1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/types.h> 63 #include <linux/kernel.h> 64 #include <linux/wait.h> 65 #include <linux/time.h> 66 #include <linux/ip.h> 67 #include <linux/capability.h> 68 #include <linux/fcntl.h> 69 #include <linux/poll.h> 70 #include <linux/init.h> 71 #include <linux/crypto.h> 72 #include <linux/slab.h> 73 74 #include <net/ip.h> 75 #include <net/icmp.h> 76 #include <net/route.h> 77 #include <net/ipv6.h> 78 #include <net/inet_common.h> 79 80 #include <linux/socket.h> /* for sa_family_t */ 81 #include <linux/export.h> 82 #include <net/sock.h> 83 #include <net/sctp/sctp.h> 84 #include <net/sctp/sm.h> 85 86 /* WARNING: Please do not remove the SCTP_STATIC attribute to 87 * any of the functions below as they are used to export functions 88 * used by a project regression testsuite. 89 */ 90 91 /* Forward declarations for internal helper functions. */ 92 static int sctp_writeable(struct sock *sk); 93 static void sctp_wfree(struct sk_buff *skb); 94 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 95 size_t msg_len); 96 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 97 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 98 static int sctp_wait_for_accept(struct sock *sk, long timeo); 99 static void sctp_wait_for_close(struct sock *sk, long timeo); 100 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 101 union sctp_addr *addr, int len); 102 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 103 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 104 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 105 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 106 static int sctp_send_asconf(struct sctp_association *asoc, 107 struct sctp_chunk *chunk); 108 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 109 static int sctp_autobind(struct sock *sk); 110 static void sctp_sock_migrate(struct sock *, struct sock *, 111 struct sctp_association *, sctp_socket_type_t); 112 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 113 114 extern struct kmem_cache *sctp_bucket_cachep; 115 extern long sysctl_sctp_mem[3]; 116 extern int sysctl_sctp_rmem[3]; 117 extern int sysctl_sctp_wmem[3]; 118 119 static int sctp_memory_pressure; 120 static atomic_long_t sctp_memory_allocated; 121 struct percpu_counter sctp_sockets_allocated; 122 123 static void sctp_enter_memory_pressure(struct sock *sk) 124 { 125 sctp_memory_pressure = 1; 126 } 127 128 129 /* Get the sndbuf space available at the time on the association. */ 130 static inline int sctp_wspace(struct sctp_association *asoc) 131 { 132 int amt; 133 134 if (asoc->ep->sndbuf_policy) 135 amt = asoc->sndbuf_used; 136 else 137 amt = sk_wmem_alloc_get(asoc->base.sk); 138 139 if (amt >= asoc->base.sk->sk_sndbuf) { 140 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 141 amt = 0; 142 else { 143 amt = sk_stream_wspace(asoc->base.sk); 144 if (amt < 0) 145 amt = 0; 146 } 147 } else { 148 amt = asoc->base.sk->sk_sndbuf - amt; 149 } 150 return amt; 151 } 152 153 /* Increment the used sndbuf space count of the corresponding association by 154 * the size of the outgoing data chunk. 155 * Also, set the skb destructor for sndbuf accounting later. 156 * 157 * Since it is always 1-1 between chunk and skb, and also a new skb is always 158 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 159 * destructor in the data chunk skb for the purpose of the sndbuf space 160 * tracking. 161 */ 162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 163 { 164 struct sctp_association *asoc = chunk->asoc; 165 struct sock *sk = asoc->base.sk; 166 167 /* The sndbuf space is tracked per association. */ 168 sctp_association_hold(asoc); 169 170 skb_set_owner_w(chunk->skb, sk); 171 172 chunk->skb->destructor = sctp_wfree; 173 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 174 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 175 176 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 177 sizeof(struct sk_buff) + 178 sizeof(struct sctp_chunk); 179 180 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 181 sk->sk_wmem_queued += chunk->skb->truesize; 182 sk_mem_charge(sk, chunk->skb->truesize); 183 } 184 185 /* Verify that this is a valid address. */ 186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 187 int len) 188 { 189 struct sctp_af *af; 190 191 /* Verify basic sockaddr. */ 192 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 193 if (!af) 194 return -EINVAL; 195 196 /* Is this a valid SCTP address? */ 197 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 198 return -EINVAL; 199 200 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 201 return -EINVAL; 202 203 return 0; 204 } 205 206 /* Look up the association by its id. If this is not a UDP-style 207 * socket, the ID field is always ignored. 208 */ 209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 210 { 211 struct sctp_association *asoc = NULL; 212 213 /* If this is not a UDP-style socket, assoc id should be ignored. */ 214 if (!sctp_style(sk, UDP)) { 215 /* Return NULL if the socket state is not ESTABLISHED. It 216 * could be a TCP-style listening socket or a socket which 217 * hasn't yet called connect() to establish an association. 218 */ 219 if (!sctp_sstate(sk, ESTABLISHED)) 220 return NULL; 221 222 /* Get the first and the only association from the list. */ 223 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 224 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 225 struct sctp_association, asocs); 226 return asoc; 227 } 228 229 /* Otherwise this is a UDP-style socket. */ 230 if (!id || (id == (sctp_assoc_t)-1)) 231 return NULL; 232 233 spin_lock_bh(&sctp_assocs_id_lock); 234 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 235 spin_unlock_bh(&sctp_assocs_id_lock); 236 237 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 238 return NULL; 239 240 return asoc; 241 } 242 243 /* Look up the transport from an address and an assoc id. If both address and 244 * id are specified, the associations matching the address and the id should be 245 * the same. 246 */ 247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 248 struct sockaddr_storage *addr, 249 sctp_assoc_t id) 250 { 251 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 252 struct sctp_transport *transport; 253 union sctp_addr *laddr = (union sctp_addr *)addr; 254 255 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 256 laddr, 257 &transport); 258 259 if (!addr_asoc) 260 return NULL; 261 262 id_asoc = sctp_id2assoc(sk, id); 263 if (id_asoc && (id_asoc != addr_asoc)) 264 return NULL; 265 266 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 267 (union sctp_addr *)addr); 268 269 return transport; 270 } 271 272 /* API 3.1.2 bind() - UDP Style Syntax 273 * The syntax of bind() is, 274 * 275 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 276 * 277 * sd - the socket descriptor returned by socket(). 278 * addr - the address structure (struct sockaddr_in or struct 279 * sockaddr_in6 [RFC 2553]), 280 * addr_len - the size of the address structure. 281 */ 282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 283 { 284 int retval = 0; 285 286 sctp_lock_sock(sk); 287 288 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 289 sk, addr, addr_len); 290 291 /* Disallow binding twice. */ 292 if (!sctp_sk(sk)->ep->base.bind_addr.port) 293 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 294 addr_len); 295 else 296 retval = -EINVAL; 297 298 sctp_release_sock(sk); 299 300 return retval; 301 } 302 303 static long sctp_get_port_local(struct sock *, union sctp_addr *); 304 305 /* Verify this is a valid sockaddr. */ 306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 307 union sctp_addr *addr, int len) 308 { 309 struct sctp_af *af; 310 311 /* Check minimum size. */ 312 if (len < sizeof (struct sockaddr)) 313 return NULL; 314 315 /* V4 mapped address are really of AF_INET family */ 316 if (addr->sa.sa_family == AF_INET6 && 317 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 318 if (!opt->pf->af_supported(AF_INET, opt)) 319 return NULL; 320 } else { 321 /* Does this PF support this AF? */ 322 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 323 return NULL; 324 } 325 326 /* If we get this far, af is valid. */ 327 af = sctp_get_af_specific(addr->sa.sa_family); 328 329 if (len < af->sockaddr_len) 330 return NULL; 331 332 return af; 333 } 334 335 /* Bind a local address either to an endpoint or to an association. */ 336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 337 { 338 struct sctp_sock *sp = sctp_sk(sk); 339 struct sctp_endpoint *ep = sp->ep; 340 struct sctp_bind_addr *bp = &ep->base.bind_addr; 341 struct sctp_af *af; 342 unsigned short snum; 343 int ret = 0; 344 345 /* Common sockaddr verification. */ 346 af = sctp_sockaddr_af(sp, addr, len); 347 if (!af) { 348 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 349 sk, addr, len); 350 return -EINVAL; 351 } 352 353 snum = ntohs(addr->v4.sin_port); 354 355 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 356 ", port: %d, new port: %d, len: %d)\n", 357 sk, 358 addr, 359 bp->port, snum, 360 len); 361 362 /* PF specific bind() address verification. */ 363 if (!sp->pf->bind_verify(sp, addr)) 364 return -EADDRNOTAVAIL; 365 366 /* We must either be unbound, or bind to the same port. 367 * It's OK to allow 0 ports if we are already bound. 368 * We'll just inhert an already bound port in this case 369 */ 370 if (bp->port) { 371 if (!snum) 372 snum = bp->port; 373 else if (snum != bp->port) { 374 SCTP_DEBUG_PRINTK("sctp_do_bind:" 375 " New port %d does not match existing port " 376 "%d.\n", snum, bp->port); 377 return -EINVAL; 378 } 379 } 380 381 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 382 return -EACCES; 383 384 /* See if the address matches any of the addresses we may have 385 * already bound before checking against other endpoints. 386 */ 387 if (sctp_bind_addr_match(bp, addr, sp)) 388 return -EINVAL; 389 390 /* Make sure we are allowed to bind here. 391 * The function sctp_get_port_local() does duplicate address 392 * detection. 393 */ 394 addr->v4.sin_port = htons(snum); 395 if ((ret = sctp_get_port_local(sk, addr))) { 396 return -EADDRINUSE; 397 } 398 399 /* Refresh ephemeral port. */ 400 if (!bp->port) 401 bp->port = inet_sk(sk)->inet_num; 402 403 /* Add the address to the bind address list. 404 * Use GFP_ATOMIC since BHs will be disabled. 405 */ 406 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 407 408 /* Copy back into socket for getsockname() use. */ 409 if (!ret) { 410 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 411 af->to_sk_saddr(addr, sk); 412 } 413 414 return ret; 415 } 416 417 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 418 * 419 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 420 * at any one time. If a sender, after sending an ASCONF chunk, decides 421 * it needs to transfer another ASCONF Chunk, it MUST wait until the 422 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 423 * subsequent ASCONF. Note this restriction binds each side, so at any 424 * time two ASCONF may be in-transit on any given association (one sent 425 * from each endpoint). 426 */ 427 static int sctp_send_asconf(struct sctp_association *asoc, 428 struct sctp_chunk *chunk) 429 { 430 int retval = 0; 431 432 /* If there is an outstanding ASCONF chunk, queue it for later 433 * transmission. 434 */ 435 if (asoc->addip_last_asconf) { 436 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 437 goto out; 438 } 439 440 /* Hold the chunk until an ASCONF_ACK is received. */ 441 sctp_chunk_hold(chunk); 442 retval = sctp_primitive_ASCONF(asoc, chunk); 443 if (retval) 444 sctp_chunk_free(chunk); 445 else 446 asoc->addip_last_asconf = chunk; 447 448 out: 449 return retval; 450 } 451 452 /* Add a list of addresses as bind addresses to local endpoint or 453 * association. 454 * 455 * Basically run through each address specified in the addrs/addrcnt 456 * array/length pair, determine if it is IPv6 or IPv4 and call 457 * sctp_do_bind() on it. 458 * 459 * If any of them fails, then the operation will be reversed and the 460 * ones that were added will be removed. 461 * 462 * Only sctp_setsockopt_bindx() is supposed to call this function. 463 */ 464 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 465 { 466 int cnt; 467 int retval = 0; 468 void *addr_buf; 469 struct sockaddr *sa_addr; 470 struct sctp_af *af; 471 472 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 473 sk, addrs, addrcnt); 474 475 addr_buf = addrs; 476 for (cnt = 0; cnt < addrcnt; cnt++) { 477 /* The list may contain either IPv4 or IPv6 address; 478 * determine the address length for walking thru the list. 479 */ 480 sa_addr = addr_buf; 481 af = sctp_get_af_specific(sa_addr->sa_family); 482 if (!af) { 483 retval = -EINVAL; 484 goto err_bindx_add; 485 } 486 487 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 488 af->sockaddr_len); 489 490 addr_buf += af->sockaddr_len; 491 492 err_bindx_add: 493 if (retval < 0) { 494 /* Failed. Cleanup the ones that have been added */ 495 if (cnt > 0) 496 sctp_bindx_rem(sk, addrs, cnt); 497 return retval; 498 } 499 } 500 501 return retval; 502 } 503 504 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 505 * associations that are part of the endpoint indicating that a list of local 506 * addresses are added to the endpoint. 507 * 508 * If any of the addresses is already in the bind address list of the 509 * association, we do not send the chunk for that association. But it will not 510 * affect other associations. 511 * 512 * Only sctp_setsockopt_bindx() is supposed to call this function. 513 */ 514 static int sctp_send_asconf_add_ip(struct sock *sk, 515 struct sockaddr *addrs, 516 int addrcnt) 517 { 518 struct sctp_sock *sp; 519 struct sctp_endpoint *ep; 520 struct sctp_association *asoc; 521 struct sctp_bind_addr *bp; 522 struct sctp_chunk *chunk; 523 struct sctp_sockaddr_entry *laddr; 524 union sctp_addr *addr; 525 union sctp_addr saveaddr; 526 void *addr_buf; 527 struct sctp_af *af; 528 struct list_head *p; 529 int i; 530 int retval = 0; 531 532 if (!sctp_addip_enable) 533 return retval; 534 535 sp = sctp_sk(sk); 536 ep = sp->ep; 537 538 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 539 __func__, sk, addrs, addrcnt); 540 541 list_for_each_entry(asoc, &ep->asocs, asocs) { 542 543 if (!asoc->peer.asconf_capable) 544 continue; 545 546 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 547 continue; 548 549 if (!sctp_state(asoc, ESTABLISHED)) 550 continue; 551 552 /* Check if any address in the packed array of addresses is 553 * in the bind address list of the association. If so, 554 * do not send the asconf chunk to its peer, but continue with 555 * other associations. 556 */ 557 addr_buf = addrs; 558 for (i = 0; i < addrcnt; i++) { 559 addr = addr_buf; 560 af = sctp_get_af_specific(addr->v4.sin_family); 561 if (!af) { 562 retval = -EINVAL; 563 goto out; 564 } 565 566 if (sctp_assoc_lookup_laddr(asoc, addr)) 567 break; 568 569 addr_buf += af->sockaddr_len; 570 } 571 if (i < addrcnt) 572 continue; 573 574 /* Use the first valid address in bind addr list of 575 * association as Address Parameter of ASCONF CHUNK. 576 */ 577 bp = &asoc->base.bind_addr; 578 p = bp->address_list.next; 579 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 580 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 581 addrcnt, SCTP_PARAM_ADD_IP); 582 if (!chunk) { 583 retval = -ENOMEM; 584 goto out; 585 } 586 587 /* Add the new addresses to the bind address list with 588 * use_as_src set to 0. 589 */ 590 addr_buf = addrs; 591 for (i = 0; i < addrcnt; i++) { 592 addr = addr_buf; 593 af = sctp_get_af_specific(addr->v4.sin_family); 594 memcpy(&saveaddr, addr, af->sockaddr_len); 595 retval = sctp_add_bind_addr(bp, &saveaddr, 596 SCTP_ADDR_NEW, GFP_ATOMIC); 597 addr_buf += af->sockaddr_len; 598 } 599 if (asoc->src_out_of_asoc_ok) { 600 struct sctp_transport *trans; 601 602 list_for_each_entry(trans, 603 &asoc->peer.transport_addr_list, transports) { 604 /* Clear the source and route cache */ 605 dst_release(trans->dst); 606 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 607 2*asoc->pathmtu, 4380)); 608 trans->ssthresh = asoc->peer.i.a_rwnd; 609 trans->rto = asoc->rto_initial; 610 trans->rtt = trans->srtt = trans->rttvar = 0; 611 sctp_transport_route(trans, NULL, 612 sctp_sk(asoc->base.sk)); 613 } 614 } 615 retval = sctp_send_asconf(asoc, chunk); 616 } 617 618 out: 619 return retval; 620 } 621 622 /* Remove a list of addresses from bind addresses list. Do not remove the 623 * last address. 624 * 625 * Basically run through each address specified in the addrs/addrcnt 626 * array/length pair, determine if it is IPv6 or IPv4 and call 627 * sctp_del_bind() on it. 628 * 629 * If any of them fails, then the operation will be reversed and the 630 * ones that were removed will be added back. 631 * 632 * At least one address has to be left; if only one address is 633 * available, the operation will return -EBUSY. 634 * 635 * Only sctp_setsockopt_bindx() is supposed to call this function. 636 */ 637 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 638 { 639 struct sctp_sock *sp = sctp_sk(sk); 640 struct sctp_endpoint *ep = sp->ep; 641 int cnt; 642 struct sctp_bind_addr *bp = &ep->base.bind_addr; 643 int retval = 0; 644 void *addr_buf; 645 union sctp_addr *sa_addr; 646 struct sctp_af *af; 647 648 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 649 sk, addrs, addrcnt); 650 651 addr_buf = addrs; 652 for (cnt = 0; cnt < addrcnt; cnt++) { 653 /* If the bind address list is empty or if there is only one 654 * bind address, there is nothing more to be removed (we need 655 * at least one address here). 656 */ 657 if (list_empty(&bp->address_list) || 658 (sctp_list_single_entry(&bp->address_list))) { 659 retval = -EBUSY; 660 goto err_bindx_rem; 661 } 662 663 sa_addr = addr_buf; 664 af = sctp_get_af_specific(sa_addr->sa.sa_family); 665 if (!af) { 666 retval = -EINVAL; 667 goto err_bindx_rem; 668 } 669 670 if (!af->addr_valid(sa_addr, sp, NULL)) { 671 retval = -EADDRNOTAVAIL; 672 goto err_bindx_rem; 673 } 674 675 if (sa_addr->v4.sin_port && 676 sa_addr->v4.sin_port != htons(bp->port)) { 677 retval = -EINVAL; 678 goto err_bindx_rem; 679 } 680 681 if (!sa_addr->v4.sin_port) 682 sa_addr->v4.sin_port = htons(bp->port); 683 684 /* FIXME - There is probably a need to check if sk->sk_saddr and 685 * sk->sk_rcv_addr are currently set to one of the addresses to 686 * be removed. This is something which needs to be looked into 687 * when we are fixing the outstanding issues with multi-homing 688 * socket routing and failover schemes. Refer to comments in 689 * sctp_do_bind(). -daisy 690 */ 691 retval = sctp_del_bind_addr(bp, sa_addr); 692 693 addr_buf += af->sockaddr_len; 694 err_bindx_rem: 695 if (retval < 0) { 696 /* Failed. Add the ones that has been removed back */ 697 if (cnt > 0) 698 sctp_bindx_add(sk, addrs, cnt); 699 return retval; 700 } 701 } 702 703 return retval; 704 } 705 706 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 707 * the associations that are part of the endpoint indicating that a list of 708 * local addresses are removed from the endpoint. 709 * 710 * If any of the addresses is already in the bind address list of the 711 * association, we do not send the chunk for that association. But it will not 712 * affect other associations. 713 * 714 * Only sctp_setsockopt_bindx() is supposed to call this function. 715 */ 716 static int sctp_send_asconf_del_ip(struct sock *sk, 717 struct sockaddr *addrs, 718 int addrcnt) 719 { 720 struct sctp_sock *sp; 721 struct sctp_endpoint *ep; 722 struct sctp_association *asoc; 723 struct sctp_transport *transport; 724 struct sctp_bind_addr *bp; 725 struct sctp_chunk *chunk; 726 union sctp_addr *laddr; 727 void *addr_buf; 728 struct sctp_af *af; 729 struct sctp_sockaddr_entry *saddr; 730 int i; 731 int retval = 0; 732 int stored = 0; 733 734 chunk = NULL; 735 if (!sctp_addip_enable) 736 return retval; 737 738 sp = sctp_sk(sk); 739 ep = sp->ep; 740 741 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 742 __func__, sk, addrs, addrcnt); 743 744 list_for_each_entry(asoc, &ep->asocs, asocs) { 745 746 if (!asoc->peer.asconf_capable) 747 continue; 748 749 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 750 continue; 751 752 if (!sctp_state(asoc, ESTABLISHED)) 753 continue; 754 755 /* Check if any address in the packed array of addresses is 756 * not present in the bind address list of the association. 757 * If so, do not send the asconf chunk to its peer, but 758 * continue with other associations. 759 */ 760 addr_buf = addrs; 761 for (i = 0; i < addrcnt; i++) { 762 laddr = addr_buf; 763 af = sctp_get_af_specific(laddr->v4.sin_family); 764 if (!af) { 765 retval = -EINVAL; 766 goto out; 767 } 768 769 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 770 break; 771 772 addr_buf += af->sockaddr_len; 773 } 774 if (i < addrcnt) 775 continue; 776 777 /* Find one address in the association's bind address list 778 * that is not in the packed array of addresses. This is to 779 * make sure that we do not delete all the addresses in the 780 * association. 781 */ 782 bp = &asoc->base.bind_addr; 783 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 784 addrcnt, sp); 785 if ((laddr == NULL) && (addrcnt == 1)) { 786 if (asoc->asconf_addr_del_pending) 787 continue; 788 asoc->asconf_addr_del_pending = 789 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 790 if (asoc->asconf_addr_del_pending == NULL) { 791 retval = -ENOMEM; 792 goto out; 793 } 794 asoc->asconf_addr_del_pending->sa.sa_family = 795 addrs->sa_family; 796 asoc->asconf_addr_del_pending->v4.sin_port = 797 htons(bp->port); 798 if (addrs->sa_family == AF_INET) { 799 struct sockaddr_in *sin; 800 801 sin = (struct sockaddr_in *)addrs; 802 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 803 } else if (addrs->sa_family == AF_INET6) { 804 struct sockaddr_in6 *sin6; 805 806 sin6 = (struct sockaddr_in6 *)addrs; 807 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 808 } 809 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ", 810 " at %p\n", asoc, asoc->asconf_addr_del_pending, 811 asoc->asconf_addr_del_pending); 812 asoc->src_out_of_asoc_ok = 1; 813 stored = 1; 814 goto skip_mkasconf; 815 } 816 817 /* We do not need RCU protection throughout this loop 818 * because this is done under a socket lock from the 819 * setsockopt call. 820 */ 821 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 822 SCTP_PARAM_DEL_IP); 823 if (!chunk) { 824 retval = -ENOMEM; 825 goto out; 826 } 827 828 skip_mkasconf: 829 /* Reset use_as_src flag for the addresses in the bind address 830 * list that are to be deleted. 831 */ 832 addr_buf = addrs; 833 for (i = 0; i < addrcnt; i++) { 834 laddr = addr_buf; 835 af = sctp_get_af_specific(laddr->v4.sin_family); 836 list_for_each_entry(saddr, &bp->address_list, list) { 837 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 838 saddr->state = SCTP_ADDR_DEL; 839 } 840 addr_buf += af->sockaddr_len; 841 } 842 843 /* Update the route and saddr entries for all the transports 844 * as some of the addresses in the bind address list are 845 * about to be deleted and cannot be used as source addresses. 846 */ 847 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 848 transports) { 849 dst_release(transport->dst); 850 sctp_transport_route(transport, NULL, 851 sctp_sk(asoc->base.sk)); 852 } 853 854 if (stored) 855 /* We don't need to transmit ASCONF */ 856 continue; 857 retval = sctp_send_asconf(asoc, chunk); 858 } 859 out: 860 return retval; 861 } 862 863 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 864 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 865 { 866 struct sock *sk = sctp_opt2sk(sp); 867 union sctp_addr *addr; 868 struct sctp_af *af; 869 870 /* It is safe to write port space in caller. */ 871 addr = &addrw->a; 872 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 873 af = sctp_get_af_specific(addr->sa.sa_family); 874 if (!af) 875 return -EINVAL; 876 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 877 return -EINVAL; 878 879 if (addrw->state == SCTP_ADDR_NEW) 880 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 881 else 882 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 883 } 884 885 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 886 * 887 * API 8.1 888 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 889 * int flags); 890 * 891 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 892 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 893 * or IPv6 addresses. 894 * 895 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 896 * Section 3.1.2 for this usage. 897 * 898 * addrs is a pointer to an array of one or more socket addresses. Each 899 * address is contained in its appropriate structure (i.e. struct 900 * sockaddr_in or struct sockaddr_in6) the family of the address type 901 * must be used to distinguish the address length (note that this 902 * representation is termed a "packed array" of addresses). The caller 903 * specifies the number of addresses in the array with addrcnt. 904 * 905 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 906 * -1, and sets errno to the appropriate error code. 907 * 908 * For SCTP, the port given in each socket address must be the same, or 909 * sctp_bindx() will fail, setting errno to EINVAL. 910 * 911 * The flags parameter is formed from the bitwise OR of zero or more of 912 * the following currently defined flags: 913 * 914 * SCTP_BINDX_ADD_ADDR 915 * 916 * SCTP_BINDX_REM_ADDR 917 * 918 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 919 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 920 * addresses from the association. The two flags are mutually exclusive; 921 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 922 * not remove all addresses from an association; sctp_bindx() will 923 * reject such an attempt with EINVAL. 