1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 83 /* Forward declarations for internal helper functions. */ 84 static int sctp_writeable(struct sock *sk); 85 static void sctp_wfree(struct sk_buff *skb); 86 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 87 size_t msg_len); 88 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 89 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 90 static int sctp_wait_for_accept(struct sock *sk, long timeo); 91 static void sctp_wait_for_close(struct sock *sk, long timeo); 92 static void sctp_destruct_sock(struct sock *sk); 93 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 94 union sctp_addr *addr, int len); 95 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 96 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf(struct sctp_association *asoc, 100 struct sctp_chunk *chunk); 101 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 102 static int sctp_autobind(struct sock *sk); 103 static void sctp_sock_migrate(struct sock *, struct sock *, 104 struct sctp_association *, sctp_socket_type_t); 105 106 static unsigned long sctp_memory_pressure; 107 static atomic_long_t sctp_memory_allocated; 108 struct percpu_counter sctp_sockets_allocated; 109 110 static void sctp_enter_memory_pressure(struct sock *sk) 111 { 112 sctp_memory_pressure = 1; 113 } 114 115 116 /* Get the sndbuf space available at the time on the association. */ 117 static inline int sctp_wspace(struct sctp_association *asoc) 118 { 119 int amt; 120 121 if (asoc->ep->sndbuf_policy) 122 amt = asoc->sndbuf_used; 123 else 124 amt = sk_wmem_alloc_get(asoc->base.sk); 125 126 if (amt >= asoc->base.sk->sk_sndbuf) { 127 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 128 amt = 0; 129 else { 130 amt = sk_stream_wspace(asoc->base.sk); 131 if (amt < 0) 132 amt = 0; 133 } 134 } else { 135 amt = asoc->base.sk->sk_sndbuf - amt; 136 } 137 return amt; 138 } 139 140 /* Increment the used sndbuf space count of the corresponding association by 141 * the size of the outgoing data chunk. 142 * Also, set the skb destructor for sndbuf accounting later. 143 * 144 * Since it is always 1-1 between chunk and skb, and also a new skb is always 145 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 146 * destructor in the data chunk skb for the purpose of the sndbuf space 147 * tracking. 148 */ 149 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 150 { 151 struct sctp_association *asoc = chunk->asoc; 152 struct sock *sk = asoc->base.sk; 153 154 /* The sndbuf space is tracked per association. */ 155 sctp_association_hold(asoc); 156 157 skb_set_owner_w(chunk->skb, sk); 158 159 chunk->skb->destructor = sctp_wfree; 160 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 161 skb_shinfo(chunk->skb)->destructor_arg = chunk; 162 163 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 164 sizeof(struct sk_buff) + 165 sizeof(struct sctp_chunk); 166 167 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 168 sk->sk_wmem_queued += chunk->skb->truesize; 169 sk_mem_charge(sk, chunk->skb->truesize); 170 } 171 172 /* Verify that this is a valid address. */ 173 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 174 int len) 175 { 176 struct sctp_af *af; 177 178 /* Verify basic sockaddr. */ 179 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 180 if (!af) 181 return -EINVAL; 182 183 /* Is this a valid SCTP address? */ 184 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 185 return -EINVAL; 186 187 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 188 return -EINVAL; 189 190 return 0; 191 } 192 193 /* Look up the association by its id. If this is not a UDP-style 194 * socket, the ID field is always ignored. 195 */ 196 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 197 { 198 struct sctp_association *asoc = NULL; 199 200 /* If this is not a UDP-style socket, assoc id should be ignored. */ 201 if (!sctp_style(sk, UDP)) { 202 /* Return NULL if the socket state is not ESTABLISHED. It 203 * could be a TCP-style listening socket or a socket which 204 * hasn't yet called connect() to establish an association. 205 */ 206 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 207 return NULL; 208 209 /* Get the first and the only association from the list. */ 210 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 211 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 212 struct sctp_association, asocs); 213 return asoc; 214 } 215 216 /* Otherwise this is a UDP-style socket. */ 217 if (!id || (id == (sctp_assoc_t)-1)) 218 return NULL; 219 220 spin_lock_bh(&sctp_assocs_id_lock); 221 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 222 spin_unlock_bh(&sctp_assocs_id_lock); 223 224 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 225 return NULL; 226 227 return asoc; 228 } 229 230 /* Look up the transport from an address and an assoc id. If both address and 231 * id are specified, the associations matching the address and the id should be 232 * the same. 233 */ 234 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 235 struct sockaddr_storage *addr, 236 sctp_assoc_t id) 237 { 238 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 239 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 240 union sctp_addr *laddr = (union sctp_addr *)addr; 241 struct sctp_transport *transport; 242 243 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 244 return NULL; 245 246 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 247 laddr, 248 &transport); 249 250 if (!addr_asoc) 251 return NULL; 252 253 id_asoc = sctp_id2assoc(sk, id); 254 if (id_asoc && (id_asoc != addr_asoc)) 255 return NULL; 256 257 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 258 (union sctp_addr *)addr); 259 260 return transport; 261 } 262 263 /* API 3.1.2 bind() - UDP Style Syntax 264 * The syntax of bind() is, 265 * 266 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 267 * 268 * sd - the socket descriptor returned by socket(). 269 * addr - the address structure (struct sockaddr_in or struct 270 * sockaddr_in6 [RFC 2553]), 271 * addr_len - the size of the address structure. 272 */ 273 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 274 { 275 int retval = 0; 276 277 lock_sock(sk); 278 279 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 280 addr, addr_len); 281 282 /* Disallow binding twice. */ 283 if (!sctp_sk(sk)->ep->base.bind_addr.port) 284 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 285 addr_len); 286 else 287 retval = -EINVAL; 288 289 release_sock(sk); 290 291 return retval; 292 } 293 294 static long sctp_get_port_local(struct sock *, union sctp_addr *); 295 296 /* Verify this is a valid sockaddr. */ 297 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 298 union sctp_addr *addr, int len) 299 { 300 struct sctp_af *af; 301 302 /* Check minimum size. */ 303 if (len < sizeof (struct sockaddr)) 304 return NULL; 305 306 /* V4 mapped address are really of AF_INET family */ 307 if (addr->sa.sa_family == AF_INET6 && 308 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 309 if (!opt->pf->af_supported(AF_INET, opt)) 310 return NULL; 311 } else { 312 /* Does this PF support this AF? */ 313 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 314 return NULL; 315 } 316 317 /* If we get this far, af is valid. */ 318 af = sctp_get_af_specific(addr->sa.sa_family); 319 320 if (len < af->sockaddr_len) 321 return NULL; 322 323 return af; 324 } 325 326 /* Bind a local address either to an endpoint or to an association. */ 327 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 328 { 329 struct net *net = sock_net(sk); 330 struct sctp_sock *sp = sctp_sk(sk); 331 struct sctp_endpoint *ep = sp->ep; 332 struct sctp_bind_addr *bp = &ep->base.bind_addr; 333 struct sctp_af *af; 334 unsigned short snum; 335 int ret = 0; 336 337 /* Common sockaddr verification. */ 338 af = sctp_sockaddr_af(sp, addr, len); 339 if (!af) { 340 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 341 __func__, sk, addr, len); 342 return -EINVAL; 343 } 344 345 snum = ntohs(addr->v4.sin_port); 346 347 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 348 __func__, sk, &addr->sa, bp->port, snum, len); 349 350 /* PF specific bind() address verification. */ 351 if (!sp->pf->bind_verify(sp, addr)) 352 return -EADDRNOTAVAIL; 353 354 /* We must either be unbound, or bind to the same port. 355 * It's OK to allow 0 ports if we are already bound. 356 * We'll just inhert an already bound port in this case 357 */ 358 if (bp->port) { 359 if (!snum) 360 snum = bp->port; 361 else if (snum != bp->port) { 362 pr_debug("%s: new port %d doesn't match existing port " 363 "%d\n", __func__, snum, bp->port); 364 return -EINVAL; 365 } 366 } 367 368 if (snum && snum < inet_prot_sock(net) && 369 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 370 return -EACCES; 371 372 /* See if the address matches any of the addresses we may have 373 * already bound before checking against other endpoints. 374 */ 375 if (sctp_bind_addr_match(bp, addr, sp)) 376 return -EINVAL; 377 378 /* Make sure we are allowed to bind here. 379 * The function sctp_get_port_local() does duplicate address 380 * detection. 381 */ 382 addr->v4.sin_port = htons(snum); 383 if ((ret = sctp_get_port_local(sk, addr))) { 384 return -EADDRINUSE; 385 } 386 387 /* Refresh ephemeral port. */ 388 if (!bp->port) 389 bp->port = inet_sk(sk)->inet_num; 390 391 /* Add the address to the bind address list. 392 * Use GFP_ATOMIC since BHs will be disabled. 393 */ 394 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 395 SCTP_ADDR_SRC, GFP_ATOMIC); 396 397 /* Copy back into socket for getsockname() use. */ 398 if (!ret) { 399 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 400 sp->pf->to_sk_saddr(addr, sk); 401 } 402 403 return ret; 404 } 405 406 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 407 * 408 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 409 * at any one time. If a sender, after sending an ASCONF chunk, decides 410 * it needs to transfer another ASCONF Chunk, it MUST wait until the 411 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 412 * subsequent ASCONF. Note this restriction binds each side, so at any 413 * time two ASCONF may be in-transit on any given association (one sent 414 * from each endpoint). 415 */ 416 static int sctp_send_asconf(struct sctp_association *asoc, 417 struct sctp_chunk *chunk) 418 { 419 struct net *net = sock_net(asoc->base.sk); 420 int retval = 0; 421 422 /* If there is an outstanding ASCONF chunk, queue it for later 423 * transmission. 424 */ 425 if (asoc->addip_last_asconf) { 426 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 427 goto out; 428 } 429 430 /* Hold the chunk until an ASCONF_ACK is received. */ 431 sctp_chunk_hold(chunk); 432 retval = sctp_primitive_ASCONF(net, asoc, chunk); 433 if (retval) 434 sctp_chunk_free(chunk); 435 else 436 asoc->addip_last_asconf = chunk; 437 438 out: 439 return retval; 440 } 441 442 /* Add a list of addresses as bind addresses to local endpoint or 443 * association. 444 * 445 * Basically run through each address specified in the addrs/addrcnt 446 * array/length pair, determine if it is IPv6 or IPv4 and call 447 * sctp_do_bind() on it. 448 * 449 * If any of them fails, then the operation will be reversed and the 450 * ones that were added will be removed. 451 * 452 * Only sctp_setsockopt_bindx() is supposed to call this function. 453 */ 454 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 455 { 456 int cnt; 457 int retval = 0; 458 void *addr_buf; 459 struct sockaddr *sa_addr; 460 struct sctp_af *af; 461 462 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 463 addrs, addrcnt); 464 465 addr_buf = addrs; 466 for (cnt = 0; cnt < addrcnt; cnt++) { 467 /* The list may contain either IPv4 or IPv6 address; 468 * determine the address length for walking thru the list. 469 */ 470 sa_addr = addr_buf; 471 af = sctp_get_af_specific(sa_addr->sa_family); 472 if (!af) { 473 retval = -EINVAL; 474 goto err_bindx_add; 475 } 476 477 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 478 af->sockaddr_len); 479 480 addr_buf += af->sockaddr_len; 481 482 err_bindx_add: 483 if (retval < 0) { 484 /* Failed. Cleanup the ones that have been added */ 485 if (cnt > 0) 486 sctp_bindx_rem(sk, addrs, cnt); 487 return retval; 488 } 489 } 490 491 return retval; 492 } 493 494 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 495 * associations that are part of the endpoint indicating that a list of local 496 * addresses are added to the endpoint. 497 * 498 * If any of the addresses is already in the bind address list of the 499 * association, we do not send the chunk for that association. But it will not 500 * affect other associations. 501 * 502 * Only sctp_setsockopt_bindx() is supposed to call this function. 503 */ 504 static int sctp_send_asconf_add_ip(struct sock *sk, 505 struct sockaddr *addrs, 506 int addrcnt) 507 { 508 struct net *net = sock_net(sk); 509 struct sctp_sock *sp; 510 struct sctp_endpoint *ep; 511 struct sctp_association *asoc; 512 struct sctp_bind_addr *bp; 513 struct sctp_chunk *chunk; 514 struct sctp_sockaddr_entry *laddr; 515 union sctp_addr *addr; 516 union sctp_addr saveaddr; 517 void *addr_buf; 518 struct sctp_af *af; 519 struct list_head *p; 520 int i; 521 int retval = 0; 522 523 if (!net->sctp.addip_enable) 524 return retval; 525 526 sp = sctp_sk(sk); 527 ep = sp->ep; 528 529 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 530 __func__, sk, addrs, addrcnt); 531 532 list_for_each_entry(asoc, &ep->asocs, asocs) { 533 if (!asoc->peer.asconf_capable) 534 continue; 535 536 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 537 continue; 538 539 if (!sctp_state(asoc, ESTABLISHED)) 540 continue; 541 542 /* Check if any address in the packed array of addresses is 543 * in the bind address list of the association. If so, 544 * do not send the asconf chunk to its peer, but continue with 545 * other associations. 546 */ 547 addr_buf = addrs; 548 for (i = 0; i < addrcnt; i++) { 549 addr = addr_buf; 550 af = sctp_get_af_specific(addr->v4.sin_family); 551 if (!af) { 552 retval = -EINVAL; 553 goto out; 554 } 555 556 if (sctp_assoc_lookup_laddr(asoc, addr)) 557 break; 558 559 addr_buf += af->sockaddr_len; 560 } 561 if (i < addrcnt) 562 continue; 563 564 /* Use the first valid address in bind addr list of 565 * association as Address Parameter of ASCONF CHUNK. 566 */ 567 bp = &asoc->base.bind_addr; 568 p = bp->address_list.next; 569 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 570 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 571 addrcnt, SCTP_PARAM_ADD_IP); 572 if (!chunk) { 573 retval = -ENOMEM; 574 goto out; 575 } 576 577 /* Add the new addresses to the bind address list with 578 * use_as_src set to 0. 579 */ 580 addr_buf = addrs; 581 for (i = 0; i < addrcnt; i++) { 582 addr = addr_buf; 583 af = sctp_get_af_specific(addr->v4.sin_family); 584 memcpy(&saveaddr, addr, af->sockaddr_len); 585 retval = sctp_add_bind_addr(bp, &saveaddr, 586 sizeof(saveaddr), 587 SCTP_ADDR_NEW, GFP_ATOMIC); 588 addr_buf += af->sockaddr_len; 589 } 590 if (asoc->src_out_of_asoc_ok) { 591 struct sctp_transport *trans; 592 593 list_for_each_entry(trans, 594 &asoc->peer.transport_addr_list, transports) { 595 /* Clear the source and route cache */ 596 sctp_transport_dst_release(trans); 597 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 598 2*asoc->pathmtu, 4380)); 599 trans->ssthresh = asoc->peer.i.a_rwnd; 600 trans->rto = asoc->rto_initial; 601 sctp_max_rto(asoc, trans); 602 trans->rtt = trans->srtt = trans->rttvar = 0; 603 sctp_transport_route(trans, NULL, 604 sctp_sk(asoc->base.sk)); 605 } 606 } 607 retval = sctp_send_asconf(asoc, chunk); 608 } 609 610 out: 611 return retval; 612 } 613 614 /* Remove a list of addresses from bind addresses list. Do not remove the 615 * last address. 616 * 617 * Basically run through each address specified in the addrs/addrcnt 618 * array/length pair, determine if it is IPv6 or IPv4 and call 619 * sctp_del_bind() on it. 620 * 621 * If any of them fails, then the operation will be reversed and the 622 * ones that were removed will be added back. 623 * 624 * At least one address has to be left; if only one address is 625 * available, the operation will return -EBUSY. 626 * 627 * Only sctp_setsockopt_bindx() is supposed to call this function. 628 */ 629 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 630 { 631 struct sctp_sock *sp = sctp_sk(sk); 632 struct sctp_endpoint *ep = sp->ep; 633 int cnt; 634 struct sctp_bind_addr *bp = &ep->base.bind_addr; 635 int retval = 0; 636 void *addr_buf; 637 union sctp_addr *sa_addr; 638 struct sctp_af *af; 639 640 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 641 __func__, sk, addrs, addrcnt); 642 643 addr_buf = addrs; 644 for (cnt = 0; cnt < addrcnt; cnt++) { 645 /* If the bind address list is empty or if there is only one 646 * bind address, there is nothing more to be removed (we need 647 * at least one address here). 648 */ 649 if (list_empty(&bp->address_list) || 650 (sctp_list_single_entry(&bp->address_list))) { 651 retval = -EBUSY; 652 goto err_bindx_rem; 653 } 654 655 sa_addr = addr_buf; 656 af = sctp_get_af_specific(sa_addr->sa.sa_family); 657 if (!af) { 658 retval = -EINVAL; 659 goto err_bindx_rem; 660 } 661 662 if (!af->addr_valid(sa_addr, sp, NULL)) { 663 retval = -EADDRNOTAVAIL; 664 goto err_bindx_rem; 665 } 666 667 if (sa_addr->v4.sin_port && 668 sa_addr->v4.sin_port != htons(bp->port)) { 669 retval = -EINVAL; 670 goto err_bindx_rem; 671 } 672 673 if (!sa_addr->v4.sin_port) 674 sa_addr->v4.sin_port = htons(bp->port); 675 676 /* FIXME - There is probably a need to check if sk->sk_saddr and 677 * sk->sk_rcv_addr are currently set to one of the addresses to 678 * be removed. This is something which needs to be looked into 679 * when we are fixing the outstanding issues with multi-homing 680 * socket routing and failover schemes. Refer to comments in 681 * sctp_do_bind(). -daisy 682 */ 683 retval = sctp_del_bind_addr(bp, sa_addr); 684 685 addr_buf += af->sockaddr_len; 686 err_bindx_rem: 687 if (retval < 0) { 688 /* Failed. Add the ones that has been removed back */ 689 if (cnt > 0) 690 sctp_bindx_add(sk, addrs, cnt); 691 return retval; 692 } 693 } 694 695 return retval; 696 } 697 698 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 699 * the associations that are part of the endpoint indicating that a list of 700 * local addresses are removed from the endpoint. 701 * 702 * If any of the addresses is already in the bind address list of the 703 * association, we do not send the chunk for that association. But it will not 704 * affect other associations. 705 * 706 * Only sctp_setsockopt_bindx() is supposed to call this function. 707 */ 708 static int sctp_send_asconf_del_ip(struct sock *sk, 709 struct sockaddr *addrs, 710 int addrcnt) 711 { 712 struct net *net = sock_net(sk); 713 struct sctp_sock *sp; 714 struct sctp_endpoint *ep; 715 struct sctp_association *asoc; 716 struct sctp_transport *transport; 717 struct sctp_bind_addr *bp; 718 struct sctp_chunk *chunk; 719 union sctp_addr *laddr; 720 void *addr_buf; 721 struct sctp_af *af; 722 struct sctp_sockaddr_entry *saddr; 723 int i; 724 int retval = 0; 725 int stored = 0; 726 727 chunk = NULL; 728 if (!net->sctp.addip_enable) 729 return retval; 730 731 sp = sctp_sk(sk); 732 ep = sp->ep; 733 734 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 735 __func__, sk, addrs, addrcnt); 736 737 list_for_each_entry(asoc, &ep->asocs, asocs) { 738 739 if (!asoc->peer.asconf_capable) 740 continue; 741 742 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 743 continue; 744 745 if (!sctp_state(asoc, ESTABLISHED)) 746 continue; 747 748 /* Check if any address in the packed array of addresses is 749 * not present in the bind address list of the association. 750 * If so, do not send the asconf chunk to its peer, but 751 * continue with other associations. 752 */ 753 addr_buf = addrs; 754 for (i = 0; i < addrcnt; i++) { 755 laddr = addr_buf; 756 af = sctp_get_af_specific(laddr->v4.sin_family); 757 if (!af) { 758 retval = -EINVAL; 759 goto out; 760 } 761 762 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 763 break; 764 765 addr_buf += af->sockaddr_len; 766 } 767 if (i < addrcnt) 768 continue; 769 770 /* Find one address in the association's bind address list 771 * that is not in the packed array of addresses. This is to 772 * make sure that we do not delete all the addresses in the 773 * association. 774 */ 775 bp = &asoc->base.bind_addr; 776 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 777 addrcnt, sp); 778 if ((laddr == NULL) && (addrcnt == 1)) { 779 if (asoc->asconf_addr_del_pending) 780 continue; 781 asoc->asconf_addr_del_pending = 782 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 783 if (asoc->asconf_addr_del_pending == NULL) { 784 retval = -ENOMEM; 785 goto out; 786 } 787 asoc->asconf_addr_del_pending->sa.sa_family = 788 addrs->sa_family; 789 asoc->asconf_addr_del_pending->v4.sin_port = 790 htons(bp->port); 791 if (addrs->sa_family == AF_INET) { 792 struct sockaddr_in *sin; 793 794 sin = (struct sockaddr_in *)addrs; 795 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 796 } else if (addrs->sa_family == AF_INET6) { 797 struct sockaddr_in6 *sin6; 798 799 sin6 = (struct sockaddr_in6 *)addrs; 800 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 801 } 802 803 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 804 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 805 asoc->asconf_addr_del_pending); 806 807 asoc->src_out_of_asoc_ok = 1; 808 stored = 1; 809 goto skip_mkasconf; 810 } 811 812 if (laddr == NULL) 813 return -EINVAL; 814 815 /* We do not need RCU protection throughout this loop 816 * because this is done under a socket lock from the 817 * setsockopt call. 818 */ 819 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 820 SCTP_PARAM_DEL_IP); 821 if (!chunk) { 822 retval = -ENOMEM; 823 goto out; 824 } 825 826 skip_mkasconf: 827 /* Reset use_as_src flag for the addresses in the bind address 828 * list that are to be deleted. 829 */ 830 addr_buf = addrs; 831 for (i = 0; i < addrcnt; i++) { 832 laddr = addr_buf; 833 af = sctp_get_af_specific(laddr->v4.sin_family); 834 list_for_each_entry(saddr, &bp->address_list, list) { 835 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 836 saddr->state = SCTP_ADDR_DEL; 837 } 838 addr_buf += af->sockaddr_len; 839 } 840 841 /* Update the route and saddr entries for all the transports 842 * as some of the addresses in the bind address list are 843 * about to be deleted and cannot be used as source addresses. 844 */ 845 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 846 transports) { 847 sctp_transport_dst_release(transport); 848 sctp_transport_route(transport, NULL, 849 sctp_sk(asoc->base.sk)); 850 } 851 852 if (stored) 853 /* We don't need to transmit ASCONF */ 854 continue; 855 retval = sctp_send_asconf(asoc, chunk); 856 } 857 out: 858 return retval; 859 } 860 861 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 862 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 863 { 864 struct sock *sk = sctp_opt2sk(sp); 865 union sctp_addr *addr; 866 struct sctp_af *af; 867 868 /* It is safe to write port space in caller. */ 869 addr = &addrw->a; 870 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 871 af = sctp_get_af_specific(addr->sa.sa_family); 872 if (!af) 873 return -EINVAL; 874 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 875 return -EINVAL; 876 877 if (addrw->state == SCTP_ADDR_NEW) 878 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 879 else 880 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 881 } 882 883 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 884 * 885 * API 8.1 886 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 887 * int flags); 888 * 889 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 890 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 891 * or IPv6 addresses. 892 * 893 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 894 * Section 3.1.2 for this usage. 895 * 896 * addrs is a pointer to an array of one or more socket addresses. Each 897 * address is contained in its appropriate structure (i.e. struct 898 * sockaddr_in or struct sockaddr_in6) the family of the address type 899 * must be used to distinguish the address length (note that this 900 * representation is termed a "packed array" of addresses). The caller 901 * specifies the number of addresses in the array with addrcnt. 902 * 903 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 904 * -1, and sets errno to the appropriate error code. 905 * 906 * For SCTP, the port given in each socket address must be the same, or 907 * sctp_bindx() will fail, setting errno to EINVAL. 908 * 909 * The flags parameter is formed from the bitwise OR of zero or more of 910 * the following currently defined flags: 911 * 912 * SCTP_BINDX_ADD_ADDR 913 * 914 * SCTP_BINDX_REM_ADDR 915 * 916 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 917 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 918 * addresses from the association. The two flags are mutually exclusive; 919 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 920 * not remove all addresses from an association; sctp_bindx() will 921 * reject such an attempt with EINVAL. 922 * 923 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 924 * additional addresses with an endpoint after calling bind(). Or use 925 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 926 * socket is associated with so that no new association accepted will be 927 * associated with those addresses. If the endpoint supports dynamic 928 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 929 * endpoint to send the appropriate message to the peer to change the 930 * peers address lists. 931 * 932 * Adding and removing addresses from a connected association is 933 * optional functionality. Implementations that do not support this 934 * functionality should return EOPNOTSUPP. 935 * 936 * Basically do nothing but copying the addresses from user to kernel 937 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 938 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 939 * from userspace. 940 * 941 * We don't use copy_from_user() for optimization: we first do the 942 * sanity checks (buffer size -fast- and access check-healthy 943 * pointer); if all of those succeed, then we can alloc the memory 944 * (expensive operation) needed to copy the data to kernel. Then we do 945 * the copying without checking the user space area 946 * (__copy_from_user()). 947 * 948 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 949 * it. 950 * 951 * sk The sk of the socket 952 * addrs The pointer to the addresses in user land 953 * addrssize Size of the addrs buffer 954 * op Operation to perform (add or remove, see the flags of 955 * sctp_bindx) 956 * 957 * Returns 0 if ok, <0 errno code on error. 958 */ 959 static int sctp_setsockopt_bindx(struct sock *sk, 960 struct sockaddr __user *addrs, 961 int addrs_size, int op) 962 { 963 struct sockaddr *kaddrs; 964 int err; 965 int addrcnt = 0; 966 int walk_size = 0; 967 struct sockaddr *sa_addr; 968 void *addr_buf; 969 struct sctp_af *af; 970 971 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 972 __func__, sk, addrs, addrs_size, op); 973 974 if (unlikely(addrs_size <= 0)) 975 return -EINVAL; 976 977 /* Check the user passed a healthy pointer. */ 978 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 979 return -EFAULT; 980 981 /* Alloc space for the address array in kernel memory. */ 982 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 983 if (unlikely(!kaddrs)) 984 return -ENOMEM; 985 986 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 987 kfree(kaddrs); 988 return -EFAULT; 989 } 990 991 /* Walk through the addrs buffer and count the number of addresses. */ 992 addr_buf = kaddrs; 993 while (walk_size < addrs_size) { 994 if (walk_size + sizeof(sa_family_t) > addrs_size) { 995 kfree(kaddrs); 996 return -EINVAL; 997 } 998 999 sa_addr = addr_buf; 1000 af = sctp_get_af_specific(sa_addr->sa_family); 1001 1002 /* If the address family is not supported or if this address 1003 * causes the address buffer to overflow return EINVAL. 1004 */ 1005 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1006 kfree(kaddrs); 1007 return -EINVAL; 1008 } 1009 addrcnt++; 1010 addr_buf += af->sockaddr_len; 1011 walk_size += af->sockaddr_len; 1012 } 1013 1014 /* Do the work. */ 1015 switch (op) { 1016 case SCTP_BINDX_ADD_ADDR: 1017 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1018 if (err) 1019 goto out; 1020 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1021 break; 1022 1023 case SCTP_BINDX_REM_ADDR: 1024 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1025 if (err) 1026 goto out; 1027 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1028 break; 1029 1030 default: 1031 err = -EINVAL; 1032 break; 1033 } 1034 1035 out: 1036 kfree(kaddrs); 1037 1038 return err; 1039 } 1040 1041 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1042 * 1043 * Common routine for handling connect() and sctp_connectx(). 1044 * Connect will come in with just a single address. 1045 */ 1046 static int __sctp_connect(struct sock *sk, 1047 struct sockaddr *kaddrs, 1048 int addrs_size, 1049 sctp_assoc_t *assoc_id) 1050 { 1051 struct net *net = sock_net(sk); 1052 struct sctp_sock *sp; 1053 struct sctp_endpoint *ep; 1054 struct sctp_association *asoc = NULL; 1055 struct sctp_association *asoc2; 1056 struct sctp_transport *transport; 1057 union sctp_addr to; 1058 sctp_scope_t scope; 1059 long timeo; 1060 int err = 0; 1061 int addrcnt = 0; 1062 int walk_size = 0; 1063 union sctp_addr *sa_addr = NULL; 1064 void *addr_buf; 1065 unsigned short port; 1066 unsigned int f_flags = 0; 1067 1068 sp = sctp_sk(sk); 1069 ep = sp->ep; 1070 1071 /* connect() cannot be done on a socket that is already in ESTABLISHED 1072 * state - UDP-style peeled off socket or a TCP-style socket that 1073 * is already connected. 1074 * It cannot be done even on a TCP-style listening socket. 1075 */ 1076 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1077 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1078 err = -EISCONN; 1079 goto out_free; 1080 } 1081 1082 /* Walk through the addrs buffer and count the number of addresses. */ 1083 addr_buf = kaddrs; 1084 while (walk_size < addrs_size) { 1085 struct sctp_af *af; 1086 1087 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1088 err = -EINVAL; 1089 goto out_free; 1090 } 1091 1092 sa_addr = addr_buf; 1093 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1094 1095 /* If the address family is not supported or if this address 1096 * causes the address buffer to overflow return EINVAL. 