1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 #include <trace/events/sock.h> 63 64 #include <linux/socket.h> /* for sa_family_t */ 65 #include <linux/export.h> 66 #include <net/sock.h> 67 #include <net/sctp/sctp.h> 68 #include <net/sctp/sm.h> 69 #include <net/sctp/stream_sched.h> 70 71 /* Forward declarations for internal helper functions. */ 72 static bool sctp_writeable(struct sock *sk); 73 static void sctp_wfree(struct sk_buff *skb); 74 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 75 size_t msg_len); 76 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 77 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 78 static int sctp_wait_for_accept(struct sock *sk, long timeo); 79 static void sctp_wait_for_close(struct sock *sk, long timeo); 80 static void sctp_destruct_sock(struct sock *sk); 81 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 82 union sctp_addr *addr, int len); 83 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 84 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 87 static int sctp_send_asconf(struct sctp_association *asoc, 88 struct sctp_chunk *chunk); 89 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 90 static int sctp_autobind(struct sock *sk); 91 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 92 struct sctp_association *assoc, 93 enum sctp_socket_type type); 94 95 static unsigned long sctp_memory_pressure; 96 static atomic_long_t sctp_memory_allocated; 97 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc); 98 struct percpu_counter sctp_sockets_allocated; 99 100 static void sctp_enter_memory_pressure(struct sock *sk) 101 { 102 WRITE_ONCE(sctp_memory_pressure, 1); 103 } 104 105 106 /* Get the sndbuf space available at the time on the association. */ 107 static inline int sctp_wspace(struct sctp_association *asoc) 108 { 109 struct sock *sk = asoc->base.sk; 110 111 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 112 : sk_stream_wspace(sk); 113 } 114 115 /* Increment the used sndbuf space count of the corresponding association by 116 * the size of the outgoing data chunk. 117 * Also, set the skb destructor for sndbuf accounting later. 118 * 119 * Since it is always 1-1 between chunk and skb, and also a new skb is always 120 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 121 * destructor in the data chunk skb for the purpose of the sndbuf space 122 * tracking. 123 */ 124 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 125 { 126 struct sctp_association *asoc = chunk->asoc; 127 struct sock *sk = asoc->base.sk; 128 129 /* The sndbuf space is tracked per association. */ 130 sctp_association_hold(asoc); 131 132 if (chunk->shkey) 133 sctp_auth_shkey_hold(chunk->shkey); 134 135 skb_set_owner_w(chunk->skb, sk); 136 137 chunk->skb->destructor = sctp_wfree; 138 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 139 skb_shinfo(chunk->skb)->destructor_arg = chunk; 140 141 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 142 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 143 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 144 sk_mem_charge(sk, chunk->skb->truesize); 145 } 146 147 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 148 { 149 skb_orphan(chunk->skb); 150 } 151 152 #define traverse_and_process() \ 153 do { \ 154 msg = chunk->msg; \ 155 if (msg == prev_msg) \ 156 continue; \ 157 list_for_each_entry(c, &msg->chunks, frag_list) { \ 158 if ((clear && asoc->base.sk == c->skb->sk) || \ 159 (!clear && asoc->base.sk != c->skb->sk)) \ 160 cb(c); \ 161 } \ 162 prev_msg = msg; \ 163 } while (0) 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 bool clear, 167 void (*cb)(struct sctp_chunk *)) 168 169 { 170 struct sctp_datamsg *msg, *prev_msg = NULL; 171 struct sctp_outq *q = &asoc->outqueue; 172 struct sctp_chunk *chunk, *c; 173 struct sctp_transport *t; 174 175 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 176 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 177 traverse_and_process(); 178 179 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 180 traverse_and_process(); 181 182 list_for_each_entry(chunk, &q->sacked, transmitted_list) 183 traverse_and_process(); 184 185 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 186 traverse_and_process(); 187 188 list_for_each_entry(chunk, &q->out_chunk_list, list) 189 traverse_and_process(); 190 } 191 192 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 193 void (*cb)(struct sk_buff *, struct sock *)) 194 195 { 196 struct sk_buff *skb, *tmp; 197 198 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 199 cb(skb, sk); 200 201 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 202 cb(skb, sk); 203 204 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 205 cb(skb, sk); 206 } 207 208 /* Verify that this is a valid address. */ 209 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 210 int len) 211 { 212 struct sctp_af *af; 213 214 /* Verify basic sockaddr. */ 215 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 216 if (!af) 217 return -EINVAL; 218 219 /* Is this a valid SCTP address? */ 220 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 221 return -EINVAL; 222 223 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 224 return -EINVAL; 225 226 return 0; 227 } 228 229 /* Look up the association by its id. If this is not a UDP-style 230 * socket, the ID field is always ignored. 231 */ 232 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 233 { 234 struct sctp_association *asoc = NULL; 235 236 /* If this is not a UDP-style socket, assoc id should be ignored. */ 237 if (!sctp_style(sk, UDP)) { 238 /* Return NULL if the socket state is not ESTABLISHED. It 239 * could be a TCP-style listening socket or a socket which 240 * hasn't yet called connect() to establish an association. 