add; 484 } 485 486 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 487 af->sockaddr_len); 488 489 addr_buf += af->sockaddr_len; 490 491 err_bindx_add: 492 if (retval < 0) { 493 /* Failed. Cleanup the ones that have been added */ 494 if (cnt > 0) 495 sctp_bindx_rem(sk, addrs, cnt); 496 return retval; 497 } 498 } 499 500 return retval; 501 } 502 503 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 504 * associations that are part of the endpoint indicating that a list of local 505 * addresses are added to the endpoint. 506 * 507 * If any of the addresses is already in the bind address list of the 508 * association, we do not send the chunk for that association. But it will not 509 * affect other associations. 510 * 511 * Only sctp_setsockopt_bindx() is supposed to call this function. 512 */ 513 static int sctp_send_asconf_add_ip(struct sock *sk, 514 struct sockaddr *addrs, 515 int addrcnt) 516 { 517 struct sctp_sock *sp; 518 struct sctp_endpoint *ep; 519 struct sctp_association *asoc; 520 struct sctp_bind_addr *bp; 521 struct sctp_chunk *chunk; 522 struct sctp_sockaddr_entry *laddr; 523 union sctp_addr *addr; 524 union sctp_addr saveaddr; 525 void *addr_buf; 526 struct sctp_af *af; 527 struct list_head *p; 528 int i; 529 int retval = 0; 530 531 if (!sctp_addip_enable) 532 return retval; 533 534 sp = sctp_sk(sk); 535 ep = sp->ep; 536 537 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 538 __func__, sk, addrs, addrcnt); 539 540 list_for_each_entry(asoc, &ep->asocs, asocs) { 541 542 if (!asoc->peer.asconf_capable) 543 continue; 544 545 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 546 continue; 547 548 if (!sctp_state(asoc, ESTABLISHED)) 549 continue; 550 551 /* Check if any address in the packed array of addresses is 552 * in the bind address list of the association. If so, 553 * do not send the asconf chunk to its peer, but continue with 554 * other associations. 555 */ 556 addr_buf = addrs; 557 for (i = 0; i < addrcnt; i++) { 558 addr = (union sctp_addr *)addr_buf; 559 af = sctp_get_af_specific(addr->v4.sin_family); 560 if (!af) { 561 retval = -EINVAL; 562 goto out; 563 } 564 565 if (sctp_assoc_lookup_laddr(asoc, addr)) 566 break; 567 568 addr_buf += af->sockaddr_len; 569 } 570 if (i < addrcnt) 571 continue; 572 573 /* Use the first valid address in bind addr list of 574 * association as Address Parameter of ASCONF CHUNK. 575 */ 576 bp = &asoc->base.bind_addr; 577 p = bp->address_list.next; 578 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 579 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 580 addrcnt, SCTP_PARAM_ADD_IP); 581 if (!chunk) { 582 retval = -ENOMEM; 583 goto out; 584 } 585 586 retval = sctp_send_asconf(asoc, chunk); 587 if (retval) 588 goto out; 589 590 /* Add the new addresses to the bind address list with 591 * use_as_src set to 0. 592 */ 593 addr_buf = addrs; 594 for (i = 0; i < addrcnt; i++) { 595 addr = (union sctp_addr *)addr_buf; 596 af = sctp_get_af_specific(addr->v4.sin_family); 597 memcpy(&saveaddr, addr, af->sockaddr_len); 598 retval = sctp_add_bind_addr(bp, &saveaddr, 599 SCTP_ADDR_NEW, GFP_ATOMIC); 600 addr_buf += af->sockaddr_len; 601 } 602 } 603 604 out: 605 return retval; 606 } 607 608 /* Remove a list of addresses from bind addresses list. Do not remove the 609 * last address. 610 * 611 * Basically run through each address specified in the addrs/addrcnt 612 * array/length pair, determine if it is IPv6 or IPv4 and call 613 * sctp_del_bind() on it. 614 * 615 * If any of them fails, then the operation will be reversed and the 616 * ones that were removed will be added back. 617 * 618 * At least one address has to be left; if only one address is 619 * available, the operation will return -EBUSY. 620 * 621 * Only sctp_setsockopt_bindx() is supposed to call this function. 622 */ 623 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 624 { 625 struct sctp_sock *sp = sctp_sk(sk); 626 struct sctp_endpoint *ep = sp->ep; 627 int cnt; 628 struct sctp_bind_addr *bp = &ep->base.bind_addr; 629 int retval = 0; 630 void *addr_buf; 631 union sctp_addr *sa_addr; 632 struct sctp_af *af; 633 634 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 635 sk, addrs, addrcnt); 636 637 addr_buf = addrs; 638 for (cnt = 0; cnt < addrcnt; cnt++) { 639 /* If the bind address list is empty or if there is only one 640 * bind address, there is nothing more to be removed (we need 641 * at least one address here). 642 */ 643 if (list_empty(&bp->address_list) || 644 (sctp_list_single_entry(&bp->address_list))) { 645 retval = -EBUSY; 646 goto err_bindx_rem; 647 } 648 649 sa_addr = (union sctp_addr *)addr_buf; 650 af = sctp_get_af_specific(sa_addr->sa.sa_family); 651 if (!af) { 652 retval = -EINVAL; 653 goto err_bindx_rem; 654 } 655 656 if (!af->addr_valid(sa_addr, sp, NULL)) { 657 retval = -EADDRNOTAVAIL; 658 goto err_bindx_rem; 659 } 660 661 if (sa_addr->v4.sin_port != htons(bp->port)) { 662 retval = -EINVAL; 663 goto err_bindx_rem; 664 } 665 666 /* FIXME - There is probably a need to check if sk->sk_saddr and 667 * sk->sk_rcv_addr are currently set to one of the addresses to 668 * be removed. This is something which needs to be looked into 669 * when we are fixing the outstanding issues with multi-homing 670 * socket routing and failover schemes. Refer to comments in 671 * sctp_do_bind(). -daisy 672 */ 673 retval = sctp_del_bind_addr(bp, sa_addr); 674 675 addr_buf += af->sockaddr_len; 676 err_bindx_rem: 677 if (retval < 0) { 678 /* Failed. Add the ones that has been removed back */ 679 if (cnt > 0) 680 sctp_bindx_add(sk, addrs, cnt); 681 return retval; 682 } 683 } 684 685 return retval; 686 } 687 688 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 689 * the associations that are part of the endpoint indicating that a list of 690 * local addresses are removed from the endpoint. 691 * 692 * If any of the addresses is already in the bind address list of the 693 * association, we do not send the chunk for that association. But it will not 694 * affect other associations. 695 * 696 * Only sctp_setsockopt_bindx() is supposed to call this function. 697 */ 698 static int sctp_send_asconf_del_ip(struct sock *sk, 699 struct sockaddr *addrs, 700 int addrcnt) 701 { 702 struct sctp_sock *sp; 703 struct sctp_endpoint *ep; 704 struct sctp_association *asoc; 705 struct sctp_transport *transport; 706 struct sctp_bind_addr *bp; 707 struct sctp_chunk *chunk; 708 union sctp_addr *laddr; 709 void *addr_buf; 710 struct sctp_af *af; 711 struct sctp_sockaddr_entry *saddr; 712 int i; 713 int retval = 0; 714 715 if (!sctp_addip_enable) 716 return retval; 717 718 sp = sctp_sk(sk); 719 ep = sp->ep; 720 721 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 722 __func__, sk, addrs, addrcnt); 723 724 list_for_each_entry(asoc, &ep->asocs, asocs) { 725 726 if (!asoc->peer.asconf_capable) 727 continue; 728 729 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 730 continue; 731 732 if (!sctp_state(asoc, ESTABLISHED)) 733 continue; 734 735 /* Check if any address in the packed array of addresses is 736 * not present in the bind address list of the association. 737 * If so, do not send the asconf chunk to its peer, but 738 * continue with other associations. 739 */ 740 addr_buf = addrs; 741 for (i = 0; i < addrcnt; i++) { 742 laddr = (union sctp_addr *)addr_buf; 743 af = sctp_get_af_specific(laddr->v4.sin_family); 744 if (!af) { 745 retval = -EINVAL; 746 goto out; 747 } 748 749 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 750 break; 751 752 addr_buf += af->sockaddr_len; 753 } 754 if (i < addrcnt) 755 continue; 756 757 /* Find one address in the association's bind address list 758 * that is not in the packed array of addresses. This is to 759 * make sure that we do not delete all the addresses in the 760 * association. 761 */ 762 bp = &asoc->base.bind_addr; 763 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 764 addrcnt, sp); 765 if (!laddr) 766 continue; 767 768 /* We do not need RCU protection throughout this loop 769 * because this is done under a socket lock from the 770 * setsockopt call. 771 */ 772 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 773 SCTP_PARAM_DEL_IP); 774 if (!chunk) { 775 retval = -ENOMEM; 776 goto out; 777 } 778 779 /* Reset use_as_src flag for the addresses in the bind address 780 * list that are to be deleted. 781 */ 782 addr_buf = addrs; 783 for (i = 0; i < addrcnt; i++) { 784 laddr = (union sctp_addr *)addr_buf; 785 af = sctp_get_af_specific(laddr->v4.sin_family); 786 list_for_each_entry(saddr, &bp->address_list, list) { 787 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 788 saddr->state = SCTP_ADDR_DEL; 789 } 790 addr_buf += af->sockaddr_len; 791 } 792 793 /* Update the route and saddr entries for all the transports 794 * as some of the addresses in the bind address list are 795 * about to be deleted and cannot be used as source addresses. 796 */ 797 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 798 transports) { 799 dst_release(transport->dst); 800 sctp_transport_route(transport, NULL, 801 sctp_sk(asoc->base.sk)); 802 } 803 804 retval = sctp_send_asconf(asoc, chunk); 805 } 806 out: 807 return retval; 808 } 809 810 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 811 * 812 * API 8.1 813 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 814 * int flags); 815 * 816 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 817 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 818 * or IPv6 addresses. 819 * 820 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 821 * Section 3.1.2 for this usage. 822 * 823 * addrs is a pointer to an array of one or more socket addresses. Each 824 * address is contained in its appropriate structure (i.e. struct 825 * sockaddr_in or struct sockaddr_in6) the family of the address type 826 * must be used to distinguish the address length (note that this 827 * representation is termed a "packed array" of addresses). The caller 828 * specifies the number of addresses in the array with addrcnt. 829 * 830 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 831 * -1, and sets errno to the appropriate error code. 832 * 833 * For SCTP, the port given in each socket address must be the same, or 834 * sctp_bindx() will fail, setting errno to EINVAL. 835 * 836 * The flags parameter is formed from the bitwise OR of zero or more of 837 * the following currently defined flags: 838 * 839 * SCTP_BINDX_ADD_ADDR 840 * 841 * SCTP_BINDX_REM_ADDR 842 * 843 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 844 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 845 * addresses from the association. The two flags are mutually exclusive; 846 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 847 * not remove all addresses from an association; sctp_bindx() will 848 * reject such an attempt with EINVAL. 849 * 850 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 851 * additional addresses with an endpoint after calling bind(). Or use 852 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 853 * socket is associated with so that no new association accepted will be 854 * associated with those addresses. If the endpoint supports dynamic 855 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 856 * endpoint to send the appropriate message to the peer to change the 857 * peers address lists. 858 * 859 * Adding and removing addresses from a connected association is 860 * optional functionality. Implementations that do not support this 861 * functionality should return EOPNOTSUPP. 862 * 863 * Basically do nothing but copying the addresses from user to kernel 864 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 865 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 866 * from userspace. 867 * 868 * We don't use copy_from_user() for optimization: we first do the 869 * sanity checks (buffer size -fast- and access check-healthy 870 * pointer); if all of those succeed, then we can alloc the memory 871 * (expensive operation) needed to copy the data to kernel. Then we do 872 * the copying without checking the user space area 873 * (__copy_from_user()). 874 * 875 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 876 * it. 877 * 878 * sk The sk of the socket 879 * addrs The pointer to the addresses in user land 880 * addrssize Size of the addrs buffer 881 * op Operation to perform (add or remove, see the flags of 882 * sctp_bindx) 883 * 884 * Returns 0 if ok, <0 errno code on error. 885 */ 886 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 887 struct sockaddr __user *addrs, 888 int addrs_size, int op) 889 { 890 struct sockaddr *kaddrs; 891 int err; 892 int addrcnt = 0; 893 int walk_size = 0; 894 struct sockaddr *sa_addr; 895 void *addr_buf; 896 struct sctp_af *af; 897 898 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 899 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 900 901 if (unlikely(addrs_size <= 0)) 902 return -EINVAL; 903 904 /* Check the user passed a healthy pointer. */ 905 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 906 return -EFAULT; 907 908 /* Alloc space for the address array in kernel memory. */ 909 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 910 if (unlikely(!kaddrs)) 911 return -ENOMEM; 912 913 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 914 kfree(kaddrs); 915 return -EFAULT; 916 } 917 918 /* Walk through the addrs buffer and count the number of addresses. */ 919 addr_buf = kaddrs; 920 while (walk_size < addrs_size) { 921 if (walk_size + sizeof(sa_family_t) > addrs_size) { 922 kfree(kaddrs); 923 return -EINVAL; 924 } 925 926 sa_addr = (struct sockaddr *)addr_buf; 927 af = sctp_get_af_specific(sa_addr->sa_family); 928 929 /* If the address family is not supported or if this address 930 * causes the address buffer to overflow return EINVAL. 931 */ 932 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 933 kfree(kaddrs); 934 return -EINVAL; 935 } 936 addrcnt++; 937 addr_buf += af->sockaddr_len; 938 walk_size += af->sockaddr_len; 939 } 940 941 /* Do the work. */ 942 switch (op) { 943 case SCTP_BINDX_ADD_ADDR: 944 err = sctp_bindx_add(sk, kaddrs, addrcnt); 945 if (err) 946 goto out; 947 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 948 break; 949 950 case SCTP_BINDX_REM_ADDR: 951 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 952 if (err) 953 goto out; 954 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 955 break; 956 957 default: 958 err = -EINVAL; 959 break; 960 } 961 962 out: 963 kfree(kaddrs); 964 965 return err; 966 } 967 968 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 969 * 970 * Common routine for handling connect() and sctp_connectx(). 971 * Connect will come in with just a single address. 972 */ 973 static int __sctp_connect(struct sock* sk, 974 struct sockaddr *kaddrs, 975 int addrs_size, 976 sctp_assoc_t *assoc_id) 977 { 978 struct sctp_sock *sp; 979 struct sctp_endpoint *ep; 980 struct sctp_association *asoc = NULL; 981 struct sctp_association *asoc2; 982 struct sctp_transport *transport; 983 union sctp_addr to; 984 struct sctp_af *af; 985 sctp_scope_t scope; 986 long timeo; 987 int err = 0; 988 int addrcnt = 0; 989 int walk_size = 0; 990 union sctp_addr *sa_addr = NULL; 991 void *addr_buf; 992 unsigned short port; 993 unsigned int f_flags = 0; 994 995 sp = sctp_sk(sk); 996 ep = sp->ep; 997 998 /* connect() cannot be done on a socket that is already in ESTABLISHED 999 * state - UDP-style peeled off socket or a TCP-style socket that 1000 * is already connected. 1001 * It cannot be done even on a TCP-style listening socket. 1002 */ 1003 if (sctp_sstate(sk, ESTABLISHED) || 1004 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1005 err = -EISCONN; 1006 goto out_free; 1007 } 1008 1009 /* Walk through the addrs buffer and count the number of addresses. */ 1010 addr_buf = kaddrs; 1011 while (walk_size < addrs_size) { 1012 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1013 err = -EINVAL; 1014 goto out_free; 1015 } 1016 1017 sa_addr = (union sctp_addr *)addr_buf; 1018 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1019 1020 /* If the address family is not supported or if this address 1021 * causes the address buffer to overflow return EINVAL. 1022 */ 1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1024 err = -EINVAL; 1025 goto out_free; 1026 } 1027 1028 port = ntohs(sa_addr->v4.sin_port); 1029 1030 /* Save current address so we can work with it */ 1031 memcpy(&to, sa_addr, af->sockaddr_len); 1032 1033 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1034 if (err) 1035 goto out_free; 1036 1037 /* Make sure the destination port is correctly set 1038 * in all addresses. 1039 */ 1040 if (asoc && asoc->peer.port && asoc->peer.port != port) 1041 goto out_free; 1042 1043 1044 /* Check if there already is a matching association on the 1045 * endpoint (other than the one created here). 1046 */ 1047 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1048 if (asoc2 && asoc2 != asoc) { 1049 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1050 err = -EISCONN; 1051 else 1052 err = -EALREADY; 1053 goto out_free; 1054 } 1055 1056 /* If we could not find a matching association on the endpoint, 1057 * make sure that there is no peeled-off association matching 1058 * the peer address even on another socket. 1059 */ 1060 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1061 err = -EADDRNOTAVAIL; 1062 goto out_free; 1063 } 1064 1065 if (!asoc) { 1066 /* If a bind() or sctp_bindx() is not called prior to 1067 * an sctp_connectx() call, the system picks an 1068 * ephemeral port and will choose an address set 1069 * equivalent to binding with a wildcard address. 1070 */ 1071 if (!ep->base.bind_addr.port) { 1072 if (sctp_autobind(sk)) { 1073 err = -EAGAIN; 1074 goto out_free; 1075 } 1076 } else { 1077 /* 1078 * If an unprivileged user inherits a 1-many 1079 * style socket with open associations on a 1080 * privileged port, it MAY be permitted to 1081 * accept new associations, but it SHOULD NOT 1082 * be permitted to open new associations. 1083 */ 1084 if (ep->base.bind_addr.port < PROT_SOCK && 1085 !capable(CAP_NET_BIND_SERVICE)) { 1086 err = -EACCES; 1087 goto out_free; 1088 } 1089 } 1090 1091 scope = sctp_scope(&to); 1092 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1093 if (!asoc) { 1094 err = -ENOMEM; 1095 goto out_free; 1096 } 1097 1098 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1099 GFP_KERNEL); 1100 if (err < 0) { 1101 goto out_free; 1102 } 1103 1104 } 1105 1106 /* Prime the peer's transport structures. */ 1107 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1108 SCTP_UNKNOWN); 1109 if (!transport) { 1110 err = -ENOMEM; 1111 goto out_free; 1112 } 1113 1114 addrcnt++; 1115 addr_buf += af->sockaddr_len; 1116 walk_size += af->sockaddr_len; 1117 } 1118 1119 /* In case the user of sctp_connectx() wants an association 1120 * id back, assign one now. 1121 */ 1122 if (assoc_id) { 1123 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1124 if (err < 0) 1125 goto out_free; 1126 } 1127 1128 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1129 if (err < 0) { 1130 goto out_free; 1131 } 1132 1133 /* Initialize sk's dport and daddr for getpeername() */ 1134 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1135 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1136 af->to_sk_daddr(sa_addr, sk); 1137 sk->sk_err = 0; 1138 1139 /* in-kernel sockets don't generally have a file allocated to them 1140 * if all they do is call sock_create_kern(). 1141 */ 1142 if (sk->sk_socket->file) 1143 f_flags = sk->sk_socket->file->f_flags; 1144 1145 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1146 1147 err = sctp_wait_for_connect(asoc, &timeo); 1148 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1149 *assoc_id = asoc->assoc_id; 1150 1151 /* Don't free association on exit. */ 1152 asoc = NULL; 1153 1154 out_free: 1155 1156 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1157 " kaddrs: %p err: %d\n", 1158 asoc, kaddrs, err); 1159 if (asoc) 1160 sctp_association_free(asoc); 1161 return err; 1162 } 1163 1164 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1165 * 1166 * API 8.9 1167 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1168 * sctp_assoc_t *asoc); 1169 * 1170 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1171 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1172 * or IPv6 addresses. 1173 * 1174 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1175 * Section 3.1.2 for this usage. 1176 * 1177 * addrs is a pointer to an array of one or more socket addresses. Each 1178 * address is contained in its appropriate structure (i.e. struct 1179 * sockaddr_in or struct sockaddr_in6) the family of the address type 1180 * must be used to distengish the address length (note that this 1181 * representation is termed a "packed array" of addresses). The caller 1182 * specifies the number of addresses in the array with addrcnt. 1183 * 1184 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1185 * the association id of the new association. On failure, sctp_connectx() 1186 * returns -1, and sets errno to the appropriate error code. The assoc_id 1187 * is not touched by the kernel. 1188 * 1189 * For SCTP, the port given in each socket address must be the same, or 1190 * sctp_connectx() will fail, setting errno to EINVAL. 1191 * 1192 * An application can use sctp_connectx to initiate an association with 1193 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1194 * allows a caller to specify multiple addresses at which a peer can be 1195 * reached. The way the SCTP stack uses the list of addresses to set up 1196 * the association is implementation dependant. This function only 1197 * specifies that the stack will try to make use of all the addresses in 1198 * the list when needed. 1199 * 1200 * Note that the list of addresses passed in is only used for setting up 1201 * the association. It does not necessarily equal the set of addresses 1202 * the peer uses for the resulting association. If the caller wants to 1203 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1204 * retrieve them after the association has been set up. 1205 * 1206 * Basically do nothing but copying the addresses from user to kernel 1207 * land and invoking either sctp_connectx(). This is used for tunneling 1208 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1209 * 1210 * We don't use copy_from_user() for optimization: we first do the 1211 * sanity checks (buffer size -fast- and access check-healthy 1212 * pointer); if all of those succeed, then we can alloc the memory 1213 * (expensive operation) needed to copy the data to kernel. Then we do 1214 * the copying without checking the user space area 1215 * (__copy_from_user()). 1216 * 1217 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1218 * it. 1219 * 1220 * sk The sk of the socket 1221 * addrs The pointer to the addresses in user land 1222 * addrssize Size of the addrs buffer 1223 * 1224 * Returns >=0 if ok, <0 errno code on error. 