1097 */ 1098 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1099 err = -EINVAL; 1100 goto out_free; 1101 } 1102 1103 port = ntohs(sa_addr->v4.sin_port); 1104 1105 /* Save current address so we can work with it */ 1106 memcpy(&to, sa_addr, af->sockaddr_len); 1107 1108 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1109 if (err) 1110 goto out_free; 1111 1112 /* Make sure the destination port is correctly set 1113 * in all addresses. 1114 */ 1115 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1116 err = -EINVAL; 1117 goto out_free; 1118 } 1119 1120 /* Check if there already is a matching association on the 1121 * endpoint (other than the one created here). 1122 */ 1123 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1124 if (asoc2 && asoc2 != asoc) { 1125 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1126 err = -EISCONN; 1127 else 1128 err = -EALREADY; 1129 goto out_free; 1130 } 1131 1132 /* If we could not find a matching association on the endpoint, 1133 * make sure that there is no peeled-off association matching 1134 * the peer address even on another socket. 1135 */ 1136 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1137 err = -EADDRNOTAVAIL; 1138 goto out_free; 1139 } 1140 1141 if (!asoc) { 1142 /* If a bind() or sctp_bindx() is not called prior to 1143 * an sctp_connectx() call, the system picks an 1144 * ephemeral port and will choose an address set 1145 * equivalent to binding with a wildcard address. 1146 */ 1147 if (!ep->base.bind_addr.port) { 1148 if (sctp_autobind(sk)) { 1149 err = -EAGAIN; 1150 goto out_free; 1151 } 1152 } else { 1153 /* 1154 * If an unprivileged user inherits a 1-many 1155 * style socket with open associations on a 1156 * privileged port, it MAY be permitted to 1157 * accept new associations, but it SHOULD NOT 1158 * be permitted to open new associations. 1159 */ 1160 if (ep->base.bind_addr.port < 1161 inet_prot_sock(net) && 1162 !ns_capable(net->user_ns, 1163 CAP_NET_BIND_SERVICE)) { 1164 err = -EACCES; 1165 goto out_free; 1166 } 1167 } 1168 1169 scope = sctp_scope(&to); 1170 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1171 if (!asoc) { 1172 err = -ENOMEM; 1173 goto out_free; 1174 } 1175 1176 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1177 GFP_KERNEL); 1178 if (err < 0) { 1179 goto out_free; 1180 } 1181 1182 } 1183 1184 /* Prime the peer's transport structures. */ 1185 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1186 SCTP_UNKNOWN); 1187 if (!transport) { 1188 err = -ENOMEM; 1189 goto out_free; 1190 } 1191 1192 addrcnt++; 1193 addr_buf += af->sockaddr_len; 1194 walk_size += af->sockaddr_len; 1195 } 1196 1197 /* In case the user of sctp_connectx() wants an association 1198 * id back, assign one now. 1199 */ 1200 if (assoc_id) { 1201 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1202 if (err < 0) 1203 goto out_free; 1204 } 1205 1206 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1207 if (err < 0) { 1208 goto out_free; 1209 } 1210 1211 /* Initialize sk's dport and daddr for getpeername() */ 1212 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1213 sp->pf->to_sk_daddr(sa_addr, sk); 1214 sk->sk_err = 0; 1215 1216 /* in-kernel sockets don't generally have a file allocated to them 1217 * if all they do is call sock_create_kern(). 1218 */ 1219 if (sk->sk_socket->file) 1220 f_flags = sk->sk_socket->file->f_flags; 1221 1222 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1223 1224 if (assoc_id) 1225 *assoc_id = asoc->assoc_id; 1226 err = sctp_wait_for_connect(asoc, &timeo); 1227 /* Note: the asoc may be freed after the return of 1228 * sctp_wait_for_connect. 1229 */ 1230 1231 /* Don't free association on exit. */ 1232 asoc = NULL; 1233 1234 out_free: 1235 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1236 __func__, asoc, kaddrs, err); 1237 1238 if (asoc) { 1239 /* sctp_primitive_ASSOCIATE may have added this association 1240 * To the hash table, try to unhash it, just in case, its a noop 1241 * if it wasn't hashed so we're safe 1242 */ 1243 sctp_association_free(asoc); 1244 } 1245 return err; 1246 } 1247 1248 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1249 * 1250 * API 8.9 1251 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1252 * sctp_assoc_t *asoc); 1253 * 1254 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1255 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1256 * or IPv6 addresses. 1257 * 1258 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1259 * Section 3.1.2 for this usage. 1260 * 1261 * addrs is a pointer to an array of one or more socket addresses. Each 1262 * address is contained in its appropriate structure (i.e. struct 1263 * sockaddr_in or struct sockaddr_in6) the family of the address type 1264 * must be used to distengish the address length (note that this 1265 * representation is termed a "packed array" of addresses). The caller 1266 * specifies the number of addresses in the array with addrcnt. 1267 * 1268 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1269 * the association id of the new association. On failure, sctp_connectx() 1270 * returns -1, and sets errno to the appropriate error code. The assoc_id 1271 * is not touched by the kernel. 1272 * 1273 * For SCTP, the port given in each socket address must be the same, or 1274 * sctp_connectx() will fail, setting errno to EINVAL. 1275 * 1276 * An application can use sctp_connectx to initiate an association with 1277 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1278 * allows a caller to specify multiple addresses at which a peer can be 1279 * reached. The way the SCTP stack uses the list of addresses to set up 1280 * the association is implementation dependent. This function only 1281 * specifies that the stack will try to make use of all the addresses in 1282 * the list when needed. 1283 * 1284 * Note that the list of addresses passed in is only used for setting up 1285 * the association. It does not necessarily equal the set of addresses 1286 * the peer uses for the resulting association. If the caller wants to 1287 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1288 * retrieve them after the association has been set up. 1289 * 1290 * Basically do nothing but copying the addresses from user to kernel 1291 * land and invoking either sctp_connectx(). This is used for tunneling 1292 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1293 * 1294 * We don't use copy_from_user() for optimization: we first do the 1295 * sanity checks (buffer size -fast- and access check-healthy 1296 * pointer); if all of those succeed, then we can alloc the memory 1297 * (expensive operation) needed to copy the data to kernel. Then we do 1298 * the copying without checking the user space area 1299 * (__copy_from_user()). 1300 * 1301 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1302 * it. 1303 * 1304 * sk The sk of the socket 1305 * addrs The pointer to the addresses in user land 1306 * addrssize Size of the addrs buffer 1307 * 1308 * Returns >=0 if ok, <0 errno code on error. 1309 */ 1310 static int __sctp_setsockopt_connectx(struct sock *sk, 1311 struct sockaddr __user *addrs, 1312 int addrs_size, 1313 sctp_assoc_t *assoc_id) 1314 { 1315 struct sockaddr *kaddrs; 1316 gfp_t gfp = GFP_KERNEL; 1317 int err = 0; 1318 1319 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1320 __func__, sk, addrs, addrs_size); 1321 1322 if (unlikely(addrs_size <= 0)) 1323 return -EINVAL; 1324 1325 /* Check the user passed a healthy pointer. */ 1326 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1327 return -EFAULT; 1328 1329 /* Alloc space for the address array in kernel memory. */ 1330 if (sk->sk_socket->file) 1331 gfp = GFP_USER | __GFP_NOWARN; 1332 kaddrs = kmalloc(addrs_size, gfp); 1333 if (unlikely(!kaddrs)) 1334 return -ENOMEM; 1335 1336 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1337 err = -EFAULT; 1338 } else { 1339 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1340 } 1341 1342 kfree(kaddrs); 1343 1344 return err; 1345 } 1346 1347 /* 1348 * This is an older interface. It's kept for backward compatibility 1349 * to the option that doesn't provide association id. 1350 */ 1351 static int sctp_setsockopt_connectx_old(struct sock *sk, 1352 struct sockaddr __user *addrs, 1353 int addrs_size) 1354 { 1355 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1356 } 1357 1358 /* 1359 * New interface for the API. The since the API is done with a socket 1360 * option, to make it simple we feed back the association id is as a return 1361 * indication to the call. Error is always negative and association id is 1362 * always positive. 1363 */ 1364 static int sctp_setsockopt_connectx(struct sock *sk, 1365 struct sockaddr __user *addrs, 1366 int addrs_size) 1367 { 1368 sctp_assoc_t assoc_id = 0; 1369 int err = 0; 1370 1371 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1372 1373 if (err) 1374 return err; 1375 else 1376 return assoc_id; 1377 } 1378 1379 /* 1380 * New (hopefully final) interface for the API. 1381 * We use the sctp_getaddrs_old structure so that use-space library 1382 * can avoid any unnecessary allocations. The only different part 1383 * is that we store the actual length of the address buffer into the 1384 * addrs_num structure member. That way we can re-use the existing 1385 * code. 1386 */ 1387 #ifdef CONFIG_COMPAT 1388 struct compat_sctp_getaddrs_old { 1389 sctp_assoc_t assoc_id; 1390 s32 addr_num; 1391 compat_uptr_t addrs; /* struct sockaddr * */ 1392 }; 1393 #endif 1394 1395 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1396 char __user *optval, 1397 int __user *optlen) 1398 { 1399 struct sctp_getaddrs_old param; 1400 sctp_assoc_t assoc_id = 0; 1401 int err = 0; 1402 1403 #ifdef CONFIG_COMPAT 1404 if (in_compat_syscall()) { 1405 struct compat_sctp_getaddrs_old param32; 1406 1407 if (len < sizeof(param32)) 1408 return -EINVAL; 1409 if (copy_from_user(¶m32, optval, sizeof(param32))) 1410 return -EFAULT; 1411 1412 param.assoc_id = param32.assoc_id; 1413 param.addr_num = param32.addr_num; 1414 param.addrs = compat_ptr(param32.addrs); 1415 } else 1416 #endif 1417 { 1418 if (len < sizeof(param)) 1419 return -EINVAL; 1420 if (copy_from_user(¶m, optval, sizeof(param))) 1421 return -EFAULT; 1422 } 1423 1424 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1425 param.addrs, param.addr_num, 1426 &assoc_id); 1427 if (err == 0 || err == -EINPROGRESS) { 1428 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1429 return -EFAULT; 1430 if (put_user(sizeof(assoc_id), optlen)) 1431 return -EFAULT; 1432 } 1433 1434 return err; 1435 } 1436 1437 /* API 3.1.4 close() - UDP Style Syntax 1438 * Applications use close() to perform graceful shutdown (as described in 1439 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1440 * by a UDP-style socket. 1441 * 1442 * The syntax is 1443 * 1444 * ret = close(int sd); 1445 * 1446 * sd - the socket descriptor of the associations to be closed. 1447 * 1448 * To gracefully shutdown a specific association represented by the 1449 * UDP-style socket, an application should use the sendmsg() call, 1450 * passing no user data, but including the appropriate flag in the 1451 * ancillary data (see Section xxxx). 1452 * 1453 * If sd in the close() call is a branched-off socket representing only 1454 * one association, the shutdown is performed on that association only. 1455 * 1456 * 4.1.6 close() - TCP Style Syntax 1457 * 1458 * Applications use close() to gracefully close down an association. 1459 * 1460 * The syntax is: 1461 * 1462 * int close(int sd); 1463 * 1464 * sd - the socket descriptor of the association to be closed. 1465 * 1466 * After an application calls close() on a socket descriptor, no further 1467 * socket operations will succeed on that descriptor. 1468 * 1469 * API 7.1.4 SO_LINGER 1470 * 1471 * An application using the TCP-style socket can use this option to 1472 * perform the SCTP ABORT primitive. The linger option structure is: 1473 * 1474 * struct linger { 1475 * int l_onoff; // option on/off 1476 * int l_linger; // linger time 1477 * }; 1478 * 1479 * To enable the option, set l_onoff to 1. If the l_linger value is set 1480 * to 0, calling close() is the same as the ABORT primitive. If the 1481 * value is set to a negative value, the setsockopt() call will return 1482 * an error. If the value is set to a positive value linger_time, the 1483 * close() can be blocked for at most linger_time ms. If the graceful 1484 * shutdown phase does not finish during this period, close() will 1485 * return but the graceful shutdown phase continues in the system. 1486 */ 1487 static void sctp_close(struct sock *sk, long timeout) 1488 { 1489 struct net *net = sock_net(sk); 1490 struct sctp_endpoint *ep; 1491 struct sctp_association *asoc; 1492 struct list_head *pos, *temp; 1493 unsigned int data_was_unread; 1494 1495 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1496 1497 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1498 sk->sk_shutdown = SHUTDOWN_MASK; 1499 sk->sk_state = SCTP_SS_CLOSING; 1500 1501 ep = sctp_sk(sk)->ep; 1502 1503 /* Clean up any skbs sitting on the receive queue. */ 1504 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1505 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1506 1507 /* Walk all associations on an endpoint. */ 1508 list_for_each_safe(pos, temp, &ep->asocs) { 1509 asoc = list_entry(pos, struct sctp_association, asocs); 1510 1511 if (sctp_style(sk, TCP)) { 1512 /* A closed association can still be in the list if 1513 * it belongs to a TCP-style listening socket that is 1514 * not yet accepted. If so, free it. If not, send an 1515 * ABORT or SHUTDOWN based on the linger options. 1516 */ 1517 if (sctp_state(asoc, CLOSED)) { 1518 sctp_association_free(asoc); 1519 continue; 1520 } 1521 } 1522 1523 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1524 !skb_queue_empty(&asoc->ulpq.reasm) || 1525 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1526 struct sctp_chunk *chunk; 1527 1528 chunk = sctp_make_abort_user(asoc, NULL, 0); 1529 sctp_primitive_ABORT(net, asoc, chunk); 1530 } else 1531 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1532 } 1533 1534 /* On a TCP-style socket, block for at most linger_time if set. */ 1535 if (sctp_style(sk, TCP) && timeout) 1536 sctp_wait_for_close(sk, timeout); 1537 1538 /* This will run the backlog queue. */ 1539 release_sock(sk); 1540 1541 /* Supposedly, no process has access to the socket, but 1542 * the net layers still may. 1543 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1544 * held and that should be grabbed before socket lock. 1545 */ 1546 spin_lock_bh(&net->sctp.addr_wq_lock); 1547 bh_lock_sock_nested(sk); 1548 1549 /* Hold the sock, since sk_common_release() will put sock_put() 1550 * and we have just a little more cleanup. 1551 */ 1552 sock_hold(sk); 1553 sk_common_release(sk); 1554 1555 bh_unlock_sock(sk); 1556 spin_unlock_bh(&net->sctp.addr_wq_lock); 1557 1558 sock_put(sk); 1559 1560 SCTP_DBG_OBJCNT_DEC(sock); 1561 } 1562 1563 /* Handle EPIPE error. */ 1564 static int sctp_error(struct sock *sk, int flags, int err) 1565 { 1566 if (err == -EPIPE) 1567 err = sock_error(sk) ? : -EPIPE; 1568 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1569 send_sig(SIGPIPE, current, 0); 1570 return err; 1571 } 1572 1573 /* API 3.1.3 sendmsg() - UDP Style Syntax 1574 * 1575 * An application uses sendmsg() and recvmsg() calls to transmit data to 1576 * and receive data from its peer. 1577 * 1578 * ssize_t sendmsg(int socket, const struct msghdr *message, 1579 * int flags); 1580 * 1581 * socket - the socket descriptor of the endpoint. 1582 * message - pointer to the msghdr structure which contains a single 1583 * user message and possibly some ancillary data. 1584 * 1585 * See Section 5 for complete description of the data 1586 * structures. 1587 * 1588 * flags - flags sent or received with the user message, see Section 1589 * 5 for complete description of the flags. 1590 * 1591 * Note: This function could use a rewrite especially when explicit 1592 * connect support comes in. 1593 */ 1594 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1595 1596 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1597 1598 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1599 { 1600 struct net *net = sock_net(sk); 1601 struct sctp_sock *sp; 1602 struct sctp_endpoint *ep; 1603 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1604 struct sctp_transport *transport, *chunk_tp; 1605 struct sctp_chunk *chunk; 1606 union sctp_addr to; 1607 struct sockaddr *msg_name = NULL; 1608 struct sctp_sndrcvinfo default_sinfo; 1609 struct sctp_sndrcvinfo *sinfo; 1610 struct sctp_initmsg *sinit; 1611 sctp_assoc_t associd = 0; 1612 sctp_cmsgs_t cmsgs = { NULL }; 1613 sctp_scope_t scope; 1614 bool fill_sinfo_ttl = false, wait_connect = false; 1615 struct sctp_datamsg *datamsg; 1616 int msg_flags = msg->msg_flags; 1617 __u16 sinfo_flags = 0; 1618 long timeo; 1619 int err; 1620 1621 err = 0; 1622 sp = sctp_sk(sk); 1623 ep = sp->ep; 1624 1625 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1626 msg, msg_len, ep); 1627 1628 /* We cannot send a message over a TCP-style listening socket. */ 1629 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1630 err = -EPIPE; 1631 goto out_nounlock; 1632 } 1633 1634 /* Parse out the SCTP CMSGs. */ 1635 err = sctp_msghdr_parse(msg, &cmsgs); 1636 if (err) { 1637 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1638 goto out_nounlock; 1639 } 1640 1641 /* Fetch the destination address for this packet. This 1642 * address only selects the association--it is not necessarily 1643 * the address we will send to. 1644 * For a peeled-off socket, msg_name is ignored. 1645 */ 1646 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1647 int msg_namelen = msg->msg_namelen; 1648 1649 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1650 msg_namelen); 1651 if (err) 1652 return err; 1653 1654 if (msg_namelen > sizeof(to)) 1655 msg_namelen = sizeof(to); 1656 memcpy(&to, msg->msg_name, msg_namelen); 1657 msg_name = msg->msg_name; 1658 } 1659 1660 sinit = cmsgs.init; 1661 if (cmsgs.sinfo != NULL) { 1662 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1663 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1664 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1665 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1666 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1667 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1668 1669 sinfo = &default_sinfo; 1670 fill_sinfo_ttl = true; 1671 } else { 1672 sinfo = cmsgs.srinfo; 1673 } 1674 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1675 if (sinfo) { 1676 sinfo_flags = sinfo->sinfo_flags; 1677 associd = sinfo->sinfo_assoc_id; 1678 } 1679 1680 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1681 msg_len, sinfo_flags); 1682 1683 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1684 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1685 err = -EINVAL; 1686 goto out_nounlock; 1687 } 1688 1689 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1690 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1691 * If SCTP_ABORT is set, the message length could be non zero with 1692 * the msg_iov set to the user abort reason. 1693 */ 1694 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1695 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1696 err = -EINVAL; 1697 goto out_nounlock; 1698 } 1699 1700 /* If SCTP_ADDR_OVER is set, there must be an address 1701 * specified in msg_name. 1702 */ 1703 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1704 err = -EINVAL; 1705 goto out_nounlock; 1706 } 1707 1708 transport = NULL; 1709 1710 pr_debug("%s: about to look up association\n", __func__); 1711 1712 lock_sock(sk); 1713 1714 /* If a msg_name has been specified, assume this is to be used. */ 1715 if (msg_name) { 1716 /* Look for a matching association on the endpoint. */ 1717 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1718 1719 /* If we could not find a matching association on the 1720 * endpoint, make sure that it is not a TCP-style 1721 * socket that already has an association or there is 1722 * no peeled-off association on another socket. 1723 */ 1724 if (!asoc && 1725 ((sctp_style(sk, TCP) && 1726 (sctp_sstate(sk, ESTABLISHED) || 1727 sctp_sstate(sk, CLOSING))) || 1728 sctp_endpoint_is_peeled_off(ep, &to))) { 1729 err = -EADDRNOTAVAIL; 1730 goto out_unlock; 1731 } 1732 } else { 1733 asoc = sctp_id2assoc(sk, associd); 1734 if (!asoc) { 1735 err = -EPIPE; 1736 goto out_unlock; 1737 } 1738 } 1739 1740 if (asoc) { 1741 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1742 1743 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1744 * socket that has an association in CLOSED state. This can 1745 * happen when an accepted socket has an association that is 1746 * already CLOSED. 1747 */ 1748 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1749 err = -EPIPE; 1750 goto out_unlock; 1751 } 1752 1753 if (sinfo_flags & SCTP_EOF) { 1754 pr_debug("%s: shutting down association:%p\n", 1755 __func__, asoc); 1756 1757 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1758 err = 0; 1759 goto out_unlock; 1760 } 1761 if (sinfo_flags & SCTP_ABORT) { 1762 1763 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1764 if (!chunk) { 1765 err = -ENOMEM; 1766 goto out_unlock; 1767 } 1768 1769 pr_debug("%s: aborting association:%p\n", 1770 __func__, asoc); 1771 1772 sctp_primitive_ABORT(net, asoc, chunk); 1773 err = 0; 1774 goto out_unlock; 1775 } 1776 } 1777 1778 /* Do we need to create the association? */ 1779 if (!asoc) { 1780 pr_debug("%s: there is no association yet\n", __func__); 1781 1782 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1783 err = -EINVAL; 1784 goto out_unlock; 1785 } 1786 1787 /* Check for invalid stream against the stream counts, 1788 * either the default or the user specified stream counts. 1789 */ 1790 if (sinfo) { 1791 if (!sinit || !sinit->sinit_num_ostreams) { 1792 /* Check against the defaults. */ 1793 if (sinfo->sinfo_stream >= 1794 sp->initmsg.sinit_num_ostreams) { 1795 err = -EINVAL; 1796 goto out_unlock; 1797 } 1798 } else { 1799 /* Check against the requested. */ 1800 if (sinfo->sinfo_stream >= 1801 sinit->sinit_num_ostreams) { 1802 err = -EINVAL; 1803 goto out_unlock; 1804 } 1805 } 1806 } 1807 1808 /* 1809 * API 3.1.2 bind() - UDP Style Syntax 1810 * If a bind() or sctp_bindx() is not called prior to a 1811 * sendmsg() call that initiates a new association, the 1812 * system picks an ephemeral port and will choose an address 1813 * set equivalent to binding with a wildcard address. 1814 */ 1815 if (!ep->base.bind_addr.port) { 1816 if (sctp_autobind(sk)) { 1817 err = -EAGAIN; 1818 goto out_unlock; 1819 } 1820 } else { 1821 /* 1822 * If an unprivileged user inherits a one-to-many 1823 * style socket with open associations on a privileged 1824 * port, it MAY be permitted to accept new associations, 1825 * but it SHOULD NOT be permitted to open new 1826 * associations. 1827 */ 1828 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1829 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1830 err = -EACCES; 1831 goto out_unlock; 1832 } 1833 } 1834 1835 scope = sctp_scope(&to); 1836 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1837 if (!new_asoc) { 1838 err = -ENOMEM; 1839 goto out_unlock; 1840 } 1841 asoc = new_asoc; 1842 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1843 if (err < 0) { 1844 err = -ENOMEM; 1845 goto out_free; 1846 } 1847 1848 /* If the SCTP_INIT ancillary data is specified, set all 1849 * the association init values accordingly. 1850 */ 1851 if (sinit) { 1852 if (sinit->sinit_num_ostreams) { 1853 asoc->c.sinit_num_ostreams = 1854 sinit->sinit_num_ostreams; 1855 } 1856 if (sinit->sinit_max_instreams) { 1857 asoc->c.sinit_max_instreams = 1858 sinit->sinit_max_instreams; 1859 } 1860 if (sinit->sinit_max_attempts) { 1861 asoc->max_init_attempts 1862 = sinit->sinit_max_attempts; 1863 } 1864 if (sinit->sinit_max_init_timeo) { 1865 asoc->max_init_timeo = 1866 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1867 } 1868 } 1869 1870 /* Prime the peer's transport structures. */ 1871 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1872 if (!transport) { 1873 err = -ENOMEM; 1874 goto out_free; 1875 } 1876 } 1877 1878 /* ASSERT: we have a valid association at this point. */ 1879 pr_debug("%s: we have a valid association\n", __func__); 1880 1881 if (!sinfo) { 1882 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1883 * one with some defaults. 1884 */ 1885 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1886 default_sinfo.sinfo_stream = asoc->default_stream; 1887 default_sinfo.sinfo_flags = asoc->default_flags; 1888 default_sinfo.sinfo_ppid = asoc->default_ppid; 1889 default_sinfo.sinfo_context = asoc->default_context; 1890 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1891 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1892 1893 sinfo = &default_sinfo; 1894 } else if (fill_sinfo_ttl) { 1895 /* In case SNDINFO was specified, we still need to fill 1896 * it with a default ttl from the assoc here. 1897 */ 1898 sinfo->sinfo_timetolive = asoc->default_timetolive; 1899 } 1900 1901 /* API 7.1.7, the sndbuf size per association bounds the 1902 * maximum size of data that can be sent in a single send call. 1903 */ 1904 if (msg_len > sk->sk_sndbuf) { 1905 err = -EMSGSIZE; 1906 goto out_free; 1907 } 1908 1909 if (asoc->pmtu_pending) 1910 sctp_assoc_pending_pmtu(asoc); 1911 1912 /* If fragmentation is disabled and the message length exceeds the 1913 * association fragmentation point, return EMSGSIZE. The I-D 1914 * does not specify what this error is, but this looks like 1915 * a great fit. 1916 */ 1917 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1918 err = -EMSGSIZE; 1919 goto out_free; 1920 } 1921 1922 /* Check for invalid stream. */ 1923 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1924 err = -EINVAL; 1925 goto out_free; 1926 } 1927 1928 if (sctp_wspace(asoc) < msg_len) 1929 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1930 1931 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1932 if (!sctp_wspace(asoc)) { 1933 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1934 if (err) 1935 goto out_free; 1936 } 1937 1938 /* If an address is passed with the sendto/sendmsg call, it is used 1939 * to override the primary destination address in the TCP model, or 1940 * when SCTP_ADDR_OVER flag is set in the UDP model. 1941 */ 1942 if ((sctp_style(sk, TCP) && msg_name) || 1943 (sinfo_flags & SCTP_ADDR_OVER)) { 1944 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1945 if (!chunk_tp) { 1946 err = -EINVAL; 1947 goto out_free; 1948 } 1949 } else 1950 chunk_tp = NULL; 1951 1952 /* Auto-connect, if we aren't connected already. */ 1953 if (sctp_state(asoc, CLOSED)) { 1954 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1955 if (err < 0) 1956 goto out_free; 1957 1958 wait_connect = true; 1959 pr_debug("%s: we associated primitively\n", __func__); 1960 } 1961 1962 /* Break the message into multiple chunks of maximum size. */ 1963 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1964 if (IS_ERR(datamsg)) { 1965 err = PTR_ERR(datamsg); 1966 goto out_free; 1967 } 1968 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1969 1970 /* Now send the (possibly) fragmented message. */ 1971 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1972 sctp_chunk_hold(chunk); 1973 1974 /* Do accounting for the write space. */ 1975 sctp_set_owner_w(chunk); 1976 1977 chunk->transport = chunk_tp; 1978 } 1979 1980 /* Send it to the lower layers. Note: all chunks 1981 * must either fail or succeed. The lower layer 1982 * works that way today. Keep it that way or this 1983 * breaks. 1984 */ 1985 err = sctp_primitive_SEND(net, asoc, datamsg); 1986 /* Did the lower layer accept the chunk? */ 1987 if (err) { 1988 sctp_datamsg_free(datamsg); 1989 goto out_free; 1990 } 1991 1992 pr_debug("%s: we sent primitively\n", __func__); 1993 1994 sctp_datamsg_put(datamsg); 1995 err = msg_len; 1996 1997 if (unlikely(wait_connect)) { 1998 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 1999 sctp_wait_for_connect(asoc, &timeo); 2000 } 2001 2002 /* If we are already past ASSOCIATE, the lower 2003 * layers are responsible for association cleanup. 2004 */ 2005 goto out_unlock; 2006 2007 out_free: 2008 if (new_asoc) 2009 sctp_association_free(asoc); 2010 out_unlock: 2011 release_sock(sk); 2012 2013 out_nounlock: 2014 return sctp_error(sk, msg_flags, err); 2015 2016 #if 0 2017 do_sock_err: 2018 if (msg_len) 2019 err = msg_len; 2020 else 2021 err = sock_error(sk); 2022 goto out; 2023 2024 do_interrupted: 2025 if (msg_len) 2026 err = msg_len; 2027 goto out; 2028 #endif /* 0 */ 2029 } 2030 2031 /* This is an extended version of skb_pull() that removes the data from the 2032 * start of a skb even when data is spread across the list of skb's in the 2033 * frag_list. len specifies the total amount of data that needs to be removed. 2034 * when 'len' bytes could be removed from the skb, it returns 0. 2035 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2036 * could not be removed. 2037 */ 2038 static int sctp_skb_pull(struct sk_buff *skb, int len) 2039 { 2040 struct sk_buff *list; 2041 int skb_len = skb_headlen(skb); 2042 int rlen; 2043 2044 if (len <= skb_len) { 2045 __skb_pull(skb, len); 2046 return 0; 2047 } 2048 len -= skb_len; 2049 __skb_pull(skb, skb_len); 2050 2051 skb_walk_frags(skb, list) { 2052 rlen = sctp_skb_pull(list, len); 2053 skb->len -= (len-rlen); 2054 skb->data_len -= (len-rlen); 2055 2056 if (!rlen) 2057 return 0; 2058 2059 len = rlen; 2060 } 2061 2062 return len; 2063 } 2064 2065 /* API 3.1.3 recvmsg() - UDP Style Syntax 2066 * 2067 * ssize_t recvmsg(int socket, struct msghdr *message, 2068 * int flags); 2069 * 2070 * socket - the socket descriptor of the endpoint. 2071 * message - pointer to the msghdr structure which contains a single 2072 * user message and possibly some ancillary data. 2073 * 2074 * See Section 5 for complete description of the data 2075 * structures. 2076 * 2077 * flags - flags sent or received with the user message, see Section 2078 * 5 for complete description of the flags. 