924 * 925 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 926 * additional addresses with an endpoint after calling bind(). Or use 927 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 928 * socket is associated with so that no new association accepted will be 929 * associated with those addresses. If the endpoint supports dynamic 930 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 931 * endpoint to send the appropriate message to the peer to change the 932 * peers address lists. 933 * 934 * Adding and removing addresses from a connected association is 935 * optional functionality. Implementations that do not support this 936 * functionality should return EOPNOTSUPP. 937 * 938 * Basically do nothing but copying the addresses from user to kernel 939 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 940 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 941 * from userspace. 942 * 943 * We don't use copy_from_user() for optimization: we first do the 944 * sanity checks (buffer size -fast- and access check-healthy 945 * pointer); if all of those succeed, then we can alloc the memory 946 * (expensive operation) needed to copy the data to kernel. Then we do 947 * the copying without checking the user space area 948 * (__copy_from_user()). 949 * 950 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 951 * it. 952 * 953 * sk The sk of the socket 954 * addrs The pointer to the addresses in user land 955 * addrssize Size of the addrs buffer 956 * op Operation to perform (add or remove, see the flags of 957 * sctp_bindx) 958 * 959 * Returns 0 if ok, <0 errno code on error. 960 */ 961 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 962 struct sockaddr __user *addrs, 963 int addrs_size, int op) 964 { 965 struct sockaddr *kaddrs; 966 int err; 967 int addrcnt = 0; 968 int walk_size = 0; 969 struct sockaddr *sa_addr; 970 void *addr_buf; 971 struct sctp_af *af; 972 973 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 974 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 975 976 if (unlikely(addrs_size <= 0)) 977 return -EINVAL; 978 979 /* Check the user passed a healthy pointer. */ 980 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 981 return -EFAULT; 982 983 /* Alloc space for the address array in kernel memory. */ 984 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 985 if (unlikely(!kaddrs)) 986 return -ENOMEM; 987 988 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 989 kfree(kaddrs); 990 return -EFAULT; 991 } 992 993 /* Walk through the addrs buffer and count the number of addresses. */ 994 addr_buf = kaddrs; 995 while (walk_size < addrs_size) { 996 if (walk_size + sizeof(sa_family_t) > addrs_size) { 997 kfree(kaddrs); 998 return -EINVAL; 999 } 1000 1001 sa_addr = addr_buf; 1002 af = sctp_get_af_specific(sa_addr->sa_family); 1003 1004 /* If the address family is not supported or if this address 1005 * causes the address buffer to overflow return EINVAL. 1006 */ 1007 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1008 kfree(kaddrs); 1009 return -EINVAL; 1010 } 1011 addrcnt++; 1012 addr_buf += af->sockaddr_len; 1013 walk_size += af->sockaddr_len; 1014 } 1015 1016 /* Do the work. */ 1017 switch (op) { 1018 case SCTP_BINDX_ADD_ADDR: 1019 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1020 if (err) 1021 goto out; 1022 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1023 break; 1024 1025 case SCTP_BINDX_REM_ADDR: 1026 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1027 if (err) 1028 goto out; 1029 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1030 break; 1031 1032 default: 1033 err = -EINVAL; 1034 break; 1035 } 1036 1037 out: 1038 kfree(kaddrs); 1039 1040 return err; 1041 } 1042 1043 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1044 * 1045 * Common routine for handling connect() and sctp_connectx(). 1046 * Connect will come in with just a single address. 1047 */ 1048 static int __sctp_connect(struct sock* sk, 1049 struct sockaddr *kaddrs, 1050 int addrs_size, 1051 sctp_assoc_t *assoc_id) 1052 { 1053 struct sctp_sock *sp; 1054 struct sctp_endpoint *ep; 1055 struct sctp_association *asoc = NULL; 1056 struct sctp_association *asoc2; 1057 struct sctp_transport *transport; 1058 union sctp_addr to; 1059 struct sctp_af *af; 1060 sctp_scope_t scope; 1061 long timeo; 1062 int err = 0; 1063 int addrcnt = 0; 1064 int walk_size = 0; 1065 union sctp_addr *sa_addr = NULL; 1066 void *addr_buf; 1067 unsigned short port; 1068 unsigned int f_flags = 0; 1069 1070 sp = sctp_sk(sk); 1071 ep = sp->ep; 1072 1073 /* connect() cannot be done on a socket that is already in ESTABLISHED 1074 * state - UDP-style peeled off socket or a TCP-style socket that 1075 * is already connected. 1076 * It cannot be done even on a TCP-style listening socket. 1077 */ 1078 if (sctp_sstate(sk, ESTABLISHED) || 1079 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1080 err = -EISCONN; 1081 goto out_free; 1082 } 1083 1084 /* Walk through the addrs buffer and count the number of addresses. */ 1085 addr_buf = kaddrs; 1086 while (walk_size < addrs_size) { 1087 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1088 err = -EINVAL; 1089 goto out_free; 1090 } 1091 1092 sa_addr = addr_buf; 1093 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1094 1095 /* If the address family is not supported or if this address 1096 * causes the address buffer to overflow return EINVAL. 1097 */ 1098 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1099 err = -EINVAL; 1100 goto out_free; 1101 } 1102 1103 port = ntohs(sa_addr->v4.sin_port); 1104 1105 /* Save current address so we can work with it */ 1106 memcpy(&to, sa_addr, af->sockaddr_len); 1107 1108 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1109 if (err) 1110 goto out_free; 1111 1112 /* Make sure the destination port is correctly set 1113 * in all addresses. 1114 */ 1115 if (asoc && asoc->peer.port && asoc->peer.port != port) 1116 goto out_free; 1117 1118 1119 /* Check if there already is a matching association on the 1120 * endpoint (other than the one created here). 1121 */ 1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1123 if (asoc2 && asoc2 != asoc) { 1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1125 err = -EISCONN; 1126 else 1127 err = -EALREADY; 1128 goto out_free; 1129 } 1130 1131 /* If we could not find a matching association on the endpoint, 1132 * make sure that there is no peeled-off association matching 1133 * the peer address even on another socket. 1134 */ 1135 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1136 err = -EADDRNOTAVAIL; 1137 goto out_free; 1138 } 1139 1140 if (!asoc) { 1141 /* If a bind() or sctp_bindx() is not called prior to 1142 * an sctp_connectx() call, the system picks an 1143 * ephemeral port and will choose an address set 1144 * equivalent to binding with a wildcard address. 1145 */ 1146 if (!ep->base.bind_addr.port) { 1147 if (sctp_autobind(sk)) { 1148 err = -EAGAIN; 1149 goto out_free; 1150 } 1151 } else { 1152 /* 1153 * If an unprivileged user inherits a 1-many 1154 * style socket with open associations on a 1155 * privileged port, it MAY be permitted to 1156 * accept new associations, but it SHOULD NOT 1157 * be permitted to open new associations. 1158 */ 1159 if (ep->base.bind_addr.port < PROT_SOCK && 1160 !capable(CAP_NET_BIND_SERVICE)) { 1161 err = -EACCES; 1162 goto out_free; 1163 } 1164 } 1165 1166 scope = sctp_scope(&to); 1167 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1168 if (!asoc) { 1169 err = -ENOMEM; 1170 goto out_free; 1171 } 1172 1173 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1174 GFP_KERNEL); 1175 if (err < 0) { 1176 goto out_free; 1177 } 1178 1179 } 1180 1181 /* Prime the peer's transport structures. */ 1182 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1183 SCTP_UNKNOWN); 1184 if (!transport) { 1185 err = -ENOMEM; 1186 goto out_free; 1187 } 1188 1189 addrcnt++; 1190 addr_buf += af->sockaddr_len; 1191 walk_size += af->sockaddr_len; 1192 } 1193 1194 /* In case the user of sctp_connectx() wants an association 1195 * id back, assign one now. 1196 */ 1197 if (assoc_id) { 1198 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1199 if (err < 0) 1200 goto out_free; 1201 } 1202 1203 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1204 if (err < 0) { 1205 goto out_free; 1206 } 1207 1208 /* Initialize sk's dport and daddr for getpeername() */ 1209 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1210 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1211 af->to_sk_daddr(sa_addr, sk); 1212 sk->sk_err = 0; 1213 1214 /* in-kernel sockets don't generally have a file allocated to them 1215 * if all they do is call sock_create_kern(). 1216 */ 1217 if (sk->sk_socket->file) 1218 f_flags = sk->sk_socket->file->f_flags; 1219 1220 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1221 1222 err = sctp_wait_for_connect(asoc, &timeo); 1223 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1224 *assoc_id = asoc->assoc_id; 1225 1226 /* Don't free association on exit. */ 1227 asoc = NULL; 1228 1229 out_free: 1230 1231 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1232 " kaddrs: %p err: %d\n", 1233 asoc, kaddrs, err); 1234 if (asoc) 1235 sctp_association_free(asoc); 1236 return err; 1237 } 1238 1239 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1240 * 1241 * API 8.9 1242 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1243 * sctp_assoc_t *asoc); 1244 * 1245 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1246 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1247 * or IPv6 addresses. 1248 * 1249 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1250 * Section 3.1.2 for this usage. 1251 * 1252 * addrs is a pointer to an array of one or more socket addresses. Each 1253 * address is contained in its appropriate structure (i.e. struct 1254 * sockaddr_in or struct sockaddr_in6) the family of the address type 1255 * must be used to distengish the address length (note that this 1256 * representation is termed a "packed array" of addresses). The caller 1257 * specifies the number of addresses in the array with addrcnt. 1258 * 1259 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1260 * the association id of the new association. On failure, sctp_connectx() 1261 * returns -1, and sets errno to the appropriate error code. The assoc_id 1262 * is not touched by the kernel. 1263 * 1264 * For SCTP, the port given in each socket address must be the same, or 1265 * sctp_connectx() will fail, setting errno to EINVAL. 1266 * 1267 * An application can use sctp_connectx to initiate an association with 1268 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1269 * allows a caller to specify multiple addresses at which a peer can be 1270 * reached. The way the SCTP stack uses the list of addresses to set up 1271 * the association is implementation dependent. This function only 1272 * specifies that the stack will try to make use of all the addresses in 1273 * the list when needed. 1274 * 1275 * Note that the list of addresses passed in is only used for setting up 1276 * the association. It does not necessarily equal the set of addresses 1277 * the peer uses for the resulting association. If the caller wants to 1278 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1279 * retrieve them after the association has been set up. 1280 * 1281 * Basically do nothing but copying the addresses from user to kernel 1282 * land and invoking either sctp_connectx(). This is used for tunneling 1283 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1284 * 1285 * We don't use copy_from_user() for optimization: we first do the 1286 * sanity checks (buffer size -fast- and access check-healthy 1287 * pointer); if all of those succeed, then we can alloc the memory 1288 * (expensive operation) needed to copy the data to kernel. Then we do 1289 * the copying without checking the user space area 1290 * (__copy_from_user()). 1291 * 1292 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1293 * it. 1294 * 1295 * sk The sk of the socket 1296 * addrs The pointer to the addresses in user land 1297 * addrssize Size of the addrs buffer 1298 * 1299 * Returns >=0 if ok, <0 errno code on error. 1300 */ 1301 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1302 struct sockaddr __user *addrs, 1303 int addrs_size, 1304 sctp_assoc_t *assoc_id) 1305 { 1306 int err = 0; 1307 struct sockaddr *kaddrs; 1308 1309 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1310 __func__, sk, addrs, addrs_size); 1311 1312 if (unlikely(addrs_size <= 0)) 1313 return -EINVAL; 1314 1315 /* Check the user passed a healthy pointer. */ 1316 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1317 return -EFAULT; 1318 1319 /* Alloc space for the address array in kernel memory. */ 1320 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1321 if (unlikely(!kaddrs)) 1322 return -ENOMEM; 1323 1324 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1325 err = -EFAULT; 1326 } else { 1327 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1328 } 1329 1330 kfree(kaddrs); 1331 1332 return err; 1333 } 1334 1335 /* 1336 * This is an older interface. It's kept for backward compatibility 1337 * to the option that doesn't provide association id. 1338 */ 1339 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1340 struct sockaddr __user *addrs, 1341 int addrs_size) 1342 { 1343 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1344 } 1345 1346 /* 1347 * New interface for the API. The since the API is done with a socket 1348 * option, to make it simple we feed back the association id is as a return 1349 * indication to the call. Error is always negative and association id is 1350 * always positive. 1351 */ 1352 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1353 struct sockaddr __user *addrs, 1354 int addrs_size) 1355 { 1356 sctp_assoc_t assoc_id = 0; 1357 int err = 0; 1358 1359 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1360 1361 if (err) 1362 return err; 1363 else 1364 return assoc_id; 1365 } 1366 1367 /* 1368 * New (hopefully final) interface for the API. 1369 * We use the sctp_getaddrs_old structure so that use-space library 1370 * can avoid any unnecessary allocations. The only defferent part 1371 * is that we store the actual length of the address buffer into the 1372 * addrs_num structure member. That way we can re-use the existing 1373 * code. 1374 */ 1375 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1376 char __user *optval, 1377 int __user *optlen) 1378 { 1379 struct sctp_getaddrs_old param; 1380 sctp_assoc_t assoc_id = 0; 1381 int err = 0; 1382 1383 if (len < sizeof(param)) 1384 return -EINVAL; 1385 1386 if (copy_from_user(¶m, optval, sizeof(param))) 1387 return -EFAULT; 1388 1389 err = __sctp_setsockopt_connectx(sk, 1390 (struct sockaddr __user *)param.addrs, 1391 param.addr_num, &assoc_id); 1392 1393 if (err == 0 || err == -EINPROGRESS) { 1394 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1395 return -EFAULT; 1396 if (put_user(sizeof(assoc_id), optlen)) 1397 return -EFAULT; 1398 } 1399 1400 return err; 1401 } 1402 1403 /* API 3.1.4 close() - UDP Style Syntax 1404 * Applications use close() to perform graceful shutdown (as described in 1405 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1406 * by a UDP-style socket. 1407 * 1408 * The syntax is 1409 * 1410 * ret = close(int sd); 1411 * 1412 * sd - the socket descriptor of the associations to be closed. 1413 * 1414 * To gracefully shutdown a specific association represented by the 1415 * UDP-style socket, an application should use the sendmsg() call, 1416 * passing no user data, but including the appropriate flag in the 1417 * ancillary data (see Section xxxx). 1418 * 1419 * If sd in the close() call is a branched-off socket representing only 1420 * one association, the shutdown is performed on that association only. 1421 * 1422 * 4.1.6 close() - TCP Style Syntax 1423 * 1424 * Applications use close() to gracefully close down an association. 1425 * 1426 * The syntax is: 1427 * 1428 * int close(int sd); 1429 * 1430 * sd - the socket descriptor of the association to be closed. 1431 * 1432 * After an application calls close() on a socket descriptor, no further 1433 * socket operations will succeed on that descriptor. 1434 * 1435 * API 7.1.4 SO_LINGER 1436 * 1437 * An application using the TCP-style socket can use this option to 1438 * perform the SCTP ABORT primitive. The linger option structure is: 1439 * 1440 * struct linger { 1441 * int l_onoff; // option on/off 1442 * int l_linger; // linger time 1443 * }; 1444 * 1445 * To enable the option, set l_onoff to 1. If the l_linger value is set 1446 * to 0, calling close() is the same as the ABORT primitive. If the 1447 * value is set to a negative value, the setsockopt() call will return 1448 * an error. If the value is set to a positive value linger_time, the 1449 * close() can be blocked for at most linger_time ms. If the graceful 1450 * shutdown phase does not finish during this period, close() will 1451 * return but the graceful shutdown phase continues in the system. 1452 */ 1453 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1454 { 1455 struct sctp_endpoint *ep; 1456 struct sctp_association *asoc; 1457 struct list_head *pos, *temp; 1458 unsigned int data_was_unread; 1459 1460 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1461 1462 sctp_lock_sock(sk); 1463 sk->sk_shutdown = SHUTDOWN_MASK; 1464 sk->sk_state = SCTP_SS_CLOSING; 1465 1466 ep = sctp_sk(sk)->ep; 1467 1468 /* Clean up any skbs sitting on the receive queue. */ 1469 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1470 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1471 1472 /* Walk all associations on an endpoint. */ 1473 list_for_each_safe(pos, temp, &ep->asocs) { 1474 asoc = list_entry(pos, struct sctp_association, asocs); 1475 1476 if (sctp_style(sk, TCP)) { 1477 /* A closed association can still be in the list if 1478 * it belongs to a TCP-style listening socket that is 1479 * not yet accepted. If so, free it. If not, send an 1480 * ABORT or SHUTDOWN based on the linger options. 1481 */ 1482 if (sctp_state(asoc, CLOSED)) { 1483 sctp_unhash_established(asoc); 1484 sctp_association_free(asoc); 1485 continue; 1486 } 1487 } 1488 1489 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1490 !skb_queue_empty(&asoc->ulpq.reasm) || 1491 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1492 struct sctp_chunk *chunk; 1493 1494 chunk = sctp_make_abort_user(asoc, NULL, 0); 1495 if (chunk) 1496 sctp_primitive_ABORT(asoc, chunk); 1497 } else 1498 sctp_primitive_SHUTDOWN(asoc, NULL); 1499 } 1500 1501 /* On a TCP-style socket, block for at most linger_time if set. */ 1502 if (sctp_style(sk, TCP) && timeout) 1503 sctp_wait_for_close(sk, timeout); 1504 1505 /* This will run the backlog queue. */ 1506 sctp_release_sock(sk); 1507 1508 /* Supposedly, no process has access to the socket, but 1509 * the net layers still may. 1510 */ 1511 sctp_local_bh_disable(); 1512 sctp_bh_lock_sock(sk); 1513 1514 /* Hold the sock, since sk_common_release() will put sock_put() 1515 * and we have just a little more cleanup. 1516 */ 1517 sock_hold(sk); 1518 sk_common_release(sk); 1519 1520 sctp_bh_unlock_sock(sk); 1521 sctp_local_bh_enable(); 1522 1523 sock_put(sk); 1524 1525 SCTP_DBG_OBJCNT_DEC(sock); 1526 } 1527 1528 /* Handle EPIPE error. */ 1529 static int sctp_error(struct sock *sk, int flags, int err) 1530 { 1531 if (err == -EPIPE) 1532 err = sock_error(sk) ? : -EPIPE; 1533 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1534 send_sig(SIGPIPE, current, 0); 1535 return err; 1536 } 1537 1538 /* API 3.1.3 sendmsg() - UDP Style Syntax 1539 * 1540 * An application uses sendmsg() and recvmsg() calls to transmit data to 1541 * and receive data from its peer. 1542 * 1543 * ssize_t sendmsg(int socket, const struct msghdr *message, 1544 * int flags); 1545 * 1546 * socket - the socket descriptor of the endpoint. 1547 * message - pointer to the msghdr structure which contains a single 1548 * user message and possibly some ancillary data. 1549 * 1550 * See Section 5 for complete description of the data 1551 * structures. 1552 * 1553 * flags - flags sent or received with the user message, see Section 1554 * 5 for complete description of the flags. 1555 * 1556 * Note: This function could use a rewrite especially when explicit 1557 * connect support comes in. 1558 */ 1559 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1560 1561 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1562 1563 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1564 struct msghdr *msg, size_t msg_len) 1565 { 1566 struct sctp_sock *sp; 1567 struct sctp_endpoint *ep; 1568 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1569 struct sctp_transport *transport, *chunk_tp; 1570 struct sctp_chunk *chunk; 1571 union sctp_addr to; 1572 struct sockaddr *msg_name = NULL; 1573 struct sctp_sndrcvinfo default_sinfo; 1574 struct sctp_sndrcvinfo *sinfo; 1575 struct sctp_initmsg *sinit; 1576 sctp_assoc_t associd = 0; 1577 sctp_cmsgs_t cmsgs = { NULL }; 1578 int err; 1579 sctp_scope_t scope; 1580 long timeo; 1581 __u16 sinfo_flags = 0; 1582 struct sctp_datamsg *datamsg; 1583 int msg_flags = msg->msg_flags; 1584 1585 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1586 sk, msg, msg_len); 1587 1588 err = 0; 1589 sp = sctp_sk(sk); 1590 ep = sp->ep; 1591 1592 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1593 1594 /* We cannot send a message over a TCP-style listening socket. */ 1595 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1596 err = -EPIPE; 1597 goto out_nounlock; 1598 } 1599 1600 /* Parse out the SCTP CMSGs. */ 1601 err = sctp_msghdr_parse(msg, &cmsgs); 1602 1603 if (err) { 1604 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1605 goto out_nounlock; 1606 } 1607 1608 /* Fetch the destination address for this packet. This 1609 * address only selects the association--it is not necessarily 1610 * the address we will send to. 1611 * For a peeled-off socket, msg_name is ignored. 1612 */ 1613 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1614 int msg_namelen = msg->msg_namelen; 1615 1616 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1617 msg_namelen); 1618 if (err) 1619 return err; 1620 1621 if (msg_namelen > sizeof(to)) 1622 msg_namelen = sizeof(to); 1623 memcpy(&to, msg->msg_name, msg_namelen); 1624 msg_name = msg->msg_name; 1625 } 1626 1627 sinfo = cmsgs.info; 1628 sinit = cmsgs.init; 1629 1630 /* Did the user specify SNDRCVINFO? */ 1631 if (sinfo) { 1632 sinfo_flags = sinfo->sinfo_flags; 1633 associd = sinfo->sinfo_assoc_id; 1634 } 1635 1636 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1637 msg_len, sinfo_flags); 1638 1639 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1640 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1641 err = -EINVAL; 1642 goto out_nounlock; 1643 } 1644 1645 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1646 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1647 * If SCTP_ABORT is set, the message length could be non zero with 1648 * the msg_iov set to the user abort reason. 1649 */ 1650 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1651 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1652 err = -EINVAL; 1653 goto out_nounlock; 1654 } 1655 1656 /* If SCTP_ADDR_OVER is set, there must be an address 1657 * specified in msg_name. 1658 */ 1659 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1660 err = -EINVAL; 1661 goto out_nounlock; 1662 } 1663 1664 transport = NULL; 1665 1666 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1667 1668 sctp_lock_sock(sk); 1669 1670 /* If a msg_name has been specified, assume this is to be used. */ 1671 if (msg_name) { 1672 /* Look for a matching association on the endpoint. */ 1673 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1674 if (!asoc) { 1675 /* If we could not find a matching association on the 1676 * endpoint, make sure that it is not a TCP-style 1677 * socket that already has an association or there is 1678 * no peeled-off association on another socket. 1679 */ 1680 if ((sctp_style(sk, TCP) && 1681 sctp_sstate(sk, ESTABLISHED)) || 1682 sctp_endpoint_is_peeled_off(ep, &to)) { 1683 err = -EADDRNOTAVAIL; 1684 goto out_unlock; 1685 } 1686 } 1687 } else { 1688 asoc = sctp_id2assoc(sk, associd); 1689 if (!asoc) { 1690 err = -EPIPE; 1691 goto out_unlock; 1692 } 1693 } 1694 1695 if (asoc) { 1696 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1697 1698 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1699 * socket that has an association in CLOSED state. This can 1700 * happen when an accepted socket has an association that is 1701 * already CLOSED. 1702 */ 1703 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1704 err = -EPIPE; 1705 goto out_unlock; 1706 } 1707 1708 if (sinfo_flags & SCTP_EOF) { 1709 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1710 asoc); 1711 sctp_primitive_SHUTDOWN(asoc, NULL); 1712 err = 0; 1713 goto out_unlock; 1714 } 1715 if (sinfo_flags & SCTP_ABORT) { 1716 1717 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1718 if (!chunk) { 1719 err = -ENOMEM; 1720 goto out_unlock; 1721 } 1722 1723 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1724 sctp_primitive_ABORT(asoc, chunk); 1725 err = 0; 1726 goto out_unlock; 1727 } 1728 } 1729 1730 /* Do we need to create the association? */ 1731 if (!asoc) { 1732 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1733 1734 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1735 err = -EINVAL; 1736 goto out_unlock; 1737 } 1738 1739 /* Check for invalid stream against the stream counts, 1740 * either the default or the user specified stream counts. 1741 */ 1742 if (sinfo) { 1743 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1744 /* Check against the defaults. */ 1745 if (sinfo->sinfo_stream >= 1746 sp->initmsg.sinit_num_ostreams) { 1747 err = -EINVAL; 1748 goto out_unlock; 1749 } 1750 } else { 1751 /* Check against the requested. */ 1752 if (sinfo->sinfo_stream >= 1753 sinit->sinit_num_ostreams) { 1754 err = -EINVAL; 1755 goto out_unlock; 1756 } 1757 } 1758 } 1759 1760 /* 1761 * API 3.1.2 bind() - UDP Style Syntax 1762 * If a bind() or sctp_bindx() is not called prior to a 1763 * sendmsg() call that initiates a new association, the 1764 * system picks an ephemeral port and will choose an address 1765 * set equivalent to binding with a wildcard address. 