1225 */ 1226 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1227 struct sockaddr __user *addrs, 1228 int addrs_size, 1229 sctp_assoc_t *assoc_id) 1230 { 1231 int err = 0; 1232 struct sockaddr *kaddrs; 1233 1234 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1235 __func__, sk, addrs, addrs_size); 1236 1237 if (unlikely(addrs_size <= 0)) 1238 return -EINVAL; 1239 1240 /* Check the user passed a healthy pointer. */ 1241 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1242 return -EFAULT; 1243 1244 /* Alloc space for the address array in kernel memory. */ 1245 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1246 if (unlikely(!kaddrs)) 1247 return -ENOMEM; 1248 1249 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1250 err = -EFAULT; 1251 } else { 1252 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1253 } 1254 1255 kfree(kaddrs); 1256 1257 return err; 1258 } 1259 1260 /* 1261 * This is an older interface. It's kept for backward compatibility 1262 * to the option that doesn't provide association id. 1263 */ 1264 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1265 struct sockaddr __user *addrs, 1266 int addrs_size) 1267 { 1268 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1269 } 1270 1271 /* 1272 * New interface for the API. The since the API is done with a socket 1273 * option, to make it simple we feed back the association id is as a return 1274 * indication to the call. Error is always negative and association id is 1275 * always positive. 1276 */ 1277 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1278 struct sockaddr __user *addrs, 1279 int addrs_size) 1280 { 1281 sctp_assoc_t assoc_id = 0; 1282 int err = 0; 1283 1284 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1285 1286 if (err) 1287 return err; 1288 else 1289 return assoc_id; 1290 } 1291 1292 /* 1293 * New (hopefully final) interface for the API. 1294 * We use the sctp_getaddrs_old structure so that use-space library 1295 * can avoid any unnecessary allocations. The only defferent part 1296 * is that we store the actual length of the address buffer into the 1297 * addrs_num structure member. That way we can re-use the existing 1298 * code. 1299 */ 1300 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1301 char __user *optval, 1302 int __user *optlen) 1303 { 1304 struct sctp_getaddrs_old param; 1305 sctp_assoc_t assoc_id = 0; 1306 int err = 0; 1307 1308 if (len < sizeof(param)) 1309 return -EINVAL; 1310 1311 if (copy_from_user(¶m, optval, sizeof(param))) 1312 return -EFAULT; 1313 1314 err = __sctp_setsockopt_connectx(sk, 1315 (struct sockaddr __user *)param.addrs, 1316 param.addr_num, &assoc_id); 1317 1318 if (err == 0 || err == -EINPROGRESS) { 1319 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1320 return -EFAULT; 1321 if (put_user(sizeof(assoc_id), optlen)) 1322 return -EFAULT; 1323 } 1324 1325 return err; 1326 } 1327 1328 /* API 3.1.4 close() - UDP Style Syntax 1329 * Applications use close() to perform graceful shutdown (as described in 1330 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1331 * by a UDP-style socket. 1332 * 1333 * The syntax is 1334 * 1335 * ret = close(int sd); 1336 * 1337 * sd - the socket descriptor of the associations to be closed. 1338 * 1339 * To gracefully shutdown a specific association represented by the 1340 * UDP-style socket, an application should use the sendmsg() call, 1341 * passing no user data, but including the appropriate flag in the 1342 * ancillary data (see Section xxxx). 1343 * 1344 * If sd in the close() call is a branched-off socket representing only 1345 * one association, the shutdown is performed on that association only. 1346 * 1347 * 4.1.6 close() - TCP Style Syntax 1348 * 1349 * Applications use close() to gracefully close down an association. 1350 * 1351 * The syntax is: 1352 * 1353 * int close(int sd); 1354 * 1355 * sd - the socket descriptor of the association to be closed. 1356 * 1357 * After an application calls close() on a socket descriptor, no further 1358 * socket operations will succeed on that descriptor. 1359 * 1360 * API 7.1.4 SO_LINGER 1361 * 1362 * An application using the TCP-style socket can use this option to 1363 * perform the SCTP ABORT primitive. The linger option structure is: 1364 * 1365 * struct linger { 1366 * int l_onoff; // option on/off 1367 * int l_linger; // linger time 1368 * }; 1369 * 1370 * To enable the option, set l_onoff to 1. If the l_linger value is set 1371 * to 0, calling close() is the same as the ABORT primitive. If the 1372 * value is set to a negative value, the setsockopt() call will return 1373 * an error. If the value is set to a positive value linger_time, the 1374 * close() can be blocked for at most linger_time ms. If the graceful 1375 * shutdown phase does not finish during this period, close() will 1376 * return but the graceful shutdown phase continues in the system. 1377 */ 1378 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1379 { 1380 struct sctp_endpoint *ep; 1381 struct sctp_association *asoc; 1382 struct list_head *pos, *temp; 1383 1384 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1385 1386 sctp_lock_sock(sk); 1387 sk->sk_shutdown = SHUTDOWN_MASK; 1388 sk->sk_state = SCTP_SS_CLOSING; 1389 1390 ep = sctp_sk(sk)->ep; 1391 1392 /* Walk all associations on an endpoint. */ 1393 list_for_each_safe(pos, temp, &ep->asocs) { 1394 asoc = list_entry(pos, struct sctp_association, asocs); 1395 1396 if (sctp_style(sk, TCP)) { 1397 /* A closed association can still be in the list if 1398 * it belongs to a TCP-style listening socket that is 1399 * not yet accepted. If so, free it. If not, send an 1400 * ABORT or SHUTDOWN based on the linger options. 1401 */ 1402 if (sctp_state(asoc, CLOSED)) { 1403 sctp_unhash_established(asoc); 1404 sctp_association_free(asoc); 1405 continue; 1406 } 1407 } 1408 1409 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1410 struct sctp_chunk *chunk; 1411 1412 chunk = sctp_make_abort_user(asoc, NULL, 0); 1413 if (chunk) 1414 sctp_primitive_ABORT(asoc, chunk); 1415 } else 1416 sctp_primitive_SHUTDOWN(asoc, NULL); 1417 } 1418 1419 /* Clean up any skbs sitting on the receive queue. */ 1420 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1421 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1422 1423 /* On a TCP-style socket, block for at most linger_time if set. */ 1424 if (sctp_style(sk, TCP) && timeout) 1425 sctp_wait_for_close(sk, timeout); 1426 1427 /* This will run the backlog queue. */ 1428 sctp_release_sock(sk); 1429 1430 /* Supposedly, no process has access to the socket, but 1431 * the net layers still may. 1432 */ 1433 sctp_local_bh_disable(); 1434 sctp_bh_lock_sock(sk); 1435 1436 /* Hold the sock, since sk_common_release() will put sock_put() 1437 * and we have just a little more cleanup. 1438 */ 1439 sock_hold(sk); 1440 sk_common_release(sk); 1441 1442 sctp_bh_unlock_sock(sk); 1443 sctp_local_bh_enable(); 1444 1445 sock_put(sk); 1446 1447 SCTP_DBG_OBJCNT_DEC(sock); 1448 } 1449 1450 /* Handle EPIPE error. */ 1451 static int sctp_error(struct sock *sk, int flags, int err) 1452 { 1453 if (err == -EPIPE) 1454 err = sock_error(sk) ? : -EPIPE; 1455 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1456 send_sig(SIGPIPE, current, 0); 1457 return err; 1458 } 1459 1460 /* API 3.1.3 sendmsg() - UDP Style Syntax 1461 * 1462 * An application uses sendmsg() and recvmsg() calls to transmit data to 1463 * and receive data from its peer. 1464 * 1465 * ssize_t sendmsg(int socket, const struct msghdr *message, 1466 * int flags); 1467 * 1468 * socket - the socket descriptor of the endpoint. 1469 * message - pointer to the msghdr structure which contains a single 1470 * user message and possibly some ancillary data. 1471 * 1472 * See Section 5 for complete description of the data 1473 * structures. 1474 * 1475 * flags - flags sent or received with the user message, see Section 1476 * 5 for complete description of the flags. 1477 * 1478 * Note: This function could use a rewrite especially when explicit 1479 * connect support comes in. 1480 */ 1481 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1482 1483 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1484 1485 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1486 struct msghdr *msg, size_t msg_len) 1487 { 1488 struct sctp_sock *sp; 1489 struct sctp_endpoint *ep; 1490 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1491 struct sctp_transport *transport, *chunk_tp; 1492 struct sctp_chunk *chunk; 1493 union sctp_addr to; 1494 struct sockaddr *msg_name = NULL; 1495 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1496 struct sctp_sndrcvinfo *sinfo; 1497 struct sctp_initmsg *sinit; 1498 sctp_assoc_t associd = 0; 1499 sctp_cmsgs_t cmsgs = { NULL }; 1500 int err; 1501 sctp_scope_t scope; 1502 long timeo; 1503 __u16 sinfo_flags = 0; 1504 struct sctp_datamsg *datamsg; 1505 int msg_flags = msg->msg_flags; 1506 1507 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1508 sk, msg, msg_len); 1509 1510 err = 0; 1511 sp = sctp_sk(sk); 1512 ep = sp->ep; 1513 1514 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1515 1516 /* We cannot send a message over a TCP-style listening socket. */ 1517 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1518 err = -EPIPE; 1519 goto out_nounlock; 1520 } 1521 1522 /* Parse out the SCTP CMSGs. */ 1523 err = sctp_msghdr_parse(msg, &cmsgs); 1524 1525 if (err) { 1526 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1527 goto out_nounlock; 1528 } 1529 1530 /* Fetch the destination address for this packet. This 1531 * address only selects the association--it is not necessarily 1532 * the address we will send to. 1533 * For a peeled-off socket, msg_name is ignored. 1534 */ 1535 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1536 int msg_namelen = msg->msg_namelen; 1537 1538 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1539 msg_namelen); 1540 if (err) 1541 return err; 1542 1543 if (msg_namelen > sizeof(to)) 1544 msg_namelen = sizeof(to); 1545 memcpy(&to, msg->msg_name, msg_namelen); 1546 msg_name = msg->msg_name; 1547 } 1548 1549 sinfo = cmsgs.info; 1550 sinit = cmsgs.init; 1551 1552 /* Did the user specify SNDRCVINFO? */ 1553 if (sinfo) { 1554 sinfo_flags = sinfo->sinfo_flags; 1555 associd = sinfo->sinfo_assoc_id; 1556 } 1557 1558 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1559 msg_len, sinfo_flags); 1560 1561 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1562 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1563 err = -EINVAL; 1564 goto out_nounlock; 1565 } 1566 1567 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1568 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1569 * If SCTP_ABORT is set, the message length could be non zero with 1570 * the msg_iov set to the user abort reason. 1571 */ 1572 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1573 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1574 err = -EINVAL; 1575 goto out_nounlock; 1576 } 1577 1578 /* If SCTP_ADDR_OVER is set, there must be an address 1579 * specified in msg_name. 1580 */ 1581 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1582 err = -EINVAL; 1583 goto out_nounlock; 1584 } 1585 1586 transport = NULL; 1587 1588 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1589 1590 sctp_lock_sock(sk); 1591 1592 /* If a msg_name has been specified, assume this is to be used. */ 1593 if (msg_name) { 1594 /* Look for a matching association on the endpoint. */ 1595 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1596 if (!asoc) { 1597 /* If we could not find a matching association on the 1598 * endpoint, make sure that it is not a TCP-style 1599 * socket that already has an association or there is 1600 * no peeled-off association on another socket. 1601 */ 1602 if ((sctp_style(sk, TCP) && 1603 sctp_sstate(sk, ESTABLISHED)) || 1604 sctp_endpoint_is_peeled_off(ep, &to)) { 1605 err = -EADDRNOTAVAIL; 1606 goto out_unlock; 1607 } 1608 } 1609 } else { 1610 asoc = sctp_id2assoc(sk, associd); 1611 if (!asoc) { 1612 err = -EPIPE; 1613 goto out_unlock; 1614 } 1615 } 1616 1617 if (asoc) { 1618 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1619 1620 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1621 * socket that has an association in CLOSED state. This can 1622 * happen when an accepted socket has an association that is 1623 * already CLOSED. 1624 */ 1625 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1626 err = -EPIPE; 1627 goto out_unlock; 1628 } 1629 1630 if (sinfo_flags & SCTP_EOF) { 1631 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1632 asoc); 1633 sctp_primitive_SHUTDOWN(asoc, NULL); 1634 err = 0; 1635 goto out_unlock; 1636 } 1637 if (sinfo_flags & SCTP_ABORT) { 1638 1639 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1640 if (!chunk) { 1641 err = -ENOMEM; 1642 goto out_unlock; 1643 } 1644 1645 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1646 sctp_primitive_ABORT(asoc, chunk); 1647 err = 0; 1648 goto out_unlock; 1649 } 1650 } 1651 1652 /* Do we need to create the association? */ 1653 if (!asoc) { 1654 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1655 1656 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1657 err = -EINVAL; 1658 goto out_unlock; 1659 } 1660 1661 /* Check for invalid stream against the stream counts, 1662 * either the default or the user specified stream counts. 1663 */ 1664 if (sinfo) { 1665 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1666 /* Check against the defaults. */ 1667 if (sinfo->sinfo_stream >= 1668 sp->initmsg.sinit_num_ostreams) { 1669 err = -EINVAL; 1670 goto out_unlock; 1671 } 1672 } else { 1673 /* Check against the requested. */ 1674 if (sinfo->sinfo_stream >= 1675 sinit->sinit_num_ostreams) { 1676 err = -EINVAL; 1677 goto out_unlock; 1678 } 1679 } 1680 } 1681 1682 /* 1683 * API 3.1.2 bind() - UDP Style Syntax 1684 * If a bind() or sctp_bindx() is not called prior to a 1685 * sendmsg() call that initiates a new association, the 1686 * system picks an ephemeral port and will choose an address 1687 * set equivalent to binding with a wildcard address. 1688 */ 1689 if (!ep->base.bind_addr.port) { 1690 if (sctp_autobind(sk)) { 1691 err = -EAGAIN; 1692 goto out_unlock; 1693 } 1694 } else { 1695 /* 1696 * If an unprivileged user inherits a one-to-many 1697 * style socket with open associations on a privileged 1698 * port, it MAY be permitted to accept new associations, 1699 * but it SHOULD NOT be permitted to open new 1700 * associations. 1701 */ 1702 if (ep->base.bind_addr.port < PROT_SOCK && 1703 !capable(CAP_NET_BIND_SERVICE)) { 1704 err = -EACCES; 1705 goto out_unlock; 1706 } 1707 } 1708 1709 scope = sctp_scope(&to); 1710 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1711 if (!new_asoc) { 1712 err = -ENOMEM; 1713 goto out_unlock; 1714 } 1715 asoc = new_asoc; 1716 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1717 if (err < 0) { 1718 err = -ENOMEM; 1719 goto out_free; 1720 } 1721 1722 /* If the SCTP_INIT ancillary data is specified, set all 1723 * the association init values accordingly. 1724 */ 1725 if (sinit) { 1726 if (sinit->sinit_num_ostreams) { 1727 asoc->c.sinit_num_ostreams = 1728 sinit->sinit_num_ostreams; 1729 } 1730 if (sinit->sinit_max_instreams) { 1731 asoc->c.sinit_max_instreams = 1732 sinit->sinit_max_instreams; 1733 } 1734 if (sinit->sinit_max_attempts) { 1735 asoc->max_init_attempts 1736 = sinit->sinit_max_attempts; 1737 } 1738 if (sinit->sinit_max_init_timeo) { 1739 asoc->max_init_timeo = 1740 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1741 } 1742 } 1743 1744 /* Prime the peer's transport structures. */ 1745 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1746 if (!transport) { 1747 err = -ENOMEM; 1748 goto out_free; 1749 } 1750 } 1751 1752 /* ASSERT: we have a valid association at this point. */ 1753 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1754 1755 if (!sinfo) { 1756 /* If the user didn't specify SNDRCVINFO, make up one with 1757 * some defaults. 1758 */ 1759 default_sinfo.sinfo_stream = asoc->default_stream; 1760 default_sinfo.sinfo_flags = asoc->default_flags; 1761 default_sinfo.sinfo_ppid = asoc->default_ppid; 1762 default_sinfo.sinfo_context = asoc->default_context; 1763 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1764 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1765 sinfo = &default_sinfo; 1766 } 1767 1768 /* API 7.1.7, the sndbuf size per association bounds the 1769 * maximum size of data that can be sent in a single send call. 1770 */ 1771 if (msg_len > sk->sk_sndbuf) { 1772 err = -EMSGSIZE; 1773 goto out_free; 1774 } 1775 1776 if (asoc->pmtu_pending) 1777 sctp_assoc_pending_pmtu(asoc); 1778 1779 /* If fragmentation is disabled and the message length exceeds the 1780 * association fragmentation point, return EMSGSIZE. The I-D 1781 * does not specify what this error is, but this looks like 1782 * a great fit. 1783 */ 1784 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1785 err = -EMSGSIZE; 1786 goto out_free; 1787 } 1788 1789 if (sinfo) { 1790 /* Check for invalid stream. */ 1791 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1792 err = -EINVAL; 1793 goto out_free; 1794 } 1795 } 1796 1797 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1798 if (!sctp_wspace(asoc)) { 1799 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1800 if (err) 1801 goto out_free; 1802 } 1803 1804 /* If an address is passed with the sendto/sendmsg call, it is used 1805 * to override the primary destination address in the TCP model, or 1806 * when SCTP_ADDR_OVER flag is set in the UDP model. 1807 */ 1808 if ((sctp_style(sk, TCP) && msg_name) || 1809 (sinfo_flags & SCTP_ADDR_OVER)) { 1810 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1811 if (!chunk_tp) { 1812 err = -EINVAL; 1813 goto out_free; 1814 } 1815 } else 1816 chunk_tp = NULL; 1817 1818 /* Auto-connect, if we aren't connected already. */ 1819 if (sctp_state(asoc, CLOSED)) { 1820 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1821 if (err < 0) 1822 goto out_free; 1823 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1824 } 1825 1826 /* Break the message into multiple chunks of maximum size. */ 1827 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1828 if (!datamsg) { 1829 err = -ENOMEM; 1830 goto out_free; 1831 } 1832 1833 /* Now send the (possibly) fragmented message. */ 1834 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1835 sctp_chunk_hold(chunk); 1836 1837 /* Do accounting for the write space. */ 1838 sctp_set_owner_w(chunk); 1839 1840 chunk->transport = chunk_tp; 1841 } 1842 1843 /* Send it to the lower layers. Note: all chunks 1844 * must either fail or succeed. The lower layer 1845 * works that way today. Keep it that way or this 1846 * breaks. 1847 */ 1848 err = sctp_primitive_SEND(asoc, datamsg); 1849 /* Did the lower layer accept the chunk? */ 1850 if (err) 1851 sctp_datamsg_free(datamsg); 1852 else 1853 sctp_datamsg_put(datamsg); 1854 1855 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1856 1857 if (err) 1858 goto out_free; 1859 else 1860 err = msg_len; 1861 1862 /* If we are already past ASSOCIATE, the lower 1863 * layers are responsible for association cleanup. 1864 */ 1865 goto out_unlock; 1866 1867 out_free: 1868 if (new_asoc) 1869 sctp_association_free(asoc); 1870 out_unlock: 1871 sctp_release_sock(sk); 1872 1873 out_nounlock: 1874 return sctp_error(sk, msg_flags, err); 1875 1876 #if 0 1877 do_sock_err: 1878 if (msg_len) 1879 err = msg_len; 1880 else 1881 err = sock_error(sk); 1882 goto out; 1883 1884 do_interrupted: 1885 if (msg_len) 1886 err = msg_len; 1887 goto out; 1888 #endif /* 0 */ 1889 } 1890 1891 /* This is an extended version of skb_pull() that removes the data from the 1892 * start of a skb even when data is spread across the list of skb's in the 1893 * frag_list. len specifies the total amount of data that needs to be removed. 1894 * when 'len' bytes could be removed from the skb, it returns 0. 1895 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1896 * could not be removed. 1897 */ 1898 static int sctp_skb_pull(struct sk_buff *skb, int len) 1899 { 1900 struct sk_buff *list; 1901 int skb_len = skb_headlen(skb); 1902 int rlen; 1903 1904 if (len <= skb_len) { 1905 __skb_pull(skb, len); 1906 return 0; 1907 } 1908 len -= skb_len; 1909 __skb_pull(skb, skb_len); 1910 1911 skb_walk_frags(skb, list) { 1912 rlen = sctp_skb_pull(list, len); 1913 skb->len -= (len-rlen); 1914 skb->data_len -= (len-rlen); 1915 1916 if (!rlen) 1917 return 0; 1918 1919 len = rlen; 1920 } 1921 1922 return len; 1923 } 1924 1925 /* API 3.1.3 recvmsg() - UDP Style Syntax 1926 * 1927 * ssize_t recvmsg(int socket, struct msghdr *message, 1928 * int flags); 1929 * 1930 * socket - the socket descriptor of the endpoint. 1931 * message - pointer to the msghdr structure which contains a single 1932 * user message and possibly some ancillary data. 1933 * 1934 * See Section 5 for complete description of the data 1935 * structures. 1936 * 1937 * flags - flags sent or received with the user message, see Section 1938 * 5 for complete description of the flags. 1939 */ 1940 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1941 1942 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1943 struct msghdr *msg, size_t len, int noblock, 1944 int flags, int *addr_len) 1945 { 1946 struct sctp_ulpevent *event = NULL; 1947 struct sctp_sock *sp = sctp_sk(sk); 1948 struct sk_buff *skb; 1949 int copied; 1950 int err = 0; 1951 int skb_len; 1952 1953 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1954 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1955 "len", len, "knoblauch", noblock, 1956 "flags", flags, "addr_len", addr_len); 1957 1958 sctp_lock_sock(sk); 1959 1960 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1961 err = -ENOTCONN; 1962 goto out; 1963 } 1964 1965 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1966 if (!skb) 1967 goto out; 1968 1969 /* Get the total length of the skb including any skb's in the 1970 * frag_list. 1971 */ 1972 skb_len = skb->len; 1973 1974 copied = skb_len; 1975 if (copied > len) 1976 copied = len; 1977 1978 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1979 1980 event = sctp_skb2event(skb); 1981 1982 if (err) 1983 goto out_free; 1984 1985 sock_recv_ts_and_drops(msg, sk, skb); 1986 if (sctp_ulpevent_is_notification(event)) { 1987 msg->msg_flags |= MSG_NOTIFICATION; 1988 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1989 } else { 1990 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1991 } 1992 1993 /* Check if we allow SCTP_SNDRCVINFO. */ 1994 if (sp->subscribe.sctp_data_io_event) 1995 sctp_ulpevent_read_sndrcvinfo(event, msg); 1996 #if 0 1997 /* FIXME: we should be calling IP/IPv6 layers. */ 1998 if (sk->sk_protinfo.af_inet.cmsg_flags) 1999 ip_cmsg_recv(msg, skb); 2000 #endif 2001 2002 err = copied; 2003 2004 /* If skb's length exceeds the user's buffer, update the skb and 2005 * push it back to the receive_queue so that the next call to 2006 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2007 */ 2008 if (skb_len > copied) { 2009 msg->msg_flags &= ~MSG_EOR; 2010 if (flags & MSG_PEEK) 2011 goto out_free; 2012 sctp_skb_pull(skb, copied); 2013 skb_queue_head(&sk->sk_receive_queue, skb); 2014 2015 /* When only partial message is copied to the user, increase 2016 * rwnd by that amount. If all the data in the skb is read, 2017 * rwnd is updated when the event is freed. 2018 */ 2019 if (!sctp_ulpevent_is_notification(event)) 2020 sctp_assoc_rwnd_increase(event->asoc, copied); 2021 goto out; 2022 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2023 (event->msg_flags & MSG_EOR)) 2024 msg->msg_flags |= MSG_EOR; 2025 else 2026 msg->msg_flags &= ~MSG_EOR; 2027 2028 out_free: 2029 if (flags & MSG_PEEK) { 2030 /* Release the skb reference acquired after peeking the skb in 2031 * sctp_skb_recv_datagram(). 