1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static bool sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 struct sock *sk = asoc->base.sk; 123 124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 125 : sk_stream_wspace(sk); 126 } 127 128 /* Increment the used sndbuf space count of the corresponding association by 129 * the size of the outgoing data chunk. 130 * Also, set the skb destructor for sndbuf accounting later. 131 * 132 * Since it is always 1-1 between chunk and skb, and also a new skb is always 133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 134 * destructor in the data chunk skb for the purpose of the sndbuf space 135 * tracking. 136 */ 137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 138 { 139 struct sctp_association *asoc = chunk->asoc; 140 struct sock *sk = asoc->base.sk; 141 142 /* The sndbuf space is tracked per association. */ 143 sctp_association_hold(asoc); 144 145 if (chunk->shkey) 146 sctp_auth_shkey_hold(chunk->shkey); 147 148 skb_set_owner_w(chunk->skb, sk); 149 150 chunk->skb->destructor = sctp_wfree; 151 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 152 skb_shinfo(chunk->skb)->destructor_arg = chunk; 153 154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 157 sk_mem_charge(sk, chunk->skb->truesize); 158 } 159 160 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 161 { 162 skb_orphan(chunk->skb); 163 } 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_transport *t; 171 struct sctp_chunk *chunk; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 cb(chunk); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 cb(chunk); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 cb(chunk); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 cb(chunk); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 cb(chunk); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static long sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && snum < inet_prot_sock(net) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if ((ret = sctp_get_port_local(sk, addr))) { 418 return -EADDRINUSE; 419 } 420 421 /* Refresh ephemeral port. */ 422 if (!bp->port) 423 bp->port = inet_sk(sk)->inet_num; 424 425 /* Add the address to the bind address list. 426 * Use GFP_ATOMIC since BHs will be disabled. 427 */ 428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 429 SCTP_ADDR_SRC, GFP_ATOMIC); 430 431 /* Copy back into socket for getsockname() use. */ 432 if (!ret) { 433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 434 sp->pf->to_sk_saddr(addr, sk); 435 } 436 437 return ret; 438 } 439 440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 441 * 442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 443 * at any one time. If a sender, after sending an ASCONF chunk, decides 444 * it needs to transfer another ASCONF Chunk, it MUST wait until the 445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 446 * subsequent ASCONF. Note this restriction binds each side, so at any 447 * time two ASCONF may be in-transit on any given association (one sent 448 * from each endpoint). 449 */ 450 static int sctp_send_asconf(struct sctp_association *asoc, 451 struct sctp_chunk *chunk) 452 { 453 struct net *net = sock_net(asoc->base.sk); 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct net *net = sock_net(sk); 543 struct sctp_sock *sp; 544 struct sctp_endpoint *ep; 545 struct sctp_association *asoc; 546 struct sctp_bind_addr *bp; 547 struct sctp_chunk *chunk; 548 struct sctp_sockaddr_entry *laddr; 549 union sctp_addr *addr; 550 union sctp_addr saveaddr; 551 void *addr_buf; 552 struct sctp_af *af; 553 struct list_head *p; 554 int i; 555 int retval = 0; 556 557 if (!net->sctp.addip_enable) 558 return retval; 559 560 sp = sctp_sk(sk); 561 ep = sp->ep; 562 563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 564 __func__, sk, addrs, addrcnt); 565 566 list_for_each_entry(asoc, &ep->asocs, asocs) { 567 if (!asoc->peer.asconf_capable) 568 continue; 569 570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 571 continue; 572 573 if (!sctp_state(asoc, ESTABLISHED)) 574 continue; 575 576 /* Check if any address in the packed array of addresses is 577 * in the bind address list of the association. If so, 578 * do not send the asconf chunk to its peer, but continue with 579 * other associations. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 if (!af) { 586 retval = -EINVAL; 587 goto out; 588 } 589 590 if (sctp_assoc_lookup_laddr(asoc, addr)) 591 break; 592 593 addr_buf += af->sockaddr_len; 594 } 595 if (i < addrcnt) 596 continue; 597 598 /* Use the first valid address in bind addr list of 599 * association as Address Parameter of ASCONF CHUNK. 600 */ 601 bp = &asoc->base.bind_addr; 602 p = bp->address_list.next; 603 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 605 addrcnt, SCTP_PARAM_ADD_IP); 606 if (!chunk) { 607 retval = -ENOMEM; 608 goto out; 609 } 610 611 /* Add the new addresses to the bind address list with 612 * use_as_src set to 0. 613 */ 614 addr_buf = addrs; 615 for (i = 0; i < addrcnt; i++) { 616 addr = addr_buf; 617 af = sctp_get_af_specific(addr->v4.sin_family); 618 memcpy(&saveaddr, addr, af->sockaddr_len); 619 retval = sctp_add_bind_addr(bp, &saveaddr, 620 sizeof(saveaddr), 621 SCTP_ADDR_NEW, GFP_ATOMIC); 622 addr_buf += af->sockaddr_len; 623 } 624 if (asoc->src_out_of_asoc_ok) { 625 struct sctp_transport *trans; 626 627 list_for_each_entry(trans, 628 &asoc->peer.transport_addr_list, transports) { 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 /* Clear the source and route cache */ 636 sctp_transport_route(trans, NULL, 637 sctp_sk(asoc->base.sk)); 638 } 639 } 640 retval = sctp_send_asconf(asoc, chunk); 641 } 642 643 out: 644 return retval; 645 } 646 647 /* Remove a list of addresses from bind addresses list. Do not remove the 648 * last address. 649 * 650 * Basically run through each address specified in the addrs/addrcnt 651 * array/length pair, determine if it is IPv6 or IPv4 and call 652 * sctp_del_bind() on it. 653 * 654 * If any of them fails, then the operation will be reversed and the 655 * ones that were removed will be added back. 656 * 657 * At least one address has to be left; if only one address is 658 * available, the operation will return -EBUSY. 659 * 660 * Only sctp_setsockopt_bindx() is supposed to call this function. 661 */ 662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 663 { 664 struct sctp_sock *sp = sctp_sk(sk); 665 struct sctp_endpoint *ep = sp->ep; 666 int cnt; 667 struct sctp_bind_addr *bp = &ep->base.bind_addr; 668 int retval = 0; 669 void *addr_buf; 670 union sctp_addr *sa_addr; 671 struct sctp_af *af; 672 673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 674 __func__, sk, addrs, addrcnt); 675 676 addr_buf = addrs; 677 for (cnt = 0; cnt < addrcnt; cnt++) { 678 /* If the bind address list is empty or if there is only one 679 * bind address, there is nothing more to be removed (we need 680 * at least one address here). 681 */ 682 if (list_empty(&bp->address_list) || 683 (sctp_list_single_entry(&bp->address_list))) { 684 retval = -EBUSY; 685 goto err_bindx_rem; 686 } 687 688 sa_addr = addr_buf; 689 af = sctp_get_af_specific(sa_addr->sa.sa_family); 690 if (!af) { 691 retval = -EINVAL; 692 goto err_bindx_rem; 693 } 694 695 if (!af->addr_valid(sa_addr, sp, NULL)) { 696 retval = -EADDRNOTAVAIL; 697 goto err_bindx_rem; 698 } 699 700 if (sa_addr->v4.sin_port && 701 sa_addr->v4.sin_port != htons(bp->port)) { 702 retval = -EINVAL; 703 goto err_bindx_rem; 704 } 705 706 if (!sa_addr->v4.sin_port) 707 sa_addr->v4.sin_port = htons(bp->port); 708 709 /* FIXME - There is probably a need to check if sk->sk_saddr and 710 * sk->sk_rcv_addr are currently set to one of the addresses to 711 * be removed. This is something which needs to be looked into 712 * when we are fixing the outstanding issues with multi-homing 713 * socket routing and failover schemes. Refer to comments in 714 * sctp_do_bind(). -daisy 715 */ 716 retval = sctp_del_bind_addr(bp, sa_addr); 717 718 addr_buf += af->sockaddr_len; 719 err_bindx_rem: 720 if (retval < 0) { 721 /* Failed. Add the ones that has been removed back */ 722 if (cnt > 0) 723 sctp_bindx_add(sk, addrs, cnt); 724 return retval; 725 } 726 } 727 728 return retval; 729 } 730 731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 732 * the associations that are part of the endpoint indicating that a list of 733 * local addresses are removed from the endpoint. 734 * 735 * If any of the addresses is already in the bind address list of the 736 * association, we do not send the chunk for that association. But it will not 737 * affect other associations. 738 * 739 * Only sctp_setsockopt_bindx() is supposed to call this function. 740 */ 741 static int sctp_send_asconf_del_ip(struct sock *sk, 742 struct sockaddr *addrs, 743 int addrcnt) 744 { 745 struct net *net = sock_net(sk); 746 struct sctp_sock *sp; 747 struct sctp_endpoint *ep; 748 struct sctp_association *asoc; 749 struct sctp_transport *transport; 750 struct sctp_bind_addr *bp; 751 struct sctp_chunk *chunk; 752 union sctp_addr *laddr; 753 void *addr_buf; 754 struct sctp_af *af; 755 struct sctp_sockaddr_entry *saddr; 756 int i; 757 int retval = 0; 758 int stored = 0; 759 760 chunk = NULL; 761 if (!net->sctp.addip_enable) 762 return retval; 763 764 sp = sctp_sk(sk); 765 ep = sp->ep; 766 767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 768 __func__, sk, addrs, addrcnt); 769 770 list_for_each_entry(asoc, &ep->asocs, asocs) { 771 772 if (!asoc->peer.asconf_capable) 773 continue; 774 775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 776 continue; 777 778 if (!sctp_state(asoc, ESTABLISHED)) 779 continue; 780 781 /* Check if any address in the packed array of addresses is 782 * not present in the bind address list of the association. 783 * If so, do not send the asconf chunk to its peer, but 784 * continue with other associations. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 if (!af) { 791 retval = -EINVAL; 792 goto out; 793 } 794 795 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 796 break; 797 798 addr_buf += af->sockaddr_len; 799 } 800 if (i < addrcnt) 801 continue; 802 803 /* Find one address in the association's bind address list 804 * that is not in the packed array of addresses. This is to 805 * make sure that we do not delete all the addresses in the 806 * association. 807 */ 808 bp = &asoc->base.bind_addr; 809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 810 addrcnt, sp); 811 if ((laddr == NULL) && (addrcnt == 1)) { 812 if (asoc->asconf_addr_del_pending) 813 continue; 814 asoc->asconf_addr_del_pending = 815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 816 if (asoc->asconf_addr_del_pending == NULL) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 asoc->asconf_addr_del_pending->sa.sa_family = 821 addrs->sa_family; 822 asoc->asconf_addr_del_pending->v4.sin_port = 823 htons(bp->port); 824 if (addrs->sa_family == AF_INET) { 825 struct sockaddr_in *sin; 826 827 sin = (struct sockaddr_in *)addrs; 828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 829 } else if (addrs->sa_family == AF_INET6) { 830 struct sockaddr_in6 *sin6; 831 832 sin6 = (struct sockaddr_in6 *)addrs; 833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 834 } 835 836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 837 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 838 asoc->asconf_addr_del_pending); 839 840 asoc->src_out_of_asoc_ok = 1; 841 stored = 1; 842 goto skip_mkasconf; 843 } 844 845 if (laddr == NULL) 846 return -EINVAL; 847 848 /* We do not need RCU protection throughout this loop 849 * because this is done under a socket lock from the 850 * setsockopt call. 851 */ 852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 853 SCTP_PARAM_DEL_IP); 854 if (!chunk) { 855 retval = -ENOMEM; 856 goto out; 857 } 858 859 skip_mkasconf: 860 /* Reset use_as_src flag for the addresses in the bind address 861 * list that are to be deleted. 862 */ 863 addr_buf = addrs; 864 for (i = 0; i < addrcnt; i++) { 865 laddr = addr_buf; 866 af = sctp_get_af_specific(laddr->v4.sin_family); 867 list_for_each_entry(saddr, &bp->address_list, list) { 868 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 869 saddr->state = SCTP_ADDR_DEL; 870 } 871 addr_buf += af->sockaddr_len; 872 } 873 874 /* Update the route and saddr entries for all the transports 875 * as some of the addresses in the bind address list are 876 * about to be deleted and cannot be used as source addresses. 877 */ 878 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 879 transports) { 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 974 * it. 975 * 976 * sk The sk of the socket 977 * addrs The pointer to the addresses in user land 978 * addrssize Size of the addrs buffer 979 * op Operation to perform (add or remove, see the flags of 980 * sctp_bindx) 981 * 982 * Returns 0 if ok, <0 errno code on error. 983 */ 984 static int sctp_setsockopt_bindx(struct sock *sk, 985 struct sockaddr __user *addrs, 986 int addrs_size, int op) 987 { 988 struct sockaddr *kaddrs; 989 int err; 990 int addrcnt = 0; 991 int walk_size = 0; 992 struct sockaddr *sa_addr; 993 void *addr_buf; 994 struct sctp_af *af; 995 996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 997 __func__, sk, addrs, addrs_size, op); 998 999 if (unlikely(addrs_size <= 0)) 1000 return -EINVAL; 1001 1002 kaddrs = memdup_user(addrs, addrs_size); 1003 if (unlikely(IS_ERR(kaddrs))) 1004 return PTR_ERR(kaddrs); 1005 1006 /* Walk through the addrs buffer and count the number of addresses. */ 1007 addr_buf = kaddrs; 1008 while (walk_size < addrs_size) { 1009 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1010 kfree(kaddrs); 1011 return -EINVAL; 1012 } 1013 1014 sa_addr = addr_buf; 1015 af = sctp_get_af_specific(sa_addr->sa_family); 1016 1017 /* If the address family is not supported or if this address 1018 * causes the address buffer to overflow return EINVAL. 1019 */ 1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1021 kfree(kaddrs); 1022 return -EINVAL; 1023 } 1024 addrcnt++; 1025 addr_buf += af->sockaddr_len; 1026 walk_size += af->sockaddr_len; 1027 } 1028 1029 /* Do the work. */ 1030 switch (op) { 1031 case SCTP_BINDX_ADD_ADDR: 1032 /* Allow security module to validate bindx addresses. */ 1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1034 (struct sockaddr *)kaddrs, 1035 addrs_size); 1036 if (err) 1037 goto out; 1038 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1039 if (err) 1040 goto out; 1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1042 break; 1043 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1046 if (err) 1047 goto out; 1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1049 break; 1050 1051 default: 1052 err = -EINVAL; 1053 break; 1054 } 1055 1056 out: 1057 kfree(kaddrs); 1058 1059 return err; 1060 } 1061 1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1063 * 1064 * Common routine for handling connect() and sctp_connectx(). 1065 * Connect will come in with just a single address. 1066 */ 1067 static int __sctp_connect(struct sock *sk, 1068 struct sockaddr *kaddrs, 1069 int addrs_size, int flags, 1070 sctp_assoc_t *assoc_id) 1071 { 1072 struct net *net = sock_net(sk); 1073 struct sctp_sock *sp; 1074 struct sctp_endpoint *ep; 1075 struct sctp_association *asoc = NULL; 1076 struct sctp_association *asoc2; 1077 struct sctp_transport *transport; 1078 union sctp_addr to; 1079 enum sctp_scope scope; 1080 long timeo; 1081 int err = 0; 1082 int addrcnt = 0; 1083 int walk_size = 0; 1084 union sctp_addr *sa_addr = NULL; 1085 void *addr_buf; 1086 unsigned short port; 1087 1088 sp = sctp_sk(sk); 1089 ep = sp->ep; 1090 1091 /* connect() cannot be done on a socket that is already in ESTABLISHED 1092 * state - UDP-style peeled off socket or a TCP-style socket that 1093 * is already connected. 1094 * It cannot be done even on a TCP-style listening socket. 1095 */ 1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1098 err = -EISCONN; 1099 goto out_free; 1100 } 1101 1102 /* Walk through the addrs buffer and count the number of addresses. */ 1103 addr_buf = kaddrs; 1104 while (walk_size < addrs_size) { 1105 struct sctp_af *af; 1106 1107 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1108 err = -EINVAL; 1109 goto out_free; 1110 } 1111 1112 sa_addr = addr_buf; 1113 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1114 1115 /* If the address family is not supported or if this address 1116 * causes the address buffer to overflow return EINVAL. 1117 */ 1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 port = ntohs(sa_addr->v4.sin_port); 1124 1125 /* Save current address so we can work with it */ 1126 memcpy(&to, sa_addr, af->sockaddr_len); 1127 1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1129 if (err) 1130 goto out_free; 1131 1132 /* Make sure the destination port is correctly set 1133 * in all addresses. 1134 */ 1135 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1136 err = -EINVAL; 1137 goto out_free; 1138 } 1139 1140 /* Check if there already is a matching association on the 1141 * endpoint (other than the one created here). 1142 */ 1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1144 if (asoc2 && asoc2 != asoc) { 1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1146 err = -EISCONN; 1147 else 1148 err = -EALREADY; 1149 goto out_free; 1150 } 1151 1152 /* If we could not find a matching association on the endpoint, 1153 * make sure that there is no peeled-off association matching 1154 * the peer address even on another socket. 1155 */ 1156 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1157 err = -EADDRNOTAVAIL; 1158 goto out_free; 1159 } 1160 1161 if (!asoc) { 1162 /* If a bind() or sctp_bindx() is not called prior to 1163 * an sctp_connectx() call, the system picks an 1164 * ephemeral port and will choose an address set 1165 * equivalent to binding with a wildcard address. 1166 */ 1167 if (!ep->base.bind_addr.port) { 1168 if (sctp_autobind(sk)) { 1169 err = -EAGAIN; 1170 goto out_free; 1171 } 1172 } else { 1173 /* 1174 * If an unprivileged user inherits a 1-many 1175 * style socket with open associations on a 1176 * privileged port, it MAY be permitted to 1177 * accept new associations, but it SHOULD NOT 1178 * be permitted to open new associations. 1179 */ 1180 if (ep->base.bind_addr.port < 1181 inet_prot_sock(net) && 1182 !ns_capable(net->user_ns, 1183 CAP_NET_BIND_SERVICE)) { 1184 err = -EACCES; 1185 goto out_free; 1186 } 1187 } 1188 1189 scope = sctp_scope(&to); 1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1191 if (!asoc) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1197 GFP_KERNEL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 } 1203 1204 /* Prime the peer's transport structures. */ 1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1206 SCTP_UNKNOWN); 1207 if (!transport) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 addrcnt++; 1213 addr_buf += af->sockaddr_len; 1214 walk_size += af->sockaddr_len; 1215 } 1216 1217 /* In case the user of sctp_connectx() wants an association 1218 * id back, assign one now. 1219 */ 1220 if (assoc_id) { 1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1222 if (err < 0) 1223 goto out_free; 1224 } 1225 1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1227 if (err < 0) { 1228 goto out_free; 1229 } 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(sa_addr, sk); 1234 sk->sk_err = 0; 1235 1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1237 1238 if (assoc_id) 1239 *assoc_id = asoc->assoc_id; 1240 1241 err = sctp_wait_for_connect(asoc, &timeo); 1242 /* Note: the asoc may be freed after the return of 1243 * sctp_wait_for_connect. 1244 */ 1245 1246 /* Don't free association on exit. */ 1247 asoc = NULL; 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 1253 if (asoc) { 1254 /* sctp_primitive_ASSOCIATE may have added this association 1255 * To the hash table, try to unhash it, just in case, its a noop 1256 * if it wasn't hashed so we're safe 1257 */ 1258 sctp_association_free(asoc); 1259 } 1260 return err; 1261 } 1262 1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1264 * 1265 * API 8.9 1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1267 * sctp_assoc_t *asoc); 1268 * 1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1271 * or IPv6 addresses. 1272 * 1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1274 * Section 3.1.2 for this usage. 1275 * 1276 * addrs is a pointer to an array of one or more socket addresses. Each 1277 * address is contained in its appropriate structure (i.e. struct 1278 * sockaddr_in or struct sockaddr_in6) the family of the address type 1279 * must be used to distengish the address length (note that this 1280 * representation is termed a "packed array" of addresses). The caller 1281 * specifies the number of addresses in the array with addrcnt. 1282 * 1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1284 * the association id of the new association. On failure, sctp_connectx() 1285 * returns -1, and sets errno to the appropriate error code. The assoc_id 1286 * is not touched by the kernel. 1287 * 1288 * For SCTP, the port given in each socket address must be the same, or 1289 * sctp_connectx() will fail, setting errno to EINVAL. 1290 * 1291 * An application can use sctp_connectx to initiate an association with 1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1293 * allows a caller to specify multiple addresses at which a peer can be 1294 * reached. The way the SCTP stack uses the list of addresses to set up 1295 * the association is implementation dependent. This function only 1296 * specifies that the stack will try to make use of all the addresses in 1297 * the list when needed. 1298 * 1299 * Note that the list of addresses passed in is only used for setting up 1300 * the association. It does not necessarily equal the set of addresses 1301 * the peer uses for the resulting association. If the caller wants to 1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1303 * retrieve them after the association has been set up. 1304 * 1305 * Basically do nothing but copying the addresses from user to kernel 1306 * land and invoking either sctp_connectx(). This is used for tunneling 1307 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1308 * 1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1310 * it. 1311 * 1312 * sk The sk of the socket 1313 * addrs The pointer to the addresses in user land 1314 * addrssize Size of the addrs buffer 1315 * 1316 * Returns >=0 if ok, <0 errno code on error. 1317 */ 1318 static int __sctp_setsockopt_connectx(struct sock *sk, 1319 struct sockaddr __user *addrs, 1320 int addrs_size, 1321 sctp_assoc_t *assoc_id) 1322 { 1323 struct sockaddr *kaddrs; 1324 int err = 0, flags = 0; 1325 1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1327 __func__, sk, addrs, addrs_size); 1328 1329 if (unlikely(addrs_size <= 0)) 1330 return -EINVAL; 1331 1332 kaddrs = memdup_user(addrs, addrs_size); 1333 if (unlikely(IS_ERR(kaddrs))) 1334 return PTR_ERR(kaddrs); 1335 1336 /* Allow security module to validate connectx addresses. */ 1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1338 (struct sockaddr *)kaddrs, 1339 addrs_size); 1340 if (err) 1341 goto out_free; 1342 1343 /* in-kernel sockets don't generally have a file allocated to them 1344 * if all they do is call sock_create_kern(). 1345 */ 1346 if (sk->sk_socket->file) 1347 flags = sk->sk_socket->file->f_flags; 1348 1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1350 1351 out_free: 1352 kfree(kaddrs); 1353 1354 return err; 1355 } 1356 1357 /* 1358 * This is an older interface. It's kept for backward compatibility 1359 * to the option that doesn't provide association id. 1360 */ 1361 static int sctp_setsockopt_connectx_old(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1366 } 1367 1368 /* 1369 * New interface for the API. The since the API is done with a socket 1370 * option, to make it simple we feed back the association id is as a return 1371 * indication to the call. Error is always negative and association id is 1372 * always positive. 1373 */ 1374 static int sctp_setsockopt_connectx(struct sock *sk, 1375 struct sockaddr __user *addrs, 1376 int addrs_size) 1377 { 1378 sctp_assoc_t assoc_id = 0; 1379 int err = 0; 1380 1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1382 1383 if (err) 1384 return err; 1385 else 1386 return assoc_id; 1387 } 1388 1389 /* 1390 * New (hopefully final) interface for the API. 1391 * We use the sctp_getaddrs_old structure so that use-space library 1392 * can avoid any unnecessary allocations. The only different part 1393 * is that we store the actual length of the address buffer into the 1394 * addrs_num structure member. That way we can re-use the existing 1395 * code. 1396 */ 1397 #ifdef CONFIG_COMPAT 1398 struct compat_sctp_getaddrs_old { 1399 sctp_assoc_t assoc_id; 1400 s32 addr_num; 1401 compat_uptr_t addrs; /* struct sockaddr * */ 1402 }; 1403 #endif 1404 1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1406 char __user *optval, 1407 int __user *optlen) 1408 { 1409 struct sctp_getaddrs_old param; 1410 sctp_assoc_t assoc_id = 0; 1411 int err = 0; 1412 1413 #ifdef CONFIG_COMPAT 1414 if (in_compat_syscall()) { 1415 struct compat_sctp_getaddrs_old param32; 1416 1417 if (len < sizeof(param32)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m32, optval, sizeof(param32))) 1420 return -EFAULT; 1421 1422 param.assoc_id = param32.assoc_id; 1423 param.addr_num = param32.addr_num; 1424 param.addrs = compat_ptr(param32.addrs); 1425 } else 1426 #endif 1427 { 1428 if (len < sizeof(param)) 1429 return -EINVAL; 1430 if (copy_from_user(¶m, optval, sizeof(param))) 1431 return -EFAULT; 1432 } 1433 1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1435 param.addrs, param.addr_num, 1436 &assoc_id); 1437 if (err == 0 || err == -EINPROGRESS) { 1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1439 return -EFAULT; 1440 if (put_user(sizeof(assoc_id), optlen)) 1441 return -EFAULT; 1442 } 1443 1444 return err; 1445 } 1446 1447 /* API 3.1.4 close() - UDP Style Syntax 1448 * Applications use close() to perform graceful shutdown (as described in 1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1450 * by a UDP-style socket. 1451 * 1452 * The syntax is 1453 * 1454 * ret = close(int sd); 1455 * 1456 * sd - the socket descriptor of the associations to be closed. 1457 * 1458 * To gracefully shutdown a specific association represented by the 1459 * UDP-style socket, an application should use the sendmsg() call, 1460 * passing no user data, but including the appropriate flag in the 1461 * ancillary data (see Section xxxx). 1462 * 1463 * If sd in the close() call is a branched-off socket representing only 1464 * one association, the shutdown is performed on that association only. 1465 * 1466 * 4.1.6 close() - TCP Style Syntax 1467 * 1468 * Applications use close() to gracefully close down an association. 1469 * 1470 * The syntax is: 1471 * 1472 * int close(int sd); 1473 * 1474 * sd - the socket descriptor of the association to be closed. 1475 * 1476 * After an application calls close() on a socket descriptor, no further 1477 * socket operations will succeed on that descriptor. 1478 * 1479 * API 7.1.4 SO_LINGER 1480 * 1481 * An application using the TCP-style socket can use this option to 1482 * perform the SCTP ABORT primitive. The linger option structure is: 1483 * 1484 * struct linger { 1485 * int l_onoff; // option on/off 1486 * int l_linger; // linger time 1487 * }; 1488 * 1489 * To enable the option, set l_onoff to 1. If the l_linger value is set 1490 * to 0, calling close() is the same as the ABORT primitive. If the 1491 * value is set to a negative value, the setsockopt() call will return 1492 * an error. If the value is set to a positive value linger_time, the 1493 * close() can be blocked for at most linger_time ms. If the graceful 1494 * shutdown phase does not finish during this period, close() will 1495 * return but the graceful shutdown phase continues in the system. 1496 */ 1497 static void sctp_close(struct sock *sk, long timeout) 1498 { 1499 struct net *net = sock_net(sk); 1500 struct sctp_endpoint *ep; 1501 struct sctp_association *asoc; 1502 struct list_head *pos, *temp; 1503 unsigned int data_was_unread; 1504 1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1506 1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1508 sk->sk_shutdown = SHUTDOWN_MASK; 1509 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1510 1511 ep = sctp_sk(sk)->ep; 1512 1513 /* Clean up any skbs sitting on the receive queue. */ 1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1516 1517 /* Walk all associations on an endpoint. */ 1518 list_for_each_safe(pos, temp, &ep->asocs) { 1519 asoc = list_entry(pos, struct sctp_association, asocs); 1520 1521 if (sctp_style(sk, TCP)) { 1522 /* A closed association can still be in the list if 1523 * it belongs to a TCP-style listening socket that is 1524 * not yet accepted. If so, free it. If not, send an 1525 * ABORT or SHUTDOWN based on the linger options. 1526 */ 1527 if (sctp_state(asoc, CLOSED)) { 1528 sctp_association_free(asoc); 1529 continue; 1530 } 1531 } 1532 1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1534 !skb_queue_empty(&asoc->ulpq.reasm) || 1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1537 struct sctp_chunk *chunk; 1538 1539 chunk = sctp_make_abort_user(asoc, NULL, 0); 1540 sctp_primitive_ABORT(net, asoc, chunk); 1541 } else 1542 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1543 } 1544 1545 /* On a TCP-style socket, block for at most linger_time if set. */ 1546 if (sctp_style(sk, TCP) && timeout) 1547 sctp_wait_for_close(sk, timeout); 1548 1549 /* This will run the backlog queue. */ 1550 release_sock(sk); 1551 1552 /* Supposedly, no process has access to the socket, but 1553 * the net layers still may. 1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1555 * held and that should be grabbed before socket lock. 1556 */ 1557 spin_lock_bh(&net->sctp.addr_wq_lock); 1558 bh_lock_sock_nested(sk); 1559 1560 /* Hold the sock, since sk_common_release() will put sock_put() 1561 * and we have just a little more cleanup. 1562 */ 1563 sock_hold(sk); 1564 sk_common_release(sk); 1565 1566 bh_unlock_sock(sk); 1567 spin_unlock_bh(&net->sctp.addr_wq_lock); 1568 1569 sock_put(sk); 1570 1571 SCTP_DBG_OBJCNT_DEC(sock); 1572 } 1573 1574 /* Handle EPIPE error. */ 1575 static int sctp_error(struct sock *sk, int flags, int err) 1576 { 1577 if (err == -EPIPE) 1578 err = sock_error(sk) ? : -EPIPE; 1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1580 send_sig(SIGPIPE, current, 0); 1581 return err; 1582 } 1583 1584 /* API 3.1.3 sendmsg() - UDP Style Syntax 1585 * 1586 * An application uses sendmsg() and recvmsg() calls to transmit data to 1587 * and receive data from its peer. 1588 * 1589 * ssize_t sendmsg(int socket, const struct msghdr *message, 1590 * int flags); 1591 * 1592 * socket - the socket descriptor of the endpoint. 1593 * message - pointer to the msghdr structure which contains a single 1594 * user message and possibly some ancillary data. 1595 * 1596 * See Section 5 for complete description of the data 1597 * structures. 1598 * 1599 * flags - flags sent or received with the user message, see Section 1600 * 5 for complete description of the flags. 1601 * 1602 * Note: This function could use a rewrite especially when explicit 1603 * connect support comes in. 1604 */ 1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1606 1607 static int sctp_msghdr_parse(const struct msghdr *msg, 1608 struct sctp_cmsgs *cmsgs); 1609 1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1611 struct sctp_sndrcvinfo *srinfo, 1612 const struct msghdr *msg, size_t msg_len) 1613 { 1614 __u16 sflags; 1615 int err; 1616 1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1618 return -EPIPE; 1619 1620 if (msg_len > sk->sk_sndbuf) 1621 return -EMSGSIZE; 1622 1623 memset(cmsgs, 0, sizeof(*cmsgs)); 1624 err = sctp_msghdr_parse(msg, cmsgs); 1625 if (err) { 1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1627 return err; 1628 } 1629 1630 memset(srinfo, 0, sizeof(*srinfo)); 1631 if (cmsgs->srinfo) { 1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1638 } 1639 1640 if (cmsgs->sinfo) { 1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1646 } 1647 1648 if (cmsgs->prinfo) { 1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1651 cmsgs->prinfo->pr_policy); 1652 } 1653 1654 sflags = srinfo->sinfo_flags; 1655 if (!sflags && msg_len) 1656 return 0; 1657 1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1659 return -EINVAL; 1660 1661 if (((sflags & SCTP_EOF) && msg_len > 0) || 1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1663 return -EINVAL; 1664 1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1666 return -EINVAL; 1667 1668 return 0; 1669 } 1670 1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1672 struct sctp_cmsgs *cmsgs, 1673 union sctp_addr *daddr, 1674 struct sctp_transport **tp) 1675 { 1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1677 struct net *net = sock_net(sk); 1678 struct sctp_association *asoc; 1679 enum sctp_scope scope; 1680 struct cmsghdr *cmsg; 1681 __be32 flowinfo = 0; 1682 struct sctp_af *af; 1683 int err; 1684 1685 *tp = NULL; 1686 1687 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1688 return -EINVAL; 1689 1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1691 sctp_sstate(sk, CLOSING))) 1692 return -EADDRNOTAVAIL; 1693 1694 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1695 return -EADDRNOTAVAIL; 1696 1697 if (!ep->base.bind_addr.port) { 1698 if (sctp_autobind(sk)) 1699 return -EAGAIN; 1700 } else { 1701 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1703 return -EACCES; 1704 } 1705 1706 scope = sctp_scope(daddr); 1707 1708 /* Label connection socket for first association 1-to-many 1709 * style for client sequence socket()->sendmsg(). This 1710 * needs to be done before sctp_assoc_add_peer() as that will 1711 * set up the initial packet that needs to account for any 1712 * security ip options (CIPSO/CALIPSO) added to the packet. 