1766 */ 1767 if (!ep->base.bind_addr.port) { 1768 if (sctp_autobind(sk)) { 1769 err = -EAGAIN; 1770 goto out_unlock; 1771 } 1772 } else { 1773 /* 1774 * If an unprivileged user inherits a one-to-many 1775 * style socket with open associations on a privileged 1776 * port, it MAY be permitted to accept new associations, 1777 * but it SHOULD NOT be permitted to open new 1778 * associations. 1779 */ 1780 if (ep->base.bind_addr.port < PROT_SOCK && 1781 !capable(CAP_NET_BIND_SERVICE)) { 1782 err = -EACCES; 1783 goto out_unlock; 1784 } 1785 } 1786 1787 scope = sctp_scope(&to); 1788 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1789 if (!new_asoc) { 1790 err = -ENOMEM; 1791 goto out_unlock; 1792 } 1793 asoc = new_asoc; 1794 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1795 if (err < 0) { 1796 err = -ENOMEM; 1797 goto out_free; 1798 } 1799 1800 /* If the SCTP_INIT ancillary data is specified, set all 1801 * the association init values accordingly. 1802 */ 1803 if (sinit) { 1804 if (sinit->sinit_num_ostreams) { 1805 asoc->c.sinit_num_ostreams = 1806 sinit->sinit_num_ostreams; 1807 } 1808 if (sinit->sinit_max_instreams) { 1809 asoc->c.sinit_max_instreams = 1810 sinit->sinit_max_instreams; 1811 } 1812 if (sinit->sinit_max_attempts) { 1813 asoc->max_init_attempts 1814 = sinit->sinit_max_attempts; 1815 } 1816 if (sinit->sinit_max_init_timeo) { 1817 asoc->max_init_timeo = 1818 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1819 } 1820 } 1821 1822 /* Prime the peer's transport structures. */ 1823 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1824 if (!transport) { 1825 err = -ENOMEM; 1826 goto out_free; 1827 } 1828 } 1829 1830 /* ASSERT: we have a valid association at this point. */ 1831 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1832 1833 if (!sinfo) { 1834 /* If the user didn't specify SNDRCVINFO, make up one with 1835 * some defaults. 1836 */ 1837 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1838 default_sinfo.sinfo_stream = asoc->default_stream; 1839 default_sinfo.sinfo_flags = asoc->default_flags; 1840 default_sinfo.sinfo_ppid = asoc->default_ppid; 1841 default_sinfo.sinfo_context = asoc->default_context; 1842 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1843 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1844 sinfo = &default_sinfo; 1845 } 1846 1847 /* API 7.1.7, the sndbuf size per association bounds the 1848 * maximum size of data that can be sent in a single send call. 1849 */ 1850 if (msg_len > sk->sk_sndbuf) { 1851 err = -EMSGSIZE; 1852 goto out_free; 1853 } 1854 1855 if (asoc->pmtu_pending) 1856 sctp_assoc_pending_pmtu(asoc); 1857 1858 /* If fragmentation is disabled and the message length exceeds the 1859 * association fragmentation point, return EMSGSIZE. The I-D 1860 * does not specify what this error is, but this looks like 1861 * a great fit. 1862 */ 1863 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1864 err = -EMSGSIZE; 1865 goto out_free; 1866 } 1867 1868 /* Check for invalid stream. */ 1869 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1870 err = -EINVAL; 1871 goto out_free; 1872 } 1873 1874 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1875 if (!sctp_wspace(asoc)) { 1876 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1877 if (err) 1878 goto out_free; 1879 } 1880 1881 /* If an address is passed with the sendto/sendmsg call, it is used 1882 * to override the primary destination address in the TCP model, or 1883 * when SCTP_ADDR_OVER flag is set in the UDP model. 1884 */ 1885 if ((sctp_style(sk, TCP) && msg_name) || 1886 (sinfo_flags & SCTP_ADDR_OVER)) { 1887 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1888 if (!chunk_tp) { 1889 err = -EINVAL; 1890 goto out_free; 1891 } 1892 } else 1893 chunk_tp = NULL; 1894 1895 /* Auto-connect, if we aren't connected already. */ 1896 if (sctp_state(asoc, CLOSED)) { 1897 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1898 if (err < 0) 1899 goto out_free; 1900 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1901 } 1902 1903 /* Break the message into multiple chunks of maximum size. */ 1904 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1905 if (!datamsg) { 1906 err = -ENOMEM; 1907 goto out_free; 1908 } 1909 1910 /* Now send the (possibly) fragmented message. */ 1911 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1912 sctp_chunk_hold(chunk); 1913 1914 /* Do accounting for the write space. */ 1915 sctp_set_owner_w(chunk); 1916 1917 chunk->transport = chunk_tp; 1918 } 1919 1920 /* Send it to the lower layers. Note: all chunks 1921 * must either fail or succeed. The lower layer 1922 * works that way today. Keep it that way or this 1923 * breaks. 1924 */ 1925 err = sctp_primitive_SEND(asoc, datamsg); 1926 /* Did the lower layer accept the chunk? */ 1927 if (err) 1928 sctp_datamsg_free(datamsg); 1929 else 1930 sctp_datamsg_put(datamsg); 1931 1932 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1933 1934 if (err) 1935 goto out_free; 1936 else 1937 err = msg_len; 1938 1939 /* If we are already past ASSOCIATE, the lower 1940 * layers are responsible for association cleanup. 1941 */ 1942 goto out_unlock; 1943 1944 out_free: 1945 if (new_asoc) 1946 sctp_association_free(asoc); 1947 out_unlock: 1948 sctp_release_sock(sk); 1949 1950 out_nounlock: 1951 return sctp_error(sk, msg_flags, err); 1952 1953 #if 0 1954 do_sock_err: 1955 if (msg_len) 1956 err = msg_len; 1957 else 1958 err = sock_error(sk); 1959 goto out; 1960 1961 do_interrupted: 1962 if (msg_len) 1963 err = msg_len; 1964 goto out; 1965 #endif /* 0 */ 1966 } 1967 1968 /* This is an extended version of skb_pull() that removes the data from the 1969 * start of a skb even when data is spread across the list of skb's in the 1970 * frag_list. len specifies the total amount of data that needs to be removed. 1971 * when 'len' bytes could be removed from the skb, it returns 0. 1972 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1973 * could not be removed. 1974 */ 1975 static int sctp_skb_pull(struct sk_buff *skb, int len) 1976 { 1977 struct sk_buff *list; 1978 int skb_len = skb_headlen(skb); 1979 int rlen; 1980 1981 if (len <= skb_len) { 1982 __skb_pull(skb, len); 1983 return 0; 1984 } 1985 len -= skb_len; 1986 __skb_pull(skb, skb_len); 1987 1988 skb_walk_frags(skb, list) { 1989 rlen = sctp_skb_pull(list, len); 1990 skb->len -= (len-rlen); 1991 skb->data_len -= (len-rlen); 1992 1993 if (!rlen) 1994 return 0; 1995 1996 len = rlen; 1997 } 1998 1999 return len; 2000 } 2001 2002 /* API 3.1.3 recvmsg() - UDP Style Syntax 2003 * 2004 * ssize_t recvmsg(int socket, struct msghdr *message, 2005 * int flags); 2006 * 2007 * socket - the socket descriptor of the endpoint. 2008 * message - pointer to the msghdr structure which contains a single 2009 * user message and possibly some ancillary data. 2010 * 2011 * See Section 5 for complete description of the data 2012 * structures. 2013 * 2014 * flags - flags sent or received with the user message, see Section 2015 * 5 for complete description of the flags. 2016 */ 2017 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2018 2019 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2020 struct msghdr *msg, size_t len, int noblock, 2021 int flags, int *addr_len) 2022 { 2023 struct sctp_ulpevent *event = NULL; 2024 struct sctp_sock *sp = sctp_sk(sk); 2025 struct sk_buff *skb; 2026 int copied; 2027 int err = 0; 2028 int skb_len; 2029 2030 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 2031 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 2032 "len", len, "knoblauch", noblock, 2033 "flags", flags, "addr_len", addr_len); 2034 2035 sctp_lock_sock(sk); 2036 2037 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2038 err = -ENOTCONN; 2039 goto out; 2040 } 2041 2042 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2043 if (!skb) 2044 goto out; 2045 2046 /* Get the total length of the skb including any skb's in the 2047 * frag_list. 2048 */ 2049 skb_len = skb->len; 2050 2051 copied = skb_len; 2052 if (copied > len) 2053 copied = len; 2054 2055 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2056 2057 event = sctp_skb2event(skb); 2058 2059 if (err) 2060 goto out_free; 2061 2062 sock_recv_ts_and_drops(msg, sk, skb); 2063 if (sctp_ulpevent_is_notification(event)) { 2064 msg->msg_flags |= MSG_NOTIFICATION; 2065 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2066 } else { 2067 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2068 } 2069 2070 /* Check if we allow SCTP_SNDRCVINFO. */ 2071 if (sp->subscribe.sctp_data_io_event) 2072 sctp_ulpevent_read_sndrcvinfo(event, msg); 2073 #if 0 2074 /* FIXME: we should be calling IP/IPv6 layers. */ 2075 if (sk->sk_protinfo.af_inet.cmsg_flags) 2076 ip_cmsg_recv(msg, skb); 2077 #endif 2078 2079 err = copied; 2080 2081 /* If skb's length exceeds the user's buffer, update the skb and 2082 * push it back to the receive_queue so that the next call to 2083 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2084 */ 2085 if (skb_len > copied) { 2086 msg->msg_flags &= ~MSG_EOR; 2087 if (flags & MSG_PEEK) 2088 goto out_free; 2089 sctp_skb_pull(skb, copied); 2090 skb_queue_head(&sk->sk_receive_queue, skb); 2091 2092 /* When only partial message is copied to the user, increase 2093 * rwnd by that amount. If all the data in the skb is read, 2094 * rwnd is updated when the event is freed. 2095 */ 2096 if (!sctp_ulpevent_is_notification(event)) 2097 sctp_assoc_rwnd_increase(event->asoc, copied); 2098 goto out; 2099 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2100 (event->msg_flags & MSG_EOR)) 2101 msg->msg_flags |= MSG_EOR; 2102 else 2103 msg->msg_flags &= ~MSG_EOR; 2104 2105 out_free: 2106 if (flags & MSG_PEEK) { 2107 /* Release the skb reference acquired after peeking the skb in 2108 * sctp_skb_recv_datagram(). 2109 */ 2110 kfree_skb(skb); 2111 } else { 2112 /* Free the event which includes releasing the reference to 2113 * the owner of the skb, freeing the skb and updating the 2114 * rwnd. 2115 */ 2116 sctp_ulpevent_free(event); 2117 } 2118 out: 2119 sctp_release_sock(sk); 2120 return err; 2121 } 2122 2123 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2124 * 2125 * This option is a on/off flag. If enabled no SCTP message 2126 * fragmentation will be performed. Instead if a message being sent 2127 * exceeds the current PMTU size, the message will NOT be sent and 2128 * instead a error will be indicated to the user. 2129 */ 2130 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2131 char __user *optval, 2132 unsigned int optlen) 2133 { 2134 int val; 2135 2136 if (optlen < sizeof(int)) 2137 return -EINVAL; 2138 2139 if (get_user(val, (int __user *)optval)) 2140 return -EFAULT; 2141 2142 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2143 2144 return 0; 2145 } 2146 2147 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2148 unsigned int optlen) 2149 { 2150 struct sctp_association *asoc; 2151 struct sctp_ulpevent *event; 2152 2153 if (optlen > sizeof(struct sctp_event_subscribe)) 2154 return -EINVAL; 2155 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2156 return -EFAULT; 2157 2158 /* 2159 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2160 * if there is no data to be sent or retransmit, the stack will 2161 * immediately send up this notification. 2162 */ 2163 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2164 &sctp_sk(sk)->subscribe)) { 2165 asoc = sctp_id2assoc(sk, 0); 2166 2167 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2168 event = sctp_ulpevent_make_sender_dry_event(asoc, 2169 GFP_ATOMIC); 2170 if (!event) 2171 return -ENOMEM; 2172 2173 sctp_ulpq_tail_event(&asoc->ulpq, event); 2174 } 2175 } 2176 2177 return 0; 2178 } 2179 2180 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2181 * 2182 * This socket option is applicable to the UDP-style socket only. When 2183 * set it will cause associations that are idle for more than the 2184 * specified number of seconds to automatically close. An association 2185 * being idle is defined an association that has NOT sent or received 2186 * user data. The special value of '0' indicates that no automatic 2187 * close of any associations should be performed. The option expects an 2188 * integer defining the number of seconds of idle time before an 2189 * association is closed. 2190 */ 2191 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2192 unsigned int optlen) 2193 { 2194 struct sctp_sock *sp = sctp_sk(sk); 2195 2196 /* Applicable to UDP-style socket only */ 2197 if (sctp_style(sk, TCP)) 2198 return -EOPNOTSUPP; 2199 if (optlen != sizeof(int)) 2200 return -EINVAL; 2201 if (copy_from_user(&sp->autoclose, optval, optlen)) 2202 return -EFAULT; 2203 2204 return 0; 2205 } 2206 2207 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2208 * 2209 * Applications can enable or disable heartbeats for any peer address of 2210 * an association, modify an address's heartbeat interval, force a 2211 * heartbeat to be sent immediately, and adjust the address's maximum 2212 * number of retransmissions sent before an address is considered 2213 * unreachable. The following structure is used to access and modify an 2214 * address's parameters: 2215 * 2216 * struct sctp_paddrparams { 2217 * sctp_assoc_t spp_assoc_id; 2218 * struct sockaddr_storage spp_address; 2219 * uint32_t spp_hbinterval; 2220 * uint16_t spp_pathmaxrxt; 2221 * uint32_t spp_pathmtu; 2222 * uint32_t spp_sackdelay; 2223 * uint32_t spp_flags; 2224 * }; 2225 * 2226 * spp_assoc_id - (one-to-many style socket) This is filled in the 2227 * application, and identifies the association for 2228 * this query. 2229 * spp_address - This specifies which address is of interest. 2230 * spp_hbinterval - This contains the value of the heartbeat interval, 2231 * in milliseconds. If a value of zero 2232 * is present in this field then no changes are to 2233 * be made to this parameter. 2234 * spp_pathmaxrxt - This contains the maximum number of 2235 * retransmissions before this address shall be 2236 * considered unreachable. If a value of zero 2237 * is present in this field then no changes are to 2238 * be made to this parameter. 2239 * spp_pathmtu - When Path MTU discovery is disabled the value 2240 * specified here will be the "fixed" path mtu. 2241 * Note that if the spp_address field is empty 2242 * then all associations on this address will 2243 * have this fixed path mtu set upon them. 2244 * 2245 * spp_sackdelay - When delayed sack is enabled, this value specifies 2246 * the number of milliseconds that sacks will be delayed 2247 * for. This value will apply to all addresses of an 2248 * association if the spp_address field is empty. Note 2249 * also, that if delayed sack is enabled and this 2250 * value is set to 0, no change is made to the last 2251 * recorded delayed sack timer value. 2252 * 2253 * spp_flags - These flags are used to control various features 2254 * on an association. The flag field may contain 2255 * zero or more of the following options. 2256 * 2257 * SPP_HB_ENABLE - Enable heartbeats on the 2258 * specified address. Note that if the address 2259 * field is empty all addresses for the association 2260 * have heartbeats enabled upon them. 2261 * 2262 * SPP_HB_DISABLE - Disable heartbeats on the 2263 * speicifed address. Note that if the address 2264 * field is empty all addresses for the association 2265 * will have their heartbeats disabled. Note also 2266 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2267 * mutually exclusive, only one of these two should 2268 * be specified. Enabling both fields will have 2269 * undetermined results. 2270 * 2271 * SPP_HB_DEMAND - Request a user initiated heartbeat 2272 * to be made immediately. 2273 * 2274 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2275 * heartbeat delayis to be set to the value of 0 2276 * milliseconds. 2277 * 2278 * SPP_PMTUD_ENABLE - This field will enable PMTU 2279 * discovery upon the specified address. Note that 2280 * if the address feild is empty then all addresses 2281 * on the association are effected. 2282 * 2283 * SPP_PMTUD_DISABLE - This field will disable PMTU 2284 * discovery upon the specified address. Note that 2285 * if the address feild is empty then all addresses 2286 * on the association are effected. Not also that 2287 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2288 * exclusive. Enabling both will have undetermined 2289 * results. 2290 * 2291 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2292 * on delayed sack. The time specified in spp_sackdelay 2293 * is used to specify the sack delay for this address. Note 2294 * that if spp_address is empty then all addresses will 2295 * enable delayed sack and take on the sack delay 2296 * value specified in spp_sackdelay. 2297 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2298 * off delayed sack. If the spp_address field is blank then 2299 * delayed sack is disabled for the entire association. Note 2300 * also that this field is mutually exclusive to 2301 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2302 * results. 2303 */ 2304 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2305 struct sctp_transport *trans, 2306 struct sctp_association *asoc, 2307 struct sctp_sock *sp, 2308 int hb_change, 2309 int pmtud_change, 2310 int sackdelay_change) 2311 { 2312 int error; 2313 2314 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2315 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2316 if (error) 2317 return error; 2318 } 2319 2320 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2321 * this field is ignored. Note also that a value of zero indicates 2322 * the current setting should be left unchanged. 2323 */ 2324 if (params->spp_flags & SPP_HB_ENABLE) { 2325 2326 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2327 * set. This lets us use 0 value when this flag 2328 * is set. 2329 */ 2330 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2331 params->spp_hbinterval = 0; 2332 2333 if (params->spp_hbinterval || 2334 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2335 if (trans) { 2336 trans->hbinterval = 2337 msecs_to_jiffies(params->spp_hbinterval); 2338 } else if (asoc) { 2339 asoc->hbinterval = 2340 msecs_to_jiffies(params->spp_hbinterval); 2341 } else { 2342 sp->hbinterval = params->spp_hbinterval; 2343 } 2344 } 2345 } 2346 2347 if (hb_change) { 2348 if (trans) { 2349 trans->param_flags = 2350 (trans->param_flags & ~SPP_HB) | hb_change; 2351 } else if (asoc) { 2352 asoc->param_flags = 2353 (asoc->param_flags & ~SPP_HB) | hb_change; 2354 } else { 2355 sp->param_flags = 2356 (sp->param_flags & ~SPP_HB) | hb_change; 2357 } 2358 } 2359 2360 /* When Path MTU discovery is disabled the value specified here will 2361 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2362 * include the flag SPP_PMTUD_DISABLE for this field to have any 2363 * effect). 2364 */ 2365 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2366 if (trans) { 2367 trans->pathmtu = params->spp_pathmtu; 2368 sctp_assoc_sync_pmtu(asoc); 2369 } else if (asoc) { 2370 asoc->pathmtu = params->spp_pathmtu; 2371 sctp_frag_point(asoc, params->spp_pathmtu); 2372 } else { 2373 sp->pathmtu = params->spp_pathmtu; 2374 } 2375 } 2376 2377 if (pmtud_change) { 2378 if (trans) { 2379 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2380 (params->spp_flags & SPP_PMTUD_ENABLE); 2381 trans->param_flags = 2382 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2383 if (update) { 2384 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2385 sctp_assoc_sync_pmtu(asoc); 2386 } 2387 } else if (asoc) { 2388 asoc->param_flags = 2389 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2390 } else { 2391 sp->param_flags = 2392 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2393 } 2394 } 2395 2396 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2397 * value of this field is ignored. Note also that a value of zero 2398 * indicates the current setting should be left unchanged. 2399 */ 2400 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2401 if (trans) { 2402 trans->sackdelay = 2403 msecs_to_jiffies(params->spp_sackdelay); 2404 } else if (asoc) { 2405 asoc->sackdelay = 2406 msecs_to_jiffies(params->spp_sackdelay); 2407 } else { 2408 sp->sackdelay = params->spp_sackdelay; 2409 } 2410 } 2411 2412 if (sackdelay_change) { 2413 if (trans) { 2414 trans->param_flags = 2415 (trans->param_flags & ~SPP_SACKDELAY) | 2416 sackdelay_change; 2417 } else if (asoc) { 2418 asoc->param_flags = 2419 (asoc->param_flags & ~SPP_SACKDELAY) | 2420 sackdelay_change; 2421 } else { 2422 sp->param_flags = 2423 (sp->param_flags & ~SPP_SACKDELAY) | 2424 sackdelay_change; 2425 } 2426 } 2427 2428 /* Note that a value of zero indicates the current setting should be 2429 left unchanged. 2430 */ 2431 if (params->spp_pathmaxrxt) { 2432 if (trans) { 2433 trans->pathmaxrxt = params->spp_pathmaxrxt; 2434 } else if (asoc) { 2435 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2436 } else { 2437 sp->pathmaxrxt = params->spp_pathmaxrxt; 2438 } 2439 } 2440 2441 return 0; 2442 } 2443 2444 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2445 char __user *optval, 2446 unsigned int optlen) 2447 { 2448 struct sctp_paddrparams params; 2449 struct sctp_transport *trans = NULL; 2450 struct sctp_association *asoc = NULL; 2451 struct sctp_sock *sp = sctp_sk(sk); 2452 int error; 2453 int hb_change, pmtud_change, sackdelay_change; 2454 2455 if (optlen != sizeof(struct sctp_paddrparams)) 2456 return - EINVAL; 2457 2458 if (copy_from_user(¶ms, optval, optlen)) 2459 return -EFAULT; 2460 2461 /* Validate flags and value parameters. */ 2462 hb_change = params.spp_flags & SPP_HB; 2463 pmtud_change = params.spp_flags & SPP_PMTUD; 2464 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2465 2466 if (hb_change == SPP_HB || 2467 pmtud_change == SPP_PMTUD || 2468 sackdelay_change == SPP_SACKDELAY || 2469 params.spp_sackdelay > 500 || 2470 (params.spp_pathmtu && 2471 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2472 return -EINVAL; 2473 2474 /* If an address other than INADDR_ANY is specified, and 2475 * no transport is found, then the request is invalid. 2476 */ 2477 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2478 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2479 params.spp_assoc_id); 2480 if (!trans) 2481 return -EINVAL; 2482 } 2483 2484 /* Get association, if assoc_id != 0 and the socket is a one 2485 * to many style socket, and an association was not found, then 2486 * the id was invalid. 2487 */ 2488 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2489 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2490 return -EINVAL; 2491 2492 /* Heartbeat demand can only be sent on a transport or 2493 * association, but not a socket. 2494 */ 2495 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2496 return -EINVAL; 2497 2498 /* Process parameters. */ 2499 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2500 hb_change, pmtud_change, 2501 sackdelay_change); 2502 2503 if (error) 2504 return error; 2505 2506 /* If changes are for association, also apply parameters to each 2507 * transport. 2508 */ 2509 if (!trans && asoc) { 2510 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2511 transports) { 2512 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2513 hb_change, pmtud_change, 2514 sackdelay_change); 2515 } 2516 } 2517 2518 return 0; 2519 } 2520 2521 /* 2522 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2523 * 2524 * This option will effect the way delayed acks are performed. This 2525 * option allows you to get or set the delayed ack time, in 2526 * milliseconds. It also allows changing the delayed ack frequency. 2527 * Changing the frequency to 1 disables the delayed sack algorithm. If 2528 * the assoc_id is 0, then this sets or gets the endpoints default 2529 * values. If the assoc_id field is non-zero, then the set or get 2530 * effects the specified association for the one to many model (the 2531 * assoc_id field is ignored by the one to one model). Note that if 2532 * sack_delay or sack_freq are 0 when setting this option, then the 2533 * current values will remain unchanged. 2534 * 2535 * struct sctp_sack_info { 2536 * sctp_assoc_t sack_assoc_id; 2537 * uint32_t sack_delay; 2538 * uint32_t sack_freq; 2539 * }; 2540 * 2541 * sack_assoc_id - This parameter, indicates which association the user 2542 * is performing an action upon. Note that if this field's value is 2543 * zero then the endpoints default value is changed (effecting future 2544 * associations only). 2545 * 2546 * sack_delay - This parameter contains the number of milliseconds that 2547 * the user is requesting the delayed ACK timer be set to. Note that 2548 * this value is defined in the standard to be between 200 and 500 2549 * milliseconds. 2550 * 2551 * sack_freq - This parameter contains the number of packets that must 2552 * be received before a sack is sent without waiting for the delay 2553 * timer to expire. The default value for this is 2, setting this 2554 * value to 1 will disable the delayed sack algorithm. 2555 */ 2556 2557 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2558 char __user *optval, unsigned int optlen) 2559 { 2560 struct sctp_sack_info params; 2561 struct sctp_transport *trans = NULL; 2562 struct sctp_association *asoc = NULL; 2563 struct sctp_sock *sp = sctp_sk(sk); 2564 2565 if (optlen == sizeof(struct sctp_sack_info)) { 2566 if (copy_from_user(¶ms, optval, optlen)) 2567 return -EFAULT; 2568 2569 if (params.sack_delay == 0 && params.sack_freq == 0) 2570 return 0; 2571 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2572 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2573 pr_warn("Use struct sctp_sack_info instead\n"); 2574 if (copy_from_user(¶ms, optval, optlen)) 2575 return -EFAULT; 2576 2577 if (params.sack_delay == 0) 2578 params.sack_freq = 1; 2579 else 2580 params.sack_freq = 0; 2581 } else 2582 return - EINVAL; 2583 2584 /* Validate value parameter. */ 2585 if (params.sack_delay > 500) 2586 return -EINVAL; 2587 2588 /* Get association, if sack_assoc_id != 0 and the socket is a one 2589 * to many style socket, and an association was not found, then 2590 * the id was invalid. 