2032 */ 2033 kfree_skb(skb); 2034 } else { 2035 /* Free the event which includes releasing the reference to 2036 * the owner of the skb, freeing the skb and updating the 2037 * rwnd. 2038 */ 2039 sctp_ulpevent_free(event); 2040 } 2041 out: 2042 sctp_release_sock(sk); 2043 return err; 2044 } 2045 2046 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2047 * 2048 * This option is a on/off flag. If enabled no SCTP message 2049 * fragmentation will be performed. Instead if a message being sent 2050 * exceeds the current PMTU size, the message will NOT be sent and 2051 * instead a error will be indicated to the user. 2052 */ 2053 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2054 char __user *optval, 2055 unsigned int optlen) 2056 { 2057 int val; 2058 2059 if (optlen < sizeof(int)) 2060 return -EINVAL; 2061 2062 if (get_user(val, (int __user *)optval)) 2063 return -EFAULT; 2064 2065 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2066 2067 return 0; 2068 } 2069 2070 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2071 unsigned int optlen) 2072 { 2073 if (optlen > sizeof(struct sctp_event_subscribe)) 2074 return -EINVAL; 2075 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2076 return -EFAULT; 2077 return 0; 2078 } 2079 2080 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2081 * 2082 * This socket option is applicable to the UDP-style socket only. When 2083 * set it will cause associations that are idle for more than the 2084 * specified number of seconds to automatically close. An association 2085 * being idle is defined an association that has NOT sent or received 2086 * user data. The special value of '0' indicates that no automatic 2087 * close of any associations should be performed. The option expects an 2088 * integer defining the number of seconds of idle time before an 2089 * association is closed. 2090 */ 2091 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2092 unsigned int optlen) 2093 { 2094 struct sctp_sock *sp = sctp_sk(sk); 2095 2096 /* Applicable to UDP-style socket only */ 2097 if (sctp_style(sk, TCP)) 2098 return -EOPNOTSUPP; 2099 if (optlen != sizeof(int)) 2100 return -EINVAL; 2101 if (copy_from_user(&sp->autoclose, optval, optlen)) 2102 return -EFAULT; 2103 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */ 2104 sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ); 2105 2106 return 0; 2107 } 2108 2109 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2110 * 2111 * Applications can enable or disable heartbeats for any peer address of 2112 * an association, modify an address's heartbeat interval, force a 2113 * heartbeat to be sent immediately, and adjust the address's maximum 2114 * number of retransmissions sent before an address is considered 2115 * unreachable. The following structure is used to access and modify an 2116 * address's parameters: 2117 * 2118 * struct sctp_paddrparams { 2119 * sctp_assoc_t spp_assoc_id; 2120 * struct sockaddr_storage spp_address; 2121 * uint32_t spp_hbinterval; 2122 * uint16_t spp_pathmaxrxt; 2123 * uint32_t spp_pathmtu; 2124 * uint32_t spp_sackdelay; 2125 * uint32_t spp_flags; 2126 * }; 2127 * 2128 * spp_assoc_id - (one-to-many style socket) This is filled in the 2129 * application, and identifies the association for 2130 * this query. 2131 * spp_address - This specifies which address is of interest. 2132 * spp_hbinterval - This contains the value of the heartbeat interval, 2133 * in milliseconds. If a value of zero 2134 * is present in this field then no changes are to 2135 * be made to this parameter. 2136 * spp_pathmaxrxt - This contains the maximum number of 2137 * retransmissions before this address shall be 2138 * considered unreachable. If a value of zero 2139 * is present in this field then no changes are to 2140 * be made to this parameter. 2141 * spp_pathmtu - When Path MTU discovery is disabled the value 2142 * specified here will be the "fixed" path mtu. 2143 * Note that if the spp_address field is empty 2144 * then all associations on this address will 2145 * have this fixed path mtu set upon them. 2146 * 2147 * spp_sackdelay - When delayed sack is enabled, this value specifies 2148 * the number of milliseconds that sacks will be delayed 2149 * for. This value will apply to all addresses of an 2150 * association if the spp_address field is empty. Note 2151 * also, that if delayed sack is enabled and this 2152 * value is set to 0, no change is made to the last 2153 * recorded delayed sack timer value. 2154 * 2155 * spp_flags - These flags are used to control various features 2156 * on an association. The flag field may contain 2157 * zero or more of the following options. 2158 * 2159 * SPP_HB_ENABLE - Enable heartbeats on the 2160 * specified address. Note that if the address 2161 * field is empty all addresses for the association 2162 * have heartbeats enabled upon them. 2163 * 2164 * SPP_HB_DISABLE - Disable heartbeats on the 2165 * speicifed address. Note that if the address 2166 * field is empty all addresses for the association 2167 * will have their heartbeats disabled. Note also 2168 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2169 * mutually exclusive, only one of these two should 2170 * be specified. Enabling both fields will have 2171 * undetermined results. 2172 * 2173 * SPP_HB_DEMAND - Request a user initiated heartbeat 2174 * to be made immediately. 2175 * 2176 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2177 * heartbeat delayis to be set to the value of 0 2178 * milliseconds. 2179 * 2180 * SPP_PMTUD_ENABLE - This field will enable PMTU 2181 * discovery upon the specified address. Note that 2182 * if the address feild is empty then all addresses 2183 * on the association are effected. 2184 * 2185 * SPP_PMTUD_DISABLE - This field will disable PMTU 2186 * discovery upon the specified address. Note that 2187 * if the address feild is empty then all addresses 2188 * on the association are effected. Not also that 2189 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2190 * exclusive. Enabling both will have undetermined 2191 * results. 2192 * 2193 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2194 * on delayed sack. The time specified in spp_sackdelay 2195 * is used to specify the sack delay for this address. Note 2196 * that if spp_address is empty then all addresses will 2197 * enable delayed sack and take on the sack delay 2198 * value specified in spp_sackdelay. 2199 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2200 * off delayed sack. If the spp_address field is blank then 2201 * delayed sack is disabled for the entire association. Note 2202 * also that this field is mutually exclusive to 2203 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2204 * results. 2205 */ 2206 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2207 struct sctp_transport *trans, 2208 struct sctp_association *asoc, 2209 struct sctp_sock *sp, 2210 int hb_change, 2211 int pmtud_change, 2212 int sackdelay_change) 2213 { 2214 int error; 2215 2216 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2217 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2218 if (error) 2219 return error; 2220 } 2221 2222 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2223 * this field is ignored. Note also that a value of zero indicates 2224 * the current setting should be left unchanged. 2225 */ 2226 if (params->spp_flags & SPP_HB_ENABLE) { 2227 2228 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2229 * set. This lets us use 0 value when this flag 2230 * is set. 2231 */ 2232 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2233 params->spp_hbinterval = 0; 2234 2235 if (params->spp_hbinterval || 2236 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2237 if (trans) { 2238 trans->hbinterval = 2239 msecs_to_jiffies(params->spp_hbinterval); 2240 } else if (asoc) { 2241 asoc->hbinterval = 2242 msecs_to_jiffies(params->spp_hbinterval); 2243 } else { 2244 sp->hbinterval = params->spp_hbinterval; 2245 } 2246 } 2247 } 2248 2249 if (hb_change) { 2250 if (trans) { 2251 trans->param_flags = 2252 (trans->param_flags & ~SPP_HB) | hb_change; 2253 } else if (asoc) { 2254 asoc->param_flags = 2255 (asoc->param_flags & ~SPP_HB) | hb_change; 2256 } else { 2257 sp->param_flags = 2258 (sp->param_flags & ~SPP_HB) | hb_change; 2259 } 2260 } 2261 2262 /* When Path MTU discovery is disabled the value specified here will 2263 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2264 * include the flag SPP_PMTUD_DISABLE for this field to have any 2265 * effect). 2266 */ 2267 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2268 if (trans) { 2269 trans->pathmtu = params->spp_pathmtu; 2270 sctp_assoc_sync_pmtu(asoc); 2271 } else if (asoc) { 2272 asoc->pathmtu = params->spp_pathmtu; 2273 sctp_frag_point(asoc, params->spp_pathmtu); 2274 } else { 2275 sp->pathmtu = params->spp_pathmtu; 2276 } 2277 } 2278 2279 if (pmtud_change) { 2280 if (trans) { 2281 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2282 (params->spp_flags & SPP_PMTUD_ENABLE); 2283 trans->param_flags = 2284 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2285 if (update) { 2286 sctp_transport_pmtu(trans); 2287 sctp_assoc_sync_pmtu(asoc); 2288 } 2289 } else if (asoc) { 2290 asoc->param_flags = 2291 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2292 } else { 2293 sp->param_flags = 2294 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2295 } 2296 } 2297 2298 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2299 * value of this field is ignored. Note also that a value of zero 2300 * indicates the current setting should be left unchanged. 2301 */ 2302 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2303 if (trans) { 2304 trans->sackdelay = 2305 msecs_to_jiffies(params->spp_sackdelay); 2306 } else if (asoc) { 2307 asoc->sackdelay = 2308 msecs_to_jiffies(params->spp_sackdelay); 2309 } else { 2310 sp->sackdelay = params->spp_sackdelay; 2311 } 2312 } 2313 2314 if (sackdelay_change) { 2315 if (trans) { 2316 trans->param_flags = 2317 (trans->param_flags & ~SPP_SACKDELAY) | 2318 sackdelay_change; 2319 } else if (asoc) { 2320 asoc->param_flags = 2321 (asoc->param_flags & ~SPP_SACKDELAY) | 2322 sackdelay_change; 2323 } else { 2324 sp->param_flags = 2325 (sp->param_flags & ~SPP_SACKDELAY) | 2326 sackdelay_change; 2327 } 2328 } 2329 2330 /* Note that a value of zero indicates the current setting should be 2331 left unchanged. 2332 */ 2333 if (params->spp_pathmaxrxt) { 2334 if (trans) { 2335 trans->pathmaxrxt = params->spp_pathmaxrxt; 2336 } else if (asoc) { 2337 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2338 } else { 2339 sp->pathmaxrxt = params->spp_pathmaxrxt; 2340 } 2341 } 2342 2343 return 0; 2344 } 2345 2346 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2347 char __user *optval, 2348 unsigned int optlen) 2349 { 2350 struct sctp_paddrparams params; 2351 struct sctp_transport *trans = NULL; 2352 struct sctp_association *asoc = NULL; 2353 struct sctp_sock *sp = sctp_sk(sk); 2354 int error; 2355 int hb_change, pmtud_change, sackdelay_change; 2356 2357 if (optlen != sizeof(struct sctp_paddrparams)) 2358 return - EINVAL; 2359 2360 if (copy_from_user(¶ms, optval, optlen)) 2361 return -EFAULT; 2362 2363 /* Validate flags and value parameters. */ 2364 hb_change = params.spp_flags & SPP_HB; 2365 pmtud_change = params.spp_flags & SPP_PMTUD; 2366 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2367 2368 if (hb_change == SPP_HB || 2369 pmtud_change == SPP_PMTUD || 2370 sackdelay_change == SPP_SACKDELAY || 2371 params.spp_sackdelay > 500 || 2372 (params.spp_pathmtu && 2373 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2374 return -EINVAL; 2375 2376 /* If an address other than INADDR_ANY is specified, and 2377 * no transport is found, then the request is invalid. 2378 */ 2379 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2380 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2381 params.spp_assoc_id); 2382 if (!trans) 2383 return -EINVAL; 2384 } 2385 2386 /* Get association, if assoc_id != 0 and the socket is a one 2387 * to many style socket, and an association was not found, then 2388 * the id was invalid. 2389 */ 2390 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2391 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2392 return -EINVAL; 2393 2394 /* Heartbeat demand can only be sent on a transport or 2395 * association, but not a socket. 2396 */ 2397 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2398 return -EINVAL; 2399 2400 /* Process parameters. */ 2401 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2402 hb_change, pmtud_change, 2403 sackdelay_change); 2404 2405 if (error) 2406 return error; 2407 2408 /* If changes are for association, also apply parameters to each 2409 * transport. 2410 */ 2411 if (!trans && asoc) { 2412 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2413 transports) { 2414 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2415 hb_change, pmtud_change, 2416 sackdelay_change); 2417 } 2418 } 2419 2420 return 0; 2421 } 2422 2423 /* 2424 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2425 * 2426 * This option will effect the way delayed acks are performed. This 2427 * option allows you to get or set the delayed ack time, in 2428 * milliseconds. It also allows changing the delayed ack frequency. 2429 * Changing the frequency to 1 disables the delayed sack algorithm. If 2430 * the assoc_id is 0, then this sets or gets the endpoints default 2431 * values. If the assoc_id field is non-zero, then the set or get 2432 * effects the specified association for the one to many model (the 2433 * assoc_id field is ignored by the one to one model). Note that if 2434 * sack_delay or sack_freq are 0 when setting this option, then the 2435 * current values will remain unchanged. 2436 * 2437 * struct sctp_sack_info { 2438 * sctp_assoc_t sack_assoc_id; 2439 * uint32_t sack_delay; 2440 * uint32_t sack_freq; 2441 * }; 2442 * 2443 * sack_assoc_id - This parameter, indicates which association the user 2444 * is performing an action upon. Note that if this field's value is 2445 * zero then the endpoints default value is changed (effecting future 2446 * associations only). 2447 * 2448 * sack_delay - This parameter contains the number of milliseconds that 2449 * the user is requesting the delayed ACK timer be set to. Note that 2450 * this value is defined in the standard to be between 200 and 500 2451 * milliseconds. 2452 * 2453 * sack_freq - This parameter contains the number of packets that must 2454 * be received before a sack is sent without waiting for the delay 2455 * timer to expire. The default value for this is 2, setting this 2456 * value to 1 will disable the delayed sack algorithm. 2457 */ 2458 2459 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2460 char __user *optval, unsigned int optlen) 2461 { 2462 struct sctp_sack_info params; 2463 struct sctp_transport *trans = NULL; 2464 struct sctp_association *asoc = NULL; 2465 struct sctp_sock *sp = sctp_sk(sk); 2466 2467 if (optlen == sizeof(struct sctp_sack_info)) { 2468 if (copy_from_user(¶ms, optval, optlen)) 2469 return -EFAULT; 2470 2471 if (params.sack_delay == 0 && params.sack_freq == 0) 2472 return 0; 2473 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2474 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2475 pr_warn("Use struct sctp_sack_info instead\n"); 2476 if (copy_from_user(¶ms, optval, optlen)) 2477 return -EFAULT; 2478 2479 if (params.sack_delay == 0) 2480 params.sack_freq = 1; 2481 else 2482 params.sack_freq = 0; 2483 } else 2484 return - EINVAL; 2485 2486 /* Validate value parameter. */ 2487 if (params.sack_delay > 500) 2488 return -EINVAL; 2489 2490 /* Get association, if sack_assoc_id != 0 and the socket is a one 2491 * to many style socket, and an association was not found, then 2492 * the id was invalid. 2493 */ 2494 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2495 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2496 return -EINVAL; 2497 2498 if (params.sack_delay) { 2499 if (asoc) { 2500 asoc->sackdelay = 2501 msecs_to_jiffies(params.sack_delay); 2502 asoc->param_flags = 2503 (asoc->param_flags & ~SPP_SACKDELAY) | 2504 SPP_SACKDELAY_ENABLE; 2505 } else { 2506 sp->sackdelay = params.sack_delay; 2507 sp->param_flags = 2508 (sp->param_flags & ~SPP_SACKDELAY) | 2509 SPP_SACKDELAY_ENABLE; 2510 } 2511 } 2512 2513 if (params.sack_freq == 1) { 2514 if (asoc) { 2515 asoc->param_flags = 2516 (asoc->param_flags & ~SPP_SACKDELAY) | 2517 SPP_SACKDELAY_DISABLE; 2518 } else { 2519 sp->param_flags = 2520 (sp->param_flags & ~SPP_SACKDELAY) | 2521 SPP_SACKDELAY_DISABLE; 2522 } 2523 } else if (params.sack_freq > 1) { 2524 if (asoc) { 2525 asoc->sackfreq = params.sack_freq; 2526 asoc->param_flags = 2527 (asoc->param_flags & ~SPP_SACKDELAY) | 2528 SPP_SACKDELAY_ENABLE; 2529 } else { 2530 sp->sackfreq = params.sack_freq; 2531 sp->param_flags = 2532 (sp->param_flags & ~SPP_SACKDELAY) | 2533 SPP_SACKDELAY_ENABLE; 2534 } 2535 } 2536 2537 /* If change is for association, also apply to each transport. */ 2538 if (asoc) { 2539 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2540 transports) { 2541 if (params.sack_delay) { 2542 trans->sackdelay = 2543 msecs_to_jiffies(params.sack_delay); 2544 trans->param_flags = 2545 (trans->param_flags & ~SPP_SACKDELAY) | 2546 SPP_SACKDELAY_ENABLE; 2547 } 2548 if (params.sack_freq == 1) { 2549 trans->param_flags = 2550 (trans->param_flags & ~SPP_SACKDELAY) | 2551 SPP_SACKDELAY_DISABLE; 2552 } else if (params.sack_freq > 1) { 2553 trans->sackfreq = params.sack_freq; 2554 trans->param_flags = 2555 (trans->param_flags & ~SPP_SACKDELAY) | 2556 SPP_SACKDELAY_ENABLE; 2557 } 2558 } 2559 } 2560 2561 return 0; 2562 } 2563 2564 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2565 * 2566 * Applications can specify protocol parameters for the default association 2567 * initialization. The option name argument to setsockopt() and getsockopt() 2568 * is SCTP_INITMSG. 2569 * 2570 * Setting initialization parameters is effective only on an unconnected 2571 * socket (for UDP-style sockets only future associations are effected 2572 * by the change). With TCP-style sockets, this option is inherited by 2573 * sockets derived from a listener socket. 2574 */ 2575 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2576 { 2577 struct sctp_initmsg sinit; 2578 struct sctp_sock *sp = sctp_sk(sk); 2579 2580 if (optlen != sizeof(struct sctp_initmsg)) 2581 return -EINVAL; 2582 if (copy_from_user(&sinit, optval, optlen)) 2583 return -EFAULT; 2584 2585 if (sinit.sinit_num_ostreams) 2586 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2587 if (sinit.sinit_max_instreams) 2588 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2589 if (sinit.sinit_max_attempts) 2590 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2591 if (sinit.sinit_max_init_timeo) 2592 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2593 2594 return 0; 2595 } 2596 2597 /* 2598 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2599 * 2600 * Applications that wish to use the sendto() system call may wish to 2601 * specify a default set of parameters that would normally be supplied 2602 * through the inclusion of ancillary data. This socket option allows 2603 * such an application to set the default sctp_sndrcvinfo structure. 2604 * The application that wishes to use this socket option simply passes 2605 * in to this call the sctp_sndrcvinfo structure defined in Section 2606 * 5.2.2) The input parameters accepted by this call include 2607 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2608 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2609 * to this call if the caller is using the UDP model. 2610 */ 2611 static int sctp_setsockopt_default_send_param(struct sock *sk, 2612 char __user *optval, 2613 unsigned int optlen) 2614 { 2615 struct sctp_sndrcvinfo info; 2616 struct sctp_association *asoc; 2617 struct sctp_sock *sp = sctp_sk(sk); 2618 2619 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2620 return -EINVAL; 2621 if (copy_from_user(&info, optval, optlen)) 2622 return -EFAULT; 2623 2624 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2625 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2626 return -EINVAL; 2627 2628 if (asoc) { 2629 asoc->default_stream = info.sinfo_stream; 2630 asoc->default_flags = info.sinfo_flags; 2631 asoc->default_ppid = info.sinfo_ppid; 2632 asoc->default_context = info.sinfo_context; 2633 asoc->default_timetolive = info.sinfo_timetolive; 2634 } else { 2635 sp->default_stream = info.sinfo_stream; 2636 sp->default_flags = info.sinfo_flags; 2637 sp->default_ppid = info.sinfo_ppid; 2638 sp->default_context = info.sinfo_context; 2639 sp->default_timetolive = info.sinfo_timetolive; 2640 } 2641 2642 return 0; 2643 } 2644 2645 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2646 * 2647 * Requests that the local SCTP stack use the enclosed peer address as 2648 * the association primary. The enclosed address must be one of the 2649 * association peer's addresses. 2650 */ 2651 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2652 unsigned int optlen) 2653 { 2654 struct sctp_prim prim; 2655 struct sctp_transport *trans; 2656 2657 if (optlen != sizeof(struct sctp_prim)) 2658 return -EINVAL; 2659 2660 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2661 return -EFAULT; 2662 2663 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2664 if (!trans) 2665 return -EINVAL; 2666 2667 sctp_assoc_set_primary(trans->asoc, trans); 2668 2669 return 0; 2670 } 2671 2672 /* 2673 * 7.1.5 SCTP_NODELAY 2674 * 2675 * Turn on/off any Nagle-like algorithm. This means that packets are 2676 * generally sent as soon as possible and no unnecessary delays are 2677 * introduced, at the cost of more packets in the network. Expects an 2678 * integer boolean flag. 2679 */ 2680 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2681 unsigned int optlen) 2682 { 2683 int val; 2684 2685 if (optlen < sizeof(int)) 2686 return -EINVAL; 2687 if (get_user(val, (int __user *)optval)) 2688 return -EFAULT; 2689 2690 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2691 return 0; 2692 } 2693 2694 /* 2695 * 2696 * 7.1.1 SCTP_RTOINFO 2697 * 2698 * The protocol parameters used to initialize and bound retransmission 2699 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2700 * and modify these parameters. 2701 * All parameters are time values, in milliseconds. A value of 0, when 2702 * modifying the parameters, indicates that the current value should not 2703 * be changed. 2704 * 2705 */ 2706 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2707 { 2708 struct sctp_rtoinfo rtoinfo; 2709 struct sctp_association *asoc; 2710 2711 if (optlen != sizeof (struct sctp_rtoinfo)) 2712 return -EINVAL; 2713 2714 if (copy_from_user(&rtoinfo, optval, optlen)) 2715 return -EFAULT; 2716 2717 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2718 2719 /* Set the values to the specific association */ 2720 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2721 return -EINVAL; 2722 2723 if (asoc) { 2724 if (rtoinfo.srto_initial != 0) 2725 asoc->rto_initial = 2726 msecs_to_jiffies(rtoinfo.srto_initial); 2727 if (rtoinfo.srto_max != 0) 2728 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2729 if (rtoinfo.srto_min != 0) 2730 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2731 } else { 2732 /* If there is no association or the association-id = 0 2733 * set the values to the endpoint. 2734 */ 2735 struct sctp_sock *sp = sctp_sk(sk); 2736 2737 if (rtoinfo.srto_initial != 0) 2738 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2739 if (rtoinfo.srto_max != 0) 2740 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2741 if (rtoinfo.srto_min != 0) 2742 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2743 } 2744 2745 return 0; 2746 } 2747 2748 /* 2749 * 2750 * 7.1.2 SCTP_ASSOCINFO 2751 * 2752 * This option is used to tune the maximum retransmission attempts 2753 * of the association. 2754 * Returns an error if the new association retransmission value is 2755 * greater than the sum of the retransmission value of the peer. 2756 * See [SCTP] for more information. 