1713 */ 1714 af = sctp_get_af_specific(daddr->sa.sa_family); 1715 if (!af) 1716 return -EINVAL; 1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1718 (struct sockaddr *)daddr, 1719 af->sockaddr_len); 1720 if (err < 0) 1721 return err; 1722 1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1724 if (!asoc) 1725 return -ENOMEM; 1726 1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1728 err = -ENOMEM; 1729 goto free; 1730 } 1731 1732 if (cmsgs->init) { 1733 struct sctp_initmsg *init = cmsgs->init; 1734 1735 if (init->sinit_num_ostreams) { 1736 __u16 outcnt = init->sinit_num_ostreams; 1737 1738 asoc->c.sinit_num_ostreams = outcnt; 1739 /* outcnt has been changed, need to re-init stream */ 1740 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1741 GFP_KERNEL); 1742 if (err) 1743 goto free; 1744 } 1745 1746 if (init->sinit_max_instreams) 1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1748 1749 if (init->sinit_max_attempts) 1750 asoc->max_init_attempts = init->sinit_max_attempts; 1751 1752 if (init->sinit_max_init_timeo) 1753 asoc->max_init_timeo = 1754 msecs_to_jiffies(init->sinit_max_init_timeo); 1755 } 1756 1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1758 if (!*tp) { 1759 err = -ENOMEM; 1760 goto free; 1761 } 1762 1763 if (!cmsgs->addrs_msg) 1764 return 0; 1765 1766 if (daddr->sa.sa_family == AF_INET6) 1767 flowinfo = daddr->v6.sin6_flowinfo; 1768 1769 /* sendv addr list parse */ 1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1771 struct sctp_transport *transport; 1772 struct sctp_association *old; 1773 union sctp_addr _daddr; 1774 int dlen; 1775 1776 if (cmsg->cmsg_level != IPPROTO_SCTP || 1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1778 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1779 continue; 1780 1781 daddr = &_daddr; 1782 memset(daddr, 0, sizeof(*daddr)); 1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1785 if (dlen < sizeof(struct in_addr)) { 1786 err = -EINVAL; 1787 goto free; 1788 } 1789 1790 dlen = sizeof(struct in_addr); 1791 daddr->v4.sin_family = AF_INET; 1792 daddr->v4.sin_port = htons(asoc->peer.port); 1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1794 } else { 1795 if (dlen < sizeof(struct in6_addr)) { 1796 err = -EINVAL; 1797 goto free; 1798 } 1799 1800 dlen = sizeof(struct in6_addr); 1801 daddr->v6.sin6_flowinfo = flowinfo; 1802 daddr->v6.sin6_family = AF_INET6; 1803 daddr->v6.sin6_port = htons(asoc->peer.port); 1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1805 } 1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1807 if (err) 1808 goto free; 1809 1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1811 if (old && old != asoc) { 1812 if (old->state >= SCTP_STATE_ESTABLISHED) 1813 err = -EISCONN; 1814 else 1815 err = -EALREADY; 1816 goto free; 1817 } 1818 1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1820 err = -EADDRNOTAVAIL; 1821 goto free; 1822 } 1823 1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1825 SCTP_UNKNOWN); 1826 if (!transport) { 1827 err = -ENOMEM; 1828 goto free; 1829 } 1830 } 1831 1832 return 0; 1833 1834 free: 1835 sctp_association_free(asoc); 1836 return err; 1837 } 1838 1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1840 __u16 sflags, struct msghdr *msg, 1841 size_t msg_len) 1842 { 1843 struct sock *sk = asoc->base.sk; 1844 struct net *net = sock_net(sk); 1845 1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1847 return -EPIPE; 1848 1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1850 !sctp_state(asoc, ESTABLISHED)) 1851 return 0; 1852 1853 if (sflags & SCTP_EOF) { 1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1855 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1856 1857 return 0; 1858 } 1859 1860 if (sflags & SCTP_ABORT) { 1861 struct sctp_chunk *chunk; 1862 1863 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1864 if (!chunk) 1865 return -ENOMEM; 1866 1867 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1868 sctp_primitive_ABORT(net, asoc, chunk); 1869 iov_iter_revert(&msg->msg_iter, msg_len); 1870 1871 return 0; 1872 } 1873 1874 return 1; 1875 } 1876 1877 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1878 struct msghdr *msg, size_t msg_len, 1879 struct sctp_transport *transport, 1880 struct sctp_sndrcvinfo *sinfo) 1881 { 1882 struct sock *sk = asoc->base.sk; 1883 struct sctp_sock *sp = sctp_sk(sk); 1884 struct net *net = sock_net(sk); 1885 struct sctp_datamsg *datamsg; 1886 bool wait_connect = false; 1887 struct sctp_chunk *chunk; 1888 long timeo; 1889 int err; 1890 1891 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1892 err = -EINVAL; 1893 goto err; 1894 } 1895 1896 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1897 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1898 if (err) 1899 goto err; 1900 } 1901 1902 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1903 err = -EMSGSIZE; 1904 goto err; 1905 } 1906 1907 if (asoc->pmtu_pending) { 1908 if (sp->param_flags & SPP_PMTUD_ENABLE) 1909 sctp_assoc_sync_pmtu(asoc); 1910 asoc->pmtu_pending = 0; 1911 } 1912 1913 if (sctp_wspace(asoc) < (int)msg_len) 1914 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1915 1916 if (sctp_wspace(asoc) <= 0) { 1917 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1918 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1919 if (err) 1920 goto err; 1921 } 1922 1923 if (sctp_state(asoc, CLOSED)) { 1924 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1925 if (err) 1926 goto err; 1927 1928 if (sp->strm_interleave) { 1929 timeo = sock_sndtimeo(sk, 0); 1930 err = sctp_wait_for_connect(asoc, &timeo); 1931 if (err) { 1932 err = -ESRCH; 1933 goto err; 1934 } 1935 } else { 1936 wait_connect = true; 1937 } 1938 1939 pr_debug("%s: we associated primitively\n", __func__); 1940 } 1941 1942 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1943 if (IS_ERR(datamsg)) { 1944 err = PTR_ERR(datamsg); 1945 goto err; 1946 } 1947 1948 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1949 1950 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1951 sctp_chunk_hold(chunk); 1952 sctp_set_owner_w(chunk); 1953 chunk->transport = transport; 1954 } 1955 1956 err = sctp_primitive_SEND(net, asoc, datamsg); 1957 if (err) { 1958 sctp_datamsg_free(datamsg); 1959 goto err; 1960 } 1961 1962 pr_debug("%s: we sent primitively\n", __func__); 1963 1964 sctp_datamsg_put(datamsg); 1965 1966 if (unlikely(wait_connect)) { 1967 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1968 sctp_wait_for_connect(asoc, &timeo); 1969 } 1970 1971 err = msg_len; 1972 1973 err: 1974 return err; 1975 } 1976 1977 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1978 const struct msghdr *msg, 1979 struct sctp_cmsgs *cmsgs) 1980 { 1981 union sctp_addr *daddr = NULL; 1982 int err; 1983 1984 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1985 int len = msg->msg_namelen; 1986 1987 if (len > sizeof(*daddr)) 1988 len = sizeof(*daddr); 1989 1990 daddr = (union sctp_addr *)msg->msg_name; 1991 1992 err = sctp_verify_addr(sk, daddr, len); 1993 if (err) 1994 return ERR_PTR(err); 1995 } 1996 1997 return daddr; 1998 } 1999 2000 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2001 struct sctp_sndrcvinfo *sinfo, 2002 struct sctp_cmsgs *cmsgs) 2003 { 2004 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2005 sinfo->sinfo_stream = asoc->default_stream; 2006 sinfo->sinfo_ppid = asoc->default_ppid; 2007 sinfo->sinfo_context = asoc->default_context; 2008 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2009 2010 if (!cmsgs->prinfo) 2011 sinfo->sinfo_flags = asoc->default_flags; 2012 } 2013 2014 if (!cmsgs->srinfo && !cmsgs->prinfo) 2015 sinfo->sinfo_timetolive = asoc->default_timetolive; 2016 2017 if (cmsgs->authinfo) { 2018 /* Reuse sinfo_tsn to indicate that authinfo was set and 2019 * sinfo_ssn to save the keyid on tx path. 2020 */ 2021 sinfo->sinfo_tsn = 1; 2022 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2023 } 2024 } 2025 2026 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2027 { 2028 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2029 struct sctp_transport *transport = NULL; 2030 struct sctp_sndrcvinfo _sinfo, *sinfo; 2031 struct sctp_association *asoc, *tmp; 2032 struct sctp_cmsgs cmsgs; 2033 union sctp_addr *daddr; 2034 bool new = false; 2035 __u16 sflags; 2036 int err; 2037 2038 /* Parse and get snd_info */ 2039 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2040 if (err) 2041 goto out; 2042 2043 sinfo = &_sinfo; 2044 sflags = sinfo->sinfo_flags; 2045 2046 /* Get daddr from msg */ 2047 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2048 if (IS_ERR(daddr)) { 2049 err = PTR_ERR(daddr); 2050 goto out; 2051 } 2052 2053 lock_sock(sk); 2054 2055 /* SCTP_SENDALL process */ 2056 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2057 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 2058 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2059 msg_len); 2060 if (err == 0) 2061 continue; 2062 if (err < 0) 2063 goto out_unlock; 2064 2065 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2066 2067 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2068 NULL, sinfo); 2069 if (err < 0) 2070 goto out_unlock; 2071 2072 iov_iter_revert(&msg->msg_iter, err); 2073 } 2074 2075 goto out_unlock; 2076 } 2077 2078 /* Get and check or create asoc */ 2079 if (daddr) { 2080 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2081 if (asoc) { 2082 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2083 msg_len); 2084 if (err <= 0) 2085 goto out_unlock; 2086 } else { 2087 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2088 &transport); 2089 if (err) 2090 goto out_unlock; 2091 2092 asoc = transport->asoc; 2093 new = true; 2094 } 2095 2096 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2097 transport = NULL; 2098 } else { 2099 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2100 if (!asoc) { 2101 err = -EPIPE; 2102 goto out_unlock; 2103 } 2104 2105 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2106 if (err <= 0) 2107 goto out_unlock; 2108 } 2109 2110 /* Update snd_info with the asoc */ 2111 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2112 2113 /* Send msg to the asoc */ 2114 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2115 if (err < 0 && err != -ESRCH && new) 2116 sctp_association_free(asoc); 2117 2118 out_unlock: 2119 release_sock(sk); 2120 out: 2121 return sctp_error(sk, msg->msg_flags, err); 2122 } 2123 2124 /* This is an extended version of skb_pull() that removes the data from the 2125 * start of a skb even when data is spread across the list of skb's in the 2126 * frag_list. len specifies the total amount of data that needs to be removed. 2127 * when 'len' bytes could be removed from the skb, it returns 0. 2128 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2129 * could not be removed. 2130 */ 2131 static int sctp_skb_pull(struct sk_buff *skb, int len) 2132 { 2133 struct sk_buff *list; 2134 int skb_len = skb_headlen(skb); 2135 int rlen; 2136 2137 if (len <= skb_len) { 2138 __skb_pull(skb, len); 2139 return 0; 2140 } 2141 len -= skb_len; 2142 __skb_pull(skb, skb_len); 2143 2144 skb_walk_frags(skb, list) { 2145 rlen = sctp_skb_pull(list, len); 2146 skb->len -= (len-rlen); 2147 skb->data_len -= (len-rlen); 2148 2149 if (!rlen) 2150 return 0; 2151 2152 len = rlen; 2153 } 2154 2155 return len; 2156 } 2157 2158 /* API 3.1.3 recvmsg() - UDP Style Syntax 2159 * 2160 * ssize_t recvmsg(int socket, struct msghdr *message, 2161 * int flags); 2162 * 2163 * socket - the socket descriptor of the endpoint. 2164 * message - pointer to the msghdr structure which contains a single 2165 * user message and possibly some ancillary data. 2166 * 2167 * See Section 5 for complete description of the data 2168 * structures. 2169 * 2170 * flags - flags sent or received with the user message, see Section 2171 * 5 for complete description of the flags. 2172 */ 2173 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2174 int noblock, int flags, int *addr_len) 2175 { 2176 struct sctp_ulpevent *event = NULL; 2177 struct sctp_sock *sp = sctp_sk(sk); 2178 struct sk_buff *skb, *head_skb; 2179 int copied; 2180 int err = 0; 2181 int skb_len; 2182 2183 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2184 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2185 addr_len); 2186 2187 lock_sock(sk); 2188 2189 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2190 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2191 err = -ENOTCONN; 2192 goto out; 2193 } 2194 2195 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2196 if (!skb) 2197 goto out; 2198 2199 /* Get the total length of the skb including any skb's in the 2200 * frag_list. 2201 */ 2202 skb_len = skb->len; 2203 2204 copied = skb_len; 2205 if (copied > len) 2206 copied = len; 2207 2208 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2209 2210 event = sctp_skb2event(skb); 2211 2212 if (err) 2213 goto out_free; 2214 2215 if (event->chunk && event->chunk->head_skb) 2216 head_skb = event->chunk->head_skb; 2217 else 2218 head_skb = skb; 2219 sock_recv_ts_and_drops(msg, sk, head_skb); 2220 if (sctp_ulpevent_is_notification(event)) { 2221 msg->msg_flags |= MSG_NOTIFICATION; 2222 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2223 } else { 2224 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2225 } 2226 2227 /* Check if we allow SCTP_NXTINFO. */ 2228 if (sp->recvnxtinfo) 2229 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2230 /* Check if we allow SCTP_RCVINFO. */ 2231 if (sp->recvrcvinfo) 2232 sctp_ulpevent_read_rcvinfo(event, msg); 2233 /* Check if we allow SCTP_SNDRCVINFO. */ 2234 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2235 sctp_ulpevent_read_sndrcvinfo(event, msg); 2236 2237 err = copied; 2238 2239 /* If skb's length exceeds the user's buffer, update the skb and 2240 * push it back to the receive_queue so that the next call to 2241 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2242 */ 2243 if (skb_len > copied) { 2244 msg->msg_flags &= ~MSG_EOR; 2245 if (flags & MSG_PEEK) 2246 goto out_free; 2247 sctp_skb_pull(skb, copied); 2248 skb_queue_head(&sk->sk_receive_queue, skb); 2249 2250 /* When only partial message is copied to the user, increase 2251 * rwnd by that amount. If all the data in the skb is read, 2252 * rwnd is updated when the event is freed. 2253 */ 2254 if (!sctp_ulpevent_is_notification(event)) 2255 sctp_assoc_rwnd_increase(event->asoc, copied); 2256 goto out; 2257 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2258 (event->msg_flags & MSG_EOR)) 2259 msg->msg_flags |= MSG_EOR; 2260 else 2261 msg->msg_flags &= ~MSG_EOR; 2262 2263 out_free: 2264 if (flags & MSG_PEEK) { 2265 /* Release the skb reference acquired after peeking the skb in 2266 * sctp_skb_recv_datagram(). 2267 */ 2268 kfree_skb(skb); 2269 } else { 2270 /* Free the event which includes releasing the reference to 2271 * the owner of the skb, freeing the skb and updating the 2272 * rwnd. 2273 */ 2274 sctp_ulpevent_free(event); 2275 } 2276 out: 2277 release_sock(sk); 2278 return err; 2279 } 2280 2281 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2282 * 2283 * This option is a on/off flag. If enabled no SCTP message 2284 * fragmentation will be performed. Instead if a message being sent 2285 * exceeds the current PMTU size, the message will NOT be sent and 2286 * instead a error will be indicated to the user. 2287 */ 2288 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2289 char __user *optval, 2290 unsigned int optlen) 2291 { 2292 int val; 2293 2294 if (optlen < sizeof(int)) 2295 return -EINVAL; 2296 2297 if (get_user(val, (int __user *)optval)) 2298 return -EFAULT; 2299 2300 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2301 2302 return 0; 2303 } 2304 2305 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2306 unsigned int optlen) 2307 { 2308 struct sctp_event_subscribe subscribe; 2309 __u8 *sn_type = (__u8 *)&subscribe; 2310 struct sctp_sock *sp = sctp_sk(sk); 2311 struct sctp_association *asoc; 2312 int i; 2313 2314 if (optlen > sizeof(struct sctp_event_subscribe)) 2315 return -EINVAL; 2316 2317 if (copy_from_user(&subscribe, optval, optlen)) 2318 return -EFAULT; 2319 2320 for (i = 0; i < optlen; i++) 2321 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2322 sn_type[i]); 2323 2324 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2325 asoc->subscribe = sctp_sk(sk)->subscribe; 2326 2327 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2328 * if there is no data to be sent or retransmit, the stack will 2329 * immediately send up this notification. 2330 */ 2331 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2332 struct sctp_ulpevent *event; 2333 2334 asoc = sctp_id2assoc(sk, 0); 2335 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2336 event = sctp_ulpevent_make_sender_dry_event(asoc, 2337 GFP_USER | __GFP_NOWARN); 2338 if (!event) 2339 return -ENOMEM; 2340 2341 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2342 } 2343 } 2344 2345 return 0; 2346 } 2347 2348 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2349 * 2350 * This socket option is applicable to the UDP-style socket only. When 2351 * set it will cause associations that are idle for more than the 2352 * specified number of seconds to automatically close. An association 2353 * being idle is defined an association that has NOT sent or received 2354 * user data. The special value of '0' indicates that no automatic 2355 * close of any associations should be performed. The option expects an 2356 * integer defining the number of seconds of idle time before an 2357 * association is closed. 2358 */ 2359 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2360 unsigned int optlen) 2361 { 2362 struct sctp_sock *sp = sctp_sk(sk); 2363 struct net *net = sock_net(sk); 2364 2365 /* Applicable to UDP-style socket only */ 2366 if (sctp_style(sk, TCP)) 2367 return -EOPNOTSUPP; 2368 if (optlen != sizeof(int)) 2369 return -EINVAL; 2370 if (copy_from_user(&sp->autoclose, optval, optlen)) 2371 return -EFAULT; 2372 2373 if (sp->autoclose > net->sctp.max_autoclose) 2374 sp->autoclose = net->sctp.max_autoclose; 2375 2376 return 0; 2377 } 2378 2379 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2380 * 2381 * Applications can enable or disable heartbeats for any peer address of 2382 * an association, modify an address's heartbeat interval, force a 2383 * heartbeat to be sent immediately, and adjust the address's maximum 2384 * number of retransmissions sent before an address is considered 2385 * unreachable. The following structure is used to access and modify an 2386 * address's parameters: 2387 * 2388 * struct sctp_paddrparams { 2389 * sctp_assoc_t spp_assoc_id; 2390 * struct sockaddr_storage spp_address; 2391 * uint32_t spp_hbinterval; 2392 * uint16_t spp_pathmaxrxt; 2393 * uint32_t spp_pathmtu; 2394 * uint32_t spp_sackdelay; 2395 * uint32_t spp_flags; 2396 * uint32_t spp_ipv6_flowlabel; 2397 * uint8_t spp_dscp; 2398 * }; 2399 * 2400 * spp_assoc_id - (one-to-many style socket) This is filled in the 2401 * application, and identifies the association for 2402 * this query. 2403 * spp_address - This specifies which address is of interest. 2404 * spp_hbinterval - This contains the value of the heartbeat interval, 2405 * in milliseconds. If a value of zero 2406 * is present in this field then no changes are to 2407 * be made to this parameter. 2408 * spp_pathmaxrxt - This contains the maximum number of 2409 * retransmissions before this address shall be 2410 * considered unreachable. If a value of zero 2411 * is present in this field then no changes are to 2412 * be made to this parameter. 2413 * spp_pathmtu - When Path MTU discovery is disabled the value 2414 * specified here will be the "fixed" path mtu. 2415 * Note that if the spp_address field is empty 2416 * then all associations on this address will 2417 * have this fixed path mtu set upon them. 2418 * 2419 * spp_sackdelay - When delayed sack is enabled, this value specifies 2420 * the number of milliseconds that sacks will be delayed 2421 * for. This value will apply to all addresses of an 2422 * association if the spp_address field is empty. Note 2423 * also, that if delayed sack is enabled and this 2424 * value is set to 0, no change is made to the last 2425 * recorded delayed sack timer value. 2426 * 2427 * spp_flags - These flags are used to control various features 2428 * on an association. The flag field may contain 2429 * zero or more of the following options. 2430 * 2431 * SPP_HB_ENABLE - Enable heartbeats on the 2432 * specified address. Note that if the address 2433 * field is empty all addresses for the association 2434 * have heartbeats enabled upon them. 2435 * 2436 * SPP_HB_DISABLE - Disable heartbeats on the 2437 * speicifed address. Note that if the address 2438 * field is empty all addresses for the association 2439 * will have their heartbeats disabled. Note also 2440 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2441 * mutually exclusive, only one of these two should 2442 * be specified. Enabling both fields will have 2443 * undetermined results. 2444 * 2445 * SPP_HB_DEMAND - Request a user initiated heartbeat 2446 * to be made immediately. 2447 * 2448 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2449 * heartbeat delayis to be set to the value of 0 2450 * milliseconds. 2451 * 2452 * SPP_PMTUD_ENABLE - This field will enable PMTU 2453 * discovery upon the specified address. Note that 2454 * if the address feild is empty then all addresses 2455 * on the association are effected. 2456 * 2457 * SPP_PMTUD_DISABLE - This field will disable PMTU 2458 * discovery upon the specified address. Note that 2459 * if the address feild is empty then all addresses 2460 * on the association are effected. Not also that 2461 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2462 * exclusive. Enabling both will have undetermined 2463 * results. 2464 * 2465 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2466 * on delayed sack. The time specified in spp_sackdelay 2467 * is used to specify the sack delay for this address. Note 2468 * that if spp_address is empty then all addresses will 2469 * enable delayed sack and take on the sack delay 2470 * value specified in spp_sackdelay. 2471 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2472 * off delayed sack. If the spp_address field is blank then 2473 * delayed sack is disabled for the entire association. Note 2474 * also that this field is mutually exclusive to 2475 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2476 * results. 2477 * 2478 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2479 * setting of the IPV6 flow label value. The value is 2480 * contained in the spp_ipv6_flowlabel field. 2481 * Upon retrieval, this flag will be set to indicate that 2482 * the spp_ipv6_flowlabel field has a valid value returned. 2483 * If a specific destination address is set (in the 2484 * spp_address field), then the value returned is that of 2485 * the address. If just an association is specified (and 2486 * no address), then the association's default flow label 2487 * is returned. If neither an association nor a destination 2488 * is specified, then the socket's default flow label is 2489 * returned. For non-IPv6 sockets, this flag will be left 2490 * cleared. 2491 * 2492 * SPP_DSCP: Setting this flag enables the setting of the 2493 * Differentiated Services Code Point (DSCP) value 2494 * associated with either the association or a specific 2495 * address. The value is obtained in the spp_dscp field. 2496 * Upon retrieval, this flag will be set to indicate that 2497 * the spp_dscp field has a valid value returned. If a 2498 * specific destination address is set when called (in the 2499 * spp_address field), then that specific destination 2500 * address's DSCP value is returned. If just an association 2501 * is specified, then the association's default DSCP is 2502 * returned. If neither an association nor a destination is 2503 * specified, then the socket's default DSCP is returned. 2504 * 2505 * spp_ipv6_flowlabel 2506 * - This field is used in conjunction with the 2507 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2508 * The 20 least significant bits are used for the flow 2509 * label. This setting has precedence over any IPv6-layer 2510 * setting. 2511 * 2512 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2513 * and contains the DSCP. The 6 most significant bits are 2514 * used for the DSCP. This setting has precedence over any 2515 * IPv4- or IPv6- layer setting. 2516 */ 2517 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2518 struct sctp_transport *trans, 2519 struct sctp_association *asoc, 2520 struct sctp_sock *sp, 2521 int hb_change, 2522 int pmtud_change, 2523 int sackdelay_change) 2524 { 2525 int error; 2526 2527 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2528 struct net *net = sock_net(trans->asoc->base.sk); 2529 2530 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2531 if (error) 2532 return error; 2533 } 2534 2535 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2536 * this field is ignored. Note also that a value of zero indicates 2537 * the current setting should be left unchanged. 2538 */ 2539 if (params->spp_flags & SPP_HB_ENABLE) { 2540 2541 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2542 * set. This lets us use 0 value when this flag 2543 * is set. 2544 */ 2545 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2546 params->spp_hbinterval = 0; 2547 2548 if (params->spp_hbinterval || 2549 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2550 if (trans) { 2551 trans->hbinterval = 2552 msecs_to_jiffies(params->spp_hbinterval); 2553 } else if (asoc) { 2554 asoc->hbinterval = 2555 msecs_to_jiffies(params->spp_hbinterval); 2556 } else { 2557 sp->hbinterval = params->spp_hbinterval; 2558 } 2559 } 2560 } 2561 2562 if (hb_change) { 2563 if (trans) { 2564 trans->param_flags = 2565 (trans->param_flags & ~SPP_HB) | hb_change; 2566 } else if (asoc) { 2567 asoc->param_flags = 2568 (asoc->param_flags & ~SPP_HB) | hb_change; 2569 } else { 2570 sp->param_flags = 2571 (sp->param_flags & ~SPP_HB) | hb_change; 2572 } 2573 } 2574 2575 /* When Path MTU discovery is disabled the value specified here will 2576 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2577 * include the flag SPP_PMTUD_DISABLE for this field to have any 2578 * effect). 2579 */ 2580 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2581 if (trans) { 2582 trans->pathmtu = params->spp_pathmtu; 2583 sctp_assoc_sync_pmtu(asoc); 2584 } else if (asoc) { 2585 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2586 } else { 2587 sp->pathmtu = params->spp_pathmtu; 2588 } 2589 } 2590 2591 if (pmtud_change) { 2592 if (trans) { 2593 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2594 (params->spp_flags & SPP_PMTUD_ENABLE); 2595 trans->param_flags = 2596 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2597 if (update) { 2598 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2599 sctp_assoc_sync_pmtu(asoc); 2600 } 2601 } else if (asoc) { 2602 asoc->param_flags = 2603 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2604 } else { 2605 sp->param_flags = 2606 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2607 } 2608 } 2609 2610 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2611 * value of this field is ignored. Note also that a value of zero 2612 * indicates the current setting should be left unchanged. 2613 */ 2614 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2615 if (trans) { 2616 trans->sackdelay = 2617 msecs_to_jiffies(params->spp_sackdelay); 2618 } else if (asoc) { 2619 asoc->sackdelay = 2620 msecs_to_jiffies(params->spp_sackdelay); 2621 } else { 2622 sp->sackdelay = params->spp_sackdelay; 2623 } 2624 } 2625 2626 if (sackdelay_change) { 2627 if (trans) { 2628 trans->param_flags = 2629 (trans->param_flags & ~SPP_SACKDELAY) | 2630 sackdelay_change; 2631 } else if (asoc) { 2632 asoc->param_flags = 2633 (asoc->param_flags & ~SPP_SACKDELAY) | 2634 sackdelay_change; 2635 } else { 2636 sp->param_flags = 2637 (sp->param_flags & ~SPP_SACKDELAY) | 2638 sackdelay_change; 2639 } 2640 } 2641 2642 /* Note that a value of zero indicates the current setting should be 2643 left unchanged. 2644 */ 2645 if (params->spp_pathmaxrxt) { 2646 if (trans) { 2647 trans->pathmaxrxt = params->spp_pathmaxrxt; 2648 } else if (asoc) { 2649 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2650 } else { 2651 sp->pathmaxrxt = params->spp_pathmaxrxt; 2652 } 2653 } 2654 2655 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2656 if (trans) { 2657 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2658 trans->flowlabel = params->spp_ipv6_flowlabel & 2659 SCTP_FLOWLABEL_VAL_MASK; 2660 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2661 } 2662 } else if (asoc) { 2663 struct sctp_transport *t; 2664 2665 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2666 transports) { 2667 if (t->ipaddr.sa.sa_family != AF_INET6) 2668 continue; 2669 t->flowlabel = params->spp_ipv6_flowlabel & 2670 SCTP_FLOWLABEL_VAL_MASK; 2671 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2672 } 2673 asoc->flowlabel = params->spp_ipv6_flowlabel & 2674 SCTP_FLOWLABEL_VAL_MASK; 2675 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2676 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2677 sp->flowlabel = params->spp_ipv6_flowlabel & 2678 SCTP_FLOWLABEL_VAL_MASK; 2679 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2680 } 2681 } 2682 2683 if (params->spp_flags & SPP_DSCP) { 2684 if (trans) { 2685 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2686 trans->dscp |= SCTP_DSCP_SET_MASK; 2687 } else if (asoc) { 2688 struct sctp_transport *t; 2689 2690 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2691 transports) { 2692 t->dscp = params->spp_dscp & 2693 SCTP_DSCP_VAL_MASK; 2694 t->dscp |= SCTP_DSCP_SET_MASK; 2695 } 2696 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2697 asoc->dscp |= SCTP_DSCP_SET_MASK; 2698 } else { 2699 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2700 sp->dscp |= SCTP_DSCP_SET_MASK; 2701 } 2702 } 2703 2704 return 0; 2705 } 2706 2707 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2708 char __user *optval, 2709 unsigned int optlen) 2710 { 2711 struct sctp_paddrparams params; 2712 struct sctp_transport *trans = NULL; 2713 struct sctp_association *asoc = NULL; 2714 struct sctp_sock *sp = sctp_sk(sk); 2715 int error; 2716 int hb_change, pmtud_change, sackdelay_change; 2717 2718 if (optlen == sizeof(params)) { 2719 if (copy_from_user(¶ms, optval, optlen)) 2720 return -EFAULT; 2721 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2722 spp_ipv6_flowlabel), 4)) { 2723 if (copy_from_user(¶ms, optval, optlen)) 2724 return -EFAULT; 2725 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2726 return -EINVAL; 2727 } else { 2728 return -EINVAL; 2729 } 2730 2731 /* Validate flags and value parameters. */ 2732 hb_change = params.spp_flags & SPP_HB; 2733 pmtud_change = params.spp_flags & SPP_PMTUD; 2734 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2735 2736 if (hb_change == SPP_HB || 2737 pmtud_change == SPP_PMTUD || 2738 sackdelay_change == SPP_SACKDELAY || 2739 params.spp_sackdelay > 500 || 2740 (params.spp_pathmtu && 2741 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2742 return -EINVAL; 2743 2744 /* If an address other than INADDR_ANY is specified, and 2745 * no transport is found, then the request is invalid. 2746 */ 2747 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2748 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2749 params.spp_assoc_id); 2750 if (!trans) 2751 return -EINVAL; 2752 } 2753 2754 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2755 * socket is a one to many style socket, and an association 2756 * was not found, then the id was invalid. 