2079 */ 2080 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2081 int noblock, int flags, int *addr_len) 2082 { 2083 struct sctp_ulpevent *event = NULL; 2084 struct sctp_sock *sp = sctp_sk(sk); 2085 struct sk_buff *skb, *head_skb; 2086 int copied; 2087 int err = 0; 2088 int skb_len; 2089 2090 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2091 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2092 addr_len); 2093 2094 lock_sock(sk); 2095 2096 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2097 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2098 err = -ENOTCONN; 2099 goto out; 2100 } 2101 2102 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2103 if (!skb) 2104 goto out; 2105 2106 /* Get the total length of the skb including any skb's in the 2107 * frag_list. 2108 */ 2109 skb_len = skb->len; 2110 2111 copied = skb_len; 2112 if (copied > len) 2113 copied = len; 2114 2115 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2116 2117 event = sctp_skb2event(skb); 2118 2119 if (err) 2120 goto out_free; 2121 2122 if (event->chunk && event->chunk->head_skb) 2123 head_skb = event->chunk->head_skb; 2124 else 2125 head_skb = skb; 2126 sock_recv_ts_and_drops(msg, sk, head_skb); 2127 if (sctp_ulpevent_is_notification(event)) { 2128 msg->msg_flags |= MSG_NOTIFICATION; 2129 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2130 } else { 2131 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2132 } 2133 2134 /* Check if we allow SCTP_NXTINFO. */ 2135 if (sp->recvnxtinfo) 2136 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2137 /* Check if we allow SCTP_RCVINFO. */ 2138 if (sp->recvrcvinfo) 2139 sctp_ulpevent_read_rcvinfo(event, msg); 2140 /* Check if we allow SCTP_SNDRCVINFO. */ 2141 if (sp->subscribe.sctp_data_io_event) 2142 sctp_ulpevent_read_sndrcvinfo(event, msg); 2143 2144 err = copied; 2145 2146 /* If skb's length exceeds the user's buffer, update the skb and 2147 * push it back to the receive_queue so that the next call to 2148 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2149 */ 2150 if (skb_len > copied) { 2151 msg->msg_flags &= ~MSG_EOR; 2152 if (flags & MSG_PEEK) 2153 goto out_free; 2154 sctp_skb_pull(skb, copied); 2155 skb_queue_head(&sk->sk_receive_queue, skb); 2156 2157 /* When only partial message is copied to the user, increase 2158 * rwnd by that amount. If all the data in the skb is read, 2159 * rwnd is updated when the event is freed. 2160 */ 2161 if (!sctp_ulpevent_is_notification(event)) 2162 sctp_assoc_rwnd_increase(event->asoc, copied); 2163 goto out; 2164 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2165 (event->msg_flags & MSG_EOR)) 2166 msg->msg_flags |= MSG_EOR; 2167 else 2168 msg->msg_flags &= ~MSG_EOR; 2169 2170 out_free: 2171 if (flags & MSG_PEEK) { 2172 /* Release the skb reference acquired after peeking the skb in 2173 * sctp_skb_recv_datagram(). 2174 */ 2175 kfree_skb(skb); 2176 } else { 2177 /* Free the event which includes releasing the reference to 2178 * the owner of the skb, freeing the skb and updating the 2179 * rwnd. 2180 */ 2181 sctp_ulpevent_free(event); 2182 } 2183 out: 2184 release_sock(sk); 2185 return err; 2186 } 2187 2188 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2189 * 2190 * This option is a on/off flag. If enabled no SCTP message 2191 * fragmentation will be performed. Instead if a message being sent 2192 * exceeds the current PMTU size, the message will NOT be sent and 2193 * instead a error will be indicated to the user. 2194 */ 2195 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2196 char __user *optval, 2197 unsigned int optlen) 2198 { 2199 int val; 2200 2201 if (optlen < sizeof(int)) 2202 return -EINVAL; 2203 2204 if (get_user(val, (int __user *)optval)) 2205 return -EFAULT; 2206 2207 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2208 2209 return 0; 2210 } 2211 2212 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2213 unsigned int optlen) 2214 { 2215 struct sctp_association *asoc; 2216 struct sctp_ulpevent *event; 2217 2218 if (optlen > sizeof(struct sctp_event_subscribe)) 2219 return -EINVAL; 2220 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2221 return -EFAULT; 2222 2223 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2224 * if there is no data to be sent or retransmit, the stack will 2225 * immediately send up this notification. 2226 */ 2227 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2228 &sctp_sk(sk)->subscribe)) { 2229 asoc = sctp_id2assoc(sk, 0); 2230 2231 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2232 event = sctp_ulpevent_make_sender_dry_event(asoc, 2233 GFP_ATOMIC); 2234 if (!event) 2235 return -ENOMEM; 2236 2237 sctp_ulpq_tail_event(&asoc->ulpq, event); 2238 } 2239 } 2240 2241 return 0; 2242 } 2243 2244 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2245 * 2246 * This socket option is applicable to the UDP-style socket only. When 2247 * set it will cause associations that are idle for more than the 2248 * specified number of seconds to automatically close. An association 2249 * being idle is defined an association that has NOT sent or received 2250 * user data. The special value of '0' indicates that no automatic 2251 * close of any associations should be performed. The option expects an 2252 * integer defining the number of seconds of idle time before an 2253 * association is closed. 2254 */ 2255 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2256 unsigned int optlen) 2257 { 2258 struct sctp_sock *sp = sctp_sk(sk); 2259 struct net *net = sock_net(sk); 2260 2261 /* Applicable to UDP-style socket only */ 2262 if (sctp_style(sk, TCP)) 2263 return -EOPNOTSUPP; 2264 if (optlen != sizeof(int)) 2265 return -EINVAL; 2266 if (copy_from_user(&sp->autoclose, optval, optlen)) 2267 return -EFAULT; 2268 2269 if (sp->autoclose > net->sctp.max_autoclose) 2270 sp->autoclose = net->sctp.max_autoclose; 2271 2272 return 0; 2273 } 2274 2275 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2276 * 2277 * Applications can enable or disable heartbeats for any peer address of 2278 * an association, modify an address's heartbeat interval, force a 2279 * heartbeat to be sent immediately, and adjust the address's maximum 2280 * number of retransmissions sent before an address is considered 2281 * unreachable. The following structure is used to access and modify an 2282 * address's parameters: 2283 * 2284 * struct sctp_paddrparams { 2285 * sctp_assoc_t spp_assoc_id; 2286 * struct sockaddr_storage spp_address; 2287 * uint32_t spp_hbinterval; 2288 * uint16_t spp_pathmaxrxt; 2289 * uint32_t spp_pathmtu; 2290 * uint32_t spp_sackdelay; 2291 * uint32_t spp_flags; 2292 * }; 2293 * 2294 * spp_assoc_id - (one-to-many style socket) This is filled in the 2295 * application, and identifies the association for 2296 * this query. 2297 * spp_address - This specifies which address is of interest. 2298 * spp_hbinterval - This contains the value of the heartbeat interval, 2299 * in milliseconds. If a value of zero 2300 * is present in this field then no changes are to 2301 * be made to this parameter. 2302 * spp_pathmaxrxt - This contains the maximum number of 2303 * retransmissions before this address shall be 2304 * considered unreachable. If a value of zero 2305 * is present in this field then no changes are to 2306 * be made to this parameter. 2307 * spp_pathmtu - When Path MTU discovery is disabled the value 2308 * specified here will be the "fixed" path mtu. 2309 * Note that if the spp_address field is empty 2310 * then all associations on this address will 2311 * have this fixed path mtu set upon them. 2312 * 2313 * spp_sackdelay - When delayed sack is enabled, this value specifies 2314 * the number of milliseconds that sacks will be delayed 2315 * for. This value will apply to all addresses of an 2316 * association if the spp_address field is empty. Note 2317 * also, that if delayed sack is enabled and this 2318 * value is set to 0, no change is made to the last 2319 * recorded delayed sack timer value. 2320 * 2321 * spp_flags - These flags are used to control various features 2322 * on an association. The flag field may contain 2323 * zero or more of the following options. 2324 * 2325 * SPP_HB_ENABLE - Enable heartbeats on the 2326 * specified address. Note that if the address 2327 * field is empty all addresses for the association 2328 * have heartbeats enabled upon them. 2329 * 2330 * SPP_HB_DISABLE - Disable heartbeats on the 2331 * speicifed address. Note that if the address 2332 * field is empty all addresses for the association 2333 * will have their heartbeats disabled. Note also 2334 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2335 * mutually exclusive, only one of these two should 2336 * be specified. Enabling both fields will have 2337 * undetermined results. 2338 * 2339 * SPP_HB_DEMAND - Request a user initiated heartbeat 2340 * to be made immediately. 2341 * 2342 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2343 * heartbeat delayis to be set to the value of 0 2344 * milliseconds. 2345 * 2346 * SPP_PMTUD_ENABLE - This field will enable PMTU 2347 * discovery upon the specified address. Note that 2348 * if the address feild is empty then all addresses 2349 * on the association are effected. 2350 * 2351 * SPP_PMTUD_DISABLE - This field will disable PMTU 2352 * discovery upon the specified address. Note that 2353 * if the address feild is empty then all addresses 2354 * on the association are effected. Not also that 2355 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2356 * exclusive. Enabling both will have undetermined 2357 * results. 2358 * 2359 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2360 * on delayed sack. The time specified in spp_sackdelay 2361 * is used to specify the sack delay for this address. Note 2362 * that if spp_address is empty then all addresses will 2363 * enable delayed sack and take on the sack delay 2364 * value specified in spp_sackdelay. 2365 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2366 * off delayed sack. If the spp_address field is blank then 2367 * delayed sack is disabled for the entire association. Note 2368 * also that this field is mutually exclusive to 2369 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2370 * results. 2371 */ 2372 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2373 struct sctp_transport *trans, 2374 struct sctp_association *asoc, 2375 struct sctp_sock *sp, 2376 int hb_change, 2377 int pmtud_change, 2378 int sackdelay_change) 2379 { 2380 int error; 2381 2382 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2383 struct net *net = sock_net(trans->asoc->base.sk); 2384 2385 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2386 if (error) 2387 return error; 2388 } 2389 2390 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2391 * this field is ignored. Note also that a value of zero indicates 2392 * the current setting should be left unchanged. 2393 */ 2394 if (params->spp_flags & SPP_HB_ENABLE) { 2395 2396 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2397 * set. This lets us use 0 value when this flag 2398 * is set. 2399 */ 2400 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2401 params->spp_hbinterval = 0; 2402 2403 if (params->spp_hbinterval || 2404 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2405 if (trans) { 2406 trans->hbinterval = 2407 msecs_to_jiffies(params->spp_hbinterval); 2408 } else if (asoc) { 2409 asoc->hbinterval = 2410 msecs_to_jiffies(params->spp_hbinterval); 2411 } else { 2412 sp->hbinterval = params->spp_hbinterval; 2413 } 2414 } 2415 } 2416 2417 if (hb_change) { 2418 if (trans) { 2419 trans->param_flags = 2420 (trans->param_flags & ~SPP_HB) | hb_change; 2421 } else if (asoc) { 2422 asoc->param_flags = 2423 (asoc->param_flags & ~SPP_HB) | hb_change; 2424 } else { 2425 sp->param_flags = 2426 (sp->param_flags & ~SPP_HB) | hb_change; 2427 } 2428 } 2429 2430 /* When Path MTU discovery is disabled the value specified here will 2431 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2432 * include the flag SPP_PMTUD_DISABLE for this field to have any 2433 * effect). 2434 */ 2435 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2436 if (trans) { 2437 trans->pathmtu = params->spp_pathmtu; 2438 sctp_assoc_sync_pmtu(asoc); 2439 } else if (asoc) { 2440 asoc->pathmtu = params->spp_pathmtu; 2441 } else { 2442 sp->pathmtu = params->spp_pathmtu; 2443 } 2444 } 2445 2446 if (pmtud_change) { 2447 if (trans) { 2448 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2449 (params->spp_flags & SPP_PMTUD_ENABLE); 2450 trans->param_flags = 2451 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2452 if (update) { 2453 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2454 sctp_assoc_sync_pmtu(asoc); 2455 } 2456 } else if (asoc) { 2457 asoc->param_flags = 2458 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2459 } else { 2460 sp->param_flags = 2461 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2462 } 2463 } 2464 2465 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2466 * value of this field is ignored. Note also that a value of zero 2467 * indicates the current setting should be left unchanged. 2468 */ 2469 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2470 if (trans) { 2471 trans->sackdelay = 2472 msecs_to_jiffies(params->spp_sackdelay); 2473 } else if (asoc) { 2474 asoc->sackdelay = 2475 msecs_to_jiffies(params->spp_sackdelay); 2476 } else { 2477 sp->sackdelay = params->spp_sackdelay; 2478 } 2479 } 2480 2481 if (sackdelay_change) { 2482 if (trans) { 2483 trans->param_flags = 2484 (trans->param_flags & ~SPP_SACKDELAY) | 2485 sackdelay_change; 2486 } else if (asoc) { 2487 asoc->param_flags = 2488 (asoc->param_flags & ~SPP_SACKDELAY) | 2489 sackdelay_change; 2490 } else { 2491 sp->param_flags = 2492 (sp->param_flags & ~SPP_SACKDELAY) | 2493 sackdelay_change; 2494 } 2495 } 2496 2497 /* Note that a value of zero indicates the current setting should be 2498 left unchanged. 2499 */ 2500 if (params->spp_pathmaxrxt) { 2501 if (trans) { 2502 trans->pathmaxrxt = params->spp_pathmaxrxt; 2503 } else if (asoc) { 2504 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2505 } else { 2506 sp->pathmaxrxt = params->spp_pathmaxrxt; 2507 } 2508 } 2509 2510 return 0; 2511 } 2512 2513 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2514 char __user *optval, 2515 unsigned int optlen) 2516 { 2517 struct sctp_paddrparams params; 2518 struct sctp_transport *trans = NULL; 2519 struct sctp_association *asoc = NULL; 2520 struct sctp_sock *sp = sctp_sk(sk); 2521 int error; 2522 int hb_change, pmtud_change, sackdelay_change; 2523 2524 if (optlen != sizeof(struct sctp_paddrparams)) 2525 return -EINVAL; 2526 2527 if (copy_from_user(¶ms, optval, optlen)) 2528 return -EFAULT; 2529 2530 /* Validate flags and value parameters. */ 2531 hb_change = params.spp_flags & SPP_HB; 2532 pmtud_change = params.spp_flags & SPP_PMTUD; 2533 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2534 2535 if (hb_change == SPP_HB || 2536 pmtud_change == SPP_PMTUD || 2537 sackdelay_change == SPP_SACKDELAY || 2538 params.spp_sackdelay > 500 || 2539 (params.spp_pathmtu && 2540 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2541 return -EINVAL; 2542 2543 /* If an address other than INADDR_ANY is specified, and 2544 * no transport is found, then the request is invalid. 2545 */ 2546 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2547 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2548 params.spp_assoc_id); 2549 if (!trans) 2550 return -EINVAL; 2551 } 2552 2553 /* Get association, if assoc_id != 0 and the socket is a one 2554 * to many style socket, and an association was not found, then 2555 * the id was invalid. 2556 */ 2557 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2558 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2559 return -EINVAL; 2560 2561 /* Heartbeat demand can only be sent on a transport or 2562 * association, but not a socket. 2563 */ 2564 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2565 return -EINVAL; 2566 2567 /* Process parameters. */ 2568 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2569 hb_change, pmtud_change, 2570 sackdelay_change); 2571 2572 if (error) 2573 return error; 2574 2575 /* If changes are for association, also apply parameters to each 2576 * transport. 2577 */ 2578 if (!trans && asoc) { 2579 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2580 transports) { 2581 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2582 hb_change, pmtud_change, 2583 sackdelay_change); 2584 } 2585 } 2586 2587 return 0; 2588 } 2589 2590 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2591 { 2592 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2593 } 2594 2595 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2596 { 2597 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2598 } 2599 2600 /* 2601 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2602 * 2603 * This option will effect the way delayed acks are performed. This 2604 * option allows you to get or set the delayed ack time, in 2605 * milliseconds. It also allows changing the delayed ack frequency. 2606 * Changing the frequency to 1 disables the delayed sack algorithm. If 2607 * the assoc_id is 0, then this sets or gets the endpoints default 2608 * values. If the assoc_id field is non-zero, then the set or get 2609 * effects the specified association for the one to many model (the 2610 * assoc_id field is ignored by the one to one model). Note that if 2611 * sack_delay or sack_freq are 0 when setting this option, then the 2612 * current values will remain unchanged. 2613 * 2614 * struct sctp_sack_info { 2615 * sctp_assoc_t sack_assoc_id; 2616 * uint32_t sack_delay; 2617 * uint32_t sack_freq; 2618 * }; 2619 * 2620 * sack_assoc_id - This parameter, indicates which association the user 2621 * is performing an action upon. Note that if this field's value is 2622 * zero then the endpoints default value is changed (effecting future 2623 * associations only). 2624 * 2625 * sack_delay - This parameter contains the number of milliseconds that 2626 * the user is requesting the delayed ACK timer be set to. Note that 2627 * this value is defined in the standard to be between 200 and 500 2628 * milliseconds. 2629 * 2630 * sack_freq - This parameter contains the number of packets that must 2631 * be received before a sack is sent without waiting for the delay 2632 * timer to expire. The default value for this is 2, setting this 2633 * value to 1 will disable the delayed sack algorithm. 2634 */ 2635 2636 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2637 char __user *optval, unsigned int optlen) 2638 { 2639 struct sctp_sack_info params; 2640 struct sctp_transport *trans = NULL; 2641 struct sctp_association *asoc = NULL; 2642 struct sctp_sock *sp = sctp_sk(sk); 2643 2644 if (optlen == sizeof(struct sctp_sack_info)) { 2645 if (copy_from_user(¶ms, optval, optlen)) 2646 return -EFAULT; 2647 2648 if (params.sack_delay == 0 && params.sack_freq == 0) 2649 return 0; 2650 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2651 pr_warn_ratelimited(DEPRECATED 2652 "%s (pid %d) " 2653 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2654 "Use struct sctp_sack_info instead\n", 2655 current->comm, task_pid_nr(current)); 2656 if (copy_from_user(¶ms, optval, optlen)) 2657 return -EFAULT; 2658 2659 if (params.sack_delay == 0) 2660 params.sack_freq = 1; 2661 else 2662 params.sack_freq = 0; 2663 } else 2664 return -EINVAL; 2665 2666 /* Validate value parameter. */ 2667 if (params.sack_delay > 500) 2668 return -EINVAL; 2669 2670 /* Get association, if sack_assoc_id != 0 and the socket is a one 2671 * to many style socket, and an association was not found, then 2672 * the id was invalid. 2673 */ 2674 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2675 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2676 return -EINVAL; 2677 2678 if (params.sack_delay) { 2679 if (asoc) { 2680 asoc->sackdelay = 2681 msecs_to_jiffies(params.sack_delay); 2682 asoc->param_flags = 2683 sctp_spp_sackdelay_enable(asoc->param_flags); 2684 } else { 2685 sp->sackdelay = params.sack_delay; 2686 sp->param_flags = 2687 sctp_spp_sackdelay_enable(sp->param_flags); 2688 } 2689 } 2690 2691 if (params.sack_freq == 1) { 2692 if (asoc) { 2693 asoc->param_flags = 2694 sctp_spp_sackdelay_disable(asoc->param_flags); 2695 } else { 2696 sp->param_flags = 2697 sctp_spp_sackdelay_disable(sp->param_flags); 2698 } 2699 } else if (params.sack_freq > 1) { 2700 if (asoc) { 2701 asoc->sackfreq = params.sack_freq; 2702 asoc->param_flags = 2703 sctp_spp_sackdelay_enable(asoc->param_flags); 2704 } else { 2705 sp->sackfreq = params.sack_freq; 2706 sp->param_flags = 2707 sctp_spp_sackdelay_enable(sp->param_flags); 2708 } 2709 } 2710 2711 /* If change is for association, also apply to each transport. */ 2712 if (asoc) { 2713 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2714 transports) { 2715 if (params.sack_delay) { 2716 trans->sackdelay = 2717 msecs_to_jiffies(params.sack_delay); 2718 trans->param_flags = 2719 sctp_spp_sackdelay_enable(trans->param_flags); 2720 } 2721 if (params.sack_freq == 1) { 2722 trans->param_flags = 2723 sctp_spp_sackdelay_disable(trans->param_flags); 2724 } else if (params.sack_freq > 1) { 2725 trans->sackfreq = params.sack_freq; 2726 trans->param_flags = 2727 sctp_spp_sackdelay_enable(trans->param_flags); 2728 } 2729 } 2730 } 2731 2732 return 0; 2733 } 2734 2735 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2736 * 2737 * Applications can specify protocol parameters for the default association 2738 * initialization. The option name argument to setsockopt() and getsockopt() 2739 * is SCTP_INITMSG. 2740 * 2741 * Setting initialization parameters is effective only on an unconnected 2742 * socket (for UDP-style sockets only future associations are effected 2743 * by the change). With TCP-style sockets, this option is inherited by 2744 * sockets derived from a listener socket. 2745 */ 2746 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2747 { 2748 struct sctp_initmsg sinit; 2749 struct sctp_sock *sp = sctp_sk(sk); 2750 2751 if (optlen != sizeof(struct sctp_initmsg)) 2752 return -EINVAL; 2753 if (copy_from_user(&sinit, optval, optlen)) 2754 return -EFAULT; 2755 2756 if (sinit.sinit_num_ostreams) 2757 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2758 if (sinit.sinit_max_instreams) 2759 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2760 if (sinit.sinit_max_attempts) 2761 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2762 if (sinit.sinit_max_init_timeo) 2763 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2764 2765 return 0; 2766 } 2767 2768 /* 2769 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2770 * 2771 * Applications that wish to use the sendto() system call may wish to 2772 * specify a default set of parameters that would normally be supplied 2773 * through the inclusion of ancillary data. This socket option allows 2774 * such an application to set the default sctp_sndrcvinfo structure. 2775 * The application that wishes to use this socket option simply passes 2776 * in to this call the sctp_sndrcvinfo structure defined in Section 2777 * 5.2.2) The input parameters accepted by this call include 2778 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2779 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2780 * to this call if the caller is using the UDP model. 2781 */ 2782 static int sctp_setsockopt_default_send_param(struct sock *sk, 2783 char __user *optval, 2784 unsigned int optlen) 2785 { 2786 struct sctp_sock *sp = sctp_sk(sk); 2787 struct sctp_association *asoc; 2788 struct sctp_sndrcvinfo info; 2789 2790 if (optlen != sizeof(info)) 2791 return -EINVAL; 2792 if (copy_from_user(&info, optval, optlen)) 2793 return -EFAULT; 2794 if (info.sinfo_flags & 2795 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2796 SCTP_ABORT | SCTP_EOF)) 2797 return -EINVAL; 2798 2799 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2800 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2801 return -EINVAL; 2802 if (asoc) { 2803 asoc->default_stream = info.sinfo_stream; 2804 asoc->default_flags = info.sinfo_flags; 2805 asoc->default_ppid = info.sinfo_ppid; 2806 asoc->default_context = info.sinfo_context; 2807 asoc->default_timetolive = info.sinfo_timetolive; 2808 } else { 2809 sp->default_stream = info.sinfo_stream; 2810 sp->default_flags = info.sinfo_flags; 2811 sp->default_ppid = info.sinfo_ppid; 2812 sp->default_context = info.sinfo_context; 2813 sp->default_timetolive = info.sinfo_timetolive; 2814 } 2815 2816 return 0; 2817 } 2818 2819 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2820 * (SCTP_DEFAULT_SNDINFO) 2821 */ 2822 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2823 char __user *optval, 2824 unsigned int optlen) 2825 { 2826 struct sctp_sock *sp = sctp_sk(sk); 2827 struct sctp_association *asoc; 2828 struct sctp_sndinfo info; 2829 2830 if (optlen != sizeof(info)) 2831 return -EINVAL; 2832 if (copy_from_user(&info, optval, optlen)) 2833 return -EFAULT; 2834 if (info.snd_flags & 2835 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2836 SCTP_ABORT | SCTP_EOF)) 2837 return -EINVAL; 2838 2839 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2840 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2841 return -EINVAL; 2842 if (asoc) { 2843 asoc->default_stream = info.snd_sid; 2844 asoc->default_flags = info.snd_flags; 2845 asoc->default_ppid = info.snd_ppid; 2846 asoc->default_context = info.snd_context; 2847 } else { 2848 sp->default_stream = info.snd_sid; 2849 sp->default_flags = info.snd_flags; 2850 sp->default_ppid = info.snd_ppid; 2851 sp->default_context = info.snd_context; 2852 } 2853 2854 return 0; 2855 } 2856 2857 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2858 * 2859 * Requests that the local SCTP stack use the enclosed peer address as 2860 * the association primary. The enclosed address must be one of the 2861 * association peer's addresses. 2862 */ 2863 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2864 unsigned int optlen) 2865 { 2866 struct sctp_prim prim; 2867 struct sctp_transport *trans; 2868 2869 if (optlen != sizeof(struct sctp_prim)) 2870 return -EINVAL; 2871 2872 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2873 return -EFAULT; 2874 2875 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2876 if (!trans) 2877 return -EINVAL; 2878 2879 sctp_assoc_set_primary(trans->asoc, trans); 2880 2881 return 0; 2882 } 2883 2884 /* 2885 * 7.1.5 SCTP_NODELAY 2886 * 2887 * Turn on/off any Nagle-like algorithm. This means that packets are 2888 * generally sent as soon as possible and no unnecessary delays are 2889 * introduced, at the cost of more packets in the network. Expects an 2890 * integer boolean flag. 2891 */ 2892 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2893 unsigned int optlen) 2894 { 2895 int val; 2896 2897 if (optlen < sizeof(int)) 2898 return -EINVAL; 2899 if (get_user(val, (int __user *)optval)) 2900 return -EFAULT; 2901 2902 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2903 return 0; 2904 } 2905 2906 /* 2907 * 2908 * 7.1.1 SCTP_RTOINFO 2909 * 2910 * The protocol parameters used to initialize and bound retransmission 2911 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2912 * and modify these parameters. 2913 * All parameters are time values, in milliseconds. A value of 0, when 2914 * modifying the parameters, indicates that the current value should not 2915 * be changed. 2916 * 2917 */ 2918 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2919 { 2920 struct sctp_rtoinfo rtoinfo; 2921 struct sctp_association *asoc; 2922 unsigned long rto_min, rto_max; 2923 struct sctp_sock *sp = sctp_sk(sk); 2924 2925 if (optlen != sizeof (struct sctp_rtoinfo)) 2926 return -EINVAL; 2927 2928 if (copy_from_user(&rtoinfo, optval, optlen)) 2929 return -EFAULT; 2930 2931 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2932 2933 /* Set the values to the specific association */ 2934 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2935 return -EINVAL; 2936 2937 rto_max = rtoinfo.srto_max; 2938 rto_min = rtoinfo.srto_min; 2939 2940 if (rto_max) 2941 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2942 else 2943 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2944 2945 if (rto_min) 2946 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2947 else 2948 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2949 2950 if (rto_min > rto_max) 2951 return -EINVAL; 2952 2953 if (asoc) { 2954 if (rtoinfo.srto_initial != 0) 2955 asoc->rto_initial = 2956 msecs_to_jiffies(rtoinfo.srto_initial); 2957 asoc->rto_max = rto_max; 2958 asoc->rto_min = rto_min; 2959 } else { 2960 /* If there is no association or the association-id = 0 2961 * set the values to the endpoint. 2962 */ 2963 if (rtoinfo.srto_initial != 0) 2964 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2965 sp->rtoinfo.srto_max = rto_max; 2966 sp->rtoinfo.srto_min = rto_min; 2967 } 2968 2969 return 0; 2970 } 2971 2972 /* 2973 * 2974 * 7.1.2 SCTP_ASSOCINFO 2975 * 2976 * This option is used to tune the maximum retransmission attempts 2977 * of the association. 2978 * Returns an error if the new association retransmission value is 2979 * greater than the sum of the retransmission value of the peer. 2980 * See [SCTP] for more information. 2981 * 2982 */ 2983 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2984 { 2985 2986 struct sctp_assocparams assocparams; 2987 struct sctp_association *asoc; 2988 2989 if (optlen != sizeof(struct sctp_assocparams)) 2990 return -EINVAL; 2991 if (copy_from_user(&assocparams, optval, optlen)) 2992 return -EFAULT; 2993 2994 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2995 2996 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2997 return -EINVAL; 2998 2999 /* Set the values to the specific association */ 3000 if (asoc) { 3001 if (assocparams.sasoc_asocmaxrxt != 0) { 3002 __u32 path_sum = 0; 3003 int paths = 0; 3004 struct sctp_transport *peer_addr; 3005 3006 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3007 transports) { 3008 path_sum += peer_addr->pathmaxrxt; 3009 paths++; 3010 } 3011 3012 /* Only validate asocmaxrxt if we have more than 3013 * one path/transport. We do this because path 3014 * retransmissions are only counted when we have more 3015 * then one path. 3016 */ 3017 if (paths > 1 && 3018 assocparams.sasoc_asocmaxrxt > path_sum) 3019 return -EINVAL; 3020 3021 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3022 } 3023 3024 if (assocparams.sasoc_cookie_life != 0) 3025 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3026 } else { 3027 /* Set the values to the endpoint */ 3028 struct sctp_sock *sp = sctp_sk(sk); 3029 3030 if (assocparams.sasoc_asocmaxrxt != 0) 3031 sp->assocparams.sasoc_asocmaxrxt = 3032 assocparams.sasoc_asocmaxrxt; 3033 if (assocparams.sasoc_cookie_life != 0) 3034 sp->assocparams.sasoc_cookie_life = 3035 assocparams.sasoc_cookie_life; 3036 } 3037 return 0; 3038 } 3039 3040 /* 3041 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3042 * 3043 * This socket option is a boolean flag which turns on or off mapped V4 3044 * addresses. If this option is turned on and the socket is type 3045 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3046 * If this option is turned off, then no mapping will be done of V4 3047 * addresses and a user will receive both PF_INET6 and PF_INET type 3048 * addresses on the socket. 