2757 * 2758 */ 2759 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2760 { 2761 2762 struct sctp_assocparams assocparams; 2763 struct sctp_association *asoc; 2764 2765 if (optlen != sizeof(struct sctp_assocparams)) 2766 return -EINVAL; 2767 if (copy_from_user(&assocparams, optval, optlen)) 2768 return -EFAULT; 2769 2770 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2771 2772 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2773 return -EINVAL; 2774 2775 /* Set the values to the specific association */ 2776 if (asoc) { 2777 if (assocparams.sasoc_asocmaxrxt != 0) { 2778 __u32 path_sum = 0; 2779 int paths = 0; 2780 struct sctp_transport *peer_addr; 2781 2782 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2783 transports) { 2784 path_sum += peer_addr->pathmaxrxt; 2785 paths++; 2786 } 2787 2788 /* Only validate asocmaxrxt if we have more than 2789 * one path/transport. We do this because path 2790 * retransmissions are only counted when we have more 2791 * then one path. 2792 */ 2793 if (paths > 1 && 2794 assocparams.sasoc_asocmaxrxt > path_sum) 2795 return -EINVAL; 2796 2797 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2798 } 2799 2800 if (assocparams.sasoc_cookie_life != 0) { 2801 asoc->cookie_life.tv_sec = 2802 assocparams.sasoc_cookie_life / 1000; 2803 asoc->cookie_life.tv_usec = 2804 (assocparams.sasoc_cookie_life % 1000) 2805 * 1000; 2806 } 2807 } else { 2808 /* Set the values to the endpoint */ 2809 struct sctp_sock *sp = sctp_sk(sk); 2810 2811 if (assocparams.sasoc_asocmaxrxt != 0) 2812 sp->assocparams.sasoc_asocmaxrxt = 2813 assocparams.sasoc_asocmaxrxt; 2814 if (assocparams.sasoc_cookie_life != 0) 2815 sp->assocparams.sasoc_cookie_life = 2816 assocparams.sasoc_cookie_life; 2817 } 2818 return 0; 2819 } 2820 2821 /* 2822 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2823 * 2824 * This socket option is a boolean flag which turns on or off mapped V4 2825 * addresses. If this option is turned on and the socket is type 2826 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2827 * If this option is turned off, then no mapping will be done of V4 2828 * addresses and a user will receive both PF_INET6 and PF_INET type 2829 * addresses on the socket. 2830 */ 2831 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2832 { 2833 int val; 2834 struct sctp_sock *sp = sctp_sk(sk); 2835 2836 if (optlen < sizeof(int)) 2837 return -EINVAL; 2838 if (get_user(val, (int __user *)optval)) 2839 return -EFAULT; 2840 if (val) 2841 sp->v4mapped = 1; 2842 else 2843 sp->v4mapped = 0; 2844 2845 return 0; 2846 } 2847 2848 /* 2849 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2850 * This option will get or set the maximum size to put in any outgoing 2851 * SCTP DATA chunk. If a message is larger than this size it will be 2852 * fragmented by SCTP into the specified size. Note that the underlying 2853 * SCTP implementation may fragment into smaller sized chunks when the 2854 * PMTU of the underlying association is smaller than the value set by 2855 * the user. The default value for this option is '0' which indicates 2856 * the user is NOT limiting fragmentation and only the PMTU will effect 2857 * SCTP's choice of DATA chunk size. Note also that values set larger 2858 * than the maximum size of an IP datagram will effectively let SCTP 2859 * control fragmentation (i.e. the same as setting this option to 0). 2860 * 2861 * The following structure is used to access and modify this parameter: 2862 * 2863 * struct sctp_assoc_value { 2864 * sctp_assoc_t assoc_id; 2865 * uint32_t assoc_value; 2866 * }; 2867 * 2868 * assoc_id: This parameter is ignored for one-to-one style sockets. 2869 * For one-to-many style sockets this parameter indicates which 2870 * association the user is performing an action upon. Note that if 2871 * this field's value is zero then the endpoints default value is 2872 * changed (effecting future associations only). 2873 * assoc_value: This parameter specifies the maximum size in bytes. 2874 */ 2875 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2876 { 2877 struct sctp_assoc_value params; 2878 struct sctp_association *asoc; 2879 struct sctp_sock *sp = sctp_sk(sk); 2880 int val; 2881 2882 if (optlen == sizeof(int)) { 2883 pr_warn("Use of int in maxseg socket option deprecated\n"); 2884 pr_warn("Use struct sctp_assoc_value instead\n"); 2885 if (copy_from_user(&val, optval, optlen)) 2886 return -EFAULT; 2887 params.assoc_id = 0; 2888 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2889 if (copy_from_user(¶ms, optval, optlen)) 2890 return -EFAULT; 2891 val = params.assoc_value; 2892 } else 2893 return -EINVAL; 2894 2895 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2896 return -EINVAL; 2897 2898 asoc = sctp_id2assoc(sk, params.assoc_id); 2899 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2900 return -EINVAL; 2901 2902 if (asoc) { 2903 if (val == 0) { 2904 val = asoc->pathmtu; 2905 val -= sp->pf->af->net_header_len; 2906 val -= sizeof(struct sctphdr) + 2907 sizeof(struct sctp_data_chunk); 2908 } 2909 asoc->user_frag = val; 2910 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 2911 } else { 2912 sp->user_frag = val; 2913 } 2914 2915 return 0; 2916 } 2917 2918 2919 /* 2920 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2921 * 2922 * Requests that the peer mark the enclosed address as the association 2923 * primary. The enclosed address must be one of the association's 2924 * locally bound addresses. The following structure is used to make a 2925 * set primary request: 2926 */ 2927 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2928 unsigned int optlen) 2929 { 2930 struct sctp_sock *sp; 2931 struct sctp_endpoint *ep; 2932 struct sctp_association *asoc = NULL; 2933 struct sctp_setpeerprim prim; 2934 struct sctp_chunk *chunk; 2935 struct sctp_af *af; 2936 int err; 2937 2938 sp = sctp_sk(sk); 2939 ep = sp->ep; 2940 2941 if (!sctp_addip_enable) 2942 return -EPERM; 2943 2944 if (optlen != sizeof(struct sctp_setpeerprim)) 2945 return -EINVAL; 2946 2947 if (copy_from_user(&prim, optval, optlen)) 2948 return -EFAULT; 2949 2950 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2951 if (!asoc) 2952 return -EINVAL; 2953 2954 if (!asoc->peer.asconf_capable) 2955 return -EPERM; 2956 2957 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2958 return -EPERM; 2959 2960 if (!sctp_state(asoc, ESTABLISHED)) 2961 return -ENOTCONN; 2962 2963 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 2964 if (!af) 2965 return -EINVAL; 2966 2967 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 2968 return -EADDRNOTAVAIL; 2969 2970 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2971 return -EADDRNOTAVAIL; 2972 2973 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2974 chunk = sctp_make_asconf_set_prim(asoc, 2975 (union sctp_addr *)&prim.sspp_addr); 2976 if (!chunk) 2977 return -ENOMEM; 2978 2979 err = sctp_send_asconf(asoc, chunk); 2980 2981 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2982 2983 return err; 2984 } 2985 2986 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2987 unsigned int optlen) 2988 { 2989 struct sctp_setadaptation adaptation; 2990 2991 if (optlen != sizeof(struct sctp_setadaptation)) 2992 return -EINVAL; 2993 if (copy_from_user(&adaptation, optval, optlen)) 2994 return -EFAULT; 2995 2996 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2997 2998 return 0; 2999 } 3000 3001 /* 3002 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3003 * 3004 * The context field in the sctp_sndrcvinfo structure is normally only 3005 * used when a failed message is retrieved holding the value that was 3006 * sent down on the actual send call. This option allows the setting of 3007 * a default context on an association basis that will be received on 3008 * reading messages from the peer. This is especially helpful in the 3009 * one-2-many model for an application to keep some reference to an 3010 * internal state machine that is processing messages on the 3011 * association. Note that the setting of this value only effects 3012 * received messages from the peer and does not effect the value that is 3013 * saved with outbound messages. 3014 */ 3015 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3016 unsigned int optlen) 3017 { 3018 struct sctp_assoc_value params; 3019 struct sctp_sock *sp; 3020 struct sctp_association *asoc; 3021 3022 if (optlen != sizeof(struct sctp_assoc_value)) 3023 return -EINVAL; 3024 if (copy_from_user(¶ms, optval, optlen)) 3025 return -EFAULT; 3026 3027 sp = sctp_sk(sk); 3028 3029 if (params.assoc_id != 0) { 3030 asoc = sctp_id2assoc(sk, params.assoc_id); 3031 if (!asoc) 3032 return -EINVAL; 3033 asoc->default_rcv_context = params.assoc_value; 3034 } else { 3035 sp->default_rcv_context = params.assoc_value; 3036 } 3037 3038 return 0; 3039 } 3040 3041 /* 3042 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3043 * 3044 * This options will at a minimum specify if the implementation is doing 3045 * fragmented interleave. Fragmented interleave, for a one to many 3046 * socket, is when subsequent calls to receive a message may return 3047 * parts of messages from different associations. Some implementations 3048 * may allow you to turn this value on or off. If so, when turned off, 3049 * no fragment interleave will occur (which will cause a head of line 3050 * blocking amongst multiple associations sharing the same one to many 3051 * socket). When this option is turned on, then each receive call may 3052 * come from a different association (thus the user must receive data 3053 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3054 * association each receive belongs to. 3055 * 3056 * This option takes a boolean value. A non-zero value indicates that 3057 * fragmented interleave is on. A value of zero indicates that 3058 * fragmented interleave is off. 3059 * 3060 * Note that it is important that an implementation that allows this 3061 * option to be turned on, have it off by default. Otherwise an unaware 3062 * application using the one to many model may become confused and act 3063 * incorrectly. 3064 */ 3065 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3066 char __user *optval, 3067 unsigned int optlen) 3068 { 3069 int val; 3070 3071 if (optlen != sizeof(int)) 3072 return -EINVAL; 3073 if (get_user(val, (int __user *)optval)) 3074 return -EFAULT; 3075 3076 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3077 3078 return 0; 3079 } 3080 3081 /* 3082 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3083 * (SCTP_PARTIAL_DELIVERY_POINT) 3084 * 3085 * This option will set or get the SCTP partial delivery point. This 3086 * point is the size of a message where the partial delivery API will be 3087 * invoked to help free up rwnd space for the peer. Setting this to a 3088 * lower value will cause partial deliveries to happen more often. The 3089 * calls argument is an integer that sets or gets the partial delivery 3090 * point. Note also that the call will fail if the user attempts to set 3091 * this value larger than the socket receive buffer size. 3092 * 3093 * Note that any single message having a length smaller than or equal to 3094 * the SCTP partial delivery point will be delivered in one single read 3095 * call as long as the user provided buffer is large enough to hold the 3096 * message. 3097 */ 3098 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3099 char __user *optval, 3100 unsigned int optlen) 3101 { 3102 u32 val; 3103 3104 if (optlen != sizeof(u32)) 3105 return -EINVAL; 3106 if (get_user(val, (int __user *)optval)) 3107 return -EFAULT; 3108 3109 /* Note: We double the receive buffer from what the user sets 3110 * it to be, also initial rwnd is based on rcvbuf/2. 3111 */ 3112 if (val > (sk->sk_rcvbuf >> 1)) 3113 return -EINVAL; 3114 3115 sctp_sk(sk)->pd_point = val; 3116 3117 return 0; /* is this the right error code? */ 3118 } 3119 3120 /* 3121 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3122 * 3123 * This option will allow a user to change the maximum burst of packets 3124 * that can be emitted by this association. Note that the default value 3125 * is 4, and some implementations may restrict this setting so that it 3126 * can only be lowered. 3127 * 3128 * NOTE: This text doesn't seem right. Do this on a socket basis with 3129 * future associations inheriting the socket value. 3130 */ 3131 static int sctp_setsockopt_maxburst(struct sock *sk, 3132 char __user *optval, 3133 unsigned int optlen) 3134 { 3135 struct sctp_assoc_value params; 3136 struct sctp_sock *sp; 3137 struct sctp_association *asoc; 3138 int val; 3139 int assoc_id = 0; 3140 3141 if (optlen == sizeof(int)) { 3142 pr_warn("Use of int in max_burst socket option deprecated\n"); 3143 pr_warn("Use struct sctp_assoc_value instead\n"); 3144 if (copy_from_user(&val, optval, optlen)) 3145 return -EFAULT; 3146 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3147 if (copy_from_user(¶ms, optval, optlen)) 3148 return -EFAULT; 3149 val = params.assoc_value; 3150 assoc_id = params.assoc_id; 3151 } else 3152 return -EINVAL; 3153 3154 sp = sctp_sk(sk); 3155 3156 if (assoc_id != 0) { 3157 asoc = sctp_id2assoc(sk, assoc_id); 3158 if (!asoc) 3159 return -EINVAL; 3160 asoc->max_burst = val; 3161 } else 3162 sp->max_burst = val; 3163 3164 return 0; 3165 } 3166 3167 /* 3168 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3169 * 3170 * This set option adds a chunk type that the user is requesting to be 3171 * received only in an authenticated way. Changes to the list of chunks 3172 * will only effect future associations on the socket. 3173 */ 3174 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3175 char __user *optval, 3176 unsigned int optlen) 3177 { 3178 struct sctp_authchunk val; 3179 3180 if (!sctp_auth_enable) 3181 return -EACCES; 3182 3183 if (optlen != sizeof(struct sctp_authchunk)) 3184 return -EINVAL; 3185 if (copy_from_user(&val, optval, optlen)) 3186 return -EFAULT; 3187 3188 switch (val.sauth_chunk) { 3189 case SCTP_CID_INIT: 3190 case SCTP_CID_INIT_ACK: 3191 case SCTP_CID_SHUTDOWN_COMPLETE: 3192 case SCTP_CID_AUTH: 3193 return -EINVAL; 3194 } 3195 3196 /* add this chunk id to the endpoint */ 3197 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3198 } 3199 3200 /* 3201 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3202 * 3203 * This option gets or sets the list of HMAC algorithms that the local 3204 * endpoint requires the peer to use. 3205 */ 3206 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3207 char __user *optval, 3208 unsigned int optlen) 3209 { 3210 struct sctp_hmacalgo *hmacs; 3211 u32 idents; 3212 int err; 3213 3214 if (!sctp_auth_enable) 3215 return -EACCES; 3216 3217 if (optlen < sizeof(struct sctp_hmacalgo)) 3218 return -EINVAL; 3219 3220 hmacs = kmalloc(optlen, GFP_KERNEL); 3221 if (!hmacs) 3222 return -ENOMEM; 3223 3224 if (copy_from_user(hmacs, optval, optlen)) { 3225 err = -EFAULT; 3226 goto out; 3227 } 3228 3229 idents = hmacs->shmac_num_idents; 3230 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3231 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3232 err = -EINVAL; 3233 goto out; 3234 } 3235 3236 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3237 out: 3238 kfree(hmacs); 3239 return err; 3240 } 3241 3242 /* 3243 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3244 * 3245 * This option will set a shared secret key which is used to build an 3246 * association shared key. 3247 */ 3248 static int sctp_setsockopt_auth_key(struct sock *sk, 3249 char __user *optval, 3250 unsigned int optlen) 3251 { 3252 struct sctp_authkey *authkey; 3253 struct sctp_association *asoc; 3254 int ret; 3255 3256 if (!sctp_auth_enable) 3257 return -EACCES; 3258 3259 if (optlen <= sizeof(struct sctp_authkey)) 3260 return -EINVAL; 3261 3262 authkey = kmalloc(optlen, GFP_KERNEL); 3263 if (!authkey) 3264 return -ENOMEM; 3265 3266 if (copy_from_user(authkey, optval, optlen)) { 3267 ret = -EFAULT; 3268 goto out; 3269 } 3270 3271 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3272 ret = -EINVAL; 3273 goto out; 3274 } 3275 3276 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3277 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3278 ret = -EINVAL; 3279 goto out; 3280 } 3281 3282 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3283 out: 3284 kfree(authkey); 3285 return ret; 3286 } 3287 3288 /* 3289 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3290 * 3291 * This option will get or set the active shared key to be used to build 3292 * the association shared key. 3293 */ 3294 static int sctp_setsockopt_active_key(struct sock *sk, 3295 char __user *optval, 3296 unsigned int optlen) 3297 { 3298 struct sctp_authkeyid val; 3299 struct sctp_association *asoc; 3300 3301 if (!sctp_auth_enable) 3302 return -EACCES; 3303 3304 if (optlen != sizeof(struct sctp_authkeyid)) 3305 return -EINVAL; 3306 if (copy_from_user(&val, optval, optlen)) 3307 return -EFAULT; 3308 3309 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3310 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3311 return -EINVAL; 3312 3313 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3314 val.scact_keynumber); 3315 } 3316 3317 /* 3318 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3319 * 3320 * This set option will delete a shared secret key from use. 3321 */ 3322 static int sctp_setsockopt_del_key(struct sock *sk, 3323 char __user *optval, 3324 unsigned int optlen) 3325 { 3326 struct sctp_authkeyid val; 3327 struct sctp_association *asoc; 3328 3329 if (!sctp_auth_enable) 3330 return -EACCES; 3331 3332 if (optlen != sizeof(struct sctp_authkeyid)) 3333 return -EINVAL; 3334 if (copy_from_user(&val, optval, optlen)) 3335 return -EFAULT; 3336 3337 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3338 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3339 return -EINVAL; 3340 3341 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3342 val.scact_keynumber); 3343 3344 } 3345 3346 3347 /* API 6.2 setsockopt(), getsockopt() 3348 * 3349 * Applications use setsockopt() and getsockopt() to set or retrieve 3350 * socket options. Socket options are used to change the default 3351 * behavior of sockets calls. They are described in Section 7. 3352 * 3353 * The syntax is: 3354 * 3355 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3356 * int __user *optlen); 3357 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3358 * int optlen); 3359 * 3360 * sd - the socket descript. 3361 * level - set to IPPROTO_SCTP for all SCTP options. 3362 * optname - the option name. 3363 * optval - the buffer to store the value of the option. 3364 * optlen - the size of the buffer. 3365 */ 3366 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3367 char __user *optval, unsigned int optlen) 3368 { 3369 int retval = 0; 3370 3371 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3372 sk, optname); 3373 3374 /* I can hardly begin to describe how wrong this is. This is 3375 * so broken as to be worse than useless. The API draft 3376 * REALLY is NOT helpful here... I am not convinced that the 3377 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3378 * are at all well-founded. 3379 */ 3380 if (level != SOL_SCTP) { 3381 struct sctp_af *af = sctp_sk(sk)->pf->af; 3382 retval = af->setsockopt(sk, level, optname, optval, optlen); 3383 goto out_nounlock; 3384 } 3385 3386 sctp_lock_sock(sk); 3387 3388 switch (optname) { 3389 case SCTP_SOCKOPT_BINDX_ADD: 3390 /* 'optlen' is the size of the addresses buffer. */ 3391 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3392 optlen, SCTP_BINDX_ADD_ADDR); 3393 break; 3394 3395 case SCTP_SOCKOPT_BINDX_REM: 3396 /* 'optlen' is the size of the addresses buffer. */ 3397 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3398 optlen, SCTP_BINDX_REM_ADDR); 3399 break; 3400 3401 case SCTP_SOCKOPT_CONNECTX_OLD: 3402 /* 'optlen' is the size of the addresses buffer. */ 3403 retval = sctp_setsockopt_connectx_old(sk, 3404 (struct sockaddr __user *)optval, 3405 optlen); 3406 break; 3407 3408 case SCTP_SOCKOPT_CONNECTX: 3409 /* 'optlen' is the size of the addresses buffer. */ 3410 retval = sctp_setsockopt_connectx(sk, 3411 (struct sockaddr __user *)optval, 3412 optlen); 3413 break; 3414 3415 case SCTP_DISABLE_FRAGMENTS: 3416 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3417 break; 3418 3419 case SCTP_EVENTS: 3420 retval = sctp_setsockopt_events(sk, optval, optlen); 3421 break; 3422 3423 case SCTP_AUTOCLOSE: 3424 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3425 break; 3426 3427 case SCTP_PEER_ADDR_PARAMS: 3428 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3429 break; 3430 3431 case SCTP_DELAYED_SACK: 3432 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3433 break; 3434 case SCTP_PARTIAL_DELIVERY_POINT: 3435 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3436 break; 3437 3438 case SCTP_INITMSG: 3439 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3440 break; 3441 case SCTP_DEFAULT_SEND_PARAM: 3442 retval = sctp_setsockopt_default_send_param(sk, optval, 3443 optlen); 3444 break; 3445 case SCTP_PRIMARY_ADDR: 3446 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3447 break; 3448 case SCTP_SET_PEER_PRIMARY_ADDR: 3449 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3450 break; 3451 case SCTP_NODELAY: 3452 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3453 break; 3454 case SCTP_RTOINFO: 3455 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3456 break; 3457 case SCTP_ASSOCINFO: 3458 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3459 break; 3460 case SCTP_I_WANT_MAPPED_V4_ADDR: 3461 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3462 break; 3463 case SCTP_MAXSEG: 3464 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3465 break; 3466 case SCTP_ADAPTATION_LAYER: 3467 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3468 break; 3469 case SCTP_CONTEXT: 3470 retval = sctp_setsockopt_context(sk, optval, optlen); 3471 break; 3472 case SCTP_FRAGMENT_INTERLEAVE: 3473 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3474 break; 3475 case SCTP_MAX_BURST: 3476 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3477 break; 3478 case SCTP_AUTH_CHUNK: 3479 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3480 break; 3481 case SCTP_HMAC_IDENT: 3482 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3483 break; 3484 case SCTP_AUTH_KEY: 3485 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3486 break; 3487 case SCTP_AUTH_ACTIVE_KEY: 3488 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3489 break; 3490 case SCTP_AUTH_DELETE_KEY: 3491 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3492 break; 3493 default: 3494 retval = -ENOPROTOOPT; 3495 break; 3496 } 3497 3498 sctp_release_sock(sk); 3499 3500 out_nounlock: 3501 return retval; 3502 } 3503 3504 /* API 3.1.6 connect() - UDP Style Syntax 3505 * 3506 * An application may use the connect() call in the UDP model to initiate an 3507 * association without sending data. 3508 * 3509 * The syntax is: 3510 * 3511 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3512 * 3513 * sd: the socket descriptor to have a new association added to. 3514 * 3515 * nam: the address structure (either struct sockaddr_in or struct 3516 * sockaddr_in6 defined in RFC2553 [7]). 3517 * 3518 * len: the size of the address. 3519 */ 3520 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3521 int addr_len) 3522 { 3523 int err = 0; 3524 struct sctp_af *af; 3525 3526 sctp_lock_sock(sk); 3527 3528 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3529 __func__, sk, addr, addr_len); 3530 3531 /* Validate addr_len before calling common connect/connectx routine. */ 3532 af = sctp_get_af_specific(addr->sa_family); 3533 if (!af || addr_len < af->sockaddr_len) { 3534 err = -EINVAL; 3535 } else { 3536 /* Pass correct addr len to common routine (so it knows there 3537 * is only one address being passed. 