2757 */ 2758 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2759 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2760 sctp_style(sk, UDP)) 2761 return -EINVAL; 2762 2763 /* Heartbeat demand can only be sent on a transport or 2764 * association, but not a socket. 2765 */ 2766 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2767 return -EINVAL; 2768 2769 /* Process parameters. */ 2770 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2771 hb_change, pmtud_change, 2772 sackdelay_change); 2773 2774 if (error) 2775 return error; 2776 2777 /* If changes are for association, also apply parameters to each 2778 * transport. 2779 */ 2780 if (!trans && asoc) { 2781 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2782 transports) { 2783 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2784 hb_change, pmtud_change, 2785 sackdelay_change); 2786 } 2787 } 2788 2789 return 0; 2790 } 2791 2792 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2793 { 2794 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2795 } 2796 2797 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2798 { 2799 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2800 } 2801 2802 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2803 struct sctp_association *asoc) 2804 { 2805 struct sctp_transport *trans; 2806 2807 if (params->sack_delay) { 2808 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2809 asoc->param_flags = 2810 sctp_spp_sackdelay_enable(asoc->param_flags); 2811 } 2812 if (params->sack_freq == 1) { 2813 asoc->param_flags = 2814 sctp_spp_sackdelay_disable(asoc->param_flags); 2815 } else if (params->sack_freq > 1) { 2816 asoc->sackfreq = params->sack_freq; 2817 asoc->param_flags = 2818 sctp_spp_sackdelay_enable(asoc->param_flags); 2819 } 2820 2821 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2822 transports) { 2823 if (params->sack_delay) { 2824 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2825 trans->param_flags = 2826 sctp_spp_sackdelay_enable(trans->param_flags); 2827 } 2828 if (params->sack_freq == 1) { 2829 trans->param_flags = 2830 sctp_spp_sackdelay_disable(trans->param_flags); 2831 } else if (params->sack_freq > 1) { 2832 trans->sackfreq = params->sack_freq; 2833 trans->param_flags = 2834 sctp_spp_sackdelay_enable(trans->param_flags); 2835 } 2836 } 2837 } 2838 2839 /* 2840 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2841 * 2842 * This option will effect the way delayed acks are performed. This 2843 * option allows you to get or set the delayed ack time, in 2844 * milliseconds. It also allows changing the delayed ack frequency. 2845 * Changing the frequency to 1 disables the delayed sack algorithm. If 2846 * the assoc_id is 0, then this sets or gets the endpoints default 2847 * values. If the assoc_id field is non-zero, then the set or get 2848 * effects the specified association for the one to many model (the 2849 * assoc_id field is ignored by the one to one model). Note that if 2850 * sack_delay or sack_freq are 0 when setting this option, then the 2851 * current values will remain unchanged. 2852 * 2853 * struct sctp_sack_info { 2854 * sctp_assoc_t sack_assoc_id; 2855 * uint32_t sack_delay; 2856 * uint32_t sack_freq; 2857 * }; 2858 * 2859 * sack_assoc_id - This parameter, indicates which association the user 2860 * is performing an action upon. Note that if this field's value is 2861 * zero then the endpoints default value is changed (effecting future 2862 * associations only). 2863 * 2864 * sack_delay - This parameter contains the number of milliseconds that 2865 * the user is requesting the delayed ACK timer be set to. Note that 2866 * this value is defined in the standard to be between 200 and 500 2867 * milliseconds. 2868 * 2869 * sack_freq - This parameter contains the number of packets that must 2870 * be received before a sack is sent without waiting for the delay 2871 * timer to expire. The default value for this is 2, setting this 2872 * value to 1 will disable the delayed sack algorithm. 2873 */ 2874 2875 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2876 char __user *optval, unsigned int optlen) 2877 { 2878 struct sctp_sock *sp = sctp_sk(sk); 2879 struct sctp_association *asoc; 2880 struct sctp_sack_info params; 2881 2882 if (optlen == sizeof(struct sctp_sack_info)) { 2883 if (copy_from_user(¶ms, optval, optlen)) 2884 return -EFAULT; 2885 2886 if (params.sack_delay == 0 && params.sack_freq == 0) 2887 return 0; 2888 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2889 pr_warn_ratelimited(DEPRECATED 2890 "%s (pid %d) " 2891 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2892 "Use struct sctp_sack_info instead\n", 2893 current->comm, task_pid_nr(current)); 2894 if (copy_from_user(¶ms, optval, optlen)) 2895 return -EFAULT; 2896 2897 if (params.sack_delay == 0) 2898 params.sack_freq = 1; 2899 else 2900 params.sack_freq = 0; 2901 } else 2902 return -EINVAL; 2903 2904 /* Validate value parameter. */ 2905 if (params.sack_delay > 500) 2906 return -EINVAL; 2907 2908 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2909 * socket is a one to many style socket, and an association 2910 * was not found, then the id was invalid. 2911 */ 2912 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2913 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2914 sctp_style(sk, UDP)) 2915 return -EINVAL; 2916 2917 if (asoc) { 2918 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2919 2920 return 0; 2921 } 2922 2923 if (sctp_style(sk, TCP)) 2924 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2925 2926 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2927 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2928 if (params.sack_delay) { 2929 sp->sackdelay = params.sack_delay; 2930 sp->param_flags = 2931 sctp_spp_sackdelay_enable(sp->param_flags); 2932 } 2933 if (params.sack_freq == 1) { 2934 sp->param_flags = 2935 sctp_spp_sackdelay_disable(sp->param_flags); 2936 } else if (params.sack_freq > 1) { 2937 sp->sackfreq = params.sack_freq; 2938 sp->param_flags = 2939 sctp_spp_sackdelay_enable(sp->param_flags); 2940 } 2941 } 2942 2943 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2944 params.sack_assoc_id == SCTP_ALL_ASSOC) 2945 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2946 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2947 2948 return 0; 2949 } 2950 2951 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2952 * 2953 * Applications can specify protocol parameters for the default association 2954 * initialization. The option name argument to setsockopt() and getsockopt() 2955 * is SCTP_INITMSG. 2956 * 2957 * Setting initialization parameters is effective only on an unconnected 2958 * socket (for UDP-style sockets only future associations are effected 2959 * by the change). With TCP-style sockets, this option is inherited by 2960 * sockets derived from a listener socket. 2961 */ 2962 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2963 { 2964 struct sctp_initmsg sinit; 2965 struct sctp_sock *sp = sctp_sk(sk); 2966 2967 if (optlen != sizeof(struct sctp_initmsg)) 2968 return -EINVAL; 2969 if (copy_from_user(&sinit, optval, optlen)) 2970 return -EFAULT; 2971 2972 if (sinit.sinit_num_ostreams) 2973 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2974 if (sinit.sinit_max_instreams) 2975 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2976 if (sinit.sinit_max_attempts) 2977 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2978 if (sinit.sinit_max_init_timeo) 2979 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2980 2981 return 0; 2982 } 2983 2984 /* 2985 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2986 * 2987 * Applications that wish to use the sendto() system call may wish to 2988 * specify a default set of parameters that would normally be supplied 2989 * through the inclusion of ancillary data. This socket option allows 2990 * such an application to set the default sctp_sndrcvinfo structure. 2991 * The application that wishes to use this socket option simply passes 2992 * in to this call the sctp_sndrcvinfo structure defined in Section 2993 * 5.2.2) The input parameters accepted by this call include 2994 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2995 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2996 * to this call if the caller is using the UDP model. 2997 */ 2998 static int sctp_setsockopt_default_send_param(struct sock *sk, 2999 char __user *optval, 3000 unsigned int optlen) 3001 { 3002 struct sctp_sock *sp = sctp_sk(sk); 3003 struct sctp_association *asoc; 3004 struct sctp_sndrcvinfo info; 3005 3006 if (optlen != sizeof(info)) 3007 return -EINVAL; 3008 if (copy_from_user(&info, optval, optlen)) 3009 return -EFAULT; 3010 if (info.sinfo_flags & 3011 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3012 SCTP_ABORT | SCTP_EOF)) 3013 return -EINVAL; 3014 3015 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3016 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 3017 sctp_style(sk, UDP)) 3018 return -EINVAL; 3019 3020 if (asoc) { 3021 asoc->default_stream = info.sinfo_stream; 3022 asoc->default_flags = info.sinfo_flags; 3023 asoc->default_ppid = info.sinfo_ppid; 3024 asoc->default_context = info.sinfo_context; 3025 asoc->default_timetolive = info.sinfo_timetolive; 3026 3027 return 0; 3028 } 3029 3030 if (sctp_style(sk, TCP)) 3031 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 3032 3033 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 3034 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3035 sp->default_stream = info.sinfo_stream; 3036 sp->default_flags = info.sinfo_flags; 3037 sp->default_ppid = info.sinfo_ppid; 3038 sp->default_context = info.sinfo_context; 3039 sp->default_timetolive = info.sinfo_timetolive; 3040 } 3041 3042 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 3043 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3044 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3045 asoc->default_stream = info.sinfo_stream; 3046 asoc->default_flags = info.sinfo_flags; 3047 asoc->default_ppid = info.sinfo_ppid; 3048 asoc->default_context = info.sinfo_context; 3049 asoc->default_timetolive = info.sinfo_timetolive; 3050 } 3051 } 3052 3053 return 0; 3054 } 3055 3056 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3057 * (SCTP_DEFAULT_SNDINFO) 3058 */ 3059 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3060 char __user *optval, 3061 unsigned int optlen) 3062 { 3063 struct sctp_sock *sp = sctp_sk(sk); 3064 struct sctp_association *asoc; 3065 struct sctp_sndinfo info; 3066 3067 if (optlen != sizeof(info)) 3068 return -EINVAL; 3069 if (copy_from_user(&info, optval, optlen)) 3070 return -EFAULT; 3071 if (info.snd_flags & 3072 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3073 SCTP_ABORT | SCTP_EOF)) 3074 return -EINVAL; 3075 3076 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3077 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 3078 sctp_style(sk, UDP)) 3079 return -EINVAL; 3080 3081 if (asoc) { 3082 asoc->default_stream = info.snd_sid; 3083 asoc->default_flags = info.snd_flags; 3084 asoc->default_ppid = info.snd_ppid; 3085 asoc->default_context = info.snd_context; 3086 3087 return 0; 3088 } 3089 3090 if (sctp_style(sk, TCP)) 3091 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 3092 3093 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 3094 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3095 sp->default_stream = info.snd_sid; 3096 sp->default_flags = info.snd_flags; 3097 sp->default_ppid = info.snd_ppid; 3098 sp->default_context = info.snd_context; 3099 } 3100 3101 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3102 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3103 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3104 asoc->default_stream = info.snd_sid; 3105 asoc->default_flags = info.snd_flags; 3106 asoc->default_ppid = info.snd_ppid; 3107 asoc->default_context = info.snd_context; 3108 } 3109 } 3110 3111 return 0; 3112 } 3113 3114 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3115 * 3116 * Requests that the local SCTP stack use the enclosed peer address as 3117 * the association primary. The enclosed address must be one of the 3118 * association peer's addresses. 3119 */ 3120 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3121 unsigned int optlen) 3122 { 3123 struct sctp_prim prim; 3124 struct sctp_transport *trans; 3125 struct sctp_af *af; 3126 int err; 3127 3128 if (optlen != sizeof(struct sctp_prim)) 3129 return -EINVAL; 3130 3131 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3132 return -EFAULT; 3133 3134 /* Allow security module to validate address but need address len. */ 3135 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3136 if (!af) 3137 return -EINVAL; 3138 3139 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3140 (struct sockaddr *)&prim.ssp_addr, 3141 af->sockaddr_len); 3142 if (err) 3143 return err; 3144 3145 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3146 if (!trans) 3147 return -EINVAL; 3148 3149 sctp_assoc_set_primary(trans->asoc, trans); 3150 3151 return 0; 3152 } 3153 3154 /* 3155 * 7.1.5 SCTP_NODELAY 3156 * 3157 * Turn on/off any Nagle-like algorithm. This means that packets are 3158 * generally sent as soon as possible and no unnecessary delays are 3159 * introduced, at the cost of more packets in the network. Expects an 3160 * integer boolean flag. 3161 */ 3162 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3163 unsigned int optlen) 3164 { 3165 int val; 3166 3167 if (optlen < sizeof(int)) 3168 return -EINVAL; 3169 if (get_user(val, (int __user *)optval)) 3170 return -EFAULT; 3171 3172 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3173 return 0; 3174 } 3175 3176 /* 3177 * 3178 * 7.1.1 SCTP_RTOINFO 3179 * 3180 * The protocol parameters used to initialize and bound retransmission 3181 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3182 * and modify these parameters. 3183 * All parameters are time values, in milliseconds. A value of 0, when 3184 * modifying the parameters, indicates that the current value should not 3185 * be changed. 3186 * 3187 */ 3188 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3189 { 3190 struct sctp_rtoinfo rtoinfo; 3191 struct sctp_association *asoc; 3192 unsigned long rto_min, rto_max; 3193 struct sctp_sock *sp = sctp_sk(sk); 3194 3195 if (optlen != sizeof (struct sctp_rtoinfo)) 3196 return -EINVAL; 3197 3198 if (copy_from_user(&rtoinfo, optval, optlen)) 3199 return -EFAULT; 3200 3201 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3202 3203 /* Set the values to the specific association */ 3204 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3205 sctp_style(sk, UDP)) 3206 return -EINVAL; 3207 3208 rto_max = rtoinfo.srto_max; 3209 rto_min = rtoinfo.srto_min; 3210 3211 if (rto_max) 3212 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3213 else 3214 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3215 3216 if (rto_min) 3217 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3218 else 3219 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3220 3221 if (rto_min > rto_max) 3222 return -EINVAL; 3223 3224 if (asoc) { 3225 if (rtoinfo.srto_initial != 0) 3226 asoc->rto_initial = 3227 msecs_to_jiffies(rtoinfo.srto_initial); 3228 asoc->rto_max = rto_max; 3229 asoc->rto_min = rto_min; 3230 } else { 3231 /* If there is no association or the association-id = 0 3232 * set the values to the endpoint. 3233 */ 3234 if (rtoinfo.srto_initial != 0) 3235 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3236 sp->rtoinfo.srto_max = rto_max; 3237 sp->rtoinfo.srto_min = rto_min; 3238 } 3239 3240 return 0; 3241 } 3242 3243 /* 3244 * 3245 * 7.1.2 SCTP_ASSOCINFO 3246 * 3247 * This option is used to tune the maximum retransmission attempts 3248 * of the association. 3249 * Returns an error if the new association retransmission value is 3250 * greater than the sum of the retransmission value of the peer. 3251 * See [SCTP] for more information. 3252 * 3253 */ 3254 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3255 { 3256 3257 struct sctp_assocparams assocparams; 3258 struct sctp_association *asoc; 3259 3260 if (optlen != sizeof(struct sctp_assocparams)) 3261 return -EINVAL; 3262 if (copy_from_user(&assocparams, optval, optlen)) 3263 return -EFAULT; 3264 3265 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3266 3267 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3268 sctp_style(sk, UDP)) 3269 return -EINVAL; 3270 3271 /* Set the values to the specific association */ 3272 if (asoc) { 3273 if (assocparams.sasoc_asocmaxrxt != 0) { 3274 __u32 path_sum = 0; 3275 int paths = 0; 3276 struct sctp_transport *peer_addr; 3277 3278 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3279 transports) { 3280 path_sum += peer_addr->pathmaxrxt; 3281 paths++; 3282 } 3283 3284 /* Only validate asocmaxrxt if we have more than 3285 * one path/transport. We do this because path 3286 * retransmissions are only counted when we have more 3287 * then one path. 3288 */ 3289 if (paths > 1 && 3290 assocparams.sasoc_asocmaxrxt > path_sum) 3291 return -EINVAL; 3292 3293 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3294 } 3295 3296 if (assocparams.sasoc_cookie_life != 0) 3297 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3298 } else { 3299 /* Set the values to the endpoint */ 3300 struct sctp_sock *sp = sctp_sk(sk); 3301 3302 if (assocparams.sasoc_asocmaxrxt != 0) 3303 sp->assocparams.sasoc_asocmaxrxt = 3304 assocparams.sasoc_asocmaxrxt; 3305 if (assocparams.sasoc_cookie_life != 0) 3306 sp->assocparams.sasoc_cookie_life = 3307 assocparams.sasoc_cookie_life; 3308 } 3309 return 0; 3310 } 3311 3312 /* 3313 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3314 * 3315 * This socket option is a boolean flag which turns on or off mapped V4 3316 * addresses. If this option is turned on and the socket is type 3317 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3318 * If this option is turned off, then no mapping will be done of V4 3319 * addresses and a user will receive both PF_INET6 and PF_INET type 3320 * addresses on the socket. 3321 */ 3322 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3323 { 3324 int val; 3325 struct sctp_sock *sp = sctp_sk(sk); 3326 3327 if (optlen < sizeof(int)) 3328 return -EINVAL; 3329 if (get_user(val, (int __user *)optval)) 3330 return -EFAULT; 3331 if (val) 3332 sp->v4mapped = 1; 3333 else 3334 sp->v4mapped = 0; 3335 3336 return 0; 3337 } 3338 3339 /* 3340 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3341 * This option will get or set the maximum size to put in any outgoing 3342 * SCTP DATA chunk. If a message is larger than this size it will be 3343 * fragmented by SCTP into the specified size. Note that the underlying 3344 * SCTP implementation may fragment into smaller sized chunks when the 3345 * PMTU of the underlying association is smaller than the value set by 3346 * the user. The default value for this option is '0' which indicates 3347 * the user is NOT limiting fragmentation and only the PMTU will effect 3348 * SCTP's choice of DATA chunk size. Note also that values set larger 3349 * than the maximum size of an IP datagram will effectively let SCTP 3350 * control fragmentation (i.e. the same as setting this option to 0). 3351 * 3352 * The following structure is used to access and modify this parameter: 3353 * 3354 * struct sctp_assoc_value { 3355 * sctp_assoc_t assoc_id; 3356 * uint32_t assoc_value; 3357 * }; 3358 * 3359 * assoc_id: This parameter is ignored for one-to-one style sockets. 3360 * For one-to-many style sockets this parameter indicates which 3361 * association the user is performing an action upon. Note that if 3362 * this field's value is zero then the endpoints default value is 3363 * changed (effecting future associations only). 3364 * assoc_value: This parameter specifies the maximum size in bytes. 3365 */ 3366 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3367 { 3368 struct sctp_sock *sp = sctp_sk(sk); 3369 struct sctp_assoc_value params; 3370 struct sctp_association *asoc; 3371 int val; 3372 3373 if (optlen == sizeof(int)) { 3374 pr_warn_ratelimited(DEPRECATED 3375 "%s (pid %d) " 3376 "Use of int in maxseg socket option.\n" 3377 "Use struct sctp_assoc_value instead\n", 3378 current->comm, task_pid_nr(current)); 3379 if (copy_from_user(&val, optval, optlen)) 3380 return -EFAULT; 3381 params.assoc_id = SCTP_FUTURE_ASSOC; 3382 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3383 if (copy_from_user(¶ms, optval, optlen)) 3384 return -EFAULT; 3385 val = params.assoc_value; 3386 } else { 3387 return -EINVAL; 3388 } 3389 3390 asoc = sctp_id2assoc(sk, params.assoc_id); 3391 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3392 sctp_style(sk, UDP)) 3393 return -EINVAL; 3394 3395 if (val) { 3396 int min_len, max_len; 3397 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3398 sizeof(struct sctp_data_chunk); 3399 3400 min_len = sctp_min_frag_point(sp, datasize); 3401 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3402 3403 if (val < min_len || val > max_len) 3404 return -EINVAL; 3405 } 3406 3407 if (asoc) { 3408 asoc->user_frag = val; 3409 sctp_assoc_update_frag_point(asoc); 3410 } else { 3411 sp->user_frag = val; 3412 } 3413 3414 return 0; 3415 } 3416 3417 3418 /* 3419 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3420 * 3421 * Requests that the peer mark the enclosed address as the association 3422 * primary. The enclosed address must be one of the association's 3423 * locally bound addresses. The following structure is used to make a 3424 * set primary request: 3425 */ 3426 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3427 unsigned int optlen) 3428 { 3429 struct net *net = sock_net(sk); 3430 struct sctp_sock *sp; 3431 struct sctp_association *asoc = NULL; 3432 struct sctp_setpeerprim prim; 3433 struct sctp_chunk *chunk; 3434 struct sctp_af *af; 3435 int err; 3436 3437 sp = sctp_sk(sk); 3438 3439 if (!net->sctp.addip_enable) 3440 return -EPERM; 3441 3442 if (optlen != sizeof(struct sctp_setpeerprim)) 3443 return -EINVAL; 3444 3445 if (copy_from_user(&prim, optval, optlen)) 3446 return -EFAULT; 3447 3448 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3449 if (!asoc) 3450 return -EINVAL; 3451 3452 if (!asoc->peer.asconf_capable) 3453 return -EPERM; 3454 3455 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3456 return -EPERM; 3457 3458 if (!sctp_state(asoc, ESTABLISHED)) 3459 return -ENOTCONN; 3460 3461 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3462 if (!af) 3463 return -EINVAL; 3464 3465 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3466 return -EADDRNOTAVAIL; 3467 3468 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3469 return -EADDRNOTAVAIL; 3470 3471 /* Allow security module to validate address. */ 3472 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3473 (struct sockaddr *)&prim.sspp_addr, 3474 af->sockaddr_len); 3475 if (err) 3476 return err; 3477 3478 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3479 chunk = sctp_make_asconf_set_prim(asoc, 3480 (union sctp_addr *)&prim.sspp_addr); 3481 if (!chunk) 3482 return -ENOMEM; 3483 3484 err = sctp_send_asconf(asoc, chunk); 3485 3486 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3487 3488 return err; 3489 } 3490 3491 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3492 unsigned int optlen) 3493 { 3494 struct sctp_setadaptation adaptation; 3495 3496 if (optlen != sizeof(struct sctp_setadaptation)) 3497 return -EINVAL; 3498 if (copy_from_user(&adaptation, optval, optlen)) 3499 return -EFAULT; 3500 3501 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3502 3503 return 0; 3504 } 3505 3506 /* 3507 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3508 * 3509 * The context field in the sctp_sndrcvinfo structure is normally only 3510 * used when a failed message is retrieved holding the value that was 3511 * sent down on the actual send call. This option allows the setting of 3512 * a default context on an association basis that will be received on 3513 * reading messages from the peer. This is especially helpful in the 3514 * one-2-many model for an application to keep some reference to an 3515 * internal state machine that is processing messages on the 3516 * association. Note that the setting of this value only effects 3517 * received messages from the peer and does not effect the value that is 3518 * saved with outbound messages. 3519 */ 3520 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3521 unsigned int optlen) 3522 { 3523 struct sctp_sock *sp = sctp_sk(sk); 3524 struct sctp_assoc_value params; 3525 struct sctp_association *asoc; 3526 3527 if (optlen != sizeof(struct sctp_assoc_value)) 3528 return -EINVAL; 3529 if (copy_from_user(¶ms, optval, optlen)) 3530 return -EFAULT; 3531 3532 asoc = sctp_id2assoc(sk, params.assoc_id); 3533 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3534 sctp_style(sk, UDP)) 3535 return -EINVAL; 3536 3537 if (asoc) { 3538 asoc->default_rcv_context = params.assoc_value; 3539 3540 return 0; 3541 } 3542 3543 if (sctp_style(sk, TCP)) 3544 params.assoc_id = SCTP_FUTURE_ASSOC; 3545 3546 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3547 params.assoc_id == SCTP_ALL_ASSOC) 3548 sp->default_rcv_context = params.assoc_value; 3549 3550 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3551 params.assoc_id == SCTP_ALL_ASSOC) 3552 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3553 asoc->default_rcv_context = params.assoc_value; 3554 3555 return 0; 3556 } 3557 3558 /* 3559 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3560 * 3561 * This options will at a minimum specify if the implementation is doing 3562 * fragmented interleave. Fragmented interleave, for a one to many 3563 * socket, is when subsequent calls to receive a message may return 3564 * parts of messages from different associations. Some implementations 3565 * may allow you to turn this value on or off. If so, when turned off, 3566 * no fragment interleave will occur (which will cause a head of line 3567 * blocking amongst multiple associations sharing the same one to many 3568 * socket). When this option is turned on, then each receive call may 3569 * come from a different association (thus the user must receive data 3570 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3571 * association each receive belongs to. 3572 * 3573 * This option takes a boolean value. A non-zero value indicates that 3574 * fragmented interleave is on. A value of zero indicates that 3575 * fragmented interleave is off. 3576 * 3577 * Note that it is important that an implementation that allows this 3578 * option to be turned on, have it off by default. Otherwise an unaware 3579 * application using the one to many model may become confused and act 3580 * incorrectly. 3581 */ 3582 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3583 char __user *optval, 3584 unsigned int optlen) 3585 { 3586 int val; 3587 3588 if (optlen != sizeof(int)) 3589 return -EINVAL; 3590 if (get_user(val, (int __user *)optval)) 3591 return -EFAULT; 3592 3593 sctp_sk(sk)->frag_interleave = !!val; 3594 3595 if (!sctp_sk(sk)->frag_interleave) 3596 sctp_sk(sk)->strm_interleave = 0; 3597 3598 return 0; 3599 } 3600 3601 /* 3602 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3603 * (SCTP_PARTIAL_DELIVERY_POINT) 3604 * 3605 * This option will set or get the SCTP partial delivery point. This 3606 * point is the size of a message where the partial delivery API will be 3607 * invoked to help free up rwnd space for the peer. Setting this to a 3608 * lower value will cause partial deliveries to happen more often. The 3609 * calls argument is an integer that sets or gets the partial delivery 3610 * point. Note also that the call will fail if the user attempts to set 3611 * this value larger than the socket receive buffer size. 3612 * 3613 * Note that any single message having a length smaller than or equal to 3614 * the SCTP partial delivery point will be delivered in one single read 3615 * call as long as the user provided buffer is large enough to hold the 3616 * message. 3617 */ 3618 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3619 char __user *optval, 3620 unsigned int optlen) 3621 { 3622 u32 val; 3623 3624 if (optlen != sizeof(u32)) 3625 return -EINVAL; 3626 if (get_user(val, (int __user *)optval)) 3627 return -EFAULT; 3628 3629 /* Note: We double the receive buffer from what the user sets 3630 * it to be, also initial rwnd is based on rcvbuf/2. 3631 */ 3632 if (val > (sk->sk_rcvbuf >> 1)) 3633 return -EINVAL; 3634 3635 sctp_sk(sk)->pd_point = val; 3636 3637 return 0; /* is this the right error code? */ 3638 } 3639 3640 /* 3641 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3642 * 3643 * This option will allow a user to change the maximum burst of packets 3644 * that can be emitted by this association. Note that the default value 3645 * is 4, and some implementations may restrict this setting so that it 3646 * can only be lowered. 3647 * 3648 * NOTE: This text doesn't seem right. Do this on a socket basis with 3649 * future associations inheriting the socket value. 3650 */ 3651 static int sctp_setsockopt_maxburst(struct sock *sk, 3652 char __user *optval, 3653 unsigned int optlen) 3654 { 3655 struct sctp_sock *sp = sctp_sk(sk); 3656 struct sctp_assoc_value params; 3657 struct sctp_association *asoc; 3658 3659 if (optlen == sizeof(int)) { 3660 pr_warn_ratelimited(DEPRECATED 3661 "%s (pid %d) " 3662 "Use of int in max_burst socket option deprecated.\n" 3663 "Use struct sctp_assoc_value instead\n", 3664 current->comm, task_pid_nr(current)); 3665 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3666 return -EFAULT; 3667 params.assoc_id = SCTP_FUTURE_ASSOC; 3668 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3669 if (copy_from_user(¶ms, optval, optlen)) 3670 return -EFAULT; 3671 } else 3672 return -EINVAL; 3673 3674 asoc = sctp_id2assoc(sk, params.assoc_id); 3675 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3676 sctp_style(sk, UDP)) 3677 return -EINVAL; 3678 3679 if (asoc) { 3680 asoc->max_burst = params.assoc_value; 3681 3682 return 0; 3683 } 3684 3685 if (sctp_style(sk, TCP)) 3686 params.assoc_id = SCTP_FUTURE_ASSOC; 3687 3688 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3689 params.assoc_id == SCTP_ALL_ASSOC) 3690 sp->max_burst = params.assoc_value; 3691 3692 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3693 params.assoc_id == SCTP_ALL_ASSOC) 3694 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3695 asoc->max_burst = params.assoc_value; 3696 3697 return 0; 3698 } 3699 3700 /* 3701 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3702 * 3703 * This set option adds a chunk type that the user is requesting to be 3704 * received only in an authenticated way. Changes to the list of chunks 3705 * will only effect future associations on the socket. 