3049 */ 3050 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3051 { 3052 int val; 3053 struct sctp_sock *sp = sctp_sk(sk); 3054 3055 if (optlen < sizeof(int)) 3056 return -EINVAL; 3057 if (get_user(val, (int __user *)optval)) 3058 return -EFAULT; 3059 if (val) 3060 sp->v4mapped = 1; 3061 else 3062 sp->v4mapped = 0; 3063 3064 return 0; 3065 } 3066 3067 /* 3068 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3069 * This option will get or set the maximum size to put in any outgoing 3070 * SCTP DATA chunk. If a message is larger than this size it will be 3071 * fragmented by SCTP into the specified size. Note that the underlying 3072 * SCTP implementation may fragment into smaller sized chunks when the 3073 * PMTU of the underlying association is smaller than the value set by 3074 * the user. The default value for this option is '0' which indicates 3075 * the user is NOT limiting fragmentation and only the PMTU will effect 3076 * SCTP's choice of DATA chunk size. Note also that values set larger 3077 * than the maximum size of an IP datagram will effectively let SCTP 3078 * control fragmentation (i.e. the same as setting this option to 0). 3079 * 3080 * The following structure is used to access and modify this parameter: 3081 * 3082 * struct sctp_assoc_value { 3083 * sctp_assoc_t assoc_id; 3084 * uint32_t assoc_value; 3085 * }; 3086 * 3087 * assoc_id: This parameter is ignored for one-to-one style sockets. 3088 * For one-to-many style sockets this parameter indicates which 3089 * association the user is performing an action upon. Note that if 3090 * this field's value is zero then the endpoints default value is 3091 * changed (effecting future associations only). 3092 * assoc_value: This parameter specifies the maximum size in bytes. 3093 */ 3094 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3095 { 3096 struct sctp_assoc_value params; 3097 struct sctp_association *asoc; 3098 struct sctp_sock *sp = sctp_sk(sk); 3099 int val; 3100 3101 if (optlen == sizeof(int)) { 3102 pr_warn_ratelimited(DEPRECATED 3103 "%s (pid %d) " 3104 "Use of int in maxseg socket option.\n" 3105 "Use struct sctp_assoc_value instead\n", 3106 current->comm, task_pid_nr(current)); 3107 if (copy_from_user(&val, optval, optlen)) 3108 return -EFAULT; 3109 params.assoc_id = 0; 3110 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3111 if (copy_from_user(¶ms, optval, optlen)) 3112 return -EFAULT; 3113 val = params.assoc_value; 3114 } else 3115 return -EINVAL; 3116 3117 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3118 return -EINVAL; 3119 3120 asoc = sctp_id2assoc(sk, params.assoc_id); 3121 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3122 return -EINVAL; 3123 3124 if (asoc) { 3125 if (val == 0) { 3126 val = asoc->pathmtu; 3127 val -= sp->pf->af->net_header_len; 3128 val -= sizeof(struct sctphdr) + 3129 sizeof(struct sctp_data_chunk); 3130 } 3131 asoc->user_frag = val; 3132 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3133 } else { 3134 sp->user_frag = val; 3135 } 3136 3137 return 0; 3138 } 3139 3140 3141 /* 3142 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3143 * 3144 * Requests that the peer mark the enclosed address as the association 3145 * primary. The enclosed address must be one of the association's 3146 * locally bound addresses. The following structure is used to make a 3147 * set primary request: 3148 */ 3149 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3150 unsigned int optlen) 3151 { 3152 struct net *net = sock_net(sk); 3153 struct sctp_sock *sp; 3154 struct sctp_association *asoc = NULL; 3155 struct sctp_setpeerprim prim; 3156 struct sctp_chunk *chunk; 3157 struct sctp_af *af; 3158 int err; 3159 3160 sp = sctp_sk(sk); 3161 3162 if (!net->sctp.addip_enable) 3163 return -EPERM; 3164 3165 if (optlen != sizeof(struct sctp_setpeerprim)) 3166 return -EINVAL; 3167 3168 if (copy_from_user(&prim, optval, optlen)) 3169 return -EFAULT; 3170 3171 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3172 if (!asoc) 3173 return -EINVAL; 3174 3175 if (!asoc->peer.asconf_capable) 3176 return -EPERM; 3177 3178 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3179 return -EPERM; 3180 3181 if (!sctp_state(asoc, ESTABLISHED)) 3182 return -ENOTCONN; 3183 3184 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3185 if (!af) 3186 return -EINVAL; 3187 3188 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3189 return -EADDRNOTAVAIL; 3190 3191 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3192 return -EADDRNOTAVAIL; 3193 3194 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3195 chunk = sctp_make_asconf_set_prim(asoc, 3196 (union sctp_addr *)&prim.sspp_addr); 3197 if (!chunk) 3198 return -ENOMEM; 3199 3200 err = sctp_send_asconf(asoc, chunk); 3201 3202 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3203 3204 return err; 3205 } 3206 3207 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3208 unsigned int optlen) 3209 { 3210 struct sctp_setadaptation adaptation; 3211 3212 if (optlen != sizeof(struct sctp_setadaptation)) 3213 return -EINVAL; 3214 if (copy_from_user(&adaptation, optval, optlen)) 3215 return -EFAULT; 3216 3217 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3218 3219 return 0; 3220 } 3221 3222 /* 3223 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3224 * 3225 * The context field in the sctp_sndrcvinfo structure is normally only 3226 * used when a failed message is retrieved holding the value that was 3227 * sent down on the actual send call. This option allows the setting of 3228 * a default context on an association basis that will be received on 3229 * reading messages from the peer. This is especially helpful in the 3230 * one-2-many model for an application to keep some reference to an 3231 * internal state machine that is processing messages on the 3232 * association. Note that the setting of this value only effects 3233 * received messages from the peer and does not effect the value that is 3234 * saved with outbound messages. 3235 */ 3236 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3237 unsigned int optlen) 3238 { 3239 struct sctp_assoc_value params; 3240 struct sctp_sock *sp; 3241 struct sctp_association *asoc; 3242 3243 if (optlen != sizeof(struct sctp_assoc_value)) 3244 return -EINVAL; 3245 if (copy_from_user(¶ms, optval, optlen)) 3246 return -EFAULT; 3247 3248 sp = sctp_sk(sk); 3249 3250 if (params.assoc_id != 0) { 3251 asoc = sctp_id2assoc(sk, params.assoc_id); 3252 if (!asoc) 3253 return -EINVAL; 3254 asoc->default_rcv_context = params.assoc_value; 3255 } else { 3256 sp->default_rcv_context = params.assoc_value; 3257 } 3258 3259 return 0; 3260 } 3261 3262 /* 3263 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3264 * 3265 * This options will at a minimum specify if the implementation is doing 3266 * fragmented interleave. Fragmented interleave, for a one to many 3267 * socket, is when subsequent calls to receive a message may return 3268 * parts of messages from different associations. Some implementations 3269 * may allow you to turn this value on or off. If so, when turned off, 3270 * no fragment interleave will occur (which will cause a head of line 3271 * blocking amongst multiple associations sharing the same one to many 3272 * socket). When this option is turned on, then each receive call may 3273 * come from a different association (thus the user must receive data 3274 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3275 * association each receive belongs to. 3276 * 3277 * This option takes a boolean value. A non-zero value indicates that 3278 * fragmented interleave is on. A value of zero indicates that 3279 * fragmented interleave is off. 3280 * 3281 * Note that it is important that an implementation that allows this 3282 * option to be turned on, have it off by default. Otherwise an unaware 3283 * application using the one to many model may become confused and act 3284 * incorrectly. 3285 */ 3286 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3287 char __user *optval, 3288 unsigned int optlen) 3289 { 3290 int val; 3291 3292 if (optlen != sizeof(int)) 3293 return -EINVAL; 3294 if (get_user(val, (int __user *)optval)) 3295 return -EFAULT; 3296 3297 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3298 3299 return 0; 3300 } 3301 3302 /* 3303 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3304 * (SCTP_PARTIAL_DELIVERY_POINT) 3305 * 3306 * This option will set or get the SCTP partial delivery point. This 3307 * point is the size of a message where the partial delivery API will be 3308 * invoked to help free up rwnd space for the peer. Setting this to a 3309 * lower value will cause partial deliveries to happen more often. The 3310 * calls argument is an integer that sets or gets the partial delivery 3311 * point. Note also that the call will fail if the user attempts to set 3312 * this value larger than the socket receive buffer size. 3313 * 3314 * Note that any single message having a length smaller than or equal to 3315 * the SCTP partial delivery point will be delivered in one single read 3316 * call as long as the user provided buffer is large enough to hold the 3317 * message. 3318 */ 3319 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3320 char __user *optval, 3321 unsigned int optlen) 3322 { 3323 u32 val; 3324 3325 if (optlen != sizeof(u32)) 3326 return -EINVAL; 3327 if (get_user(val, (int __user *)optval)) 3328 return -EFAULT; 3329 3330 /* Note: We double the receive buffer from what the user sets 3331 * it to be, also initial rwnd is based on rcvbuf/2. 3332 */ 3333 if (val > (sk->sk_rcvbuf >> 1)) 3334 return -EINVAL; 3335 3336 sctp_sk(sk)->pd_point = val; 3337 3338 return 0; /* is this the right error code? */ 3339 } 3340 3341 /* 3342 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3343 * 3344 * This option will allow a user to change the maximum burst of packets 3345 * that can be emitted by this association. Note that the default value 3346 * is 4, and some implementations may restrict this setting so that it 3347 * can only be lowered. 3348 * 3349 * NOTE: This text doesn't seem right. Do this on a socket basis with 3350 * future associations inheriting the socket value. 3351 */ 3352 static int sctp_setsockopt_maxburst(struct sock *sk, 3353 char __user *optval, 3354 unsigned int optlen) 3355 { 3356 struct sctp_assoc_value params; 3357 struct sctp_sock *sp; 3358 struct sctp_association *asoc; 3359 int val; 3360 int assoc_id = 0; 3361 3362 if (optlen == sizeof(int)) { 3363 pr_warn_ratelimited(DEPRECATED 3364 "%s (pid %d) " 3365 "Use of int in max_burst socket option deprecated.\n" 3366 "Use struct sctp_assoc_value instead\n", 3367 current->comm, task_pid_nr(current)); 3368 if (copy_from_user(&val, optval, optlen)) 3369 return -EFAULT; 3370 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3371 if (copy_from_user(¶ms, optval, optlen)) 3372 return -EFAULT; 3373 val = params.assoc_value; 3374 assoc_id = params.assoc_id; 3375 } else 3376 return -EINVAL; 3377 3378 sp = sctp_sk(sk); 3379 3380 if (assoc_id != 0) { 3381 asoc = sctp_id2assoc(sk, assoc_id); 3382 if (!asoc) 3383 return -EINVAL; 3384 asoc->max_burst = val; 3385 } else 3386 sp->max_burst = val; 3387 3388 return 0; 3389 } 3390 3391 /* 3392 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3393 * 3394 * This set option adds a chunk type that the user is requesting to be 3395 * received only in an authenticated way. Changes to the list of chunks 3396 * will only effect future associations on the socket. 3397 */ 3398 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3399 char __user *optval, 3400 unsigned int optlen) 3401 { 3402 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3403 struct sctp_authchunk val; 3404 3405 if (!ep->auth_enable) 3406 return -EACCES; 3407 3408 if (optlen != sizeof(struct sctp_authchunk)) 3409 return -EINVAL; 3410 if (copy_from_user(&val, optval, optlen)) 3411 return -EFAULT; 3412 3413 switch (val.sauth_chunk) { 3414 case SCTP_CID_INIT: 3415 case SCTP_CID_INIT_ACK: 3416 case SCTP_CID_SHUTDOWN_COMPLETE: 3417 case SCTP_CID_AUTH: 3418 return -EINVAL; 3419 } 3420 3421 /* add this chunk id to the endpoint */ 3422 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3423 } 3424 3425 /* 3426 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3427 * 3428 * This option gets or sets the list of HMAC algorithms that the local 3429 * endpoint requires the peer to use. 3430 */ 3431 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3432 char __user *optval, 3433 unsigned int optlen) 3434 { 3435 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3436 struct sctp_hmacalgo *hmacs; 3437 u32 idents; 3438 int err; 3439 3440 if (!ep->auth_enable) 3441 return -EACCES; 3442 3443 if (optlen < sizeof(struct sctp_hmacalgo)) 3444 return -EINVAL; 3445 3446 hmacs = memdup_user(optval, optlen); 3447 if (IS_ERR(hmacs)) 3448 return PTR_ERR(hmacs); 3449 3450 idents = hmacs->shmac_num_idents; 3451 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3452 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3453 err = -EINVAL; 3454 goto out; 3455 } 3456 3457 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3458 out: 3459 kfree(hmacs); 3460 return err; 3461 } 3462 3463 /* 3464 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3465 * 3466 * This option will set a shared secret key which is used to build an 3467 * association shared key. 3468 */ 3469 static int sctp_setsockopt_auth_key(struct sock *sk, 3470 char __user *optval, 3471 unsigned int optlen) 3472 { 3473 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3474 struct sctp_authkey *authkey; 3475 struct sctp_association *asoc; 3476 int ret; 3477 3478 if (!ep->auth_enable) 3479 return -EACCES; 3480 3481 if (optlen <= sizeof(struct sctp_authkey)) 3482 return -EINVAL; 3483 3484 authkey = memdup_user(optval, optlen); 3485 if (IS_ERR(authkey)) 3486 return PTR_ERR(authkey); 3487 3488 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3489 ret = -EINVAL; 3490 goto out; 3491 } 3492 3493 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3494 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3495 ret = -EINVAL; 3496 goto out; 3497 } 3498 3499 ret = sctp_auth_set_key(ep, asoc, authkey); 3500 out: 3501 kzfree(authkey); 3502 return ret; 3503 } 3504 3505 /* 3506 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3507 * 3508 * This option will get or set the active shared key to be used to build 3509 * the association shared key. 3510 */ 3511 static int sctp_setsockopt_active_key(struct sock *sk, 3512 char __user *optval, 3513 unsigned int optlen) 3514 { 3515 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3516 struct sctp_authkeyid val; 3517 struct sctp_association *asoc; 3518 3519 if (!ep->auth_enable) 3520 return -EACCES; 3521 3522 if (optlen != sizeof(struct sctp_authkeyid)) 3523 return -EINVAL; 3524 if (copy_from_user(&val, optval, optlen)) 3525 return -EFAULT; 3526 3527 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3528 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3529 return -EINVAL; 3530 3531 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3532 } 3533 3534 /* 3535 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3536 * 3537 * This set option will delete a shared secret key from use. 3538 */ 3539 static int sctp_setsockopt_del_key(struct sock *sk, 3540 char __user *optval, 3541 unsigned int optlen) 3542 { 3543 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3544 struct sctp_authkeyid val; 3545 struct sctp_association *asoc; 3546 3547 if (!ep->auth_enable) 3548 return -EACCES; 3549 3550 if (optlen != sizeof(struct sctp_authkeyid)) 3551 return -EINVAL; 3552 if (copy_from_user(&val, optval, optlen)) 3553 return -EFAULT; 3554 3555 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3556 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3557 return -EINVAL; 3558 3559 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3560 3561 } 3562 3563 /* 3564 * 8.1.23 SCTP_AUTO_ASCONF 3565 * 3566 * This option will enable or disable the use of the automatic generation of 3567 * ASCONF chunks to add and delete addresses to an existing association. Note 3568 * that this option has two caveats namely: a) it only affects sockets that 3569 * are bound to all addresses available to the SCTP stack, and b) the system 3570 * administrator may have an overriding control that turns the ASCONF feature 3571 * off no matter what setting the socket option may have. 3572 * This option expects an integer boolean flag, where a non-zero value turns on 3573 * the option, and a zero value turns off the option. 3574 * Note. In this implementation, socket operation overrides default parameter 3575 * being set by sysctl as well as FreeBSD implementation 3576 */ 3577 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3578 unsigned int optlen) 3579 { 3580 int val; 3581 struct sctp_sock *sp = sctp_sk(sk); 3582 3583 if (optlen < sizeof(int)) 3584 return -EINVAL; 3585 if (get_user(val, (int __user *)optval)) 3586 return -EFAULT; 3587 if (!sctp_is_ep_boundall(sk) && val) 3588 return -EINVAL; 3589 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3590 return 0; 3591 3592 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3593 if (val == 0 && sp->do_auto_asconf) { 3594 list_del(&sp->auto_asconf_list); 3595 sp->do_auto_asconf = 0; 3596 } else if (val && !sp->do_auto_asconf) { 3597 list_add_tail(&sp->auto_asconf_list, 3598 &sock_net(sk)->sctp.auto_asconf_splist); 3599 sp->do_auto_asconf = 1; 3600 } 3601 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3602 return 0; 3603 } 3604 3605 /* 3606 * SCTP_PEER_ADDR_THLDS 3607 * 3608 * This option allows us to alter the partially failed threshold for one or all 3609 * transports in an association. See Section 6.1 of: 3610 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3611 */ 3612 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3613 char __user *optval, 3614 unsigned int optlen) 3615 { 3616 struct sctp_paddrthlds val; 3617 struct sctp_transport *trans; 3618 struct sctp_association *asoc; 3619 3620 if (optlen < sizeof(struct sctp_paddrthlds)) 3621 return -EINVAL; 3622 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3623 sizeof(struct sctp_paddrthlds))) 3624 return -EFAULT; 3625 3626 3627 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3628 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3629 if (!asoc) 3630 return -ENOENT; 3631 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3632 transports) { 3633 if (val.spt_pathmaxrxt) 3634 trans->pathmaxrxt = val.spt_pathmaxrxt; 3635 trans->pf_retrans = val.spt_pathpfthld; 3636 } 3637 3638 if (val.spt_pathmaxrxt) 3639 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3640 asoc->pf_retrans = val.spt_pathpfthld; 3641 } else { 3642 trans = sctp_addr_id2transport(sk, &val.spt_address, 3643 val.spt_assoc_id); 3644 if (!trans) 3645 return -ENOENT; 3646 3647 if (val.spt_pathmaxrxt) 3648 trans->pathmaxrxt = val.spt_pathmaxrxt; 3649 trans->pf_retrans = val.spt_pathpfthld; 3650 } 3651 3652 return 0; 3653 } 3654 3655 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3656 char __user *optval, 3657 unsigned int optlen) 3658 { 3659 int val; 3660 3661 if (optlen < sizeof(int)) 3662 return -EINVAL; 3663 if (get_user(val, (int __user *) optval)) 3664 return -EFAULT; 3665 3666 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3667 3668 return 0; 3669 } 3670 3671 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3672 char __user *optval, 3673 unsigned int optlen) 3674 { 3675 int val; 3676 3677 if (optlen < sizeof(int)) 3678 return -EINVAL; 3679 if (get_user(val, (int __user *) optval)) 3680 return -EFAULT; 3681 3682 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3683 3684 return 0; 3685 } 3686 3687 static int sctp_setsockopt_pr_supported(struct sock *sk, 3688 char __user *optval, 3689 unsigned int optlen) 3690 { 3691 struct sctp_assoc_value params; 3692 struct sctp_association *asoc; 3693 int retval = -EINVAL; 3694 3695 if (optlen != sizeof(params)) 3696 goto out; 3697 3698 if (copy_from_user(¶ms, optval, optlen)) { 3699 retval = -EFAULT; 3700 goto out; 3701 } 3702 3703 asoc = sctp_id2assoc(sk, params.assoc_id); 3704 if (asoc) { 3705 asoc->prsctp_enable = !!params.assoc_value; 3706 } else if (!params.assoc_id) { 3707 struct sctp_sock *sp = sctp_sk(sk); 3708 3709 sp->ep->prsctp_enable = !!params.assoc_value; 3710 } else { 3711 goto out; 3712 } 3713 3714 retval = 0; 3715 3716 out: 3717 return retval; 3718 } 3719 3720 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3721 char __user *optval, 3722 unsigned int optlen) 3723 { 3724 struct sctp_default_prinfo info; 3725 struct sctp_association *asoc; 3726 int retval = -EINVAL; 3727 3728 if (optlen != sizeof(info)) 3729 goto out; 3730 3731 if (copy_from_user(&info, optval, sizeof(info))) { 3732 retval = -EFAULT; 3733 goto out; 3734 } 3735 3736 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3737 goto out; 3738 3739 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3740 info.pr_value = 0; 3741 3742 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3743 if (asoc) { 3744 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3745 asoc->default_timetolive = info.pr_value; 3746 } else if (!info.pr_assoc_id) { 3747 struct sctp_sock *sp = sctp_sk(sk); 3748 3749 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3750 sp->default_timetolive = info.pr_value; 3751 } else { 3752 goto out; 3753 } 3754 3755 retval = 0; 3756 3757 out: 3758 return retval; 3759 } 3760 3761 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3762 char __user *optval, 3763 unsigned int optlen) 3764 { 3765 struct sctp_assoc_value params; 3766 struct sctp_association *asoc; 3767 int retval = -EINVAL; 3768 3769 if (optlen != sizeof(params)) 3770 goto out; 3771 3772 if (copy_from_user(¶ms, optval, optlen)) { 3773 retval = -EFAULT; 3774 goto out; 3775 } 3776 3777 asoc = sctp_id2assoc(sk, params.assoc_id); 3778 if (asoc) { 3779 asoc->reconf_enable = !!params.assoc_value; 3780 } else if (!params.assoc_id) { 3781 struct sctp_sock *sp = sctp_sk(sk); 3782 3783 sp->ep->reconf_enable = !!params.assoc_value; 3784 } else { 3785 goto out; 3786 } 3787 3788 retval = 0; 3789 3790 out: 3791 return retval; 3792 } 3793 3794 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3795 char __user *optval, 3796 unsigned int optlen) 3797 { 3798 struct sctp_assoc_value params; 3799 struct sctp_association *asoc; 3800 int retval = -EINVAL; 3801 3802 if (optlen != sizeof(params)) 3803 goto out; 3804 3805 if (copy_from_user(¶ms, optval, optlen)) { 3806 retval = -EFAULT; 3807 goto out; 3808 } 3809 3810 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3811 goto out; 3812 3813 asoc = sctp_id2assoc(sk, params.assoc_id); 3814 if (asoc) { 3815 asoc->strreset_enable = params.assoc_value; 3816 } else if (!params.assoc_id) { 3817 struct sctp_sock *sp = sctp_sk(sk); 3818 3819 sp->ep->strreset_enable = params.assoc_value; 3820 } else { 3821 goto out; 3822 } 3823 3824 retval = 0; 3825 3826 out: 3827 return retval; 3828 } 3829 3830 static int sctp_setsockopt_reset_streams(struct sock *sk, 3831 char __user *optval, 3832 unsigned int optlen) 3833 { 3834 struct sctp_reset_streams *params; 3835 struct sctp_association *asoc; 3836 int retval = -EINVAL; 3837 3838 if (optlen < sizeof(struct sctp_reset_streams)) 3839 return -EINVAL; 3840 3841 params = memdup_user(optval, optlen); 3842 if (IS_ERR(params)) 3843 return PTR_ERR(params); 3844 3845 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 3846 if (!asoc) 3847 goto out; 3848 3849 retval = sctp_send_reset_streams(asoc, params); 3850 3851 out: 3852 kfree(params); 3853 return retval; 3854 } 3855 3856 static int sctp_setsockopt_reset_assoc(struct sock *sk, 3857 char __user *optval, 3858 unsigned int optlen) 3859 { 3860 struct sctp_association *asoc; 3861 sctp_assoc_t associd; 3862 int retval = -EINVAL; 3863 3864 if (optlen != sizeof(associd)) 3865 goto out; 3866 3867 if (copy_from_user(&associd, optval, optlen)) { 3868 retval = -EFAULT; 3869 goto out; 3870 } 3871 3872 asoc = sctp_id2assoc(sk, associd); 3873 if (!asoc) 3874 goto out; 3875 3876 retval = sctp_send_reset_assoc(asoc); 3877 3878 out: 3879 return retval; 3880 } 3881 3882 static int sctp_setsockopt_add_streams(struct sock *sk, 3883 char __user *optval, 3884 unsigned int optlen) 3885 { 3886 struct sctp_association *asoc; 3887 struct sctp_add_streams params; 3888 int retval = -EINVAL; 3889 3890 if (optlen != sizeof(params)) 3891 goto out; 3892 3893 if (copy_from_user(¶ms, optval, optlen)) { 3894 retval = -EFAULT; 3895 goto out; 3896 } 3897 3898 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 3899 if (!asoc) 3900 goto out; 3901 3902 retval = sctp_send_add_streams(asoc, ¶ms); 3903 3904 out: 3905 return retval; 3906 } 3907 3908 /* API 6.2 setsockopt(), getsockopt() 3909 * 3910 * Applications use setsockopt() and getsockopt() to set or retrieve 3911 * socket options. Socket options are used to change the default 3912 * behavior of sockets calls. They are described in Section 7. 3913 * 3914 * The syntax is: 3915 * 3916 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3917 * int __user *optlen); 3918 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3919 * int optlen); 3920 * 3921 * sd - the socket descript. 3922 * level - set to IPPROTO_SCTP for all SCTP options. 3923 * optname - the option name. 3924 * optval - the buffer to store the value of the option. 3925 * optlen - the size of the buffer. 3926 */ 3927 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3928 char __user *optval, unsigned int optlen) 3929 { 3930 int retval = 0; 3931 3932 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3933 3934 /* I can hardly begin to describe how wrong this is. This is 3935 * so broken as to be worse than useless. The API draft 3936 * REALLY is NOT helpful here... I am not convinced that the 3937 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3938 * are at all well-founded. 3939 */ 3940 if (level != SOL_SCTP) { 3941 struct sctp_af *af = sctp_sk(sk)->pf->af; 3942 retval = af->setsockopt(sk, level, optname, optval, optlen); 3943 goto out_nounlock; 3944 } 3945 3946 lock_sock(sk); 3947 3948 switch (optname) { 3949 case SCTP_SOCKOPT_BINDX_ADD: 3950 /* 'optlen' is the size of the addresses buffer. */ 3951 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3952 optlen, SCTP_BINDX_ADD_ADDR); 3953 break; 3954 3955 case SCTP_SOCKOPT_BINDX_REM: 3956 /* 'optlen' is the size of the addresses buffer. */ 3957 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3958 optlen, SCTP_BINDX_REM_ADDR); 3959 break; 3960 3961 case SCTP_SOCKOPT_CONNECTX_OLD: 3962 /* 'optlen' is the size of the addresses buffer. */ 3963 retval = sctp_setsockopt_connectx_old(sk, 3964 (struct sockaddr __user *)optval, 3965 optlen); 3966 break; 3967 3968 case SCTP_SOCKOPT_CONNECTX: 3969 /* 'optlen' is the size of the addresses buffer. */ 3970 retval = sctp_setsockopt_connectx(sk, 3971 (struct sockaddr __user *)optval, 3972 optlen); 3973 break; 3974 3975 case SCTP_DISABLE_FRAGMENTS: 3976 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3977 break; 3978 3979 case SCTP_EVENTS: 3980 retval = sctp_setsockopt_events(sk, optval, optlen); 3981 break; 3982 3983 case SCTP_AUTOCLOSE: 3984 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3985 break; 3986 3987 case SCTP_PEER_ADDR_PARAMS: 3988 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3989 break; 3990 3991 case SCTP_DELAYED_SACK: 3992 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3993 break; 3994 case SCTP_PARTIAL_DELIVERY_POINT: 3995 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3996 break; 3997 3998 case SCTP_INITMSG: 3999 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4000 break; 4001 case SCTP_DEFAULT_SEND_PARAM: 4002 retval = sctp_setsockopt_default_send_param(sk, optval, 4003 optlen); 4004 break; 4005 case SCTP_DEFAULT_SNDINFO: 4006 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4007 break; 4008 case SCTP_PRIMARY_ADDR: 4009 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4010 break; 4011 case SCTP_SET_PEER_PRIMARY_ADDR: 4012 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4013 break; 4014 case SCTP_NODELAY: 4015 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4016 break; 4017 case SCTP_RTOINFO: 4018 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4019 break; 4020 case SCTP_ASSOCINFO: 4021 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4022 break; 4023 case SCTP_I_WANT_MAPPED_V4_ADDR: 4024 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4025 break; 4026 case SCTP_MAXSEG: 4027 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4028 break; 4029 case SCTP_ADAPTATION_LAYER: 4030 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4031 break; 4032 case SCTP_CONTEXT: 4033 retval = sctp_setsockopt_context(sk, optval, optlen); 4034 break; 4035 case SCTP_FRAGMENT_INTERLEAVE: 4036 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4037 break; 4038 case SCTP_MAX_BURST: 4039 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4040 break; 4041 case SCTP_AUTH_CHUNK: 4042 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4043 break; 4044 case SCTP_HMAC_IDENT: 4045 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4046 break; 4047 case SCTP_AUTH_KEY: 4048 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4049 break; 4050 case SCTP_AUTH_ACTIVE_KEY: 4051 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4052 break; 4053 case SCTP_AUTH_DELETE_KEY: 4054 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4055 break; 4056 case SCTP_AUTO_ASCONF: 4057 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4058 break; 4059 case SCTP_PEER_ADDR_THLDS: 4060 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4061 break; 4062 case SCTP_RECVRCVINFO: 4063 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4064 break; 4065 case SCTP_RECVNXTINFO: 4066 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4067 break; 4068 case SCTP_PR_SUPPORTED: 4069 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4070 break; 4071 case SCTP_DEFAULT_PRINFO: 4072 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4073 break; 4074 case SCTP_RECONFIG_SUPPORTED: 4075 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4076 break; 4077 case SCTP_ENABLE_STREAM_RESET: 4078 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4079 break; 4080 case SCTP_RESET_STREAMS: 4081 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4082 break; 4083 case SCTP_RESET_ASSOC: 4084 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4085 break; 4086 case SCTP_ADD_STREAMS: 4087 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4088 break; 4089 default: 4090 retval = -ENOPROTOOPT; 4091 break; 4092 } 4093 4094 release_sock(sk); 4095 4096 out_nounlock: 4097 return retval; 4098 } 4099 4100 /* API 3.1.6 connect() - UDP Style Syntax 4101 * 4102 * An application may use the connect() call in the UDP model to initiate an 4103 * association without sending data. 4104 * 4105 * The syntax is: 4106 * 4107 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4108 * 4109 * sd: the socket descriptor to have a new association added to. 4110 * 4111 * nam: the address structure (either struct sockaddr_in or struct 4112 * sockaddr_in6 defined in RFC2553 [7]). 