3538 */ 3539 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3540 } 3541 3542 sctp_release_sock(sk); 3543 return err; 3544 } 3545 3546 /* FIXME: Write comments. */ 3547 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3548 { 3549 return -EOPNOTSUPP; /* STUB */ 3550 } 3551 3552 /* 4.1.4 accept() - TCP Style Syntax 3553 * 3554 * Applications use accept() call to remove an established SCTP 3555 * association from the accept queue of the endpoint. A new socket 3556 * descriptor will be returned from accept() to represent the newly 3557 * formed association. 3558 */ 3559 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3560 { 3561 struct sctp_sock *sp; 3562 struct sctp_endpoint *ep; 3563 struct sock *newsk = NULL; 3564 struct sctp_association *asoc; 3565 long timeo; 3566 int error = 0; 3567 3568 sctp_lock_sock(sk); 3569 3570 sp = sctp_sk(sk); 3571 ep = sp->ep; 3572 3573 if (!sctp_style(sk, TCP)) { 3574 error = -EOPNOTSUPP; 3575 goto out; 3576 } 3577 3578 if (!sctp_sstate(sk, LISTENING)) { 3579 error = -EINVAL; 3580 goto out; 3581 } 3582 3583 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3584 3585 error = sctp_wait_for_accept(sk, timeo); 3586 if (error) 3587 goto out; 3588 3589 /* We treat the list of associations on the endpoint as the accept 3590 * queue and pick the first association on the list. 3591 */ 3592 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3593 3594 newsk = sp->pf->create_accept_sk(sk, asoc); 3595 if (!newsk) { 3596 error = -ENOMEM; 3597 goto out; 3598 } 3599 3600 /* Populate the fields of the newsk from the oldsk and migrate the 3601 * asoc to the newsk. 3602 */ 3603 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3604 3605 out: 3606 sctp_release_sock(sk); 3607 *err = error; 3608 return newsk; 3609 } 3610 3611 /* The SCTP ioctl handler. */ 3612 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3613 { 3614 int rc = -ENOTCONN; 3615 3616 sctp_lock_sock(sk); 3617 3618 /* 3619 * SEQPACKET-style sockets in LISTENING state are valid, for 3620 * SCTP, so only discard TCP-style sockets in LISTENING state. 3621 */ 3622 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3623 goto out; 3624 3625 switch (cmd) { 3626 case SIOCINQ: { 3627 struct sk_buff *skb; 3628 unsigned int amount = 0; 3629 3630 skb = skb_peek(&sk->sk_receive_queue); 3631 if (skb != NULL) { 3632 /* 3633 * We will only return the amount of this packet since 3634 * that is all that will be read. 3635 */ 3636 amount = skb->len; 3637 } 3638 rc = put_user(amount, (int __user *)arg); 3639 break; 3640 } 3641 default: 3642 rc = -ENOIOCTLCMD; 3643 break; 3644 } 3645 out: 3646 sctp_release_sock(sk); 3647 return rc; 3648 } 3649 3650 /* This is the function which gets called during socket creation to 3651 * initialized the SCTP-specific portion of the sock. 3652 * The sock structure should already be zero-filled memory. 3653 */ 3654 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3655 { 3656 struct sctp_endpoint *ep; 3657 struct sctp_sock *sp; 3658 3659 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3660 3661 sp = sctp_sk(sk); 3662 3663 /* Initialize the SCTP per socket area. */ 3664 switch (sk->sk_type) { 3665 case SOCK_SEQPACKET: 3666 sp->type = SCTP_SOCKET_UDP; 3667 break; 3668 case SOCK_STREAM: 3669 sp->type = SCTP_SOCKET_TCP; 3670 break; 3671 default: 3672 return -ESOCKTNOSUPPORT; 3673 } 3674 3675 /* Initialize default send parameters. These parameters can be 3676 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3677 */ 3678 sp->default_stream = 0; 3679 sp->default_ppid = 0; 3680 sp->default_flags = 0; 3681 sp->default_context = 0; 3682 sp->default_timetolive = 0; 3683 3684 sp->default_rcv_context = 0; 3685 sp->max_burst = sctp_max_burst; 3686 3687 /* Initialize default setup parameters. These parameters 3688 * can be modified with the SCTP_INITMSG socket option or 3689 * overridden by the SCTP_INIT CMSG. 3690 */ 3691 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3692 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3693 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3694 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3695 3696 /* Initialize default RTO related parameters. These parameters can 3697 * be modified for with the SCTP_RTOINFO socket option. 3698 */ 3699 sp->rtoinfo.srto_initial = sctp_rto_initial; 3700 sp->rtoinfo.srto_max = sctp_rto_max; 3701 sp->rtoinfo.srto_min = sctp_rto_min; 3702 3703 /* Initialize default association related parameters. These parameters 3704 * can be modified with the SCTP_ASSOCINFO socket option. 3705 */ 3706 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3707 sp->assocparams.sasoc_number_peer_destinations = 0; 3708 sp->assocparams.sasoc_peer_rwnd = 0; 3709 sp->assocparams.sasoc_local_rwnd = 0; 3710 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3711 3712 /* Initialize default event subscriptions. By default, all the 3713 * options are off. 3714 */ 3715 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3716 3717 /* Default Peer Address Parameters. These defaults can 3718 * be modified via SCTP_PEER_ADDR_PARAMS 3719 */ 3720 sp->hbinterval = sctp_hb_interval; 3721 sp->pathmaxrxt = sctp_max_retrans_path; 3722 sp->pathmtu = 0; // allow default discovery 3723 sp->sackdelay = sctp_sack_timeout; 3724 sp->sackfreq = 2; 3725 sp->param_flags = SPP_HB_ENABLE | 3726 SPP_PMTUD_ENABLE | 3727 SPP_SACKDELAY_ENABLE; 3728 3729 /* If enabled no SCTP message fragmentation will be performed. 3730 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3731 */ 3732 sp->disable_fragments = 0; 3733 3734 /* Enable Nagle algorithm by default. */ 3735 sp->nodelay = 0; 3736 3737 /* Enable by default. */ 3738 sp->v4mapped = 1; 3739 3740 /* Auto-close idle associations after the configured 3741 * number of seconds. A value of 0 disables this 3742 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3743 * for UDP-style sockets only. 3744 */ 3745 sp->autoclose = 0; 3746 3747 /* User specified fragmentation limit. */ 3748 sp->user_frag = 0; 3749 3750 sp->adaptation_ind = 0; 3751 3752 sp->pf = sctp_get_pf_specific(sk->sk_family); 3753 3754 /* Control variables for partial data delivery. */ 3755 atomic_set(&sp->pd_mode, 0); 3756 skb_queue_head_init(&sp->pd_lobby); 3757 sp->frag_interleave = 0; 3758 3759 /* Create a per socket endpoint structure. Even if we 3760 * change the data structure relationships, this may still 3761 * be useful for storing pre-connect address information. 3762 */ 3763 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3764 if (!ep) 3765 return -ENOMEM; 3766 3767 sp->ep = ep; 3768 sp->hmac = NULL; 3769 3770 SCTP_DBG_OBJCNT_INC(sock); 3771 3772 local_bh_disable(); 3773 percpu_counter_inc(&sctp_sockets_allocated); 3774 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3775 local_bh_enable(); 3776 3777 return 0; 3778 } 3779 3780 /* Cleanup any SCTP per socket resources. */ 3781 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3782 { 3783 struct sctp_endpoint *ep; 3784 3785 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3786 3787 /* Release our hold on the endpoint. */ 3788 ep = sctp_sk(sk)->ep; 3789 sctp_endpoint_free(ep); 3790 local_bh_disable(); 3791 percpu_counter_dec(&sctp_sockets_allocated); 3792 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3793 local_bh_enable(); 3794 } 3795 3796 /* API 4.1.7 shutdown() - TCP Style Syntax 3797 * int shutdown(int socket, int how); 3798 * 3799 * sd - the socket descriptor of the association to be closed. 3800 * how - Specifies the type of shutdown. The values are 3801 * as follows: 3802 * SHUT_RD 3803 * Disables further receive operations. No SCTP 3804 * protocol action is taken. 3805 * SHUT_WR 3806 * Disables further send operations, and initiates 3807 * the SCTP shutdown sequence. 3808 * SHUT_RDWR 3809 * Disables further send and receive operations 3810 * and initiates the SCTP shutdown sequence. 3811 */ 3812 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3813 { 3814 struct sctp_endpoint *ep; 3815 struct sctp_association *asoc; 3816 3817 if (!sctp_style(sk, TCP)) 3818 return; 3819 3820 if (how & SEND_SHUTDOWN) { 3821 ep = sctp_sk(sk)->ep; 3822 if (!list_empty(&ep->asocs)) { 3823 asoc = list_entry(ep->asocs.next, 3824 struct sctp_association, asocs); 3825 sctp_primitive_SHUTDOWN(asoc, NULL); 3826 } 3827 } 3828 } 3829 3830 /* 7.2.1 Association Status (SCTP_STATUS) 3831 3832 * Applications can retrieve current status information about an 3833 * association, including association state, peer receiver window size, 3834 * number of unacked data chunks, and number of data chunks pending 3835 * receipt. This information is read-only. 3836 */ 3837 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3838 char __user *optval, 3839 int __user *optlen) 3840 { 3841 struct sctp_status status; 3842 struct sctp_association *asoc = NULL; 3843 struct sctp_transport *transport; 3844 sctp_assoc_t associd; 3845 int retval = 0; 3846 3847 if (len < sizeof(status)) { 3848 retval = -EINVAL; 3849 goto out; 3850 } 3851 3852 len = sizeof(status); 3853 if (copy_from_user(&status, optval, len)) { 3854 retval = -EFAULT; 3855 goto out; 3856 } 3857 3858 associd = status.sstat_assoc_id; 3859 asoc = sctp_id2assoc(sk, associd); 3860 if (!asoc) { 3861 retval = -EINVAL; 3862 goto out; 3863 } 3864 3865 transport = asoc->peer.primary_path; 3866 3867 status.sstat_assoc_id = sctp_assoc2id(asoc); 3868 status.sstat_state = asoc->state; 3869 status.sstat_rwnd = asoc->peer.rwnd; 3870 status.sstat_unackdata = asoc->unack_data; 3871 3872 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3873 status.sstat_instrms = asoc->c.sinit_max_instreams; 3874 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3875 status.sstat_fragmentation_point = asoc->frag_point; 3876 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3877 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3878 transport->af_specific->sockaddr_len); 3879 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3880 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3881 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3882 status.sstat_primary.spinfo_state = transport->state; 3883 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3884 status.sstat_primary.spinfo_srtt = transport->srtt; 3885 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3886 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3887 3888 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3889 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3890 3891 if (put_user(len, optlen)) { 3892 retval = -EFAULT; 3893 goto out; 3894 } 3895 3896 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3897 len, status.sstat_state, status.sstat_rwnd, 3898 status.sstat_assoc_id); 3899 3900 if (copy_to_user(optval, &status, len)) { 3901 retval = -EFAULT; 3902 goto out; 3903 } 3904 3905 out: 3906 return retval; 3907 } 3908 3909 3910 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3911 * 3912 * Applications can retrieve information about a specific peer address 3913 * of an association, including its reachability state, congestion 3914 * window, and retransmission timer values. This information is 3915 * read-only. 3916 */ 3917 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3918 char __user *optval, 3919 int __user *optlen) 3920 { 3921 struct sctp_paddrinfo pinfo; 3922 struct sctp_transport *transport; 3923 int retval = 0; 3924 3925 if (len < sizeof(pinfo)) { 3926 retval = -EINVAL; 3927 goto out; 3928 } 3929 3930 len = sizeof(pinfo); 3931 if (copy_from_user(&pinfo, optval, len)) { 3932 retval = -EFAULT; 3933 goto out; 3934 } 3935 3936 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3937 pinfo.spinfo_assoc_id); 3938 if (!transport) 3939 return -EINVAL; 3940 3941 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3942 pinfo.spinfo_state = transport->state; 3943 pinfo.spinfo_cwnd = transport->cwnd; 3944 pinfo.spinfo_srtt = transport->srtt; 3945 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3946 pinfo.spinfo_mtu = transport->pathmtu; 3947 3948 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3949 pinfo.spinfo_state = SCTP_ACTIVE; 3950 3951 if (put_user(len, optlen)) { 3952 retval = -EFAULT; 3953 goto out; 3954 } 3955 3956 if (copy_to_user(optval, &pinfo, len)) { 3957 retval = -EFAULT; 3958 goto out; 3959 } 3960 3961 out: 3962 return retval; 3963 } 3964 3965 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3966 * 3967 * This option is a on/off flag. If enabled no SCTP message 3968 * fragmentation will be performed. Instead if a message being sent 3969 * exceeds the current PMTU size, the message will NOT be sent and 3970 * instead a error will be indicated to the user. 3971 */ 3972 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3973 char __user *optval, int __user *optlen) 3974 { 3975 int val; 3976 3977 if (len < sizeof(int)) 3978 return -EINVAL; 3979 3980 len = sizeof(int); 3981 val = (sctp_sk(sk)->disable_fragments == 1); 3982 if (put_user(len, optlen)) 3983 return -EFAULT; 3984 if (copy_to_user(optval, &val, len)) 3985 return -EFAULT; 3986 return 0; 3987 } 3988 3989 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3990 * 3991 * This socket option is used to specify various notifications and 3992 * ancillary data the user wishes to receive. 3993 */ 3994 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3995 int __user *optlen) 3996 { 3997 if (len < sizeof(struct sctp_event_subscribe)) 3998 return -EINVAL; 3999 len = sizeof(struct sctp_event_subscribe); 4000 if (put_user(len, optlen)) 4001 return -EFAULT; 4002 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4003 return -EFAULT; 4004 return 0; 4005 } 4006 4007 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4008 * 4009 * This socket option is applicable to the UDP-style socket only. When 4010 * set it will cause associations that are idle for more than the 4011 * specified number of seconds to automatically close. An association 4012 * being idle is defined an association that has NOT sent or received 4013 * user data. The special value of '0' indicates that no automatic 4014 * close of any associations should be performed. The option expects an 4015 * integer defining the number of seconds of idle time before an 4016 * association is closed. 4017 */ 4018 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4019 { 4020 /* Applicable to UDP-style socket only */ 4021 if (sctp_style(sk, TCP)) 4022 return -EOPNOTSUPP; 4023 if (len < sizeof(int)) 4024 return -EINVAL; 4025 len = sizeof(int); 4026 if (put_user(len, optlen)) 4027 return -EFAULT; 4028 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4029 return -EFAULT; 4030 return 0; 4031 } 4032 4033 /* Helper routine to branch off an association to a new socket. */ 4034 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 4035 struct socket **sockp) 4036 { 4037 struct sock *sk = asoc->base.sk; 4038 struct socket *sock; 4039 struct sctp_af *af; 4040 int err = 0; 4041 4042 /* An association cannot be branched off from an already peeled-off 4043 * socket, nor is this supported for tcp style sockets. 4044 */ 4045 if (!sctp_style(sk, UDP)) 4046 return -EINVAL; 4047 4048 /* Create a new socket. */ 4049 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4050 if (err < 0) 4051 return err; 4052 4053 sctp_copy_sock(sock->sk, sk, asoc); 4054 4055 /* Make peeled-off sockets more like 1-1 accepted sockets. 4056 * Set the daddr and initialize id to something more random 4057 */ 4058 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4059 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4060 4061 /* Populate the fields of the newsk from the oldsk and migrate the 4062 * asoc to the newsk. 4063 */ 4064 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4065 4066 *sockp = sock; 4067 4068 return err; 4069 } 4070 4071 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4072 { 4073 sctp_peeloff_arg_t peeloff; 4074 struct socket *newsock; 4075 int retval = 0; 4076 struct sctp_association *asoc; 4077 4078 if (len < sizeof(sctp_peeloff_arg_t)) 4079 return -EINVAL; 4080 len = sizeof(sctp_peeloff_arg_t); 4081 if (copy_from_user(&peeloff, optval, len)) 4082 return -EFAULT; 4083 4084 asoc = sctp_id2assoc(sk, peeloff.associd); 4085 if (!asoc) { 4086 retval = -EINVAL; 4087 goto out; 4088 } 4089 4090 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4091 4092 retval = sctp_do_peeloff(asoc, &newsock); 4093 if (retval < 0) 4094 goto out; 4095 4096 /* Map the socket to an unused fd that can be returned to the user. */ 4097 retval = sock_map_fd(newsock, 0); 4098 if (retval < 0) { 4099 sock_release(newsock); 4100 goto out; 4101 } 4102 4103 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4104 __func__, sk, asoc, newsock->sk, retval); 4105 4106 /* Return the fd mapped to the new socket. */ 4107 peeloff.sd = retval; 4108 if (put_user(len, optlen)) 4109 return -EFAULT; 4110 if (copy_to_user(optval, &peeloff, len)) 4111 retval = -EFAULT; 4112 4113 out: 4114 return retval; 4115 } 4116 4117 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4118 * 4119 * Applications can enable or disable heartbeats for any peer address of 4120 * an association, modify an address's heartbeat interval, force a 4121 * heartbeat to be sent immediately, and adjust the address's maximum 4122 * number of retransmissions sent before an address is considered 4123 * unreachable. The following structure is used to access and modify an 4124 * address's parameters: 4125 * 4126 * struct sctp_paddrparams { 4127 * sctp_assoc_t spp_assoc_id; 4128 * struct sockaddr_storage spp_address; 4129 * uint32_t spp_hbinterval; 4130 * uint16_t spp_pathmaxrxt; 4131 * uint32_t spp_pathmtu; 4132 * uint32_t spp_sackdelay; 4133 * uint32_t spp_flags; 4134 * }; 4135 * 4136 * spp_assoc_id - (one-to-many style socket) This is filled in the 4137 * application, and identifies the association for 4138 * this query. 4139 * spp_address - This specifies which address is of interest. 4140 * spp_hbinterval - This contains the value of the heartbeat interval, 4141 * in milliseconds. If a value of zero 4142 * is present in this field then no changes are to 4143 * be made to this parameter. 4144 * spp_pathmaxrxt - This contains the maximum number of 4145 * retransmissions before this address shall be 4146 * considered unreachable. If a value of zero 4147 * is present in this field then no changes are to 4148 * be made to this parameter. 4149 * spp_pathmtu - When Path MTU discovery is disabled the value 4150 * specified here will be the "fixed" path mtu. 4151 * Note that if the spp_address field is empty 4152 * then all associations on this address will 4153 * have this fixed path mtu set upon them. 4154 * 4155 * spp_sackdelay - When delayed sack is enabled, this value specifies 4156 * the number of milliseconds that sacks will be delayed 4157 * for. This value will apply to all addresses of an 4158 * association if the spp_address field is empty. Note 4159 * also, that if delayed sack is enabled and this 4160 * value is set to 0, no change is made to the last 4161 * recorded delayed sack timer value. 4162 * 4163 * spp_flags - These flags are used to control various features 4164 * on an association. The flag field may contain 4165 * zero or more of the following options. 4166 * 4167 * SPP_HB_ENABLE - Enable heartbeats on the 4168 * specified address. Note that if the address 4169 * field is empty all addresses for the association 4170 * have heartbeats enabled upon them. 4171 * 4172 * SPP_HB_DISABLE - Disable heartbeats on the 4173 * speicifed address. Note that if the address 4174 * field is empty all addresses for the association 4175 * will have their heartbeats disabled. Note also 4176 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4177 * mutually exclusive, only one of these two should 4178 * be specified. Enabling both fields will have 4179 * undetermined results. 4180 * 4181 * SPP_HB_DEMAND - Request a user initiated heartbeat 4182 * to be made immediately. 4183 * 4184 * SPP_PMTUD_ENABLE - This field will enable PMTU 4185 * discovery upon the specified address. Note that 4186 * if the address feild is empty then all addresses 4187 * on the association are effected. 4188 * 4189 * SPP_PMTUD_DISABLE - This field will disable PMTU 4190 * discovery upon the specified address. Note that 4191 * if the address feild is empty then all addresses 4192 * on the association are effected. Not also that 4193 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4194 * exclusive. Enabling both will have undetermined 4195 * results. 4196 * 4197 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4198 * on delayed sack. The time specified in spp_sackdelay 4199 * is used to specify the sack delay for this address. Note 4200 * that if spp_address is empty then all addresses will 4201 * enable delayed sack and take on the sack delay 4202 * value specified in spp_sackdelay. 4203 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4204 * off delayed sack. If the spp_address field is blank then 4205 * delayed sack is disabled for the entire association. Note 4206 * also that this field is mutually exclusive to 4207 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4208 * results. 4209 */ 4210 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4211 char __user *optval, int __user *optlen) 4212 { 4213 struct sctp_paddrparams params; 4214 struct sctp_transport *trans = NULL; 4215 struct sctp_association *asoc = NULL; 4216 struct sctp_sock *sp = sctp_sk(sk); 4217 4218 if (len < sizeof(struct sctp_paddrparams)) 4219 return -EINVAL; 4220 len = sizeof(struct sctp_paddrparams); 4221 if (copy_from_user(¶ms, optval, len)) 4222 return -EFAULT; 4223 4224 /* If an address other than INADDR_ANY is specified, and 4225 * no transport is found, then the request is invalid. 4226 */ 4227 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4228 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4229 params.spp_assoc_id); 4230 if (!trans) { 4231 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4232 return -EINVAL; 4233 } 4234 } 4235 4236 /* Get association, if assoc_id != 0 and the socket is a one 4237 * to many style socket, and an association was not found, then 4238 * the id was invalid. 4239 */ 4240 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4241 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4242 SCTP_DEBUG_PRINTK("Failed no association\n"); 4243 return -EINVAL; 4244 } 4245 4246 if (trans) { 4247 /* Fetch transport values. */ 4248 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4249 params.spp_pathmtu = trans->pathmtu; 4250 params.spp_pathmaxrxt = trans->pathmaxrxt; 4251 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4252 4253 /*draft-11 doesn't say what to return in spp_flags*/ 4254 params.spp_flags = trans->param_flags; 4255 } else if (asoc) { 4256 /* Fetch association values. */ 4257 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4258 params.spp_pathmtu = asoc->pathmtu; 4259 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4260 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4261 4262 /*draft-11 doesn't say what to return in spp_flags*/ 4263 params.spp_flags = asoc->param_flags; 4264 } else { 4265 /* Fetch socket values. */ 4266 params.spp_hbinterval = sp->hbinterval; 4267 params.spp_pathmtu = sp->pathmtu; 4268 params.spp_sackdelay = sp->sackdelay; 4269 params.spp_pathmaxrxt = sp->pathmaxrxt; 4270 4271 /*draft-11 doesn't say what to return in spp_flags*/ 4272 params.spp_flags = sp->param_flags; 4273 } 4274 4275 if (copy_to_user(optval, ¶ms, len)) 4276 return -EFAULT; 4277 4278 if (put_user(len, optlen)) 4279 return -EFAULT; 4280 4281 return 0; 4282 } 4283 4284 /* 4285 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4286 * 4287 * This option will effect the way delayed acks are performed. This 4288 * option allows you to get or set the delayed ack time, in 4289 * milliseconds. It also allows changing the delayed ack frequency. 