3706 */ 3707 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3708 char __user *optval, 3709 unsigned int optlen) 3710 { 3711 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3712 struct sctp_authchunk val; 3713 3714 if (!ep->auth_enable) 3715 return -EACCES; 3716 3717 if (optlen != sizeof(struct sctp_authchunk)) 3718 return -EINVAL; 3719 if (copy_from_user(&val, optval, optlen)) 3720 return -EFAULT; 3721 3722 switch (val.sauth_chunk) { 3723 case SCTP_CID_INIT: 3724 case SCTP_CID_INIT_ACK: 3725 case SCTP_CID_SHUTDOWN_COMPLETE: 3726 case SCTP_CID_AUTH: 3727 return -EINVAL; 3728 } 3729 3730 /* add this chunk id to the endpoint */ 3731 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3732 } 3733 3734 /* 3735 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3736 * 3737 * This option gets or sets the list of HMAC algorithms that the local 3738 * endpoint requires the peer to use. 3739 */ 3740 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3741 char __user *optval, 3742 unsigned int optlen) 3743 { 3744 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3745 struct sctp_hmacalgo *hmacs; 3746 u32 idents; 3747 int err; 3748 3749 if (!ep->auth_enable) 3750 return -EACCES; 3751 3752 if (optlen < sizeof(struct sctp_hmacalgo)) 3753 return -EINVAL; 3754 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3755 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3756 3757 hmacs = memdup_user(optval, optlen); 3758 if (IS_ERR(hmacs)) 3759 return PTR_ERR(hmacs); 3760 3761 idents = hmacs->shmac_num_idents; 3762 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3763 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3764 err = -EINVAL; 3765 goto out; 3766 } 3767 3768 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3769 out: 3770 kfree(hmacs); 3771 return err; 3772 } 3773 3774 /* 3775 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3776 * 3777 * This option will set a shared secret key which is used to build an 3778 * association shared key. 3779 */ 3780 static int sctp_setsockopt_auth_key(struct sock *sk, 3781 char __user *optval, 3782 unsigned int optlen) 3783 { 3784 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3785 struct sctp_authkey *authkey; 3786 struct sctp_association *asoc; 3787 int ret = -EINVAL; 3788 3789 if (!ep->auth_enable) 3790 return -EACCES; 3791 3792 if (optlen <= sizeof(struct sctp_authkey)) 3793 return -EINVAL; 3794 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3795 * this. 3796 */ 3797 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3798 3799 authkey = memdup_user(optval, optlen); 3800 if (IS_ERR(authkey)) 3801 return PTR_ERR(authkey); 3802 3803 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3804 goto out; 3805 3806 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3807 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3808 sctp_style(sk, UDP)) 3809 goto out; 3810 3811 if (asoc) { 3812 ret = sctp_auth_set_key(ep, asoc, authkey); 3813 goto out; 3814 } 3815 3816 if (sctp_style(sk, TCP)) 3817 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3818 3819 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3820 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3821 ret = sctp_auth_set_key(ep, asoc, authkey); 3822 if (ret) 3823 goto out; 3824 } 3825 3826 ret = 0; 3827 3828 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3829 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3830 list_for_each_entry(asoc, &ep->asocs, asocs) { 3831 int res = sctp_auth_set_key(ep, asoc, authkey); 3832 3833 if (res && !ret) 3834 ret = res; 3835 } 3836 } 3837 3838 out: 3839 kzfree(authkey); 3840 return ret; 3841 } 3842 3843 /* 3844 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3845 * 3846 * This option will get or set the active shared key to be used to build 3847 * the association shared key. 3848 */ 3849 static int sctp_setsockopt_active_key(struct sock *sk, 3850 char __user *optval, 3851 unsigned int optlen) 3852 { 3853 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3854 struct sctp_association *asoc; 3855 struct sctp_authkeyid val; 3856 int ret = 0; 3857 3858 if (!ep->auth_enable) 3859 return -EACCES; 3860 3861 if (optlen != sizeof(struct sctp_authkeyid)) 3862 return -EINVAL; 3863 if (copy_from_user(&val, optval, optlen)) 3864 return -EFAULT; 3865 3866 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3867 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3868 sctp_style(sk, UDP)) 3869 return -EINVAL; 3870 3871 if (asoc) 3872 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3873 3874 if (sctp_style(sk, TCP)) 3875 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3876 3877 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3878 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3879 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3880 if (ret) 3881 return ret; 3882 } 3883 3884 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3885 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3886 list_for_each_entry(asoc, &ep->asocs, asocs) { 3887 int res = sctp_auth_set_active_key(ep, asoc, 3888 val.scact_keynumber); 3889 3890 if (res && !ret) 3891 ret = res; 3892 } 3893 } 3894 3895 return ret; 3896 } 3897 3898 /* 3899 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3900 * 3901 * This set option will delete a shared secret key from use. 3902 */ 3903 static int sctp_setsockopt_del_key(struct sock *sk, 3904 char __user *optval, 3905 unsigned int optlen) 3906 { 3907 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3908 struct sctp_association *asoc; 3909 struct sctp_authkeyid val; 3910 int ret = 0; 3911 3912 if (!ep->auth_enable) 3913 return -EACCES; 3914 3915 if (optlen != sizeof(struct sctp_authkeyid)) 3916 return -EINVAL; 3917 if (copy_from_user(&val, optval, optlen)) 3918 return -EFAULT; 3919 3920 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3921 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3922 sctp_style(sk, UDP)) 3923 return -EINVAL; 3924 3925 if (asoc) 3926 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3927 3928 if (sctp_style(sk, TCP)) 3929 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3930 3931 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3932 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3933 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3934 if (ret) 3935 return ret; 3936 } 3937 3938 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3939 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3940 list_for_each_entry(asoc, &ep->asocs, asocs) { 3941 int res = sctp_auth_del_key_id(ep, asoc, 3942 val.scact_keynumber); 3943 3944 if (res && !ret) 3945 ret = res; 3946 } 3947 } 3948 3949 return ret; 3950 } 3951 3952 /* 3953 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3954 * 3955 * This set option will deactivate a shared secret key. 3956 */ 3957 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3958 unsigned int optlen) 3959 { 3960 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3961 struct sctp_association *asoc; 3962 struct sctp_authkeyid val; 3963 int ret = 0; 3964 3965 if (!ep->auth_enable) 3966 return -EACCES; 3967 3968 if (optlen != sizeof(struct sctp_authkeyid)) 3969 return -EINVAL; 3970 if (copy_from_user(&val, optval, optlen)) 3971 return -EFAULT; 3972 3973 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3974 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3975 sctp_style(sk, UDP)) 3976 return -EINVAL; 3977 3978 if (asoc) 3979 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3980 3981 if (sctp_style(sk, TCP)) 3982 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3983 3984 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3985 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3986 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3987 if (ret) 3988 return ret; 3989 } 3990 3991 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3992 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3993 list_for_each_entry(asoc, &ep->asocs, asocs) { 3994 int res = sctp_auth_deact_key_id(ep, asoc, 3995 val.scact_keynumber); 3996 3997 if (res && !ret) 3998 ret = res; 3999 } 4000 } 4001 4002 return ret; 4003 } 4004 4005 /* 4006 * 8.1.23 SCTP_AUTO_ASCONF 4007 * 4008 * This option will enable or disable the use of the automatic generation of 4009 * ASCONF chunks to add and delete addresses to an existing association. Note 4010 * that this option has two caveats namely: a) it only affects sockets that 4011 * are bound to all addresses available to the SCTP stack, and b) the system 4012 * administrator may have an overriding control that turns the ASCONF feature 4013 * off no matter what setting the socket option may have. 4014 * This option expects an integer boolean flag, where a non-zero value turns on 4015 * the option, and a zero value turns off the option. 4016 * Note. In this implementation, socket operation overrides default parameter 4017 * being set by sysctl as well as FreeBSD implementation 4018 */ 4019 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 4020 unsigned int optlen) 4021 { 4022 int val; 4023 struct sctp_sock *sp = sctp_sk(sk); 4024 4025 if (optlen < sizeof(int)) 4026 return -EINVAL; 4027 if (get_user(val, (int __user *)optval)) 4028 return -EFAULT; 4029 if (!sctp_is_ep_boundall(sk) && val) 4030 return -EINVAL; 4031 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 4032 return 0; 4033 4034 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4035 if (val == 0 && sp->do_auto_asconf) { 4036 list_del(&sp->auto_asconf_list); 4037 sp->do_auto_asconf = 0; 4038 } else if (val && !sp->do_auto_asconf) { 4039 list_add_tail(&sp->auto_asconf_list, 4040 &sock_net(sk)->sctp.auto_asconf_splist); 4041 sp->do_auto_asconf = 1; 4042 } 4043 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4044 return 0; 4045 } 4046 4047 /* 4048 * SCTP_PEER_ADDR_THLDS 4049 * 4050 * This option allows us to alter the partially failed threshold for one or all 4051 * transports in an association. See Section 6.1 of: 4052 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 4053 */ 4054 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 4055 char __user *optval, 4056 unsigned int optlen) 4057 { 4058 struct sctp_paddrthlds val; 4059 struct sctp_transport *trans; 4060 struct sctp_association *asoc; 4061 4062 if (optlen < sizeof(struct sctp_paddrthlds)) 4063 return -EINVAL; 4064 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 4065 sizeof(struct sctp_paddrthlds))) 4066 return -EFAULT; 4067 4068 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 4069 trans = sctp_addr_id2transport(sk, &val.spt_address, 4070 val.spt_assoc_id); 4071 if (!trans) 4072 return -ENOENT; 4073 4074 if (val.spt_pathmaxrxt) 4075 trans->pathmaxrxt = val.spt_pathmaxrxt; 4076 trans->pf_retrans = val.spt_pathpfthld; 4077 4078 return 0; 4079 } 4080 4081 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 4082 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 4083 sctp_style(sk, UDP)) 4084 return -EINVAL; 4085 4086 if (asoc) { 4087 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 4088 transports) { 4089 if (val.spt_pathmaxrxt) 4090 trans->pathmaxrxt = val.spt_pathmaxrxt; 4091 trans->pf_retrans = val.spt_pathpfthld; 4092 } 4093 4094 if (val.spt_pathmaxrxt) 4095 asoc->pathmaxrxt = val.spt_pathmaxrxt; 4096 asoc->pf_retrans = val.spt_pathpfthld; 4097 } else { 4098 struct sctp_sock *sp = sctp_sk(sk); 4099 4100 if (val.spt_pathmaxrxt) 4101 sp->pathmaxrxt = val.spt_pathmaxrxt; 4102 sp->pf_retrans = val.spt_pathpfthld; 4103 } 4104 4105 return 0; 4106 } 4107 4108 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4109 char __user *optval, 4110 unsigned int optlen) 4111 { 4112 int val; 4113 4114 if (optlen < sizeof(int)) 4115 return -EINVAL; 4116 if (get_user(val, (int __user *) optval)) 4117 return -EFAULT; 4118 4119 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4120 4121 return 0; 4122 } 4123 4124 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4125 char __user *optval, 4126 unsigned int optlen) 4127 { 4128 int val; 4129 4130 if (optlen < sizeof(int)) 4131 return -EINVAL; 4132 if (get_user(val, (int __user *) optval)) 4133 return -EFAULT; 4134 4135 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4136 4137 return 0; 4138 } 4139 4140 static int sctp_setsockopt_pr_supported(struct sock *sk, 4141 char __user *optval, 4142 unsigned int optlen) 4143 { 4144 struct sctp_assoc_value params; 4145 struct sctp_association *asoc; 4146 4147 if (optlen != sizeof(params)) 4148 return -EINVAL; 4149 4150 if (copy_from_user(¶ms, optval, optlen)) 4151 return -EFAULT; 4152 4153 asoc = sctp_id2assoc(sk, params.assoc_id); 4154 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4155 sctp_style(sk, UDP)) 4156 return -EINVAL; 4157 4158 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4159 4160 return 0; 4161 } 4162 4163 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4164 char __user *optval, 4165 unsigned int optlen) 4166 { 4167 struct sctp_sock *sp = sctp_sk(sk); 4168 struct sctp_default_prinfo info; 4169 struct sctp_association *asoc; 4170 int retval = -EINVAL; 4171 4172 if (optlen != sizeof(info)) 4173 goto out; 4174 4175 if (copy_from_user(&info, optval, sizeof(info))) { 4176 retval = -EFAULT; 4177 goto out; 4178 } 4179 4180 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4181 goto out; 4182 4183 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4184 info.pr_value = 0; 4185 4186 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4187 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4188 sctp_style(sk, UDP)) 4189 goto out; 4190 4191 retval = 0; 4192 4193 if (asoc) { 4194 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4195 asoc->default_timetolive = info.pr_value; 4196 goto out; 4197 } 4198 4199 if (sctp_style(sk, TCP)) 4200 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4201 4202 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4203 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4204 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4205 sp->default_timetolive = info.pr_value; 4206 } 4207 4208 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4209 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4210 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4211 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4212 asoc->default_timetolive = info.pr_value; 4213 } 4214 } 4215 4216 out: 4217 return retval; 4218 } 4219 4220 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4221 char __user *optval, 4222 unsigned int optlen) 4223 { 4224 struct sctp_assoc_value params; 4225 struct sctp_association *asoc; 4226 int retval = -EINVAL; 4227 4228 if (optlen != sizeof(params)) 4229 goto out; 4230 4231 if (copy_from_user(¶ms, optval, optlen)) { 4232 retval = -EFAULT; 4233 goto out; 4234 } 4235 4236 asoc = sctp_id2assoc(sk, params.assoc_id); 4237 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4238 sctp_style(sk, UDP)) 4239 goto out; 4240 4241 if (asoc) 4242 asoc->reconf_enable = !!params.assoc_value; 4243 else 4244 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4245 4246 retval = 0; 4247 4248 out: 4249 return retval; 4250 } 4251 4252 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4253 char __user *optval, 4254 unsigned int optlen) 4255 { 4256 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4257 struct sctp_assoc_value params; 4258 struct sctp_association *asoc; 4259 int retval = -EINVAL; 4260 4261 if (optlen != sizeof(params)) 4262 goto out; 4263 4264 if (copy_from_user(¶ms, optval, optlen)) { 4265 retval = -EFAULT; 4266 goto out; 4267 } 4268 4269 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4270 goto out; 4271 4272 asoc = sctp_id2assoc(sk, params.assoc_id); 4273 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4274 sctp_style(sk, UDP)) 4275 goto out; 4276 4277 retval = 0; 4278 4279 if (asoc) { 4280 asoc->strreset_enable = params.assoc_value; 4281 goto out; 4282 } 4283 4284 if (sctp_style(sk, TCP)) 4285 params.assoc_id = SCTP_FUTURE_ASSOC; 4286 4287 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4288 params.assoc_id == SCTP_ALL_ASSOC) 4289 ep->strreset_enable = params.assoc_value; 4290 4291 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4292 params.assoc_id == SCTP_ALL_ASSOC) 4293 list_for_each_entry(asoc, &ep->asocs, asocs) 4294 asoc->strreset_enable = params.assoc_value; 4295 4296 out: 4297 return retval; 4298 } 4299 4300 static int sctp_setsockopt_reset_streams(struct sock *sk, 4301 char __user *optval, 4302 unsigned int optlen) 4303 { 4304 struct sctp_reset_streams *params; 4305 struct sctp_association *asoc; 4306 int retval = -EINVAL; 4307 4308 if (optlen < sizeof(*params)) 4309 return -EINVAL; 4310 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4311 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4312 sizeof(__u16) * sizeof(*params)); 4313 4314 params = memdup_user(optval, optlen); 4315 if (IS_ERR(params)) 4316 return PTR_ERR(params); 4317 4318 if (params->srs_number_streams * sizeof(__u16) > 4319 optlen - sizeof(*params)) 4320 goto out; 4321 4322 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4323 if (!asoc) 4324 goto out; 4325 4326 retval = sctp_send_reset_streams(asoc, params); 4327 4328 out: 4329 kfree(params); 4330 return retval; 4331 } 4332 4333 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4334 char __user *optval, 4335 unsigned int optlen) 4336 { 4337 struct sctp_association *asoc; 4338 sctp_assoc_t associd; 4339 int retval = -EINVAL; 4340 4341 if (optlen != sizeof(associd)) 4342 goto out; 4343 4344 if (copy_from_user(&associd, optval, optlen)) { 4345 retval = -EFAULT; 4346 goto out; 4347 } 4348 4349 asoc = sctp_id2assoc(sk, associd); 4350 if (!asoc) 4351 goto out; 4352 4353 retval = sctp_send_reset_assoc(asoc); 4354 4355 out: 4356 return retval; 4357 } 4358 4359 static int sctp_setsockopt_add_streams(struct sock *sk, 4360 char __user *optval, 4361 unsigned int optlen) 4362 { 4363 struct sctp_association *asoc; 4364 struct sctp_add_streams params; 4365 int retval = -EINVAL; 4366 4367 if (optlen != sizeof(params)) 4368 goto out; 4369 4370 if (copy_from_user(¶ms, optval, optlen)) { 4371 retval = -EFAULT; 4372 goto out; 4373 } 4374 4375 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4376 if (!asoc) 4377 goto out; 4378 4379 retval = sctp_send_add_streams(asoc, ¶ms); 4380 4381 out: 4382 return retval; 4383 } 4384 4385 static int sctp_setsockopt_scheduler(struct sock *sk, 4386 char __user *optval, 4387 unsigned int optlen) 4388 { 4389 struct sctp_sock *sp = sctp_sk(sk); 4390 struct sctp_association *asoc; 4391 struct sctp_assoc_value params; 4392 int retval = 0; 4393 4394 if (optlen < sizeof(params)) 4395 return -EINVAL; 4396 4397 optlen = sizeof(params); 4398 if (copy_from_user(¶ms, optval, optlen)) 4399 return -EFAULT; 4400 4401 if (params.assoc_value > SCTP_SS_MAX) 4402 return -EINVAL; 4403 4404 asoc = sctp_id2assoc(sk, params.assoc_id); 4405 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4406 sctp_style(sk, UDP)) 4407 return -EINVAL; 4408 4409 if (asoc) 4410 return sctp_sched_set_sched(asoc, params.assoc_value); 4411 4412 if (sctp_style(sk, TCP)) 4413 params.assoc_id = SCTP_FUTURE_ASSOC; 4414 4415 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4416 params.assoc_id == SCTP_ALL_ASSOC) 4417 sp->default_ss = params.assoc_value; 4418 4419 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4420 params.assoc_id == SCTP_ALL_ASSOC) { 4421 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4422 int ret = sctp_sched_set_sched(asoc, 4423 params.assoc_value); 4424 4425 if (ret && !retval) 4426 retval = ret; 4427 } 4428 } 4429 4430 return retval; 4431 } 4432 4433 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4434 char __user *optval, 4435 unsigned int optlen) 4436 { 4437 struct sctp_stream_value params; 4438 struct sctp_association *asoc; 4439 int retval = -EINVAL; 4440 4441 if (optlen < sizeof(params)) 4442 goto out; 4443 4444 optlen = sizeof(params); 4445 if (copy_from_user(¶ms, optval, optlen)) { 4446 retval = -EFAULT; 4447 goto out; 4448 } 4449 4450 asoc = sctp_id2assoc(sk, params.assoc_id); 4451 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4452 sctp_style(sk, UDP)) 4453 goto out; 4454 4455 if (asoc) { 4456 retval = sctp_sched_set_value(asoc, params.stream_id, 4457 params.stream_value, GFP_KERNEL); 4458 goto out; 4459 } 4460 4461 retval = 0; 4462 4463 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4464 int ret = sctp_sched_set_value(asoc, params.stream_id, 4465 params.stream_value, GFP_KERNEL); 4466 if (ret && !retval) /* try to return the 1st error. */ 4467 retval = ret; 4468 } 4469 4470 out: 4471 return retval; 4472 } 4473 4474 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4475 char __user *optval, 4476 unsigned int optlen) 4477 { 4478 struct sctp_sock *sp = sctp_sk(sk); 4479 struct sctp_assoc_value params; 4480 struct sctp_association *asoc; 4481 int retval = -EINVAL; 4482 4483 if (optlen < sizeof(params)) 4484 goto out; 4485 4486 optlen = sizeof(params); 4487 if (copy_from_user(¶ms, optval, optlen)) { 4488 retval = -EFAULT; 4489 goto out; 4490 } 4491 4492 asoc = sctp_id2assoc(sk, params.assoc_id); 4493 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4494 sctp_style(sk, UDP)) 4495 goto out; 4496 4497 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4498 retval = -EPERM; 4499 goto out; 4500 } 4501 4502 sp->strm_interleave = !!params.assoc_value; 4503 4504 retval = 0; 4505 4506 out: 4507 return retval; 4508 } 4509 4510 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4511 unsigned int optlen) 4512 { 4513 int val; 4514 4515 if (!sctp_style(sk, TCP)) 4516 return -EOPNOTSUPP; 4517 4518 if (sctp_sk(sk)->ep->base.bind_addr.port) 4519 return -EFAULT; 4520 4521 if (optlen < sizeof(int)) 4522 return -EINVAL; 4523 4524 if (get_user(val, (int __user *)optval)) 4525 return -EFAULT; 4526 4527 sctp_sk(sk)->reuse = !!val; 4528 4529 return 0; 4530 } 4531 4532 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4533 struct sctp_association *asoc) 4534 { 4535 struct sctp_ulpevent *event; 4536 4537 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4538 4539 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4540 if (sctp_outq_is_empty(&asoc->outqueue)) { 4541 event = sctp_ulpevent_make_sender_dry_event(asoc, 4542 GFP_USER | __GFP_NOWARN); 4543 if (!event) 4544 return -ENOMEM; 4545 4546 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4547 } 4548 } 4549 4550 return 0; 4551 } 4552 4553 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4554 unsigned int optlen) 4555 { 4556 struct sctp_sock *sp = sctp_sk(sk); 4557 struct sctp_association *asoc; 4558 struct sctp_event param; 4559 int retval = 0; 4560 4561 if (optlen < sizeof(param)) 4562 return -EINVAL; 4563 4564 optlen = sizeof(param); 4565 if (copy_from_user(¶m, optval, optlen)) 4566 return -EFAULT; 4567 4568 if (param.se_type < SCTP_SN_TYPE_BASE || 4569 param.se_type > SCTP_SN_TYPE_MAX) 4570 return -EINVAL; 4571 4572 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4573 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4574 sctp_style(sk, UDP)) 4575 return -EINVAL; 4576 4577 if (asoc) 4578 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4579 4580 if (sctp_style(sk, TCP)) 4581 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4582 4583 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4584 param.se_assoc_id == SCTP_ALL_ASSOC) 4585 sctp_ulpevent_type_set(&sp->subscribe, 4586 param.se_type, param.se_on); 4587 4588 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4589 param.se_assoc_id == SCTP_ALL_ASSOC) { 4590 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4591 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4592 4593 if (ret && !retval) 4594 retval = ret; 4595 } 4596 } 4597 4598 return retval; 4599 } 4600 4601 /* API 6.2 setsockopt(), getsockopt() 4602 * 4603 * Applications use setsockopt() and getsockopt() to set or retrieve 4604 * socket options. Socket options are used to change the default 4605 * behavior of sockets calls. They are described in Section 7. 4606 * 4607 * The syntax is: 4608 * 4609 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4610 * int __user *optlen); 4611 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4612 * int optlen); 4613 * 4614 * sd - the socket descript. 4615 * level - set to IPPROTO_SCTP for all SCTP options. 4616 * optname - the option name. 4617 * optval - the buffer to store the value of the option. 4618 * optlen - the size of the buffer. 4619 */ 4620 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4621 char __user *optval, unsigned int optlen) 4622 { 4623 int retval = 0; 4624 4625 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4626 4627 /* I can hardly begin to describe how wrong this is. This is 4628 * so broken as to be worse than useless. The API draft 4629 * REALLY is NOT helpful here... I am not convinced that the 4630 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4631 * are at all well-founded. 4632 */ 4633 if (level != SOL_SCTP) { 4634 struct sctp_af *af = sctp_sk(sk)->pf->af; 4635 retval = af->setsockopt(sk, level, optname, optval, optlen); 4636 goto out_nounlock; 4637 } 4638 4639 lock_sock(sk); 4640 4641 switch (optname) { 4642 case SCTP_SOCKOPT_BINDX_ADD: 4643 /* 'optlen' is the size of the addresses buffer. */ 4644 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4645 optlen, SCTP_BINDX_ADD_ADDR); 4646 break; 4647 4648 case SCTP_SOCKOPT_BINDX_REM: 4649 /* 'optlen' is the size of the addresses buffer. */ 4650 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4651 optlen, SCTP_BINDX_REM_ADDR); 4652 break; 4653 4654 case SCTP_SOCKOPT_CONNECTX_OLD: 4655 /* 'optlen' is the size of the addresses buffer. */ 4656 retval = sctp_setsockopt_connectx_old(sk, 4657 (struct sockaddr __user *)optval, 4658 optlen); 4659 break; 4660 4661 case SCTP_SOCKOPT_CONNECTX: 4662 /* 'optlen' is the size of the addresses buffer. */ 4663 retval = sctp_setsockopt_connectx(sk, 4664 (struct sockaddr __user *)optval, 4665 optlen); 4666 break; 4667 4668 case SCTP_DISABLE_FRAGMENTS: 4669 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4670 break; 4671 4672 case SCTP_EVENTS: 4673 retval = sctp_setsockopt_events(sk, optval, optlen); 4674 break; 4675 4676 case SCTP_AUTOCLOSE: 4677 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4678 break; 4679 4680 case SCTP_PEER_ADDR_PARAMS: 4681 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4682 break; 4683 4684 case SCTP_DELAYED_SACK: 4685 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4686 break; 4687 case SCTP_PARTIAL_DELIVERY_POINT: 4688 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4689 break; 4690 4691 case SCTP_INITMSG: 4692 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4693 break; 4694 case SCTP_DEFAULT_SEND_PARAM: 4695 retval = sctp_setsockopt_default_send_param(sk, optval, 4696 optlen); 4697 break; 4698 case SCTP_DEFAULT_SNDINFO: 4699 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4700 break; 4701 case SCTP_PRIMARY_ADDR: 4702 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4703 break; 4704 case SCTP_SET_PEER_PRIMARY_ADDR: 4705 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4706 break; 4707 case SCTP_NODELAY: 4708 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4709 break; 4710 case SCTP_RTOINFO: 4711 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4712 break; 4713 case SCTP_ASSOCINFO: 4714 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4715 break; 4716 case SCTP_I_WANT_MAPPED_V4_ADDR: 4717 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4718 break; 4719 case SCTP_MAXSEG: 4720 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4721 break; 4722 case SCTP_ADAPTATION_LAYER: 4723 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4724 break; 4725 case SCTP_CONTEXT: 4726 retval = sctp_setsockopt_context(sk, optval, optlen); 4727 break; 4728 case SCTP_FRAGMENT_INTERLEAVE: 4729 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4730 break; 4731 case SCTP_MAX_BURST: 4732 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4733 break; 4734 case SCTP_AUTH_CHUNK: 4735 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4736 break; 4737 case SCTP_HMAC_IDENT: 4738 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4739 break; 4740 case SCTP_AUTH_KEY: 4741 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4742 break; 4743 case SCTP_AUTH_ACTIVE_KEY: 4744 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4745 break; 4746 case SCTP_AUTH_DELETE_KEY: 4747 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4748 break; 4749 case SCTP_AUTH_DEACTIVATE_KEY: 4750 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4751 break; 4752 case SCTP_AUTO_ASCONF: 4753 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4754 break; 4755 case SCTP_PEER_ADDR_THLDS: 4756 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4757 break; 4758 case SCTP_RECVRCVINFO: 4759 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4760 break; 4761 case SCTP_RECVNXTINFO: 4762 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4763 break; 4764 case SCTP_PR_SUPPORTED: 4765 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4766 break; 4767 case SCTP_DEFAULT_PRINFO: 4768 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4769 break; 4770 case SCTP_RECONFIG_SUPPORTED: 4771 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4772 break; 4773 case SCTP_ENABLE_STREAM_RESET: 4774 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4775 break; 4776 case SCTP_RESET_STREAMS: 4777 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4778 break; 4779 case SCTP_RESET_ASSOC: 4780 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4781 break; 4782 case SCTP_ADD_STREAMS: 4783 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4784 break; 4785 case SCTP_STREAM_SCHEDULER: 4786 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4787 break; 4788 case SCTP_STREAM_SCHEDULER_VALUE: 4789 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4790 break; 4791 case SCTP_INTERLEAVING_SUPPORTED: 4792 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4793 optlen); 4794 break; 4795 case SCTP_REUSE_PORT: 4796 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4797 break; 4798 case SCTP_EVENT: 4799 retval = sctp_setsockopt_event(sk, optval, optlen); 4800 break; 4801 default: 4802 retval = -ENOPROTOOPT; 4803 break; 4804 } 4805 4806 release_sock(sk); 4807 4808 out_nounlock: 4809 return retval; 4810 } 4811 4812 /* API 3.1.6 connect() - UDP Style Syntax 4813 * 4814 * An application may use the connect() call in the UDP model to initiate an 4815 * association without sending data. 4816 * 4817 * The syntax is: 4818 * 4819 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4820 * 4821 * sd: the socket descriptor to have a new association added to. 4822 * 4823 * nam: the address structure (either struct sockaddr_in or struct 4824 * sockaddr_in6 defined in RFC2553 [7]). 4825 * 4826 * len: the size of the address. 4827 */ 4828 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4829 int addr_len, int flags) 4830 { 4831 struct inet_sock *inet = inet_sk(sk); 4832 struct sctp_af *af; 4833 int err = 0; 4834 4835 lock_sock(sk); 4836 4837 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4838 addr, addr_len); 4839 4840 /* We may need to bind the socket. */ 4841 if (!inet->inet_num) { 4842 if (sk->sk_prot->get_port(sk, 0)) { 4843 release_sock(sk); 4844 return -EAGAIN; 4845 } 4846 inet->inet_sport = htons(inet->inet_num); 4847 } 4848 4849 /* Validate addr_len before calling common connect/connectx routine. */ 4850 af = addr_len < offsetofend(struct sockaddr, sa_family) ? NULL : 4851 sctp_get_af_specific(addr->sa_family); 4852 if (!af || addr_len < af->sockaddr_len) { 4853 err = -EINVAL; 4854 } else { 4855 /* Pass correct addr len to common routine (so it knows there 4856 * is only one address being passed. 4857 */ 4858 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4859 } 4860 4861 release_sock(sk); 4862 return err; 4863 } 4864 4865 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4866 int addr_len, int flags) 4867 { 4868 if (addr_len < sizeof(uaddr->sa_family)) 4869 return -EINVAL; 4870 4871 if (uaddr->sa_family == AF_UNSPEC) 4872 return -EOPNOTSUPP; 4873 4874 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4875 } 4876 4877 /* FIXME: Write comments. */ 4878 static int sctp_disconnect(struct sock *sk, int flags) 4879 { 4880 return -EOPNOTSUPP; /* STUB */ 4881 } 4882 4883 /* 4.1.4 accept() - TCP Style Syntax 4884 * 4885 * Applications use accept() call to remove an established SCTP 4886 * association from the accept queue of the endpoint. A new socket 4887 * descriptor will be returned from accept() to represent the newly 4888 * formed association. 4889 */ 4890 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4891 { 4892 struct sctp_sock *sp; 4893 struct sctp_endpoint *ep; 4894 struct sock *newsk = NULL; 4895 struct sctp_association *asoc; 4896 long timeo; 4897 int error = 0; 4898 4899 lock_sock(sk); 4900 4901 sp = sctp_sk(sk); 4902 ep = sp->ep; 4903 4904 if (!sctp_style(sk, TCP)) { 4905 error = -EOPNOTSUPP; 4906 goto out; 4907 } 4908 4909 if (!sctp_sstate(sk, LISTENING)) { 4910 error = -EINVAL; 4911 goto out; 4912 } 4913 4914 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4915 4916 error = sctp_wait_for_accept(sk, timeo); 4917 if (error) 4918 goto out; 4919 4920 /* We treat the list of associations on the endpoint as the accept 4921 * queue and pick the first association on the list. 4922 */ 4923 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4924 4925 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4926 if (!newsk) { 4927 error = -ENOMEM; 4928 goto out; 4929 } 4930 4931 /* Populate the fields of the newsk from the oldsk and migrate the 4932 * asoc to the newsk. 4933 */ 4934 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4935 if (error) { 4936 sk_common_release(newsk); 4937 newsk = NULL; 4938 } 4939 4940 out: 4941 release_sock(sk); 4942 *err = error; 4943 return newsk; 4944 } 4945 4946 /* The SCTP ioctl handler. */ 4947 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4948 { 4949 int rc = -ENOTCONN; 4950 4951 lock_sock(sk); 4952 4953 /* 4954 * SEQPACKET-style sockets in LISTENING state are valid, for 4955 * SCTP, so only discard TCP-style sockets in LISTENING state. 4956 */ 4957 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4958 goto out; 4959 4960 switch (cmd) { 4961 case SIOCINQ: { 4962 struct sk_buff *skb; 4963 unsigned int amount = 0; 4964 4965 skb = skb_peek(&sk->sk_receive_queue); 4966 if (skb != NULL) { 4967 /* 4968 * We will only return the amount of this packet since 4969 * that is all that will be read. 4970 */ 4971 amount = skb->len; 4972 } 4973 rc = put_user(amount, (int __user *)arg); 4974 break; 4975 } 4976 default: 4977 rc = -ENOIOCTLCMD; 4978 break; 4979 } 4980 out: 4981 release_sock(sk); 4982 return rc; 4983 } 4984 4985 /* This is the function which gets called during socket creation to 4986 * initialized the SCTP-specific portion of the sock. 4987 * The sock structure should already be zero-filled memory. 