2591 */ 2592 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2593 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2594 return -EINVAL; 2595 2596 if (params.sack_delay) { 2597 if (asoc) { 2598 asoc->sackdelay = 2599 msecs_to_jiffies(params.sack_delay); 2600 asoc->param_flags = 2601 (asoc->param_flags & ~SPP_SACKDELAY) | 2602 SPP_SACKDELAY_ENABLE; 2603 } else { 2604 sp->sackdelay = params.sack_delay; 2605 sp->param_flags = 2606 (sp->param_flags & ~SPP_SACKDELAY) | 2607 SPP_SACKDELAY_ENABLE; 2608 } 2609 } 2610 2611 if (params.sack_freq == 1) { 2612 if (asoc) { 2613 asoc->param_flags = 2614 (asoc->param_flags & ~SPP_SACKDELAY) | 2615 SPP_SACKDELAY_DISABLE; 2616 } else { 2617 sp->param_flags = 2618 (sp->param_flags & ~SPP_SACKDELAY) | 2619 SPP_SACKDELAY_DISABLE; 2620 } 2621 } else if (params.sack_freq > 1) { 2622 if (asoc) { 2623 asoc->sackfreq = params.sack_freq; 2624 asoc->param_flags = 2625 (asoc->param_flags & ~SPP_SACKDELAY) | 2626 SPP_SACKDELAY_ENABLE; 2627 } else { 2628 sp->sackfreq = params.sack_freq; 2629 sp->param_flags = 2630 (sp->param_flags & ~SPP_SACKDELAY) | 2631 SPP_SACKDELAY_ENABLE; 2632 } 2633 } 2634 2635 /* If change is for association, also apply to each transport. */ 2636 if (asoc) { 2637 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2638 transports) { 2639 if (params.sack_delay) { 2640 trans->sackdelay = 2641 msecs_to_jiffies(params.sack_delay); 2642 trans->param_flags = 2643 (trans->param_flags & ~SPP_SACKDELAY) | 2644 SPP_SACKDELAY_ENABLE; 2645 } 2646 if (params.sack_freq == 1) { 2647 trans->param_flags = 2648 (trans->param_flags & ~SPP_SACKDELAY) | 2649 SPP_SACKDELAY_DISABLE; 2650 } else if (params.sack_freq > 1) { 2651 trans->sackfreq = params.sack_freq; 2652 trans->param_flags = 2653 (trans->param_flags & ~SPP_SACKDELAY) | 2654 SPP_SACKDELAY_ENABLE; 2655 } 2656 } 2657 } 2658 2659 return 0; 2660 } 2661 2662 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2663 * 2664 * Applications can specify protocol parameters for the default association 2665 * initialization. The option name argument to setsockopt() and getsockopt() 2666 * is SCTP_INITMSG. 2667 * 2668 * Setting initialization parameters is effective only on an unconnected 2669 * socket (for UDP-style sockets only future associations are effected 2670 * by the change). With TCP-style sockets, this option is inherited by 2671 * sockets derived from a listener socket. 2672 */ 2673 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2674 { 2675 struct sctp_initmsg sinit; 2676 struct sctp_sock *sp = sctp_sk(sk); 2677 2678 if (optlen != sizeof(struct sctp_initmsg)) 2679 return -EINVAL; 2680 if (copy_from_user(&sinit, optval, optlen)) 2681 return -EFAULT; 2682 2683 if (sinit.sinit_num_ostreams) 2684 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2685 if (sinit.sinit_max_instreams) 2686 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2687 if (sinit.sinit_max_attempts) 2688 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2689 if (sinit.sinit_max_init_timeo) 2690 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2691 2692 return 0; 2693 } 2694 2695 /* 2696 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2697 * 2698 * Applications that wish to use the sendto() system call may wish to 2699 * specify a default set of parameters that would normally be supplied 2700 * through the inclusion of ancillary data. This socket option allows 2701 * such an application to set the default sctp_sndrcvinfo structure. 2702 * The application that wishes to use this socket option simply passes 2703 * in to this call the sctp_sndrcvinfo structure defined in Section 2704 * 5.2.2) The input parameters accepted by this call include 2705 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2706 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2707 * to this call if the caller is using the UDP model. 2708 */ 2709 static int sctp_setsockopt_default_send_param(struct sock *sk, 2710 char __user *optval, 2711 unsigned int optlen) 2712 { 2713 struct sctp_sndrcvinfo info; 2714 struct sctp_association *asoc; 2715 struct sctp_sock *sp = sctp_sk(sk); 2716 2717 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2718 return -EINVAL; 2719 if (copy_from_user(&info, optval, optlen)) 2720 return -EFAULT; 2721 2722 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2723 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2724 return -EINVAL; 2725 2726 if (asoc) { 2727 asoc->default_stream = info.sinfo_stream; 2728 asoc->default_flags = info.sinfo_flags; 2729 asoc->default_ppid = info.sinfo_ppid; 2730 asoc->default_context = info.sinfo_context; 2731 asoc->default_timetolive = info.sinfo_timetolive; 2732 } else { 2733 sp->default_stream = info.sinfo_stream; 2734 sp->default_flags = info.sinfo_flags; 2735 sp->default_ppid = info.sinfo_ppid; 2736 sp->default_context = info.sinfo_context; 2737 sp->default_timetolive = info.sinfo_timetolive; 2738 } 2739 2740 return 0; 2741 } 2742 2743 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2744 * 2745 * Requests that the local SCTP stack use the enclosed peer address as 2746 * the association primary. The enclosed address must be one of the 2747 * association peer's addresses. 2748 */ 2749 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2750 unsigned int optlen) 2751 { 2752 struct sctp_prim prim; 2753 struct sctp_transport *trans; 2754 2755 if (optlen != sizeof(struct sctp_prim)) 2756 return -EINVAL; 2757 2758 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2759 return -EFAULT; 2760 2761 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2762 if (!trans) 2763 return -EINVAL; 2764 2765 sctp_assoc_set_primary(trans->asoc, trans); 2766 2767 return 0; 2768 } 2769 2770 /* 2771 * 7.1.5 SCTP_NODELAY 2772 * 2773 * Turn on/off any Nagle-like algorithm. This means that packets are 2774 * generally sent as soon as possible and no unnecessary delays are 2775 * introduced, at the cost of more packets in the network. Expects an 2776 * integer boolean flag. 2777 */ 2778 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2779 unsigned int optlen) 2780 { 2781 int val; 2782 2783 if (optlen < sizeof(int)) 2784 return -EINVAL; 2785 if (get_user(val, (int __user *)optval)) 2786 return -EFAULT; 2787 2788 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2789 return 0; 2790 } 2791 2792 /* 2793 * 2794 * 7.1.1 SCTP_RTOINFO 2795 * 2796 * The protocol parameters used to initialize and bound retransmission 2797 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2798 * and modify these parameters. 2799 * All parameters are time values, in milliseconds. A value of 0, when 2800 * modifying the parameters, indicates that the current value should not 2801 * be changed. 2802 * 2803 */ 2804 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2805 { 2806 struct sctp_rtoinfo rtoinfo; 2807 struct sctp_association *asoc; 2808 2809 if (optlen != sizeof (struct sctp_rtoinfo)) 2810 return -EINVAL; 2811 2812 if (copy_from_user(&rtoinfo, optval, optlen)) 2813 return -EFAULT; 2814 2815 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2816 2817 /* Set the values to the specific association */ 2818 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2819 return -EINVAL; 2820 2821 if (asoc) { 2822 if (rtoinfo.srto_initial != 0) 2823 asoc->rto_initial = 2824 msecs_to_jiffies(rtoinfo.srto_initial); 2825 if (rtoinfo.srto_max != 0) 2826 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2827 if (rtoinfo.srto_min != 0) 2828 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2829 } else { 2830 /* If there is no association or the association-id = 0 2831 * set the values to the endpoint. 2832 */ 2833 struct sctp_sock *sp = sctp_sk(sk); 2834 2835 if (rtoinfo.srto_initial != 0) 2836 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2837 if (rtoinfo.srto_max != 0) 2838 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2839 if (rtoinfo.srto_min != 0) 2840 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2841 } 2842 2843 return 0; 2844 } 2845 2846 /* 2847 * 2848 * 7.1.2 SCTP_ASSOCINFO 2849 * 2850 * This option is used to tune the maximum retransmission attempts 2851 * of the association. 2852 * Returns an error if the new association retransmission value is 2853 * greater than the sum of the retransmission value of the peer. 2854 * See [SCTP] for more information. 2855 * 2856 */ 2857 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2858 { 2859 2860 struct sctp_assocparams assocparams; 2861 struct sctp_association *asoc; 2862 2863 if (optlen != sizeof(struct sctp_assocparams)) 2864 return -EINVAL; 2865 if (copy_from_user(&assocparams, optval, optlen)) 2866 return -EFAULT; 2867 2868 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2869 2870 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2871 return -EINVAL; 2872 2873 /* Set the values to the specific association */ 2874 if (asoc) { 2875 if (assocparams.sasoc_asocmaxrxt != 0) { 2876 __u32 path_sum = 0; 2877 int paths = 0; 2878 struct sctp_transport *peer_addr; 2879 2880 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2881 transports) { 2882 path_sum += peer_addr->pathmaxrxt; 2883 paths++; 2884 } 2885 2886 /* Only validate asocmaxrxt if we have more than 2887 * one path/transport. We do this because path 2888 * retransmissions are only counted when we have more 2889 * then one path. 2890 */ 2891 if (paths > 1 && 2892 assocparams.sasoc_asocmaxrxt > path_sum) 2893 return -EINVAL; 2894 2895 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2896 } 2897 2898 if (assocparams.sasoc_cookie_life != 0) { 2899 asoc->cookie_life.tv_sec = 2900 assocparams.sasoc_cookie_life / 1000; 2901 asoc->cookie_life.tv_usec = 2902 (assocparams.sasoc_cookie_life % 1000) 2903 * 1000; 2904 } 2905 } else { 2906 /* Set the values to the endpoint */ 2907 struct sctp_sock *sp = sctp_sk(sk); 2908 2909 if (assocparams.sasoc_asocmaxrxt != 0) 2910 sp->assocparams.sasoc_asocmaxrxt = 2911 assocparams.sasoc_asocmaxrxt; 2912 if (assocparams.sasoc_cookie_life != 0) 2913 sp->assocparams.sasoc_cookie_life = 2914 assocparams.sasoc_cookie_life; 2915 } 2916 return 0; 2917 } 2918 2919 /* 2920 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2921 * 2922 * This socket option is a boolean flag which turns on or off mapped V4 2923 * addresses. If this option is turned on and the socket is type 2924 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2925 * If this option is turned off, then no mapping will be done of V4 2926 * addresses and a user will receive both PF_INET6 and PF_INET type 2927 * addresses on the socket. 2928 */ 2929 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2930 { 2931 int val; 2932 struct sctp_sock *sp = sctp_sk(sk); 2933 2934 if (optlen < sizeof(int)) 2935 return -EINVAL; 2936 if (get_user(val, (int __user *)optval)) 2937 return -EFAULT; 2938 if (val) 2939 sp->v4mapped = 1; 2940 else 2941 sp->v4mapped = 0; 2942 2943 return 0; 2944 } 2945 2946 /* 2947 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2948 * This option will get or set the maximum size to put in any outgoing 2949 * SCTP DATA chunk. If a message is larger than this size it will be 2950 * fragmented by SCTP into the specified size. Note that the underlying 2951 * SCTP implementation may fragment into smaller sized chunks when the 2952 * PMTU of the underlying association is smaller than the value set by 2953 * the user. The default value for this option is '0' which indicates 2954 * the user is NOT limiting fragmentation and only the PMTU will effect 2955 * SCTP's choice of DATA chunk size. Note also that values set larger 2956 * than the maximum size of an IP datagram will effectively let SCTP 2957 * control fragmentation (i.e. the same as setting this option to 0). 2958 * 2959 * The following structure is used to access and modify this parameter: 2960 * 2961 * struct sctp_assoc_value { 2962 * sctp_assoc_t assoc_id; 2963 * uint32_t assoc_value; 2964 * }; 2965 * 2966 * assoc_id: This parameter is ignored for one-to-one style sockets. 2967 * For one-to-many style sockets this parameter indicates which 2968 * association the user is performing an action upon. Note that if 2969 * this field's value is zero then the endpoints default value is 2970 * changed (effecting future associations only). 2971 * assoc_value: This parameter specifies the maximum size in bytes. 2972 */ 2973 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2974 { 2975 struct sctp_assoc_value params; 2976 struct sctp_association *asoc; 2977 struct sctp_sock *sp = sctp_sk(sk); 2978 int val; 2979 2980 if (optlen == sizeof(int)) { 2981 pr_warn("Use of int in maxseg socket option deprecated\n"); 2982 pr_warn("Use struct sctp_assoc_value instead\n"); 2983 if (copy_from_user(&val, optval, optlen)) 2984 return -EFAULT; 2985 params.assoc_id = 0; 2986 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2987 if (copy_from_user(¶ms, optval, optlen)) 2988 return -EFAULT; 2989 val = params.assoc_value; 2990 } else 2991 return -EINVAL; 2992 2993 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2994 return -EINVAL; 2995 2996 asoc = sctp_id2assoc(sk, params.assoc_id); 2997 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2998 return -EINVAL; 2999 3000 if (asoc) { 3001 if (val == 0) { 3002 val = asoc->pathmtu; 3003 val -= sp->pf->af->net_header_len; 3004 val -= sizeof(struct sctphdr) + 3005 sizeof(struct sctp_data_chunk); 3006 } 3007 asoc->user_frag = val; 3008 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3009 } else { 3010 sp->user_frag = val; 3011 } 3012 3013 return 0; 3014 } 3015 3016 3017 /* 3018 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3019 * 3020 * Requests that the peer mark the enclosed address as the association 3021 * primary. The enclosed address must be one of the association's 3022 * locally bound addresses. The following structure is used to make a 3023 * set primary request: 3024 */ 3025 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3026 unsigned int optlen) 3027 { 3028 struct sctp_sock *sp; 3029 struct sctp_association *asoc = NULL; 3030 struct sctp_setpeerprim prim; 3031 struct sctp_chunk *chunk; 3032 struct sctp_af *af; 3033 int err; 3034 3035 sp = sctp_sk(sk); 3036 3037 if (!sctp_addip_enable) 3038 return -EPERM; 3039 3040 if (optlen != sizeof(struct sctp_setpeerprim)) 3041 return -EINVAL; 3042 3043 if (copy_from_user(&prim, optval, optlen)) 3044 return -EFAULT; 3045 3046 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3047 if (!asoc) 3048 return -EINVAL; 3049 3050 if (!asoc->peer.asconf_capable) 3051 return -EPERM; 3052 3053 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3054 return -EPERM; 3055 3056 if (!sctp_state(asoc, ESTABLISHED)) 3057 return -ENOTCONN; 3058 3059 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3060 if (!af) 3061 return -EINVAL; 3062 3063 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3064 return -EADDRNOTAVAIL; 3065 3066 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3067 return -EADDRNOTAVAIL; 3068 3069 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3070 chunk = sctp_make_asconf_set_prim(asoc, 3071 (union sctp_addr *)&prim.sspp_addr); 3072 if (!chunk) 3073 return -ENOMEM; 3074 3075 err = sctp_send_asconf(asoc, chunk); 3076 3077 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 3078 3079 return err; 3080 } 3081 3082 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3083 unsigned int optlen) 3084 { 3085 struct sctp_setadaptation adaptation; 3086 3087 if (optlen != sizeof(struct sctp_setadaptation)) 3088 return -EINVAL; 3089 if (copy_from_user(&adaptation, optval, optlen)) 3090 return -EFAULT; 3091 3092 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3093 3094 return 0; 3095 } 3096 3097 /* 3098 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3099 * 3100 * The context field in the sctp_sndrcvinfo structure is normally only 3101 * used when a failed message is retrieved holding the value that was 3102 * sent down on the actual send call. This option allows the setting of 3103 * a default context on an association basis that will be received on 3104 * reading messages from the peer. This is especially helpful in the 3105 * one-2-many model for an application to keep some reference to an 3106 * internal state machine that is processing messages on the 3107 * association. Note that the setting of this value only effects 3108 * received messages from the peer and does not effect the value that is 3109 * saved with outbound messages. 3110 */ 3111 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3112 unsigned int optlen) 3113 { 3114 struct sctp_assoc_value params; 3115 struct sctp_sock *sp; 3116 struct sctp_association *asoc; 3117 3118 if (optlen != sizeof(struct sctp_assoc_value)) 3119 return -EINVAL; 3120 if (copy_from_user(¶ms, optval, optlen)) 3121 return -EFAULT; 3122 3123 sp = sctp_sk(sk); 3124 3125 if (params.assoc_id != 0) { 3126 asoc = sctp_id2assoc(sk, params.assoc_id); 3127 if (!asoc) 3128 return -EINVAL; 3129 asoc->default_rcv_context = params.assoc_value; 3130 } else { 3131 sp->default_rcv_context = params.assoc_value; 3132 } 3133 3134 return 0; 3135 } 3136 3137 /* 3138 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3139 * 3140 * This options will at a minimum specify if the implementation is doing 3141 * fragmented interleave. Fragmented interleave, for a one to many 3142 * socket, is when subsequent calls to receive a message may return 3143 * parts of messages from different associations. Some implementations 3144 * may allow you to turn this value on or off. If so, when turned off, 3145 * no fragment interleave will occur (which will cause a head of line 3146 * blocking amongst multiple associations sharing the same one to many 3147 * socket). When this option is turned on, then each receive call may 3148 * come from a different association (thus the user must receive data 3149 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3150 * association each receive belongs to. 3151 * 3152 * This option takes a boolean value. A non-zero value indicates that 3153 * fragmented interleave is on. A value of zero indicates that 3154 * fragmented interleave is off. 3155 * 3156 * Note that it is important that an implementation that allows this 3157 * option to be turned on, have it off by default. Otherwise an unaware 3158 * application using the one to many model may become confused and act 3159 * incorrectly. 3160 */ 3161 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3162 char __user *optval, 3163 unsigned int optlen) 3164 { 3165 int val; 3166 3167 if (optlen != sizeof(int)) 3168 return -EINVAL; 3169 if (get_user(val, (int __user *)optval)) 3170 return -EFAULT; 3171 3172 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3173 3174 return 0; 3175 } 3176 3177 /* 3178 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3179 * (SCTP_PARTIAL_DELIVERY_POINT) 3180 * 3181 * This option will set or get the SCTP partial delivery point. This 3182 * point is the size of a message where the partial delivery API will be 3183 * invoked to help free up rwnd space for the peer. Setting this to a 3184 * lower value will cause partial deliveries to happen more often. The 3185 * calls argument is an integer that sets or gets the partial delivery 3186 * point. Note also that the call will fail if the user attempts to set 3187 * this value larger than the socket receive buffer size. 3188 * 3189 * Note that any single message having a length smaller than or equal to 3190 * the SCTP partial delivery point will be delivered in one single read 3191 * call as long as the user provided buffer is large enough to hold the 3192 * message. 3193 */ 3194 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3195 char __user *optval, 3196 unsigned int optlen) 3197 { 3198 u32 val; 3199 3200 if (optlen != sizeof(u32)) 3201 return -EINVAL; 3202 if (get_user(val, (int __user *)optval)) 3203 return -EFAULT; 3204 3205 /* Note: We double the receive buffer from what the user sets 3206 * it to be, also initial rwnd is based on rcvbuf/2. 3207 */ 3208 if (val > (sk->sk_rcvbuf >> 1)) 3209 return -EINVAL; 3210 3211 sctp_sk(sk)->pd_point = val; 3212 3213 return 0; /* is this the right error code? */ 3214 } 3215 3216 /* 3217 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3218 * 3219 * This option will allow a user to change the maximum burst of packets 3220 * that can be emitted by this association. Note that the default value 3221 * is 4, and some implementations may restrict this setting so that it 3222 * can only be lowered. 3223 * 3224 * NOTE: This text doesn't seem right. Do this on a socket basis with 3225 * future associations inheriting the socket value. 3226 */ 3227 static int sctp_setsockopt_maxburst(struct sock *sk, 3228 char __user *optval, 3229 unsigned int optlen) 3230 { 3231 struct sctp_assoc_value params; 3232 struct sctp_sock *sp; 3233 struct sctp_association *asoc; 3234 int val; 3235 int assoc_id = 0; 3236 3237 if (optlen == sizeof(int)) { 3238 pr_warn("Use of int in max_burst socket option deprecated\n"); 3239 pr_warn("Use struct sctp_assoc_value instead\n"); 3240 if (copy_from_user(&val, optval, optlen)) 3241 return -EFAULT; 3242 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3243 if (copy_from_user(¶ms, optval, optlen)) 3244 return -EFAULT; 3245 val = params.assoc_value; 3246 assoc_id = params.assoc_id; 3247 } else 3248 return -EINVAL; 3249 3250 sp = sctp_sk(sk); 3251 3252 if (assoc_id != 0) { 3253 asoc = sctp_id2assoc(sk, assoc_id); 3254 if (!asoc) 3255 return -EINVAL; 3256 asoc->max_burst = val; 3257 } else 3258 sp->max_burst = val; 3259 3260 return 0; 3261 } 3262 3263 /* 3264 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3265 * 3266 * This set option adds a chunk type that the user is requesting to be 3267 * received only in an authenticated way. Changes to the list of chunks 3268 * will only effect future associations on the socket. 3269 */ 3270 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3271 char __user *optval, 3272 unsigned int optlen) 3273 { 3274 struct sctp_authchunk val; 3275 3276 if (!sctp_auth_enable) 3277 return -EACCES; 3278 3279 if (optlen != sizeof(struct sctp_authchunk)) 3280 return -EINVAL; 3281 if (copy_from_user(&val, optval, optlen)) 3282 return -EFAULT; 3283 3284 switch (val.sauth_chunk) { 3285 case SCTP_CID_INIT: 3286 case SCTP_CID_INIT_ACK: 3287 case SCTP_CID_SHUTDOWN_COMPLETE: 3288 case SCTP_CID_AUTH: 3289 return -EINVAL; 3290 } 3291 3292 /* add this chunk id to the endpoint */ 3293 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3294 } 3295 3296 /* 3297 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3298 * 3299 * This option gets or sets the list of HMAC algorithms that the local 3300 * endpoint requires the peer to use. 3301 */ 3302 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3303 char __user *optval, 3304 unsigned int optlen) 3305 { 3306 struct sctp_hmacalgo *hmacs; 3307 u32 idents; 3308 int err; 3309 3310 if (!sctp_auth_enable) 3311 return -EACCES; 3312 3313 if (optlen < sizeof(struct sctp_hmacalgo)) 3314 return -EINVAL; 3315 3316 hmacs= memdup_user(optval, optlen); 3317 if (IS_ERR(hmacs)) 3318 return PTR_ERR(hmacs); 3319 3320 idents = hmacs->shmac_num_idents; 3321 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3322 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3323 err = -EINVAL; 3324 goto out; 3325 } 3326 3327 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3328 out: 3329 kfree(hmacs); 3330 return err; 3331 } 3332 3333 /* 3334 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3335 * 3336 * This option will set a shared secret key which is used to build an 3337 * association shared key. 3338 */ 3339 static int sctp_setsockopt_auth_key(struct sock *sk, 3340 char __user *optval, 3341 unsigned int optlen) 3342 { 3343 struct sctp_authkey *authkey; 3344 struct sctp_association *asoc; 3345 int ret; 3346 3347 if (!sctp_auth_enable) 3348 return -EACCES; 3349 3350 if (optlen <= sizeof(struct sctp_authkey)) 3351 return -EINVAL; 3352 3353 authkey= memdup_user(optval, optlen); 3354 if (IS_ERR(authkey)) 3355 return PTR_ERR(authkey); 3356 3357 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3358 ret = -EINVAL; 3359 goto out; 3360 } 3361 3362 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3363 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3364 ret = -EINVAL; 3365 goto out; 3366 } 3367 3368 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3369 out: 3370 kfree(authkey); 3371 return ret; 3372 } 3373 3374 /* 3375 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3376 * 3377 * This option will get or set the active shared key to be used to build 3378 * the association shared key. 3379 */ 3380 static int sctp_setsockopt_active_key(struct sock *sk, 3381 char __user *optval, 3382 unsigned int optlen) 3383 { 3384 struct sctp_authkeyid val; 3385 struct sctp_association *asoc; 3386 3387 if (!sctp_auth_enable) 3388 return -EACCES; 3389 3390 if (optlen != sizeof(struct sctp_authkeyid)) 3391 return -EINVAL; 3392 if (copy_from_user(&val, optval, optlen)) 3393 return -EFAULT; 3394 3395 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3396 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3397 return -EINVAL; 3398 3399 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3400 val.scact_keynumber); 3401 } 3402 3403 /* 3404 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3405 * 3406 * This set option will delete a shared secret key from use. 3407 */ 3408 static int sctp_setsockopt_del_key(struct sock *sk, 3409 char __user *optval, 3410 unsigned int optlen) 3411 { 3412 struct sctp_authkeyid val; 3413 struct sctp_association *asoc; 3414 3415 if (!sctp_auth_enable) 3416 return -EACCES; 3417 3418 if (optlen != sizeof(struct sctp_authkeyid)) 3419 return -EINVAL; 3420 if (copy_from_user(&val, optval, optlen)) 3421 return -EFAULT; 3422 3423 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3424 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3425 return -EINVAL; 3426 3427 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3428 val.scact_keynumber); 3429 3430 } 3431 3432 /* 3433 * 8.1.23 SCTP_AUTO_ASCONF 3434 * 3435 * This option will enable or disable the use of the automatic generation of 3436 * ASCONF chunks to add and delete addresses to an existing association. Note 3437 * that this option has two caveats namely: a) it only affects sockets that 3438 * are bound to all addresses available to the SCTP stack, and b) the system 3439 * administrator may have an overriding control that turns the ASCONF feature 3440 * off no matter what setting the socket option may have. 3441 * This option expects an integer boolean flag, where a non-zero value turns on 3442 * the option, and a zero value turns off the option. 