4290 * Changing the frequency to 1 disables the delayed sack algorithm. If 4291 * the assoc_id is 0, then this sets or gets the endpoints default 4292 * values. If the assoc_id field is non-zero, then the set or get 4293 * effects the specified association for the one to many model (the 4294 * assoc_id field is ignored by the one to one model). Note that if 4295 * sack_delay or sack_freq are 0 when setting this option, then the 4296 * current values will remain unchanged. 4297 * 4298 * struct sctp_sack_info { 4299 * sctp_assoc_t sack_assoc_id; 4300 * uint32_t sack_delay; 4301 * uint32_t sack_freq; 4302 * }; 4303 * 4304 * sack_assoc_id - This parameter, indicates which association the user 4305 * is performing an action upon. Note that if this field's value is 4306 * zero then the endpoints default value is changed (effecting future 4307 * associations only). 4308 * 4309 * sack_delay - This parameter contains the number of milliseconds that 4310 * the user is requesting the delayed ACK timer be set to. Note that 4311 * this value is defined in the standard to be between 200 and 500 4312 * milliseconds. 4313 * 4314 * sack_freq - This parameter contains the number of packets that must 4315 * be received before a sack is sent without waiting for the delay 4316 * timer to expire. The default value for this is 2, setting this 4317 * value to 1 will disable the delayed sack algorithm. 4318 */ 4319 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4320 char __user *optval, 4321 int __user *optlen) 4322 { 4323 struct sctp_sack_info params; 4324 struct sctp_association *asoc = NULL; 4325 struct sctp_sock *sp = sctp_sk(sk); 4326 4327 if (len >= sizeof(struct sctp_sack_info)) { 4328 len = sizeof(struct sctp_sack_info); 4329 4330 if (copy_from_user(¶ms, optval, len)) 4331 return -EFAULT; 4332 } else if (len == sizeof(struct sctp_assoc_value)) { 4333 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4334 pr_warn("Use struct sctp_sack_info instead\n"); 4335 if (copy_from_user(¶ms, optval, len)) 4336 return -EFAULT; 4337 } else 4338 return - EINVAL; 4339 4340 /* Get association, if sack_assoc_id != 0 and the socket is a one 4341 * to many style socket, and an association was not found, then 4342 * the id was invalid. 4343 */ 4344 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4345 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4346 return -EINVAL; 4347 4348 if (asoc) { 4349 /* Fetch association values. */ 4350 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4351 params.sack_delay = jiffies_to_msecs( 4352 asoc->sackdelay); 4353 params.sack_freq = asoc->sackfreq; 4354 4355 } else { 4356 params.sack_delay = 0; 4357 params.sack_freq = 1; 4358 } 4359 } else { 4360 /* Fetch socket values. */ 4361 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4362 params.sack_delay = sp->sackdelay; 4363 params.sack_freq = sp->sackfreq; 4364 } else { 4365 params.sack_delay = 0; 4366 params.sack_freq = 1; 4367 } 4368 } 4369 4370 if (copy_to_user(optval, ¶ms, len)) 4371 return -EFAULT; 4372 4373 if (put_user(len, optlen)) 4374 return -EFAULT; 4375 4376 return 0; 4377 } 4378 4379 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4380 * 4381 * Applications can specify protocol parameters for the default association 4382 * initialization. The option name argument to setsockopt() and getsockopt() 4383 * is SCTP_INITMSG. 4384 * 4385 * Setting initialization parameters is effective only on an unconnected 4386 * socket (for UDP-style sockets only future associations are effected 4387 * by the change). With TCP-style sockets, this option is inherited by 4388 * sockets derived from a listener socket. 4389 */ 4390 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4391 { 4392 if (len < sizeof(struct sctp_initmsg)) 4393 return -EINVAL; 4394 len = sizeof(struct sctp_initmsg); 4395 if (put_user(len, optlen)) 4396 return -EFAULT; 4397 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4398 return -EFAULT; 4399 return 0; 4400 } 4401 4402 4403 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4404 char __user *optval, int __user *optlen) 4405 { 4406 struct sctp_association *asoc; 4407 int cnt = 0; 4408 struct sctp_getaddrs getaddrs; 4409 struct sctp_transport *from; 4410 void __user *to; 4411 union sctp_addr temp; 4412 struct sctp_sock *sp = sctp_sk(sk); 4413 int addrlen; 4414 size_t space_left; 4415 int bytes_copied; 4416 4417 if (len < sizeof(struct sctp_getaddrs)) 4418 return -EINVAL; 4419 4420 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4421 return -EFAULT; 4422 4423 /* For UDP-style sockets, id specifies the association to query. */ 4424 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4425 if (!asoc) 4426 return -EINVAL; 4427 4428 to = optval + offsetof(struct sctp_getaddrs,addrs); 4429 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4430 4431 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4432 transports) { 4433 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4434 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4435 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4436 if (space_left < addrlen) 4437 return -ENOMEM; 4438 if (copy_to_user(to, &temp, addrlen)) 4439 return -EFAULT; 4440 to += addrlen; 4441 cnt++; 4442 space_left -= addrlen; 4443 } 4444 4445 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4446 return -EFAULT; 4447 bytes_copied = ((char __user *)to) - optval; 4448 if (put_user(bytes_copied, optlen)) 4449 return -EFAULT; 4450 4451 return 0; 4452 } 4453 4454 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4455 size_t space_left, int *bytes_copied) 4456 { 4457 struct sctp_sockaddr_entry *addr; 4458 union sctp_addr temp; 4459 int cnt = 0; 4460 int addrlen; 4461 4462 rcu_read_lock(); 4463 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4464 if (!addr->valid) 4465 continue; 4466 4467 if ((PF_INET == sk->sk_family) && 4468 (AF_INET6 == addr->a.sa.sa_family)) 4469 continue; 4470 if ((PF_INET6 == sk->sk_family) && 4471 inet_v6_ipv6only(sk) && 4472 (AF_INET == addr->a.sa.sa_family)) 4473 continue; 4474 memcpy(&temp, &addr->a, sizeof(temp)); 4475 if (!temp.v4.sin_port) 4476 temp.v4.sin_port = htons(port); 4477 4478 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4479 &temp); 4480 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4481 if (space_left < addrlen) { 4482 cnt = -ENOMEM; 4483 break; 4484 } 4485 memcpy(to, &temp, addrlen); 4486 4487 to += addrlen; 4488 cnt ++; 4489 space_left -= addrlen; 4490 *bytes_copied += addrlen; 4491 } 4492 rcu_read_unlock(); 4493 4494 return cnt; 4495 } 4496 4497 4498 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4499 char __user *optval, int __user *optlen) 4500 { 4501 struct sctp_bind_addr *bp; 4502 struct sctp_association *asoc; 4503 int cnt = 0; 4504 struct sctp_getaddrs getaddrs; 4505 struct sctp_sockaddr_entry *addr; 4506 void __user *to; 4507 union sctp_addr temp; 4508 struct sctp_sock *sp = sctp_sk(sk); 4509 int addrlen; 4510 int err = 0; 4511 size_t space_left; 4512 int bytes_copied = 0; 4513 void *addrs; 4514 void *buf; 4515 4516 if (len < sizeof(struct sctp_getaddrs)) 4517 return -EINVAL; 4518 4519 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4520 return -EFAULT; 4521 4522 /* 4523 * For UDP-style sockets, id specifies the association to query. 4524 * If the id field is set to the value '0' then the locally bound 4525 * addresses are returned without regard to any particular 4526 * association. 4527 */ 4528 if (0 == getaddrs.assoc_id) { 4529 bp = &sctp_sk(sk)->ep->base.bind_addr; 4530 } else { 4531 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4532 if (!asoc) 4533 return -EINVAL; 4534 bp = &asoc->base.bind_addr; 4535 } 4536 4537 to = optval + offsetof(struct sctp_getaddrs,addrs); 4538 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4539 4540 addrs = kmalloc(space_left, GFP_KERNEL); 4541 if (!addrs) 4542 return -ENOMEM; 4543 4544 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4545 * addresses from the global local address list. 4546 */ 4547 if (sctp_list_single_entry(&bp->address_list)) { 4548 addr = list_entry(bp->address_list.next, 4549 struct sctp_sockaddr_entry, list); 4550 if (sctp_is_any(sk, &addr->a)) { 4551 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4552 space_left, &bytes_copied); 4553 if (cnt < 0) { 4554 err = cnt; 4555 goto out; 4556 } 4557 goto copy_getaddrs; 4558 } 4559 } 4560 4561 buf = addrs; 4562 /* Protection on the bound address list is not needed since 4563 * in the socket option context we hold a socket lock and 4564 * thus the bound address list can't change. 4565 */ 4566 list_for_each_entry(addr, &bp->address_list, list) { 4567 memcpy(&temp, &addr->a, sizeof(temp)); 4568 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4569 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4570 if (space_left < addrlen) { 4571 err = -ENOMEM; /*fixme: right error?*/ 4572 goto out; 4573 } 4574 memcpy(buf, &temp, addrlen); 4575 buf += addrlen; 4576 bytes_copied += addrlen; 4577 cnt ++; 4578 space_left -= addrlen; 4579 } 4580 4581 copy_getaddrs: 4582 if (copy_to_user(to, addrs, bytes_copied)) { 4583 err = -EFAULT; 4584 goto out; 4585 } 4586 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4587 err = -EFAULT; 4588 goto out; 4589 } 4590 if (put_user(bytes_copied, optlen)) 4591 err = -EFAULT; 4592 out: 4593 kfree(addrs); 4594 return err; 4595 } 4596 4597 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4598 * 4599 * Requests that the local SCTP stack use the enclosed peer address as 4600 * the association primary. The enclosed address must be one of the 4601 * association peer's addresses. 4602 */ 4603 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4604 char __user *optval, int __user *optlen) 4605 { 4606 struct sctp_prim prim; 4607 struct sctp_association *asoc; 4608 struct sctp_sock *sp = sctp_sk(sk); 4609 4610 if (len < sizeof(struct sctp_prim)) 4611 return -EINVAL; 4612 4613 len = sizeof(struct sctp_prim); 4614 4615 if (copy_from_user(&prim, optval, len)) 4616 return -EFAULT; 4617 4618 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4619 if (!asoc) 4620 return -EINVAL; 4621 4622 if (!asoc->peer.primary_path) 4623 return -ENOTCONN; 4624 4625 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4626 asoc->peer.primary_path->af_specific->sockaddr_len); 4627 4628 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4629 (union sctp_addr *)&prim.ssp_addr); 4630 4631 if (put_user(len, optlen)) 4632 return -EFAULT; 4633 if (copy_to_user(optval, &prim, len)) 4634 return -EFAULT; 4635 4636 return 0; 4637 } 4638 4639 /* 4640 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4641 * 4642 * Requests that the local endpoint set the specified Adaptation Layer 4643 * Indication parameter for all future INIT and INIT-ACK exchanges. 4644 */ 4645 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4646 char __user *optval, int __user *optlen) 4647 { 4648 struct sctp_setadaptation adaptation; 4649 4650 if (len < sizeof(struct sctp_setadaptation)) 4651 return -EINVAL; 4652 4653 len = sizeof(struct sctp_setadaptation); 4654 4655 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4656 4657 if (put_user(len, optlen)) 4658 return -EFAULT; 4659 if (copy_to_user(optval, &adaptation, len)) 4660 return -EFAULT; 4661 4662 return 0; 4663 } 4664 4665 /* 4666 * 4667 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4668 * 4669 * Applications that wish to use the sendto() system call may wish to 4670 * specify a default set of parameters that would normally be supplied 4671 * through the inclusion of ancillary data. This socket option allows 4672 * such an application to set the default sctp_sndrcvinfo structure. 4673 4674 4675 * The application that wishes to use this socket option simply passes 4676 * in to this call the sctp_sndrcvinfo structure defined in Section 4677 * 5.2.2) The input parameters accepted by this call include 4678 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4679 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4680 * to this call if the caller is using the UDP model. 4681 * 4682 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4683 */ 4684 static int sctp_getsockopt_default_send_param(struct sock *sk, 4685 int len, char __user *optval, 4686 int __user *optlen) 4687 { 4688 struct sctp_sndrcvinfo info; 4689 struct sctp_association *asoc; 4690 struct sctp_sock *sp = sctp_sk(sk); 4691 4692 if (len < sizeof(struct sctp_sndrcvinfo)) 4693 return -EINVAL; 4694 4695 len = sizeof(struct sctp_sndrcvinfo); 4696 4697 if (copy_from_user(&info, optval, len)) 4698 return -EFAULT; 4699 4700 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4701 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4702 return -EINVAL; 4703 4704 if (asoc) { 4705 info.sinfo_stream = asoc->default_stream; 4706 info.sinfo_flags = asoc->default_flags; 4707 info.sinfo_ppid = asoc->default_ppid; 4708 info.sinfo_context = asoc->default_context; 4709 info.sinfo_timetolive = asoc->default_timetolive; 4710 } else { 4711 info.sinfo_stream = sp->default_stream; 4712 info.sinfo_flags = sp->default_flags; 4713 info.sinfo_ppid = sp->default_ppid; 4714 info.sinfo_context = sp->default_context; 4715 info.sinfo_timetolive = sp->default_timetolive; 4716 } 4717 4718 if (put_user(len, optlen)) 4719 return -EFAULT; 4720 if (copy_to_user(optval, &info, len)) 4721 return -EFAULT; 4722 4723 return 0; 4724 } 4725 4726 /* 4727 * 4728 * 7.1.5 SCTP_NODELAY 4729 * 4730 * Turn on/off any Nagle-like algorithm. This means that packets are 4731 * generally sent as soon as possible and no unnecessary delays are 4732 * introduced, at the cost of more packets in the network. Expects an 4733 * integer boolean flag. 4734 */ 4735 4736 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4737 char __user *optval, int __user *optlen) 4738 { 4739 int val; 4740 4741 if (len < sizeof(int)) 4742 return -EINVAL; 4743 4744 len = sizeof(int); 4745 val = (sctp_sk(sk)->nodelay == 1); 4746 if (put_user(len, optlen)) 4747 return -EFAULT; 4748 if (copy_to_user(optval, &val, len)) 4749 return -EFAULT; 4750 return 0; 4751 } 4752 4753 /* 4754 * 4755 * 7.1.1 SCTP_RTOINFO 4756 * 4757 * The protocol parameters used to initialize and bound retransmission 4758 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4759 * and modify these parameters. 4760 * All parameters are time values, in milliseconds. A value of 0, when 4761 * modifying the parameters, indicates that the current value should not 4762 * be changed. 4763 * 4764 */ 4765 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4766 char __user *optval, 4767 int __user *optlen) { 4768 struct sctp_rtoinfo rtoinfo; 4769 struct sctp_association *asoc; 4770 4771 if (len < sizeof (struct sctp_rtoinfo)) 4772 return -EINVAL; 4773 4774 len = sizeof(struct sctp_rtoinfo); 4775 4776 if (copy_from_user(&rtoinfo, optval, len)) 4777 return -EFAULT; 4778 4779 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4780 4781 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4782 return -EINVAL; 4783 4784 /* Values corresponding to the specific association. */ 4785 if (asoc) { 4786 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4787 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4788 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4789 } else { 4790 /* Values corresponding to the endpoint. */ 4791 struct sctp_sock *sp = sctp_sk(sk); 4792 4793 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4794 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4795 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4796 } 4797 4798 if (put_user(len, optlen)) 4799 return -EFAULT; 4800 4801 if (copy_to_user(optval, &rtoinfo, len)) 4802 return -EFAULT; 4803 4804 return 0; 4805 } 4806 4807 /* 4808 * 4809 * 7.1.2 SCTP_ASSOCINFO 4810 * 4811 * This option is used to tune the maximum retransmission attempts 4812 * of the association. 4813 * Returns an error if the new association retransmission value is 4814 * greater than the sum of the retransmission value of the peer. 4815 * See [SCTP] for more information. 4816 * 4817 */ 4818 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4819 char __user *optval, 4820 int __user *optlen) 4821 { 4822 4823 struct sctp_assocparams assocparams; 4824 struct sctp_association *asoc; 4825 struct list_head *pos; 4826 int cnt = 0; 4827 4828 if (len < sizeof (struct sctp_assocparams)) 4829 return -EINVAL; 4830 4831 len = sizeof(struct sctp_assocparams); 4832 4833 if (copy_from_user(&assocparams, optval, len)) 4834 return -EFAULT; 4835 4836 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4837 4838 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4839 return -EINVAL; 4840 4841 /* Values correspoinding to the specific association */ 4842 if (asoc) { 4843 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4844 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4845 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4846 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4847 * 1000) + 4848 (asoc->cookie_life.tv_usec 4849 / 1000); 4850 4851 list_for_each(pos, &asoc->peer.transport_addr_list) { 4852 cnt ++; 4853 } 4854 4855 assocparams.sasoc_number_peer_destinations = cnt; 4856 } else { 4857 /* Values corresponding to the endpoint */ 4858 struct sctp_sock *sp = sctp_sk(sk); 4859 4860 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4861 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4862 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4863 assocparams.sasoc_cookie_life = 4864 sp->assocparams.sasoc_cookie_life; 4865 assocparams.sasoc_number_peer_destinations = 4866 sp->assocparams. 4867 sasoc_number_peer_destinations; 4868 } 4869 4870 if (put_user(len, optlen)) 4871 return -EFAULT; 4872 4873 if (copy_to_user(optval, &assocparams, len)) 4874 return -EFAULT; 4875 4876 return 0; 4877 } 4878 4879 /* 4880 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4881 * 4882 * This socket option is a boolean flag which turns on or off mapped V4 4883 * addresses. If this option is turned on and the socket is type 4884 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4885 * If this option is turned off, then no mapping will be done of V4 4886 * addresses and a user will receive both PF_INET6 and PF_INET type 4887 * addresses on the socket. 4888 */ 4889 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4890 char __user *optval, int __user *optlen) 4891 { 4892 int val; 4893 struct sctp_sock *sp = sctp_sk(sk); 4894 4895 if (len < sizeof(int)) 4896 return -EINVAL; 4897 4898 len = sizeof(int); 4899 val = sp->v4mapped; 4900 if (put_user(len, optlen)) 4901 return -EFAULT; 4902 if (copy_to_user(optval, &val, len)) 4903 return -EFAULT; 4904 4905 return 0; 4906 } 4907 4908 /* 4909 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4910 * (chapter and verse is quoted at sctp_setsockopt_context()) 4911 */ 4912 static int sctp_getsockopt_context(struct sock *sk, int len, 4913 char __user *optval, int __user *optlen) 4914 { 4915 struct sctp_assoc_value params; 4916 struct sctp_sock *sp; 4917 struct sctp_association *asoc; 4918 4919 if (len < sizeof(struct sctp_assoc_value)) 4920 return -EINVAL; 4921 4922 len = sizeof(struct sctp_assoc_value); 4923 4924 if (copy_from_user(¶ms, optval, len)) 4925 return -EFAULT; 4926 4927 sp = sctp_sk(sk); 4928 4929 if (params.assoc_id != 0) { 4930 asoc = sctp_id2assoc(sk, params.assoc_id); 4931 if (!asoc) 4932 return -EINVAL; 4933 params.assoc_value = asoc->default_rcv_context; 4934 } else { 4935 params.assoc_value = sp->default_rcv_context; 4936 } 4937 4938 if (put_user(len, optlen)) 4939 return -EFAULT; 4940 if (copy_to_user(optval, ¶ms, len)) 4941 return -EFAULT; 4942 4943 return 0; 4944 } 4945 4946 /* 4947 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 4948 * This option will get or set the maximum size to put in any outgoing 4949 * SCTP DATA chunk. If a message is larger than this size it will be 4950 * fragmented by SCTP into the specified size. Note that the underlying 4951 * SCTP implementation may fragment into smaller sized chunks when the 4952 * PMTU of the underlying association is smaller than the value set by 4953 * the user. The default value for this option is '0' which indicates 4954 * the user is NOT limiting fragmentation and only the PMTU will effect 4955 * SCTP's choice of DATA chunk size. Note also that values set larger 4956 * than the maximum size of an IP datagram will effectively let SCTP 4957 * control fragmentation (i.e. the same as setting this option to 0). 4958 * 4959 * The following structure is used to access and modify this parameter: 4960 * 4961 * struct sctp_assoc_value { 4962 * sctp_assoc_t assoc_id; 4963 * uint32_t assoc_value; 4964 * }; 4965 * 4966 * assoc_id: This parameter is ignored for one-to-one style sockets. 4967 * For one-to-many style sockets this parameter indicates which 4968 * association the user is performing an action upon. Note that if 4969 * this field's value is zero then the endpoints default value is 4970 * changed (effecting future associations only). 4971 * assoc_value: This parameter specifies the maximum size in bytes. 