4988 */ 4989 static int sctp_init_sock(struct sock *sk) 4990 { 4991 struct net *net = sock_net(sk); 4992 struct sctp_sock *sp; 4993 4994 pr_debug("%s: sk:%p\n", __func__, sk); 4995 4996 sp = sctp_sk(sk); 4997 4998 /* Initialize the SCTP per socket area. */ 4999 switch (sk->sk_type) { 5000 case SOCK_SEQPACKET: 5001 sp->type = SCTP_SOCKET_UDP; 5002 break; 5003 case SOCK_STREAM: 5004 sp->type = SCTP_SOCKET_TCP; 5005 break; 5006 default: 5007 return -ESOCKTNOSUPPORT; 5008 } 5009 5010 sk->sk_gso_type = SKB_GSO_SCTP; 5011 5012 /* Initialize default send parameters. These parameters can be 5013 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5014 */ 5015 sp->default_stream = 0; 5016 sp->default_ppid = 0; 5017 sp->default_flags = 0; 5018 sp->default_context = 0; 5019 sp->default_timetolive = 0; 5020 5021 sp->default_rcv_context = 0; 5022 sp->max_burst = net->sctp.max_burst; 5023 5024 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 5025 5026 /* Initialize default setup parameters. These parameters 5027 * can be modified with the SCTP_INITMSG socket option or 5028 * overridden by the SCTP_INIT CMSG. 5029 */ 5030 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5031 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5032 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5033 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5034 5035 /* Initialize default RTO related parameters. These parameters can 5036 * be modified for with the SCTP_RTOINFO socket option. 5037 */ 5038 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5039 sp->rtoinfo.srto_max = net->sctp.rto_max; 5040 sp->rtoinfo.srto_min = net->sctp.rto_min; 5041 5042 /* Initialize default association related parameters. These parameters 5043 * can be modified with the SCTP_ASSOCINFO socket option. 5044 */ 5045 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5046 sp->assocparams.sasoc_number_peer_destinations = 0; 5047 sp->assocparams.sasoc_peer_rwnd = 0; 5048 sp->assocparams.sasoc_local_rwnd = 0; 5049 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5050 5051 /* Initialize default event subscriptions. By default, all the 5052 * options are off. 5053 */ 5054 sp->subscribe = 0; 5055 5056 /* Default Peer Address Parameters. These defaults can 5057 * be modified via SCTP_PEER_ADDR_PARAMS 5058 */ 5059 sp->hbinterval = net->sctp.hb_interval; 5060 sp->pathmaxrxt = net->sctp.max_retrans_path; 5061 sp->pf_retrans = net->sctp.pf_retrans; 5062 sp->pathmtu = 0; /* allow default discovery */ 5063 sp->sackdelay = net->sctp.sack_timeout; 5064 sp->sackfreq = 2; 5065 sp->param_flags = SPP_HB_ENABLE | 5066 SPP_PMTUD_ENABLE | 5067 SPP_SACKDELAY_ENABLE; 5068 sp->default_ss = SCTP_SS_DEFAULT; 5069 5070 /* If enabled no SCTP message fragmentation will be performed. 5071 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5072 */ 5073 sp->disable_fragments = 0; 5074 5075 /* Enable Nagle algorithm by default. */ 5076 sp->nodelay = 0; 5077 5078 sp->recvrcvinfo = 0; 5079 sp->recvnxtinfo = 0; 5080 5081 /* Enable by default. */ 5082 sp->v4mapped = 1; 5083 5084 /* Auto-close idle associations after the configured 5085 * number of seconds. A value of 0 disables this 5086 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5087 * for UDP-style sockets only. 5088 */ 5089 sp->autoclose = 0; 5090 5091 /* User specified fragmentation limit. */ 5092 sp->user_frag = 0; 5093 5094 sp->adaptation_ind = 0; 5095 5096 sp->pf = sctp_get_pf_specific(sk->sk_family); 5097 5098 /* Control variables for partial data delivery. */ 5099 atomic_set(&sp->pd_mode, 0); 5100 skb_queue_head_init(&sp->pd_lobby); 5101 sp->frag_interleave = 0; 5102 5103 /* Create a per socket endpoint structure. Even if we 5104 * change the data structure relationships, this may still 5105 * be useful for storing pre-connect address information. 5106 */ 5107 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5108 if (!sp->ep) 5109 return -ENOMEM; 5110 5111 sp->hmac = NULL; 5112 5113 sk->sk_destruct = sctp_destruct_sock; 5114 5115 SCTP_DBG_OBJCNT_INC(sock); 5116 5117 local_bh_disable(); 5118 sk_sockets_allocated_inc(sk); 5119 sock_prot_inuse_add(net, sk->sk_prot, 1); 5120 5121 /* Nothing can fail after this block, otherwise 5122 * sctp_destroy_sock() will be called without addr_wq_lock held 5123 */ 5124 if (net->sctp.default_auto_asconf) { 5125 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5126 list_add_tail(&sp->auto_asconf_list, 5127 &net->sctp.auto_asconf_splist); 5128 sp->do_auto_asconf = 1; 5129 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5130 } else { 5131 sp->do_auto_asconf = 0; 5132 } 5133 5134 local_bh_enable(); 5135 5136 return 0; 5137 } 5138 5139 /* Cleanup any SCTP per socket resources. Must be called with 5140 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5141 */ 5142 static void sctp_destroy_sock(struct sock *sk) 5143 { 5144 struct sctp_sock *sp; 5145 5146 pr_debug("%s: sk:%p\n", __func__, sk); 5147 5148 /* Release our hold on the endpoint. */ 5149 sp = sctp_sk(sk); 5150 /* This could happen during socket init, thus we bail out 5151 * early, since the rest of the below is not setup either. 5152 */ 5153 if (sp->ep == NULL) 5154 return; 5155 5156 if (sp->do_auto_asconf) { 5157 sp->do_auto_asconf = 0; 5158 list_del(&sp->auto_asconf_list); 5159 } 5160 sctp_endpoint_free(sp->ep); 5161 local_bh_disable(); 5162 sk_sockets_allocated_dec(sk); 5163 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5164 local_bh_enable(); 5165 } 5166 5167 /* Triggered when there are no references on the socket anymore */ 5168 static void sctp_destruct_sock(struct sock *sk) 5169 { 5170 struct sctp_sock *sp = sctp_sk(sk); 5171 5172 /* Free up the HMAC transform. */ 5173 crypto_free_shash(sp->hmac); 5174 5175 inet_sock_destruct(sk); 5176 } 5177 5178 /* API 4.1.7 shutdown() - TCP Style Syntax 5179 * int shutdown(int socket, int how); 5180 * 5181 * sd - the socket descriptor of the association to be closed. 5182 * how - Specifies the type of shutdown. The values are 5183 * as follows: 5184 * SHUT_RD 5185 * Disables further receive operations. No SCTP 5186 * protocol action is taken. 5187 * SHUT_WR 5188 * Disables further send operations, and initiates 5189 * the SCTP shutdown sequence. 5190 * SHUT_RDWR 5191 * Disables further send and receive operations 5192 * and initiates the SCTP shutdown sequence. 5193 */ 5194 static void sctp_shutdown(struct sock *sk, int how) 5195 { 5196 struct net *net = sock_net(sk); 5197 struct sctp_endpoint *ep; 5198 5199 if (!sctp_style(sk, TCP)) 5200 return; 5201 5202 ep = sctp_sk(sk)->ep; 5203 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5204 struct sctp_association *asoc; 5205 5206 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5207 asoc = list_entry(ep->asocs.next, 5208 struct sctp_association, asocs); 5209 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5210 } 5211 } 5212 5213 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5214 struct sctp_info *info) 5215 { 5216 struct sctp_transport *prim; 5217 struct list_head *pos; 5218 int mask; 5219 5220 memset(info, 0, sizeof(*info)); 5221 if (!asoc) { 5222 struct sctp_sock *sp = sctp_sk(sk); 5223 5224 info->sctpi_s_autoclose = sp->autoclose; 5225 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5226 info->sctpi_s_pd_point = sp->pd_point; 5227 info->sctpi_s_nodelay = sp->nodelay; 5228 info->sctpi_s_disable_fragments = sp->disable_fragments; 5229 info->sctpi_s_v4mapped = sp->v4mapped; 5230 info->sctpi_s_frag_interleave = sp->frag_interleave; 5231 info->sctpi_s_type = sp->type; 5232 5233 return 0; 5234 } 5235 5236 info->sctpi_tag = asoc->c.my_vtag; 5237 info->sctpi_state = asoc->state; 5238 info->sctpi_rwnd = asoc->a_rwnd; 5239 info->sctpi_unackdata = asoc->unack_data; 5240 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5241 info->sctpi_instrms = asoc->stream.incnt; 5242 info->sctpi_outstrms = asoc->stream.outcnt; 5243 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5244 info->sctpi_inqueue++; 5245 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5246 info->sctpi_outqueue++; 5247 info->sctpi_overall_error = asoc->overall_error_count; 5248 info->sctpi_max_burst = asoc->max_burst; 5249 info->sctpi_maxseg = asoc->frag_point; 5250 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5251 info->sctpi_peer_tag = asoc->c.peer_vtag; 5252 5253 mask = asoc->peer.ecn_capable << 1; 5254 mask = (mask | asoc->peer.ipv4_address) << 1; 5255 mask = (mask | asoc->peer.ipv6_address) << 1; 5256 mask = (mask | asoc->peer.hostname_address) << 1; 5257 mask = (mask | asoc->peer.asconf_capable) << 1; 5258 mask = (mask | asoc->peer.prsctp_capable) << 1; 5259 mask = (mask | asoc->peer.auth_capable); 5260 info->sctpi_peer_capable = mask; 5261 mask = asoc->peer.sack_needed << 1; 5262 mask = (mask | asoc->peer.sack_generation) << 1; 5263 mask = (mask | asoc->peer.zero_window_announced); 5264 info->sctpi_peer_sack = mask; 5265 5266 info->sctpi_isacks = asoc->stats.isacks; 5267 info->sctpi_osacks = asoc->stats.osacks; 5268 info->sctpi_opackets = asoc->stats.opackets; 5269 info->sctpi_ipackets = asoc->stats.ipackets; 5270 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5271 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5272 info->sctpi_idupchunks = asoc->stats.idupchunks; 5273 info->sctpi_gapcnt = asoc->stats.gapcnt; 5274 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5275 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5276 info->sctpi_oodchunks = asoc->stats.oodchunks; 5277 info->sctpi_iodchunks = asoc->stats.iodchunks; 5278 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5279 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5280 5281 prim = asoc->peer.primary_path; 5282 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5283 info->sctpi_p_state = prim->state; 5284 info->sctpi_p_cwnd = prim->cwnd; 5285 info->sctpi_p_srtt = prim->srtt; 5286 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5287 info->sctpi_p_hbinterval = prim->hbinterval; 5288 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5289 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5290 info->sctpi_p_ssthresh = prim->ssthresh; 5291 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5292 info->sctpi_p_flight_size = prim->flight_size; 5293 info->sctpi_p_error = prim->error_count; 5294 5295 return 0; 5296 } 5297 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5298 5299 /* use callback to avoid exporting the core structure */ 5300 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5301 { 5302 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5303 5304 rhashtable_walk_start(iter); 5305 } 5306 5307 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5308 { 5309 rhashtable_walk_stop(iter); 5310 rhashtable_walk_exit(iter); 5311 } 5312 5313 struct sctp_transport *sctp_transport_get_next(struct net *net, 5314 struct rhashtable_iter *iter) 5315 { 5316 struct sctp_transport *t; 5317 5318 t = rhashtable_walk_next(iter); 5319 for (; t; t = rhashtable_walk_next(iter)) { 5320 if (IS_ERR(t)) { 5321 if (PTR_ERR(t) == -EAGAIN) 5322 continue; 5323 break; 5324 } 5325 5326 if (!sctp_transport_hold(t)) 5327 continue; 5328 5329 if (net_eq(sock_net(t->asoc->base.sk), net) && 5330 t->asoc->peer.primary_path == t) 5331 break; 5332 5333 sctp_transport_put(t); 5334 } 5335 5336 return t; 5337 } 5338 5339 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5340 struct rhashtable_iter *iter, 5341 int pos) 5342 { 5343 struct sctp_transport *t; 5344 5345 if (!pos) 5346 return SEQ_START_TOKEN; 5347 5348 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5349 if (!--pos) 5350 break; 5351 sctp_transport_put(t); 5352 } 5353 5354 return t; 5355 } 5356 5357 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5358 void *p) { 5359 int err = 0; 5360 int hash = 0; 5361 struct sctp_ep_common *epb; 5362 struct sctp_hashbucket *head; 5363 5364 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5365 hash++, head++) { 5366 read_lock_bh(&head->lock); 5367 sctp_for_each_hentry(epb, &head->chain) { 5368 err = cb(sctp_ep(epb), p); 5369 if (err) 5370 break; 5371 } 5372 read_unlock_bh(&head->lock); 5373 } 5374 5375 return err; 5376 } 5377 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5378 5379 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5380 struct net *net, 5381 const union sctp_addr *laddr, 5382 const union sctp_addr *paddr, void *p) 5383 { 5384 struct sctp_transport *transport; 5385 int err; 5386 5387 rcu_read_lock(); 5388 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5389 rcu_read_unlock(); 5390 if (!transport) 5391 return -ENOENT; 5392 5393 err = cb(transport, p); 5394 sctp_transport_put(transport); 5395 5396 return err; 5397 } 5398 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5399 5400 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5401 int (*cb_done)(struct sctp_transport *, void *), 5402 struct net *net, int *pos, void *p) { 5403 struct rhashtable_iter hti; 5404 struct sctp_transport *tsp; 5405 int ret; 5406 5407 again: 5408 ret = 0; 5409 sctp_transport_walk_start(&hti); 5410 5411 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5412 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5413 ret = cb(tsp, p); 5414 if (ret) 5415 break; 5416 (*pos)++; 5417 sctp_transport_put(tsp); 5418 } 5419 sctp_transport_walk_stop(&hti); 5420 5421 if (ret) { 5422 if (cb_done && !cb_done(tsp, p)) { 5423 (*pos)++; 5424 sctp_transport_put(tsp); 5425 goto again; 5426 } 5427 sctp_transport_put(tsp); 5428 } 5429 5430 return ret; 5431 } 5432 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5433 5434 /* 7.2.1 Association Status (SCTP_STATUS) 5435 5436 * Applications can retrieve current status information about an 5437 * association, including association state, peer receiver window size, 5438 * number of unacked data chunks, and number of data chunks pending 5439 * receipt. This information is read-only. 5440 */ 5441 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5442 char __user *optval, 5443 int __user *optlen) 5444 { 5445 struct sctp_status status; 5446 struct sctp_association *asoc = NULL; 5447 struct sctp_transport *transport; 5448 sctp_assoc_t associd; 5449 int retval = 0; 5450 5451 if (len < sizeof(status)) { 5452 retval = -EINVAL; 5453 goto out; 5454 } 5455 5456 len = sizeof(status); 5457 if (copy_from_user(&status, optval, len)) { 5458 retval = -EFAULT; 5459 goto out; 5460 } 5461 5462 associd = status.sstat_assoc_id; 5463 asoc = sctp_id2assoc(sk, associd); 5464 if (!asoc) { 5465 retval = -EINVAL; 5466 goto out; 5467 } 5468 5469 transport = asoc->peer.primary_path; 5470 5471 status.sstat_assoc_id = sctp_assoc2id(asoc); 5472 status.sstat_state = sctp_assoc_to_state(asoc); 5473 status.sstat_rwnd = asoc->peer.rwnd; 5474 status.sstat_unackdata = asoc->unack_data; 5475 5476 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5477 status.sstat_instrms = asoc->stream.incnt; 5478 status.sstat_outstrms = asoc->stream.outcnt; 5479 status.sstat_fragmentation_point = asoc->frag_point; 5480 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5481 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5482 transport->af_specific->sockaddr_len); 5483 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5484 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5485 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5486 status.sstat_primary.spinfo_state = transport->state; 5487 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5488 status.sstat_primary.spinfo_srtt = transport->srtt; 5489 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5490 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5491 5492 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5493 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5494 5495 if (put_user(len, optlen)) { 5496 retval = -EFAULT; 5497 goto out; 5498 } 5499 5500 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5501 __func__, len, status.sstat_state, status.sstat_rwnd, 5502 status.sstat_assoc_id); 5503 5504 if (copy_to_user(optval, &status, len)) { 5505 retval = -EFAULT; 5506 goto out; 5507 } 5508 5509 out: 5510 return retval; 5511 } 5512 5513 5514 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5515 * 5516 * Applications can retrieve information about a specific peer address 5517 * of an association, including its reachability state, congestion 5518 * window, and retransmission timer values. This information is 5519 * read-only. 5520 */ 5521 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5522 char __user *optval, 5523 int __user *optlen) 5524 { 5525 struct sctp_paddrinfo pinfo; 5526 struct sctp_transport *transport; 5527 int retval = 0; 5528 5529 if (len < sizeof(pinfo)) { 5530 retval = -EINVAL; 5531 goto out; 5532 } 5533 5534 len = sizeof(pinfo); 5535 if (copy_from_user(&pinfo, optval, len)) { 5536 retval = -EFAULT; 5537 goto out; 5538 } 5539 5540 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5541 pinfo.spinfo_assoc_id); 5542 if (!transport) 5543 return -EINVAL; 5544 5545 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5546 pinfo.spinfo_state = transport->state; 5547 pinfo.spinfo_cwnd = transport->cwnd; 5548 pinfo.spinfo_srtt = transport->srtt; 5549 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5550 pinfo.spinfo_mtu = transport->pathmtu; 5551 5552 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5553 pinfo.spinfo_state = SCTP_ACTIVE; 5554 5555 if (put_user(len, optlen)) { 5556 retval = -EFAULT; 5557 goto out; 5558 } 5559 5560 if (copy_to_user(optval, &pinfo, len)) { 5561 retval = -EFAULT; 5562 goto out; 5563 } 5564 5565 out: 5566 return retval; 5567 } 5568 5569 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5570 * 5571 * This option is a on/off flag. If enabled no SCTP message 5572 * fragmentation will be performed. Instead if a message being sent 5573 * exceeds the current PMTU size, the message will NOT be sent and 5574 * instead a error will be indicated to the user. 5575 */ 5576 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5577 char __user *optval, int __user *optlen) 5578 { 5579 int val; 5580 5581 if (len < sizeof(int)) 5582 return -EINVAL; 5583 5584 len = sizeof(int); 5585 val = (sctp_sk(sk)->disable_fragments == 1); 5586 if (put_user(len, optlen)) 5587 return -EFAULT; 5588 if (copy_to_user(optval, &val, len)) 5589 return -EFAULT; 5590 return 0; 5591 } 5592 5593 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5594 * 5595 * This socket option is used to specify various notifications and 5596 * ancillary data the user wishes to receive. 5597 */ 5598 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5599 int __user *optlen) 5600 { 5601 struct sctp_event_subscribe subscribe; 5602 __u8 *sn_type = (__u8 *)&subscribe; 5603 int i; 5604 5605 if (len == 0) 5606 return -EINVAL; 5607 if (len > sizeof(struct sctp_event_subscribe)) 5608 len = sizeof(struct sctp_event_subscribe); 5609 if (put_user(len, optlen)) 5610 return -EFAULT; 5611 5612 for (i = 0; i < len; i++) 5613 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5614 SCTP_SN_TYPE_BASE + i); 5615 5616 if (copy_to_user(optval, &subscribe, len)) 5617 return -EFAULT; 5618 5619 return 0; 5620 } 5621 5622 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5623 * 5624 * This socket option is applicable to the UDP-style socket only. When 5625 * set it will cause associations that are idle for more than the 5626 * specified number of seconds to automatically close. An association 5627 * being idle is defined an association that has NOT sent or received 5628 * user data. The special value of '0' indicates that no automatic 5629 * close of any associations should be performed. The option expects an 5630 * integer defining the number of seconds of idle time before an 5631 * association is closed. 5632 */ 5633 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5634 { 5635 /* Applicable to UDP-style socket only */ 5636 if (sctp_style(sk, TCP)) 5637 return -EOPNOTSUPP; 5638 if (len < sizeof(int)) 5639 return -EINVAL; 5640 len = sizeof(int); 5641 if (put_user(len, optlen)) 5642 return -EFAULT; 5643 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5644 return -EFAULT; 5645 return 0; 5646 } 5647 5648 /* Helper routine to branch off an association to a new socket. */ 5649 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5650 { 5651 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5652 struct sctp_sock *sp = sctp_sk(sk); 5653 struct socket *sock; 5654 int err = 0; 5655 5656 /* Do not peel off from one netns to another one. */ 5657 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5658 return -EINVAL; 5659 5660 if (!asoc) 5661 return -EINVAL; 5662 5663 /* An association cannot be branched off from an already peeled-off 5664 * socket, nor is this supported for tcp style sockets. 5665 */ 5666 if (!sctp_style(sk, UDP)) 5667 return -EINVAL; 5668 5669 /* Create a new socket. */ 5670 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5671 if (err < 0) 5672 return err; 5673 5674 sctp_copy_sock(sock->sk, sk, asoc); 5675 5676 /* Make peeled-off sockets more like 1-1 accepted sockets. 5677 * Set the daddr and initialize id to something more random and also 5678 * copy over any ip options. 5679 */ 5680 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5681 sp->pf->copy_ip_options(sk, sock->sk); 5682 5683 /* Populate the fields of the newsk from the oldsk and migrate the 5684 * asoc to the newsk. 5685 */ 5686 err = sctp_sock_migrate(sk, sock->sk, asoc, 5687 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5688 if (err) { 5689 sock_release(sock); 5690 sock = NULL; 5691 } 5692 5693 *sockp = sock; 5694 5695 return err; 5696 } 5697 EXPORT_SYMBOL(sctp_do_peeloff); 5698 5699 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5700 struct file **newfile, unsigned flags) 5701 { 5702 struct socket *newsock; 5703 int retval; 5704 5705 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5706 if (retval < 0) 5707 goto out; 5708 5709 /* Map the socket to an unused fd that can be returned to the user. */ 5710 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5711 if (retval < 0) { 5712 sock_release(newsock); 5713 goto out; 5714 } 5715 5716 *newfile = sock_alloc_file(newsock, 0, NULL); 5717 if (IS_ERR(*newfile)) { 5718 put_unused_fd(retval); 5719 retval = PTR_ERR(*newfile); 5720 *newfile = NULL; 5721 return retval; 5722 } 5723 5724 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5725 retval); 5726 5727 peeloff->sd = retval; 5728 5729 if (flags & SOCK_NONBLOCK) 5730 (*newfile)->f_flags |= O_NONBLOCK; 5731 out: 5732 return retval; 5733 } 5734 5735 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5736 { 5737 sctp_peeloff_arg_t peeloff; 5738 struct file *newfile = NULL; 5739 int retval = 0; 5740 5741 if (len < sizeof(sctp_peeloff_arg_t)) 5742 return -EINVAL; 5743 len = sizeof(sctp_peeloff_arg_t); 5744 if (copy_from_user(&peeloff, optval, len)) 5745 return -EFAULT; 5746 5747 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5748 if (retval < 0) 5749 goto out; 5750 5751 /* Return the fd mapped to the new socket. */ 5752 if (put_user(len, optlen)) { 5753 fput(newfile); 5754 put_unused_fd(retval); 5755 return -EFAULT; 5756 } 5757 5758 if (copy_to_user(optval, &peeloff, len)) { 5759 fput(newfile); 5760 put_unused_fd(retval); 5761 return -EFAULT; 5762 } 5763 fd_install(retval, newfile); 5764 out: 5765 return retval; 5766 } 5767 5768 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5769 char __user *optval, int __user *optlen) 5770 { 5771 sctp_peeloff_flags_arg_t peeloff; 5772 struct file *newfile = NULL; 5773 int retval = 0; 5774 5775 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5776 return -EINVAL; 5777 len = sizeof(sctp_peeloff_flags_arg_t); 5778 if (copy_from_user(&peeloff, optval, len)) 5779 return -EFAULT; 5780 5781 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5782 &newfile, peeloff.flags); 5783 if (retval < 0) 5784 goto out; 5785 5786 /* Return the fd mapped to the new socket. */ 5787 if (put_user(len, optlen)) { 5788 fput(newfile); 5789 put_unused_fd(retval); 5790 return -EFAULT; 5791 } 5792 5793 if (copy_to_user(optval, &peeloff, len)) { 5794 fput(newfile); 5795 put_unused_fd(retval); 5796 return -EFAULT; 5797 } 5798 fd_install(retval, newfile); 5799 out: 5800 return retval; 5801 } 5802 5803 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5804 * 5805 * Applications can enable or disable heartbeats for any peer address of 5806 * an association, modify an address's heartbeat interval, force a 5807 * heartbeat to be sent immediately, and adjust the address's maximum 5808 * number of retransmissions sent before an address is considered 5809 * unreachable. The following structure is used to access and modify an 5810 * address's parameters: 5811 * 5812 * struct sctp_paddrparams { 5813 * sctp_assoc_t spp_assoc_id; 5814 * struct sockaddr_storage spp_address; 5815 * uint32_t spp_hbinterval; 5816 * uint16_t spp_pathmaxrxt; 5817 * uint32_t spp_pathmtu; 5818 * uint32_t spp_sackdelay; 5819 * uint32_t spp_flags; 5820 * }; 5821 * 5822 * spp_assoc_id - (one-to-many style socket) This is filled in the 5823 * application, and identifies the association for 5824 * this query. 5825 * spp_address - This specifies which address is of interest. 5826 * spp_hbinterval - This contains the value of the heartbeat interval, 5827 * in milliseconds. If a value of zero 5828 * is present in this field then no changes are to 5829 * be made to this parameter. 5830 * spp_pathmaxrxt - This contains the maximum number of 5831 * retransmissions before this address shall be 5832 * considered unreachable. If a value of zero 5833 * is present in this field then no changes are to 5834 * be made to this parameter. 5835 * spp_pathmtu - When Path MTU discovery is disabled the value 5836 * specified here will be the "fixed" path mtu. 5837 * Note that if the spp_address field is empty 5838 * then all associations on this address will 5839 * have this fixed path mtu set upon them. 5840 * 5841 * spp_sackdelay - When delayed sack is enabled, this value specifies 5842 * the number of milliseconds that sacks will be delayed 5843 * for. This value will apply to all addresses of an 5844 * association if the spp_address field is empty. Note 5845 * also, that if delayed sack is enabled and this 5846 * value is set to 0, no change is made to the last 5847 * recorded delayed sack timer value. 5848 * 5849 * spp_flags - These flags are used to control various features 5850 * on an association. The flag field may contain 5851 * zero or more of the following options. 5852 * 5853 * SPP_HB_ENABLE - Enable heartbeats on the 5854 * specified address. Note that if the address 5855 * field is empty all addresses for the association 5856 * have heartbeats enabled upon them. 5857 * 5858 * SPP_HB_DISABLE - Disable heartbeats on the 5859 * speicifed address. Note that if the address 5860 * field is empty all addresses for the association 5861 * will have their heartbeats disabled. Note also 5862 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5863 * mutually exclusive, only one of these two should 5864 * be specified. Enabling both fields will have 5865 * undetermined results. 5866 * 5867 * SPP_HB_DEMAND - Request a user initiated heartbeat 5868 * to be made immediately. 5869 * 5870 * SPP_PMTUD_ENABLE - This field will enable PMTU 5871 * discovery upon the specified address. Note that 5872 * if the address feild is empty then all addresses 5873 * on the association are effected. 5874 * 5875 * SPP_PMTUD_DISABLE - This field will disable PMTU 5876 * discovery upon the specified address. Note that 5877 * if the address feild is empty then all addresses 5878 * on the association are effected. Not also that 5879 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5880 * exclusive. Enabling both will have undetermined 5881 * results. 5882 * 5883 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5884 * on delayed sack. The time specified in spp_sackdelay 5885 * is used to specify the sack delay for this address. Note 5886 * that if spp_address is empty then all addresses will 5887 * enable delayed sack and take on the sack delay 5888 * value specified in spp_sackdelay. 5889 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5890 * off delayed sack. If the spp_address field is blank then 5891 * delayed sack is disabled for the entire association. Note 5892 * also that this field is mutually exclusive to 5893 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5894 * results. 5895 * 5896 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5897 * setting of the IPV6 flow label value. The value is 5898 * contained in the spp_ipv6_flowlabel field. 5899 * Upon retrieval, this flag will be set to indicate that 5900 * the spp_ipv6_flowlabel field has a valid value returned. 5901 * If a specific destination address is set (in the 5902 * spp_address field), then the value returned is that of 5903 * the address. If just an association is specified (and 5904 * no address), then the association's default flow label 5905 * is returned. If neither an association nor a destination 5906 * is specified, then the socket's default flow label is 5907 * returned. For non-IPv6 sockets, this flag will be left 5908 * cleared. 5909 * 5910 * SPP_DSCP: Setting this flag enables the setting of the 5911 * Differentiated Services Code Point (DSCP) value 5912 * associated with either the association or a specific 5913 * address. The value is obtained in the spp_dscp field. 5914 * Upon retrieval, this flag will be set to indicate that 5915 * the spp_dscp field has a valid value returned. If a 5916 * specific destination address is set when called (in the 5917 * spp_address field), then that specific destination 5918 * address's DSCP value is returned. If just an association 5919 * is specified, then the association's default DSCP is 5920 * returned. If neither an association nor a destination is 5921 * specified, then the socket's default DSCP is returned. 5922 * 5923 * spp_ipv6_flowlabel 5924 * - This field is used in conjunction with the 5925 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5926 * The 20 least significant bits are used for the flow 5927 * label. This setting has precedence over any IPv6-layer 5928 * setting. 5929 * 5930 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5931 * and contains the DSCP. The 6 most significant bits are 5932 * used for the DSCP. This setting has precedence over any 5933 * IPv4- or IPv6- layer setting. 5934 */ 5935 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5936 char __user *optval, int __user *optlen) 5937 { 5938 struct sctp_paddrparams params; 5939 struct sctp_transport *trans = NULL; 5940 struct sctp_association *asoc = NULL; 5941 struct sctp_sock *sp = sctp_sk(sk); 5942 5943 if (len >= sizeof(params)) 5944 len = sizeof(params); 5945 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5946 spp_ipv6_flowlabel), 4)) 5947 len = ALIGN(offsetof(struct sctp_paddrparams, 5948 spp_ipv6_flowlabel), 4); 5949 else 5950 return -EINVAL; 5951 5952 if (copy_from_user(¶ms, optval, len)) 5953 return -EFAULT; 5954 5955 /* If an address other than INADDR_ANY is specified, and 5956 * no transport is found, then the request is invalid. 5957 */ 5958 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5959 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5960 params.spp_assoc_id); 5961 if (!trans) { 5962 pr_debug("%s: failed no transport\n", __func__); 5963 return -EINVAL; 5964 } 5965 } 5966 5967 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5968 * socket is a one to many style socket, and an association 5969 * was not found, then the id was invalid. 5970 */ 5971 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5972 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5973 sctp_style(sk, UDP)) { 5974 pr_debug("%s: failed no association\n", __func__); 5975 return -EINVAL; 5976 } 5977 5978 if (trans) { 5979 /* Fetch transport values. */ 5980 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5981 params.spp_pathmtu = trans->pathmtu; 5982 params.spp_pathmaxrxt = trans->pathmaxrxt; 5983 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5984 5985 /*draft-11 doesn't say what to return in spp_flags*/ 5986 params.spp_flags = trans->param_flags; 5987 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5988 params.spp_ipv6_flowlabel = trans->flowlabel & 5989 SCTP_FLOWLABEL_VAL_MASK; 5990 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5991 } 5992 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5993 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5994 params.spp_flags |= SPP_DSCP; 5995 } 5996 } else if (asoc) { 5997 /* Fetch association values. */ 5998 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5999 params.spp_pathmtu = asoc->pathmtu; 6000 params.spp_pathmaxrxt = asoc->pathmaxrxt; 6001 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 6002 6003 /*draft-11 doesn't say what to return in spp_flags*/ 6004 params.spp_flags = asoc->param_flags; 6005 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6006 params.spp_ipv6_flowlabel = asoc->flowlabel & 6007 SCTP_FLOWLABEL_VAL_MASK; 6008 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6009 } 6010 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 6011 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6012 params.spp_flags |= SPP_DSCP; 6013 } 6014 } else { 6015 /* Fetch socket values. */ 6016 params.spp_hbinterval = sp->hbinterval; 6017 params.spp_pathmtu = sp->pathmtu; 6018 params.spp_sackdelay = sp->sackdelay; 6019 params.spp_pathmaxrxt = sp->pathmaxrxt; 6020 6021 /*draft-11 doesn't say what to return in spp_flags*/ 6022 params.spp_flags = sp->param_flags; 6023 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6024 params.spp_ipv6_flowlabel = sp->flowlabel & 6025 SCTP_FLOWLABEL_VAL_MASK; 6026 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6027 } 6028 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6029 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6030 params.spp_flags |= SPP_DSCP; 6031 } 6032 } 6033 6034 if (copy_to_user(optval, ¶ms, len)) 6035 return -EFAULT; 6036 6037 if (put_user(len, optlen)) 6038 return -EFAULT; 6039 6040 return 0; 6041 } 6042 6043 /* 6044 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6045 * 6046 * This option will effect the way delayed acks are performed. This 6047 * option allows you to get or set the delayed ack time, in 6048 * milliseconds. It also allows changing the delayed ack frequency. 