3443 * Note. In this implementation, socket operation overrides default parameter 3444 * being set by sysctl as well as FreeBSD implementation 3445 */ 3446 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3447 unsigned int optlen) 3448 { 3449 int val; 3450 struct sctp_sock *sp = sctp_sk(sk); 3451 3452 if (optlen < sizeof(int)) 3453 return -EINVAL; 3454 if (get_user(val, (int __user *)optval)) 3455 return -EFAULT; 3456 if (!sctp_is_ep_boundall(sk) && val) 3457 return -EINVAL; 3458 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3459 return 0; 3460 3461 if (val == 0 && sp->do_auto_asconf) { 3462 list_del(&sp->auto_asconf_list); 3463 sp->do_auto_asconf = 0; 3464 } else if (val && !sp->do_auto_asconf) { 3465 list_add_tail(&sp->auto_asconf_list, 3466 &sctp_auto_asconf_splist); 3467 sp->do_auto_asconf = 1; 3468 } 3469 return 0; 3470 } 3471 3472 3473 /* API 6.2 setsockopt(), getsockopt() 3474 * 3475 * Applications use setsockopt() and getsockopt() to set or retrieve 3476 * socket options. Socket options are used to change the default 3477 * behavior of sockets calls. They are described in Section 7. 3478 * 3479 * The syntax is: 3480 * 3481 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3482 * int __user *optlen); 3483 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3484 * int optlen); 3485 * 3486 * sd - the socket descript. 3487 * level - set to IPPROTO_SCTP for all SCTP options. 3488 * optname - the option name. 3489 * optval - the buffer to store the value of the option. 3490 * optlen - the size of the buffer. 3491 */ 3492 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3493 char __user *optval, unsigned int optlen) 3494 { 3495 int retval = 0; 3496 3497 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3498 sk, optname); 3499 3500 /* I can hardly begin to describe how wrong this is. This is 3501 * so broken as to be worse than useless. The API draft 3502 * REALLY is NOT helpful here... I am not convinced that the 3503 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3504 * are at all well-founded. 3505 */ 3506 if (level != SOL_SCTP) { 3507 struct sctp_af *af = sctp_sk(sk)->pf->af; 3508 retval = af->setsockopt(sk, level, optname, optval, optlen); 3509 goto out_nounlock; 3510 } 3511 3512 sctp_lock_sock(sk); 3513 3514 switch (optname) { 3515 case SCTP_SOCKOPT_BINDX_ADD: 3516 /* 'optlen' is the size of the addresses buffer. */ 3517 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3518 optlen, SCTP_BINDX_ADD_ADDR); 3519 break; 3520 3521 case SCTP_SOCKOPT_BINDX_REM: 3522 /* 'optlen' is the size of the addresses buffer. */ 3523 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3524 optlen, SCTP_BINDX_REM_ADDR); 3525 break; 3526 3527 case SCTP_SOCKOPT_CONNECTX_OLD: 3528 /* 'optlen' is the size of the addresses buffer. */ 3529 retval = sctp_setsockopt_connectx_old(sk, 3530 (struct sockaddr __user *)optval, 3531 optlen); 3532 break; 3533 3534 case SCTP_SOCKOPT_CONNECTX: 3535 /* 'optlen' is the size of the addresses buffer. */ 3536 retval = sctp_setsockopt_connectx(sk, 3537 (struct sockaddr __user *)optval, 3538 optlen); 3539 break; 3540 3541 case SCTP_DISABLE_FRAGMENTS: 3542 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3543 break; 3544 3545 case SCTP_EVENTS: 3546 retval = sctp_setsockopt_events(sk, optval, optlen); 3547 break; 3548 3549 case SCTP_AUTOCLOSE: 3550 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3551 break; 3552 3553 case SCTP_PEER_ADDR_PARAMS: 3554 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3555 break; 3556 3557 case SCTP_DELAYED_SACK: 3558 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3559 break; 3560 case SCTP_PARTIAL_DELIVERY_POINT: 3561 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3562 break; 3563 3564 case SCTP_INITMSG: 3565 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3566 break; 3567 case SCTP_DEFAULT_SEND_PARAM: 3568 retval = sctp_setsockopt_default_send_param(sk, optval, 3569 optlen); 3570 break; 3571 case SCTP_PRIMARY_ADDR: 3572 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3573 break; 3574 case SCTP_SET_PEER_PRIMARY_ADDR: 3575 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3576 break; 3577 case SCTP_NODELAY: 3578 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3579 break; 3580 case SCTP_RTOINFO: 3581 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3582 break; 3583 case SCTP_ASSOCINFO: 3584 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3585 break; 3586 case SCTP_I_WANT_MAPPED_V4_ADDR: 3587 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3588 break; 3589 case SCTP_MAXSEG: 3590 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3591 break; 3592 case SCTP_ADAPTATION_LAYER: 3593 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3594 break; 3595 case SCTP_CONTEXT: 3596 retval = sctp_setsockopt_context(sk, optval, optlen); 3597 break; 3598 case SCTP_FRAGMENT_INTERLEAVE: 3599 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3600 break; 3601 case SCTP_MAX_BURST: 3602 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3603 break; 3604 case SCTP_AUTH_CHUNK: 3605 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3606 break; 3607 case SCTP_HMAC_IDENT: 3608 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3609 break; 3610 case SCTP_AUTH_KEY: 3611 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3612 break; 3613 case SCTP_AUTH_ACTIVE_KEY: 3614 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3615 break; 3616 case SCTP_AUTH_DELETE_KEY: 3617 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3618 break; 3619 case SCTP_AUTO_ASCONF: 3620 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3621 break; 3622 default: 3623 retval = -ENOPROTOOPT; 3624 break; 3625 } 3626 3627 sctp_release_sock(sk); 3628 3629 out_nounlock: 3630 return retval; 3631 } 3632 3633 /* API 3.1.6 connect() - UDP Style Syntax 3634 * 3635 * An application may use the connect() call in the UDP model to initiate an 3636 * association without sending data. 3637 * 3638 * The syntax is: 3639 * 3640 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3641 * 3642 * sd: the socket descriptor to have a new association added to. 3643 * 3644 * nam: the address structure (either struct sockaddr_in or struct 3645 * sockaddr_in6 defined in RFC2553 [7]). 3646 * 3647 * len: the size of the address. 3648 */ 3649 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3650 int addr_len) 3651 { 3652 int err = 0; 3653 struct sctp_af *af; 3654 3655 sctp_lock_sock(sk); 3656 3657 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3658 __func__, sk, addr, addr_len); 3659 3660 /* Validate addr_len before calling common connect/connectx routine. */ 3661 af = sctp_get_af_specific(addr->sa_family); 3662 if (!af || addr_len < af->sockaddr_len) { 3663 err = -EINVAL; 3664 } else { 3665 /* Pass correct addr len to common routine (so it knows there 3666 * is only one address being passed. 3667 */ 3668 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3669 } 3670 3671 sctp_release_sock(sk); 3672 return err; 3673 } 3674 3675 /* FIXME: Write comments. */ 3676 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3677 { 3678 return -EOPNOTSUPP; /* STUB */ 3679 } 3680 3681 /* 4.1.4 accept() - TCP Style Syntax 3682 * 3683 * Applications use accept() call to remove an established SCTP 3684 * association from the accept queue of the endpoint. A new socket 3685 * descriptor will be returned from accept() to represent the newly 3686 * formed association. 3687 */ 3688 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3689 { 3690 struct sctp_sock *sp; 3691 struct sctp_endpoint *ep; 3692 struct sock *newsk = NULL; 3693 struct sctp_association *asoc; 3694 long timeo; 3695 int error = 0; 3696 3697 sctp_lock_sock(sk); 3698 3699 sp = sctp_sk(sk); 3700 ep = sp->ep; 3701 3702 if (!sctp_style(sk, TCP)) { 3703 error = -EOPNOTSUPP; 3704 goto out; 3705 } 3706 3707 if (!sctp_sstate(sk, LISTENING)) { 3708 error = -EINVAL; 3709 goto out; 3710 } 3711 3712 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3713 3714 error = sctp_wait_for_accept(sk, timeo); 3715 if (error) 3716 goto out; 3717 3718 /* We treat the list of associations on the endpoint as the accept 3719 * queue and pick the first association on the list. 3720 */ 3721 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3722 3723 newsk = sp->pf->create_accept_sk(sk, asoc); 3724 if (!newsk) { 3725 error = -ENOMEM; 3726 goto out; 3727 } 3728 3729 /* Populate the fields of the newsk from the oldsk and migrate the 3730 * asoc to the newsk. 3731 */ 3732 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3733 3734 out: 3735 sctp_release_sock(sk); 3736 *err = error; 3737 return newsk; 3738 } 3739 3740 /* The SCTP ioctl handler. */ 3741 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3742 { 3743 int rc = -ENOTCONN; 3744 3745 sctp_lock_sock(sk); 3746 3747 /* 3748 * SEQPACKET-style sockets in LISTENING state are valid, for 3749 * SCTP, so only discard TCP-style sockets in LISTENING state. 3750 */ 3751 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3752 goto out; 3753 3754 switch (cmd) { 3755 case SIOCINQ: { 3756 struct sk_buff *skb; 3757 unsigned int amount = 0; 3758 3759 skb = skb_peek(&sk->sk_receive_queue); 3760 if (skb != NULL) { 3761 /* 3762 * We will only return the amount of this packet since 3763 * that is all that will be read. 3764 */ 3765 amount = skb->len; 3766 } 3767 rc = put_user(amount, (int __user *)arg); 3768 break; 3769 } 3770 default: 3771 rc = -ENOIOCTLCMD; 3772 break; 3773 } 3774 out: 3775 sctp_release_sock(sk); 3776 return rc; 3777 } 3778 3779 /* This is the function which gets called during socket creation to 3780 * initialized the SCTP-specific portion of the sock. 3781 * The sock structure should already be zero-filled memory. 3782 */ 3783 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3784 { 3785 struct sctp_endpoint *ep; 3786 struct sctp_sock *sp; 3787 3788 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3789 3790 sp = sctp_sk(sk); 3791 3792 /* Initialize the SCTP per socket area. */ 3793 switch (sk->sk_type) { 3794 case SOCK_SEQPACKET: 3795 sp->type = SCTP_SOCKET_UDP; 3796 break; 3797 case SOCK_STREAM: 3798 sp->type = SCTP_SOCKET_TCP; 3799 break; 3800 default: 3801 return -ESOCKTNOSUPPORT; 3802 } 3803 3804 /* Initialize default send parameters. These parameters can be 3805 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3806 */ 3807 sp->default_stream = 0; 3808 sp->default_ppid = 0; 3809 sp->default_flags = 0; 3810 sp->default_context = 0; 3811 sp->default_timetolive = 0; 3812 3813 sp->default_rcv_context = 0; 3814 sp->max_burst = sctp_max_burst; 3815 3816 /* Initialize default setup parameters. These parameters 3817 * can be modified with the SCTP_INITMSG socket option or 3818 * overridden by the SCTP_INIT CMSG. 3819 */ 3820 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3821 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3822 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3823 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3824 3825 /* Initialize default RTO related parameters. These parameters can 3826 * be modified for with the SCTP_RTOINFO socket option. 3827 */ 3828 sp->rtoinfo.srto_initial = sctp_rto_initial; 3829 sp->rtoinfo.srto_max = sctp_rto_max; 3830 sp->rtoinfo.srto_min = sctp_rto_min; 3831 3832 /* Initialize default association related parameters. These parameters 3833 * can be modified with the SCTP_ASSOCINFO socket option. 3834 */ 3835 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3836 sp->assocparams.sasoc_number_peer_destinations = 0; 3837 sp->assocparams.sasoc_peer_rwnd = 0; 3838 sp->assocparams.sasoc_local_rwnd = 0; 3839 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3840 3841 /* Initialize default event subscriptions. By default, all the 3842 * options are off. 3843 */ 3844 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3845 3846 /* Default Peer Address Parameters. These defaults can 3847 * be modified via SCTP_PEER_ADDR_PARAMS 3848 */ 3849 sp->hbinterval = sctp_hb_interval; 3850 sp->pathmaxrxt = sctp_max_retrans_path; 3851 sp->pathmtu = 0; // allow default discovery 3852 sp->sackdelay = sctp_sack_timeout; 3853 sp->sackfreq = 2; 3854 sp->param_flags = SPP_HB_ENABLE | 3855 SPP_PMTUD_ENABLE | 3856 SPP_SACKDELAY_ENABLE; 3857 3858 /* If enabled no SCTP message fragmentation will be performed. 3859 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3860 */ 3861 sp->disable_fragments = 0; 3862 3863 /* Enable Nagle algorithm by default. */ 3864 sp->nodelay = 0; 3865 3866 /* Enable by default. */ 3867 sp->v4mapped = 1; 3868 3869 /* Auto-close idle associations after the configured 3870 * number of seconds. A value of 0 disables this 3871 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3872 * for UDP-style sockets only. 3873 */ 3874 sp->autoclose = 0; 3875 3876 /* User specified fragmentation limit. */ 3877 sp->user_frag = 0; 3878 3879 sp->adaptation_ind = 0; 3880 3881 sp->pf = sctp_get_pf_specific(sk->sk_family); 3882 3883 /* Control variables for partial data delivery. */ 3884 atomic_set(&sp->pd_mode, 0); 3885 skb_queue_head_init(&sp->pd_lobby); 3886 sp->frag_interleave = 0; 3887 3888 /* Create a per socket endpoint structure. Even if we 3889 * change the data structure relationships, this may still 3890 * be useful for storing pre-connect address information. 3891 */ 3892 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3893 if (!ep) 3894 return -ENOMEM; 3895 3896 sp->ep = ep; 3897 sp->hmac = NULL; 3898 3899 SCTP_DBG_OBJCNT_INC(sock); 3900 3901 local_bh_disable(); 3902 percpu_counter_inc(&sctp_sockets_allocated); 3903 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3904 if (sctp_default_auto_asconf) { 3905 list_add_tail(&sp->auto_asconf_list, 3906 &sctp_auto_asconf_splist); 3907 sp->do_auto_asconf = 1; 3908 } else 3909 sp->do_auto_asconf = 0; 3910 local_bh_enable(); 3911 3912 return 0; 3913 } 3914 3915 /* Cleanup any SCTP per socket resources. */ 3916 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3917 { 3918 struct sctp_sock *sp; 3919 3920 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3921 3922 /* Release our hold on the endpoint. */ 3923 sp = sctp_sk(sk); 3924 if (sp->do_auto_asconf) { 3925 sp->do_auto_asconf = 0; 3926 list_del(&sp->auto_asconf_list); 3927 } 3928 sctp_endpoint_free(sp->ep); 3929 local_bh_disable(); 3930 percpu_counter_dec(&sctp_sockets_allocated); 3931 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3932 local_bh_enable(); 3933 } 3934 3935 /* API 4.1.7 shutdown() - TCP Style Syntax 3936 * int shutdown(int socket, int how); 3937 * 3938 * sd - the socket descriptor of the association to be closed. 3939 * how - Specifies the type of shutdown. The values are 3940 * as follows: 3941 * SHUT_RD 3942 * Disables further receive operations. No SCTP 3943 * protocol action is taken. 3944 * SHUT_WR 3945 * Disables further send operations, and initiates 3946 * the SCTP shutdown sequence. 3947 * SHUT_RDWR 3948 * Disables further send and receive operations 3949 * and initiates the SCTP shutdown sequence. 3950 */ 3951 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3952 { 3953 struct sctp_endpoint *ep; 3954 struct sctp_association *asoc; 3955 3956 if (!sctp_style(sk, TCP)) 3957 return; 3958 3959 if (how & SEND_SHUTDOWN) { 3960 ep = sctp_sk(sk)->ep; 3961 if (!list_empty(&ep->asocs)) { 3962 asoc = list_entry(ep->asocs.next, 3963 struct sctp_association, asocs); 3964 sctp_primitive_SHUTDOWN(asoc, NULL); 3965 } 3966 } 3967 } 3968 3969 /* 7.2.1 Association Status (SCTP_STATUS) 3970 3971 * Applications can retrieve current status information about an 3972 * association, including association state, peer receiver window size, 3973 * number of unacked data chunks, and number of data chunks pending 3974 * receipt. This information is read-only. 3975 */ 3976 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3977 char __user *optval, 3978 int __user *optlen) 3979 { 3980 struct sctp_status status; 3981 struct sctp_association *asoc = NULL; 3982 struct sctp_transport *transport; 3983 sctp_assoc_t associd; 3984 int retval = 0; 3985 3986 if (len < sizeof(status)) { 3987 retval = -EINVAL; 3988 goto out; 3989 } 3990 3991 len = sizeof(status); 3992 if (copy_from_user(&status, optval, len)) { 3993 retval = -EFAULT; 3994 goto out; 3995 } 3996 3997 associd = status.sstat_assoc_id; 3998 asoc = sctp_id2assoc(sk, associd); 3999 if (!asoc) { 4000 retval = -EINVAL; 4001 goto out; 4002 } 4003 4004 transport = asoc->peer.primary_path; 4005 4006 status.sstat_assoc_id = sctp_assoc2id(asoc); 4007 status.sstat_state = asoc->state; 4008 status.sstat_rwnd = asoc->peer.rwnd; 4009 status.sstat_unackdata = asoc->unack_data; 4010 4011 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4012 status.sstat_instrms = asoc->c.sinit_max_instreams; 4013 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4014 status.sstat_fragmentation_point = asoc->frag_point; 4015 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4016 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4017 transport->af_specific->sockaddr_len); 4018 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4019 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4020 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4021 status.sstat_primary.spinfo_state = transport->state; 4022 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4023 status.sstat_primary.spinfo_srtt = transport->srtt; 4024 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4025 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4026 4027 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4028 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4029 4030 if (put_user(len, optlen)) { 4031 retval = -EFAULT; 4032 goto out; 4033 } 4034 4035 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 4036 len, status.sstat_state, status.sstat_rwnd, 4037 status.sstat_assoc_id); 4038 4039 if (copy_to_user(optval, &status, len)) { 4040 retval = -EFAULT; 4041 goto out; 4042 } 4043 4044 out: 4045 return retval; 4046 } 4047 4048 4049 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4050 * 4051 * Applications can retrieve information about a specific peer address 4052 * of an association, including its reachability state, congestion 4053 * window, and retransmission timer values. This information is 4054 * read-only. 4055 */ 4056 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4057 char __user *optval, 4058 int __user *optlen) 4059 { 4060 struct sctp_paddrinfo pinfo; 4061 struct sctp_transport *transport; 4062 int retval = 0; 4063 4064 if (len < sizeof(pinfo)) { 4065 retval = -EINVAL; 4066 goto out; 4067 } 4068 4069 len = sizeof(pinfo); 4070 if (copy_from_user(&pinfo, optval, len)) { 4071 retval = -EFAULT; 4072 goto out; 4073 } 4074 4075 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4076 pinfo.spinfo_assoc_id); 4077 if (!transport) 4078 return -EINVAL; 4079 4080 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4081 pinfo.spinfo_state = transport->state; 4082 pinfo.spinfo_cwnd = transport->cwnd; 4083 pinfo.spinfo_srtt = transport->srtt; 4084 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4085 pinfo.spinfo_mtu = transport->pathmtu; 4086 4087 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4088 pinfo.spinfo_state = SCTP_ACTIVE; 4089 4090 if (put_user(len, optlen)) { 4091 retval = -EFAULT; 4092 goto out; 4093 } 4094 4095 if (copy_to_user(optval, &pinfo, len)) { 4096 retval = -EFAULT; 4097 goto out; 4098 } 4099 4100 out: 4101 return retval; 4102 } 4103 4104 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4105 * 4106 * This option is a on/off flag. If enabled no SCTP message 4107 * fragmentation will be performed. Instead if a message being sent 4108 * exceeds the current PMTU size, the message will NOT be sent and 4109 * instead a error will be indicated to the user. 4110 */ 4111 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4112 char __user *optval, int __user *optlen) 4113 { 4114 int val; 4115 4116 if (len < sizeof(int)) 4117 return -EINVAL; 4118 4119 len = sizeof(int); 4120 val = (sctp_sk(sk)->disable_fragments == 1); 4121 if (put_user(len, optlen)) 4122 return -EFAULT; 4123 if (copy_to_user(optval, &val, len)) 4124 return -EFAULT; 4125 return 0; 4126 } 4127 4128 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4129 * 4130 * This socket option is used to specify various notifications and 4131 * ancillary data the user wishes to receive. 4132 */ 4133 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4134 int __user *optlen) 4135 { 4136 if (len <= 0) 4137 return -EINVAL; 4138 if (len > sizeof(struct sctp_event_subscribe)) 4139 len = sizeof(struct sctp_event_subscribe); 4140 if (put_user(len, optlen)) 4141 return -EFAULT; 4142 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4143 return -EFAULT; 4144 return 0; 4145 } 4146 4147 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4148 * 4149 * This socket option is applicable to the UDP-style socket only. When 4150 * set it will cause associations that are idle for more than the 4151 * specified number of seconds to automatically close. An association 4152 * being idle is defined an association that has NOT sent or received 4153 * user data. The special value of '0' indicates that no automatic 4154 * close of any associations should be performed. The option expects an 4155 * integer defining the number of seconds of idle time before an 4156 * association is closed. 4157 */ 4158 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4159 { 4160 /* Applicable to UDP-style socket only */ 4161 if (sctp_style(sk, TCP)) 4162 return -EOPNOTSUPP; 4163 if (len < sizeof(int)) 4164 return -EINVAL; 4165 len = sizeof(int); 4166 if (put_user(len, optlen)) 4167 return -EFAULT; 4168 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4169 return -EFAULT; 4170 return 0; 4171 } 4172 4173 /* Helper routine to branch off an association to a new socket. */ 4174 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4175 { 4176 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4177 struct socket *sock; 4178 struct sctp_af *af; 4179 int err = 0; 4180 4181 if (!asoc) 4182 return -EINVAL; 4183 4184 /* An association cannot be branched off from an already peeled-off 4185 * socket, nor is this supported for tcp style sockets. 4186 */ 4187 if (!sctp_style(sk, UDP)) 4188 return -EINVAL; 4189 4190 /* Create a new socket. */ 4191 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4192 if (err < 0) 4193 return err; 4194 4195 sctp_copy_sock(sock->sk, sk, asoc); 4196 4197 /* Make peeled-off sockets more like 1-1 accepted sockets. 4198 * Set the daddr and initialize id to something more random 4199 */ 4200 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4201 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4202 4203 /* Populate the fields of the newsk from the oldsk and migrate the 4204 * asoc to the newsk. 4205 */ 4206 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4207 4208 *sockp = sock; 4209 4210 return err; 4211 } 4212 EXPORT_SYMBOL(sctp_do_peeloff); 4213 4214 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4215 { 4216 sctp_peeloff_arg_t peeloff; 4217 struct socket *newsock; 4218 int retval = 0; 4219 4220 if (len < sizeof(sctp_peeloff_arg_t)) 4221 return -EINVAL; 4222 len = sizeof(sctp_peeloff_arg_t); 4223 if (copy_from_user(&peeloff, optval, len)) 4224 return -EFAULT; 4225 4226 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4227 if (retval < 0) 4228 goto out; 4229 4230 /* Map the socket to an unused fd that can be returned to the user. */ 4231 retval = sock_map_fd(newsock, 0); 4232 if (retval < 0) { 4233 sock_release(newsock); 4234 goto out; 4235 } 4236 4237 SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n", 4238 __func__, sk, newsock->sk, retval); 4239 4240 /* Return the fd mapped to the new socket. */ 4241 peeloff.sd = retval; 4242 if (put_user(len, optlen)) 4243 return -EFAULT; 4244 if (copy_to_user(optval, &peeloff, len)) 4245 retval = -EFAULT; 4246 4247 out: 4248 return retval; 4249 } 4250 4251 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4252 * 4253 * Applications can enable or disable heartbeats for any peer address of 4254 * an association, modify an address's heartbeat interval, force a 4255 * heartbeat to be sent immediately, and adjust the address's maximum 4256 * number of retransmissions sent before an address is considered 4257 * unreachable. The following structure is used to access and modify an 4258 * address's parameters: 4259 * 4260 * struct sctp_paddrparams { 4261 * sctp_assoc_t spp_assoc_id; 4262 * struct sockaddr_storage spp_address; 4263 * uint32_t spp_hbinterval; 4264 * uint16_t spp_pathmaxrxt; 4265 * uint32_t spp_pathmtu; 4266 * uint32_t spp_sackdelay; 4267 * uint32_t spp_flags; 4268 * }; 4269 * 4270 * spp_assoc_id - (one-to-many style socket) This is filled in the 4271 * application, and identifies the association for 4272 * this query. 4273 * spp_address - This specifies which address is of interest. 4274 * spp_hbinterval - This contains the value of the heartbeat interval, 4275 * in milliseconds. If a value of zero 4276 * is present in this field then no changes are to 4277 * be made to this parameter. 4278 * spp_pathmaxrxt - This contains the maximum number of 4279 * retransmissions before this address shall be 4280 * considered unreachable. If a value of zero 4281 * is present in this field then no changes are to 4282 * be made to this parameter. 