4113 * 4114 * len: the size of the address. 4115 */ 4116 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4117 int addr_len) 4118 { 4119 int err = 0; 4120 struct sctp_af *af; 4121 4122 lock_sock(sk); 4123 4124 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4125 addr, addr_len); 4126 4127 /* Validate addr_len before calling common connect/connectx routine. */ 4128 af = sctp_get_af_specific(addr->sa_family); 4129 if (!af || addr_len < af->sockaddr_len) { 4130 err = -EINVAL; 4131 } else { 4132 /* Pass correct addr len to common routine (so it knows there 4133 * is only one address being passed. 4134 */ 4135 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4136 } 4137 4138 release_sock(sk); 4139 return err; 4140 } 4141 4142 /* FIXME: Write comments. */ 4143 static int sctp_disconnect(struct sock *sk, int flags) 4144 { 4145 return -EOPNOTSUPP; /* STUB */ 4146 } 4147 4148 /* 4.1.4 accept() - TCP Style Syntax 4149 * 4150 * Applications use accept() call to remove an established SCTP 4151 * association from the accept queue of the endpoint. A new socket 4152 * descriptor will be returned from accept() to represent the newly 4153 * formed association. 4154 */ 4155 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4156 { 4157 struct sctp_sock *sp; 4158 struct sctp_endpoint *ep; 4159 struct sock *newsk = NULL; 4160 struct sctp_association *asoc; 4161 long timeo; 4162 int error = 0; 4163 4164 lock_sock(sk); 4165 4166 sp = sctp_sk(sk); 4167 ep = sp->ep; 4168 4169 if (!sctp_style(sk, TCP)) { 4170 error = -EOPNOTSUPP; 4171 goto out; 4172 } 4173 4174 if (!sctp_sstate(sk, LISTENING)) { 4175 error = -EINVAL; 4176 goto out; 4177 } 4178 4179 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4180 4181 error = sctp_wait_for_accept(sk, timeo); 4182 if (error) 4183 goto out; 4184 4185 /* We treat the list of associations on the endpoint as the accept 4186 * queue and pick the first association on the list. 4187 */ 4188 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4189 4190 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4191 if (!newsk) { 4192 error = -ENOMEM; 4193 goto out; 4194 } 4195 4196 /* Populate the fields of the newsk from the oldsk and migrate the 4197 * asoc to the newsk. 4198 */ 4199 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4200 4201 out: 4202 release_sock(sk); 4203 *err = error; 4204 return newsk; 4205 } 4206 4207 /* The SCTP ioctl handler. */ 4208 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4209 { 4210 int rc = -ENOTCONN; 4211 4212 lock_sock(sk); 4213 4214 /* 4215 * SEQPACKET-style sockets in LISTENING state are valid, for 4216 * SCTP, so only discard TCP-style sockets in LISTENING state. 4217 */ 4218 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4219 goto out; 4220 4221 switch (cmd) { 4222 case SIOCINQ: { 4223 struct sk_buff *skb; 4224 unsigned int amount = 0; 4225 4226 skb = skb_peek(&sk->sk_receive_queue); 4227 if (skb != NULL) { 4228 /* 4229 * We will only return the amount of this packet since 4230 * that is all that will be read. 4231 */ 4232 amount = skb->len; 4233 } 4234 rc = put_user(amount, (int __user *)arg); 4235 break; 4236 } 4237 default: 4238 rc = -ENOIOCTLCMD; 4239 break; 4240 } 4241 out: 4242 release_sock(sk); 4243 return rc; 4244 } 4245 4246 /* This is the function which gets called during socket creation to 4247 * initialized the SCTP-specific portion of the sock. 4248 * The sock structure should already be zero-filled memory. 4249 */ 4250 static int sctp_init_sock(struct sock *sk) 4251 { 4252 struct net *net = sock_net(sk); 4253 struct sctp_sock *sp; 4254 4255 pr_debug("%s: sk:%p\n", __func__, sk); 4256 4257 sp = sctp_sk(sk); 4258 4259 /* Initialize the SCTP per socket area. */ 4260 switch (sk->sk_type) { 4261 case SOCK_SEQPACKET: 4262 sp->type = SCTP_SOCKET_UDP; 4263 break; 4264 case SOCK_STREAM: 4265 sp->type = SCTP_SOCKET_TCP; 4266 break; 4267 default: 4268 return -ESOCKTNOSUPPORT; 4269 } 4270 4271 sk->sk_gso_type = SKB_GSO_SCTP; 4272 4273 /* Initialize default send parameters. These parameters can be 4274 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4275 */ 4276 sp->default_stream = 0; 4277 sp->default_ppid = 0; 4278 sp->default_flags = 0; 4279 sp->default_context = 0; 4280 sp->default_timetolive = 0; 4281 4282 sp->default_rcv_context = 0; 4283 sp->max_burst = net->sctp.max_burst; 4284 4285 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4286 4287 /* Initialize default setup parameters. These parameters 4288 * can be modified with the SCTP_INITMSG socket option or 4289 * overridden by the SCTP_INIT CMSG. 4290 */ 4291 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4292 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4293 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4294 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4295 4296 /* Initialize default RTO related parameters. These parameters can 4297 * be modified for with the SCTP_RTOINFO socket option. 4298 */ 4299 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4300 sp->rtoinfo.srto_max = net->sctp.rto_max; 4301 sp->rtoinfo.srto_min = net->sctp.rto_min; 4302 4303 /* Initialize default association related parameters. These parameters 4304 * can be modified with the SCTP_ASSOCINFO socket option. 4305 */ 4306 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4307 sp->assocparams.sasoc_number_peer_destinations = 0; 4308 sp->assocparams.sasoc_peer_rwnd = 0; 4309 sp->assocparams.sasoc_local_rwnd = 0; 4310 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4311 4312 /* Initialize default event subscriptions. By default, all the 4313 * options are off. 4314 */ 4315 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4316 4317 /* Default Peer Address Parameters. These defaults can 4318 * be modified via SCTP_PEER_ADDR_PARAMS 4319 */ 4320 sp->hbinterval = net->sctp.hb_interval; 4321 sp->pathmaxrxt = net->sctp.max_retrans_path; 4322 sp->pathmtu = 0; /* allow default discovery */ 4323 sp->sackdelay = net->sctp.sack_timeout; 4324 sp->sackfreq = 2; 4325 sp->param_flags = SPP_HB_ENABLE | 4326 SPP_PMTUD_ENABLE | 4327 SPP_SACKDELAY_ENABLE; 4328 4329 /* If enabled no SCTP message fragmentation will be performed. 4330 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4331 */ 4332 sp->disable_fragments = 0; 4333 4334 /* Enable Nagle algorithm by default. */ 4335 sp->nodelay = 0; 4336 4337 sp->recvrcvinfo = 0; 4338 sp->recvnxtinfo = 0; 4339 4340 /* Enable by default. */ 4341 sp->v4mapped = 1; 4342 4343 /* Auto-close idle associations after the configured 4344 * number of seconds. A value of 0 disables this 4345 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4346 * for UDP-style sockets only. 4347 */ 4348 sp->autoclose = 0; 4349 4350 /* User specified fragmentation limit. */ 4351 sp->user_frag = 0; 4352 4353 sp->adaptation_ind = 0; 4354 4355 sp->pf = sctp_get_pf_specific(sk->sk_family); 4356 4357 /* Control variables for partial data delivery. */ 4358 atomic_set(&sp->pd_mode, 0); 4359 skb_queue_head_init(&sp->pd_lobby); 4360 sp->frag_interleave = 0; 4361 4362 /* Create a per socket endpoint structure. Even if we 4363 * change the data structure relationships, this may still 4364 * be useful for storing pre-connect address information. 4365 */ 4366 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4367 if (!sp->ep) 4368 return -ENOMEM; 4369 4370 sp->hmac = NULL; 4371 4372 sk->sk_destruct = sctp_destruct_sock; 4373 4374 SCTP_DBG_OBJCNT_INC(sock); 4375 4376 local_bh_disable(); 4377 percpu_counter_inc(&sctp_sockets_allocated); 4378 sock_prot_inuse_add(net, sk->sk_prot, 1); 4379 4380 /* Nothing can fail after this block, otherwise 4381 * sctp_destroy_sock() will be called without addr_wq_lock held 4382 */ 4383 if (net->sctp.default_auto_asconf) { 4384 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4385 list_add_tail(&sp->auto_asconf_list, 4386 &net->sctp.auto_asconf_splist); 4387 sp->do_auto_asconf = 1; 4388 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4389 } else { 4390 sp->do_auto_asconf = 0; 4391 } 4392 4393 local_bh_enable(); 4394 4395 return 0; 4396 } 4397 4398 /* Cleanup any SCTP per socket resources. Must be called with 4399 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4400 */ 4401 static void sctp_destroy_sock(struct sock *sk) 4402 { 4403 struct sctp_sock *sp; 4404 4405 pr_debug("%s: sk:%p\n", __func__, sk); 4406 4407 /* Release our hold on the endpoint. */ 4408 sp = sctp_sk(sk); 4409 /* This could happen during socket init, thus we bail out 4410 * early, since the rest of the below is not setup either. 4411 */ 4412 if (sp->ep == NULL) 4413 return; 4414 4415 if (sp->do_auto_asconf) { 4416 sp->do_auto_asconf = 0; 4417 list_del(&sp->auto_asconf_list); 4418 } 4419 sctp_endpoint_free(sp->ep); 4420 local_bh_disable(); 4421 percpu_counter_dec(&sctp_sockets_allocated); 4422 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4423 local_bh_enable(); 4424 } 4425 4426 /* Triggered when there are no references on the socket anymore */ 4427 static void sctp_destruct_sock(struct sock *sk) 4428 { 4429 struct sctp_sock *sp = sctp_sk(sk); 4430 4431 /* Free up the HMAC transform. */ 4432 crypto_free_shash(sp->hmac); 4433 4434 inet_sock_destruct(sk); 4435 } 4436 4437 /* API 4.1.7 shutdown() - TCP Style Syntax 4438 * int shutdown(int socket, int how); 4439 * 4440 * sd - the socket descriptor of the association to be closed. 4441 * how - Specifies the type of shutdown. The values are 4442 * as follows: 4443 * SHUT_RD 4444 * Disables further receive operations. No SCTP 4445 * protocol action is taken. 4446 * SHUT_WR 4447 * Disables further send operations, and initiates 4448 * the SCTP shutdown sequence. 4449 * SHUT_RDWR 4450 * Disables further send and receive operations 4451 * and initiates the SCTP shutdown sequence. 4452 */ 4453 static void sctp_shutdown(struct sock *sk, int how) 4454 { 4455 struct net *net = sock_net(sk); 4456 struct sctp_endpoint *ep; 4457 4458 if (!sctp_style(sk, TCP)) 4459 return; 4460 4461 ep = sctp_sk(sk)->ep; 4462 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4463 struct sctp_association *asoc; 4464 4465 sk->sk_state = SCTP_SS_CLOSING; 4466 asoc = list_entry(ep->asocs.next, 4467 struct sctp_association, asocs); 4468 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4469 } 4470 } 4471 4472 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4473 struct sctp_info *info) 4474 { 4475 struct sctp_transport *prim; 4476 struct list_head *pos; 4477 int mask; 4478 4479 memset(info, 0, sizeof(*info)); 4480 if (!asoc) { 4481 struct sctp_sock *sp = sctp_sk(sk); 4482 4483 info->sctpi_s_autoclose = sp->autoclose; 4484 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4485 info->sctpi_s_pd_point = sp->pd_point; 4486 info->sctpi_s_nodelay = sp->nodelay; 4487 info->sctpi_s_disable_fragments = sp->disable_fragments; 4488 info->sctpi_s_v4mapped = sp->v4mapped; 4489 info->sctpi_s_frag_interleave = sp->frag_interleave; 4490 info->sctpi_s_type = sp->type; 4491 4492 return 0; 4493 } 4494 4495 info->sctpi_tag = asoc->c.my_vtag; 4496 info->sctpi_state = asoc->state; 4497 info->sctpi_rwnd = asoc->a_rwnd; 4498 info->sctpi_unackdata = asoc->unack_data; 4499 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4500 info->sctpi_instrms = asoc->stream.incnt; 4501 info->sctpi_outstrms = asoc->stream.outcnt; 4502 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4503 info->sctpi_inqueue++; 4504 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4505 info->sctpi_outqueue++; 4506 info->sctpi_overall_error = asoc->overall_error_count; 4507 info->sctpi_max_burst = asoc->max_burst; 4508 info->sctpi_maxseg = asoc->frag_point; 4509 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4510 info->sctpi_peer_tag = asoc->c.peer_vtag; 4511 4512 mask = asoc->peer.ecn_capable << 1; 4513 mask = (mask | asoc->peer.ipv4_address) << 1; 4514 mask = (mask | asoc->peer.ipv6_address) << 1; 4515 mask = (mask | asoc->peer.hostname_address) << 1; 4516 mask = (mask | asoc->peer.asconf_capable) << 1; 4517 mask = (mask | asoc->peer.prsctp_capable) << 1; 4518 mask = (mask | asoc->peer.auth_capable); 4519 info->sctpi_peer_capable = mask; 4520 mask = asoc->peer.sack_needed << 1; 4521 mask = (mask | asoc->peer.sack_generation) << 1; 4522 mask = (mask | asoc->peer.zero_window_announced); 4523 info->sctpi_peer_sack = mask; 4524 4525 info->sctpi_isacks = asoc->stats.isacks; 4526 info->sctpi_osacks = asoc->stats.osacks; 4527 info->sctpi_opackets = asoc->stats.opackets; 4528 info->sctpi_ipackets = asoc->stats.ipackets; 4529 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4530 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4531 info->sctpi_idupchunks = asoc->stats.idupchunks; 4532 info->sctpi_gapcnt = asoc->stats.gapcnt; 4533 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4534 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4535 info->sctpi_oodchunks = asoc->stats.oodchunks; 4536 info->sctpi_iodchunks = asoc->stats.iodchunks; 4537 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4538 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4539 4540 prim = asoc->peer.primary_path; 4541 memcpy(&info->sctpi_p_address, &prim->ipaddr, 4542 sizeof(struct sockaddr_storage)); 4543 info->sctpi_p_state = prim->state; 4544 info->sctpi_p_cwnd = prim->cwnd; 4545 info->sctpi_p_srtt = prim->srtt; 4546 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4547 info->sctpi_p_hbinterval = prim->hbinterval; 4548 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4549 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4550 info->sctpi_p_ssthresh = prim->ssthresh; 4551 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4552 info->sctpi_p_flight_size = prim->flight_size; 4553 info->sctpi_p_error = prim->error_count; 4554 4555 return 0; 4556 } 4557 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4558 4559 /* use callback to avoid exporting the core structure */ 4560 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4561 { 4562 int err; 4563 4564 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4565 4566 err = rhashtable_walk_start(iter); 4567 if (err && err != -EAGAIN) { 4568 rhashtable_walk_stop(iter); 4569 rhashtable_walk_exit(iter); 4570 return err; 4571 } 4572 4573 return 0; 4574 } 4575 4576 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4577 { 4578 rhashtable_walk_stop(iter); 4579 rhashtable_walk_exit(iter); 4580 } 4581 4582 struct sctp_transport *sctp_transport_get_next(struct net *net, 4583 struct rhashtable_iter *iter) 4584 { 4585 struct sctp_transport *t; 4586 4587 t = rhashtable_walk_next(iter); 4588 for (; t; t = rhashtable_walk_next(iter)) { 4589 if (IS_ERR(t)) { 4590 if (PTR_ERR(t) == -EAGAIN) 4591 continue; 4592 break; 4593 } 4594 4595 if (net_eq(sock_net(t->asoc->base.sk), net) && 4596 t->asoc->peer.primary_path == t) 4597 break; 4598 } 4599 4600 return t; 4601 } 4602 4603 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4604 struct rhashtable_iter *iter, 4605 int pos) 4606 { 4607 void *obj = SEQ_START_TOKEN; 4608 4609 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4610 !IS_ERR(obj)) 4611 pos--; 4612 4613 return obj; 4614 } 4615 4616 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4617 void *p) { 4618 int err = 0; 4619 int hash = 0; 4620 struct sctp_ep_common *epb; 4621 struct sctp_hashbucket *head; 4622 4623 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4624 hash++, head++) { 4625 read_lock_bh(&head->lock); 4626 sctp_for_each_hentry(epb, &head->chain) { 4627 err = cb(sctp_ep(epb), p); 4628 if (err) 4629 break; 4630 } 4631 read_unlock_bh(&head->lock); 4632 } 4633 4634 return err; 4635 } 4636 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4637 4638 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4639 struct net *net, 4640 const union sctp_addr *laddr, 4641 const union sctp_addr *paddr, void *p) 4642 { 4643 struct sctp_transport *transport; 4644 int err; 4645 4646 rcu_read_lock(); 4647 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4648 rcu_read_unlock(); 4649 if (!transport) 4650 return -ENOENT; 4651 4652 err = cb(transport, p); 4653 sctp_transport_put(transport); 4654 4655 return err; 4656 } 4657 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4658 4659 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4660 struct net *net, int pos, void *p) { 4661 struct rhashtable_iter hti; 4662 void *obj; 4663 int err; 4664 4665 err = sctp_transport_walk_start(&hti); 4666 if (err) 4667 return err; 4668 4669 obj = sctp_transport_get_idx(net, &hti, pos + 1); 4670 for (; !IS_ERR_OR_NULL(obj); obj = sctp_transport_get_next(net, &hti)) { 4671 struct sctp_transport *transport = obj; 4672 4673 if (!sctp_transport_hold(transport)) 4674 continue; 4675 err = cb(transport, p); 4676 sctp_transport_put(transport); 4677 if (err) 4678 break; 4679 } 4680 sctp_transport_walk_stop(&hti); 4681 4682 return err; 4683 } 4684 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4685 4686 /* 7.2.1 Association Status (SCTP_STATUS) 4687 4688 * Applications can retrieve current status information about an 4689 * association, including association state, peer receiver window size, 4690 * number of unacked data chunks, and number of data chunks pending 4691 * receipt. This information is read-only. 4692 */ 4693 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4694 char __user *optval, 4695 int __user *optlen) 4696 { 4697 struct sctp_status status; 4698 struct sctp_association *asoc = NULL; 4699 struct sctp_transport *transport; 4700 sctp_assoc_t associd; 4701 int retval = 0; 4702 4703 if (len < sizeof(status)) { 4704 retval = -EINVAL; 4705 goto out; 4706 } 4707 4708 len = sizeof(status); 4709 if (copy_from_user(&status, optval, len)) { 4710 retval = -EFAULT; 4711 goto out; 4712 } 4713 4714 associd = status.sstat_assoc_id; 4715 asoc = sctp_id2assoc(sk, associd); 4716 if (!asoc) { 4717 retval = -EINVAL; 4718 goto out; 4719 } 4720 4721 transport = asoc->peer.primary_path; 4722 4723 status.sstat_assoc_id = sctp_assoc2id(asoc); 4724 status.sstat_state = sctp_assoc_to_state(asoc); 4725 status.sstat_rwnd = asoc->peer.rwnd; 4726 status.sstat_unackdata = asoc->unack_data; 4727 4728 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4729 status.sstat_instrms = asoc->stream.incnt; 4730 status.sstat_outstrms = asoc->stream.outcnt; 4731 status.sstat_fragmentation_point = asoc->frag_point; 4732 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4733 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4734 transport->af_specific->sockaddr_len); 4735 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4736 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4737 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4738 status.sstat_primary.spinfo_state = transport->state; 4739 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4740 status.sstat_primary.spinfo_srtt = transport->srtt; 4741 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4742 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4743 4744 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4745 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4746 4747 if (put_user(len, optlen)) { 4748 retval = -EFAULT; 4749 goto out; 4750 } 4751 4752 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4753 __func__, len, status.sstat_state, status.sstat_rwnd, 4754 status.sstat_assoc_id); 4755 4756 if (copy_to_user(optval, &status, len)) { 4757 retval = -EFAULT; 4758 goto out; 4759 } 4760 4761 out: 4762 return retval; 4763 } 4764 4765 4766 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4767 * 4768 * Applications can retrieve information about a specific peer address 4769 * of an association, including its reachability state, congestion 4770 * window, and retransmission timer values. This information is 4771 * read-only. 4772 */ 4773 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4774 char __user *optval, 4775 int __user *optlen) 4776 { 4777 struct sctp_paddrinfo pinfo; 4778 struct sctp_transport *transport; 4779 int retval = 0; 4780 4781 if (len < sizeof(pinfo)) { 4782 retval = -EINVAL; 4783 goto out; 4784 } 4785 4786 len = sizeof(pinfo); 4787 if (copy_from_user(&pinfo, optval, len)) { 4788 retval = -EFAULT; 4789 goto out; 4790 } 4791 4792 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4793 pinfo.spinfo_assoc_id); 4794 if (!transport) 4795 return -EINVAL; 4796 4797 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4798 pinfo.spinfo_state = transport->state; 4799 pinfo.spinfo_cwnd = transport->cwnd; 4800 pinfo.spinfo_srtt = transport->srtt; 4801 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4802 pinfo.spinfo_mtu = transport->pathmtu; 4803 4804 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4805 pinfo.spinfo_state = SCTP_ACTIVE; 4806 4807 if (put_user(len, optlen)) { 4808 retval = -EFAULT; 4809 goto out; 4810 } 4811 4812 if (copy_to_user(optval, &pinfo, len)) { 4813 retval = -EFAULT; 4814 goto out; 4815 } 4816 4817 out: 4818 return retval; 4819 } 4820 4821 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4822 * 4823 * This option is a on/off flag. If enabled no SCTP message 4824 * fragmentation will be performed. Instead if a message being sent 4825 * exceeds the current PMTU size, the message will NOT be sent and 4826 * instead a error will be indicated to the user. 4827 */ 4828 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4829 char __user *optval, int __user *optlen) 4830 { 4831 int val; 4832 4833 if (len < sizeof(int)) 4834 return -EINVAL; 4835 4836 len = sizeof(int); 4837 val = (sctp_sk(sk)->disable_fragments == 1); 4838 if (put_user(len, optlen)) 4839 return -EFAULT; 4840 if (copy_to_user(optval, &val, len)) 4841 return -EFAULT; 4842 return 0; 4843 } 4844 4845 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4846 * 4847 * This socket option is used to specify various notifications and 4848 * ancillary data the user wishes to receive. 4849 */ 4850 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4851 int __user *optlen) 4852 { 4853 if (len == 0) 4854 return -EINVAL; 4855 if (len > sizeof(struct sctp_event_subscribe)) 4856 len = sizeof(struct sctp_event_subscribe); 4857 if (put_user(len, optlen)) 4858 return -EFAULT; 4859 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4860 return -EFAULT; 4861 return 0; 4862 } 4863 4864 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4865 * 4866 * This socket option is applicable to the UDP-style socket only. When 4867 * set it will cause associations that are idle for more than the 4868 * specified number of seconds to automatically close. An association 4869 * being idle is defined an association that has NOT sent or received 4870 * user data. The special value of '0' indicates that no automatic 4871 * close of any associations should be performed. The option expects an 4872 * integer defining the number of seconds of idle time before an 4873 * association is closed. 4874 */ 4875 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4876 { 4877 /* Applicable to UDP-style socket only */ 4878 if (sctp_style(sk, TCP)) 4879 return -EOPNOTSUPP; 4880 if (len < sizeof(int)) 4881 return -EINVAL; 4882 len = sizeof(int); 4883 if (put_user(len, optlen)) 4884 return -EFAULT; 4885 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4886 return -EFAULT; 4887 return 0; 4888 } 4889 4890 /* Helper routine to branch off an association to a new socket. */ 4891 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4892 { 4893 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4894 struct sctp_sock *sp = sctp_sk(sk); 4895 struct socket *sock; 4896 int err = 0; 4897 4898 if (!asoc) 4899 return -EINVAL; 4900 4901 /* If there is a thread waiting on more sndbuf space for 4902 * sending on this asoc, it cannot be peeled. 4903 */ 4904 if (waitqueue_active(&asoc->wait)) 4905 return -EBUSY; 4906 4907 /* An association cannot be branched off from an already peeled-off 4908 * socket, nor is this supported for tcp style sockets. 4909 */ 4910 if (!sctp_style(sk, UDP)) 4911 return -EINVAL; 4912 4913 /* Create a new socket. */ 4914 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4915 if (err < 0) 4916 return err; 4917 4918 sctp_copy_sock(sock->sk, sk, asoc); 4919 4920 /* Make peeled-off sockets more like 1-1 accepted sockets. 4921 * Set the daddr and initialize id to something more random 4922 */ 4923 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4924 4925 /* Populate the fields of the newsk from the oldsk and migrate the 4926 * asoc to the newsk. 4927 */ 4928 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4929 4930 *sockp = sock; 4931 4932 return err; 4933 } 4934 EXPORT_SYMBOL(sctp_do_peeloff); 4935 4936 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 4937 struct file **newfile, unsigned flags) 4938 { 4939 struct socket *newsock; 4940 int retval; 4941 4942 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 4943 if (retval < 0) 4944 goto out; 4945 4946 /* Map the socket to an unused fd that can be returned to the user. */ 4947 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 4948 if (retval < 0) { 4949 sock_release(newsock); 4950 goto out; 4951 } 4952 4953 *newfile = sock_alloc_file(newsock, 0, NULL); 4954 if (IS_ERR(*newfile)) { 4955 put_unused_fd(retval); 4956 sock_release(newsock); 4957 retval = PTR_ERR(*newfile); 4958 *newfile = NULL; 4959 return retval; 4960 } 4961 4962 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4963 retval); 4964 4965 peeloff->sd = retval; 4966 4967 if (flags & SOCK_NONBLOCK) 4968 (*newfile)->f_flags |= O_NONBLOCK; 4969 out: 4970 return retval; 4971 } 4972 4973 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4974 { 4975 sctp_peeloff_arg_t peeloff; 4976 struct file *newfile = NULL; 4977 int retval = 0; 4978 4979 if (len < sizeof(sctp_peeloff_arg_t)) 4980 return -EINVAL; 4981 len = sizeof(sctp_peeloff_arg_t); 4982 if (copy_from_user(&peeloff, optval, len)) 4983 return -EFAULT; 4984 4985 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 4986 if (retval < 0) 4987 goto out; 4988 4989 /* Return the fd mapped to the new socket. */ 4990 if (put_user(len, optlen)) { 4991 fput(newfile); 4992 put_unused_fd(retval); 4993 return -EFAULT; 4994 } 4995 4996 if (copy_to_user(optval, &peeloff, len)) { 4997 fput(newfile); 4998 put_unused_fd(retval); 4999 return -EFAULT; 5000 } 5001 fd_install(retval, newfile); 5002 out: 5003 return retval; 5004 } 5005 5006 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5007 char __user *optval, int __user *optlen) 5008 { 5009 sctp_peeloff_flags_arg_t peeloff; 5010 struct file *newfile = NULL; 5011 int retval = 0; 5012 5013 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5014 return -EINVAL; 5015 len = sizeof(sctp_peeloff_flags_arg_t); 5016 if (copy_from_user(&peeloff, optval, len)) 5017 return -EFAULT; 5018 5019 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5020 &newfile, peeloff.flags); 5021 if (retval < 0) 5022 goto out; 5023 5024 /* Return the fd mapped to the new socket. */ 5025 if (put_user(len, optlen)) { 5026 fput(newfile); 5027 put_unused_fd(retval); 5028 return -EFAULT; 5029 } 5030 5031 if (copy_to_user(optval, &peeloff, len)) { 5032 fput(newfile); 5033 put_unused_fd(retval); 5034 return -EFAULT; 5035 } 5036 fd_install(retval, newfile); 5037 out: 5038 return retval; 5039 } 5040 5041 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5042 * 5043 * Applications can enable or disable heartbeats for any peer address of 5044 * an association, modify an address's heartbeat interval, force a 5045 * heartbeat to be sent immediately, and adjust the address's maximum 5046 * number of retransmissions sent before an address is considered 5047 * unreachable. The following structure is used to access and modify an 5048 * address's parameters: 5049 * 5050 * struct sctp_paddrparams { 5051 * sctp_assoc_t spp_assoc_id; 5052 * struct sockaddr_storage spp_address; 5053 * uint32_t spp_hbinterval; 5054 * uint16_t spp_pathmaxrxt; 5055 * uint32_t spp_pathmtu; 5056 * uint32_t spp_sackdelay; 5057 * uint32_t spp_flags; 5058 * }; 5059 * 5060 * spp_assoc_id - (one-to-many style socket) This is filled in the 5061 * application, and identifies the association for 5062 * this query. 5063 * spp_address - This specifies which address is of interest. 5064 * spp_hbinterval - This contains the value of the heartbeat interval, 5065 * in milliseconds. If a value of zero 5066 * is present in this field then no changes are to 5067 * be made to this parameter. 5068 * spp_pathmaxrxt - This contains the maximum number of 5069 * retransmissions before this address shall be 5070 * considered unreachable. If a value of zero 5071 * is present in this field then no changes are to 5072 * be made to this parameter. 5073 * spp_pathmtu - When Path MTU discovery is disabled the value 5074 * specified here will be the "fixed" path mtu. 5075 * Note that if the spp_address field is empty 5076 * then all associations on this address will 5077 * have this fixed path mtu set upon them. 5078 * 5079 * spp_sackdelay - When delayed sack is enabled, this value specifies 5080 * the number of milliseconds that sacks will be delayed 5081 * for. This value will apply to all addresses of an 5082 * association if the spp_address field is empty. Note 5083 * also, that if delayed sack is enabled and this 5084 * value is set to 0, no change is made to the last 5085 * recorded delayed sack timer value. 5086 * 5087 * spp_flags - These flags are used to control various features 5088 * on an association. The flag field may contain 5089 * zero or more of the following options. 5090 * 5091 * SPP_HB_ENABLE - Enable heartbeats on the 5092 * specified address. Note that if the address 5093 * field is empty all addresses for the association 5094 * have heartbeats enabled upon them. 5095 * 5096 * SPP_HB_DISABLE - Disable heartbeats on the 5097 * speicifed address. Note that if the address 5098 * field is empty all addresses for the association 5099 * will have their heartbeats disabled. Note also 5100 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5101 * mutually exclusive, only one of these two should 5102 * be specified. Enabling both fields will have 5103 * undetermined results. 5104 * 5105 * SPP_HB_DEMAND - Request a user initiated heartbeat 5106 * to be made immediately. 5107 * 5108 * SPP_PMTUD_ENABLE - This field will enable PMTU 5109 * discovery upon the specified address. Note that 5110 * if the address feild is empty then all addresses 5111 * on the association are effected. 5112 * 5113 * SPP_PMTUD_DISABLE - This field will disable PMTU 5114 * discovery upon the specified address. Note that 5115 * if the address feild is empty then all addresses 5116 * on the association are effected. Not also that 5117 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5118 * exclusive. Enabling both will have undetermined 5119 * results. 