4972 */ 4973 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4974 char __user *optval, int __user *optlen) 4975 { 4976 struct sctp_assoc_value params; 4977 struct sctp_association *asoc; 4978 4979 if (len == sizeof(int)) { 4980 pr_warn("Use of int in maxseg socket option deprecated\n"); 4981 pr_warn("Use struct sctp_assoc_value instead\n"); 4982 params.assoc_id = 0; 4983 } else if (len >= sizeof(struct sctp_assoc_value)) { 4984 len = sizeof(struct sctp_assoc_value); 4985 if (copy_from_user(¶ms, optval, sizeof(params))) 4986 return -EFAULT; 4987 } else 4988 return -EINVAL; 4989 4990 asoc = sctp_id2assoc(sk, params.assoc_id); 4991 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 4992 return -EINVAL; 4993 4994 if (asoc) 4995 params.assoc_value = asoc->frag_point; 4996 else 4997 params.assoc_value = sctp_sk(sk)->user_frag; 4998 4999 if (put_user(len, optlen)) 5000 return -EFAULT; 5001 if (len == sizeof(int)) { 5002 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5003 return -EFAULT; 5004 } else { 5005 if (copy_to_user(optval, ¶ms, len)) 5006 return -EFAULT; 5007 } 5008 5009 return 0; 5010 } 5011 5012 /* 5013 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5014 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5015 */ 5016 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5017 char __user *optval, int __user *optlen) 5018 { 5019 int val; 5020 5021 if (len < sizeof(int)) 5022 return -EINVAL; 5023 5024 len = sizeof(int); 5025 5026 val = sctp_sk(sk)->frag_interleave; 5027 if (put_user(len, optlen)) 5028 return -EFAULT; 5029 if (copy_to_user(optval, &val, len)) 5030 return -EFAULT; 5031 5032 return 0; 5033 } 5034 5035 /* 5036 * 7.1.25. Set or Get the sctp partial delivery point 5037 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5038 */ 5039 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5040 char __user *optval, 5041 int __user *optlen) 5042 { 5043 u32 val; 5044 5045 if (len < sizeof(u32)) 5046 return -EINVAL; 5047 5048 len = sizeof(u32); 5049 5050 val = sctp_sk(sk)->pd_point; 5051 if (put_user(len, optlen)) 5052 return -EFAULT; 5053 if (copy_to_user(optval, &val, len)) 5054 return -EFAULT; 5055 5056 return 0; 5057 } 5058 5059 /* 5060 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5061 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5062 */ 5063 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5064 char __user *optval, 5065 int __user *optlen) 5066 { 5067 struct sctp_assoc_value params; 5068 struct sctp_sock *sp; 5069 struct sctp_association *asoc; 5070 5071 if (len == sizeof(int)) { 5072 pr_warn("Use of int in max_burst socket option deprecated\n"); 5073 pr_warn("Use struct sctp_assoc_value instead\n"); 5074 params.assoc_id = 0; 5075 } else if (len >= sizeof(struct sctp_assoc_value)) { 5076 len = sizeof(struct sctp_assoc_value); 5077 if (copy_from_user(¶ms, optval, len)) 5078 return -EFAULT; 5079 } else 5080 return -EINVAL; 5081 5082 sp = sctp_sk(sk); 5083 5084 if (params.assoc_id != 0) { 5085 asoc = sctp_id2assoc(sk, params.assoc_id); 5086 if (!asoc) 5087 return -EINVAL; 5088 params.assoc_value = asoc->max_burst; 5089 } else 5090 params.assoc_value = sp->max_burst; 5091 5092 if (len == sizeof(int)) { 5093 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5094 return -EFAULT; 5095 } else { 5096 if (copy_to_user(optval, ¶ms, len)) 5097 return -EFAULT; 5098 } 5099 5100 return 0; 5101 5102 } 5103 5104 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5105 char __user *optval, int __user *optlen) 5106 { 5107 struct sctp_hmacalgo __user *p = (void __user *)optval; 5108 struct sctp_hmac_algo_param *hmacs; 5109 __u16 data_len = 0; 5110 u32 num_idents; 5111 5112 if (!sctp_auth_enable) 5113 return -EACCES; 5114 5115 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5116 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5117 5118 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5119 return -EINVAL; 5120 5121 len = sizeof(struct sctp_hmacalgo) + data_len; 5122 num_idents = data_len / sizeof(u16); 5123 5124 if (put_user(len, optlen)) 5125 return -EFAULT; 5126 if (put_user(num_idents, &p->shmac_num_idents)) 5127 return -EFAULT; 5128 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5129 return -EFAULT; 5130 return 0; 5131 } 5132 5133 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5134 char __user *optval, int __user *optlen) 5135 { 5136 struct sctp_authkeyid val; 5137 struct sctp_association *asoc; 5138 5139 if (!sctp_auth_enable) 5140 return -EACCES; 5141 5142 if (len < sizeof(struct sctp_authkeyid)) 5143 return -EINVAL; 5144 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5145 return -EFAULT; 5146 5147 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5148 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5149 return -EINVAL; 5150 5151 if (asoc) 5152 val.scact_keynumber = asoc->active_key_id; 5153 else 5154 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5155 5156 len = sizeof(struct sctp_authkeyid); 5157 if (put_user(len, optlen)) 5158 return -EFAULT; 5159 if (copy_to_user(optval, &val, len)) 5160 return -EFAULT; 5161 5162 return 0; 5163 } 5164 5165 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5166 char __user *optval, int __user *optlen) 5167 { 5168 struct sctp_authchunks __user *p = (void __user *)optval; 5169 struct sctp_authchunks val; 5170 struct sctp_association *asoc; 5171 struct sctp_chunks_param *ch; 5172 u32 num_chunks = 0; 5173 char __user *to; 5174 5175 if (!sctp_auth_enable) 5176 return -EACCES; 5177 5178 if (len < sizeof(struct sctp_authchunks)) 5179 return -EINVAL; 5180 5181 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5182 return -EFAULT; 5183 5184 to = p->gauth_chunks; 5185 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5186 if (!asoc) 5187 return -EINVAL; 5188 5189 ch = asoc->peer.peer_chunks; 5190 if (!ch) 5191 goto num; 5192 5193 /* See if the user provided enough room for all the data */ 5194 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5195 if (len < num_chunks) 5196 return -EINVAL; 5197 5198 if (copy_to_user(to, ch->chunks, num_chunks)) 5199 return -EFAULT; 5200 num: 5201 len = sizeof(struct sctp_authchunks) + num_chunks; 5202 if (put_user(len, optlen)) return -EFAULT; 5203 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5204 return -EFAULT; 5205 return 0; 5206 } 5207 5208 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5209 char __user *optval, int __user *optlen) 5210 { 5211 struct sctp_authchunks __user *p = (void __user *)optval; 5212 struct sctp_authchunks val; 5213 struct sctp_association *asoc; 5214 struct sctp_chunks_param *ch; 5215 u32 num_chunks = 0; 5216 char __user *to; 5217 5218 if (!sctp_auth_enable) 5219 return -EACCES; 5220 5221 if (len < sizeof(struct sctp_authchunks)) 5222 return -EINVAL; 5223 5224 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5225 return -EFAULT; 5226 5227 to = p->gauth_chunks; 5228 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5229 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5230 return -EINVAL; 5231 5232 if (asoc) 5233 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5234 else 5235 ch = sctp_sk(sk)->ep->auth_chunk_list; 5236 5237 if (!ch) 5238 goto num; 5239 5240 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5241 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5242 return -EINVAL; 5243 5244 if (copy_to_user(to, ch->chunks, num_chunks)) 5245 return -EFAULT; 5246 num: 5247 len = sizeof(struct sctp_authchunks) + num_chunks; 5248 if (put_user(len, optlen)) 5249 return -EFAULT; 5250 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5251 return -EFAULT; 5252 5253 return 0; 5254 } 5255 5256 /* 5257 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5258 * This option gets the current number of associations that are attached 5259 * to a one-to-many style socket. The option value is an uint32_t. 5260 */ 5261 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5262 char __user *optval, int __user *optlen) 5263 { 5264 struct sctp_sock *sp = sctp_sk(sk); 5265 struct sctp_association *asoc; 5266 u32 val = 0; 5267 5268 if (sctp_style(sk, TCP)) 5269 return -EOPNOTSUPP; 5270 5271 if (len < sizeof(u32)) 5272 return -EINVAL; 5273 5274 len = sizeof(u32); 5275 5276 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5277 val++; 5278 } 5279 5280 if (put_user(len, optlen)) 5281 return -EFAULT; 5282 if (copy_to_user(optval, &val, len)) 5283 return -EFAULT; 5284 5285 return 0; 5286 } 5287 5288 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5289 char __user *optval, int __user *optlen) 5290 { 5291 int retval = 0; 5292 int len; 5293 5294 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5295 sk, optname); 5296 5297 /* I can hardly begin to describe how wrong this is. This is 5298 * so broken as to be worse than useless. The API draft 5299 * REALLY is NOT helpful here... I am not convinced that the 5300 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5301 * are at all well-founded. 5302 */ 5303 if (level != SOL_SCTP) { 5304 struct sctp_af *af = sctp_sk(sk)->pf->af; 5305 5306 retval = af->getsockopt(sk, level, optname, optval, optlen); 5307 return retval; 5308 } 5309 5310 if (get_user(len, optlen)) 5311 return -EFAULT; 5312 5313 sctp_lock_sock(sk); 5314 5315 switch (optname) { 5316 case SCTP_STATUS: 5317 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5318 break; 5319 case SCTP_DISABLE_FRAGMENTS: 5320 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5321 optlen); 5322 break; 5323 case SCTP_EVENTS: 5324 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5325 break; 5326 case SCTP_AUTOCLOSE: 5327 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5328 break; 5329 case SCTP_SOCKOPT_PEELOFF: 5330 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5331 break; 5332 case SCTP_PEER_ADDR_PARAMS: 5333 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5334 optlen); 5335 break; 5336 case SCTP_DELAYED_SACK: 5337 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5338 optlen); 5339 break; 5340 case SCTP_INITMSG: 5341 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5342 break; 5343 case SCTP_GET_PEER_ADDRS: 5344 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5345 optlen); 5346 break; 5347 case SCTP_GET_LOCAL_ADDRS: 5348 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5349 optlen); 5350 break; 5351 case SCTP_SOCKOPT_CONNECTX3: 5352 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5353 break; 5354 case SCTP_DEFAULT_SEND_PARAM: 5355 retval = sctp_getsockopt_default_send_param(sk, len, 5356 optval, optlen); 5357 break; 5358 case SCTP_PRIMARY_ADDR: 5359 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5360 break; 5361 case SCTP_NODELAY: 5362 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5363 break; 5364 case SCTP_RTOINFO: 5365 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5366 break; 5367 case SCTP_ASSOCINFO: 5368 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5369 break; 5370 case SCTP_I_WANT_MAPPED_V4_ADDR: 5371 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5372 break; 5373 case SCTP_MAXSEG: 5374 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5375 break; 5376 case SCTP_GET_PEER_ADDR_INFO: 5377 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5378 optlen); 5379 break; 5380 case SCTP_ADAPTATION_LAYER: 5381 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5382 optlen); 5383 break; 5384 case SCTP_CONTEXT: 5385 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5386 break; 5387 case SCTP_FRAGMENT_INTERLEAVE: 5388 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5389 optlen); 5390 break; 5391 case SCTP_PARTIAL_DELIVERY_POINT: 5392 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5393 optlen); 5394 break; 5395 case SCTP_MAX_BURST: 5396 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5397 break; 5398 case SCTP_AUTH_KEY: 5399 case SCTP_AUTH_CHUNK: 5400 case SCTP_AUTH_DELETE_KEY: 5401 retval = -EOPNOTSUPP; 5402 break; 5403 case SCTP_HMAC_IDENT: 5404 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5405 break; 5406 case SCTP_AUTH_ACTIVE_KEY: 5407 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5408 break; 5409 case SCTP_PEER_AUTH_CHUNKS: 5410 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5411 optlen); 5412 break; 5413 case SCTP_LOCAL_AUTH_CHUNKS: 5414 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5415 optlen); 5416 break; 5417 case SCTP_GET_ASSOC_NUMBER: 5418 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5419 break; 5420 default: 5421 retval = -ENOPROTOOPT; 5422 break; 5423 } 5424 5425 sctp_release_sock(sk); 5426 return retval; 5427 } 5428 5429 static void sctp_hash(struct sock *sk) 5430 { 5431 /* STUB */ 5432 } 5433 5434 static void sctp_unhash(struct sock *sk) 5435 { 5436 /* STUB */ 5437 } 5438 5439 /* Check if port is acceptable. Possibly find first available port. 5440 * 5441 * The port hash table (contained in the 'global' SCTP protocol storage 5442 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5443 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5444 * list (the list number is the port number hashed out, so as you 5445 * would expect from a hash function, all the ports in a given list have 5446 * such a number that hashes out to the same list number; you were 5447 * expecting that, right?); so each list has a set of ports, with a 5448 * link to the socket (struct sock) that uses it, the port number and 5449 * a fastreuse flag (FIXME: NPI ipg). 5450 */ 5451 static struct sctp_bind_bucket *sctp_bucket_create( 5452 struct sctp_bind_hashbucket *head, unsigned short snum); 5453 5454 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5455 { 5456 struct sctp_bind_hashbucket *head; /* hash list */ 5457 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5458 struct hlist_node *node; 5459 unsigned short snum; 5460 int ret; 5461 5462 snum = ntohs(addr->v4.sin_port); 5463 5464 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5465 sctp_local_bh_disable(); 5466 5467 if (snum == 0) { 5468 /* Search for an available port. */ 5469 int low, high, remaining, index; 5470 unsigned int rover; 5471 5472 inet_get_local_port_range(&low, &high); 5473 remaining = (high - low) + 1; 5474 rover = net_random() % remaining + low; 5475 5476 do { 5477 rover++; 5478 if ((rover < low) || (rover > high)) 5479 rover = low; 5480 if (inet_is_reserved_local_port(rover)) 5481 continue; 5482 index = sctp_phashfn(rover); 5483 head = &sctp_port_hashtable[index]; 5484 sctp_spin_lock(&head->lock); 5485 sctp_for_each_hentry(pp, node, &head->chain) 5486 if (pp->port == rover) 5487 goto next; 5488 break; 5489 next: 5490 sctp_spin_unlock(&head->lock); 5491 } while (--remaining > 0); 5492 5493 /* Exhausted local port range during search? */ 5494 ret = 1; 5495 if (remaining <= 0) 5496 goto fail; 5497 5498 /* OK, here is the one we will use. HEAD (the port 5499 * hash table list entry) is non-NULL and we hold it's 5500 * mutex. 5501 */ 5502 snum = rover; 5503 } else { 5504 /* We are given an specific port number; we verify 5505 * that it is not being used. If it is used, we will 5506 * exahust the search in the hash list corresponding 5507 * to the port number (snum) - we detect that with the 5508 * port iterator, pp being NULL. 5509 */ 5510 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5511 sctp_spin_lock(&head->lock); 5512 sctp_for_each_hentry(pp, node, &head->chain) { 5513 if (pp->port == snum) 5514 goto pp_found; 5515 } 5516 } 5517 pp = NULL; 5518 goto pp_not_found; 5519 pp_found: 5520 if (!hlist_empty(&pp->owner)) { 5521 /* We had a port hash table hit - there is an 5522 * available port (pp != NULL) and it is being 5523 * used by other socket (pp->owner not empty); that other 5524 * socket is going to be sk2. 5525 */ 5526 int reuse = sk->sk_reuse; 5527 struct sock *sk2; 5528 5529 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5530 if (pp->fastreuse && sk->sk_reuse && 5531 sk->sk_state != SCTP_SS_LISTENING) 5532 goto success; 5533 5534 /* Run through the list of sockets bound to the port 5535 * (pp->port) [via the pointers bind_next and 5536 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5537 * we get the endpoint they describe and run through 5538 * the endpoint's list of IP (v4 or v6) addresses, 5539 * comparing each of the addresses with the address of 5540 * the socket sk. If we find a match, then that means 5541 * that this port/socket (sk) combination are already 5542 * in an endpoint. 5543 */ 5544 sk_for_each_bound(sk2, node, &pp->owner) { 5545 struct sctp_endpoint *ep2; 5546 ep2 = sctp_sk(sk2)->ep; 5547 5548 if (sk == sk2 || 5549 (reuse && sk2->sk_reuse && 5550 sk2->sk_state != SCTP_SS_LISTENING)) 5551 continue; 5552 5553 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5554 sctp_sk(sk2), sctp_sk(sk))) { 5555 ret = (long)sk2; 5556 goto fail_unlock; 5557 } 5558 } 5559 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5560 } 5561 pp_not_found: 5562 /* If there was a hash table miss, create a new port. */ 5563 ret = 1; 5564 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5565 goto fail_unlock; 5566 5567 /* In either case (hit or miss), make sure fastreuse is 1 only 5568 * if sk->sk_reuse is too (that is, if the caller requested 5569 * SO_REUSEADDR on this socket -sk-). 5570 */ 5571 if (hlist_empty(&pp->owner)) { 5572 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5573 pp->fastreuse = 1; 5574 else 5575 pp->fastreuse = 0; 5576 } else if (pp->fastreuse && 5577 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5578 pp->fastreuse = 0; 5579 5580 /* We are set, so fill up all the data in the hash table 5581 * entry, tie the socket list information with the rest of the 5582 * sockets FIXME: Blurry, NPI (ipg). 5583 */ 5584 success: 5585 if (!sctp_sk(sk)->bind_hash) { 5586 inet_sk(sk)->inet_num = snum; 5587 sk_add_bind_node(sk, &pp->owner); 5588 sctp_sk(sk)->bind_hash = pp; 5589 } 5590 ret = 0; 5591 5592 fail_unlock: 5593 sctp_spin_unlock(&head->lock); 5594 5595 fail: 5596 sctp_local_bh_enable(); 5597 return ret; 5598 } 5599 5600 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5601 * port is requested. 5602 */ 5603 static int sctp_get_port(struct sock *sk, unsigned short snum) 5604 { 5605 long ret; 5606 union sctp_addr addr; 5607 struct sctp_af *af = sctp_sk(sk)->pf->af; 5608 5609 /* Set up a dummy address struct from the sk. */ 5610 af->from_sk(&addr, sk); 5611 addr.v4.sin_port = htons(snum); 5612 5613 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5614 ret = sctp_get_port_local(sk, &addr); 5615 5616 return ret ? 1 : 0; 5617 } 5618 5619 /* 5620 * Move a socket to LISTENING state. 5621 */ 5622 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5623 { 5624 struct sctp_sock *sp = sctp_sk(sk); 5625 struct sctp_endpoint *ep = sp->ep; 5626 struct crypto_hash *tfm = NULL; 5627 5628 /* Allocate HMAC for generating cookie. */ 5629 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5630 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5631 if (IS_ERR(tfm)) { 5632 if (net_ratelimit()) { 5633 pr_info("failed to load transform for %s: %ld\n", 5634 sctp_hmac_alg, PTR_ERR(tfm)); 5635 } 5636 return -ENOSYS; 5637 } 5638 sctp_sk(sk)->hmac = tfm; 5639 } 5640 5641 /* 5642 * If a bind() or sctp_bindx() is not called prior to a listen() 5643 * call that allows new associations to be accepted, the system 5644 * picks an ephemeral port and will choose an address set equivalent 5645 * to binding with a wildcard address. 5646 * 5647 * This is not currently spelled out in the SCTP sockets 5648 * extensions draft, but follows the practice as seen in TCP 5649 * sockets. 5650 * 5651 */ 5652 sk->sk_state = SCTP_SS_LISTENING; 5653 if (!ep->base.bind_addr.port) { 5654 if (sctp_autobind(sk)) 5655 return -EAGAIN; 5656 } else { 5657 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 5658 sk->sk_state = SCTP_SS_CLOSED; 5659 return -EADDRINUSE; 5660 } 5661 } 5662 5663 sk->sk_max_ack_backlog = backlog; 5664 sctp_hash_endpoint(ep); 5665 return 0; 5666 } 5667 5668 /* 5669 * 4.1.3 / 5.1.3 listen() 5670 * 5671 * By default, new associations are not accepted for UDP style sockets. 5672 * An application uses listen() to mark a socket as being able to 5673 * accept new associations. 5674 * 5675 * On TCP style sockets, applications use listen() to ready the SCTP 5676 * endpoint for accepting inbound associations. 5677 * 5678 * On both types of endpoints a backlog of '0' disables listening. 5679 * 5680 * Move a socket to LISTENING state. 5681 */ 5682 int sctp_inet_listen(struct socket *sock, int backlog) 5683 { 5684 struct sock *sk = sock->sk; 5685 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5686 int err = -EINVAL; 5687 5688 if (unlikely(backlog < 0)) 5689 return err; 5690 5691 sctp_lock_sock(sk); 5692 5693 /* Peeled-off sockets are not allowed to listen(). */ 5694 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5695 goto out; 5696 5697 if (sock->state != SS_UNCONNECTED) 5698 goto out; 5699 5700 /* If backlog is zero, disable listening. */ 5701 if (!backlog) { 5702 if (sctp_sstate(sk, CLOSED)) 5703 goto out; 5704 5705 err = 0; 5706 sctp_unhash_endpoint(ep); 5707 sk->sk_state = SCTP_SS_CLOSED; 5708 if (sk->sk_reuse) 5709 sctp_sk(sk)->bind_hash->fastreuse = 1; 5710 goto out; 5711 } 5712 5713 /* If we are already listening, just update the backlog */ 5714 if (sctp_sstate(sk, LISTENING)) 5715 sk->sk_max_ack_backlog = backlog; 5716 else { 5717 err = sctp_listen_start(sk, backlog); 5718 if (err) 5719 goto out; 5720 } 5721 5722 err = 0; 5723 out: 5724 sctp_release_sock(sk); 5725 return err; 5726 } 5727 5728 /* 5729 * This function is done by modeling the current datagram_poll() and the 5730 * tcp_poll(). Note that, based on these implementations, we don't 5731 * lock the socket in this function, even though it seems that, 5732 * ideally, locking or some other mechanisms can be used to ensure 5733 * the integrity of the counters (sndbuf and wmem_alloc) used 5734 * in this place. We assume that we don't need locks either until proven 5735 * otherwise. 5736 * 5737 * Another thing to note is that we include the Async I/O support 5738 * here, again, by modeling the current TCP/UDP code. We don't have 5739 * a good way to test with it yet. 5740 */ 5741 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5742 { 5743 struct sock *sk = sock->sk; 5744 struct sctp_sock *sp = sctp_sk(sk); 5745 unsigned int mask; 5746 5747 poll_wait(file, sk_sleep(sk), wait); 5748 5749 /* A TCP-style listening socket becomes readable when the accept queue 5750 * is not empty. 5751 */ 5752 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5753 return (!list_empty(&sp->ep->asocs)) ? 5754 (POLLIN | POLLRDNORM) : 0; 5755 5756 mask = 0; 5757 5758 /* Is there any exceptional events? */ 5759 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5760 mask |= POLLERR; 5761 if (sk->sk_shutdown & RCV_SHUTDOWN) 5762 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 5763 if (sk->sk_shutdown == SHUTDOWN_MASK) 5764 mask |= POLLHUP; 5765 5766 /* Is it readable? Reconsider this code with TCP-style support. */ 5767 if (!skb_queue_empty(&sk->sk_receive_queue)) 5768 mask |= POLLIN | POLLRDNORM; 5769 5770 /* The association is either gone or not ready. */ 5771 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5772 return mask; 5773 5774 /* Is it writable? */ 5775 if (sctp_writeable(sk)) { 5776 mask |= POLLOUT | POLLWRNORM; 5777 } else { 5778 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5779 /* 5780 * Since the socket is not locked, the buffer 5781 * might be made available after the writeable check and 5782 * before the bit is set. This could cause a lost I/O 5783 * signal. tcp_poll() has a race breaker for this race 5784 * condition. Based on their implementation, we put 5785 * in the following code to cover it as well. 5786 */ 5787 if (sctp_writeable(sk)) 5788 mask |= POLLOUT | POLLWRNORM; 5789 } 5790 return mask; 5791 } 5792 5793 /******************************************************************** 5794 * 2nd Level Abstractions 5795 ********************************************************************/ 5796 5797 static struct sctp_bind_bucket *sctp_bucket_create( 5798 struct sctp_bind_hashbucket *head, unsigned short snum) 5799 { 5800 struct sctp_bind_bucket *pp; 5801 5802 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5803 if (pp) { 5804 SCTP_DBG_OBJCNT_INC(bind_bucket); 5805 pp->port = snum; 5806 pp->fastreuse = 0; 5807 INIT_HLIST_HEAD(&pp->owner); 5808 hlist_add_head(&pp->node, &head->chain); 5809 } 5810 return pp; 5811 } 5812 5813 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5814 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5815 { 5816 if (pp && hlist_empty(&pp->owner)) { 5817 __hlist_del(&pp->node); 5818 kmem_cache_free(sctp_bucket_cachep, pp); 5819 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5820 } 5821 } 5822 5823 /* Release this socket's reference to a local port. */ 5824 static inline void __sctp_put_port(struct sock *sk) 5825 { 5826 struct sctp_bind_hashbucket *head = 5827 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)]; 5828 struct sctp_bind_bucket *pp; 5829 5830 sctp_spin_lock(&head->lock); 5831 pp = sctp_sk(sk)->bind_hash; 5832 __sk_del_bind_node(sk); 5833 sctp_sk(sk)->bind_hash = NULL; 5834 inet_sk(sk)->inet_num = 0; 5835 sctp_bucket_destroy(pp); 5836 sctp_spin_unlock(&head->lock); 5837 } 5838 5839 void sctp_put_port(struct sock *sk) 5840 { 5841 sctp_local_bh_disable(); 5842 __sctp_put_port(sk); 5843 sctp_local_bh_enable(); 5844 } 5845 5846 /* 5847 * The system picks an ephemeral port and choose an address set equivalent 5848 * to binding with a wildcard address. 5849 * One of those addresses will be the primary address for the association. 