4283 * spp_pathmtu - When Path MTU discovery is disabled the value 4284 * specified here will be the "fixed" path mtu. 4285 * Note that if the spp_address field is empty 4286 * then all associations on this address will 4287 * have this fixed path mtu set upon them. 4288 * 4289 * spp_sackdelay - When delayed sack is enabled, this value specifies 4290 * the number of milliseconds that sacks will be delayed 4291 * for. This value will apply to all addresses of an 4292 * association if the spp_address field is empty. Note 4293 * also, that if delayed sack is enabled and this 4294 * value is set to 0, no change is made to the last 4295 * recorded delayed sack timer value. 4296 * 4297 * spp_flags - These flags are used to control various features 4298 * on an association. The flag field may contain 4299 * zero or more of the following options. 4300 * 4301 * SPP_HB_ENABLE - Enable heartbeats on the 4302 * specified address. Note that if the address 4303 * field is empty all addresses for the association 4304 * have heartbeats enabled upon them. 4305 * 4306 * SPP_HB_DISABLE - Disable heartbeats on the 4307 * speicifed address. Note that if the address 4308 * field is empty all addresses for the association 4309 * will have their heartbeats disabled. Note also 4310 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4311 * mutually exclusive, only one of these two should 4312 * be specified. Enabling both fields will have 4313 * undetermined results. 4314 * 4315 * SPP_HB_DEMAND - Request a user initiated heartbeat 4316 * to be made immediately. 4317 * 4318 * SPP_PMTUD_ENABLE - This field will enable PMTU 4319 * discovery upon the specified address. Note that 4320 * if the address feild is empty then all addresses 4321 * on the association are effected. 4322 * 4323 * SPP_PMTUD_DISABLE - This field will disable PMTU 4324 * discovery upon the specified address. Note that 4325 * if the address feild is empty then all addresses 4326 * on the association are effected. Not also that 4327 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4328 * exclusive. Enabling both will have undetermined 4329 * results. 4330 * 4331 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4332 * on delayed sack. The time specified in spp_sackdelay 4333 * is used to specify the sack delay for this address. Note 4334 * that if spp_address is empty then all addresses will 4335 * enable delayed sack and take on the sack delay 4336 * value specified in spp_sackdelay. 4337 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4338 * off delayed sack. If the spp_address field is blank then 4339 * delayed sack is disabled for the entire association. Note 4340 * also that this field is mutually exclusive to 4341 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4342 * results. 4343 */ 4344 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4345 char __user *optval, int __user *optlen) 4346 { 4347 struct sctp_paddrparams params; 4348 struct sctp_transport *trans = NULL; 4349 struct sctp_association *asoc = NULL; 4350 struct sctp_sock *sp = sctp_sk(sk); 4351 4352 if (len < sizeof(struct sctp_paddrparams)) 4353 return -EINVAL; 4354 len = sizeof(struct sctp_paddrparams); 4355 if (copy_from_user(¶ms, optval, len)) 4356 return -EFAULT; 4357 4358 /* If an address other than INADDR_ANY is specified, and 4359 * no transport is found, then the request is invalid. 4360 */ 4361 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4362 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4363 params.spp_assoc_id); 4364 if (!trans) { 4365 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4366 return -EINVAL; 4367 } 4368 } 4369 4370 /* Get association, if assoc_id != 0 and the socket is a one 4371 * to many style socket, and an association was not found, then 4372 * the id was invalid. 4373 */ 4374 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4375 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4376 SCTP_DEBUG_PRINTK("Failed no association\n"); 4377 return -EINVAL; 4378 } 4379 4380 if (trans) { 4381 /* Fetch transport values. */ 4382 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4383 params.spp_pathmtu = trans->pathmtu; 4384 params.spp_pathmaxrxt = trans->pathmaxrxt; 4385 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4386 4387 /*draft-11 doesn't say what to return in spp_flags*/ 4388 params.spp_flags = trans->param_flags; 4389 } else if (asoc) { 4390 /* Fetch association values. */ 4391 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4392 params.spp_pathmtu = asoc->pathmtu; 4393 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4394 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4395 4396 /*draft-11 doesn't say what to return in spp_flags*/ 4397 params.spp_flags = asoc->param_flags; 4398 } else { 4399 /* Fetch socket values. */ 4400 params.spp_hbinterval = sp->hbinterval; 4401 params.spp_pathmtu = sp->pathmtu; 4402 params.spp_sackdelay = sp->sackdelay; 4403 params.spp_pathmaxrxt = sp->pathmaxrxt; 4404 4405 /*draft-11 doesn't say what to return in spp_flags*/ 4406 params.spp_flags = sp->param_flags; 4407 } 4408 4409 if (copy_to_user(optval, ¶ms, len)) 4410 return -EFAULT; 4411 4412 if (put_user(len, optlen)) 4413 return -EFAULT; 4414 4415 return 0; 4416 } 4417 4418 /* 4419 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4420 * 4421 * This option will effect the way delayed acks are performed. This 4422 * option allows you to get or set the delayed ack time, in 4423 * milliseconds. It also allows changing the delayed ack frequency. 4424 * Changing the frequency to 1 disables the delayed sack algorithm. If 4425 * the assoc_id is 0, then this sets or gets the endpoints default 4426 * values. If the assoc_id field is non-zero, then the set or get 4427 * effects the specified association for the one to many model (the 4428 * assoc_id field is ignored by the one to one model). Note that if 4429 * sack_delay or sack_freq are 0 when setting this option, then the 4430 * current values will remain unchanged. 4431 * 4432 * struct sctp_sack_info { 4433 * sctp_assoc_t sack_assoc_id; 4434 * uint32_t sack_delay; 4435 * uint32_t sack_freq; 4436 * }; 4437 * 4438 * sack_assoc_id - This parameter, indicates which association the user 4439 * is performing an action upon. Note that if this field's value is 4440 * zero then the endpoints default value is changed (effecting future 4441 * associations only). 4442 * 4443 * sack_delay - This parameter contains the number of milliseconds that 4444 * the user is requesting the delayed ACK timer be set to. Note that 4445 * this value is defined in the standard to be between 200 and 500 4446 * milliseconds. 4447 * 4448 * sack_freq - This parameter contains the number of packets that must 4449 * be received before a sack is sent without waiting for the delay 4450 * timer to expire. The default value for this is 2, setting this 4451 * value to 1 will disable the delayed sack algorithm. 4452 */ 4453 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4454 char __user *optval, 4455 int __user *optlen) 4456 { 4457 struct sctp_sack_info params; 4458 struct sctp_association *asoc = NULL; 4459 struct sctp_sock *sp = sctp_sk(sk); 4460 4461 if (len >= sizeof(struct sctp_sack_info)) { 4462 len = sizeof(struct sctp_sack_info); 4463 4464 if (copy_from_user(¶ms, optval, len)) 4465 return -EFAULT; 4466 } else if (len == sizeof(struct sctp_assoc_value)) { 4467 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4468 pr_warn("Use struct sctp_sack_info instead\n"); 4469 if (copy_from_user(¶ms, optval, len)) 4470 return -EFAULT; 4471 } else 4472 return - EINVAL; 4473 4474 /* Get association, if sack_assoc_id != 0 and the socket is a one 4475 * to many style socket, and an association was not found, then 4476 * the id was invalid. 4477 */ 4478 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4479 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4480 return -EINVAL; 4481 4482 if (asoc) { 4483 /* Fetch association values. */ 4484 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4485 params.sack_delay = jiffies_to_msecs( 4486 asoc->sackdelay); 4487 params.sack_freq = asoc->sackfreq; 4488 4489 } else { 4490 params.sack_delay = 0; 4491 params.sack_freq = 1; 4492 } 4493 } else { 4494 /* Fetch socket values. */ 4495 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4496 params.sack_delay = sp->sackdelay; 4497 params.sack_freq = sp->sackfreq; 4498 } else { 4499 params.sack_delay = 0; 4500 params.sack_freq = 1; 4501 } 4502 } 4503 4504 if (copy_to_user(optval, ¶ms, len)) 4505 return -EFAULT; 4506 4507 if (put_user(len, optlen)) 4508 return -EFAULT; 4509 4510 return 0; 4511 } 4512 4513 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4514 * 4515 * Applications can specify protocol parameters for the default association 4516 * initialization. The option name argument to setsockopt() and getsockopt() 4517 * is SCTP_INITMSG. 4518 * 4519 * Setting initialization parameters is effective only on an unconnected 4520 * socket (for UDP-style sockets only future associations are effected 4521 * by the change). With TCP-style sockets, this option is inherited by 4522 * sockets derived from a listener socket. 4523 */ 4524 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4525 { 4526 if (len < sizeof(struct sctp_initmsg)) 4527 return -EINVAL; 4528 len = sizeof(struct sctp_initmsg); 4529 if (put_user(len, optlen)) 4530 return -EFAULT; 4531 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4532 return -EFAULT; 4533 return 0; 4534 } 4535 4536 4537 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4538 char __user *optval, int __user *optlen) 4539 { 4540 struct sctp_association *asoc; 4541 int cnt = 0; 4542 struct sctp_getaddrs getaddrs; 4543 struct sctp_transport *from; 4544 void __user *to; 4545 union sctp_addr temp; 4546 struct sctp_sock *sp = sctp_sk(sk); 4547 int addrlen; 4548 size_t space_left; 4549 int bytes_copied; 4550 4551 if (len < sizeof(struct sctp_getaddrs)) 4552 return -EINVAL; 4553 4554 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4555 return -EFAULT; 4556 4557 /* For UDP-style sockets, id specifies the association to query. */ 4558 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4559 if (!asoc) 4560 return -EINVAL; 4561 4562 to = optval + offsetof(struct sctp_getaddrs,addrs); 4563 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4564 4565 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4566 transports) { 4567 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4568 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4569 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4570 if (space_left < addrlen) 4571 return -ENOMEM; 4572 if (copy_to_user(to, &temp, addrlen)) 4573 return -EFAULT; 4574 to += addrlen; 4575 cnt++; 4576 space_left -= addrlen; 4577 } 4578 4579 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4580 return -EFAULT; 4581 bytes_copied = ((char __user *)to) - optval; 4582 if (put_user(bytes_copied, optlen)) 4583 return -EFAULT; 4584 4585 return 0; 4586 } 4587 4588 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4589 size_t space_left, int *bytes_copied) 4590 { 4591 struct sctp_sockaddr_entry *addr; 4592 union sctp_addr temp; 4593 int cnt = 0; 4594 int addrlen; 4595 4596 rcu_read_lock(); 4597 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4598 if (!addr->valid) 4599 continue; 4600 4601 if ((PF_INET == sk->sk_family) && 4602 (AF_INET6 == addr->a.sa.sa_family)) 4603 continue; 4604 if ((PF_INET6 == sk->sk_family) && 4605 inet_v6_ipv6only(sk) && 4606 (AF_INET == addr->a.sa.sa_family)) 4607 continue; 4608 memcpy(&temp, &addr->a, sizeof(temp)); 4609 if (!temp.v4.sin_port) 4610 temp.v4.sin_port = htons(port); 4611 4612 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4613 &temp); 4614 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4615 if (space_left < addrlen) { 4616 cnt = -ENOMEM; 4617 break; 4618 } 4619 memcpy(to, &temp, addrlen); 4620 4621 to += addrlen; 4622 cnt ++; 4623 space_left -= addrlen; 4624 *bytes_copied += addrlen; 4625 } 4626 rcu_read_unlock(); 4627 4628 return cnt; 4629 } 4630 4631 4632 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4633 char __user *optval, int __user *optlen) 4634 { 4635 struct sctp_bind_addr *bp; 4636 struct sctp_association *asoc; 4637 int cnt = 0; 4638 struct sctp_getaddrs getaddrs; 4639 struct sctp_sockaddr_entry *addr; 4640 void __user *to; 4641 union sctp_addr temp; 4642 struct sctp_sock *sp = sctp_sk(sk); 4643 int addrlen; 4644 int err = 0; 4645 size_t space_left; 4646 int bytes_copied = 0; 4647 void *addrs; 4648 void *buf; 4649 4650 if (len < sizeof(struct sctp_getaddrs)) 4651 return -EINVAL; 4652 4653 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4654 return -EFAULT; 4655 4656 /* 4657 * For UDP-style sockets, id specifies the association to query. 4658 * If the id field is set to the value '0' then the locally bound 4659 * addresses are returned without regard to any particular 4660 * association. 4661 */ 4662 if (0 == getaddrs.assoc_id) { 4663 bp = &sctp_sk(sk)->ep->base.bind_addr; 4664 } else { 4665 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4666 if (!asoc) 4667 return -EINVAL; 4668 bp = &asoc->base.bind_addr; 4669 } 4670 4671 to = optval + offsetof(struct sctp_getaddrs,addrs); 4672 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4673 4674 addrs = kmalloc(space_left, GFP_KERNEL); 4675 if (!addrs) 4676 return -ENOMEM; 4677 4678 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4679 * addresses from the global local address list. 4680 */ 4681 if (sctp_list_single_entry(&bp->address_list)) { 4682 addr = list_entry(bp->address_list.next, 4683 struct sctp_sockaddr_entry, list); 4684 if (sctp_is_any(sk, &addr->a)) { 4685 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4686 space_left, &bytes_copied); 4687 if (cnt < 0) { 4688 err = cnt; 4689 goto out; 4690 } 4691 goto copy_getaddrs; 4692 } 4693 } 4694 4695 buf = addrs; 4696 /* Protection on the bound address list is not needed since 4697 * in the socket option context we hold a socket lock and 4698 * thus the bound address list can't change. 4699 */ 4700 list_for_each_entry(addr, &bp->address_list, list) { 4701 memcpy(&temp, &addr->a, sizeof(temp)); 4702 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4703 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4704 if (space_left < addrlen) { 4705 err = -ENOMEM; /*fixme: right error?*/ 4706 goto out; 4707 } 4708 memcpy(buf, &temp, addrlen); 4709 buf += addrlen; 4710 bytes_copied += addrlen; 4711 cnt ++; 4712 space_left -= addrlen; 4713 } 4714 4715 copy_getaddrs: 4716 if (copy_to_user(to, addrs, bytes_copied)) { 4717 err = -EFAULT; 4718 goto out; 4719 } 4720 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4721 err = -EFAULT; 4722 goto out; 4723 } 4724 if (put_user(bytes_copied, optlen)) 4725 err = -EFAULT; 4726 out: 4727 kfree(addrs); 4728 return err; 4729 } 4730 4731 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4732 * 4733 * Requests that the local SCTP stack use the enclosed peer address as 4734 * the association primary. The enclosed address must be one of the 4735 * association peer's addresses. 4736 */ 4737 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4738 char __user *optval, int __user *optlen) 4739 { 4740 struct sctp_prim prim; 4741 struct sctp_association *asoc; 4742 struct sctp_sock *sp = sctp_sk(sk); 4743 4744 if (len < sizeof(struct sctp_prim)) 4745 return -EINVAL; 4746 4747 len = sizeof(struct sctp_prim); 4748 4749 if (copy_from_user(&prim, optval, len)) 4750 return -EFAULT; 4751 4752 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4753 if (!asoc) 4754 return -EINVAL; 4755 4756 if (!asoc->peer.primary_path) 4757 return -ENOTCONN; 4758 4759 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4760 asoc->peer.primary_path->af_specific->sockaddr_len); 4761 4762 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4763 (union sctp_addr *)&prim.ssp_addr); 4764 4765 if (put_user(len, optlen)) 4766 return -EFAULT; 4767 if (copy_to_user(optval, &prim, len)) 4768 return -EFAULT; 4769 4770 return 0; 4771 } 4772 4773 /* 4774 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4775 * 4776 * Requests that the local endpoint set the specified Adaptation Layer 4777 * Indication parameter for all future INIT and INIT-ACK exchanges. 4778 */ 4779 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4780 char __user *optval, int __user *optlen) 4781 { 4782 struct sctp_setadaptation adaptation; 4783 4784 if (len < sizeof(struct sctp_setadaptation)) 4785 return -EINVAL; 4786 4787 len = sizeof(struct sctp_setadaptation); 4788 4789 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4790 4791 if (put_user(len, optlen)) 4792 return -EFAULT; 4793 if (copy_to_user(optval, &adaptation, len)) 4794 return -EFAULT; 4795 4796 return 0; 4797 } 4798 4799 /* 4800 * 4801 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4802 * 4803 * Applications that wish to use the sendto() system call may wish to 4804 * specify a default set of parameters that would normally be supplied 4805 * through the inclusion of ancillary data. This socket option allows 4806 * such an application to set the default sctp_sndrcvinfo structure. 4807 4808 4809 * The application that wishes to use this socket option simply passes 4810 * in to this call the sctp_sndrcvinfo structure defined in Section 4811 * 5.2.2) The input parameters accepted by this call include 4812 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4813 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4814 * to this call if the caller is using the UDP model. 4815 * 4816 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4817 */ 4818 static int sctp_getsockopt_default_send_param(struct sock *sk, 4819 int len, char __user *optval, 4820 int __user *optlen) 4821 { 4822 struct sctp_sndrcvinfo info; 4823 struct sctp_association *asoc; 4824 struct sctp_sock *sp = sctp_sk(sk); 4825 4826 if (len < sizeof(struct sctp_sndrcvinfo)) 4827 return -EINVAL; 4828 4829 len = sizeof(struct sctp_sndrcvinfo); 4830 4831 if (copy_from_user(&info, optval, len)) 4832 return -EFAULT; 4833 4834 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4835 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4836 return -EINVAL; 4837 4838 if (asoc) { 4839 info.sinfo_stream = asoc->default_stream; 4840 info.sinfo_flags = asoc->default_flags; 4841 info.sinfo_ppid = asoc->default_ppid; 4842 info.sinfo_context = asoc->default_context; 4843 info.sinfo_timetolive = asoc->default_timetolive; 4844 } else { 4845 info.sinfo_stream = sp->default_stream; 4846 info.sinfo_flags = sp->default_flags; 4847 info.sinfo_ppid = sp->default_ppid; 4848 info.sinfo_context = sp->default_context; 4849 info.sinfo_timetolive = sp->default_timetolive; 4850 } 4851 4852 if (put_user(len, optlen)) 4853 return -EFAULT; 4854 if (copy_to_user(optval, &info, len)) 4855 return -EFAULT; 4856 4857 return 0; 4858 } 4859 4860 /* 4861 * 4862 * 7.1.5 SCTP_NODELAY 4863 * 4864 * Turn on/off any Nagle-like algorithm. This means that packets are 4865 * generally sent as soon as possible and no unnecessary delays are 4866 * introduced, at the cost of more packets in the network. Expects an 4867 * integer boolean flag. 4868 */ 4869 4870 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4871 char __user *optval, int __user *optlen) 4872 { 4873 int val; 4874 4875 if (len < sizeof(int)) 4876 return -EINVAL; 4877 4878 len = sizeof(int); 4879 val = (sctp_sk(sk)->nodelay == 1); 4880 if (put_user(len, optlen)) 4881 return -EFAULT; 4882 if (copy_to_user(optval, &val, len)) 4883 return -EFAULT; 4884 return 0; 4885 } 4886 4887 /* 4888 * 4889 * 7.1.1 SCTP_RTOINFO 4890 * 4891 * The protocol parameters used to initialize and bound retransmission 4892 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4893 * and modify these parameters. 4894 * All parameters are time values, in milliseconds. A value of 0, when 4895 * modifying the parameters, indicates that the current value should not 4896 * be changed. 4897 * 4898 */ 4899 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4900 char __user *optval, 4901 int __user *optlen) { 4902 struct sctp_rtoinfo rtoinfo; 4903 struct sctp_association *asoc; 4904 4905 if (len < sizeof (struct sctp_rtoinfo)) 4906 return -EINVAL; 4907 4908 len = sizeof(struct sctp_rtoinfo); 4909 4910 if (copy_from_user(&rtoinfo, optval, len)) 4911 return -EFAULT; 4912 4913 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4914 4915 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4916 return -EINVAL; 4917 4918 /* Values corresponding to the specific association. */ 4919 if (asoc) { 4920 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4921 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4922 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4923 } else { 4924 /* Values corresponding to the endpoint. */ 4925 struct sctp_sock *sp = sctp_sk(sk); 4926 4927 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4928 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4929 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4930 } 4931 4932 if (put_user(len, optlen)) 4933 return -EFAULT; 4934 4935 if (copy_to_user(optval, &rtoinfo, len)) 4936 return -EFAULT; 4937 4938 return 0; 4939 } 4940 4941 /* 4942 * 4943 * 7.1.2 SCTP_ASSOCINFO 4944 * 4945 * This option is used to tune the maximum retransmission attempts 4946 * of the association. 4947 * Returns an error if the new association retransmission value is 4948 * greater than the sum of the retransmission value of the peer. 4949 * See [SCTP] for more information. 4950 * 4951 */ 4952 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4953 char __user *optval, 4954 int __user *optlen) 4955 { 4956 4957 struct sctp_assocparams assocparams; 4958 struct sctp_association *asoc; 4959 struct list_head *pos; 4960 int cnt = 0; 4961 4962 if (len < sizeof (struct sctp_assocparams)) 4963 return -EINVAL; 4964 4965 len = sizeof(struct sctp_assocparams); 4966 4967 if (copy_from_user(&assocparams, optval, len)) 4968 return -EFAULT; 4969 4970 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4971 4972 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4973 return -EINVAL; 4974 4975 /* Values correspoinding to the specific association */ 4976 if (asoc) { 4977 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4978 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4979 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4980 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4981 * 1000) + 4982 (asoc->cookie_life.tv_usec 4983 / 1000); 4984 4985 list_for_each(pos, &asoc->peer.transport_addr_list) { 4986 cnt ++; 4987 } 4988 4989 assocparams.sasoc_number_peer_destinations = cnt; 4990 } else { 4991 /* Values corresponding to the endpoint */ 4992 struct sctp_sock *sp = sctp_sk(sk); 4993 4994 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4995 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4996 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4997 assocparams.sasoc_cookie_life = 4998 sp->assocparams.sasoc_cookie_life; 4999 assocparams.sasoc_number_peer_destinations = 5000 sp->assocparams. 5001 sasoc_number_peer_destinations; 5002 } 5003 5004 if (put_user(len, optlen)) 5005 return -EFAULT; 5006 5007 if (copy_to_user(optval, &assocparams, len)) 5008 return -EFAULT; 5009 5010 return 0; 5011 } 5012 5013 /* 5014 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5015 * 5016 * This socket option is a boolean flag which turns on or off mapped V4 5017 * addresses. If this option is turned on and the socket is type 5018 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5019 * If this option is turned off, then no mapping will be done of V4 5020 * addresses and a user will receive both PF_INET6 and PF_INET type 5021 * addresses on the socket. 5022 */ 5023 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5024 char __user *optval, int __user *optlen) 5025 { 5026 int val; 5027 struct sctp_sock *sp = sctp_sk(sk); 5028 5029 if (len < sizeof(int)) 5030 return -EINVAL; 5031 5032 len = sizeof(int); 5033 val = sp->v4mapped; 5034 if (put_user(len, optlen)) 5035 return -EFAULT; 5036 if (copy_to_user(optval, &val, len)) 5037 return -EFAULT; 5038 5039 return 0; 5040 } 5041 5042 /* 5043 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5044 * (chapter and verse is quoted at sctp_setsockopt_context()) 5045 */ 5046 static int sctp_getsockopt_context(struct sock *sk, int len, 5047 char __user *optval, int __user *optlen) 5048 { 5049 struct sctp_assoc_value params; 5050 struct sctp_sock *sp; 5051 struct sctp_association *asoc; 5052 5053 if (len < sizeof(struct sctp_assoc_value)) 5054 return -EINVAL; 5055 5056 len = sizeof(struct sctp_assoc_value); 5057 5058 if (copy_from_user(¶ms, optval, len)) 5059 return -EFAULT; 5060 5061 sp = sctp_sk(sk); 5062 5063 if (params.assoc_id != 0) { 5064 asoc = sctp_id2assoc(sk, params.assoc_id); 5065 if (!asoc) 5066 return -EINVAL; 5067 params.assoc_value = asoc->default_rcv_context; 5068 } else { 5069 params.assoc_value = sp->default_rcv_context; 5070 } 5071 5072 if (put_user(len, optlen)) 5073 return -EFAULT; 5074 if (copy_to_user(optval, ¶ms, len)) 5075 return -EFAULT; 5076 5077 return 0; 5078 } 5079 5080 /* 5081 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5082 * This option will get or set the maximum size to put in any outgoing 5083 * SCTP DATA chunk. If a message is larger than this size it will be 5084 * fragmented by SCTP into the specified size. Note that the underlying 5085 * SCTP implementation may fragment into smaller sized chunks when the 5086 * PMTU of the underlying association is smaller than the value set by 5087 * the user. The default value for this option is '0' which indicates 5088 * the user is NOT limiting fragmentation and only the PMTU will effect 5089 * SCTP's choice of DATA chunk size. Note also that values set larger 5090 * than the maximum size of an IP datagram will effectively let SCTP 5091 * control fragmentation (i.e. the same as setting this option to 0). 