5120 * 5121 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5122 * on delayed sack. The time specified in spp_sackdelay 5123 * is used to specify the sack delay for this address. Note 5124 * that if spp_address is empty then all addresses will 5125 * enable delayed sack and take on the sack delay 5126 * value specified in spp_sackdelay. 5127 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5128 * off delayed sack. If the spp_address field is blank then 5129 * delayed sack is disabled for the entire association. Note 5130 * also that this field is mutually exclusive to 5131 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5132 * results. 5133 */ 5134 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5135 char __user *optval, int __user *optlen) 5136 { 5137 struct sctp_paddrparams params; 5138 struct sctp_transport *trans = NULL; 5139 struct sctp_association *asoc = NULL; 5140 struct sctp_sock *sp = sctp_sk(sk); 5141 5142 if (len < sizeof(struct sctp_paddrparams)) 5143 return -EINVAL; 5144 len = sizeof(struct sctp_paddrparams); 5145 if (copy_from_user(¶ms, optval, len)) 5146 return -EFAULT; 5147 5148 /* If an address other than INADDR_ANY is specified, and 5149 * no transport is found, then the request is invalid. 5150 */ 5151 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5152 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5153 params.spp_assoc_id); 5154 if (!trans) { 5155 pr_debug("%s: failed no transport\n", __func__); 5156 return -EINVAL; 5157 } 5158 } 5159 5160 /* Get association, if assoc_id != 0 and the socket is a one 5161 * to many style socket, and an association was not found, then 5162 * the id was invalid. 5163 */ 5164 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5165 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5166 pr_debug("%s: failed no association\n", __func__); 5167 return -EINVAL; 5168 } 5169 5170 if (trans) { 5171 /* Fetch transport values. */ 5172 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5173 params.spp_pathmtu = trans->pathmtu; 5174 params.spp_pathmaxrxt = trans->pathmaxrxt; 5175 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5176 5177 /*draft-11 doesn't say what to return in spp_flags*/ 5178 params.spp_flags = trans->param_flags; 5179 } else if (asoc) { 5180 /* Fetch association values. */ 5181 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5182 params.spp_pathmtu = asoc->pathmtu; 5183 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5184 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5185 5186 /*draft-11 doesn't say what to return in spp_flags*/ 5187 params.spp_flags = asoc->param_flags; 5188 } else { 5189 /* Fetch socket values. */ 5190 params.spp_hbinterval = sp->hbinterval; 5191 params.spp_pathmtu = sp->pathmtu; 5192 params.spp_sackdelay = sp->sackdelay; 5193 params.spp_pathmaxrxt = sp->pathmaxrxt; 5194 5195 /*draft-11 doesn't say what to return in spp_flags*/ 5196 params.spp_flags = sp->param_flags; 5197 } 5198 5199 if (copy_to_user(optval, ¶ms, len)) 5200 return -EFAULT; 5201 5202 if (put_user(len, optlen)) 5203 return -EFAULT; 5204 5205 return 0; 5206 } 5207 5208 /* 5209 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5210 * 5211 * This option will effect the way delayed acks are performed. This 5212 * option allows you to get or set the delayed ack time, in 5213 * milliseconds. It also allows changing the delayed ack frequency. 5214 * Changing the frequency to 1 disables the delayed sack algorithm. If 5215 * the assoc_id is 0, then this sets or gets the endpoints default 5216 * values. If the assoc_id field is non-zero, then the set or get 5217 * effects the specified association for the one to many model (the 5218 * assoc_id field is ignored by the one to one model). Note that if 5219 * sack_delay or sack_freq are 0 when setting this option, then the 5220 * current values will remain unchanged. 5221 * 5222 * struct sctp_sack_info { 5223 * sctp_assoc_t sack_assoc_id; 5224 * uint32_t sack_delay; 5225 * uint32_t sack_freq; 5226 * }; 5227 * 5228 * sack_assoc_id - This parameter, indicates which association the user 5229 * is performing an action upon. Note that if this field's value is 5230 * zero then the endpoints default value is changed (effecting future 5231 * associations only). 5232 * 5233 * sack_delay - This parameter contains the number of milliseconds that 5234 * the user is requesting the delayed ACK timer be set to. Note that 5235 * this value is defined in the standard to be between 200 and 500 5236 * milliseconds. 5237 * 5238 * sack_freq - This parameter contains the number of packets that must 5239 * be received before a sack is sent without waiting for the delay 5240 * timer to expire. The default value for this is 2, setting this 5241 * value to 1 will disable the delayed sack algorithm. 5242 */ 5243 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5244 char __user *optval, 5245 int __user *optlen) 5246 { 5247 struct sctp_sack_info params; 5248 struct sctp_association *asoc = NULL; 5249 struct sctp_sock *sp = sctp_sk(sk); 5250 5251 if (len >= sizeof(struct sctp_sack_info)) { 5252 len = sizeof(struct sctp_sack_info); 5253 5254 if (copy_from_user(¶ms, optval, len)) 5255 return -EFAULT; 5256 } else if (len == sizeof(struct sctp_assoc_value)) { 5257 pr_warn_ratelimited(DEPRECATED 5258 "%s (pid %d) " 5259 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5260 "Use struct sctp_sack_info instead\n", 5261 current->comm, task_pid_nr(current)); 5262 if (copy_from_user(¶ms, optval, len)) 5263 return -EFAULT; 5264 } else 5265 return -EINVAL; 5266 5267 /* Get association, if sack_assoc_id != 0 and the socket is a one 5268 * to many style socket, and an association was not found, then 5269 * the id was invalid. 5270 */ 5271 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5272 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5273 return -EINVAL; 5274 5275 if (asoc) { 5276 /* Fetch association values. */ 5277 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5278 params.sack_delay = jiffies_to_msecs( 5279 asoc->sackdelay); 5280 params.sack_freq = asoc->sackfreq; 5281 5282 } else { 5283 params.sack_delay = 0; 5284 params.sack_freq = 1; 5285 } 5286 } else { 5287 /* Fetch socket values. */ 5288 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5289 params.sack_delay = sp->sackdelay; 5290 params.sack_freq = sp->sackfreq; 5291 } else { 5292 params.sack_delay = 0; 5293 params.sack_freq = 1; 5294 } 5295 } 5296 5297 if (copy_to_user(optval, ¶ms, len)) 5298 return -EFAULT; 5299 5300 if (put_user(len, optlen)) 5301 return -EFAULT; 5302 5303 return 0; 5304 } 5305 5306 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5307 * 5308 * Applications can specify protocol parameters for the default association 5309 * initialization. The option name argument to setsockopt() and getsockopt() 5310 * is SCTP_INITMSG. 5311 * 5312 * Setting initialization parameters is effective only on an unconnected 5313 * socket (for UDP-style sockets only future associations are effected 5314 * by the change). With TCP-style sockets, this option is inherited by 5315 * sockets derived from a listener socket. 5316 */ 5317 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5318 { 5319 if (len < sizeof(struct sctp_initmsg)) 5320 return -EINVAL; 5321 len = sizeof(struct sctp_initmsg); 5322 if (put_user(len, optlen)) 5323 return -EFAULT; 5324 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5325 return -EFAULT; 5326 return 0; 5327 } 5328 5329 5330 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5331 char __user *optval, int __user *optlen) 5332 { 5333 struct sctp_association *asoc; 5334 int cnt = 0; 5335 struct sctp_getaddrs getaddrs; 5336 struct sctp_transport *from; 5337 void __user *to; 5338 union sctp_addr temp; 5339 struct sctp_sock *sp = sctp_sk(sk); 5340 int addrlen; 5341 size_t space_left; 5342 int bytes_copied; 5343 5344 if (len < sizeof(struct sctp_getaddrs)) 5345 return -EINVAL; 5346 5347 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5348 return -EFAULT; 5349 5350 /* For UDP-style sockets, id specifies the association to query. */ 5351 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5352 if (!asoc) 5353 return -EINVAL; 5354 5355 to = optval + offsetof(struct sctp_getaddrs, addrs); 5356 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5357 5358 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5359 transports) { 5360 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5361 addrlen = sctp_get_pf_specific(sk->sk_family) 5362 ->addr_to_user(sp, &temp); 5363 if (space_left < addrlen) 5364 return -ENOMEM; 5365 if (copy_to_user(to, &temp, addrlen)) 5366 return -EFAULT; 5367 to += addrlen; 5368 cnt++; 5369 space_left -= addrlen; 5370 } 5371 5372 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5373 return -EFAULT; 5374 bytes_copied = ((char __user *)to) - optval; 5375 if (put_user(bytes_copied, optlen)) 5376 return -EFAULT; 5377 5378 return 0; 5379 } 5380 5381 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5382 size_t space_left, int *bytes_copied) 5383 { 5384 struct sctp_sockaddr_entry *addr; 5385 union sctp_addr temp; 5386 int cnt = 0; 5387 int addrlen; 5388 struct net *net = sock_net(sk); 5389 5390 rcu_read_lock(); 5391 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5392 if (!addr->valid) 5393 continue; 5394 5395 if ((PF_INET == sk->sk_family) && 5396 (AF_INET6 == addr->a.sa.sa_family)) 5397 continue; 5398 if ((PF_INET6 == sk->sk_family) && 5399 inet_v6_ipv6only(sk) && 5400 (AF_INET == addr->a.sa.sa_family)) 5401 continue; 5402 memcpy(&temp, &addr->a, sizeof(temp)); 5403 if (!temp.v4.sin_port) 5404 temp.v4.sin_port = htons(port); 5405 5406 addrlen = sctp_get_pf_specific(sk->sk_family) 5407 ->addr_to_user(sctp_sk(sk), &temp); 5408 5409 if (space_left < addrlen) { 5410 cnt = -ENOMEM; 5411 break; 5412 } 5413 memcpy(to, &temp, addrlen); 5414 5415 to += addrlen; 5416 cnt++; 5417 space_left -= addrlen; 5418 *bytes_copied += addrlen; 5419 } 5420 rcu_read_unlock(); 5421 5422 return cnt; 5423 } 5424 5425 5426 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5427 char __user *optval, int __user *optlen) 5428 { 5429 struct sctp_bind_addr *bp; 5430 struct sctp_association *asoc; 5431 int cnt = 0; 5432 struct sctp_getaddrs getaddrs; 5433 struct sctp_sockaddr_entry *addr; 5434 void __user *to; 5435 union sctp_addr temp; 5436 struct sctp_sock *sp = sctp_sk(sk); 5437 int addrlen; 5438 int err = 0; 5439 size_t space_left; 5440 int bytes_copied = 0; 5441 void *addrs; 5442 void *buf; 5443 5444 if (len < sizeof(struct sctp_getaddrs)) 5445 return -EINVAL; 5446 5447 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5448 return -EFAULT; 5449 5450 /* 5451 * For UDP-style sockets, id specifies the association to query. 5452 * If the id field is set to the value '0' then the locally bound 5453 * addresses are returned without regard to any particular 5454 * association. 5455 */ 5456 if (0 == getaddrs.assoc_id) { 5457 bp = &sctp_sk(sk)->ep->base.bind_addr; 5458 } else { 5459 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5460 if (!asoc) 5461 return -EINVAL; 5462 bp = &asoc->base.bind_addr; 5463 } 5464 5465 to = optval + offsetof(struct sctp_getaddrs, addrs); 5466 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5467 5468 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5469 if (!addrs) 5470 return -ENOMEM; 5471 5472 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5473 * addresses from the global local address list. 5474 */ 5475 if (sctp_list_single_entry(&bp->address_list)) { 5476 addr = list_entry(bp->address_list.next, 5477 struct sctp_sockaddr_entry, list); 5478 if (sctp_is_any(sk, &addr->a)) { 5479 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5480 space_left, &bytes_copied); 5481 if (cnt < 0) { 5482 err = cnt; 5483 goto out; 5484 } 5485 goto copy_getaddrs; 5486 } 5487 } 5488 5489 buf = addrs; 5490 /* Protection on the bound address list is not needed since 5491 * in the socket option context we hold a socket lock and 5492 * thus the bound address list can't change. 5493 */ 5494 list_for_each_entry(addr, &bp->address_list, list) { 5495 memcpy(&temp, &addr->a, sizeof(temp)); 5496 addrlen = sctp_get_pf_specific(sk->sk_family) 5497 ->addr_to_user(sp, &temp); 5498 if (space_left < addrlen) { 5499 err = -ENOMEM; /*fixme: right error?*/ 5500 goto out; 5501 } 5502 memcpy(buf, &temp, addrlen); 5503 buf += addrlen; 5504 bytes_copied += addrlen; 5505 cnt++; 5506 space_left -= addrlen; 5507 } 5508 5509 copy_getaddrs: 5510 if (copy_to_user(to, addrs, bytes_copied)) { 5511 err = -EFAULT; 5512 goto out; 5513 } 5514 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5515 err = -EFAULT; 5516 goto out; 5517 } 5518 if (put_user(bytes_copied, optlen)) 5519 err = -EFAULT; 5520 out: 5521 kfree(addrs); 5522 return err; 5523 } 5524 5525 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5526 * 5527 * Requests that the local SCTP stack use the enclosed peer address as 5528 * the association primary. The enclosed address must be one of the 5529 * association peer's addresses. 5530 */ 5531 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5532 char __user *optval, int __user *optlen) 5533 { 5534 struct sctp_prim prim; 5535 struct sctp_association *asoc; 5536 struct sctp_sock *sp = sctp_sk(sk); 5537 5538 if (len < sizeof(struct sctp_prim)) 5539 return -EINVAL; 5540 5541 len = sizeof(struct sctp_prim); 5542 5543 if (copy_from_user(&prim, optval, len)) 5544 return -EFAULT; 5545 5546 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5547 if (!asoc) 5548 return -EINVAL; 5549 5550 if (!asoc->peer.primary_path) 5551 return -ENOTCONN; 5552 5553 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5554 asoc->peer.primary_path->af_specific->sockaddr_len); 5555 5556 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5557 (union sctp_addr *)&prim.ssp_addr); 5558 5559 if (put_user(len, optlen)) 5560 return -EFAULT; 5561 if (copy_to_user(optval, &prim, len)) 5562 return -EFAULT; 5563 5564 return 0; 5565 } 5566 5567 /* 5568 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5569 * 5570 * Requests that the local endpoint set the specified Adaptation Layer 5571 * Indication parameter for all future INIT and INIT-ACK exchanges. 5572 */ 5573 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5574 char __user *optval, int __user *optlen) 5575 { 5576 struct sctp_setadaptation adaptation; 5577 5578 if (len < sizeof(struct sctp_setadaptation)) 5579 return -EINVAL; 5580 5581 len = sizeof(struct sctp_setadaptation); 5582 5583 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5584 5585 if (put_user(len, optlen)) 5586 return -EFAULT; 5587 if (copy_to_user(optval, &adaptation, len)) 5588 return -EFAULT; 5589 5590 return 0; 5591 } 5592 5593 /* 5594 * 5595 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5596 * 5597 * Applications that wish to use the sendto() system call may wish to 5598 * specify a default set of parameters that would normally be supplied 5599 * through the inclusion of ancillary data. This socket option allows 5600 * such an application to set the default sctp_sndrcvinfo structure. 5601 5602 5603 * The application that wishes to use this socket option simply passes 5604 * in to this call the sctp_sndrcvinfo structure defined in Section 5605 * 5.2.2) The input parameters accepted by this call include 5606 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5607 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5608 * to this call if the caller is using the UDP model. 5609 * 5610 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5611 */ 5612 static int sctp_getsockopt_default_send_param(struct sock *sk, 5613 int len, char __user *optval, 5614 int __user *optlen) 5615 { 5616 struct sctp_sock *sp = sctp_sk(sk); 5617 struct sctp_association *asoc; 5618 struct sctp_sndrcvinfo info; 5619 5620 if (len < sizeof(info)) 5621 return -EINVAL; 5622 5623 len = sizeof(info); 5624 5625 if (copy_from_user(&info, optval, len)) 5626 return -EFAULT; 5627 5628 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5629 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5630 return -EINVAL; 5631 if (asoc) { 5632 info.sinfo_stream = asoc->default_stream; 5633 info.sinfo_flags = asoc->default_flags; 5634 info.sinfo_ppid = asoc->default_ppid; 5635 info.sinfo_context = asoc->default_context; 5636 info.sinfo_timetolive = asoc->default_timetolive; 5637 } else { 5638 info.sinfo_stream = sp->default_stream; 5639 info.sinfo_flags = sp->default_flags; 5640 info.sinfo_ppid = sp->default_ppid; 5641 info.sinfo_context = sp->default_context; 5642 info.sinfo_timetolive = sp->default_timetolive; 5643 } 5644 5645 if (put_user(len, optlen)) 5646 return -EFAULT; 5647 if (copy_to_user(optval, &info, len)) 5648 return -EFAULT; 5649 5650 return 0; 5651 } 5652 5653 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5654 * (SCTP_DEFAULT_SNDINFO) 5655 */ 5656 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5657 char __user *optval, 5658 int __user *optlen) 5659 { 5660 struct sctp_sock *sp = sctp_sk(sk); 5661 struct sctp_association *asoc; 5662 struct sctp_sndinfo info; 5663 5664 if (len < sizeof(info)) 5665 return -EINVAL; 5666 5667 len = sizeof(info); 5668 5669 if (copy_from_user(&info, optval, len)) 5670 return -EFAULT; 5671 5672 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5673 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5674 return -EINVAL; 5675 if (asoc) { 5676 info.snd_sid = asoc->default_stream; 5677 info.snd_flags = asoc->default_flags; 5678 info.snd_ppid = asoc->default_ppid; 5679 info.snd_context = asoc->default_context; 5680 } else { 5681 info.snd_sid = sp->default_stream; 5682 info.snd_flags = sp->default_flags; 5683 info.snd_ppid = sp->default_ppid; 5684 info.snd_context = sp->default_context; 5685 } 5686 5687 if (put_user(len, optlen)) 5688 return -EFAULT; 5689 if (copy_to_user(optval, &info, len)) 5690 return -EFAULT; 5691 5692 return 0; 5693 } 5694 5695 /* 5696 * 5697 * 7.1.5 SCTP_NODELAY 5698 * 5699 * Turn on/off any Nagle-like algorithm. This means that packets are 5700 * generally sent as soon as possible and no unnecessary delays are 5701 * introduced, at the cost of more packets in the network. Expects an 5702 * integer boolean flag. 5703 */ 5704 5705 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5706 char __user *optval, int __user *optlen) 5707 { 5708 int val; 5709 5710 if (len < sizeof(int)) 5711 return -EINVAL; 5712 5713 len = sizeof(int); 5714 val = (sctp_sk(sk)->nodelay == 1); 5715 if (put_user(len, optlen)) 5716 return -EFAULT; 5717 if (copy_to_user(optval, &val, len)) 5718 return -EFAULT; 5719 return 0; 5720 } 5721 5722 /* 5723 * 5724 * 7.1.1 SCTP_RTOINFO 5725 * 5726 * The protocol parameters used to initialize and bound retransmission 5727 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5728 * and modify these parameters. 5729 * All parameters are time values, in milliseconds. A value of 0, when 5730 * modifying the parameters, indicates that the current value should not 5731 * be changed. 5732 * 5733 */ 5734 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5735 char __user *optval, 5736 int __user *optlen) { 5737 struct sctp_rtoinfo rtoinfo; 5738 struct sctp_association *asoc; 5739 5740 if (len < sizeof (struct sctp_rtoinfo)) 5741 return -EINVAL; 5742 5743 len = sizeof(struct sctp_rtoinfo); 5744 5745 if (copy_from_user(&rtoinfo, optval, len)) 5746 return -EFAULT; 5747 5748 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5749 5750 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5751 return -EINVAL; 5752 5753 /* Values corresponding to the specific association. */ 5754 if (asoc) { 5755 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5756 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5757 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5758 } else { 5759 /* Values corresponding to the endpoint. */ 5760 struct sctp_sock *sp = sctp_sk(sk); 5761 5762 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5763 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5764 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5765 } 5766 5767 if (put_user(len, optlen)) 5768 return -EFAULT; 5769 5770 if (copy_to_user(optval, &rtoinfo, len)) 5771 return -EFAULT; 5772 5773 return 0; 5774 } 5775 5776 /* 5777 * 5778 * 7.1.2 SCTP_ASSOCINFO 5779 * 5780 * This option is used to tune the maximum retransmission attempts 5781 * of the association. 5782 * Returns an error if the new association retransmission value is 5783 * greater than the sum of the retransmission value of the peer. 5784 * See [SCTP] for more information. 5785 * 5786 */ 5787 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5788 char __user *optval, 5789 int __user *optlen) 5790 { 5791 5792 struct sctp_assocparams assocparams; 5793 struct sctp_association *asoc; 5794 struct list_head *pos; 5795 int cnt = 0; 5796 5797 if (len < sizeof (struct sctp_assocparams)) 5798 return -EINVAL; 5799 5800 len = sizeof(struct sctp_assocparams); 5801 5802 if (copy_from_user(&assocparams, optval, len)) 5803 return -EFAULT; 5804 5805 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5806 5807 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5808 return -EINVAL; 5809 5810 /* Values correspoinding to the specific association */ 5811 if (asoc) { 5812 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5813 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5814 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5815 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5816 5817 list_for_each(pos, &asoc->peer.transport_addr_list) { 5818 cnt++; 5819 } 5820 5821 assocparams.sasoc_number_peer_destinations = cnt; 5822 } else { 5823 /* Values corresponding to the endpoint */ 5824 struct sctp_sock *sp = sctp_sk(sk); 5825 5826 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5827 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5828 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5829 assocparams.sasoc_cookie_life = 5830 sp->assocparams.sasoc_cookie_life; 5831 assocparams.sasoc_number_peer_destinations = 5832 sp->assocparams. 5833 sasoc_number_peer_destinations; 5834 } 5835 5836 if (put_user(len, optlen)) 5837 return -EFAULT; 5838 5839 if (copy_to_user(optval, &assocparams, len)) 5840 return -EFAULT; 5841 5842 return 0; 5843 } 5844 5845 /* 5846 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5847 * 5848 * This socket option is a boolean flag which turns on or off mapped V4 5849 * addresses. If this option is turned on and the socket is type 5850 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5851 * If this option is turned off, then no mapping will be done of V4 5852 * addresses and a user will receive both PF_INET6 and PF_INET type 5853 * addresses on the socket. 5854 */ 5855 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5856 char __user *optval, int __user *optlen) 5857 { 5858 int val; 5859 struct sctp_sock *sp = sctp_sk(sk); 5860 5861 if (len < sizeof(int)) 5862 return -EINVAL; 5863 5864 len = sizeof(int); 5865 val = sp->v4mapped; 5866 if (put_user(len, optlen)) 5867 return -EFAULT; 5868 if (copy_to_user(optval, &val, len)) 5869 return -EFAULT; 5870 5871 return 0; 5872 } 5873 5874 /* 5875 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5876 * (chapter and verse is quoted at sctp_setsockopt_context()) 5877 */ 5878 static int sctp_getsockopt_context(struct sock *sk, int len, 5879 char __user *optval, int __user *optlen) 5880 { 5881 struct sctp_assoc_value params; 5882 struct sctp_sock *sp; 5883 struct sctp_association *asoc; 5884 5885 if (len < sizeof(struct sctp_assoc_value)) 5886 return -EINVAL; 5887 5888 len = sizeof(struct sctp_assoc_value); 5889 5890 if (copy_from_user(¶ms, optval, len)) 5891 return -EFAULT; 5892 5893 sp = sctp_sk(sk); 5894 5895 if (params.assoc_id != 0) { 5896 asoc = sctp_id2assoc(sk, params.assoc_id); 5897 if (!asoc) 5898 return -EINVAL; 5899 params.assoc_value = asoc->default_rcv_context; 5900 } else { 5901 params.assoc_value = sp->default_rcv_context; 5902 } 5903 5904 if (put_user(len, optlen)) 5905 return -EFAULT; 5906 if (copy_to_user(optval, ¶ms, len)) 5907 return -EFAULT; 5908 5909 return 0; 5910 } 5911 5912 /* 5913 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5914 * This option will get or set the maximum size to put in any outgoing 5915 * SCTP DATA chunk. If a message is larger than this size it will be 5916 * fragmented by SCTP into the specified size. Note that the underlying 5917 * SCTP implementation may fragment into smaller sized chunks when the 5918 * PMTU of the underlying association is smaller than the value set by 5919 * the user. The default value for this option is '0' which indicates 5920 * the user is NOT limiting fragmentation and only the PMTU will effect 5921 * SCTP's choice of DATA chunk size. Note also that values set larger 5922 * than the maximum size of an IP datagram will effectively let SCTP 5923 * control fragmentation (i.e. the same as setting this option to 0). 5924 * 5925 * The following structure is used to access and modify this parameter: 5926 * 5927 * struct sctp_assoc_value { 5928 * sctp_assoc_t assoc_id; 5929 * uint32_t assoc_value; 5930 * }; 5931 * 5932 * assoc_id: This parameter is ignored for one-to-one style sockets. 5933 * For one-to-many style sockets this parameter indicates which 5934 * association the user is performing an action upon. Note that if 5935 * this field's value is zero then the endpoints default value is 5936 * changed (effecting future associations only). 5937 * assoc_value: This parameter specifies the maximum size in bytes. 5938 */ 5939 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5940 char __user *optval, int __user *optlen) 5941 { 5942 struct sctp_assoc_value params; 5943 struct sctp_association *asoc; 5944 5945 if (len == sizeof(int)) { 5946 pr_warn_ratelimited(DEPRECATED 5947 "%s (pid %d) " 5948 "Use of int in maxseg socket option.\n" 5949 "Use struct sctp_assoc_value instead\n", 5950 current->comm, task_pid_nr(current)); 5951 params.assoc_id = 0; 5952 } else if (len >= sizeof(struct sctp_assoc_value)) { 5953 len = sizeof(struct sctp_assoc_value); 5954 if (copy_from_user(¶ms, optval, sizeof(params))) 5955 return -EFAULT; 5956 } else 5957 return -EINVAL; 5958 5959 asoc = sctp_id2assoc(sk, params.assoc_id); 5960 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5961 return -EINVAL; 5962 5963 if (asoc) 5964 params.assoc_value = asoc->frag_point; 5965 else 5966 params.assoc_value = sctp_sk(sk)->user_frag; 5967 5968 if (put_user(len, optlen)) 5969 return -EFAULT; 5970 if (len == sizeof(int)) { 5971 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5972 return -EFAULT; 5973 } else { 5974 if (copy_to_user(optval, ¶ms, len)) 5975 return -EFAULT; 5976 } 5977 5978 return 0; 5979 } 5980 5981 /* 5982 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5983 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5984 */ 5985 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5986 char __user *optval, int __user *optlen) 5987 { 5988 int val; 5989 5990 if (len < sizeof(int)) 5991 return -EINVAL; 5992 5993 len = sizeof(int); 5994 5995 val = sctp_sk(sk)->frag_interleave; 5996 if (put_user(len, optlen)) 5997 return -EFAULT; 5998 if (copy_to_user(optval, &val, len)) 5999 return -EFAULT; 6000 6001 return 0; 6002 } 6003 6004 /* 6005 * 7.1.25. Set or Get the sctp partial delivery point 6006 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6007 */ 6008 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6009 char __user *optval, 6010 int __user *optlen) 6011 { 6012 u32 val; 6013 6014 if (len < sizeof(u32)) 6015 return -EINVAL; 6016 6017 len = sizeof(u32); 6018 6019 val = sctp_sk(sk)->pd_point; 6020 if (put_user(len, optlen)) 6021 return -EFAULT; 6022 if (copy_to_user(optval, &val, len)) 6023 return -EFAULT; 6024 6025 return 0; 6026 } 6027 6028 /* 6029 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6030 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6031 */ 6032 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6033 char __user *optval, 6034 int __user *optlen) 6035 { 6036 struct sctp_assoc_value params; 6037 struct sctp_sock *sp; 6038 struct sctp_association *asoc; 6039 6040 if (len == sizeof(int)) { 6041 pr_warn_ratelimited(DEPRECATED 6042 "%s (pid %d) " 6043 "Use of int in max_burst socket option.