5850 * This automatically enables the multihoming capability of SCTP. 5851 */ 5852 static int sctp_autobind(struct sock *sk) 5853 { 5854 union sctp_addr autoaddr; 5855 struct sctp_af *af; 5856 __be16 port; 5857 5858 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5859 af = sctp_sk(sk)->pf->af; 5860 5861 port = htons(inet_sk(sk)->inet_num); 5862 af->inaddr_any(&autoaddr, port); 5863 5864 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5865 } 5866 5867 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5868 * 5869 * From RFC 2292 5870 * 4.2 The cmsghdr Structure * 5871 * 5872 * When ancillary data is sent or received, any number of ancillary data 5873 * objects can be specified by the msg_control and msg_controllen members of 5874 * the msghdr structure, because each object is preceded by 5875 * a cmsghdr structure defining the object's length (the cmsg_len member). 5876 * Historically Berkeley-derived implementations have passed only one object 5877 * at a time, but this API allows multiple objects to be 5878 * passed in a single call to sendmsg() or recvmsg(). The following example 5879 * shows two ancillary data objects in a control buffer. 5880 * 5881 * |<--------------------------- msg_controllen -------------------------->| 5882 * | | 5883 * 5884 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5885 * 5886 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5887 * | | | 5888 * 5889 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5890 * 5891 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5892 * | | | | | 5893 * 5894 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5895 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5896 * 5897 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5898 * 5899 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5900 * ^ 5901 * | 5902 * 5903 * msg_control 5904 * points here 5905 */ 5906 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5907 sctp_cmsgs_t *cmsgs) 5908 { 5909 struct cmsghdr *cmsg; 5910 struct msghdr *my_msg = (struct msghdr *)msg; 5911 5912 for (cmsg = CMSG_FIRSTHDR(msg); 5913 cmsg != NULL; 5914 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 5915 if (!CMSG_OK(my_msg, cmsg)) 5916 return -EINVAL; 5917 5918 /* Should we parse this header or ignore? */ 5919 if (cmsg->cmsg_level != IPPROTO_SCTP) 5920 continue; 5921 5922 /* Strictly check lengths following example in SCM code. */ 5923 switch (cmsg->cmsg_type) { 5924 case SCTP_INIT: 5925 /* SCTP Socket API Extension 5926 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5927 * 5928 * This cmsghdr structure provides information for 5929 * initializing new SCTP associations with sendmsg(). 5930 * The SCTP_INITMSG socket option uses this same data 5931 * structure. This structure is not used for 5932 * recvmsg(). 5933 * 5934 * cmsg_level cmsg_type cmsg_data[] 5935 * ------------ ------------ ---------------------- 5936 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5937 */ 5938 if (cmsg->cmsg_len != 5939 CMSG_LEN(sizeof(struct sctp_initmsg))) 5940 return -EINVAL; 5941 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5942 break; 5943 5944 case SCTP_SNDRCV: 5945 /* SCTP Socket API Extension 5946 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5947 * 5948 * This cmsghdr structure specifies SCTP options for 5949 * sendmsg() and describes SCTP header information 5950 * about a received message through recvmsg(). 5951 * 5952 * cmsg_level cmsg_type cmsg_data[] 5953 * ------------ ------------ ---------------------- 5954 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5955 */ 5956 if (cmsg->cmsg_len != 5957 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5958 return -EINVAL; 5959 5960 cmsgs->info = 5961 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5962 5963 /* Minimally, validate the sinfo_flags. */ 5964 if (cmsgs->info->sinfo_flags & 5965 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5966 SCTP_ABORT | SCTP_EOF)) 5967 return -EINVAL; 5968 break; 5969 5970 default: 5971 return -EINVAL; 5972 } 5973 } 5974 return 0; 5975 } 5976 5977 /* 5978 * Wait for a packet.. 5979 * Note: This function is the same function as in core/datagram.c 5980 * with a few modifications to make lksctp work. 5981 */ 5982 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5983 { 5984 int error; 5985 DEFINE_WAIT(wait); 5986 5987 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 5988 5989 /* Socket errors? */ 5990 error = sock_error(sk); 5991 if (error) 5992 goto out; 5993 5994 if (!skb_queue_empty(&sk->sk_receive_queue)) 5995 goto ready; 5996 5997 /* Socket shut down? */ 5998 if (sk->sk_shutdown & RCV_SHUTDOWN) 5999 goto out; 6000 6001 /* Sequenced packets can come disconnected. If so we report the 6002 * problem. 6003 */ 6004 error = -ENOTCONN; 6005 6006 /* Is there a good reason to think that we may receive some data? */ 6007 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6008 goto out; 6009 6010 /* Handle signals. */ 6011 if (signal_pending(current)) 6012 goto interrupted; 6013 6014 /* Let another process have a go. Since we are going to sleep 6015 * anyway. Note: This may cause odd behaviors if the message 6016 * does not fit in the user's buffer, but this seems to be the 6017 * only way to honor MSG_DONTWAIT realistically. 6018 */ 6019 sctp_release_sock(sk); 6020 *timeo_p = schedule_timeout(*timeo_p); 6021 sctp_lock_sock(sk); 6022 6023 ready: 6024 finish_wait(sk_sleep(sk), &wait); 6025 return 0; 6026 6027 interrupted: 6028 error = sock_intr_errno(*timeo_p); 6029 6030 out: 6031 finish_wait(sk_sleep(sk), &wait); 6032 *err = error; 6033 return error; 6034 } 6035 6036 /* Receive a datagram. 6037 * Note: This is pretty much the same routine as in core/datagram.c 6038 * with a few changes to make lksctp work. 6039 */ 6040 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6041 int noblock, int *err) 6042 { 6043 int error; 6044 struct sk_buff *skb; 6045 long timeo; 6046 6047 timeo = sock_rcvtimeo(sk, noblock); 6048 6049 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6050 timeo, MAX_SCHEDULE_TIMEOUT); 6051 6052 do { 6053 /* Again only user level code calls this function, 6054 * so nothing interrupt level 6055 * will suddenly eat the receive_queue. 6056 * 6057 * Look at current nfs client by the way... 6058 * However, this function was correct in any case. 8) 6059 */ 6060 if (flags & MSG_PEEK) { 6061 spin_lock_bh(&sk->sk_receive_queue.lock); 6062 skb = skb_peek(&sk->sk_receive_queue); 6063 if (skb) 6064 atomic_inc(&skb->users); 6065 spin_unlock_bh(&sk->sk_receive_queue.lock); 6066 } else { 6067 skb = skb_dequeue(&sk->sk_receive_queue); 6068 } 6069 6070 if (skb) 6071 return skb; 6072 6073 /* Caller is allowed not to check sk->sk_err before calling. */ 6074 error = sock_error(sk); 6075 if (error) 6076 goto no_packet; 6077 6078 if (sk->sk_shutdown & RCV_SHUTDOWN) 6079 break; 6080 6081 /* User doesn't want to wait. */ 6082 error = -EAGAIN; 6083 if (!timeo) 6084 goto no_packet; 6085 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6086 6087 return NULL; 6088 6089 no_packet: 6090 *err = error; 6091 return NULL; 6092 } 6093 6094 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6095 static void __sctp_write_space(struct sctp_association *asoc) 6096 { 6097 struct sock *sk = asoc->base.sk; 6098 struct socket *sock = sk->sk_socket; 6099 6100 if ((sctp_wspace(asoc) > 0) && sock) { 6101 if (waitqueue_active(&asoc->wait)) 6102 wake_up_interruptible(&asoc->wait); 6103 6104 if (sctp_writeable(sk)) { 6105 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) 6106 wake_up_interruptible(sk_sleep(sk)); 6107 6108 /* Note that we try to include the Async I/O support 6109 * here by modeling from the current TCP/UDP code. 6110 * We have not tested with it yet. 6111 */ 6112 if (sock->wq->fasync_list && 6113 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6114 sock_wake_async(sock, 6115 SOCK_WAKE_SPACE, POLL_OUT); 6116 } 6117 } 6118 } 6119 6120 /* Do accounting for the sndbuf space. 6121 * Decrement the used sndbuf space of the corresponding association by the 6122 * data size which was just transmitted(freed). 6123 */ 6124 static void sctp_wfree(struct sk_buff *skb) 6125 { 6126 struct sctp_association *asoc; 6127 struct sctp_chunk *chunk; 6128 struct sock *sk; 6129 6130 /* Get the saved chunk pointer. */ 6131 chunk = *((struct sctp_chunk **)(skb->cb)); 6132 asoc = chunk->asoc; 6133 sk = asoc->base.sk; 6134 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6135 sizeof(struct sk_buff) + 6136 sizeof(struct sctp_chunk); 6137 6138 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6139 6140 /* 6141 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6142 */ 6143 sk->sk_wmem_queued -= skb->truesize; 6144 sk_mem_uncharge(sk, skb->truesize); 6145 6146 sock_wfree(skb); 6147 __sctp_write_space(asoc); 6148 6149 sctp_association_put(asoc); 6150 } 6151 6152 /* Do accounting for the receive space on the socket. 6153 * Accounting for the association is done in ulpevent.c 6154 * We set this as a destructor for the cloned data skbs so that 6155 * accounting is done at the correct time. 6156 */ 6157 void sctp_sock_rfree(struct sk_buff *skb) 6158 { 6159 struct sock *sk = skb->sk; 6160 struct sctp_ulpevent *event = sctp_skb2event(skb); 6161 6162 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6163 6164 /* 6165 * Mimic the behavior of sock_rfree 6166 */ 6167 sk_mem_uncharge(sk, event->rmem_len); 6168 } 6169 6170 6171 /* Helper function to wait for space in the sndbuf. */ 6172 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6173 size_t msg_len) 6174 { 6175 struct sock *sk = asoc->base.sk; 6176 int err = 0; 6177 long current_timeo = *timeo_p; 6178 DEFINE_WAIT(wait); 6179 6180 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6181 asoc, (long)(*timeo_p), msg_len); 6182 6183 /* Increment the association's refcnt. */ 6184 sctp_association_hold(asoc); 6185 6186 /* Wait on the association specific sndbuf space. */ 6187 for (;;) { 6188 prepare_to_wait_exclusive(&asoc->wait, &wait, 6189 TASK_INTERRUPTIBLE); 6190 if (!*timeo_p) 6191 goto do_nonblock; 6192 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6193 asoc->base.dead) 6194 goto do_error; 6195 if (signal_pending(current)) 6196 goto do_interrupted; 6197 if (msg_len <= sctp_wspace(asoc)) 6198 break; 6199 6200 /* Let another process have a go. Since we are going 6201 * to sleep anyway. 6202 */ 6203 sctp_release_sock(sk); 6204 current_timeo = schedule_timeout(current_timeo); 6205 BUG_ON(sk != asoc->base.sk); 6206 sctp_lock_sock(sk); 6207 6208 *timeo_p = current_timeo; 6209 } 6210 6211 out: 6212 finish_wait(&asoc->wait, &wait); 6213 6214 /* Release the association's refcnt. */ 6215 sctp_association_put(asoc); 6216 6217 return err; 6218 6219 do_error: 6220 err = -EPIPE; 6221 goto out; 6222 6223 do_interrupted: 6224 err = sock_intr_errno(*timeo_p); 6225 goto out; 6226 6227 do_nonblock: 6228 err = -EAGAIN; 6229 goto out; 6230 } 6231 6232 void sctp_data_ready(struct sock *sk, int len) 6233 { 6234 struct socket_wq *wq; 6235 6236 rcu_read_lock(); 6237 wq = rcu_dereference(sk->sk_wq); 6238 if (wq_has_sleeper(wq)) 6239 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6240 POLLRDNORM | POLLRDBAND); 6241 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6242 rcu_read_unlock(); 6243 } 6244 6245 /* If socket sndbuf has changed, wake up all per association waiters. */ 6246 void sctp_write_space(struct sock *sk) 6247 { 6248 struct sctp_association *asoc; 6249 6250 /* Wake up the tasks in each wait queue. */ 6251 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6252 __sctp_write_space(asoc); 6253 } 6254 } 6255 6256 /* Is there any sndbuf space available on the socket? 6257 * 6258 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6259 * associations on the same socket. For a UDP-style socket with 6260 * multiple associations, it is possible for it to be "unwriteable" 6261 * prematurely. I assume that this is acceptable because 6262 * a premature "unwriteable" is better than an accidental "writeable" which 6263 * would cause an unwanted block under certain circumstances. For the 1-1 6264 * UDP-style sockets or TCP-style sockets, this code should work. 6265 * - Daisy 6266 */ 6267 static int sctp_writeable(struct sock *sk) 6268 { 6269 int amt = 0; 6270 6271 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6272 if (amt < 0) 6273 amt = 0; 6274 return amt; 6275 } 6276 6277 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6278 * returns immediately with EINPROGRESS. 6279 */ 6280 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6281 { 6282 struct sock *sk = asoc->base.sk; 6283 int err = 0; 6284 long current_timeo = *timeo_p; 6285 DEFINE_WAIT(wait); 6286 6287 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6288 (long)(*timeo_p)); 6289 6290 /* Increment the association's refcnt. */ 6291 sctp_association_hold(asoc); 6292 6293 for (;;) { 6294 prepare_to_wait_exclusive(&asoc->wait, &wait, 6295 TASK_INTERRUPTIBLE); 6296 if (!*timeo_p) 6297 goto do_nonblock; 6298 if (sk->sk_shutdown & RCV_SHUTDOWN) 6299 break; 6300 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6301 asoc->base.dead) 6302 goto do_error; 6303 if (signal_pending(current)) 6304 goto do_interrupted; 6305 6306 if (sctp_state(asoc, ESTABLISHED)) 6307 break; 6308 6309 /* Let another process have a go. Since we are going 6310 * to sleep anyway. 6311 */ 6312 sctp_release_sock(sk); 6313 current_timeo = schedule_timeout(current_timeo); 6314 sctp_lock_sock(sk); 6315 6316 *timeo_p = current_timeo; 6317 } 6318 6319 out: 6320 finish_wait(&asoc->wait, &wait); 6321 6322 /* Release the association's refcnt. */ 6323 sctp_association_put(asoc); 6324 6325 return err; 6326 6327 do_error: 6328 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6329 err = -ETIMEDOUT; 6330 else 6331 err = -ECONNREFUSED; 6332 goto out; 6333 6334 do_interrupted: 6335 err = sock_intr_errno(*timeo_p); 6336 goto out; 6337 6338 do_nonblock: 6339 err = -EINPROGRESS; 6340 goto out; 6341 } 6342 6343 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6344 { 6345 struct sctp_endpoint *ep; 6346 int err = 0; 6347 DEFINE_WAIT(wait); 6348 6349 ep = sctp_sk(sk)->ep; 6350 6351 6352 for (;;) { 6353 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6354 TASK_INTERRUPTIBLE); 6355 6356 if (list_empty(&ep->asocs)) { 6357 sctp_release_sock(sk); 6358 timeo = schedule_timeout(timeo); 6359 sctp_lock_sock(sk); 6360 } 6361 6362 err = -EINVAL; 6363 if (!sctp_sstate(sk, LISTENING)) 6364 break; 6365 6366 err = 0; 6367 if (!list_empty(&ep->asocs)) 6368 break; 6369 6370 err = sock_intr_errno(timeo); 6371 if (signal_pending(current)) 6372 break; 6373 6374 err = -EAGAIN; 6375 if (!timeo) 6376 break; 6377 } 6378 6379 finish_wait(sk_sleep(sk), &wait); 6380 6381 return err; 6382 } 6383 6384 static void sctp_wait_for_close(struct sock *sk, long timeout) 6385 { 6386 DEFINE_WAIT(wait); 6387 6388 do { 6389 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6390 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6391 break; 6392 sctp_release_sock(sk); 6393 timeout = schedule_timeout(timeout); 6394 sctp_lock_sock(sk); 6395 } while (!signal_pending(current) && timeout); 6396 6397 finish_wait(sk_sleep(sk), &wait); 6398 } 6399 6400 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6401 { 6402 struct sk_buff *frag; 6403 6404 if (!skb->data_len) 6405 goto done; 6406 6407 /* Don't forget the fragments. */ 6408 skb_walk_frags(skb, frag) 6409 sctp_skb_set_owner_r_frag(frag, sk); 6410 6411 done: 6412 sctp_skb_set_owner_r(skb, sk); 6413 } 6414 6415 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6416 struct sctp_association *asoc) 6417 { 6418 struct inet_sock *inet = inet_sk(sk); 6419 struct inet_sock *newinet; 6420 6421 newsk->sk_type = sk->sk_type; 6422 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6423 newsk->sk_flags = sk->sk_flags; 6424 newsk->sk_no_check = sk->sk_no_check; 6425 newsk->sk_reuse = sk->sk_reuse; 6426 6427 newsk->sk_shutdown = sk->sk_shutdown; 6428 newsk->sk_destruct = inet_sock_destruct; 6429 newsk->sk_family = sk->sk_family; 6430 newsk->sk_protocol = IPPROTO_SCTP; 6431 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6432 newsk->sk_sndbuf = sk->sk_sndbuf; 6433 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6434 newsk->sk_lingertime = sk->sk_lingertime; 6435 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6436 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6437 6438 newinet = inet_sk(newsk); 6439 6440 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6441 * getsockname() and getpeername() 6442 */ 6443 newinet->inet_sport = inet->inet_sport; 6444 newinet->inet_saddr = inet->inet_saddr; 6445 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6446 newinet->inet_dport = htons(asoc->peer.port); 6447 newinet->pmtudisc = inet->pmtudisc; 6448 newinet->inet_id = asoc->next_tsn ^ jiffies; 6449 6450 newinet->uc_ttl = inet->uc_ttl; 6451 newinet->mc_loop = 1; 6452 newinet->mc_ttl = 1; 6453 newinet->mc_index = 0; 6454 newinet->mc_list = NULL; 6455 } 6456 6457 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6458 * and its messages to the newsk. 6459 */ 6460 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6461 struct sctp_association *assoc, 6462 sctp_socket_type_t type) 6463 { 6464 struct sctp_sock *oldsp = sctp_sk(oldsk); 6465 struct sctp_sock *newsp = sctp_sk(newsk); 6466 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6467 struct sctp_endpoint *newep = newsp->ep; 6468 struct sk_buff *skb, *tmp; 6469 struct sctp_ulpevent *event; 6470 struct sctp_bind_hashbucket *head; 6471 6472 /* Migrate socket buffer sizes and all the socket level options to the 6473 * new socket. 6474 */ 6475 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6476 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6477 /* Brute force copy old sctp opt. */ 6478 inet_sk_copy_descendant(newsk, oldsk); 6479 6480 /* Restore the ep value that was overwritten with the above structure 6481 * copy. 6482 */ 6483 newsp->ep = newep; 6484 newsp->hmac = NULL; 6485 6486 /* Hook this new socket in to the bind_hash list. */ 6487 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)]; 6488 sctp_local_bh_disable(); 6489 sctp_spin_lock(&head->lock); 6490 pp = sctp_sk(oldsk)->bind_hash; 6491 sk_add_bind_node(newsk, &pp->owner); 6492 sctp_sk(newsk)->bind_hash = pp; 6493 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6494 sctp_spin_unlock(&head->lock); 6495 sctp_local_bh_enable(); 6496 6497 /* Copy the bind_addr list from the original endpoint to the new 6498 * endpoint so that we can handle restarts properly 6499 */ 6500 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6501 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6502 6503 /* Move any messages in the old socket's receive queue that are for the 6504 * peeled off association to the new socket's receive queue. 6505 */ 6506 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6507 event = sctp_skb2event(skb); 6508 if (event->asoc == assoc) { 6509 __skb_unlink(skb, &oldsk->sk_receive_queue); 6510 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6511 sctp_skb_set_owner_r_frag(skb, newsk); 6512 } 6513 } 6514 6515 /* Clean up any messages pending delivery due to partial 6516 * delivery. Three cases: 6517 * 1) No partial deliver; no work. 6518 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6519 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6520 */ 6521 skb_queue_head_init(&newsp->pd_lobby); 6522 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6523 6524 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6525 struct sk_buff_head *queue; 6526 6527 /* Decide which queue to move pd_lobby skbs to. */ 6528 if (assoc->ulpq.pd_mode) { 6529 queue = &newsp->pd_lobby; 6530 } else 6531 queue = &newsk->sk_receive_queue; 6532 6533 /* Walk through the pd_lobby, looking for skbs that 6534 * need moved to the new socket. 6535 */ 6536 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6537 event = sctp_skb2event(skb); 6538 if (event->asoc == assoc) { 6539 __skb_unlink(skb, &oldsp->pd_lobby); 6540 __skb_queue_tail(queue, skb); 6541 sctp_skb_set_owner_r_frag(skb, newsk); 6542 } 6543 } 6544 6545 /* Clear up any skbs waiting for the partial 6546 * delivery to finish. 6547 */ 6548 if (assoc->ulpq.pd_mode) 6549 sctp_clear_pd(oldsk, NULL); 6550 6551 } 6552 6553 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6554 sctp_skb_set_owner_r_frag(skb, newsk); 6555 6556 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6557 sctp_skb_set_owner_r_frag(skb, newsk); 6558 6559 /* Set the type of socket to indicate that it is peeled off from the 6560 * original UDP-style socket or created with the accept() call on a 6561 * TCP-style socket.. 6562 */ 6563 newsp->type = type; 6564 6565 /* Mark the new socket "in-use" by the user so that any packets 6566 * that may arrive on the association after we've moved it are 6567 * queued to the backlog. This prevents a potential race between 6568 * backlog processing on the old socket and new-packet processing 6569 * on the new socket. 6570 * 6571 * The caller has just allocated newsk so we can guarantee that other 6572 * paths won't try to lock it and then oldsk. 6573 */ 6574 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6575 sctp_assoc_migrate(assoc, newsk); 6576 6577 /* If the association on the newsk is already closed before accept() 6578 * is called, set RCV_SHUTDOWN flag. 6579 */ 6580 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6581 newsk->sk_shutdown |= RCV_SHUTDOWN; 6582 6583 newsk->sk_state = SCTP_SS_ESTABLISHED; 6584 sctp_release_sock(newsk); 6585 } 6586 6587 6588 /* This proto struct describes the ULP interface for SCTP. */ 6589 struct proto sctp_prot = { 6590 .name = "SCTP", 6591 .owner = THIS_MODULE, 6592 .close = sctp_close, 6593 .connect = sctp_connect, 6594 .disconnect = sctp_disconnect, 6595 .accept = sctp_accept, 6596 .ioctl = sctp_ioctl, 6597 .init = sctp_init_sock, 6598 .destroy = sctp_destroy_sock, 6599 .shutdown = sctp_shutdown, 6600 .setsockopt = sctp_setsockopt, 6601 .getsockopt = sctp_getsockopt, 6602 .sendmsg = sctp_sendmsg, 6603 .recvmsg = sctp_recvmsg, 6604 .bind = sctp_bind, 6605 .backlog_rcv = sctp_backlog_rcv, 6606 .hash = sctp_hash, 6607 .unhash = sctp_unhash, 6608 .get_port = sctp_get_port, 6609 .obj_size = sizeof(struct sctp_sock), 6610 .sysctl_mem = sysctl_sctp_mem, 6611 .sysctl_rmem = sysctl_sctp_rmem, 6612 .sysctl_wmem = sysctl_sctp_wmem, 6613 .memory_pressure = &sctp_memory_pressure, 6614 .enter_memory_pressure = sctp_enter_memory_pressure, 6615 .memory_allocated = &sctp_memory_allocated, 6616 .sockets_allocated = &sctp_sockets_allocated, 6617 }; 6618 6619 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6620 6621 struct proto sctpv6_prot = { 6622 .name = "SCTPv6", 6623 .owner = THIS_MODULE, 6624 .close = sctp_close, 6625 .connect = sctp_connect, 6626 .disconnect = sctp_disconnect, 6627 .accept = sctp_accept, 6628 .ioctl = sctp_ioctl, 6629 .init = sctp_init_sock, 6630 .destroy = sctp_destroy_sock, 6631 .shutdown = sctp_shutdown, 6632 .setsockopt = sctp_setsockopt, 6633 .getsockopt = sctp_getsockopt, 6634 .sendmsg = sctp_sendmsg, 6635 .recvmsg = sctp_recvmsg, 6636 .bind = sctp_bind, 6637 .backlog_rcv = sctp_backlog_rcv, 6638 .hash = sctp_hash, 6639 .unhash = sctp_unhash, 6640 .get_port = sctp_get_port, 6641 .obj_size = sizeof(struct sctp6_sock), 6642 .sysctl_mem = sysctl_sctp_mem, 6643 .sysctl_rmem = sysctl_sctp_rmem, 6644 .sysctl_wmem = sysctl_sctp_wmem, 6645 .memory_pressure = &sctp_memory_pressure, 6646 .enter_memory_pressure = sctp_enter_memory_pressure, 6647 .memory_allocated = &sctp_memory_allocated, 6648 .sockets_allocated = &sctp_sockets_allocated, 6649 }; 6650 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6651