5092 * 5093 * The following structure is used to access and modify this parameter: 5094 * 5095 * struct sctp_assoc_value { 5096 * sctp_assoc_t assoc_id; 5097 * uint32_t assoc_value; 5098 * }; 5099 * 5100 * assoc_id: This parameter is ignored for one-to-one style sockets. 5101 * For one-to-many style sockets this parameter indicates which 5102 * association the user is performing an action upon. Note that if 5103 * this field's value is zero then the endpoints default value is 5104 * changed (effecting future associations only). 5105 * assoc_value: This parameter specifies the maximum size in bytes. 5106 */ 5107 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5108 char __user *optval, int __user *optlen) 5109 { 5110 struct sctp_assoc_value params; 5111 struct sctp_association *asoc; 5112 5113 if (len == sizeof(int)) { 5114 pr_warn("Use of int in maxseg socket option deprecated\n"); 5115 pr_warn("Use struct sctp_assoc_value instead\n"); 5116 params.assoc_id = 0; 5117 } else if (len >= sizeof(struct sctp_assoc_value)) { 5118 len = sizeof(struct sctp_assoc_value); 5119 if (copy_from_user(¶ms, optval, sizeof(params))) 5120 return -EFAULT; 5121 } else 5122 return -EINVAL; 5123 5124 asoc = sctp_id2assoc(sk, params.assoc_id); 5125 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5126 return -EINVAL; 5127 5128 if (asoc) 5129 params.assoc_value = asoc->frag_point; 5130 else 5131 params.assoc_value = sctp_sk(sk)->user_frag; 5132 5133 if (put_user(len, optlen)) 5134 return -EFAULT; 5135 if (len == sizeof(int)) { 5136 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5137 return -EFAULT; 5138 } else { 5139 if (copy_to_user(optval, ¶ms, len)) 5140 return -EFAULT; 5141 } 5142 5143 return 0; 5144 } 5145 5146 /* 5147 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5148 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5149 */ 5150 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5151 char __user *optval, int __user *optlen) 5152 { 5153 int val; 5154 5155 if (len < sizeof(int)) 5156 return -EINVAL; 5157 5158 len = sizeof(int); 5159 5160 val = sctp_sk(sk)->frag_interleave; 5161 if (put_user(len, optlen)) 5162 return -EFAULT; 5163 if (copy_to_user(optval, &val, len)) 5164 return -EFAULT; 5165 5166 return 0; 5167 } 5168 5169 /* 5170 * 7.1.25. Set or Get the sctp partial delivery point 5171 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5172 */ 5173 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5174 char __user *optval, 5175 int __user *optlen) 5176 { 5177 u32 val; 5178 5179 if (len < sizeof(u32)) 5180 return -EINVAL; 5181 5182 len = sizeof(u32); 5183 5184 val = sctp_sk(sk)->pd_point; 5185 if (put_user(len, optlen)) 5186 return -EFAULT; 5187 if (copy_to_user(optval, &val, len)) 5188 return -EFAULT; 5189 5190 return 0; 5191 } 5192 5193 /* 5194 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5195 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5196 */ 5197 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5198 char __user *optval, 5199 int __user *optlen) 5200 { 5201 struct sctp_assoc_value params; 5202 struct sctp_sock *sp; 5203 struct sctp_association *asoc; 5204 5205 if (len == sizeof(int)) { 5206 pr_warn("Use of int in max_burst socket option deprecated\n"); 5207 pr_warn("Use struct sctp_assoc_value instead\n"); 5208 params.assoc_id = 0; 5209 } else if (len >= sizeof(struct sctp_assoc_value)) { 5210 len = sizeof(struct sctp_assoc_value); 5211 if (copy_from_user(¶ms, optval, len)) 5212 return -EFAULT; 5213 } else 5214 return -EINVAL; 5215 5216 sp = sctp_sk(sk); 5217 5218 if (params.assoc_id != 0) { 5219 asoc = sctp_id2assoc(sk, params.assoc_id); 5220 if (!asoc) 5221 return -EINVAL; 5222 params.assoc_value = asoc->max_burst; 5223 } else 5224 params.assoc_value = sp->max_burst; 5225 5226 if (len == sizeof(int)) { 5227 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5228 return -EFAULT; 5229 } else { 5230 if (copy_to_user(optval, ¶ms, len)) 5231 return -EFAULT; 5232 } 5233 5234 return 0; 5235 5236 } 5237 5238 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5239 char __user *optval, int __user *optlen) 5240 { 5241 struct sctp_hmacalgo __user *p = (void __user *)optval; 5242 struct sctp_hmac_algo_param *hmacs; 5243 __u16 data_len = 0; 5244 u32 num_idents; 5245 5246 if (!sctp_auth_enable) 5247 return -EACCES; 5248 5249 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5250 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5251 5252 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5253 return -EINVAL; 5254 5255 len = sizeof(struct sctp_hmacalgo) + data_len; 5256 num_idents = data_len / sizeof(u16); 5257 5258 if (put_user(len, optlen)) 5259 return -EFAULT; 5260 if (put_user(num_idents, &p->shmac_num_idents)) 5261 return -EFAULT; 5262 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5263 return -EFAULT; 5264 return 0; 5265 } 5266 5267 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5268 char __user *optval, int __user *optlen) 5269 { 5270 struct sctp_authkeyid val; 5271 struct sctp_association *asoc; 5272 5273 if (!sctp_auth_enable) 5274 return -EACCES; 5275 5276 if (len < sizeof(struct sctp_authkeyid)) 5277 return -EINVAL; 5278 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5279 return -EFAULT; 5280 5281 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5282 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5283 return -EINVAL; 5284 5285 if (asoc) 5286 val.scact_keynumber = asoc->active_key_id; 5287 else 5288 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5289 5290 len = sizeof(struct sctp_authkeyid); 5291 if (put_user(len, optlen)) 5292 return -EFAULT; 5293 if (copy_to_user(optval, &val, len)) 5294 return -EFAULT; 5295 5296 return 0; 5297 } 5298 5299 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5300 char __user *optval, int __user *optlen) 5301 { 5302 struct sctp_authchunks __user *p = (void __user *)optval; 5303 struct sctp_authchunks val; 5304 struct sctp_association *asoc; 5305 struct sctp_chunks_param *ch; 5306 u32 num_chunks = 0; 5307 char __user *to; 5308 5309 if (!sctp_auth_enable) 5310 return -EACCES; 5311 5312 if (len < sizeof(struct sctp_authchunks)) 5313 return -EINVAL; 5314 5315 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5316 return -EFAULT; 5317 5318 to = p->gauth_chunks; 5319 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5320 if (!asoc) 5321 return -EINVAL; 5322 5323 ch = asoc->peer.peer_chunks; 5324 if (!ch) 5325 goto num; 5326 5327 /* See if the user provided enough room for all the data */ 5328 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5329 if (len < num_chunks) 5330 return -EINVAL; 5331 5332 if (copy_to_user(to, ch->chunks, num_chunks)) 5333 return -EFAULT; 5334 num: 5335 len = sizeof(struct sctp_authchunks) + num_chunks; 5336 if (put_user(len, optlen)) return -EFAULT; 5337 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5338 return -EFAULT; 5339 return 0; 5340 } 5341 5342 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5343 char __user *optval, int __user *optlen) 5344 { 5345 struct sctp_authchunks __user *p = (void __user *)optval; 5346 struct sctp_authchunks val; 5347 struct sctp_association *asoc; 5348 struct sctp_chunks_param *ch; 5349 u32 num_chunks = 0; 5350 char __user *to; 5351 5352 if (!sctp_auth_enable) 5353 return -EACCES; 5354 5355 if (len < sizeof(struct sctp_authchunks)) 5356 return -EINVAL; 5357 5358 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5359 return -EFAULT; 5360 5361 to = p->gauth_chunks; 5362 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5363 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5364 return -EINVAL; 5365 5366 if (asoc) 5367 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5368 else 5369 ch = sctp_sk(sk)->ep->auth_chunk_list; 5370 5371 if (!ch) 5372 goto num; 5373 5374 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5375 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5376 return -EINVAL; 5377 5378 if (copy_to_user(to, ch->chunks, num_chunks)) 5379 return -EFAULT; 5380 num: 5381 len = sizeof(struct sctp_authchunks) + num_chunks; 5382 if (put_user(len, optlen)) 5383 return -EFAULT; 5384 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5385 return -EFAULT; 5386 5387 return 0; 5388 } 5389 5390 /* 5391 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5392 * This option gets the current number of associations that are attached 5393 * to a one-to-many style socket. The option value is an uint32_t. 5394 */ 5395 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5396 char __user *optval, int __user *optlen) 5397 { 5398 struct sctp_sock *sp = sctp_sk(sk); 5399 struct sctp_association *asoc; 5400 u32 val = 0; 5401 5402 if (sctp_style(sk, TCP)) 5403 return -EOPNOTSUPP; 5404 5405 if (len < sizeof(u32)) 5406 return -EINVAL; 5407 5408 len = sizeof(u32); 5409 5410 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5411 val++; 5412 } 5413 5414 if (put_user(len, optlen)) 5415 return -EFAULT; 5416 if (copy_to_user(optval, &val, len)) 5417 return -EFAULT; 5418 5419 return 0; 5420 } 5421 5422 /* 5423 * 8.1.23 SCTP_AUTO_ASCONF 5424 * See the corresponding setsockopt entry as description 5425 */ 5426 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5427 char __user *optval, int __user *optlen) 5428 { 5429 int val = 0; 5430 5431 if (len < sizeof(int)) 5432 return -EINVAL; 5433 5434 len = sizeof(int); 5435 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5436 val = 1; 5437 if (put_user(len, optlen)) 5438 return -EFAULT; 5439 if (copy_to_user(optval, &val, len)) 5440 return -EFAULT; 5441 return 0; 5442 } 5443 5444 /* 5445 * 8.2.6. Get the Current Identifiers of Associations 5446 * (SCTP_GET_ASSOC_ID_LIST) 5447 * 5448 * This option gets the current list of SCTP association identifiers of 5449 * the SCTP associations handled by a one-to-many style socket. 5450 */ 5451 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5452 char __user *optval, int __user *optlen) 5453 { 5454 struct sctp_sock *sp = sctp_sk(sk); 5455 struct sctp_association *asoc; 5456 struct sctp_assoc_ids *ids; 5457 u32 num = 0; 5458 5459 if (sctp_style(sk, TCP)) 5460 return -EOPNOTSUPP; 5461 5462 if (len < sizeof(struct sctp_assoc_ids)) 5463 return -EINVAL; 5464 5465 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5466 num++; 5467 } 5468 5469 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5470 return -EINVAL; 5471 5472 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5473 5474 ids = kmalloc(len, GFP_KERNEL); 5475 if (unlikely(!ids)) 5476 return -ENOMEM; 5477 5478 ids->gaids_number_of_ids = num; 5479 num = 0; 5480 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5481 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5482 } 5483 5484 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5485 kfree(ids); 5486 return -EFAULT; 5487 } 5488 5489 kfree(ids); 5490 return 0; 5491 } 5492 5493 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5494 char __user *optval, int __user *optlen) 5495 { 5496 int retval = 0; 5497 int len; 5498 5499 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5500 sk, optname); 5501 5502 /* I can hardly begin to describe how wrong this is. This is 5503 * so broken as to be worse than useless. The API draft 5504 * REALLY is NOT helpful here... I am not convinced that the 5505 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5506 * are at all well-founded. 5507 */ 5508 if (level != SOL_SCTP) { 5509 struct sctp_af *af = sctp_sk(sk)->pf->af; 5510 5511 retval = af->getsockopt(sk, level, optname, optval, optlen); 5512 return retval; 5513 } 5514 5515 if (get_user(len, optlen)) 5516 return -EFAULT; 5517 5518 sctp_lock_sock(sk); 5519 5520 switch (optname) { 5521 case SCTP_STATUS: 5522 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5523 break; 5524 case SCTP_DISABLE_FRAGMENTS: 5525 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5526 optlen); 5527 break; 5528 case SCTP_EVENTS: 5529 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5530 break; 5531 case SCTP_AUTOCLOSE: 5532 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5533 break; 5534 case SCTP_SOCKOPT_PEELOFF: 5535 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5536 break; 5537 case SCTP_PEER_ADDR_PARAMS: 5538 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5539 optlen); 5540 break; 5541 case SCTP_DELAYED_SACK: 5542 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5543 optlen); 5544 break; 5545 case SCTP_INITMSG: 5546 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5547 break; 5548 case SCTP_GET_PEER_ADDRS: 5549 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5550 optlen); 5551 break; 5552 case SCTP_GET_LOCAL_ADDRS: 5553 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5554 optlen); 5555 break; 5556 case SCTP_SOCKOPT_CONNECTX3: 5557 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5558 break; 5559 case SCTP_DEFAULT_SEND_PARAM: 5560 retval = sctp_getsockopt_default_send_param(sk, len, 5561 optval, optlen); 5562 break; 5563 case SCTP_PRIMARY_ADDR: 5564 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5565 break; 5566 case SCTP_NODELAY: 5567 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5568 break; 5569 case SCTP_RTOINFO: 5570 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5571 break; 5572 case SCTP_ASSOCINFO: 5573 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5574 break; 5575 case SCTP_I_WANT_MAPPED_V4_ADDR: 5576 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5577 break; 5578 case SCTP_MAXSEG: 5579 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5580 break; 5581 case SCTP_GET_PEER_ADDR_INFO: 5582 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5583 optlen); 5584 break; 5585 case SCTP_ADAPTATION_LAYER: 5586 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5587 optlen); 5588 break; 5589 case SCTP_CONTEXT: 5590 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5591 break; 5592 case SCTP_FRAGMENT_INTERLEAVE: 5593 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5594 optlen); 5595 break; 5596 case SCTP_PARTIAL_DELIVERY_POINT: 5597 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5598 optlen); 5599 break; 5600 case SCTP_MAX_BURST: 5601 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5602 break; 5603 case SCTP_AUTH_KEY: 5604 case SCTP_AUTH_CHUNK: 5605 case SCTP_AUTH_DELETE_KEY: 5606 retval = -EOPNOTSUPP; 5607 break; 5608 case SCTP_HMAC_IDENT: 5609 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5610 break; 5611 case SCTP_AUTH_ACTIVE_KEY: 5612 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5613 break; 5614 case SCTP_PEER_AUTH_CHUNKS: 5615 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5616 optlen); 5617 break; 5618 case SCTP_LOCAL_AUTH_CHUNKS: 5619 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5620 optlen); 5621 break; 5622 case SCTP_GET_ASSOC_NUMBER: 5623 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5624 break; 5625 case SCTP_GET_ASSOC_ID_LIST: 5626 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5627 break; 5628 case SCTP_AUTO_ASCONF: 5629 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5630 break; 5631 default: 5632 retval = -ENOPROTOOPT; 5633 break; 5634 } 5635 5636 sctp_release_sock(sk); 5637 return retval; 5638 } 5639 5640 static void sctp_hash(struct sock *sk) 5641 { 5642 /* STUB */ 5643 } 5644 5645 static void sctp_unhash(struct sock *sk) 5646 { 5647 /* STUB */ 5648 } 5649 5650 /* Check if port is acceptable. Possibly find first available port. 5651 * 5652 * The port hash table (contained in the 'global' SCTP protocol storage 5653 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5654 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5655 * list (the list number is the port number hashed out, so as you 5656 * would expect from a hash function, all the ports in a given list have 5657 * such a number that hashes out to the same list number; you were 5658 * expecting that, right?); so each list has a set of ports, with a 5659 * link to the socket (struct sock) that uses it, the port number and 5660 * a fastreuse flag (FIXME: NPI ipg). 5661 */ 5662 static struct sctp_bind_bucket *sctp_bucket_create( 5663 struct sctp_bind_hashbucket *head, unsigned short snum); 5664 5665 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5666 { 5667 struct sctp_bind_hashbucket *head; /* hash list */ 5668 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5669 struct hlist_node *node; 5670 unsigned short snum; 5671 int ret; 5672 5673 snum = ntohs(addr->v4.sin_port); 5674 5675 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5676 sctp_local_bh_disable(); 5677 5678 if (snum == 0) { 5679 /* Search for an available port. */ 5680 int low, high, remaining, index; 5681 unsigned int rover; 5682 5683 inet_get_local_port_range(&low, &high); 5684 remaining = (high - low) + 1; 5685 rover = net_random() % remaining + low; 5686 5687 do { 5688 rover++; 5689 if ((rover < low) || (rover > high)) 5690 rover = low; 5691 if (inet_is_reserved_local_port(rover)) 5692 continue; 5693 index = sctp_phashfn(rover); 5694 head = &sctp_port_hashtable[index]; 5695 sctp_spin_lock(&head->lock); 5696 sctp_for_each_hentry(pp, node, &head->chain) 5697 if (pp->port == rover) 5698 goto next; 5699 break; 5700 next: 5701 sctp_spin_unlock(&head->lock); 5702 } while (--remaining > 0); 5703 5704 /* Exhausted local port range during search? */ 5705 ret = 1; 5706 if (remaining <= 0) 5707 goto fail; 5708 5709 /* OK, here is the one we will use. HEAD (the port 5710 * hash table list entry) is non-NULL and we hold it's 5711 * mutex. 5712 */ 5713 snum = rover; 5714 } else { 5715 /* We are given an specific port number; we verify 5716 * that it is not being used. If it is used, we will 5717 * exahust the search in the hash list corresponding 5718 * to the port number (snum) - we detect that with the 5719 * port iterator, pp being NULL. 5720 */ 5721 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5722 sctp_spin_lock(&head->lock); 5723 sctp_for_each_hentry(pp, node, &head->chain) { 5724 if (pp->port == snum) 5725 goto pp_found; 5726 } 5727 } 5728 pp = NULL; 5729 goto pp_not_found; 5730 pp_found: 5731 if (!hlist_empty(&pp->owner)) { 5732 /* We had a port hash table hit - there is an 5733 * available port (pp != NULL) and it is being 5734 * used by other socket (pp->owner not empty); that other 5735 * socket is going to be sk2. 5736 */ 5737 int reuse = sk->sk_reuse; 5738 struct sock *sk2; 5739 5740 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5741 if (pp->fastreuse && sk->sk_reuse && 5742 sk->sk_state != SCTP_SS_LISTENING) 5743 goto success; 5744 5745 /* Run through the list of sockets bound to the port 5746 * (pp->port) [via the pointers bind_next and 5747 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5748 * we get the endpoint they describe and run through 5749 * the endpoint's list of IP (v4 or v6) addresses, 5750 * comparing each of the addresses with the address of 5751 * the socket sk. If we find a match, then that means 5752 * that this port/socket (sk) combination are already 5753 * in an endpoint. 5754 */ 5755 sk_for_each_bound(sk2, node, &pp->owner) { 5756 struct sctp_endpoint *ep2; 5757 ep2 = sctp_sk(sk2)->ep; 5758 5759 if (sk == sk2 || 5760 (reuse && sk2->sk_reuse && 5761 sk2->sk_state != SCTP_SS_LISTENING)) 5762 continue; 5763 5764 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5765 sctp_sk(sk2), sctp_sk(sk))) { 5766 ret = (long)sk2; 5767 goto fail_unlock; 5768 } 5769 } 5770 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5771 } 5772 pp_not_found: 5773 /* If there was a hash table miss, create a new port. */ 5774 ret = 1; 5775 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5776 goto fail_unlock; 5777 5778 /* In either case (hit or miss), make sure fastreuse is 1 only 5779 * if sk->sk_reuse is too (that is, if the caller requested 5780 * SO_REUSEADDR on this socket -sk-). 5781 */ 5782 if (hlist_empty(&pp->owner)) { 5783 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5784 pp->fastreuse = 1; 5785 else 5786 pp->fastreuse = 0; 5787 } else if (pp->fastreuse && 5788 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5789 pp->fastreuse = 0; 5790 5791 /* We are set, so fill up all the data in the hash table 5792 * entry, tie the socket list information with the rest of the 5793 * sockets FIXME: Blurry, NPI (ipg). 5794 */ 5795 success: 5796 if (!sctp_sk(sk)->bind_hash) { 5797 inet_sk(sk)->inet_num = snum; 5798 sk_add_bind_node(sk, &pp->owner); 5799 sctp_sk(sk)->bind_hash = pp; 5800 } 5801 ret = 0; 5802 5803 fail_unlock: 5804 sctp_spin_unlock(&head->lock); 5805 5806 fail: 5807 sctp_local_bh_enable(); 5808 return ret; 5809 } 5810 5811 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5812 * port is requested. 5813 */ 5814 static int sctp_get_port(struct sock *sk, unsigned short snum) 5815 { 5816 long ret; 5817 union sctp_addr addr; 5818 struct sctp_af *af = sctp_sk(sk)->pf->af; 5819 5820 /* Set up a dummy address struct from the sk. */ 5821 af->from_sk(&addr, sk); 5822 addr.v4.sin_port = htons(snum); 5823 5824 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5825 ret = sctp_get_port_local(sk, &addr); 5826 5827 return ret ? 1 : 0; 5828 } 5829 5830 /* 5831 * Move a socket to LISTENING state. 5832 */ 5833 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5834 { 5835 struct sctp_sock *sp = sctp_sk(sk); 5836 struct sctp_endpoint *ep = sp->ep; 5837 struct crypto_hash *tfm = NULL; 5838 5839 /* Allocate HMAC for generating cookie. */ 5840 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5841 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5842 if (IS_ERR(tfm)) { 5843 if (net_ratelimit()) { 5844 pr_info("failed to load transform for %s: %ld\n", 5845 sctp_hmac_alg, PTR_ERR(tfm)); 5846 } 5847 return -ENOSYS; 5848 } 5849 sctp_sk(sk)->hmac = tfm; 5850 } 5851 5852 /* 5853 * If a bind() or sctp_bindx() is not called prior to a listen() 5854 * call that allows new associations to be accepted, the system 5855 * picks an ephemeral port and will choose an address set equivalent 5856 * to binding with a wildcard address. 5857 * 5858 * This is not currently spelled out in the SCTP sockets 5859 * extensions draft, but follows the practice as seen in TCP 5860 * sockets. 5861 * 5862 */ 5863 sk->sk_state = SCTP_SS_LISTENING; 5864 if (!ep->base.bind_addr.port) { 5865 if (sctp_autobind(sk)) 5866 return -EAGAIN; 5867 } else { 5868 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 5869 sk->sk_state = SCTP_SS_CLOSED; 5870 return -EADDRINUSE; 5871 } 5872 } 5873 5874 sk->sk_max_ack_backlog = backlog; 5875 sctp_hash_endpoint(ep); 5876 return 0; 5877 } 5878 5879 /* 5880 * 4.1.3 / 5.1.3 listen() 5881 * 5882 * By default, new associations are not accepted for UDP style sockets. 5883 * An application uses listen() to mark a socket as being able to 5884 * accept new associations. 5885 * 5886 * On TCP style sockets, applications use listen() to ready the SCTP 5887 * endpoint for accepting inbound associations. 5888 * 5889 * On both types of endpoints a backlog of '0' disables listening. 5890 * 5891 * Move a socket to LISTENING state. 5892 */ 5893 int sctp_inet_listen(struct socket *sock, int backlog) 5894 { 5895 struct sock *sk = sock->sk; 5896 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5897 int err = -EINVAL; 5898 5899 if (unlikely(backlog < 0)) 5900 return err; 5901 5902 sctp_lock_sock(sk); 5903 5904 /* Peeled-off sockets are not allowed to listen(). */ 5905 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5906 goto out; 5907 5908 if (sock->state != SS_UNCONNECTED) 5909 goto out; 5910 5911 /* If backlog is zero, disable listening. */ 5912 if (!backlog) { 5913 if (sctp_sstate(sk, CLOSED)) 5914 goto out; 5915 5916 err = 0; 5917 sctp_unhash_endpoint(ep); 5918 sk->sk_state = SCTP_SS_CLOSED; 5919 if (sk->sk_reuse) 5920 sctp_sk(sk)->bind_hash->fastreuse = 1; 5921 goto out; 5922 } 5923 5924 /* If we are already listening, just update the backlog */ 5925 if (sctp_sstate(sk, LISTENING)) 5926 sk->sk_max_ack_backlog = backlog; 5927 else { 5928 err = sctp_listen_start(sk, backlog); 5929 if (err) 5930 goto out; 5931 } 5932 5933 err = 0; 5934 out: 5935 sctp_release_sock(sk); 5936 return err; 5937 } 5938 5939 /* 5940 * This function is done by modeling the current datagram_poll() and the 5941 * tcp_poll(). Note that, based on these implementations, we don't 5942 * lock the socket in this function, even though it seems that, 5943 * ideally, locking or some other mechanisms can be used to ensure 5944 * the integrity of the counters (sndbuf and wmem_alloc) used 5945 * in this place. We assume that we don't need locks either until proven 5946 * otherwise. 5947 * 5948 * Another thing to note is that we include the Async I/O support 5949 * here, again, by modeling the current TCP/UDP code. We don't have 5950 * a good way to test with it yet. 5951 */ 5952 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5953 { 5954 struct sock *sk = sock->sk; 5955 struct sctp_sock *sp = sctp_sk(sk); 5956 unsigned int mask; 5957 5958 poll_wait(file, sk_sleep(sk), wait); 5959 5960 /* A TCP-style listening socket becomes readable when the accept queue 5961 * is not empty. 5962 */ 5963 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5964 return (!list_empty(&sp->ep->asocs)) ? 