6049 * Changing the frequency to 1 disables the delayed sack algorithm. If 6050 * the assoc_id is 0, then this sets or gets the endpoints default 6051 * values. If the assoc_id field is non-zero, then the set or get 6052 * effects the specified association for the one to many model (the 6053 * assoc_id field is ignored by the one to one model). Note that if 6054 * sack_delay or sack_freq are 0 when setting this option, then the 6055 * current values will remain unchanged. 6056 * 6057 * struct sctp_sack_info { 6058 * sctp_assoc_t sack_assoc_id; 6059 * uint32_t sack_delay; 6060 * uint32_t sack_freq; 6061 * }; 6062 * 6063 * sack_assoc_id - This parameter, indicates which association the user 6064 * is performing an action upon. Note that if this field's value is 6065 * zero then the endpoints default value is changed (effecting future 6066 * associations only). 6067 * 6068 * sack_delay - This parameter contains the number of milliseconds that 6069 * the user is requesting the delayed ACK timer be set to. Note that 6070 * this value is defined in the standard to be between 200 and 500 6071 * milliseconds. 6072 * 6073 * sack_freq - This parameter contains the number of packets that must 6074 * be received before a sack is sent without waiting for the delay 6075 * timer to expire. The default value for this is 2, setting this 6076 * value to 1 will disable the delayed sack algorithm. 6077 */ 6078 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6079 char __user *optval, 6080 int __user *optlen) 6081 { 6082 struct sctp_sack_info params; 6083 struct sctp_association *asoc = NULL; 6084 struct sctp_sock *sp = sctp_sk(sk); 6085 6086 if (len >= sizeof(struct sctp_sack_info)) { 6087 len = sizeof(struct sctp_sack_info); 6088 6089 if (copy_from_user(¶ms, optval, len)) 6090 return -EFAULT; 6091 } else if (len == sizeof(struct sctp_assoc_value)) { 6092 pr_warn_ratelimited(DEPRECATED 6093 "%s (pid %d) " 6094 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6095 "Use struct sctp_sack_info instead\n", 6096 current->comm, task_pid_nr(current)); 6097 if (copy_from_user(¶ms, optval, len)) 6098 return -EFAULT; 6099 } else 6100 return -EINVAL; 6101 6102 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6103 * socket is a one to many style socket, and an association 6104 * was not found, then the id was invalid. 6105 */ 6106 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6107 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6108 sctp_style(sk, UDP)) 6109 return -EINVAL; 6110 6111 if (asoc) { 6112 /* Fetch association values. */ 6113 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6114 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6115 params.sack_freq = asoc->sackfreq; 6116 6117 } else { 6118 params.sack_delay = 0; 6119 params.sack_freq = 1; 6120 } 6121 } else { 6122 /* Fetch socket values. */ 6123 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6124 params.sack_delay = sp->sackdelay; 6125 params.sack_freq = sp->sackfreq; 6126 } else { 6127 params.sack_delay = 0; 6128 params.sack_freq = 1; 6129 } 6130 } 6131 6132 if (copy_to_user(optval, ¶ms, len)) 6133 return -EFAULT; 6134 6135 if (put_user(len, optlen)) 6136 return -EFAULT; 6137 6138 return 0; 6139 } 6140 6141 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6142 * 6143 * Applications can specify protocol parameters for the default association 6144 * initialization. The option name argument to setsockopt() and getsockopt() 6145 * is SCTP_INITMSG. 6146 * 6147 * Setting initialization parameters is effective only on an unconnected 6148 * socket (for UDP-style sockets only future associations are effected 6149 * by the change). With TCP-style sockets, this option is inherited by 6150 * sockets derived from a listener socket. 6151 */ 6152 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6153 { 6154 if (len < sizeof(struct sctp_initmsg)) 6155 return -EINVAL; 6156 len = sizeof(struct sctp_initmsg); 6157 if (put_user(len, optlen)) 6158 return -EFAULT; 6159 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6160 return -EFAULT; 6161 return 0; 6162 } 6163 6164 6165 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6166 char __user *optval, int __user *optlen) 6167 { 6168 struct sctp_association *asoc; 6169 int cnt = 0; 6170 struct sctp_getaddrs getaddrs; 6171 struct sctp_transport *from; 6172 void __user *to; 6173 union sctp_addr temp; 6174 struct sctp_sock *sp = sctp_sk(sk); 6175 int addrlen; 6176 size_t space_left; 6177 int bytes_copied; 6178 6179 if (len < sizeof(struct sctp_getaddrs)) 6180 return -EINVAL; 6181 6182 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6183 return -EFAULT; 6184 6185 /* For UDP-style sockets, id specifies the association to query. */ 6186 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6187 if (!asoc) 6188 return -EINVAL; 6189 6190 to = optval + offsetof(struct sctp_getaddrs, addrs); 6191 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6192 6193 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6194 transports) { 6195 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6196 addrlen = sctp_get_pf_specific(sk->sk_family) 6197 ->addr_to_user(sp, &temp); 6198 if (space_left < addrlen) 6199 return -ENOMEM; 6200 if (copy_to_user(to, &temp, addrlen)) 6201 return -EFAULT; 6202 to += addrlen; 6203 cnt++; 6204 space_left -= addrlen; 6205 } 6206 6207 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6208 return -EFAULT; 6209 bytes_copied = ((char __user *)to) - optval; 6210 if (put_user(bytes_copied, optlen)) 6211 return -EFAULT; 6212 6213 return 0; 6214 } 6215 6216 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6217 size_t space_left, int *bytes_copied) 6218 { 6219 struct sctp_sockaddr_entry *addr; 6220 union sctp_addr temp; 6221 int cnt = 0; 6222 int addrlen; 6223 struct net *net = sock_net(sk); 6224 6225 rcu_read_lock(); 6226 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6227 if (!addr->valid) 6228 continue; 6229 6230 if ((PF_INET == sk->sk_family) && 6231 (AF_INET6 == addr->a.sa.sa_family)) 6232 continue; 6233 if ((PF_INET6 == sk->sk_family) && 6234 inet_v6_ipv6only(sk) && 6235 (AF_INET == addr->a.sa.sa_family)) 6236 continue; 6237 memcpy(&temp, &addr->a, sizeof(temp)); 6238 if (!temp.v4.sin_port) 6239 temp.v4.sin_port = htons(port); 6240 6241 addrlen = sctp_get_pf_specific(sk->sk_family) 6242 ->addr_to_user(sctp_sk(sk), &temp); 6243 6244 if (space_left < addrlen) { 6245 cnt = -ENOMEM; 6246 break; 6247 } 6248 memcpy(to, &temp, addrlen); 6249 6250 to += addrlen; 6251 cnt++; 6252 space_left -= addrlen; 6253 *bytes_copied += addrlen; 6254 } 6255 rcu_read_unlock(); 6256 6257 return cnt; 6258 } 6259 6260 6261 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6262 char __user *optval, int __user *optlen) 6263 { 6264 struct sctp_bind_addr *bp; 6265 struct sctp_association *asoc; 6266 int cnt = 0; 6267 struct sctp_getaddrs getaddrs; 6268 struct sctp_sockaddr_entry *addr; 6269 void __user *to; 6270 union sctp_addr temp; 6271 struct sctp_sock *sp = sctp_sk(sk); 6272 int addrlen; 6273 int err = 0; 6274 size_t space_left; 6275 int bytes_copied = 0; 6276 void *addrs; 6277 void *buf; 6278 6279 if (len < sizeof(struct sctp_getaddrs)) 6280 return -EINVAL; 6281 6282 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6283 return -EFAULT; 6284 6285 /* 6286 * For UDP-style sockets, id specifies the association to query. 6287 * If the id field is set to the value '0' then the locally bound 6288 * addresses are returned without regard to any particular 6289 * association. 6290 */ 6291 if (0 == getaddrs.assoc_id) { 6292 bp = &sctp_sk(sk)->ep->base.bind_addr; 6293 } else { 6294 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6295 if (!asoc) 6296 return -EINVAL; 6297 bp = &asoc->base.bind_addr; 6298 } 6299 6300 to = optval + offsetof(struct sctp_getaddrs, addrs); 6301 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6302 6303 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6304 if (!addrs) 6305 return -ENOMEM; 6306 6307 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6308 * addresses from the global local address list. 6309 */ 6310 if (sctp_list_single_entry(&bp->address_list)) { 6311 addr = list_entry(bp->address_list.next, 6312 struct sctp_sockaddr_entry, list); 6313 if (sctp_is_any(sk, &addr->a)) { 6314 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6315 space_left, &bytes_copied); 6316 if (cnt < 0) { 6317 err = cnt; 6318 goto out; 6319 } 6320 goto copy_getaddrs; 6321 } 6322 } 6323 6324 buf = addrs; 6325 /* Protection on the bound address list is not needed since 6326 * in the socket option context we hold a socket lock and 6327 * thus the bound address list can't change. 6328 */ 6329 list_for_each_entry(addr, &bp->address_list, list) { 6330 memcpy(&temp, &addr->a, sizeof(temp)); 6331 addrlen = sctp_get_pf_specific(sk->sk_family) 6332 ->addr_to_user(sp, &temp); 6333 if (space_left < addrlen) { 6334 err = -ENOMEM; /*fixme: right error?*/ 6335 goto out; 6336 } 6337 memcpy(buf, &temp, addrlen); 6338 buf += addrlen; 6339 bytes_copied += addrlen; 6340 cnt++; 6341 space_left -= addrlen; 6342 } 6343 6344 copy_getaddrs: 6345 if (copy_to_user(to, addrs, bytes_copied)) { 6346 err = -EFAULT; 6347 goto out; 6348 } 6349 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6350 err = -EFAULT; 6351 goto out; 6352 } 6353 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6354 * but we can't change it anymore. 6355 */ 6356 if (put_user(bytes_copied, optlen)) 6357 err = -EFAULT; 6358 out: 6359 kfree(addrs); 6360 return err; 6361 } 6362 6363 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6364 * 6365 * Requests that the local SCTP stack use the enclosed peer address as 6366 * the association primary. The enclosed address must be one of the 6367 * association peer's addresses. 6368 */ 6369 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6370 char __user *optval, int __user *optlen) 6371 { 6372 struct sctp_prim prim; 6373 struct sctp_association *asoc; 6374 struct sctp_sock *sp = sctp_sk(sk); 6375 6376 if (len < sizeof(struct sctp_prim)) 6377 return -EINVAL; 6378 6379 len = sizeof(struct sctp_prim); 6380 6381 if (copy_from_user(&prim, optval, len)) 6382 return -EFAULT; 6383 6384 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6385 if (!asoc) 6386 return -EINVAL; 6387 6388 if (!asoc->peer.primary_path) 6389 return -ENOTCONN; 6390 6391 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6392 asoc->peer.primary_path->af_specific->sockaddr_len); 6393 6394 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6395 (union sctp_addr *)&prim.ssp_addr); 6396 6397 if (put_user(len, optlen)) 6398 return -EFAULT; 6399 if (copy_to_user(optval, &prim, len)) 6400 return -EFAULT; 6401 6402 return 0; 6403 } 6404 6405 /* 6406 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6407 * 6408 * Requests that the local endpoint set the specified Adaptation Layer 6409 * Indication parameter for all future INIT and INIT-ACK exchanges. 6410 */ 6411 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6412 char __user *optval, int __user *optlen) 6413 { 6414 struct sctp_setadaptation adaptation; 6415 6416 if (len < sizeof(struct sctp_setadaptation)) 6417 return -EINVAL; 6418 6419 len = sizeof(struct sctp_setadaptation); 6420 6421 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6422 6423 if (put_user(len, optlen)) 6424 return -EFAULT; 6425 if (copy_to_user(optval, &adaptation, len)) 6426 return -EFAULT; 6427 6428 return 0; 6429 } 6430 6431 /* 6432 * 6433 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6434 * 6435 * Applications that wish to use the sendto() system call may wish to 6436 * specify a default set of parameters that would normally be supplied 6437 * through the inclusion of ancillary data. This socket option allows 6438 * such an application to set the default sctp_sndrcvinfo structure. 6439 6440 6441 * The application that wishes to use this socket option simply passes 6442 * in to this call the sctp_sndrcvinfo structure defined in Section 6443 * 5.2.2) The input parameters accepted by this call include 6444 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6445 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6446 * to this call if the caller is using the UDP model. 6447 * 6448 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6449 */ 6450 static int sctp_getsockopt_default_send_param(struct sock *sk, 6451 int len, char __user *optval, 6452 int __user *optlen) 6453 { 6454 struct sctp_sock *sp = sctp_sk(sk); 6455 struct sctp_association *asoc; 6456 struct sctp_sndrcvinfo info; 6457 6458 if (len < sizeof(info)) 6459 return -EINVAL; 6460 6461 len = sizeof(info); 6462 6463 if (copy_from_user(&info, optval, len)) 6464 return -EFAULT; 6465 6466 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6467 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6468 sctp_style(sk, UDP)) 6469 return -EINVAL; 6470 6471 if (asoc) { 6472 info.sinfo_stream = asoc->default_stream; 6473 info.sinfo_flags = asoc->default_flags; 6474 info.sinfo_ppid = asoc->default_ppid; 6475 info.sinfo_context = asoc->default_context; 6476 info.sinfo_timetolive = asoc->default_timetolive; 6477 } else { 6478 info.sinfo_stream = sp->default_stream; 6479 info.sinfo_flags = sp->default_flags; 6480 info.sinfo_ppid = sp->default_ppid; 6481 info.sinfo_context = sp->default_context; 6482 info.sinfo_timetolive = sp->default_timetolive; 6483 } 6484 6485 if (put_user(len, optlen)) 6486 return -EFAULT; 6487 if (copy_to_user(optval, &info, len)) 6488 return -EFAULT; 6489 6490 return 0; 6491 } 6492 6493 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6494 * (SCTP_DEFAULT_SNDINFO) 6495 */ 6496 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6497 char __user *optval, 6498 int __user *optlen) 6499 { 6500 struct sctp_sock *sp = sctp_sk(sk); 6501 struct sctp_association *asoc; 6502 struct sctp_sndinfo info; 6503 6504 if (len < sizeof(info)) 6505 return -EINVAL; 6506 6507 len = sizeof(info); 6508 6509 if (copy_from_user(&info, optval, len)) 6510 return -EFAULT; 6511 6512 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6513 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6514 sctp_style(sk, UDP)) 6515 return -EINVAL; 6516 6517 if (asoc) { 6518 info.snd_sid = asoc->default_stream; 6519 info.snd_flags = asoc->default_flags; 6520 info.snd_ppid = asoc->default_ppid; 6521 info.snd_context = asoc->default_context; 6522 } else { 6523 info.snd_sid = sp->default_stream; 6524 info.snd_flags = sp->default_flags; 6525 info.snd_ppid = sp->default_ppid; 6526 info.snd_context = sp->default_context; 6527 } 6528 6529 if (put_user(len, optlen)) 6530 return -EFAULT; 6531 if (copy_to_user(optval, &info, len)) 6532 return -EFAULT; 6533 6534 return 0; 6535 } 6536 6537 /* 6538 * 6539 * 7.1.5 SCTP_NODELAY 6540 * 6541 * Turn on/off any Nagle-like algorithm. This means that packets are 6542 * generally sent as soon as possible and no unnecessary delays are 6543 * introduced, at the cost of more packets in the network. Expects an 6544 * integer boolean flag. 6545 */ 6546 6547 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6548 char __user *optval, int __user *optlen) 6549 { 6550 int val; 6551 6552 if (len < sizeof(int)) 6553 return -EINVAL; 6554 6555 len = sizeof(int); 6556 val = (sctp_sk(sk)->nodelay == 1); 6557 if (put_user(len, optlen)) 6558 return -EFAULT; 6559 if (copy_to_user(optval, &val, len)) 6560 return -EFAULT; 6561 return 0; 6562 } 6563 6564 /* 6565 * 6566 * 7.1.1 SCTP_RTOINFO 6567 * 6568 * The protocol parameters used to initialize and bound retransmission 6569 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6570 * and modify these parameters. 6571 * All parameters are time values, in milliseconds. A value of 0, when 6572 * modifying the parameters, indicates that the current value should not 6573 * be changed. 6574 * 6575 */ 6576 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6577 char __user *optval, 6578 int __user *optlen) { 6579 struct sctp_rtoinfo rtoinfo; 6580 struct sctp_association *asoc; 6581 6582 if (len < sizeof (struct sctp_rtoinfo)) 6583 return -EINVAL; 6584 6585 len = sizeof(struct sctp_rtoinfo); 6586 6587 if (copy_from_user(&rtoinfo, optval, len)) 6588 return -EFAULT; 6589 6590 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6591 6592 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6593 sctp_style(sk, UDP)) 6594 return -EINVAL; 6595 6596 /* Values corresponding to the specific association. */ 6597 if (asoc) { 6598 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6599 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6600 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6601 } else { 6602 /* Values corresponding to the endpoint. */ 6603 struct sctp_sock *sp = sctp_sk(sk); 6604 6605 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6606 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6607 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6608 } 6609 6610 if (put_user(len, optlen)) 6611 return -EFAULT; 6612 6613 if (copy_to_user(optval, &rtoinfo, len)) 6614 return -EFAULT; 6615 6616 return 0; 6617 } 6618 6619 /* 6620 * 6621 * 7.1.2 SCTP_ASSOCINFO 6622 * 6623 * This option is used to tune the maximum retransmission attempts 6624 * of the association. 6625 * Returns an error if the new association retransmission value is 6626 * greater than the sum of the retransmission value of the peer. 6627 * See [SCTP] for more information. 6628 * 6629 */ 6630 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6631 char __user *optval, 6632 int __user *optlen) 6633 { 6634 6635 struct sctp_assocparams assocparams; 6636 struct sctp_association *asoc; 6637 struct list_head *pos; 6638 int cnt = 0; 6639 6640 if (len < sizeof (struct sctp_assocparams)) 6641 return -EINVAL; 6642 6643 len = sizeof(struct sctp_assocparams); 6644 6645 if (copy_from_user(&assocparams, optval, len)) 6646 return -EFAULT; 6647 6648 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6649 6650 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6651 sctp_style(sk, UDP)) 6652 return -EINVAL; 6653 6654 /* Values correspoinding to the specific association */ 6655 if (asoc) { 6656 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6657 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6658 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6659 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6660 6661 list_for_each(pos, &asoc->peer.transport_addr_list) { 6662 cnt++; 6663 } 6664 6665 assocparams.sasoc_number_peer_destinations = cnt; 6666 } else { 6667 /* Values corresponding to the endpoint */ 6668 struct sctp_sock *sp = sctp_sk(sk); 6669 6670 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6671 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6672 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6673 assocparams.sasoc_cookie_life = 6674 sp->assocparams.sasoc_cookie_life; 6675 assocparams.sasoc_number_peer_destinations = 6676 sp->assocparams. 6677 sasoc_number_peer_destinations; 6678 } 6679 6680 if (put_user(len, optlen)) 6681 return -EFAULT; 6682 6683 if (copy_to_user(optval, &assocparams, len)) 6684 return -EFAULT; 6685 6686 return 0; 6687 } 6688 6689 /* 6690 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6691 * 6692 * This socket option is a boolean flag which turns on or off mapped V4 6693 * addresses. If this option is turned on and the socket is type 6694 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6695 * If this option is turned off, then no mapping will be done of V4 6696 * addresses and a user will receive both PF_INET6 and PF_INET type 6697 * addresses on the socket. 6698 */ 6699 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6700 char __user *optval, int __user *optlen) 6701 { 6702 int val; 6703 struct sctp_sock *sp = sctp_sk(sk); 6704 6705 if (len < sizeof(int)) 6706 return -EINVAL; 6707 6708 len = sizeof(int); 6709 val = sp->v4mapped; 6710 if (put_user(len, optlen)) 6711 return -EFAULT; 6712 if (copy_to_user(optval, &val, len)) 6713 return -EFAULT; 6714 6715 return 0; 6716 } 6717 6718 /* 6719 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6720 * (chapter and verse is quoted at sctp_setsockopt_context()) 6721 */ 6722 static int sctp_getsockopt_context(struct sock *sk, int len, 6723 char __user *optval, int __user *optlen) 6724 { 6725 struct sctp_assoc_value params; 6726 struct sctp_association *asoc; 6727 6728 if (len < sizeof(struct sctp_assoc_value)) 6729 return -EINVAL; 6730 6731 len = sizeof(struct sctp_assoc_value); 6732 6733 if (copy_from_user(¶ms, optval, len)) 6734 return -EFAULT; 6735 6736 asoc = sctp_id2assoc(sk, params.assoc_id); 6737 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6738 sctp_style(sk, UDP)) 6739 return -EINVAL; 6740 6741 params.assoc_value = asoc ? asoc->default_rcv_context 6742 : sctp_sk(sk)->default_rcv_context; 6743 6744 if (put_user(len, optlen)) 6745 return -EFAULT; 6746 if (copy_to_user(optval, ¶ms, len)) 6747 return -EFAULT; 6748 6749 return 0; 6750 } 6751 6752 /* 6753 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6754 * This option will get or set the maximum size to put in any outgoing 6755 * SCTP DATA chunk. If a message is larger than this size it will be 6756 * fragmented by SCTP into the specified size. Note that the underlying 6757 * SCTP implementation may fragment into smaller sized chunks when the 6758 * PMTU of the underlying association is smaller than the value set by 6759 * the user. The default value for this option is '0' which indicates 6760 * the user is NOT limiting fragmentation and only the PMTU will effect 6761 * SCTP's choice of DATA chunk size. Note also that values set larger 6762 * than the maximum size of an IP datagram will effectively let SCTP 6763 * control fragmentation (i.e. the same as setting this option to 0). 6764 * 6765 * The following structure is used to access and modify this parameter: 6766 * 6767 * struct sctp_assoc_value { 6768 * sctp_assoc_t assoc_id; 6769 * uint32_t assoc_value; 6770 * }; 6771 * 6772 * assoc_id: This parameter is ignored for one-to-one style sockets. 6773 * For one-to-many style sockets this parameter indicates which 6774 * association the user is performing an action upon. Note that if 6775 * this field's value is zero then the endpoints default value is 6776 * changed (effecting future associations only). 6777 * assoc_value: This parameter specifies the maximum size in bytes. 6778 */ 6779 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6780 char __user *optval, int __user *optlen) 6781 { 6782 struct sctp_assoc_value params; 6783 struct sctp_association *asoc; 6784 6785 if (len == sizeof(int)) { 6786 pr_warn_ratelimited(DEPRECATED 6787 "%s (pid %d) " 6788 "Use of int in maxseg socket option.\n" 6789 "Use struct sctp_assoc_value instead\n", 6790 current->comm, task_pid_nr(current)); 6791 params.assoc_id = SCTP_FUTURE_ASSOC; 6792 } else if (len >= sizeof(struct sctp_assoc_value)) { 6793 len = sizeof(struct sctp_assoc_value); 6794 if (copy_from_user(¶ms, optval, len)) 6795 return -EFAULT; 6796 } else 6797 return -EINVAL; 6798 6799 asoc = sctp_id2assoc(sk, params.assoc_id); 6800 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6801 sctp_style(sk, UDP)) 6802 return -EINVAL; 6803 6804 if (asoc) 6805 params.assoc_value = asoc->frag_point; 6806 else 6807 params.assoc_value = sctp_sk(sk)->user_frag; 6808 6809 if (put_user(len, optlen)) 6810 return -EFAULT; 6811 if (len == sizeof(int)) { 6812 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6813 return -EFAULT; 6814 } else { 6815 if (copy_to_user(optval, ¶ms, len)) 6816 return -EFAULT; 6817 } 6818 6819 return 0; 6820 } 6821 6822 /* 6823 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6824 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6825 */ 6826 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6827 char __user *optval, int __user *optlen) 6828 { 6829 int val; 6830 6831 if (len < sizeof(int)) 6832 return -EINVAL; 6833 6834 len = sizeof(int); 6835 6836 val = sctp_sk(sk)->frag_interleave; 6837 if (put_user(len, optlen)) 6838 return -EFAULT; 6839 if (copy_to_user(optval, &val, len)) 6840 return -EFAULT; 6841 6842 return 0; 6843 } 6844 6845 /* 6846 * 7.1.25. Set or Get the sctp partial delivery point 6847 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6848 */ 6849 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6850 char __user *optval, 6851 int __user *optlen) 6852 { 6853 u32 val; 6854 6855 if (len < sizeof(u32)) 6856 return -EINVAL; 6857 6858 len = sizeof(u32); 6859 6860 val = sctp_sk(sk)->pd_point; 6861 if (put_user(len, optlen)) 6862 return -EFAULT; 6863 if (copy_to_user(optval, &val, len)) 6864 return -EFAULT; 6865 6866 return 0; 6867 } 6868 6869 /* 6870 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6871 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6872 */ 6873 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6874 char __user *optval, 6875 int __user *optlen) 6876 { 6877 struct sctp_assoc_value params; 6878 struct sctp_association *asoc; 6879 6880 if (len == sizeof(int)) { 6881 pr_warn_ratelimited(DEPRECATED 6882 "%s (pid %d) " 6883 "Use of int in max_burst socket option.\n" 6884 "Use struct sctp_assoc_value instead\n", 6885 current->comm, task_pid_nr(current)); 6886 params.assoc_id = SCTP_FUTURE_ASSOC; 6887 } else if (len >= sizeof(struct sctp_assoc_value)) { 6888 len = sizeof(struct sctp_assoc_value); 6889 if (copy_from_user(¶ms, optval, len)) 6890 return -EFAULT; 6891 } else 6892 return -EINVAL; 6893 6894 asoc = sctp_id2assoc(sk, params.assoc_id); 6895 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6896 sctp_style(sk, UDP)) 6897 return -EINVAL; 6898 6899 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6900 6901 if (len == sizeof(int)) { 6902 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6903 return -EFAULT; 6904 } else { 6905 if (copy_to_user(optval, ¶ms, len)) 6906 return -EFAULT; 6907 } 6908 6909 return 0; 6910 6911 } 6912 6913 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6914 char __user *optval, int __user *optlen) 6915 { 6916 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6917 struct sctp_hmacalgo __user *p = (void __user *)optval; 6918 struct sctp_hmac_algo_param *hmacs; 6919 __u16 data_len = 0; 6920 u32 num_idents; 6921 int i; 6922 6923 if (!ep->auth_enable) 6924 return -EACCES; 6925 6926 hmacs = ep->auth_hmacs_list; 6927 data_len = ntohs(hmacs->param_hdr.length) - 6928 sizeof(struct sctp_paramhdr); 6929 6930 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6931 return -EINVAL; 6932 6933 len = sizeof(struct sctp_hmacalgo) + data_len; 6934 num_idents = data_len / sizeof(u16); 6935 6936 if (put_user(len, optlen)) 6937 return -EFAULT; 6938 if (put_user(num_idents, &p->shmac_num_idents)) 6939 return -EFAULT; 6940 for (i = 0; i < num_idents; i++) { 6941 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6942 6943 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6944 return -EFAULT; 6945 } 6946 return 0; 6947 } 6948 6949 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6950 char __user *optval, int __user *optlen) 6951 { 6952 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6953 struct sctp_authkeyid val; 6954 struct sctp_association *asoc; 6955 6956 if (!ep->auth_enable) 6957 return -EACCES; 6958 6959 if (len < sizeof(struct sctp_authkeyid)) 6960 return -EINVAL; 6961 6962 len = sizeof(struct sctp_authkeyid); 6963 if (copy_from_user(&val, optval, len)) 6964 return -EFAULT; 6965 6966 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6967 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6968 return -EINVAL; 6969 6970 if (asoc) 6971 val.scact_keynumber = asoc->active_key_id; 6972 else 6973 val.scact_keynumber = ep->active_key_id; 6974 6975 if (put_user(len, optlen)) 6976 return -EFAULT; 6977 if (copy_to_user(optval, &val, len)) 6978 return -EFAULT; 6979 6980 return 0; 6981 } 6982 6983 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6984 char __user *optval, int __user *optlen) 6985 { 6986 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6987 struct sctp_authchunks __user *p = (void __user *)optval; 6988 struct sctp_authchunks val; 6989 struct sctp_association *asoc; 6990 struct sctp_chunks_param *ch; 6991 u32 num_chunks = 0; 6992 char __user *to; 6993 6994 if (!ep->auth_enable) 6995 return -EACCES; 6996 6997 if (len < sizeof(struct sctp_authchunks)) 6998 return -EINVAL; 6999 7000 if (copy_from_user(&val, optval, sizeof(val))) 7001 return -EFAULT; 7002 7003 to = p->gauth_chunks; 7004 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7005 if (!asoc) 7006 return -EINVAL; 7007 7008 ch = asoc->peer.peer_chunks; 7009 if (!ch) 7010 goto num; 7011 7012 /* See if the user provided enough room for all the data */ 7013 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7014 if (len < num_chunks) 7015 return -EINVAL; 7016 7017 if (copy_to_user(to, ch->chunks, num_chunks)) 7018 return -EFAULT; 7019 num: 7020 len = sizeof(struct sctp_authchunks) + num_chunks; 7021 if (put_user(len, optlen)) 7022 return -EFAULT; 7023 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7024 return -EFAULT; 7025 return 0; 7026 } 7027 7028 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7029 char __user *optval, int __user *optlen) 7030 { 7031 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7032 struct sctp_authchunks __user *p = (void __user *)optval; 7033 struct sctp_authchunks val; 7034 struct sctp_association *asoc; 7035 struct sctp_chunks_param *ch; 7036 u32 num_chunks = 0; 7037 char __user *to; 7038 7039 if (!ep->auth_enable) 7040 return -EACCES; 7041 7042 if (len < sizeof(struct sctp_authchunks)) 7043 return -EINVAL; 7044 7045 if (copy_from_user(&val, optval, sizeof(val))) 7046 return -EFAULT; 7047 7048 to = p->gauth_chunks; 7049 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7050 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7051 sctp_style(sk, UDP)) 7052 return -EINVAL; 7053 7054 ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks 7055 : ep->auth_chunk_list; 7056 if (!ch) 7057 goto num; 7058 7059 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7060 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7061 return -EINVAL; 7062 7063 if (copy_to_user(to, ch->chunks, num_chunks)) 7064 return -EFAULT; 7065 num: 7066 len = sizeof(struct sctp_authchunks) + num_chunks; 7067 if (put_user(len, optlen)) 7068 return -EFAULT; 7069 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7070 return -EFAULT; 7071 7072 return 0; 7073 } 7074 7075 /* 7076 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7077 * This option gets the current number of associations that are attached 7078 * to a one-to-many style socket. The option value is an uint32_t. 7079 */ 7080 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7081 char __user *optval, int __user *optlen) 7082 { 7083 struct sctp_sock *sp = sctp_sk(sk); 7084 struct sctp_association *asoc; 7085 u32 val = 0; 7086 7087 if (sctp_style(sk, TCP)) 7088 return -EOPNOTSUPP; 7089 7090 if (len < sizeof(u32)) 7091 return -EINVAL; 7092 7093 len = sizeof(u32); 7094 7095 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7096 val++; 7097 } 7098 7099 if (put_user(len, optlen)) 7100 return -EFAULT; 7101 if (copy_to_user(optval, &val, len)) 7102 return -EFAULT; 7103 7104 return 0; 7105 } 7106 7107 /* 7108 * 8.1.23 SCTP_AUTO_ASCONF 7109 * See the corresponding setsockopt entry as description 7110 */ 7111 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7112 char __user *optval, int __user *optlen) 7113 { 7114 int val = 0; 7115 7116 if (len < sizeof(int)) 7117 return -EINVAL; 7118 7119 len = sizeof(int); 7120 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7121 val = 1; 7122 if (put_user(len, optlen)) 7123 return -EFAULT; 7124 if (copy_to_user(optval, &val, len)) 7125 return -EFAULT; 7126 return 0; 7127 } 7128 7129 /* 7130 * 8.2.6. Get the Current Identifiers of Associations 7131 * (SCTP_GET_ASSOC_ID_LIST) 7132 * 7133 * This option gets the current list of SCTP association identifiers of 7134 * the SCTP associations handled by a one-to-many style socket. 