\n" 6044 "Use struct sctp_assoc_value instead\n", 6045 current->comm, task_pid_nr(current)); 6046 params.assoc_id = 0; 6047 } else if (len >= sizeof(struct sctp_assoc_value)) { 6048 len = sizeof(struct sctp_assoc_value); 6049 if (copy_from_user(¶ms, optval, len)) 6050 return -EFAULT; 6051 } else 6052 return -EINVAL; 6053 6054 sp = sctp_sk(sk); 6055 6056 if (params.assoc_id != 0) { 6057 asoc = sctp_id2assoc(sk, params.assoc_id); 6058 if (!asoc) 6059 return -EINVAL; 6060 params.assoc_value = asoc->max_burst; 6061 } else 6062 params.assoc_value = sp->max_burst; 6063 6064 if (len == sizeof(int)) { 6065 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6066 return -EFAULT; 6067 } else { 6068 if (copy_to_user(optval, ¶ms, len)) 6069 return -EFAULT; 6070 } 6071 6072 return 0; 6073 6074 } 6075 6076 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6077 char __user *optval, int __user *optlen) 6078 { 6079 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6080 struct sctp_hmacalgo __user *p = (void __user *)optval; 6081 struct sctp_hmac_algo_param *hmacs; 6082 __u16 data_len = 0; 6083 u32 num_idents; 6084 int i; 6085 6086 if (!ep->auth_enable) 6087 return -EACCES; 6088 6089 hmacs = ep->auth_hmacs_list; 6090 data_len = ntohs(hmacs->param_hdr.length) - 6091 sizeof(struct sctp_paramhdr); 6092 6093 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6094 return -EINVAL; 6095 6096 len = sizeof(struct sctp_hmacalgo) + data_len; 6097 num_idents = data_len / sizeof(u16); 6098 6099 if (put_user(len, optlen)) 6100 return -EFAULT; 6101 if (put_user(num_idents, &p->shmac_num_idents)) 6102 return -EFAULT; 6103 for (i = 0; i < num_idents; i++) { 6104 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6105 6106 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6107 return -EFAULT; 6108 } 6109 return 0; 6110 } 6111 6112 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6113 char __user *optval, int __user *optlen) 6114 { 6115 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6116 struct sctp_authkeyid val; 6117 struct sctp_association *asoc; 6118 6119 if (!ep->auth_enable) 6120 return -EACCES; 6121 6122 if (len < sizeof(struct sctp_authkeyid)) 6123 return -EINVAL; 6124 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 6125 return -EFAULT; 6126 6127 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6128 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6129 return -EINVAL; 6130 6131 if (asoc) 6132 val.scact_keynumber = asoc->active_key_id; 6133 else 6134 val.scact_keynumber = ep->active_key_id; 6135 6136 len = sizeof(struct sctp_authkeyid); 6137 if (put_user(len, optlen)) 6138 return -EFAULT; 6139 if (copy_to_user(optval, &val, len)) 6140 return -EFAULT; 6141 6142 return 0; 6143 } 6144 6145 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6146 char __user *optval, int __user *optlen) 6147 { 6148 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6149 struct sctp_authchunks __user *p = (void __user *)optval; 6150 struct sctp_authchunks val; 6151 struct sctp_association *asoc; 6152 struct sctp_chunks_param *ch; 6153 u32 num_chunks = 0; 6154 char __user *to; 6155 6156 if (!ep->auth_enable) 6157 return -EACCES; 6158 6159 if (len < sizeof(struct sctp_authchunks)) 6160 return -EINVAL; 6161 6162 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6163 return -EFAULT; 6164 6165 to = p->gauth_chunks; 6166 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6167 if (!asoc) 6168 return -EINVAL; 6169 6170 ch = asoc->peer.peer_chunks; 6171 if (!ch) 6172 goto num; 6173 6174 /* See if the user provided enough room for all the data */ 6175 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6176 if (len < num_chunks) 6177 return -EINVAL; 6178 6179 if (copy_to_user(to, ch->chunks, num_chunks)) 6180 return -EFAULT; 6181 num: 6182 len = sizeof(struct sctp_authchunks) + num_chunks; 6183 if (put_user(len, optlen)) 6184 return -EFAULT; 6185 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6186 return -EFAULT; 6187 return 0; 6188 } 6189 6190 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6191 char __user *optval, int __user *optlen) 6192 { 6193 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6194 struct sctp_authchunks __user *p = (void __user *)optval; 6195 struct sctp_authchunks val; 6196 struct sctp_association *asoc; 6197 struct sctp_chunks_param *ch; 6198 u32 num_chunks = 0; 6199 char __user *to; 6200 6201 if (!ep->auth_enable) 6202 return -EACCES; 6203 6204 if (len < sizeof(struct sctp_authchunks)) 6205 return -EINVAL; 6206 6207 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6208 return -EFAULT; 6209 6210 to = p->gauth_chunks; 6211 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6212 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6213 return -EINVAL; 6214 6215 if (asoc) 6216 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6217 else 6218 ch = ep->auth_chunk_list; 6219 6220 if (!ch) 6221 goto num; 6222 6223 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6224 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6225 return -EINVAL; 6226 6227 if (copy_to_user(to, ch->chunks, num_chunks)) 6228 return -EFAULT; 6229 num: 6230 len = sizeof(struct sctp_authchunks) + num_chunks; 6231 if (put_user(len, optlen)) 6232 return -EFAULT; 6233 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6234 return -EFAULT; 6235 6236 return 0; 6237 } 6238 6239 /* 6240 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6241 * This option gets the current number of associations that are attached 6242 * to a one-to-many style socket. The option value is an uint32_t. 6243 */ 6244 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6245 char __user *optval, int __user *optlen) 6246 { 6247 struct sctp_sock *sp = sctp_sk(sk); 6248 struct sctp_association *asoc; 6249 u32 val = 0; 6250 6251 if (sctp_style(sk, TCP)) 6252 return -EOPNOTSUPP; 6253 6254 if (len < sizeof(u32)) 6255 return -EINVAL; 6256 6257 len = sizeof(u32); 6258 6259 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6260 val++; 6261 } 6262 6263 if (put_user(len, optlen)) 6264 return -EFAULT; 6265 if (copy_to_user(optval, &val, len)) 6266 return -EFAULT; 6267 6268 return 0; 6269 } 6270 6271 /* 6272 * 8.1.23 SCTP_AUTO_ASCONF 6273 * See the corresponding setsockopt entry as description 6274 */ 6275 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6276 char __user *optval, int __user *optlen) 6277 { 6278 int val = 0; 6279 6280 if (len < sizeof(int)) 6281 return -EINVAL; 6282 6283 len = sizeof(int); 6284 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6285 val = 1; 6286 if (put_user(len, optlen)) 6287 return -EFAULT; 6288 if (copy_to_user(optval, &val, len)) 6289 return -EFAULT; 6290 return 0; 6291 } 6292 6293 /* 6294 * 8.2.6. Get the Current Identifiers of Associations 6295 * (SCTP_GET_ASSOC_ID_LIST) 6296 * 6297 * This option gets the current list of SCTP association identifiers of 6298 * the SCTP associations handled by a one-to-many style socket. 6299 */ 6300 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6301 char __user *optval, int __user *optlen) 6302 { 6303 struct sctp_sock *sp = sctp_sk(sk); 6304 struct sctp_association *asoc; 6305 struct sctp_assoc_ids *ids; 6306 u32 num = 0; 6307 6308 if (sctp_style(sk, TCP)) 6309 return -EOPNOTSUPP; 6310 6311 if (len < sizeof(struct sctp_assoc_ids)) 6312 return -EINVAL; 6313 6314 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6315 num++; 6316 } 6317 6318 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6319 return -EINVAL; 6320 6321 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6322 6323 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6324 if (unlikely(!ids)) 6325 return -ENOMEM; 6326 6327 ids->gaids_number_of_ids = num; 6328 num = 0; 6329 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6330 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6331 } 6332 6333 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6334 kfree(ids); 6335 return -EFAULT; 6336 } 6337 6338 kfree(ids); 6339 return 0; 6340 } 6341 6342 /* 6343 * SCTP_PEER_ADDR_THLDS 6344 * 6345 * This option allows us to fetch the partially failed threshold for one or all 6346 * transports in an association. See Section 6.1 of: 6347 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6348 */ 6349 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6350 char __user *optval, 6351 int len, 6352 int __user *optlen) 6353 { 6354 struct sctp_paddrthlds val; 6355 struct sctp_transport *trans; 6356 struct sctp_association *asoc; 6357 6358 if (len < sizeof(struct sctp_paddrthlds)) 6359 return -EINVAL; 6360 len = sizeof(struct sctp_paddrthlds); 6361 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6362 return -EFAULT; 6363 6364 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6365 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6366 if (!asoc) 6367 return -ENOENT; 6368 6369 val.spt_pathpfthld = asoc->pf_retrans; 6370 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6371 } else { 6372 trans = sctp_addr_id2transport(sk, &val.spt_address, 6373 val.spt_assoc_id); 6374 if (!trans) 6375 return -ENOENT; 6376 6377 val.spt_pathmaxrxt = trans->pathmaxrxt; 6378 val.spt_pathpfthld = trans->pf_retrans; 6379 } 6380 6381 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6382 return -EFAULT; 6383 6384 return 0; 6385 } 6386 6387 /* 6388 * SCTP_GET_ASSOC_STATS 6389 * 6390 * This option retrieves local per endpoint statistics. It is modeled 6391 * after OpenSolaris' implementation 6392 */ 6393 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6394 char __user *optval, 6395 int __user *optlen) 6396 { 6397 struct sctp_assoc_stats sas; 6398 struct sctp_association *asoc = NULL; 6399 6400 /* User must provide at least the assoc id */ 6401 if (len < sizeof(sctp_assoc_t)) 6402 return -EINVAL; 6403 6404 /* Allow the struct to grow and fill in as much as possible */ 6405 len = min_t(size_t, len, sizeof(sas)); 6406 6407 if (copy_from_user(&sas, optval, len)) 6408 return -EFAULT; 6409 6410 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6411 if (!asoc) 6412 return -EINVAL; 6413 6414 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6415 sas.sas_gapcnt = asoc->stats.gapcnt; 6416 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6417 sas.sas_osacks = asoc->stats.osacks; 6418 sas.sas_isacks = asoc->stats.isacks; 6419 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6420 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6421 sas.sas_oodchunks = asoc->stats.oodchunks; 6422 sas.sas_iodchunks = asoc->stats.iodchunks; 6423 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6424 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6425 sas.sas_idupchunks = asoc->stats.idupchunks; 6426 sas.sas_opackets = asoc->stats.opackets; 6427 sas.sas_ipackets = asoc->stats.ipackets; 6428 6429 /* New high max rto observed, will return 0 if not a single 6430 * RTO update took place. obs_rto_ipaddr will be bogus 6431 * in such a case 6432 */ 6433 sas.sas_maxrto = asoc->stats.max_obs_rto; 6434 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6435 sizeof(struct sockaddr_storage)); 6436 6437 /* Mark beginning of a new observation period */ 6438 asoc->stats.max_obs_rto = asoc->rto_min; 6439 6440 if (put_user(len, optlen)) 6441 return -EFAULT; 6442 6443 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6444 6445 if (copy_to_user(optval, &sas, len)) 6446 return -EFAULT; 6447 6448 return 0; 6449 } 6450 6451 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6452 char __user *optval, 6453 int __user *optlen) 6454 { 6455 int val = 0; 6456 6457 if (len < sizeof(int)) 6458 return -EINVAL; 6459 6460 len = sizeof(int); 6461 if (sctp_sk(sk)->recvrcvinfo) 6462 val = 1; 6463 if (put_user(len, optlen)) 6464 return -EFAULT; 6465 if (copy_to_user(optval, &val, len)) 6466 return -EFAULT; 6467 6468 return 0; 6469 } 6470 6471 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6472 char __user *optval, 6473 int __user *optlen) 6474 { 6475 int val = 0; 6476 6477 if (len < sizeof(int)) 6478 return -EINVAL; 6479 6480 len = sizeof(int); 6481 if (sctp_sk(sk)->recvnxtinfo) 6482 val = 1; 6483 if (put_user(len, optlen)) 6484 return -EFAULT; 6485 if (copy_to_user(optval, &val, len)) 6486 return -EFAULT; 6487 6488 return 0; 6489 } 6490 6491 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6492 char __user *optval, 6493 int __user *optlen) 6494 { 6495 struct sctp_assoc_value params; 6496 struct sctp_association *asoc; 6497 int retval = -EFAULT; 6498 6499 if (len < sizeof(params)) { 6500 retval = -EINVAL; 6501 goto out; 6502 } 6503 6504 len = sizeof(params); 6505 if (copy_from_user(¶ms, optval, len)) 6506 goto out; 6507 6508 asoc = sctp_id2assoc(sk, params.assoc_id); 6509 if (asoc) { 6510 params.assoc_value = asoc->prsctp_enable; 6511 } else if (!params.assoc_id) { 6512 struct sctp_sock *sp = sctp_sk(sk); 6513 6514 params.assoc_value = sp->ep->prsctp_enable; 6515 } else { 6516 retval = -EINVAL; 6517 goto out; 6518 } 6519 6520 if (put_user(len, optlen)) 6521 goto out; 6522 6523 if (copy_to_user(optval, ¶ms, len)) 6524 goto out; 6525 6526 retval = 0; 6527 6528 out: 6529 return retval; 6530 } 6531 6532 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6533 char __user *optval, 6534 int __user *optlen) 6535 { 6536 struct sctp_default_prinfo info; 6537 struct sctp_association *asoc; 6538 int retval = -EFAULT; 6539 6540 if (len < sizeof(info)) { 6541 retval = -EINVAL; 6542 goto out; 6543 } 6544 6545 len = sizeof(info); 6546 if (copy_from_user(&info, optval, len)) 6547 goto out; 6548 6549 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6550 if (asoc) { 6551 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6552 info.pr_value = asoc->default_timetolive; 6553 } else if (!info.pr_assoc_id) { 6554 struct sctp_sock *sp = sctp_sk(sk); 6555 6556 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6557 info.pr_value = sp->default_timetolive; 6558 } else { 6559 retval = -EINVAL; 6560 goto out; 6561 } 6562 6563 if (put_user(len, optlen)) 6564 goto out; 6565 6566 if (copy_to_user(optval, &info, len)) 6567 goto out; 6568 6569 retval = 0; 6570 6571 out: 6572 return retval; 6573 } 6574 6575 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6576 char __user *optval, 6577 int __user *optlen) 6578 { 6579 struct sctp_prstatus params; 6580 struct sctp_association *asoc; 6581 int policy; 6582 int retval = -EINVAL; 6583 6584 if (len < sizeof(params)) 6585 goto out; 6586 6587 len = sizeof(params); 6588 if (copy_from_user(¶ms, optval, len)) { 6589 retval = -EFAULT; 6590 goto out; 6591 } 6592 6593 policy = params.sprstat_policy; 6594 if (policy & ~SCTP_PR_SCTP_MASK) 6595 goto out; 6596 6597 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6598 if (!asoc) 6599 goto out; 6600 6601 if (policy == SCTP_PR_SCTP_NONE) { 6602 params.sprstat_abandoned_unsent = 0; 6603 params.sprstat_abandoned_sent = 0; 6604 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6605 params.sprstat_abandoned_unsent += 6606 asoc->abandoned_unsent[policy]; 6607 params.sprstat_abandoned_sent += 6608 asoc->abandoned_sent[policy]; 6609 } 6610 } else { 6611 params.sprstat_abandoned_unsent = 6612 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6613 params.sprstat_abandoned_sent = 6614 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6615 } 6616 6617 if (put_user(len, optlen)) { 6618 retval = -EFAULT; 6619 goto out; 6620 } 6621 6622 if (copy_to_user(optval, ¶ms, len)) { 6623 retval = -EFAULT; 6624 goto out; 6625 } 6626 6627 retval = 0; 6628 6629 out: 6630 return retval; 6631 } 6632 6633 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6634 char __user *optval, 6635 int __user *optlen) 6636 { 6637 struct sctp_stream_out *streamout; 6638 struct sctp_association *asoc; 6639 struct sctp_prstatus params; 6640 int retval = -EINVAL; 6641 int policy; 6642 6643 if (len < sizeof(params)) 6644 goto out; 6645 6646 len = sizeof(params); 6647 if (copy_from_user(¶ms, optval, len)) { 6648 retval = -EFAULT; 6649 goto out; 6650 } 6651 6652 policy = params.sprstat_policy; 6653 if (policy & ~SCTP_PR_SCTP_MASK) 6654 goto out; 6655 6656 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6657 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6658 goto out; 6659 6660 streamout = &asoc->stream.out[params.sprstat_sid]; 6661 if (policy == SCTP_PR_SCTP_NONE) { 6662 params.sprstat_abandoned_unsent = 0; 6663 params.sprstat_abandoned_sent = 0; 6664 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6665 params.sprstat_abandoned_unsent += 6666 streamout->abandoned_unsent[policy]; 6667 params.sprstat_abandoned_sent += 6668 streamout->abandoned_sent[policy]; 6669 } 6670 } else { 6671 params.sprstat_abandoned_unsent = 6672 streamout->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6673 params.sprstat_abandoned_sent = 6674 streamout->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6675 } 6676 6677 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6678 retval = -EFAULT; 6679 goto out; 6680 } 6681 6682 retval = 0; 6683 6684 out: 6685 return retval; 6686 } 6687 6688 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6689 char __user *optval, 6690 int __user *optlen) 6691 { 6692 struct sctp_assoc_value params; 6693 struct sctp_association *asoc; 6694 int retval = -EFAULT; 6695 6696 if (len < sizeof(params)) { 6697 retval = -EINVAL; 6698 goto out; 6699 } 6700 6701 len = sizeof(params); 6702 if (copy_from_user(¶ms, optval, len)) 6703 goto out; 6704 6705 asoc = sctp_id2assoc(sk, params.assoc_id); 6706 if (asoc) { 6707 params.assoc_value = asoc->reconf_enable; 6708 } else if (!params.assoc_id) { 6709 struct sctp_sock *sp = sctp_sk(sk); 6710 6711 params.assoc_value = sp->ep->reconf_enable; 6712 } else { 6713 retval = -EINVAL; 6714 goto out; 6715 } 6716 6717 if (put_user(len, optlen)) 6718 goto out; 6719 6720 if (copy_to_user(optval, ¶ms, len)) 6721 goto out; 6722 6723 retval = 0; 6724 6725 out: 6726 return retval; 6727 } 6728 6729 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 6730 char __user *optval, 6731 int __user *optlen) 6732 { 6733 struct sctp_assoc_value params; 6734 struct sctp_association *asoc; 6735 int retval = -EFAULT; 6736 6737 if (len < sizeof(params)) { 6738 retval = -EINVAL; 6739 goto out; 6740 } 6741 6742 len = sizeof(params); 6743 if (copy_from_user(¶ms, optval, len)) 6744 goto out; 6745 6746 asoc = sctp_id2assoc(sk, params.assoc_id); 6747 if (asoc) { 6748 params.assoc_value = asoc->strreset_enable; 6749 } else if (!params.assoc_id) { 6750 struct sctp_sock *sp = sctp_sk(sk); 6751 6752 params.assoc_value = sp->ep->strreset_enable; 6753 } else { 6754 retval = -EINVAL; 6755 goto out; 6756 } 6757 6758 if (put_user(len, optlen)) 6759 goto out; 6760 6761 if (copy_to_user(optval, ¶ms, len)) 6762 goto out; 6763 6764 retval = 0; 6765 6766 out: 6767 return retval; 6768 } 6769 6770 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6771 char __user *optval, int __user *optlen) 6772 { 6773 int retval = 0; 6774 int len; 6775 6776 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6777 6778 /* I can hardly begin to describe how wrong this is. This is 6779 * so broken as to be worse than useless. The API draft 6780 * REALLY is NOT helpful here... I am not convinced that the 6781 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6782 * are at all well-founded. 6783 */ 6784 if (level != SOL_SCTP) { 6785 struct sctp_af *af = sctp_sk(sk)->pf->af; 6786 6787 retval = af->getsockopt(sk, level, optname, optval, optlen); 6788 return retval; 6789 } 6790 6791 if (get_user(len, optlen)) 6792 return -EFAULT; 6793 6794 if (len < 0) 6795 return -EINVAL; 6796 6797 lock_sock(sk); 6798 6799 switch (optname) { 6800 case SCTP_STATUS: 6801 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 6802 break; 6803 case SCTP_DISABLE_FRAGMENTS: 6804 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 6805 optlen); 6806 break; 6807 case SCTP_EVENTS: 6808 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6809 break; 6810 case SCTP_AUTOCLOSE: 6811 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6812 break; 6813 case SCTP_SOCKOPT_PEELOFF: 6814 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6815 break; 6816 case SCTP_SOCKOPT_PEELOFF_FLAGS: 6817 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 6818 break; 6819 case SCTP_PEER_ADDR_PARAMS: 6820 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6821 optlen); 6822 break; 6823 case SCTP_DELAYED_SACK: 6824 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6825 optlen); 6826 break; 6827 case SCTP_INITMSG: 6828 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6829 break; 6830 case SCTP_GET_PEER_ADDRS: 6831 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6832 optlen); 6833 break; 6834 case SCTP_GET_LOCAL_ADDRS: 6835 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6836 optlen); 6837 break; 6838 case SCTP_SOCKOPT_CONNECTX3: 6839 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6840 break; 6841 case SCTP_DEFAULT_SEND_PARAM: 6842 retval = sctp_getsockopt_default_send_param(sk, len, 6843 optval, optlen); 6844 break; 6845 case SCTP_DEFAULT_SNDINFO: 6846 retval = sctp_getsockopt_default_sndinfo(sk, len, 6847 optval, optlen); 6848 break; 6849 case SCTP_PRIMARY_ADDR: 6850 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6851 break; 6852 case SCTP_NODELAY: 6853 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6854 break; 6855 case SCTP_RTOINFO: 6856 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6857 break; 6858 case SCTP_ASSOCINFO: 6859 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6860 break; 6861 case SCTP_I_WANT_MAPPED_V4_ADDR: 6862 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6863 break; 6864 case SCTP_MAXSEG: 6865 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6866 break; 6867 case SCTP_GET_PEER_ADDR_INFO: 6868 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6869 optlen); 6870 break; 6871 case SCTP_ADAPTATION_LAYER: 6872 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6873 optlen); 6874 break; 6875 case SCTP_CONTEXT: 6876 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6877 break; 6878 case SCTP_FRAGMENT_INTERLEAVE: 6879 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6880 optlen); 6881 break; 6882 case SCTP_PARTIAL_DELIVERY_POINT: 6883 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6884 optlen); 6885 break; 6886 case SCTP_MAX_BURST: 6887 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6888 break; 6889 case SCTP_AUTH_KEY: 6890 case SCTP_AUTH_CHUNK: 6891 case SCTP_AUTH_DELETE_KEY: 6892 retval = -EOPNOTSUPP; 6893 break; 6894 case SCTP_HMAC_IDENT: 6895 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6896 break; 6897 case SCTP_AUTH_ACTIVE_KEY: 6898 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6899 break; 6900 case SCTP_PEER_AUTH_CHUNKS: 6901 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6902 optlen); 6903 break; 6904 case SCTP_LOCAL_AUTH_CHUNKS: 6905 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6906 optlen); 6907 break; 6908 case SCTP_GET_ASSOC_NUMBER: 6909 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6910 break; 6911 case SCTP_GET_ASSOC_ID_LIST: 6912 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6913 break; 6914 case SCTP_AUTO_ASCONF: 6915 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6916 break; 6917 case SCTP_PEER_ADDR_THLDS: 6918 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6919 break; 6920 case SCTP_GET_ASSOC_STATS: 6921 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6922 break; 6923 case SCTP_RECVRCVINFO: 6924 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6925 break; 6926 case SCTP_RECVNXTINFO: 6927 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6928 break; 6929 case SCTP_PR_SUPPORTED: 6930 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 6931 break; 6932 case SCTP_DEFAULT_PRINFO: 6933 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 6934 optlen); 6935 break; 6936 case SCTP_PR_ASSOC_STATUS: 6937 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 6938 optlen); 6939 break; 6940 case SCTP_PR_STREAM_STATUS: 6941 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 6942 optlen); 6943 break; 6944 case SCTP_RECONFIG_SUPPORTED: 6945 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 6946 optlen); 6947 break; 6948 case SCTP_ENABLE_STREAM_RESET: 6949 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 6950 optlen); 6951 break; 6952 default: 6953 retval = -ENOPROTOOPT; 6954 break; 6955 } 6956 6957 release_sock(sk); 6958 return retval; 6959 } 6960 6961 static int sctp_hash(struct sock *sk) 6962 { 6963 /* STUB */ 6964 return 0; 6965 } 6966 6967 static void sctp_unhash(struct sock *sk) 6968 { 6969 /* STUB */ 6970 } 6971 6972 /* Check if port is acceptable. Possibly find first available port. 6973 * 6974 * The port hash table (contained in the 'global' SCTP protocol storage 6975 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6976 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6977 * list (the list number is the port number hashed out, so as you 6978 * would expect from a hash function, all the ports in a given list have 6979 * such a number that hashes out to the same list number; you were 6980 * expecting that, right?); so each list has a set of ports, with a 6981 * link to the socket (struct sock) that uses it, the port number and 6982 * a fastreuse flag (FIXME: NPI ipg). 6983 */ 6984 static struct sctp_bind_bucket *sctp_bucket_create( 6985 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6986 6987 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6988 { 6989 struct sctp_bind_hashbucket *head; /* hash list */ 6990 struct sctp_bind_bucket *pp; 6991 unsigned short snum; 6992 int ret; 6993 6994 snum = ntohs(addr->v4.sin_port); 6995 6996 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6997 6998 local_bh_disable(); 6999 7000 if (snum == 0) { 7001 /* Search for an available port. */ 7002 int low, high, remaining, index; 7003 unsigned int rover; 7004 struct net *net = sock_net(sk); 7005 7006 inet_get_local_port_range(net, &low, &high); 7007 remaining = (high - low) + 1; 7008 rover = prandom_u32() % remaining + low; 7009 7010 do { 7011 rover++; 7012 if ((rover < low) || (rover > high)) 7013 rover = low; 7014 if (inet_is_local_reserved_port(net, rover)) 7015 continue; 7016 index = sctp_phashfn(sock_net(sk), rover); 7017 head = &sctp_port_hashtable[index]; 7018 spin_lock(&head->lock); 7019 sctp_for_each_hentry(pp, &head->chain) 7020 if ((pp->port == rover) && 7021 net_eq(sock_net(sk), pp->net)) 7022 goto next; 7023 break; 7024 next: 7025 spin_unlock(&head->lock); 7026 } while (--remaining > 0); 7027 7028 /* Exhausted local port range during search? */ 7029 ret = 1; 7030 if (remaining <= 0) 7031 goto fail; 7032 7033 /* OK, here is the one we will use. HEAD (the port 7034 * hash table list entry) is non-NULL and we hold it's 7035 * mutex. 7036 */ 7037 snum = rover; 7038 } else { 7039 /* We are given an specific port number; we verify 7040 * that it is not being used. If it is used, we will 7041 * exahust the search in the hash list corresponding 7042 * to the port number (snum) - we detect that with the 7043 * port iterator, pp being NULL. 7044 */ 7045 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7046 spin_lock(&head->lock); 7047 sctp_for_each_hentry(pp, &head->chain) { 7048 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7049 goto pp_found; 7050 } 7051 } 7052 pp = NULL; 7053 goto pp_not_found; 7054 pp_found: 7055 if (!hlist_empty(&pp->owner)) { 7056 /* We had a port hash table hit - there is an 7057 * available port (pp != NULL) and it is being 7058 * used by other socket (pp->owner not empty); that other 7059 * socket is going to be sk2. 7060 */ 7061 int reuse = sk->sk_reuse; 7062 struct sock *sk2; 7063 7064 pr_debug("%s: found a possible match\n", __func__); 7065 7066 if (pp->fastreuse && sk->sk_reuse && 7067 sk->sk_state != SCTP_SS_LISTENING) 7068 goto success; 7069 7070 /* Run through the list of sockets bound to the port 7071 * (pp->port) [via the pointers bind_next and 7072 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7073 * we get the endpoint they describe and run through 7074 * the endpoint's list of IP (v4 or v6) addresses, 7075 * comparing each of the addresses with the address of 7076 * the socket sk. If we find a match, then that means 7077 * that this port/socket (sk) combination are already 7078 * in an endpoint. 7079 */ 7080 sk_for_each_bound(sk2, &pp->owner) { 7081 struct sctp_endpoint *ep2; 7082 ep2 = sctp_sk(sk2)->ep; 7083 7084 if (sk == sk2 || 7085 (reuse && sk2->sk_reuse && 7086 sk2->sk_state != SCTP_SS_LISTENING)) 7087 continue; 7088 7089 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7090 sctp_sk(sk2), sctp_sk(sk))) { 7091 ret = (long)sk2; 7092 goto fail_unlock; 7093 } 7094 } 7095 7096 pr_debug("%s: found a match\n", __func__); 7097 } 7098 pp_not_found: 7099 /* If there was a hash table miss, create a new port. */ 7100 ret = 1; 7101 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7102 goto fail_unlock; 7103 7104 /* In either case (hit or miss), make sure fastreuse is 1 only 7105 * if sk->sk_reuse is too (that is, if the caller requested 7106 * SO_REUSEADDR on this socket -sk-). 7107 */ 7108 if (hlist_empty(&pp->owner)) { 7109 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7110 pp->fastreuse = 1; 7111 else 7112 pp->fastreuse = 0; 7113 } else if (pp->fastreuse && 7114 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7115 pp->fastreuse = 0; 7116 7117 /* We are set, so fill up all the data in the hash table 7118 * entry, tie the socket list information with the rest of the 7119 * sockets FIXME: Blurry, NPI (ipg). 7120 */ 7121 success: 7122 if (!sctp_sk(sk)->bind_hash) { 7123 inet_sk(sk)->inet_num = snum; 7124 sk_add_bind_node(sk, &pp->owner); 7125 sctp_sk(sk)->bind_hash = pp; 7126 } 7127 ret = 0; 7128 7129 fail_unlock: 7130 spin_unlock(&head->lock); 7131 7132 fail: 7133 local_bh_enable(); 7134 return ret; 7135 } 7136 7137 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7138 * port is requested. 7139 */ 7140 static int sctp_get_port(struct sock *sk, unsigned short snum) 7141 { 7142 union sctp_addr addr; 7143 struct sctp_af *af = sctp_sk(sk)->pf->af; 7144 7145 /* Set up a dummy address struct from the sk. */ 7146 af->from_sk(&addr, sk); 7147 addr.v4.sin_port = htons(snum); 7148 7149 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7150 return !!sctp_get_port_local(sk, &addr); 7151 } 7152 7153 /* 7154 * Move a socket to LISTENING state. 7155 */ 7156 static int sctp_listen_start(struct sock *sk, int backlog) 7157 { 7158 struct sctp_sock *sp = sctp_sk(sk); 7159 struct sctp_endpoint *ep = sp->ep; 7160 struct crypto_shash *tfm = NULL; 7161 char alg[32]; 7162 7163 /* Allocate HMAC for generating cookie. */ 7164 if (!sp->hmac && sp->sctp_hmac_alg) { 7165 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7166 tfm = crypto_alloc_shash(alg, 0, 0); 7167 if (IS_ERR(tfm)) { 7168 net_info_ratelimited("failed to load transform for %s: %ld\n", 7169 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7170 return -ENOSYS; 7171 } 7172 sctp_sk(sk)->hmac = tfm; 7173 } 7174 7175 /* 7176 * If a bind() or sctp_bindx() is not called prior to a listen() 7177 * call that allows new associations to be accepted, the system 7178 * picks an ephemeral port and will choose an address set equivalent 7179 * to binding with a wildcard address. 7180 * 7181 * This is not currently spelled out in the SCTP sockets 7182 * extensions draft, but follows the practice as seen in TCP 7183 * sockets. 7184 * 7185 */ 7186 sk->sk_state = SCTP_SS_LISTENING; 7187 if (!ep->base.bind_addr.port) { 7188 if (sctp_autobind(sk)) 7189 return -EAGAIN; 7190 } else { 7191 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7192 sk->sk_state = SCTP_SS_CLOSED; 7193 return -EADDRINUSE; 7194 } 7195 } 7196 7197 sk->sk_max_ack_backlog = backlog; 7198 sctp_hash_endpoint(ep); 7199 return 0; 7200 } 7201 7202 /* 7203 * 4.1.3 / 5.1.3 listen() 7204 * 7205 * By default, new associations are not accepted for UDP style sockets. 7206 * An application uses listen() to mark a socket as being able to 7207 * accept new associations. 7208 * 7209 * On TCP style sockets, applications use listen() to ready the SCTP 7210 * endpoint for accepting inbound associations. 7211 * 7212 * On both types of endpoints a backlog of '0' disables listening. 7213 * 7214 * Move a socket to LISTENING state. 7215 */ 7216 int sctp_inet_listen(struct socket *sock, int backlog) 7217 { 7218 struct sock *sk = sock->sk; 7219 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7220 int err = -EINVAL; 7221 7222 if (unlikely(backlog < 0)) 7223 return err; 7224 7225 lock_sock(sk); 7226 7227 /* Peeled-off sockets are not allowed to listen(). */ 7228 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7229 goto out; 7230 7231 if (sock->state != SS_UNCONNECTED) 7232 goto out; 7233 7234 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7235 goto out; 7236 7237 /* If backlog is zero, disable listening. */ 7238 if (!backlog) { 7239 if (sctp_sstate(sk, CLOSED)) 7240 goto out; 7241 7242 err = 0; 7243 sctp_unhash_endpoint(ep); 7244 sk->sk_state = SCTP_SS_CLOSED; 7245 if (sk->sk_reuse) 7246 sctp_sk(sk)->bind_hash->fastreuse = 1; 7247 goto out; 7248 } 7249 7250 /* If we are already listening, just update the backlog */ 7251 if (sctp_sstate(sk, LISTENING)) 7252 sk->sk_max_ack_backlog = backlog; 7253 else { 7254 err = sctp_listen_start(sk, backlog); 7255 if (err) 7256 goto out; 7257 } 7258 7259 err = 0; 7260 out: 7261 release_sock(sk); 7262 return err; 7263 } 7264 7265 /* 7266 * This function is done by modeling the current datagram_poll() and the 7267 * tcp_poll(). Note that, based on these implementations, we don't 7268 * lock the socket in this function, even though it seems that, 7269 * ideally, locking or some other mechanisms can be used to ensure 7270 * the integrity of the counters (sndbuf and wmem_alloc) used 7271 * in this place. We assume that we don't need locks either until proven 7272 * otherwise. 