5965 (POLLIN | POLLRDNORM) : 0; 5966 5967 mask = 0; 5968 5969 /* Is there any exceptional events? */ 5970 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5971 mask |= POLLERR; 5972 if (sk->sk_shutdown & RCV_SHUTDOWN) 5973 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 5974 if (sk->sk_shutdown == SHUTDOWN_MASK) 5975 mask |= POLLHUP; 5976 5977 /* Is it readable? Reconsider this code with TCP-style support. */ 5978 if (!skb_queue_empty(&sk->sk_receive_queue)) 5979 mask |= POLLIN | POLLRDNORM; 5980 5981 /* The association is either gone or not ready. */ 5982 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5983 return mask; 5984 5985 /* Is it writable? */ 5986 if (sctp_writeable(sk)) { 5987 mask |= POLLOUT | POLLWRNORM; 5988 } else { 5989 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5990 /* 5991 * Since the socket is not locked, the buffer 5992 * might be made available after the writeable check and 5993 * before the bit is set. This could cause a lost I/O 5994 * signal. tcp_poll() has a race breaker for this race 5995 * condition. Based on their implementation, we put 5996 * in the following code to cover it as well. 5997 */ 5998 if (sctp_writeable(sk)) 5999 mask |= POLLOUT | POLLWRNORM; 6000 } 6001 return mask; 6002 } 6003 6004 /******************************************************************** 6005 * 2nd Level Abstractions 6006 ********************************************************************/ 6007 6008 static struct sctp_bind_bucket *sctp_bucket_create( 6009 struct sctp_bind_hashbucket *head, unsigned short snum) 6010 { 6011 struct sctp_bind_bucket *pp; 6012 6013 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6014 if (pp) { 6015 SCTP_DBG_OBJCNT_INC(bind_bucket); 6016 pp->port = snum; 6017 pp->fastreuse = 0; 6018 INIT_HLIST_HEAD(&pp->owner); 6019 hlist_add_head(&pp->node, &head->chain); 6020 } 6021 return pp; 6022 } 6023 6024 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6025 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6026 { 6027 if (pp && hlist_empty(&pp->owner)) { 6028 __hlist_del(&pp->node); 6029 kmem_cache_free(sctp_bucket_cachep, pp); 6030 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6031 } 6032 } 6033 6034 /* Release this socket's reference to a local port. */ 6035 static inline void __sctp_put_port(struct sock *sk) 6036 { 6037 struct sctp_bind_hashbucket *head = 6038 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)]; 6039 struct sctp_bind_bucket *pp; 6040 6041 sctp_spin_lock(&head->lock); 6042 pp = sctp_sk(sk)->bind_hash; 6043 __sk_del_bind_node(sk); 6044 sctp_sk(sk)->bind_hash = NULL; 6045 inet_sk(sk)->inet_num = 0; 6046 sctp_bucket_destroy(pp); 6047 sctp_spin_unlock(&head->lock); 6048 } 6049 6050 void sctp_put_port(struct sock *sk) 6051 { 6052 sctp_local_bh_disable(); 6053 __sctp_put_port(sk); 6054 sctp_local_bh_enable(); 6055 } 6056 6057 /* 6058 * The system picks an ephemeral port and choose an address set equivalent 6059 * to binding with a wildcard address. 6060 * One of those addresses will be the primary address for the association. 6061 * This automatically enables the multihoming capability of SCTP. 6062 */ 6063 static int sctp_autobind(struct sock *sk) 6064 { 6065 union sctp_addr autoaddr; 6066 struct sctp_af *af; 6067 __be16 port; 6068 6069 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6070 af = sctp_sk(sk)->pf->af; 6071 6072 port = htons(inet_sk(sk)->inet_num); 6073 af->inaddr_any(&autoaddr, port); 6074 6075 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6076 } 6077 6078 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6079 * 6080 * From RFC 2292 6081 * 4.2 The cmsghdr Structure * 6082 * 6083 * When ancillary data is sent or received, any number of ancillary data 6084 * objects can be specified by the msg_control and msg_controllen members of 6085 * the msghdr structure, because each object is preceded by 6086 * a cmsghdr structure defining the object's length (the cmsg_len member). 6087 * Historically Berkeley-derived implementations have passed only one object 6088 * at a time, but this API allows multiple objects to be 6089 * passed in a single call to sendmsg() or recvmsg(). The following example 6090 * shows two ancillary data objects in a control buffer. 6091 * 6092 * |<--------------------------- msg_controllen -------------------------->| 6093 * | | 6094 * 6095 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6096 * 6097 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6098 * | | | 6099 * 6100 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6101 * 6102 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6103 * | | | | | 6104 * 6105 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6106 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6107 * 6108 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6109 * 6110 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6111 * ^ 6112 * | 6113 * 6114 * msg_control 6115 * points here 6116 */ 6117 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6118 sctp_cmsgs_t *cmsgs) 6119 { 6120 struct cmsghdr *cmsg; 6121 struct msghdr *my_msg = (struct msghdr *)msg; 6122 6123 for (cmsg = CMSG_FIRSTHDR(msg); 6124 cmsg != NULL; 6125 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6126 if (!CMSG_OK(my_msg, cmsg)) 6127 return -EINVAL; 6128 6129 /* Should we parse this header or ignore? */ 6130 if (cmsg->cmsg_level != IPPROTO_SCTP) 6131 continue; 6132 6133 /* Strictly check lengths following example in SCM code. */ 6134 switch (cmsg->cmsg_type) { 6135 case SCTP_INIT: 6136 /* SCTP Socket API Extension 6137 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6138 * 6139 * This cmsghdr structure provides information for 6140 * initializing new SCTP associations with sendmsg(). 6141 * The SCTP_INITMSG socket option uses this same data 6142 * structure. This structure is not used for 6143 * recvmsg(). 6144 * 6145 * cmsg_level cmsg_type cmsg_data[] 6146 * ------------ ------------ ---------------------- 6147 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6148 */ 6149 if (cmsg->cmsg_len != 6150 CMSG_LEN(sizeof(struct sctp_initmsg))) 6151 return -EINVAL; 6152 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6153 break; 6154 6155 case SCTP_SNDRCV: 6156 /* SCTP Socket API Extension 6157 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6158 * 6159 * This cmsghdr structure specifies SCTP options for 6160 * sendmsg() and describes SCTP header information 6161 * about a received message through recvmsg(). 6162 * 6163 * cmsg_level cmsg_type cmsg_data[] 6164 * ------------ ------------ ---------------------- 6165 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6166 */ 6167 if (cmsg->cmsg_len != 6168 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6169 return -EINVAL; 6170 6171 cmsgs->info = 6172 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6173 6174 /* Minimally, validate the sinfo_flags. */ 6175 if (cmsgs->info->sinfo_flags & 6176 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6177 SCTP_ABORT | SCTP_EOF)) 6178 return -EINVAL; 6179 break; 6180 6181 default: 6182 return -EINVAL; 6183 } 6184 } 6185 return 0; 6186 } 6187 6188 /* 6189 * Wait for a packet.. 6190 * Note: This function is the same function as in core/datagram.c 6191 * with a few modifications to make lksctp work. 6192 */ 6193 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6194 { 6195 int error; 6196 DEFINE_WAIT(wait); 6197 6198 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6199 6200 /* Socket errors? */ 6201 error = sock_error(sk); 6202 if (error) 6203 goto out; 6204 6205 if (!skb_queue_empty(&sk->sk_receive_queue)) 6206 goto ready; 6207 6208 /* Socket shut down? */ 6209 if (sk->sk_shutdown & RCV_SHUTDOWN) 6210 goto out; 6211 6212 /* Sequenced packets can come disconnected. If so we report the 6213 * problem. 6214 */ 6215 error = -ENOTCONN; 6216 6217 /* Is there a good reason to think that we may receive some data? */ 6218 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6219 goto out; 6220 6221 /* Handle signals. */ 6222 if (signal_pending(current)) 6223 goto interrupted; 6224 6225 /* Let another process have a go. Since we are going to sleep 6226 * anyway. Note: This may cause odd behaviors if the message 6227 * does not fit in the user's buffer, but this seems to be the 6228 * only way to honor MSG_DONTWAIT realistically. 6229 */ 6230 sctp_release_sock(sk); 6231 *timeo_p = schedule_timeout(*timeo_p); 6232 sctp_lock_sock(sk); 6233 6234 ready: 6235 finish_wait(sk_sleep(sk), &wait); 6236 return 0; 6237 6238 interrupted: 6239 error = sock_intr_errno(*timeo_p); 6240 6241 out: 6242 finish_wait(sk_sleep(sk), &wait); 6243 *err = error; 6244 return error; 6245 } 6246 6247 /* Receive a datagram. 6248 * Note: This is pretty much the same routine as in core/datagram.c 6249 * with a few changes to make lksctp work. 6250 */ 6251 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6252 int noblock, int *err) 6253 { 6254 int error; 6255 struct sk_buff *skb; 6256 long timeo; 6257 6258 timeo = sock_rcvtimeo(sk, noblock); 6259 6260 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6261 timeo, MAX_SCHEDULE_TIMEOUT); 6262 6263 do { 6264 /* Again only user level code calls this function, 6265 * so nothing interrupt level 6266 * will suddenly eat the receive_queue. 6267 * 6268 * Look at current nfs client by the way... 6269 * However, this function was correct in any case. 8) 6270 */ 6271 if (flags & MSG_PEEK) { 6272 spin_lock_bh(&sk->sk_receive_queue.lock); 6273 skb = skb_peek(&sk->sk_receive_queue); 6274 if (skb) 6275 atomic_inc(&skb->users); 6276 spin_unlock_bh(&sk->sk_receive_queue.lock); 6277 } else { 6278 skb = skb_dequeue(&sk->sk_receive_queue); 6279 } 6280 6281 if (skb) 6282 return skb; 6283 6284 /* Caller is allowed not to check sk->sk_err before calling. */ 6285 error = sock_error(sk); 6286 if (error) 6287 goto no_packet; 6288 6289 if (sk->sk_shutdown & RCV_SHUTDOWN) 6290 break; 6291 6292 /* User doesn't want to wait. */ 6293 error = -EAGAIN; 6294 if (!timeo) 6295 goto no_packet; 6296 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6297 6298 return NULL; 6299 6300 no_packet: 6301 *err = error; 6302 return NULL; 6303 } 6304 6305 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6306 static void __sctp_write_space(struct sctp_association *asoc) 6307 { 6308 struct sock *sk = asoc->base.sk; 6309 struct socket *sock = sk->sk_socket; 6310 6311 if ((sctp_wspace(asoc) > 0) && sock) { 6312 if (waitqueue_active(&asoc->wait)) 6313 wake_up_interruptible(&asoc->wait); 6314 6315 if (sctp_writeable(sk)) { 6316 wait_queue_head_t *wq = sk_sleep(sk); 6317 6318 if (wq && waitqueue_active(wq)) 6319 wake_up_interruptible(wq); 6320 6321 /* Note that we try to include the Async I/O support 6322 * here by modeling from the current TCP/UDP code. 6323 * We have not tested with it yet. 6324 */ 6325 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6326 sock_wake_async(sock, 6327 SOCK_WAKE_SPACE, POLL_OUT); 6328 } 6329 } 6330 } 6331 6332 /* Do accounting for the sndbuf space. 6333 * Decrement the used sndbuf space of the corresponding association by the 6334 * data size which was just transmitted(freed). 6335 */ 6336 static void sctp_wfree(struct sk_buff *skb) 6337 { 6338 struct sctp_association *asoc; 6339 struct sctp_chunk *chunk; 6340 struct sock *sk; 6341 6342 /* Get the saved chunk pointer. */ 6343 chunk = *((struct sctp_chunk **)(skb->cb)); 6344 asoc = chunk->asoc; 6345 sk = asoc->base.sk; 6346 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6347 sizeof(struct sk_buff) + 6348 sizeof(struct sctp_chunk); 6349 6350 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6351 6352 /* 6353 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6354 */ 6355 sk->sk_wmem_queued -= skb->truesize; 6356 sk_mem_uncharge(sk, skb->truesize); 6357 6358 sock_wfree(skb); 6359 __sctp_write_space(asoc); 6360 6361 sctp_association_put(asoc); 6362 } 6363 6364 /* Do accounting for the receive space on the socket. 6365 * Accounting for the association is done in ulpevent.c 6366 * We set this as a destructor for the cloned data skbs so that 6367 * accounting is done at the correct time. 6368 */ 6369 void sctp_sock_rfree(struct sk_buff *skb) 6370 { 6371 struct sock *sk = skb->sk; 6372 struct sctp_ulpevent *event = sctp_skb2event(skb); 6373 6374 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6375 6376 /* 6377 * Mimic the behavior of sock_rfree 6378 */ 6379 sk_mem_uncharge(sk, event->rmem_len); 6380 } 6381 6382 6383 /* Helper function to wait for space in the sndbuf. */ 6384 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6385 size_t msg_len) 6386 { 6387 struct sock *sk = asoc->base.sk; 6388 int err = 0; 6389 long current_timeo = *timeo_p; 6390 DEFINE_WAIT(wait); 6391 6392 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6393 asoc, (long)(*timeo_p), msg_len); 6394 6395 /* Increment the association's refcnt. */ 6396 sctp_association_hold(asoc); 6397 6398 /* Wait on the association specific sndbuf space. */ 6399 for (;;) { 6400 prepare_to_wait_exclusive(&asoc->wait, &wait, 6401 TASK_INTERRUPTIBLE); 6402 if (!*timeo_p) 6403 goto do_nonblock; 6404 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6405 asoc->base.dead) 6406 goto do_error; 6407 if (signal_pending(current)) 6408 goto do_interrupted; 6409 if (msg_len <= sctp_wspace(asoc)) 6410 break; 6411 6412 /* Let another process have a go. Since we are going 6413 * to sleep anyway. 6414 */ 6415 sctp_release_sock(sk); 6416 current_timeo = schedule_timeout(current_timeo); 6417 BUG_ON(sk != asoc->base.sk); 6418 sctp_lock_sock(sk); 6419 6420 *timeo_p = current_timeo; 6421 } 6422 6423 out: 6424 finish_wait(&asoc->wait, &wait); 6425 6426 /* Release the association's refcnt. */ 6427 sctp_association_put(asoc); 6428 6429 return err; 6430 6431 do_error: 6432 err = -EPIPE; 6433 goto out; 6434 6435 do_interrupted: 6436 err = sock_intr_errno(*timeo_p); 6437 goto out; 6438 6439 do_nonblock: 6440 err = -EAGAIN; 6441 goto out; 6442 } 6443 6444 void sctp_data_ready(struct sock *sk, int len) 6445 { 6446 struct socket_wq *wq; 6447 6448 rcu_read_lock(); 6449 wq = rcu_dereference(sk->sk_wq); 6450 if (wq_has_sleeper(wq)) 6451 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6452 POLLRDNORM | POLLRDBAND); 6453 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6454 rcu_read_unlock(); 6455 } 6456 6457 /* If socket sndbuf has changed, wake up all per association waiters. */ 6458 void sctp_write_space(struct sock *sk) 6459 { 6460 struct sctp_association *asoc; 6461 6462 /* Wake up the tasks in each wait queue. */ 6463 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6464 __sctp_write_space(asoc); 6465 } 6466 } 6467 6468 /* Is there any sndbuf space available on the socket? 6469 * 6470 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6471 * associations on the same socket. For a UDP-style socket with 6472 * multiple associations, it is possible for it to be "unwriteable" 6473 * prematurely. I assume that this is acceptable because 6474 * a premature "unwriteable" is better than an accidental "writeable" which 6475 * would cause an unwanted block under certain circumstances. For the 1-1 6476 * UDP-style sockets or TCP-style sockets, this code should work. 6477 * - Daisy 6478 */ 6479 static int sctp_writeable(struct sock *sk) 6480 { 6481 int amt = 0; 6482 6483 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6484 if (amt < 0) 6485 amt = 0; 6486 return amt; 6487 } 6488 6489 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6490 * returns immediately with EINPROGRESS. 6491 */ 6492 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6493 { 6494 struct sock *sk = asoc->base.sk; 6495 int err = 0; 6496 long current_timeo = *timeo_p; 6497 DEFINE_WAIT(wait); 6498 6499 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6500 (long)(*timeo_p)); 6501 6502 /* Increment the association's refcnt. */ 6503 sctp_association_hold(asoc); 6504 6505 for (;;) { 6506 prepare_to_wait_exclusive(&asoc->wait, &wait, 6507 TASK_INTERRUPTIBLE); 6508 if (!*timeo_p) 6509 goto do_nonblock; 6510 if (sk->sk_shutdown & RCV_SHUTDOWN) 6511 break; 6512 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6513 asoc->base.dead) 6514 goto do_error; 6515 if (signal_pending(current)) 6516 goto do_interrupted; 6517 6518 if (sctp_state(asoc, ESTABLISHED)) 6519 break; 6520 6521 /* Let another process have a go. Since we are going 6522 * to sleep anyway. 6523 */ 6524 sctp_release_sock(sk); 6525 current_timeo = schedule_timeout(current_timeo); 6526 sctp_lock_sock(sk); 6527 6528 *timeo_p = current_timeo; 6529 } 6530 6531 out: 6532 finish_wait(&asoc->wait, &wait); 6533 6534 /* Release the association's refcnt. */ 6535 sctp_association_put(asoc); 6536 6537 return err; 6538 6539 do_error: 6540 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6541 err = -ETIMEDOUT; 6542 else 6543 err = -ECONNREFUSED; 6544 goto out; 6545 6546 do_interrupted: 6547 err = sock_intr_errno(*timeo_p); 6548 goto out; 6549 6550 do_nonblock: 6551 err = -EINPROGRESS; 6552 goto out; 6553 } 6554 6555 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6556 { 6557 struct sctp_endpoint *ep; 6558 int err = 0; 6559 DEFINE_WAIT(wait); 6560 6561 ep = sctp_sk(sk)->ep; 6562 6563 6564 for (;;) { 6565 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6566 TASK_INTERRUPTIBLE); 6567 6568 if (list_empty(&ep->asocs)) { 6569 sctp_release_sock(sk); 6570 timeo = schedule_timeout(timeo); 6571 sctp_lock_sock(sk); 6572 } 6573 6574 err = -EINVAL; 6575 if (!sctp_sstate(sk, LISTENING)) 6576 break; 6577 6578 err = 0; 6579 if (!list_empty(&ep->asocs)) 6580 break; 6581 6582 err = sock_intr_errno(timeo); 6583 if (signal_pending(current)) 6584 break; 6585 6586 err = -EAGAIN; 6587 if (!timeo) 6588 break; 6589 } 6590 6591 finish_wait(sk_sleep(sk), &wait); 6592 6593 return err; 6594 } 6595 6596 static void sctp_wait_for_close(struct sock *sk, long timeout) 6597 { 6598 DEFINE_WAIT(wait); 6599 6600 do { 6601 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6602 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6603 break; 6604 sctp_release_sock(sk); 6605 timeout = schedule_timeout(timeout); 6606 sctp_lock_sock(sk); 6607 } while (!signal_pending(current) && timeout); 6608 6609 finish_wait(sk_sleep(sk), &wait); 6610 } 6611 6612 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6613 { 6614 struct sk_buff *frag; 6615 6616 if (!skb->data_len) 6617 goto done; 6618 6619 /* Don't forget the fragments. */ 6620 skb_walk_frags(skb, frag) 6621 sctp_skb_set_owner_r_frag(frag, sk); 6622 6623 done: 6624 sctp_skb_set_owner_r(skb, sk); 6625 } 6626 6627 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6628 struct sctp_association *asoc) 6629 { 6630 struct inet_sock *inet = inet_sk(sk); 6631 struct inet_sock *newinet; 6632 6633 newsk->sk_type = sk->sk_type; 6634 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6635 newsk->sk_flags = sk->sk_flags; 6636 newsk->sk_no_check = sk->sk_no_check; 6637 newsk->sk_reuse = sk->sk_reuse; 6638 6639 newsk->sk_shutdown = sk->sk_shutdown; 6640 newsk->sk_destruct = inet_sock_destruct; 6641 newsk->sk_family = sk->sk_family; 6642 newsk->sk_protocol = IPPROTO_SCTP; 6643 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6644 newsk->sk_sndbuf = sk->sk_sndbuf; 6645 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6646 newsk->sk_lingertime = sk->sk_lingertime; 6647 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6648 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6649 6650 newinet = inet_sk(newsk); 6651 6652 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6653 * getsockname() and getpeername() 6654 */ 6655 newinet->inet_sport = inet->inet_sport; 6656 newinet->inet_saddr = inet->inet_saddr; 6657 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6658 newinet->inet_dport = htons(asoc->peer.port); 6659 newinet->pmtudisc = inet->pmtudisc; 6660 newinet->inet_id = asoc->next_tsn ^ jiffies; 6661 6662 newinet->uc_ttl = inet->uc_ttl; 6663 newinet->mc_loop = 1; 6664 newinet->mc_ttl = 1; 6665 newinet->mc_index = 0; 6666 newinet->mc_list = NULL; 6667 } 6668 6669 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6670 * and its messages to the newsk. 6671 */ 6672 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6673 struct sctp_association *assoc, 6674 sctp_socket_type_t type) 6675 { 6676 struct sctp_sock *oldsp = sctp_sk(oldsk); 6677 struct sctp_sock *newsp = sctp_sk(newsk); 6678 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6679 struct sctp_endpoint *newep = newsp->ep; 6680 struct sk_buff *skb, *tmp; 6681 struct sctp_ulpevent *event; 6682 struct sctp_bind_hashbucket *head; 6683 struct list_head tmplist; 6684 6685 /* Migrate socket buffer sizes and all the socket level options to the 6686 * new socket. 6687 */ 6688 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6689 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6690 /* Brute force copy old sctp opt. */ 6691 if (oldsp->do_auto_asconf) { 6692 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6693 inet_sk_copy_descendant(newsk, oldsk); 6694 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6695 } else 6696 inet_sk_copy_descendant(newsk, oldsk); 6697 6698 /* Restore the ep value that was overwritten with the above structure 6699 * copy. 6700 */ 6701 newsp->ep = newep; 6702 newsp->hmac = NULL; 6703 6704 /* Hook this new socket in to the bind_hash list. */ 6705 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)]; 6706 sctp_local_bh_disable(); 6707 sctp_spin_lock(&head->lock); 6708 pp = sctp_sk(oldsk)->bind_hash; 6709 sk_add_bind_node(newsk, &pp->owner); 6710 sctp_sk(newsk)->bind_hash = pp; 6711 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6712 sctp_spin_unlock(&head->lock); 6713 sctp_local_bh_enable(); 6714 6715 /* Copy the bind_addr list from the original endpoint to the new 6716 * endpoint so that we can handle restarts properly 6717 */ 6718 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6719 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6720 6721 /* Move any messages in the old socket's receive queue that are for the 6722 * peeled off association to the new socket's receive queue. 6723 */ 6724 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6725 event = sctp_skb2event(skb); 6726 if (event->asoc == assoc) { 6727 __skb_unlink(skb, &oldsk->sk_receive_queue); 6728 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6729 sctp_skb_set_owner_r_frag(skb, newsk); 6730 } 6731 } 6732 6733 /* Clean up any messages pending delivery due to partial 6734 * delivery. Three cases: 6735 * 1) No partial deliver; no work. 6736 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6737 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6738 */ 6739 skb_queue_head_init(&newsp->pd_lobby); 6740 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6741 6742 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6743 struct sk_buff_head *queue; 6744 6745 /* Decide which queue to move pd_lobby skbs to. */ 6746 if (assoc->ulpq.pd_mode) { 6747 queue = &newsp->pd_lobby; 6748 } else 6749 queue = &newsk->sk_receive_queue; 6750 6751 /* Walk through the pd_lobby, looking for skbs that 6752 * need moved to the new socket. 6753 */ 6754 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6755 event = sctp_skb2event(skb); 6756 if (event->asoc == assoc) { 6757 __skb_unlink(skb, &oldsp->pd_lobby); 6758 __skb_queue_tail(queue, skb); 6759 sctp_skb_set_owner_r_frag(skb, newsk); 6760 } 6761 } 6762 6763 /* Clear up any skbs waiting for the partial 6764 * delivery to finish. 6765 */ 6766 if (assoc->ulpq.pd_mode) 6767 sctp_clear_pd(oldsk, NULL); 6768 6769 } 6770 6771 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6772 sctp_skb_set_owner_r_frag(skb, newsk); 6773 6774 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6775 sctp_skb_set_owner_r_frag(skb, newsk); 6776 6777 /* Set the type of socket to indicate that it is peeled off from the 6778 * original UDP-style socket or created with the accept() call on a 6779 * TCP-style socket.. 6780 */ 6781 newsp->type = type; 6782 6783 /* Mark the new socket "in-use" by the user so that any packets 6784 * that may arrive on the association after we've moved it are 6785 * queued to the backlog. This prevents a potential race between 6786 * backlog processing on the old socket and new-packet processing 6787 * on the new socket. 6788 * 6789 * The caller has just allocated newsk so we can guarantee that other 6790 * paths won't try to lock it and then oldsk. 6791 */ 6792 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6793 sctp_assoc_migrate(assoc, newsk); 6794 6795 /* If the association on the newsk is already closed before accept() 6796 * is called, set RCV_SHUTDOWN flag. 6797 */ 6798 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6799 newsk->sk_shutdown |= RCV_SHUTDOWN; 6800 6801 newsk->sk_state = SCTP_SS_ESTABLISHED; 6802 sctp_release_sock(newsk); 6803 } 6804 6805 6806 /* This proto struct describes the ULP interface for SCTP. */ 6807 struct proto sctp_prot = { 6808 .name = "SCTP", 6809 .owner = THIS_MODULE, 6810 .close = sctp_close, 6811 .connect = sctp_connect, 6812 .disconnect = sctp_disconnect, 6813 .accept = sctp_accept, 6814 .ioctl = sctp_ioctl, 6815 .init = sctp_init_sock, 6816 .destroy = sctp_destroy_sock, 6817 .shutdown = sctp_shutdown, 6818 .setsockopt = sctp_setsockopt, 6819 .getsockopt = sctp_getsockopt, 6820 .sendmsg = sctp_sendmsg, 6821 .recvmsg = sctp_recvmsg, 6822 .bind = sctp_bind, 6823 .backlog_rcv = sctp_backlog_rcv, 6824 .hash = sctp_hash, 6825 .unhash = sctp_unhash, 6826 .get_port = sctp_get_port, 6827 .obj_size = sizeof(struct sctp_sock), 6828 .sysctl_mem = sysctl_sctp_mem, 6829 .sysctl_rmem = sysctl_sctp_rmem, 6830 .sysctl_wmem = sysctl_sctp_wmem, 6831 .memory_pressure = &sctp_memory_pressure, 6832 .enter_memory_pressure = sctp_enter_memory_pressure, 6833 .memory_allocated = &sctp_memory_allocated, 6834 .sockets_allocated = &sctp_sockets_allocated, 6835 }; 6836 6837 #if IS_ENABLED(CONFIG_IPV6) 6838 6839 struct proto sctpv6_prot = { 6840 .name = "SCTPv6", 6841 .owner = THIS_MODULE, 6842 .close = sctp_close, 6843 .connect = sctp_connect, 6844 .disconnect = sctp_disconnect, 6845 .accept = sctp_accept, 6846 .ioctl = sctp_ioctl, 6847 .init = sctp_init_sock, 6848 .destroy = sctp_destroy_sock, 6849 .shutdown = sctp_shutdown, 6850 .setsockopt = sctp_setsockopt, 6851 .getsockopt = sctp_getsockopt, 6852 .sendmsg = sctp_sendmsg, 6853 .recvmsg = sctp_recvmsg, 6854 .bind = sctp_bind, 6855 .backlog_rcv = sctp_backlog_rcv, 6856 .hash = sctp_hash, 6857 .unhash = sctp_unhash, 6858 .get_port = sctp_get_port, 6859 .obj_size = sizeof(struct sctp6_sock), 6860 .sysctl_mem = sysctl_sctp_mem, 6861 .sysctl_rmem = sysctl_sctp_rmem, 6862 .sysctl_wmem = sysctl_sctp_wmem, 6863 .memory_pressure = &sctp_memory_pressure, 6864 .enter_memory_pressure = sctp_enter_memory_pressure, 6865 .memory_allocated = &sctp_memory_allocated, 6866 .sockets_allocated = &sctp_sockets_allocated, 6867 }; 6868 #endif /* IS_ENABLED(CONFIG_IPV6) */ 6869