7135 */ 7136 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7137 char __user *optval, int __user *optlen) 7138 { 7139 struct sctp_sock *sp = sctp_sk(sk); 7140 struct sctp_association *asoc; 7141 struct sctp_assoc_ids *ids; 7142 u32 num = 0; 7143 7144 if (sctp_style(sk, TCP)) 7145 return -EOPNOTSUPP; 7146 7147 if (len < sizeof(struct sctp_assoc_ids)) 7148 return -EINVAL; 7149 7150 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7151 num++; 7152 } 7153 7154 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7155 return -EINVAL; 7156 7157 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7158 7159 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7160 if (unlikely(!ids)) 7161 return -ENOMEM; 7162 7163 ids->gaids_number_of_ids = num; 7164 num = 0; 7165 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7166 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7167 } 7168 7169 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7170 kfree(ids); 7171 return -EFAULT; 7172 } 7173 7174 kfree(ids); 7175 return 0; 7176 } 7177 7178 /* 7179 * SCTP_PEER_ADDR_THLDS 7180 * 7181 * This option allows us to fetch the partially failed threshold for one or all 7182 * transports in an association. See Section 6.1 of: 7183 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7184 */ 7185 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7186 char __user *optval, 7187 int len, 7188 int __user *optlen) 7189 { 7190 struct sctp_paddrthlds val; 7191 struct sctp_transport *trans; 7192 struct sctp_association *asoc; 7193 7194 if (len < sizeof(struct sctp_paddrthlds)) 7195 return -EINVAL; 7196 len = sizeof(struct sctp_paddrthlds); 7197 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 7198 return -EFAULT; 7199 7200 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7201 trans = sctp_addr_id2transport(sk, &val.spt_address, 7202 val.spt_assoc_id); 7203 if (!trans) 7204 return -ENOENT; 7205 7206 val.spt_pathmaxrxt = trans->pathmaxrxt; 7207 val.spt_pathpfthld = trans->pf_retrans; 7208 7209 return 0; 7210 } 7211 7212 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7213 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7214 sctp_style(sk, UDP)) 7215 return -EINVAL; 7216 7217 if (asoc) { 7218 val.spt_pathpfthld = asoc->pf_retrans; 7219 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7220 } else { 7221 struct sctp_sock *sp = sctp_sk(sk); 7222 7223 val.spt_pathpfthld = sp->pf_retrans; 7224 val.spt_pathmaxrxt = sp->pathmaxrxt; 7225 } 7226 7227 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7228 return -EFAULT; 7229 7230 return 0; 7231 } 7232 7233 /* 7234 * SCTP_GET_ASSOC_STATS 7235 * 7236 * This option retrieves local per endpoint statistics. It is modeled 7237 * after OpenSolaris' implementation 7238 */ 7239 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7240 char __user *optval, 7241 int __user *optlen) 7242 { 7243 struct sctp_assoc_stats sas; 7244 struct sctp_association *asoc = NULL; 7245 7246 /* User must provide at least the assoc id */ 7247 if (len < sizeof(sctp_assoc_t)) 7248 return -EINVAL; 7249 7250 /* Allow the struct to grow and fill in as much as possible */ 7251 len = min_t(size_t, len, sizeof(sas)); 7252 7253 if (copy_from_user(&sas, optval, len)) 7254 return -EFAULT; 7255 7256 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7257 if (!asoc) 7258 return -EINVAL; 7259 7260 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7261 sas.sas_gapcnt = asoc->stats.gapcnt; 7262 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7263 sas.sas_osacks = asoc->stats.osacks; 7264 sas.sas_isacks = asoc->stats.isacks; 7265 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7266 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7267 sas.sas_oodchunks = asoc->stats.oodchunks; 7268 sas.sas_iodchunks = asoc->stats.iodchunks; 7269 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7270 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7271 sas.sas_idupchunks = asoc->stats.idupchunks; 7272 sas.sas_opackets = asoc->stats.opackets; 7273 sas.sas_ipackets = asoc->stats.ipackets; 7274 7275 /* New high max rto observed, will return 0 if not a single 7276 * RTO update took place. obs_rto_ipaddr will be bogus 7277 * in such a case 7278 */ 7279 sas.sas_maxrto = asoc->stats.max_obs_rto; 7280 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7281 sizeof(struct sockaddr_storage)); 7282 7283 /* Mark beginning of a new observation period */ 7284 asoc->stats.max_obs_rto = asoc->rto_min; 7285 7286 if (put_user(len, optlen)) 7287 return -EFAULT; 7288 7289 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7290 7291 if (copy_to_user(optval, &sas, len)) 7292 return -EFAULT; 7293 7294 return 0; 7295 } 7296 7297 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7298 char __user *optval, 7299 int __user *optlen) 7300 { 7301 int val = 0; 7302 7303 if (len < sizeof(int)) 7304 return -EINVAL; 7305 7306 len = sizeof(int); 7307 if (sctp_sk(sk)->recvrcvinfo) 7308 val = 1; 7309 if (put_user(len, optlen)) 7310 return -EFAULT; 7311 if (copy_to_user(optval, &val, len)) 7312 return -EFAULT; 7313 7314 return 0; 7315 } 7316 7317 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7318 char __user *optval, 7319 int __user *optlen) 7320 { 7321 int val = 0; 7322 7323 if (len < sizeof(int)) 7324 return -EINVAL; 7325 7326 len = sizeof(int); 7327 if (sctp_sk(sk)->recvnxtinfo) 7328 val = 1; 7329 if (put_user(len, optlen)) 7330 return -EFAULT; 7331 if (copy_to_user(optval, &val, len)) 7332 return -EFAULT; 7333 7334 return 0; 7335 } 7336 7337 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7338 char __user *optval, 7339 int __user *optlen) 7340 { 7341 struct sctp_assoc_value params; 7342 struct sctp_association *asoc; 7343 int retval = -EFAULT; 7344 7345 if (len < sizeof(params)) { 7346 retval = -EINVAL; 7347 goto out; 7348 } 7349 7350 len = sizeof(params); 7351 if (copy_from_user(¶ms, optval, len)) 7352 goto out; 7353 7354 asoc = sctp_id2assoc(sk, params.assoc_id); 7355 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7356 sctp_style(sk, UDP)) { 7357 retval = -EINVAL; 7358 goto out; 7359 } 7360 7361 params.assoc_value = asoc ? asoc->prsctp_enable 7362 : sctp_sk(sk)->ep->prsctp_enable; 7363 7364 if (put_user(len, optlen)) 7365 goto out; 7366 7367 if (copy_to_user(optval, ¶ms, len)) 7368 goto out; 7369 7370 retval = 0; 7371 7372 out: 7373 return retval; 7374 } 7375 7376 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7377 char __user *optval, 7378 int __user *optlen) 7379 { 7380 struct sctp_default_prinfo info; 7381 struct sctp_association *asoc; 7382 int retval = -EFAULT; 7383 7384 if (len < sizeof(info)) { 7385 retval = -EINVAL; 7386 goto out; 7387 } 7388 7389 len = sizeof(info); 7390 if (copy_from_user(&info, optval, len)) 7391 goto out; 7392 7393 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7394 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7395 sctp_style(sk, UDP)) { 7396 retval = -EINVAL; 7397 goto out; 7398 } 7399 7400 if (asoc) { 7401 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7402 info.pr_value = asoc->default_timetolive; 7403 } else { 7404 struct sctp_sock *sp = sctp_sk(sk); 7405 7406 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7407 info.pr_value = sp->default_timetolive; 7408 } 7409 7410 if (put_user(len, optlen)) 7411 goto out; 7412 7413 if (copy_to_user(optval, &info, len)) 7414 goto out; 7415 7416 retval = 0; 7417 7418 out: 7419 return retval; 7420 } 7421 7422 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7423 char __user *optval, 7424 int __user *optlen) 7425 { 7426 struct sctp_prstatus params; 7427 struct sctp_association *asoc; 7428 int policy; 7429 int retval = -EINVAL; 7430 7431 if (len < sizeof(params)) 7432 goto out; 7433 7434 len = sizeof(params); 7435 if (copy_from_user(¶ms, optval, len)) { 7436 retval = -EFAULT; 7437 goto out; 7438 } 7439 7440 policy = params.sprstat_policy; 7441 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7442 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7443 goto out; 7444 7445 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7446 if (!asoc) 7447 goto out; 7448 7449 if (policy == SCTP_PR_SCTP_ALL) { 7450 params.sprstat_abandoned_unsent = 0; 7451 params.sprstat_abandoned_sent = 0; 7452 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7453 params.sprstat_abandoned_unsent += 7454 asoc->abandoned_unsent[policy]; 7455 params.sprstat_abandoned_sent += 7456 asoc->abandoned_sent[policy]; 7457 } 7458 } else { 7459 params.sprstat_abandoned_unsent = 7460 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7461 params.sprstat_abandoned_sent = 7462 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7463 } 7464 7465 if (put_user(len, optlen)) { 7466 retval = -EFAULT; 7467 goto out; 7468 } 7469 7470 if (copy_to_user(optval, ¶ms, len)) { 7471 retval = -EFAULT; 7472 goto out; 7473 } 7474 7475 retval = 0; 7476 7477 out: 7478 return retval; 7479 } 7480 7481 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7482 char __user *optval, 7483 int __user *optlen) 7484 { 7485 struct sctp_stream_out_ext *streamoute; 7486 struct sctp_association *asoc; 7487 struct sctp_prstatus params; 7488 int retval = -EINVAL; 7489 int policy; 7490 7491 if (len < sizeof(params)) 7492 goto out; 7493 7494 len = sizeof(params); 7495 if (copy_from_user(¶ms, optval, len)) { 7496 retval = -EFAULT; 7497 goto out; 7498 } 7499 7500 policy = params.sprstat_policy; 7501 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7502 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7503 goto out; 7504 7505 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7506 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7507 goto out; 7508 7509 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7510 if (!streamoute) { 7511 /* Not allocated yet, means all stats are 0 */ 7512 params.sprstat_abandoned_unsent = 0; 7513 params.sprstat_abandoned_sent = 0; 7514 retval = 0; 7515 goto out; 7516 } 7517 7518 if (policy == SCTP_PR_SCTP_ALL) { 7519 params.sprstat_abandoned_unsent = 0; 7520 params.sprstat_abandoned_sent = 0; 7521 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7522 params.sprstat_abandoned_unsent += 7523 streamoute->abandoned_unsent[policy]; 7524 params.sprstat_abandoned_sent += 7525 streamoute->abandoned_sent[policy]; 7526 } 7527 } else { 7528 params.sprstat_abandoned_unsent = 7529 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7530 params.sprstat_abandoned_sent = 7531 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7532 } 7533 7534 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7535 retval = -EFAULT; 7536 goto out; 7537 } 7538 7539 retval = 0; 7540 7541 out: 7542 return retval; 7543 } 7544 7545 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7546 char __user *optval, 7547 int __user *optlen) 7548 { 7549 struct sctp_assoc_value params; 7550 struct sctp_association *asoc; 7551 int retval = -EFAULT; 7552 7553 if (len < sizeof(params)) { 7554 retval = -EINVAL; 7555 goto out; 7556 } 7557 7558 len = sizeof(params); 7559 if (copy_from_user(¶ms, optval, len)) 7560 goto out; 7561 7562 asoc = sctp_id2assoc(sk, params.assoc_id); 7563 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7564 sctp_style(sk, UDP)) { 7565 retval = -EINVAL; 7566 goto out; 7567 } 7568 7569 params.assoc_value = asoc ? asoc->reconf_enable 7570 : sctp_sk(sk)->ep->reconf_enable; 7571 7572 if (put_user(len, optlen)) 7573 goto out; 7574 7575 if (copy_to_user(optval, ¶ms, len)) 7576 goto out; 7577 7578 retval = 0; 7579 7580 out: 7581 return retval; 7582 } 7583 7584 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7585 char __user *optval, 7586 int __user *optlen) 7587 { 7588 struct sctp_assoc_value params; 7589 struct sctp_association *asoc; 7590 int retval = -EFAULT; 7591 7592 if (len < sizeof(params)) { 7593 retval = -EINVAL; 7594 goto out; 7595 } 7596 7597 len = sizeof(params); 7598 if (copy_from_user(¶ms, optval, len)) 7599 goto out; 7600 7601 asoc = sctp_id2assoc(sk, params.assoc_id); 7602 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7603 sctp_style(sk, UDP)) { 7604 retval = -EINVAL; 7605 goto out; 7606 } 7607 7608 params.assoc_value = asoc ? asoc->strreset_enable 7609 : sctp_sk(sk)->ep->strreset_enable; 7610 7611 if (put_user(len, optlen)) 7612 goto out; 7613 7614 if (copy_to_user(optval, ¶ms, len)) 7615 goto out; 7616 7617 retval = 0; 7618 7619 out: 7620 return retval; 7621 } 7622 7623 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7624 char __user *optval, 7625 int __user *optlen) 7626 { 7627 struct sctp_assoc_value params; 7628 struct sctp_association *asoc; 7629 int retval = -EFAULT; 7630 7631 if (len < sizeof(params)) { 7632 retval = -EINVAL; 7633 goto out; 7634 } 7635 7636 len = sizeof(params); 7637 if (copy_from_user(¶ms, optval, len)) 7638 goto out; 7639 7640 asoc = sctp_id2assoc(sk, params.assoc_id); 7641 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7642 sctp_style(sk, UDP)) { 7643 retval = -EINVAL; 7644 goto out; 7645 } 7646 7647 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7648 : sctp_sk(sk)->default_ss; 7649 7650 if (put_user(len, optlen)) 7651 goto out; 7652 7653 if (copy_to_user(optval, ¶ms, len)) 7654 goto out; 7655 7656 retval = 0; 7657 7658 out: 7659 return retval; 7660 } 7661 7662 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7663 char __user *optval, 7664 int __user *optlen) 7665 { 7666 struct sctp_stream_value params; 7667 struct sctp_association *asoc; 7668 int retval = -EFAULT; 7669 7670 if (len < sizeof(params)) { 7671 retval = -EINVAL; 7672 goto out; 7673 } 7674 7675 len = sizeof(params); 7676 if (copy_from_user(¶ms, optval, len)) 7677 goto out; 7678 7679 asoc = sctp_id2assoc(sk, params.assoc_id); 7680 if (!asoc) { 7681 retval = -EINVAL; 7682 goto out; 7683 } 7684 7685 retval = sctp_sched_get_value(asoc, params.stream_id, 7686 ¶ms.stream_value); 7687 if (retval) 7688 goto out; 7689 7690 if (put_user(len, optlen)) { 7691 retval = -EFAULT; 7692 goto out; 7693 } 7694 7695 if (copy_to_user(optval, ¶ms, len)) { 7696 retval = -EFAULT; 7697 goto out; 7698 } 7699 7700 out: 7701 return retval; 7702 } 7703 7704 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7705 char __user *optval, 7706 int __user *optlen) 7707 { 7708 struct sctp_assoc_value params; 7709 struct sctp_association *asoc; 7710 int retval = -EFAULT; 7711 7712 if (len < sizeof(params)) { 7713 retval = -EINVAL; 7714 goto out; 7715 } 7716 7717 len = sizeof(params); 7718 if (copy_from_user(¶ms, optval, len)) 7719 goto out; 7720 7721 asoc = sctp_id2assoc(sk, params.assoc_id); 7722 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7723 sctp_style(sk, UDP)) { 7724 retval = -EINVAL; 7725 goto out; 7726 } 7727 7728 params.assoc_value = asoc ? asoc->intl_enable 7729 : sctp_sk(sk)->strm_interleave; 7730 7731 if (put_user(len, optlen)) 7732 goto out; 7733 7734 if (copy_to_user(optval, ¶ms, len)) 7735 goto out; 7736 7737 retval = 0; 7738 7739 out: 7740 return retval; 7741 } 7742 7743 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7744 char __user *optval, 7745 int __user *optlen) 7746 { 7747 int val; 7748 7749 if (len < sizeof(int)) 7750 return -EINVAL; 7751 7752 len = sizeof(int); 7753 val = sctp_sk(sk)->reuse; 7754 if (put_user(len, optlen)) 7755 return -EFAULT; 7756 7757 if (copy_to_user(optval, &val, len)) 7758 return -EFAULT; 7759 7760 return 0; 7761 } 7762 7763 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7764 int __user *optlen) 7765 { 7766 struct sctp_association *asoc; 7767 struct sctp_event param; 7768 __u16 subscribe; 7769 7770 if (len < sizeof(param)) 7771 return -EINVAL; 7772 7773 len = sizeof(param); 7774 if (copy_from_user(¶m, optval, len)) 7775 return -EFAULT; 7776 7777 if (param.se_type < SCTP_SN_TYPE_BASE || 7778 param.se_type > SCTP_SN_TYPE_MAX) 7779 return -EINVAL; 7780 7781 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7782 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7783 sctp_style(sk, UDP)) 7784 return -EINVAL; 7785 7786 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7787 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7788 7789 if (put_user(len, optlen)) 7790 return -EFAULT; 7791 7792 if (copy_to_user(optval, ¶m, len)) 7793 return -EFAULT; 7794 7795 return 0; 7796 } 7797 7798 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7799 char __user *optval, int __user *optlen) 7800 { 7801 int retval = 0; 7802 int len; 7803 7804 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7805 7806 /* I can hardly begin to describe how wrong this is. This is 7807 * so broken as to be worse than useless. The API draft 7808 * REALLY is NOT helpful here... I am not convinced that the 7809 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7810 * are at all well-founded. 7811 */ 7812 if (level != SOL_SCTP) { 7813 struct sctp_af *af = sctp_sk(sk)->pf->af; 7814 7815 retval = af->getsockopt(sk, level, optname, optval, optlen); 7816 return retval; 7817 } 7818 7819 if (get_user(len, optlen)) 7820 return -EFAULT; 7821 7822 if (len < 0) 7823 return -EINVAL; 7824 7825 lock_sock(sk); 7826 7827 switch (optname) { 7828 case SCTP_STATUS: 7829 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7830 break; 7831 case SCTP_DISABLE_FRAGMENTS: 7832 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7833 optlen); 7834 break; 7835 case SCTP_EVENTS: 7836 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7837 break; 7838 case SCTP_AUTOCLOSE: 7839 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7840 break; 7841 case SCTP_SOCKOPT_PEELOFF: 7842 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7843 break; 7844 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7845 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7846 break; 7847 case SCTP_PEER_ADDR_PARAMS: 7848 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7849 optlen); 7850 break; 7851 case SCTP_DELAYED_SACK: 7852 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7853 optlen); 7854 break; 7855 case SCTP_INITMSG: 7856 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7857 break; 7858 case SCTP_GET_PEER_ADDRS: 7859 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7860 optlen); 7861 break; 7862 case SCTP_GET_LOCAL_ADDRS: 7863 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7864 optlen); 7865 break; 7866 case SCTP_SOCKOPT_CONNECTX3: 7867 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7868 break; 7869 case SCTP_DEFAULT_SEND_PARAM: 7870 retval = sctp_getsockopt_default_send_param(sk, len, 7871 optval, optlen); 7872 break; 7873 case SCTP_DEFAULT_SNDINFO: 7874 retval = sctp_getsockopt_default_sndinfo(sk, len, 7875 optval, optlen); 7876 break; 7877 case SCTP_PRIMARY_ADDR: 7878 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7879 break; 7880 case SCTP_NODELAY: 7881 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7882 break; 7883 case SCTP_RTOINFO: 7884 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7885 break; 7886 case SCTP_ASSOCINFO: 7887 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7888 break; 7889 case SCTP_I_WANT_MAPPED_V4_ADDR: 7890 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7891 break; 7892 case SCTP_MAXSEG: 7893 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7894 break; 7895 case SCTP_GET_PEER_ADDR_INFO: 7896 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7897 optlen); 7898 break; 7899 case SCTP_ADAPTATION_LAYER: 7900 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7901 optlen); 7902 break; 7903 case SCTP_CONTEXT: 7904 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7905 break; 7906 case SCTP_FRAGMENT_INTERLEAVE: 7907 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7908 optlen); 7909 break; 7910 case SCTP_PARTIAL_DELIVERY_POINT: 7911 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7912 optlen); 7913 break; 7914 case SCTP_MAX_BURST: 7915 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7916 break; 7917 case SCTP_AUTH_KEY: 7918 case SCTP_AUTH_CHUNK: 7919 case SCTP_AUTH_DELETE_KEY: 7920 case SCTP_AUTH_DEACTIVATE_KEY: 7921 retval = -EOPNOTSUPP; 7922 break; 7923 case SCTP_HMAC_IDENT: 7924 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7925 break; 7926 case SCTP_AUTH_ACTIVE_KEY: 7927 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7928 break; 7929 case SCTP_PEER_AUTH_CHUNKS: 7930 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7931 optlen); 7932 break; 7933 case SCTP_LOCAL_AUTH_CHUNKS: 7934 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7935 optlen); 7936 break; 7937 case SCTP_GET_ASSOC_NUMBER: 7938 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7939 break; 7940 case SCTP_GET_ASSOC_ID_LIST: 7941 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7942 break; 7943 case SCTP_AUTO_ASCONF: 7944 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7945 break; 7946 case SCTP_PEER_ADDR_THLDS: 7947 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7948 break; 7949 case SCTP_GET_ASSOC_STATS: 7950 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7951 break; 7952 case SCTP_RECVRCVINFO: 7953 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7954 break; 7955 case SCTP_RECVNXTINFO: 7956 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7957 break; 7958 case SCTP_PR_SUPPORTED: 7959 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7960 break; 7961 case SCTP_DEFAULT_PRINFO: 7962 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7963 optlen); 7964 break; 7965 case SCTP_PR_ASSOC_STATUS: 7966 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7967 optlen); 7968 break; 7969 case SCTP_PR_STREAM_STATUS: 7970 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7971 optlen); 7972 break; 7973 case SCTP_RECONFIG_SUPPORTED: 7974 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7975 optlen); 7976 break; 7977 case SCTP_ENABLE_STREAM_RESET: 7978 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7979 optlen); 7980 break; 7981 case SCTP_STREAM_SCHEDULER: 7982 retval = sctp_getsockopt_scheduler(sk, len, optval, 7983 optlen); 7984 break; 7985 case SCTP_STREAM_SCHEDULER_VALUE: 7986 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7987 optlen); 7988 break; 7989 case SCTP_INTERLEAVING_SUPPORTED: 7990 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7991 optlen); 7992 break; 7993 case SCTP_REUSE_PORT: 7994 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7995 break; 7996 case SCTP_EVENT: 7997 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7998 break; 7999 default: 8000 retval = -ENOPROTOOPT; 8001 break; 8002 } 8003 8004 release_sock(sk); 8005 return retval; 8006 } 8007 8008 static int sctp_hash(struct sock *sk) 8009 { 8010 /* STUB */ 8011 return 0; 8012 } 8013 8014 static void sctp_unhash(struct sock *sk) 8015 { 8016 /* STUB */ 8017 } 8018 8019 /* Check if port is acceptable. Possibly find first available port. 8020 * 8021 * The port hash table (contained in the 'global' SCTP protocol storage 8022 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8023 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8024 * list (the list number is the port number hashed out, so as you 8025 * would expect from a hash function, all the ports in a given list have 8026 * such a number that hashes out to the same list number; you were 8027 * expecting that, right?); so each list has a set of ports, with a 8028 * link to the socket (struct sock) that uses it, the port number and 8029 * a fastreuse flag (FIXME: NPI ipg). 8030 */ 8031 static struct sctp_bind_bucket *sctp_bucket_create( 8032 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8033 8034 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8035 { 8036 struct sctp_sock *sp = sctp_sk(sk); 8037 bool reuse = (sk->sk_reuse || sp->reuse); 8038 struct sctp_bind_hashbucket *head; /* hash list */ 8039 kuid_t uid = sock_i_uid(sk); 8040 struct sctp_bind_bucket *pp; 8041 unsigned short snum; 8042 int ret; 8043 8044 snum = ntohs(addr->v4.sin_port); 8045 8046 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8047 8048 local_bh_disable(); 8049 8050 if (snum == 0) { 8051 /* Search for an available port. */ 8052 int low, high, remaining, index; 8053 unsigned int rover; 8054 struct net *net = sock_net(sk); 8055 8056 inet_get_local_port_range(net, &low, &high); 8057 remaining = (high - low) + 1; 8058 rover = prandom_u32() % remaining + low; 8059 8060 do { 8061 rover++; 8062 if ((rover < low) || (rover > high)) 8063 rover = low; 8064 if (inet_is_local_reserved_port(net, rover)) 8065 continue; 8066 index = sctp_phashfn(sock_net(sk), rover); 8067 head = &sctp_port_hashtable[index]; 8068 spin_lock(&head->lock); 8069 sctp_for_each_hentry(pp, &head->chain) 8070 if ((pp->port == rover) && 8071 net_eq(sock_net(sk), pp->net)) 8072 goto next; 8073 break; 8074 next: 8075 spin_unlock(&head->lock); 8076 } while (--remaining > 0); 8077 8078 /* Exhausted local port range during search? */ 8079 ret = 1; 8080 if (remaining <= 0) 8081 goto fail; 8082 8083 /* OK, here is the one we will use. HEAD (the port 8084 * hash table list entry) is non-NULL and we hold it's 8085 * mutex. 8086 */ 8087 snum = rover; 8088 } else { 8089 /* We are given an specific port number; we verify 8090 * that it is not being used. If it is used, we will 8091 * exahust the search in the hash list corresponding 8092 * to the port number (snum) - we detect that with the 8093 * port iterator, pp being NULL. 8094 */ 8095 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 8096 spin_lock(&head->lock); 8097 sctp_for_each_hentry(pp, &head->chain) { 8098 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 8099 goto pp_found; 8100 } 8101 } 8102 pp = NULL; 8103 goto pp_not_found; 8104 pp_found: 8105 if (!hlist_empty(&pp->owner)) { 8106 /* We had a port hash table hit - there is an 8107 * available port (pp != NULL) and it is being 8108 * used by other socket (pp->owner not empty); that other 8109 * socket is going to be sk2. 8110 */ 8111 struct sock *sk2; 8112 8113 pr_debug("%s: found a possible match\n", __func__); 8114 8115 if ((pp->fastreuse && reuse && 8116 sk->sk_state != SCTP_SS_LISTENING) || 8117 (pp->fastreuseport && sk->sk_reuseport && 8118 uid_eq(pp->fastuid, uid))) 8119 goto success; 8120 8121 /* Run through the list of sockets bound to the port 8122 * (pp->port) [via the pointers bind_next and 8123 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8124 * we get the endpoint they describe and run through 8125 * the endpoint's list of IP (v4 or v6) addresses, 8126 * comparing each of the addresses with the address of 8127 * the socket sk. If we find a match, then that means 8128 * that this port/socket (sk) combination are already 8129 * in an endpoint. 8130 */ 8131 sk_for_each_bound(sk2, &pp->owner) { 8132 struct sctp_sock *sp2 = sctp_sk(sk2); 8133 struct sctp_endpoint *ep2 = sp2->ep; 8134 8135 if (sk == sk2 || 8136 (reuse && (sk2->sk_reuse || sp2->reuse) && 8137 sk2->sk_state != SCTP_SS_LISTENING) || 8138 (sk->sk_reuseport && sk2->sk_reuseport && 8139 uid_eq(uid, sock_i_uid(sk2)))) 8140 continue; 8141 8142 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8143 addr, sp2, sp)) { 8144 ret = (long)sk2; 8145 goto fail_unlock; 8146 } 8147 } 8148 8149 pr_debug("%s: found a match\n", __func__); 8150 } 8151 pp_not_found: 8152 /* If there was a hash table miss, create a new port. */ 8153 ret = 1; 8154 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 8155 goto fail_unlock; 8156 8157 /* In either case (hit or miss), make sure fastreuse is 1 only 8158 * if sk->sk_reuse is too (that is, if the caller requested 8159 * SO_REUSEADDR on this socket -sk-). 8160 */ 8161 if (hlist_empty(&pp->owner)) { 8162 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8163 pp->fastreuse = 1; 8164 else 8165 pp->fastreuse = 0; 8166 8167 if (sk->sk_reuseport) { 8168 pp->fastreuseport = 1; 8169 pp->fastuid = uid; 8170 } else { 8171 pp->fastreuseport = 0; 8172 } 8173 } else { 8174 if (pp->fastreuse && 8175 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8176 pp->fastreuse = 0; 8177 8178 if (pp->fastreuseport && 8179 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8180 pp->fastreuseport = 0; 8181 } 8182 8183 /* We are set, so fill up all the data in the hash table 8184 * entry, tie the socket list information with the rest of the 8185 * sockets FIXME: Blurry, NPI (ipg). 8186 */ 8187 success: 8188 if (!sp->bind_hash) { 8189 inet_sk(sk)->inet_num = snum; 8190 sk_add_bind_node(sk, &pp->owner); 8191 sp->bind_hash = pp; 8192 } 8193 ret = 0; 8194 8195 fail_unlock: 8196 spin_unlock(&head->lock); 8197 8198 fail: 8199 local_bh_enable(); 8200 return ret; 8201 } 8202 8203 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8204 * port is requested. 8205 */ 8206 static int sctp_get_port(struct sock *sk, unsigned short snum) 8207 { 8208 union sctp_addr addr; 8209 struct sctp_af *af = sctp_sk(sk)->pf->af; 8210 8211 /* Set up a dummy address struct from the sk. */ 8212 af->from_sk(&addr, sk); 8213 addr.v4.sin_port = htons(snum); 8214 8215 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8216 return !!sctp_get_port_local(sk, &addr); 8217 } 8218 8219 /* 8220 * Move a socket to LISTENING state. 8221 */ 8222 static int sctp_listen_start(struct sock *sk, int backlog) 8223 { 8224 struct sctp_sock *sp = sctp_sk(sk); 8225 struct sctp_endpoint *ep = sp->ep; 8226 struct crypto_shash *tfm = NULL; 8227 char alg[32]; 8228 8229 /* Allocate HMAC for generating cookie. */ 8230 if (!sp->hmac && sp->sctp_hmac_alg) { 8231 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8232 tfm = crypto_alloc_shash(alg, 0, 0); 8233 if (IS_ERR(tfm)) { 8234 net_info_ratelimited("failed to load transform for %s: %ld\n", 8235 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8236 return -ENOSYS; 8237 } 8238 sctp_sk(sk)->hmac = tfm; 8239 } 8240 8241 /* 8242 * If a bind() or sctp_bindx() is not called prior to a listen() 8243 * call that allows new associations to be accepted, the system 8244 * picks an ephemeral port and will choose an address set equivalent 8245 * to binding with a wildcard address. 8246 * 8247 * This is not currently spelled out in the SCTP sockets 8248 * extensions draft, but follows the practice as seen in TCP 8249 * sockets. 8250 * 8251 */ 8252 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8253 if (!ep->base.bind_addr.port) { 8254 if (sctp_autobind(sk)) 8255 return -EAGAIN; 8256 } else { 8257 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8258 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8259 return -EADDRINUSE; 8260 } 8261 } 8262 8263 sk->sk_max_ack_backlog = backlog; 8264 return sctp_hash_endpoint(ep); 8265 } 8266 8267 /* 8268 * 4.1.3 / 5.1.3 listen() 8269 * 8270 * By default, new associations are not accepted for UDP style sockets. 8271 * An application uses listen() to mark a socket as being able to 8272 * accept new associations. 8273 * 8274 * On TCP style sockets, applications use listen() to ready the SCTP 8275 * endpoint for accepting inbound associations. 8276 * 8277 * On both types of endpoints a backlog of '0' disables listening. 8278 * 8279 * Move a socket to LISTENING state. 8280 */ 8281 int sctp_inet_listen(struct socket *sock, int backlog) 8282 { 8283 struct sock *sk = sock->sk; 8284 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8285 int err = -EINVAL; 8286 8287 if (unlikely(backlog < 0)) 8288 return err; 8289 8290 lock_sock(sk); 8291 8292 /* Peeled-off sockets are not allowed to listen(). */ 8293 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8294 goto out; 8295 8296 if (sock->state != SS_UNCONNECTED) 8297 goto out; 8298 8299 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8300 goto out; 8301 8302 /* If backlog is zero, disable listening. */ 8303 if (!backlog) { 8304 if (sctp_sstate(sk, CLOSED)) 8305 goto out; 8306 8307 err = 0; 8308 sctp_unhash_endpoint(ep); 8309 sk->sk_state = SCTP_SS_CLOSED; 8310 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8311 sctp_sk(sk)->bind_hash->fastreuse = 1; 8312 goto out; 8313 } 8314 8315 /* If we are already listening, just update the backlog */ 8316 if (sctp_sstate(sk, LISTENING)) 8317 sk->sk_max_ack_backlog = backlog; 8318 else { 8319 err = sctp_listen_start(sk, backlog); 8320 if (err) 8321 goto out; 8322 } 8323 8324 err = 0; 8325 out: 8326 release_sock(sk); 8327 return err; 8328 } 8329 8330 /* 8331 * This function is done by modeling the current datagram_poll() and the 8332 * tcp_poll(). Note that, based on these implementations, we don't 8333 * lock the socket in this function, even though it seems that, 8334 * ideally, locking or some other mechanisms can be used to ensure 8335 * the integrity of the counters (sndbuf and wmem_alloc) used 8336 * in this place. We assume that we don't need locks either until proven 8337 * otherwise. 8338 * 8339 * Another thing to note is that we include the Async I/O support 8340 * here, again, by modeling the current TCP/UDP code. We don't have 8341 * a good way to test with it yet. 8342 */ 8343 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8344 { 8345 struct sock *sk = sock->sk; 8346 struct sctp_sock *sp = sctp_sk(sk); 8347 __poll_t mask; 8348 8349 poll_wait(file, sk_sleep(sk), wait); 8350 8351 sock_rps_record_flow(sk); 8352 8353 /* A TCP-style listening socket becomes readable when the accept queue 8354 * is not empty. 