7273 * 7274 * Another thing to note is that we include the Async I/O support 7275 * here, again, by modeling the current TCP/UDP code. We don't have 7276 * a good way to test with it yet. 7277 */ 7278 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7279 { 7280 struct sock *sk = sock->sk; 7281 struct sctp_sock *sp = sctp_sk(sk); 7282 unsigned int mask; 7283 7284 poll_wait(file, sk_sleep(sk), wait); 7285 7286 sock_rps_record_flow(sk); 7287 7288 /* A TCP-style listening socket becomes readable when the accept queue 7289 * is not empty. 7290 */ 7291 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7292 return (!list_empty(&sp->ep->asocs)) ? 7293 (POLLIN | POLLRDNORM) : 0; 7294 7295 mask = 0; 7296 7297 /* Is there any exceptional events? */ 7298 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7299 mask |= POLLERR | 7300 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 7301 if (sk->sk_shutdown & RCV_SHUTDOWN) 7302 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 7303 if (sk->sk_shutdown == SHUTDOWN_MASK) 7304 mask |= POLLHUP; 7305 7306 /* Is it readable? Reconsider this code with TCP-style support. */ 7307 if (!skb_queue_empty(&sk->sk_receive_queue)) 7308 mask |= POLLIN | POLLRDNORM; 7309 7310 /* The association is either gone or not ready. */ 7311 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7312 return mask; 7313 7314 /* Is it writable? */ 7315 if (sctp_writeable(sk)) { 7316 mask |= POLLOUT | POLLWRNORM; 7317 } else { 7318 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7319 /* 7320 * Since the socket is not locked, the buffer 7321 * might be made available after the writeable check and 7322 * before the bit is set. This could cause a lost I/O 7323 * signal. tcp_poll() has a race breaker for this race 7324 * condition. Based on their implementation, we put 7325 * in the following code to cover it as well. 7326 */ 7327 if (sctp_writeable(sk)) 7328 mask |= POLLOUT | POLLWRNORM; 7329 } 7330 return mask; 7331 } 7332 7333 /******************************************************************** 7334 * 2nd Level Abstractions 7335 ********************************************************************/ 7336 7337 static struct sctp_bind_bucket *sctp_bucket_create( 7338 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7339 { 7340 struct sctp_bind_bucket *pp; 7341 7342 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7343 if (pp) { 7344 SCTP_DBG_OBJCNT_INC(bind_bucket); 7345 pp->port = snum; 7346 pp->fastreuse = 0; 7347 INIT_HLIST_HEAD(&pp->owner); 7348 pp->net = net; 7349 hlist_add_head(&pp->node, &head->chain); 7350 } 7351 return pp; 7352 } 7353 7354 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7355 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7356 { 7357 if (pp && hlist_empty(&pp->owner)) { 7358 __hlist_del(&pp->node); 7359 kmem_cache_free(sctp_bucket_cachep, pp); 7360 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7361 } 7362 } 7363 7364 /* Release this socket's reference to a local port. */ 7365 static inline void __sctp_put_port(struct sock *sk) 7366 { 7367 struct sctp_bind_hashbucket *head = 7368 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7369 inet_sk(sk)->inet_num)]; 7370 struct sctp_bind_bucket *pp; 7371 7372 spin_lock(&head->lock); 7373 pp = sctp_sk(sk)->bind_hash; 7374 __sk_del_bind_node(sk); 7375 sctp_sk(sk)->bind_hash = NULL; 7376 inet_sk(sk)->inet_num = 0; 7377 sctp_bucket_destroy(pp); 7378 spin_unlock(&head->lock); 7379 } 7380 7381 void sctp_put_port(struct sock *sk) 7382 { 7383 local_bh_disable(); 7384 __sctp_put_port(sk); 7385 local_bh_enable(); 7386 } 7387 7388 /* 7389 * The system picks an ephemeral port and choose an address set equivalent 7390 * to binding with a wildcard address. 7391 * One of those addresses will be the primary address for the association. 7392 * This automatically enables the multihoming capability of SCTP. 7393 */ 7394 static int sctp_autobind(struct sock *sk) 7395 { 7396 union sctp_addr autoaddr; 7397 struct sctp_af *af; 7398 __be16 port; 7399 7400 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7401 af = sctp_sk(sk)->pf->af; 7402 7403 port = htons(inet_sk(sk)->inet_num); 7404 af->inaddr_any(&autoaddr, port); 7405 7406 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7407 } 7408 7409 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7410 * 7411 * From RFC 2292 7412 * 4.2 The cmsghdr Structure * 7413 * 7414 * When ancillary data is sent or received, any number of ancillary data 7415 * objects can be specified by the msg_control and msg_controllen members of 7416 * the msghdr structure, because each object is preceded by 7417 * a cmsghdr structure defining the object's length (the cmsg_len member). 7418 * Historically Berkeley-derived implementations have passed only one object 7419 * at a time, but this API allows multiple objects to be 7420 * passed in a single call to sendmsg() or recvmsg(). The following example 7421 * shows two ancillary data objects in a control buffer. 7422 * 7423 * |<--------------------------- msg_controllen -------------------------->| 7424 * | | 7425 * 7426 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7427 * 7428 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7429 * | | | 7430 * 7431 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7432 * 7433 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7434 * | | | | | 7435 * 7436 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7437 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7438 * 7439 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7440 * 7441 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7442 * ^ 7443 * | 7444 * 7445 * msg_control 7446 * points here 7447 */ 7448 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 7449 { 7450 struct cmsghdr *cmsg; 7451 struct msghdr *my_msg = (struct msghdr *)msg; 7452 7453 for_each_cmsghdr(cmsg, my_msg) { 7454 if (!CMSG_OK(my_msg, cmsg)) 7455 return -EINVAL; 7456 7457 /* Should we parse this header or ignore? */ 7458 if (cmsg->cmsg_level != IPPROTO_SCTP) 7459 continue; 7460 7461 /* Strictly check lengths following example in SCM code. */ 7462 switch (cmsg->cmsg_type) { 7463 case SCTP_INIT: 7464 /* SCTP Socket API Extension 7465 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7466 * 7467 * This cmsghdr structure provides information for 7468 * initializing new SCTP associations with sendmsg(). 7469 * The SCTP_INITMSG socket option uses this same data 7470 * structure. This structure is not used for 7471 * recvmsg(). 7472 * 7473 * cmsg_level cmsg_type cmsg_data[] 7474 * ------------ ------------ ---------------------- 7475 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7476 */ 7477 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7478 return -EINVAL; 7479 7480 cmsgs->init = CMSG_DATA(cmsg); 7481 break; 7482 7483 case SCTP_SNDRCV: 7484 /* SCTP Socket API Extension 7485 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7486 * 7487 * This cmsghdr structure specifies SCTP options for 7488 * sendmsg() and describes SCTP header information 7489 * about a received message through recvmsg(). 7490 * 7491 * cmsg_level cmsg_type cmsg_data[] 7492 * ------------ ------------ ---------------------- 7493 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7494 */ 7495 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7496 return -EINVAL; 7497 7498 cmsgs->srinfo = CMSG_DATA(cmsg); 7499 7500 if (cmsgs->srinfo->sinfo_flags & 7501 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7502 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7503 SCTP_ABORT | SCTP_EOF)) 7504 return -EINVAL; 7505 break; 7506 7507 case SCTP_SNDINFO: 7508 /* SCTP Socket API Extension 7509 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7510 * 7511 * This cmsghdr structure specifies SCTP options for 7512 * sendmsg(). This structure and SCTP_RCVINFO replaces 7513 * SCTP_SNDRCV which has been deprecated. 7514 * 7515 * cmsg_level cmsg_type cmsg_data[] 7516 * ------------ ------------ --------------------- 7517 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7518 */ 7519 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7520 return -EINVAL; 7521 7522 cmsgs->sinfo = CMSG_DATA(cmsg); 7523 7524 if (cmsgs->sinfo->snd_flags & 7525 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7526 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7527 SCTP_ABORT | SCTP_EOF)) 7528 return -EINVAL; 7529 break; 7530 default: 7531 return -EINVAL; 7532 } 7533 } 7534 7535 return 0; 7536 } 7537 7538 /* 7539 * Wait for a packet.. 7540 * Note: This function is the same function as in core/datagram.c 7541 * with a few modifications to make lksctp work. 7542 */ 7543 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7544 { 7545 int error; 7546 DEFINE_WAIT(wait); 7547 7548 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7549 7550 /* Socket errors? */ 7551 error = sock_error(sk); 7552 if (error) 7553 goto out; 7554 7555 if (!skb_queue_empty(&sk->sk_receive_queue)) 7556 goto ready; 7557 7558 /* Socket shut down? */ 7559 if (sk->sk_shutdown & RCV_SHUTDOWN) 7560 goto out; 7561 7562 /* Sequenced packets can come disconnected. If so we report the 7563 * problem. 7564 */ 7565 error = -ENOTCONN; 7566 7567 /* Is there a good reason to think that we may receive some data? */ 7568 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7569 goto out; 7570 7571 /* Handle signals. */ 7572 if (signal_pending(current)) 7573 goto interrupted; 7574 7575 /* Let another process have a go. Since we are going to sleep 7576 * anyway. Note: This may cause odd behaviors if the message 7577 * does not fit in the user's buffer, but this seems to be the 7578 * only way to honor MSG_DONTWAIT realistically. 7579 */ 7580 release_sock(sk); 7581 *timeo_p = schedule_timeout(*timeo_p); 7582 lock_sock(sk); 7583 7584 ready: 7585 finish_wait(sk_sleep(sk), &wait); 7586 return 0; 7587 7588 interrupted: 7589 error = sock_intr_errno(*timeo_p); 7590 7591 out: 7592 finish_wait(sk_sleep(sk), &wait); 7593 *err = error; 7594 return error; 7595 } 7596 7597 /* Receive a datagram. 7598 * Note: This is pretty much the same routine as in core/datagram.c 7599 * with a few changes to make lksctp work. 7600 */ 7601 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7602 int noblock, int *err) 7603 { 7604 int error; 7605 struct sk_buff *skb; 7606 long timeo; 7607 7608 timeo = sock_rcvtimeo(sk, noblock); 7609 7610 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7611 MAX_SCHEDULE_TIMEOUT); 7612 7613 do { 7614 /* Again only user level code calls this function, 7615 * so nothing interrupt level 7616 * will suddenly eat the receive_queue. 7617 * 7618 * Look at current nfs client by the way... 7619 * However, this function was correct in any case. 8) 7620 */ 7621 if (flags & MSG_PEEK) { 7622 skb = skb_peek(&sk->sk_receive_queue); 7623 if (skb) 7624 refcount_inc(&skb->users); 7625 } else { 7626 skb = __skb_dequeue(&sk->sk_receive_queue); 7627 } 7628 7629 if (skb) 7630 return skb; 7631 7632 /* Caller is allowed not to check sk->sk_err before calling. */ 7633 error = sock_error(sk); 7634 if (error) 7635 goto no_packet; 7636 7637 if (sk->sk_shutdown & RCV_SHUTDOWN) 7638 break; 7639 7640 if (sk_can_busy_loop(sk)) { 7641 sk_busy_loop(sk, noblock); 7642 7643 if (!skb_queue_empty(&sk->sk_receive_queue)) 7644 continue; 7645 } 7646 7647 /* User doesn't want to wait. */ 7648 error = -EAGAIN; 7649 if (!timeo) 7650 goto no_packet; 7651 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7652 7653 return NULL; 7654 7655 no_packet: 7656 *err = error; 7657 return NULL; 7658 } 7659 7660 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7661 static void __sctp_write_space(struct sctp_association *asoc) 7662 { 7663 struct sock *sk = asoc->base.sk; 7664 7665 if (sctp_wspace(asoc) <= 0) 7666 return; 7667 7668 if (waitqueue_active(&asoc->wait)) 7669 wake_up_interruptible(&asoc->wait); 7670 7671 if (sctp_writeable(sk)) { 7672 struct socket_wq *wq; 7673 7674 rcu_read_lock(); 7675 wq = rcu_dereference(sk->sk_wq); 7676 if (wq) { 7677 if (waitqueue_active(&wq->wait)) 7678 wake_up_interruptible(&wq->wait); 7679 7680 /* Note that we try to include the Async I/O support 7681 * here by modeling from the current TCP/UDP code. 7682 * We have not tested with it yet. 7683 */ 7684 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7685 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7686 } 7687 rcu_read_unlock(); 7688 } 7689 } 7690 7691 static void sctp_wake_up_waiters(struct sock *sk, 7692 struct sctp_association *asoc) 7693 { 7694 struct sctp_association *tmp = asoc; 7695 7696 /* We do accounting for the sndbuf space per association, 7697 * so we only need to wake our own association. 7698 */ 7699 if (asoc->ep->sndbuf_policy) 7700 return __sctp_write_space(asoc); 7701 7702 /* If association goes down and is just flushing its 7703 * outq, then just normally notify others. 7704 */ 7705 if (asoc->base.dead) 7706 return sctp_write_space(sk); 7707 7708 /* Accounting for the sndbuf space is per socket, so we 7709 * need to wake up others, try to be fair and in case of 7710 * other associations, let them have a go first instead 7711 * of just doing a sctp_write_space() call. 7712 * 7713 * Note that we reach sctp_wake_up_waiters() only when 7714 * associations free up queued chunks, thus we are under 7715 * lock and the list of associations on a socket is 7716 * guaranteed not to change. 7717 */ 7718 for (tmp = list_next_entry(tmp, asocs); 1; 7719 tmp = list_next_entry(tmp, asocs)) { 7720 /* Manually skip the head element. */ 7721 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7722 continue; 7723 /* Wake up association. */ 7724 __sctp_write_space(tmp); 7725 /* We've reached the end. */ 7726 if (tmp == asoc) 7727 break; 7728 } 7729 } 7730 7731 /* Do accounting for the sndbuf space. 7732 * Decrement the used sndbuf space of the corresponding association by the 7733 * data size which was just transmitted(freed). 7734 */ 7735 static void sctp_wfree(struct sk_buff *skb) 7736 { 7737 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7738 struct sctp_association *asoc = chunk->asoc; 7739 struct sock *sk = asoc->base.sk; 7740 7741 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7742 sizeof(struct sk_buff) + 7743 sizeof(struct sctp_chunk); 7744 7745 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 7746 7747 /* 7748 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7749 */ 7750 sk->sk_wmem_queued -= skb->truesize; 7751 sk_mem_uncharge(sk, skb->truesize); 7752 7753 sock_wfree(skb); 7754 sctp_wake_up_waiters(sk, asoc); 7755 7756 sctp_association_put(asoc); 7757 } 7758 7759 /* Do accounting for the receive space on the socket. 7760 * Accounting for the association is done in ulpevent.c 7761 * We set this as a destructor for the cloned data skbs so that 7762 * accounting is done at the correct time. 7763 */ 7764 void sctp_sock_rfree(struct sk_buff *skb) 7765 { 7766 struct sock *sk = skb->sk; 7767 struct sctp_ulpevent *event = sctp_skb2event(skb); 7768 7769 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7770 7771 /* 7772 * Mimic the behavior of sock_rfree 7773 */ 7774 sk_mem_uncharge(sk, event->rmem_len); 7775 } 7776 7777 7778 /* Helper function to wait for space in the sndbuf. */ 7779 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 7780 size_t msg_len) 7781 { 7782 struct sock *sk = asoc->base.sk; 7783 int err = 0; 7784 long current_timeo = *timeo_p; 7785 DEFINE_WAIT(wait); 7786 7787 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 7788 *timeo_p, msg_len); 7789 7790 /* Increment the association's refcnt. */ 7791 sctp_association_hold(asoc); 7792 7793 /* Wait on the association specific sndbuf space. */ 7794 for (;;) { 7795 prepare_to_wait_exclusive(&asoc->wait, &wait, 7796 TASK_INTERRUPTIBLE); 7797 if (!*timeo_p) 7798 goto do_nonblock; 7799 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7800 asoc->base.dead) 7801 goto do_error; 7802 if (signal_pending(current)) 7803 goto do_interrupted; 7804 if (msg_len <= sctp_wspace(asoc)) 7805 break; 7806 7807 /* Let another process have a go. Since we are going 7808 * to sleep anyway. 7809 */ 7810 release_sock(sk); 7811 current_timeo = schedule_timeout(current_timeo); 7812 lock_sock(sk); 7813 7814 *timeo_p = current_timeo; 7815 } 7816 7817 out: 7818 finish_wait(&asoc->wait, &wait); 7819 7820 /* Release the association's refcnt. */ 7821 sctp_association_put(asoc); 7822 7823 return err; 7824 7825 do_error: 7826 err = -EPIPE; 7827 goto out; 7828 7829 do_interrupted: 7830 err = sock_intr_errno(*timeo_p); 7831 goto out; 7832 7833 do_nonblock: 7834 err = -EAGAIN; 7835 goto out; 7836 } 7837 7838 void sctp_data_ready(struct sock *sk) 7839 { 7840 struct socket_wq *wq; 7841 7842 rcu_read_lock(); 7843 wq = rcu_dereference(sk->sk_wq); 7844 if (skwq_has_sleeper(wq)) 7845 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7846 POLLRDNORM | POLLRDBAND); 7847 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7848 rcu_read_unlock(); 7849 } 7850 7851 /* If socket sndbuf has changed, wake up all per association waiters. */ 7852 void sctp_write_space(struct sock *sk) 7853 { 7854 struct sctp_association *asoc; 7855 7856 /* Wake up the tasks in each wait queue. */ 7857 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7858 __sctp_write_space(asoc); 7859 } 7860 } 7861 7862 /* Is there any sndbuf space available on the socket? 7863 * 7864 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7865 * associations on the same socket. For a UDP-style socket with 7866 * multiple associations, it is possible for it to be "unwriteable" 7867 * prematurely. I assume that this is acceptable because 7868 * a premature "unwriteable" is better than an accidental "writeable" which 7869 * would cause an unwanted block under certain circumstances. For the 1-1 7870 * UDP-style sockets or TCP-style sockets, this code should work. 7871 * - Daisy 7872 */ 7873 static int sctp_writeable(struct sock *sk) 7874 { 7875 int amt = 0; 7876 7877 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7878 if (amt < 0) 7879 amt = 0; 7880 return amt; 7881 } 7882 7883 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7884 * returns immediately with EINPROGRESS. 7885 */ 7886 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7887 { 7888 struct sock *sk = asoc->base.sk; 7889 int err = 0; 7890 long current_timeo = *timeo_p; 7891 DEFINE_WAIT(wait); 7892 7893 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7894 7895 /* Increment the association's refcnt. */ 7896 sctp_association_hold(asoc); 7897 7898 for (;;) { 7899 prepare_to_wait_exclusive(&asoc->wait, &wait, 7900 TASK_INTERRUPTIBLE); 7901 if (!*timeo_p) 7902 goto do_nonblock; 7903 if (sk->sk_shutdown & RCV_SHUTDOWN) 7904 break; 7905 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7906 asoc->base.dead) 7907 goto do_error; 7908 if (signal_pending(current)) 7909 goto do_interrupted; 7910 7911 if (sctp_state(asoc, ESTABLISHED)) 7912 break; 7913 7914 /* Let another process have a go. Since we are going 7915 * to sleep anyway. 7916 */ 7917 release_sock(sk); 7918 current_timeo = schedule_timeout(current_timeo); 7919 lock_sock(sk); 7920 7921 *timeo_p = current_timeo; 7922 } 7923 7924 out: 7925 finish_wait(&asoc->wait, &wait); 7926 7927 /* Release the association's refcnt. */ 7928 sctp_association_put(asoc); 7929 7930 return err; 7931 7932 do_error: 7933 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7934 err = -ETIMEDOUT; 7935 else 7936 err = -ECONNREFUSED; 7937 goto out; 7938 7939 do_interrupted: 7940 err = sock_intr_errno(*timeo_p); 7941 goto out; 7942 7943 do_nonblock: 7944 err = -EINPROGRESS; 7945 goto out; 7946 } 7947 7948 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7949 { 7950 struct sctp_endpoint *ep; 7951 int err = 0; 7952 DEFINE_WAIT(wait); 7953 7954 ep = sctp_sk(sk)->ep; 7955 7956 7957 for (;;) { 7958 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7959 TASK_INTERRUPTIBLE); 7960 7961 if (list_empty(&ep->asocs)) { 7962 release_sock(sk); 7963 timeo = schedule_timeout(timeo); 7964 lock_sock(sk); 7965 } 7966 7967 err = -EINVAL; 7968 if (!sctp_sstate(sk, LISTENING)) 7969 break; 7970 7971 err = 0; 7972 if (!list_empty(&ep->asocs)) 7973 break; 7974 7975 err = sock_intr_errno(timeo); 7976 if (signal_pending(current)) 7977 break; 7978 7979 err = -EAGAIN; 7980 if (!timeo) 7981 break; 7982 } 7983 7984 finish_wait(sk_sleep(sk), &wait); 7985 7986 return err; 7987 } 7988 7989 static void sctp_wait_for_close(struct sock *sk, long timeout) 7990 { 7991 DEFINE_WAIT(wait); 7992 7993 do { 7994 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7995 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7996 break; 7997 release_sock(sk); 7998 timeout = schedule_timeout(timeout); 7999 lock_sock(sk); 8000 } while (!signal_pending(current) && timeout); 8001 8002 finish_wait(sk_sleep(sk), &wait); 8003 } 8004 8005 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8006 { 8007 struct sk_buff *frag; 8008 8009 if (!skb->data_len) 8010 goto done; 8011 8012 /* Don't forget the fragments. */ 8013 skb_walk_frags(skb, frag) 8014 sctp_skb_set_owner_r_frag(frag, sk); 8015 8016 done: 8017 sctp_skb_set_owner_r(skb, sk); 8018 } 8019 8020 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8021 struct sctp_association *asoc) 8022 { 8023 struct inet_sock *inet = inet_sk(sk); 8024 struct inet_sock *newinet; 8025 8026 newsk->sk_type = sk->sk_type; 8027 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8028 newsk->sk_flags = sk->sk_flags; 8029 newsk->sk_tsflags = sk->sk_tsflags; 8030 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8031 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8032 newsk->sk_reuse = sk->sk_reuse; 8033 8034 newsk->sk_shutdown = sk->sk_shutdown; 8035 newsk->sk_destruct = sctp_destruct_sock; 8036 newsk->sk_family = sk->sk_family; 8037 newsk->sk_protocol = IPPROTO_SCTP; 8038 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8039 newsk->sk_sndbuf = sk->sk_sndbuf; 8040 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8041 newsk->sk_lingertime = sk->sk_lingertime; 8042 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8043 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8044 newsk->sk_rxhash = sk->sk_rxhash; 8045 8046 newinet = inet_sk(newsk); 8047 8048 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8049 * getsockname() and getpeername() 8050 */ 8051 newinet->inet_sport = inet->inet_sport; 8052 newinet->inet_saddr = inet->inet_saddr; 8053 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8054 newinet->inet_dport = htons(asoc->peer.port); 8055 newinet->pmtudisc = inet->pmtudisc; 8056 newinet->inet_id = asoc->next_tsn ^ jiffies; 8057 8058 newinet->uc_ttl = inet->uc_ttl; 8059 newinet->mc_loop = 1; 8060 newinet->mc_ttl = 1; 8061 newinet->mc_index = 0; 8062 newinet->mc_list = NULL; 8063 8064 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8065 net_enable_timestamp(); 8066 8067 security_sk_clone(sk, newsk); 8068 } 8069 8070 static inline void sctp_copy_descendant(struct sock *sk_to, 8071 const struct sock *sk_from) 8072 { 8073 int ancestor_size = sizeof(struct inet_sock) + 8074 sizeof(struct sctp_sock) - 8075 offsetof(struct sctp_sock, auto_asconf_list); 8076 8077 if (sk_from->sk_family == PF_INET6) 8078 ancestor_size += sizeof(struct ipv6_pinfo); 8079 8080 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8081 } 8082 8083 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8084 * and its messages to the newsk. 8085 */ 8086 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8087 struct sctp_association *assoc, 8088 sctp_socket_type_t type) 8089 { 8090 struct sctp_sock *oldsp = sctp_sk(oldsk); 8091 struct sctp_sock *newsp = sctp_sk(newsk); 8092 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8093 struct sctp_endpoint *newep = newsp->ep; 8094 struct sk_buff *skb, *tmp; 8095 struct sctp_ulpevent *event; 8096 struct sctp_bind_hashbucket *head; 8097 8098 /* Migrate socket buffer sizes and all the socket level options to the 8099 * new socket. 8100 */ 8101 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8102 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8103 /* Brute force copy old sctp opt. */ 8104 sctp_copy_descendant(newsk, oldsk); 8105 8106 /* Restore the ep value that was overwritten with the above structure 8107 * copy. 8108 */ 8109 newsp->ep = newep; 8110 newsp->hmac = NULL; 8111 8112 /* Hook this new socket in to the bind_hash list. */ 8113 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8114 inet_sk(oldsk)->inet_num)]; 8115 spin_lock_bh(&head->lock); 8116 pp = sctp_sk(oldsk)->bind_hash; 8117 sk_add_bind_node(newsk, &pp->owner); 8118 sctp_sk(newsk)->bind_hash = pp; 8119 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8120 spin_unlock_bh(&head->lock); 8121 8122 /* Copy the bind_addr list from the original endpoint to the new 8123 * endpoint so that we can handle restarts properly 8124 */ 8125 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8126 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8127 8128 /* Move any messages in the old socket's receive queue that are for the 8129 * peeled off association to the new socket's receive queue. 8130 */ 8131 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8132 event = sctp_skb2event(skb); 8133 if (event->asoc == assoc) { 8134 __skb_unlink(skb, &oldsk->sk_receive_queue); 8135 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8136 sctp_skb_set_owner_r_frag(skb, newsk); 8137 } 8138 } 8139 8140 /* Clean up any messages pending delivery due to partial 8141 * delivery. Three cases: 8142 * 1) No partial deliver; no work. 8143 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8144 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8145 */ 8146 skb_queue_head_init(&newsp->pd_lobby); 8147 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8148 8149 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8150 struct sk_buff_head *queue; 8151 8152 /* Decide which queue to move pd_lobby skbs to. */ 8153 if (assoc->ulpq.pd_mode) { 8154 queue = &newsp->pd_lobby; 8155 } else 8156 queue = &newsk->sk_receive_queue; 8157 8158 /* Walk through the pd_lobby, looking for skbs that 8159 * need moved to the new socket. 8160 */ 8161 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8162 event = sctp_skb2event(skb); 8163 if (event->asoc == assoc) { 8164 __skb_unlink(skb, &oldsp->pd_lobby); 8165 __skb_queue_tail(queue, skb); 8166 sctp_skb_set_owner_r_frag(skb, newsk); 8167 } 8168 } 8169 8170 /* Clear up any skbs waiting for the partial 8171 * delivery to finish. 8172 */ 8173 if (assoc->ulpq.pd_mode) 8174 sctp_clear_pd(oldsk, NULL); 8175 8176 } 8177 8178 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 8179 sctp_skb_set_owner_r_frag(skb, newsk); 8180 8181 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 8182 sctp_skb_set_owner_r_frag(skb, newsk); 8183 8184 /* Set the type of socket to indicate that it is peeled off from the 8185 * original UDP-style socket or created with the accept() call on a 8186 * TCP-style socket.. 8187 */ 8188 newsp->type = type; 8189 8190 /* Mark the new socket "in-use" by the user so that any packets 8191 * that may arrive on the association after we've moved it are 8192 * queued to the backlog. This prevents a potential race between 8193 * backlog processing on the old socket and new-packet processing 8194 * on the new socket. 8195 * 8196 * The caller has just allocated newsk so we can guarantee that other 8197 * paths won't try to lock it and then oldsk. 8198 */ 8199 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8200 sctp_assoc_migrate(assoc, newsk); 8201 8202 /* If the association on the newsk is already closed before accept() 8203 * is called, set RCV_SHUTDOWN flag. 8204 */ 8205 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8206 newsk->sk_state = SCTP_SS_CLOSED; 8207 newsk->sk_shutdown |= RCV_SHUTDOWN; 8208 } else { 8209 newsk->sk_state = SCTP_SS_ESTABLISHED; 8210 } 8211 8212 release_sock(newsk); 8213 } 8214 8215 8216 /* This proto struct describes the ULP interface for SCTP. */ 8217 struct proto sctp_prot = { 8218 .name = "SCTP", 8219 .owner = THIS_MODULE, 8220 .close = sctp_close, 8221 .connect = sctp_connect, 8222 .disconnect = sctp_disconnect, 8223 .accept = sctp_accept, 8224 .ioctl = sctp_ioctl, 8225 .init = sctp_init_sock, 8226 .destroy = sctp_destroy_sock, 8227 .shutdown = sctp_shutdown, 8228 .setsockopt = sctp_setsockopt, 8229 .getsockopt = sctp_getsockopt, 8230 .sendmsg = sctp_sendmsg, 8231 .recvmsg = sctp_recvmsg, 8232 .bind = sctp_bind, 8233 .backlog_rcv = sctp_backlog_rcv, 8234 .hash = sctp_hash, 8235 .unhash = sctp_unhash, 8236 .get_port = sctp_get_port, 8237 .obj_size = sizeof(struct sctp_sock), 8238 .sysctl_mem = sysctl_sctp_mem, 8239 .sysctl_rmem = sysctl_sctp_rmem, 8240 .sysctl_wmem = sysctl_sctp_wmem, 8241 .memory_pressure = &sctp_memory_pressure, 8242 .enter_memory_pressure = sctp_enter_memory_pressure, 8243 .memory_allocated = &sctp_memory_allocated, 8244 .sockets_allocated = &sctp_sockets_allocated, 8245 }; 8246 8247 #if IS_ENABLED(CONFIG_IPV6) 8248 8249 #include <net/transp_v6.h> 8250 static void sctp_v6_destroy_sock(struct sock *sk) 8251 { 8252 sctp_destroy_sock(sk); 8253 inet6_destroy_sock(sk); 8254 } 8255 8256 struct proto sctpv6_prot = { 8257 .name = "SCTPv6", 8258 .owner = THIS_MODULE, 8259 .close = sctp_close, 8260 .connect = sctp_connect, 8261 .disconnect = sctp_disconnect, 8262 .accept = sctp_accept, 8263 .ioctl = sctp_ioctl, 8264 .init = sctp_init_sock, 8265 .destroy = sctp_v6_destroy_sock, 8266 .shutdown = sctp_shutdown, 8267 .setsockopt = sctp_setsockopt, 8268 .getsockopt = sctp_getsockopt, 8269 .sendmsg = sctp_sendmsg, 8270 .recvmsg = sctp_recvmsg, 8271 .bind = sctp_bind, 8272 .backlog_rcv = sctp_backlog_rcv, 8273 .hash = sctp_hash, 8274 .unhash = sctp_unhash, 8275 .get_port = sctp_get_port, 8276 .obj_size = sizeof(struct sctp6_sock), 8277 .sysctl_mem = sysctl_sctp_mem, 8278 .sysctl_rmem = sysctl_sctp_rmem, 8279 .sysctl_wmem = sysctl_sctp_wmem, 8280 .memory_pressure = &sctp_memory_pressure, 8281 .enter_memory_pressure = sctp_enter_memory_pressure, 8282 .memory_allocated = &sctp_memory_allocated, 8283 .sockets_allocated = &sctp_sockets_allocated, 8284 }; 8285 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8286