8355 */ 8356 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8357 return (!list_empty(&sp->ep->asocs)) ? 8358 (EPOLLIN | EPOLLRDNORM) : 0; 8359 8360 mask = 0; 8361 8362 /* Is there any exceptional events? */ 8363 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8364 mask |= EPOLLERR | 8365 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8366 if (sk->sk_shutdown & RCV_SHUTDOWN) 8367 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8368 if (sk->sk_shutdown == SHUTDOWN_MASK) 8369 mask |= EPOLLHUP; 8370 8371 /* Is it readable? Reconsider this code with TCP-style support. */ 8372 if (!skb_queue_empty(&sk->sk_receive_queue)) 8373 mask |= EPOLLIN | EPOLLRDNORM; 8374 8375 /* The association is either gone or not ready. */ 8376 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8377 return mask; 8378 8379 /* Is it writable? */ 8380 if (sctp_writeable(sk)) { 8381 mask |= EPOLLOUT | EPOLLWRNORM; 8382 } else { 8383 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8384 /* 8385 * Since the socket is not locked, the buffer 8386 * might be made available after the writeable check and 8387 * before the bit is set. This could cause a lost I/O 8388 * signal. tcp_poll() has a race breaker for this race 8389 * condition. Based on their implementation, we put 8390 * in the following code to cover it as well. 8391 */ 8392 if (sctp_writeable(sk)) 8393 mask |= EPOLLOUT | EPOLLWRNORM; 8394 } 8395 return mask; 8396 } 8397 8398 /******************************************************************** 8399 * 2nd Level Abstractions 8400 ********************************************************************/ 8401 8402 static struct sctp_bind_bucket *sctp_bucket_create( 8403 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8404 { 8405 struct sctp_bind_bucket *pp; 8406 8407 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8408 if (pp) { 8409 SCTP_DBG_OBJCNT_INC(bind_bucket); 8410 pp->port = snum; 8411 pp->fastreuse = 0; 8412 INIT_HLIST_HEAD(&pp->owner); 8413 pp->net = net; 8414 hlist_add_head(&pp->node, &head->chain); 8415 } 8416 return pp; 8417 } 8418 8419 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8420 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8421 { 8422 if (pp && hlist_empty(&pp->owner)) { 8423 __hlist_del(&pp->node); 8424 kmem_cache_free(sctp_bucket_cachep, pp); 8425 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8426 } 8427 } 8428 8429 /* Release this socket's reference to a local port. */ 8430 static inline void __sctp_put_port(struct sock *sk) 8431 { 8432 struct sctp_bind_hashbucket *head = 8433 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8434 inet_sk(sk)->inet_num)]; 8435 struct sctp_bind_bucket *pp; 8436 8437 spin_lock(&head->lock); 8438 pp = sctp_sk(sk)->bind_hash; 8439 __sk_del_bind_node(sk); 8440 sctp_sk(sk)->bind_hash = NULL; 8441 inet_sk(sk)->inet_num = 0; 8442 sctp_bucket_destroy(pp); 8443 spin_unlock(&head->lock); 8444 } 8445 8446 void sctp_put_port(struct sock *sk) 8447 { 8448 local_bh_disable(); 8449 __sctp_put_port(sk); 8450 local_bh_enable(); 8451 } 8452 8453 /* 8454 * The system picks an ephemeral port and choose an address set equivalent 8455 * to binding with a wildcard address. 8456 * One of those addresses will be the primary address for the association. 8457 * This automatically enables the multihoming capability of SCTP. 8458 */ 8459 static int sctp_autobind(struct sock *sk) 8460 { 8461 union sctp_addr autoaddr; 8462 struct sctp_af *af; 8463 __be16 port; 8464 8465 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8466 af = sctp_sk(sk)->pf->af; 8467 8468 port = htons(inet_sk(sk)->inet_num); 8469 af->inaddr_any(&autoaddr, port); 8470 8471 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8472 } 8473 8474 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8475 * 8476 * From RFC 2292 8477 * 4.2 The cmsghdr Structure * 8478 * 8479 * When ancillary data is sent or received, any number of ancillary data 8480 * objects can be specified by the msg_control and msg_controllen members of 8481 * the msghdr structure, because each object is preceded by 8482 * a cmsghdr structure defining the object's length (the cmsg_len member). 8483 * Historically Berkeley-derived implementations have passed only one object 8484 * at a time, but this API allows multiple objects to be 8485 * passed in a single call to sendmsg() or recvmsg(). The following example 8486 * shows two ancillary data objects in a control buffer. 8487 * 8488 * |<--------------------------- msg_controllen -------------------------->| 8489 * | | 8490 * 8491 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8492 * 8493 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8494 * | | | 8495 * 8496 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8497 * 8498 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8499 * | | | | | 8500 * 8501 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8502 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8503 * 8504 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8505 * 8506 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8507 * ^ 8508 * | 8509 * 8510 * msg_control 8511 * points here 8512 */ 8513 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8514 { 8515 struct msghdr *my_msg = (struct msghdr *)msg; 8516 struct cmsghdr *cmsg; 8517 8518 for_each_cmsghdr(cmsg, my_msg) { 8519 if (!CMSG_OK(my_msg, cmsg)) 8520 return -EINVAL; 8521 8522 /* Should we parse this header or ignore? */ 8523 if (cmsg->cmsg_level != IPPROTO_SCTP) 8524 continue; 8525 8526 /* Strictly check lengths following example in SCM code. */ 8527 switch (cmsg->cmsg_type) { 8528 case SCTP_INIT: 8529 /* SCTP Socket API Extension 8530 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8531 * 8532 * This cmsghdr structure provides information for 8533 * initializing new SCTP associations with sendmsg(). 8534 * The SCTP_INITMSG socket option uses this same data 8535 * structure. This structure is not used for 8536 * recvmsg(). 8537 * 8538 * cmsg_level cmsg_type cmsg_data[] 8539 * ------------ ------------ ---------------------- 8540 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8541 */ 8542 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8543 return -EINVAL; 8544 8545 cmsgs->init = CMSG_DATA(cmsg); 8546 break; 8547 8548 case SCTP_SNDRCV: 8549 /* SCTP Socket API Extension 8550 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8551 * 8552 * This cmsghdr structure specifies SCTP options for 8553 * sendmsg() and describes SCTP header information 8554 * about a received message through recvmsg(). 8555 * 8556 * cmsg_level cmsg_type cmsg_data[] 8557 * ------------ ------------ ---------------------- 8558 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8559 */ 8560 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8561 return -EINVAL; 8562 8563 cmsgs->srinfo = CMSG_DATA(cmsg); 8564 8565 if (cmsgs->srinfo->sinfo_flags & 8566 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8567 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8568 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8569 return -EINVAL; 8570 break; 8571 8572 case SCTP_SNDINFO: 8573 /* SCTP Socket API Extension 8574 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8575 * 8576 * This cmsghdr structure specifies SCTP options for 8577 * sendmsg(). This structure and SCTP_RCVINFO replaces 8578 * SCTP_SNDRCV which has been deprecated. 8579 * 8580 * cmsg_level cmsg_type cmsg_data[] 8581 * ------------ ------------ --------------------- 8582 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8583 */ 8584 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8585 return -EINVAL; 8586 8587 cmsgs->sinfo = CMSG_DATA(cmsg); 8588 8589 if (cmsgs->sinfo->snd_flags & 8590 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8591 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8592 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8593 return -EINVAL; 8594 break; 8595 case SCTP_PRINFO: 8596 /* SCTP Socket API Extension 8597 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8598 * 8599 * This cmsghdr structure specifies SCTP options for sendmsg(). 8600 * 8601 * cmsg_level cmsg_type cmsg_data[] 8602 * ------------ ------------ --------------------- 8603 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8604 */ 8605 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8606 return -EINVAL; 8607 8608 cmsgs->prinfo = CMSG_DATA(cmsg); 8609 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8610 return -EINVAL; 8611 8612 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8613 cmsgs->prinfo->pr_value = 0; 8614 break; 8615 case SCTP_AUTHINFO: 8616 /* SCTP Socket API Extension 8617 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8618 * 8619 * This cmsghdr structure specifies SCTP options for sendmsg(). 8620 * 8621 * cmsg_level cmsg_type cmsg_data[] 8622 * ------------ ------------ --------------------- 8623 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8624 */ 8625 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8626 return -EINVAL; 8627 8628 cmsgs->authinfo = CMSG_DATA(cmsg); 8629 break; 8630 case SCTP_DSTADDRV4: 8631 case SCTP_DSTADDRV6: 8632 /* SCTP Socket API Extension 8633 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8634 * 8635 * This cmsghdr structure specifies SCTP options for sendmsg(). 8636 * 8637 * cmsg_level cmsg_type cmsg_data[] 8638 * ------------ ------------ --------------------- 8639 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8640 * ------------ ------------ --------------------- 8641 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8642 */ 8643 cmsgs->addrs_msg = my_msg; 8644 break; 8645 default: 8646 return -EINVAL; 8647 } 8648 } 8649 8650 return 0; 8651 } 8652 8653 /* 8654 * Wait for a packet.. 8655 * Note: This function is the same function as in core/datagram.c 8656 * with a few modifications to make lksctp work. 8657 */ 8658 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8659 { 8660 int error; 8661 DEFINE_WAIT(wait); 8662 8663 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8664 8665 /* Socket errors? */ 8666 error = sock_error(sk); 8667 if (error) 8668 goto out; 8669 8670 if (!skb_queue_empty(&sk->sk_receive_queue)) 8671 goto ready; 8672 8673 /* Socket shut down? */ 8674 if (sk->sk_shutdown & RCV_SHUTDOWN) 8675 goto out; 8676 8677 /* Sequenced packets can come disconnected. If so we report the 8678 * problem. 8679 */ 8680 error = -ENOTCONN; 8681 8682 /* Is there a good reason to think that we may receive some data? */ 8683 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8684 goto out; 8685 8686 /* Handle signals. */ 8687 if (signal_pending(current)) 8688 goto interrupted; 8689 8690 /* Let another process have a go. Since we are going to sleep 8691 * anyway. Note: This may cause odd behaviors if the message 8692 * does not fit in the user's buffer, but this seems to be the 8693 * only way to honor MSG_DONTWAIT realistically. 8694 */ 8695 release_sock(sk); 8696 *timeo_p = schedule_timeout(*timeo_p); 8697 lock_sock(sk); 8698 8699 ready: 8700 finish_wait(sk_sleep(sk), &wait); 8701 return 0; 8702 8703 interrupted: 8704 error = sock_intr_errno(*timeo_p); 8705 8706 out: 8707 finish_wait(sk_sleep(sk), &wait); 8708 *err = error; 8709 return error; 8710 } 8711 8712 /* Receive a datagram. 8713 * Note: This is pretty much the same routine as in core/datagram.c 8714 * with a few changes to make lksctp work. 8715 */ 8716 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8717 int noblock, int *err) 8718 { 8719 int error; 8720 struct sk_buff *skb; 8721 long timeo; 8722 8723 timeo = sock_rcvtimeo(sk, noblock); 8724 8725 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8726 MAX_SCHEDULE_TIMEOUT); 8727 8728 do { 8729 /* Again only user level code calls this function, 8730 * so nothing interrupt level 8731 * will suddenly eat the receive_queue. 8732 * 8733 * Look at current nfs client by the way... 8734 * However, this function was correct in any case. 8) 8735 */ 8736 if (flags & MSG_PEEK) { 8737 skb = skb_peek(&sk->sk_receive_queue); 8738 if (skb) 8739 refcount_inc(&skb->users); 8740 } else { 8741 skb = __skb_dequeue(&sk->sk_receive_queue); 8742 } 8743 8744 if (skb) 8745 return skb; 8746 8747 /* Caller is allowed not to check sk->sk_err before calling. */ 8748 error = sock_error(sk); 8749 if (error) 8750 goto no_packet; 8751 8752 if (sk->sk_shutdown & RCV_SHUTDOWN) 8753 break; 8754 8755 if (sk_can_busy_loop(sk)) { 8756 sk_busy_loop(sk, noblock); 8757 8758 if (!skb_queue_empty(&sk->sk_receive_queue)) 8759 continue; 8760 } 8761 8762 /* User doesn't want to wait. */ 8763 error = -EAGAIN; 8764 if (!timeo) 8765 goto no_packet; 8766 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8767 8768 return NULL; 8769 8770 no_packet: 8771 *err = error; 8772 return NULL; 8773 } 8774 8775 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8776 static void __sctp_write_space(struct sctp_association *asoc) 8777 { 8778 struct sock *sk = asoc->base.sk; 8779 8780 if (sctp_wspace(asoc) <= 0) 8781 return; 8782 8783 if (waitqueue_active(&asoc->wait)) 8784 wake_up_interruptible(&asoc->wait); 8785 8786 if (sctp_writeable(sk)) { 8787 struct socket_wq *wq; 8788 8789 rcu_read_lock(); 8790 wq = rcu_dereference(sk->sk_wq); 8791 if (wq) { 8792 if (waitqueue_active(&wq->wait)) 8793 wake_up_interruptible(&wq->wait); 8794 8795 /* Note that we try to include the Async I/O support 8796 * here by modeling from the current TCP/UDP code. 8797 * We have not tested with it yet. 8798 */ 8799 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8800 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8801 } 8802 rcu_read_unlock(); 8803 } 8804 } 8805 8806 static void sctp_wake_up_waiters(struct sock *sk, 8807 struct sctp_association *asoc) 8808 { 8809 struct sctp_association *tmp = asoc; 8810 8811 /* We do accounting for the sndbuf space per association, 8812 * so we only need to wake our own association. 8813 */ 8814 if (asoc->ep->sndbuf_policy) 8815 return __sctp_write_space(asoc); 8816 8817 /* If association goes down and is just flushing its 8818 * outq, then just normally notify others. 8819 */ 8820 if (asoc->base.dead) 8821 return sctp_write_space(sk); 8822 8823 /* Accounting for the sndbuf space is per socket, so we 8824 * need to wake up others, try to be fair and in case of 8825 * other associations, let them have a go first instead 8826 * of just doing a sctp_write_space() call. 8827 * 8828 * Note that we reach sctp_wake_up_waiters() only when 8829 * associations free up queued chunks, thus we are under 8830 * lock and the list of associations on a socket is 8831 * guaranteed not to change. 8832 */ 8833 for (tmp = list_next_entry(tmp, asocs); 1; 8834 tmp = list_next_entry(tmp, asocs)) { 8835 /* Manually skip the head element. */ 8836 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8837 continue; 8838 /* Wake up association. */ 8839 __sctp_write_space(tmp); 8840 /* We've reached the end. */ 8841 if (tmp == asoc) 8842 break; 8843 } 8844 } 8845 8846 /* Do accounting for the sndbuf space. 8847 * Decrement the used sndbuf space of the corresponding association by the 8848 * data size which was just transmitted(freed). 8849 */ 8850 static void sctp_wfree(struct sk_buff *skb) 8851 { 8852 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8853 struct sctp_association *asoc = chunk->asoc; 8854 struct sock *sk = asoc->base.sk; 8855 8856 sk_mem_uncharge(sk, skb->truesize); 8857 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8858 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8859 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8860 &sk->sk_wmem_alloc)); 8861 8862 if (chunk->shkey) { 8863 struct sctp_shared_key *shkey = chunk->shkey; 8864 8865 /* refcnt == 2 and !list_empty mean after this release, it's 8866 * not being used anywhere, and it's time to notify userland 8867 * that this shkey can be freed if it's been deactivated. 8868 */ 8869 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8870 refcount_read(&shkey->refcnt) == 2) { 8871 struct sctp_ulpevent *ev; 8872 8873 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8874 SCTP_AUTH_FREE_KEY, 8875 GFP_KERNEL); 8876 if (ev) 8877 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8878 } 8879 sctp_auth_shkey_release(chunk->shkey); 8880 } 8881 8882 sock_wfree(skb); 8883 sctp_wake_up_waiters(sk, asoc); 8884 8885 sctp_association_put(asoc); 8886 } 8887 8888 /* Do accounting for the receive space on the socket. 8889 * Accounting for the association is done in ulpevent.c 8890 * We set this as a destructor for the cloned data skbs so that 8891 * accounting is done at the correct time. 8892 */ 8893 void sctp_sock_rfree(struct sk_buff *skb) 8894 { 8895 struct sock *sk = skb->sk; 8896 struct sctp_ulpevent *event = sctp_skb2event(skb); 8897 8898 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8899 8900 /* 8901 * Mimic the behavior of sock_rfree 8902 */ 8903 sk_mem_uncharge(sk, event->rmem_len); 8904 } 8905 8906 8907 /* Helper function to wait for space in the sndbuf. */ 8908 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8909 size_t msg_len) 8910 { 8911 struct sock *sk = asoc->base.sk; 8912 long current_timeo = *timeo_p; 8913 DEFINE_WAIT(wait); 8914 int err = 0; 8915 8916 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8917 *timeo_p, msg_len); 8918 8919 /* Increment the association's refcnt. */ 8920 sctp_association_hold(asoc); 8921 8922 /* Wait on the association specific sndbuf space. */ 8923 for (;;) { 8924 prepare_to_wait_exclusive(&asoc->wait, &wait, 8925 TASK_INTERRUPTIBLE); 8926 if (asoc->base.dead) 8927 goto do_dead; 8928 if (!*timeo_p) 8929 goto do_nonblock; 8930 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8931 goto do_error; 8932 if (signal_pending(current)) 8933 goto do_interrupted; 8934 if ((int)msg_len <= sctp_wspace(asoc)) 8935 break; 8936 8937 /* Let another process have a go. Since we are going 8938 * to sleep anyway. 8939 */ 8940 release_sock(sk); 8941 current_timeo = schedule_timeout(current_timeo); 8942 lock_sock(sk); 8943 if (sk != asoc->base.sk) 8944 goto do_error; 8945 8946 *timeo_p = current_timeo; 8947 } 8948 8949 out: 8950 finish_wait(&asoc->wait, &wait); 8951 8952 /* Release the association's refcnt. */ 8953 sctp_association_put(asoc); 8954 8955 return err; 8956 8957 do_dead: 8958 err = -ESRCH; 8959 goto out; 8960 8961 do_error: 8962 err = -EPIPE; 8963 goto out; 8964 8965 do_interrupted: 8966 err = sock_intr_errno(*timeo_p); 8967 goto out; 8968 8969 do_nonblock: 8970 err = -EAGAIN; 8971 goto out; 8972 } 8973 8974 void sctp_data_ready(struct sock *sk) 8975 { 8976 struct socket_wq *wq; 8977 8978 rcu_read_lock(); 8979 wq = rcu_dereference(sk->sk_wq); 8980 if (skwq_has_sleeper(wq)) 8981 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8982 EPOLLRDNORM | EPOLLRDBAND); 8983 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8984 rcu_read_unlock(); 8985 } 8986 8987 /* If socket sndbuf has changed, wake up all per association waiters. */ 8988 void sctp_write_space(struct sock *sk) 8989 { 8990 struct sctp_association *asoc; 8991 8992 /* Wake up the tasks in each wait queue. */ 8993 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8994 __sctp_write_space(asoc); 8995 } 8996 } 8997 8998 /* Is there any sndbuf space available on the socket? 8999 * 9000 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9001 * associations on the same socket. For a UDP-style socket with 9002 * multiple associations, it is possible for it to be "unwriteable" 9003 * prematurely. I assume that this is acceptable because 9004 * a premature "unwriteable" is better than an accidental "writeable" which 9005 * would cause an unwanted block under certain circumstances. For the 1-1 9006 * UDP-style sockets or TCP-style sockets, this code should work. 9007 * - Daisy 9008 */ 9009 static bool sctp_writeable(struct sock *sk) 9010 { 9011 return sk->sk_sndbuf > sk->sk_wmem_queued; 9012 } 9013 9014 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9015 * returns immediately with EINPROGRESS. 9016 */ 9017 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9018 { 9019 struct sock *sk = asoc->base.sk; 9020 int err = 0; 9021 long current_timeo = *timeo_p; 9022 DEFINE_WAIT(wait); 9023 9024 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9025 9026 /* Increment the association's refcnt. */ 9027 sctp_association_hold(asoc); 9028 9029 for (;;) { 9030 prepare_to_wait_exclusive(&asoc->wait, &wait, 9031 TASK_INTERRUPTIBLE); 9032 if (!*timeo_p) 9033 goto do_nonblock; 9034 if (sk->sk_shutdown & RCV_SHUTDOWN) 9035 break; 9036 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9037 asoc->base.dead) 9038 goto do_error; 9039 if (signal_pending(current)) 9040 goto do_interrupted; 9041 9042 if (sctp_state(asoc, ESTABLISHED)) 9043 break; 9044 9045 /* Let another process have a go. Since we are going 9046 * to sleep anyway. 9047 */ 9048 release_sock(sk); 9049 current_timeo = schedule_timeout(current_timeo); 9050 lock_sock(sk); 9051 9052 *timeo_p = current_timeo; 9053 } 9054 9055 out: 9056 finish_wait(&asoc->wait, &wait); 9057 9058 /* Release the association's refcnt. */ 9059 sctp_association_put(asoc); 9060 9061 return err; 9062 9063 do_error: 9064 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9065 err = -ETIMEDOUT; 9066 else 9067 err = -ECONNREFUSED; 9068 goto out; 9069 9070 do_interrupted: 9071 err = sock_intr_errno(*timeo_p); 9072 goto out; 9073 9074 do_nonblock: 9075 err = -EINPROGRESS; 9076 goto out; 9077 } 9078 9079 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9080 { 9081 struct sctp_endpoint *ep; 9082 int err = 0; 9083 DEFINE_WAIT(wait); 9084 9085 ep = sctp_sk(sk)->ep; 9086 9087 9088 for (;;) { 9089 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9090 TASK_INTERRUPTIBLE); 9091 9092 if (list_empty(&ep->asocs)) { 9093 release_sock(sk); 9094 timeo = schedule_timeout(timeo); 9095 lock_sock(sk); 9096 } 9097 9098 err = -EINVAL; 9099 if (!sctp_sstate(sk, LISTENING)) 9100 break; 9101 9102 err = 0; 9103 if (!list_empty(&ep->asocs)) 9104 break; 9105 9106 err = sock_intr_errno(timeo); 9107 if (signal_pending(current)) 9108 break; 9109 9110 err = -EAGAIN; 9111 if (!timeo) 9112 break; 9113 } 9114 9115 finish_wait(sk_sleep(sk), &wait); 9116 9117 return err; 9118 } 9119 9120 static void sctp_wait_for_close(struct sock *sk, long timeout) 9121 { 9122 DEFINE_WAIT(wait); 9123 9124 do { 9125 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9126 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9127 break; 9128 release_sock(sk); 9129 timeout = schedule_timeout(timeout); 9130 lock_sock(sk); 9131 } while (!signal_pending(current) && timeout); 9132 9133 finish_wait(sk_sleep(sk), &wait); 9134 } 9135 9136 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9137 { 9138 struct sk_buff *frag; 9139 9140 if (!skb->data_len) 9141 goto done; 9142 9143 /* Don't forget the fragments. */ 9144 skb_walk_frags(skb, frag) 9145 sctp_skb_set_owner_r_frag(frag, sk); 9146 9147 done: 9148 sctp_skb_set_owner_r(skb, sk); 9149 } 9150 9151 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9152 struct sctp_association *asoc) 9153 { 9154 struct inet_sock *inet = inet_sk(sk); 9155 struct inet_sock *newinet; 9156 struct sctp_sock *sp = sctp_sk(sk); 9157 struct sctp_endpoint *ep = sp->ep; 9158 9159 newsk->sk_type = sk->sk_type; 9160 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9161 newsk->sk_flags = sk->sk_flags; 9162 newsk->sk_tsflags = sk->sk_tsflags; 9163 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9164 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9165 newsk->sk_reuse = sk->sk_reuse; 9166 sctp_sk(newsk)->reuse = sp->reuse; 9167 9168 newsk->sk_shutdown = sk->sk_shutdown; 9169 newsk->sk_destruct = sctp_destruct_sock; 9170 newsk->sk_family = sk->sk_family; 9171 newsk->sk_protocol = IPPROTO_SCTP; 9172 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9173 newsk->sk_sndbuf = sk->sk_sndbuf; 9174 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9175 newsk->sk_lingertime = sk->sk_lingertime; 9176 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9177 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9178 newsk->sk_rxhash = sk->sk_rxhash; 9179 9180 newinet = inet_sk(newsk); 9181 9182 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9183 * getsockname() and getpeername() 9184 */ 9185 newinet->inet_sport = inet->inet_sport; 9186 newinet->inet_saddr = inet->inet_saddr; 9187 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9188 newinet->inet_dport = htons(asoc->peer.port); 9189 newinet->pmtudisc = inet->pmtudisc; 9190 newinet->inet_id = asoc->next_tsn ^ jiffies; 9191 9192 newinet->uc_ttl = inet->uc_ttl; 9193 newinet->mc_loop = 1; 9194 newinet->mc_ttl = 1; 9195 newinet->mc_index = 0; 9196 newinet->mc_list = NULL; 9197 9198 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9199 net_enable_timestamp(); 9200 9201 /* Set newsk security attributes from orginal sk and connection 9202 * security attribute from ep. 9203 */ 9204 security_sctp_sk_clone(ep, sk, newsk); 9205 } 9206 9207 static inline void sctp_copy_descendant(struct sock *sk_to, 9208 const struct sock *sk_from) 9209 { 9210 int ancestor_size = sizeof(struct inet_sock) + 9211 sizeof(struct sctp_sock) - 9212 offsetof(struct sctp_sock, pd_lobby); 9213 9214 if (sk_from->sk_family == PF_INET6) 9215 ancestor_size += sizeof(struct ipv6_pinfo); 9216 9217 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9218 } 9219 9220 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9221 * and its messages to the newsk. 9222 */ 9223 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9224 struct sctp_association *assoc, 9225 enum sctp_socket_type type) 9226 { 9227 struct sctp_sock *oldsp = sctp_sk(oldsk); 9228 struct sctp_sock *newsp = sctp_sk(newsk); 9229 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9230 struct sctp_endpoint *newep = newsp->ep; 9231 struct sk_buff *skb, *tmp; 9232 struct sctp_ulpevent *event; 9233 struct sctp_bind_hashbucket *head; 9234 int err; 9235 9236 /* Migrate socket buffer sizes and all the socket level options to the 9237 * new socket. 9238 */ 9239 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9240 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9241 /* Brute force copy old sctp opt. */ 9242 sctp_copy_descendant(newsk, oldsk); 9243 9244 /* Restore the ep value that was overwritten with the above structure 9245 * copy. 9246 */ 9247 newsp->ep = newep; 9248 newsp->hmac = NULL; 9249 9250 /* Hook this new socket in to the bind_hash list. */ 9251 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9252 inet_sk(oldsk)->inet_num)]; 9253 spin_lock_bh(&head->lock); 9254 pp = sctp_sk(oldsk)->bind_hash; 9255 sk_add_bind_node(newsk, &pp->owner); 9256 sctp_sk(newsk)->bind_hash = pp; 9257 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9258 spin_unlock_bh(&head->lock); 9259 9260 /* Copy the bind_addr list from the original endpoint to the new 9261 * endpoint so that we can handle restarts properly 9262 */ 9263 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9264 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9265 if (err) 9266 return err; 9267 9268 /* New ep's auth_hmacs should be set if old ep's is set, in case 9269 * that net->sctp.auth_enable has been changed to 0 by users and 9270 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9271 */ 9272 if (oldsp->ep->auth_hmacs) { 9273 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9274 if (err) 9275 return err; 9276 } 9277 9278 /* Move any messages in the old socket's receive queue that are for the 9279 * peeled off association to the new socket's receive queue. 9280 */ 9281 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9282 event = sctp_skb2event(skb); 9283 if (event->asoc == assoc) { 9284 __skb_unlink(skb, &oldsk->sk_receive_queue); 9285 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9286 sctp_skb_set_owner_r_frag(skb, newsk); 9287 } 9288 } 9289 9290 /* Clean up any messages pending delivery due to partial 9291 * delivery. Three cases: 9292 * 1) No partial deliver; no work. 9293 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9294 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9295 */ 9296 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9297 9298 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9299 struct sk_buff_head *queue; 9300 9301 /* Decide which queue to move pd_lobby skbs to. */ 9302 if (assoc->ulpq.pd_mode) { 9303 queue = &newsp->pd_lobby; 9304 } else 9305 queue = &newsk->sk_receive_queue; 9306 9307 /* Walk through the pd_lobby, looking for skbs that 9308 * need moved to the new socket. 9309 */ 9310 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9311 event = sctp_skb2event(skb); 9312 if (event->asoc == assoc) { 9313 __skb_unlink(skb, &oldsp->pd_lobby); 9314 __skb_queue_tail(queue, skb); 9315 sctp_skb_set_owner_r_frag(skb, newsk); 9316 } 9317 } 9318 9319 /* Clear up any skbs waiting for the partial 9320 * delivery to finish. 9321 */ 9322 if (assoc->ulpq.pd_mode) 9323 sctp_clear_pd(oldsk, NULL); 9324 9325 } 9326 9327 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9328 9329 /* Set the type of socket to indicate that it is peeled off from the 9330 * original UDP-style socket or created with the accept() call on a 9331 * TCP-style socket.. 9332 */ 9333 newsp->type = type; 9334 9335 /* Mark the new socket "in-use" by the user so that any packets 9336 * that may arrive on the association after we've moved it are 9337 * queued to the backlog. This prevents a potential race between 9338 * backlog processing on the old socket and new-packet processing 9339 * on the new socket. 9340 * 9341 * The caller has just allocated newsk so we can guarantee that other 9342 * paths won't try to lock it and then oldsk. 9343 */ 9344 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9345 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9346 sctp_assoc_migrate(assoc, newsk); 9347 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9348 9349 /* If the association on the newsk is already closed before accept() 9350 * is called, set RCV_SHUTDOWN flag. 9351 */ 9352 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9353 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9354 newsk->sk_shutdown |= RCV_SHUTDOWN; 9355 } else { 9356 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9357 } 9358 9359 release_sock(newsk); 9360 9361 return 0; 9362 } 9363 9364 9365 /* This proto struct describes the ULP interface for SCTP. */ 9366 struct proto sctp_prot = { 9367 .name = "SCTP", 9368 .owner = THIS_MODULE, 9369 .close = sctp_close, 9370 .disconnect = sctp_disconnect, 9371 .accept = sctp_accept, 9372 .ioctl = sctp_ioctl, 9373 .init = sctp_init_sock, 9374 .destroy = sctp_destroy_sock, 9375 .shutdown = sctp_shutdown, 9376 .setsockopt = sctp_setsockopt, 9377 .getsockopt = sctp_getsockopt, 9378 .sendmsg = sctp_sendmsg, 9379 .recvmsg = sctp_recvmsg, 9380 .bind = sctp_bind, 9381 .backlog_rcv = sctp_backlog_rcv, 9382 .hash = sctp_hash, 9383 .unhash = sctp_unhash, 9384 .get_port = sctp_get_port, 9385 .obj_size = sizeof(struct sctp_sock), 9386 .useroffset = offsetof(struct sctp_sock, subscribe), 9387 .usersize = offsetof(struct sctp_sock, initmsg) - 9388 offsetof(struct sctp_sock, subscribe) + 9389 sizeof_field(struct sctp_sock, initmsg), 9390 .sysctl_mem = sysctl_sctp_mem, 9391 .sysctl_rmem = sysctl_sctp_rmem, 9392 .sysctl_wmem = sysctl_sctp_wmem, 9393 .memory_pressure = &sctp_memory_pressure, 9394 .enter_memory_pressure = sctp_enter_memory_pressure, 9395 .memory_allocated = &sctp_memory_allocated, 9396 .sockets_allocated = &sctp_sockets_allocated, 9397 }; 9398 9399 #if IS_ENABLED(CONFIG_IPV6) 9400 9401 #include <net/transp_v6.h> 9402 static void sctp_v6_destroy_sock(struct sock *sk) 9403 { 9404 sctp_destroy_sock(sk); 9405 inet6_destroy_sock(sk); 9406 } 9407 9408 struct proto sctpv6_prot = { 9409 .name = "SCTPv6", 9410 .owner = THIS_MODULE, 9411 .close = sctp_close, 9412 .disconnect = sctp_disconnect, 9413 .accept = sctp_accept, 9414 .ioctl = sctp_ioctl, 9415 .init = sctp_init_sock, 9416 .destroy = sctp_v6_destroy_sock, 9417 .shutdown = sctp_shutdown, 9418 .setsockopt = sctp_setsockopt, 9419 .getsockopt = sctp_getsockopt, 9420 .sendmsg = sctp_sendmsg, 9421 .recvmsg = sctp_recvmsg, 9422 .bind = sctp_bind, 9423 .backlog_rcv = sctp_backlog_rcv, 9424 .hash = sctp_hash, 9425 .unhash = sctp_unhash, 9426 .get_port = sctp_get_port, 9427 .obj_size = sizeof(struct sctp6_sock), 9428 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9429 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9430 offsetof(struct sctp6_sock, sctp.subscribe) + 9431 sizeof_field(struct sctp6_sock, sctp.initmsg), 9432 .sysctl_mem = sysctl_sctp_mem, 9433 .sysctl_rmem = sysctl_sctp_rmem, 9434 .sysctl_wmem = sysctl_sctp_wmem, 9435 .memory_pressure = &sctp_memory_pressure, 9436 .enter_memory_pressure = sctp_enter_memory_pressure, 9437 .memory_allocated = &sctp_memory_allocated, 9438 .sockets_allocated = &sctp_sockets_allocated, 9439 }; 9440 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9441