241 */ 242 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 243 return NULL; 244 245 /* Get the first and the only association from the list. */ 246 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 247 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 248 struct sctp_association, asocs); 249 return asoc; 250 } 251 252 /* Otherwise this is a UDP-style socket. */ 253 if (id <= SCTP_ALL_ASSOC) 254 return NULL; 255 256 spin_lock_bh(&sctp_assocs_id_lock); 257 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 258 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 259 asoc = NULL; 260 spin_unlock_bh(&sctp_assocs_id_lock); 261 262 return asoc; 263 } 264 265 /* Look up the transport from an address and an assoc id. If both address and 266 * id are specified, the associations matching the address and the id should be 267 * the same. 268 */ 269 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 270 struct sockaddr_storage *addr, 271 sctp_assoc_t id) 272 { 273 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 274 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 275 union sctp_addr *laddr = (union sctp_addr *)addr; 276 struct sctp_transport *transport; 277 278 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 279 return NULL; 280 281 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 282 laddr, 283 &transport); 284 285 if (!addr_asoc) 286 return NULL; 287 288 id_asoc = sctp_id2assoc(sk, id); 289 if (id_asoc && (id_asoc != addr_asoc)) 290 return NULL; 291 292 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 293 (union sctp_addr *)addr); 294 295 return transport; 296 } 297 298 /* API 3.1.2 bind() - UDP Style Syntax 299 * The syntax of bind() is, 300 * 301 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 302 * 303 * sd - the socket descriptor returned by socket(). 304 * addr - the address structure (struct sockaddr_in or struct 305 * sockaddr_in6 [RFC 2553]), 306 * addr_len - the size of the address structure. 307 */ 308 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 309 { 310 int retval = 0; 311 312 lock_sock(sk); 313 314 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 315 addr, addr_len); 316 317 /* Disallow binding twice. */ 318 if (!sctp_sk(sk)->ep->base.bind_addr.port) 319 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 320 addr_len); 321 else 322 retval = -EINVAL; 323 324 release_sock(sk); 325 326 return retval; 327 } 328 329 static int sctp_get_port_local(struct sock *, union sctp_addr *); 330 331 /* Verify this is a valid sockaddr. */ 332 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 333 union sctp_addr *addr, int len) 334 { 335 struct sctp_af *af; 336 337 /* Check minimum size. */ 338 if (len < sizeof (struct sockaddr)) 339 return NULL; 340 341 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 342 return NULL; 343 344 if (addr->sa.sa_family == AF_INET6) { 345 if (len < SIN6_LEN_RFC2133) 346 return NULL; 347 /* V4 mapped address are really of AF_INET family */ 348 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 349 !opt->pf->af_supported(AF_INET, opt)) 350 return NULL; 351 } 352 353 /* If we get this far, af is valid. */ 354 af = sctp_get_af_specific(addr->sa.sa_family); 355 356 if (len < af->sockaddr_len) 357 return NULL; 358 359 return af; 360 } 361 362 static void sctp_auto_asconf_init(struct sctp_sock *sp) 363 { 364 struct net *net = sock_net(&sp->inet.sk); 365 366 if (net->sctp.default_auto_asconf) { 367 spin_lock_bh(&net->sctp.addr_wq_lock); 368 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 369 spin_unlock_bh(&net->sctp.addr_wq_lock); 370 sp->do_auto_asconf = 1; 371 } 372 } 373 374 /* Bind a local address either to an endpoint or to an association. */ 375 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 376 { 377 struct net *net = sock_net(sk); 378 struct sctp_sock *sp = sctp_sk(sk); 379 struct sctp_endpoint *ep = sp->ep; 380 struct sctp_bind_addr *bp = &ep->base.bind_addr; 381 struct sctp_af *af; 382 unsigned short snum; 383 int ret = 0; 384 385 /* Common sockaddr verification. */ 386 af = sctp_sockaddr_af(sp, addr, len); 387 if (!af) { 388 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 389 __func__, sk, addr, len); 390 return -EINVAL; 391 } 392 393 snum = ntohs(addr->v4.sin_port); 394 395 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 396 __func__, sk, &addr->sa, bp->port, snum, len); 397 398 /* PF specific bind() address verification. */ 399 if (!sp->pf->bind_verify(sp, addr)) 400 return -EADDRNOTAVAIL; 401 402 /* We must either be unbound, or bind to the same port. 403 * It's OK to allow 0 ports if we are already bound. 404 * We'll just inhert an already bound port in this case 405 */ 406 if (bp->port) { 407 if (!snum) 408 snum = bp->port; 409 else if (snum != bp->port) { 410 pr_debug("%s: new port %d doesn't match existing port " 411 "%d\n", __func__, snum, bp->port); 412 return -EINVAL; 413 } 414 } 415 416 if (snum && inet_port_requires_bind_service(net, snum) && 417 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 418 return -EACCES; 419 420 /* See if the address matches any of the addresses we may have 421 * already bound before checking against other endpoints. 422 */ 423 if (sctp_bind_addr_match(bp, addr, sp)) 424 return -EINVAL; 425 426 /* Make sure we are allowed to bind here. 427 * The function sctp_get_port_local() does duplicate address 428 * detection. 429 */ 430 addr->v4.sin_port = htons(snum); 431 if (sctp_get_port_local(sk, addr)) 432 return -EADDRINUSE; 433 434 /* Refresh ephemeral port. */ 435 if (!bp->port) { 436 bp->port = inet_sk(sk)->inet_num; 437 sctp_auto_asconf_init(sp); 438 } 439 440 /* Add the address to the bind address list. 441 * Use GFP_ATOMIC since BHs will be disabled. 442 */ 443 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 444 SCTP_ADDR_SRC, GFP_ATOMIC); 445 446 if (ret) { 447 sctp_put_port(sk); 448 return ret; 449 } 450 /* Copy back into socket for getsockname() use. */ 451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 452 sp->pf->to_sk_saddr(addr, sk); 453 454 return ret; 455 } 456 457 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 458 * 459 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 460 * at any one time. If a sender, after sending an ASCONF chunk, decides 461 * it needs to transfer another ASCONF Chunk, it MUST wait until the 462 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 463 * subsequent ASCONF. Note this restriction binds each side, so at any 464 * time two ASCONF may be in-transit on any given association (one sent 465 * from each endpoint). 466 */ 467 static int sctp_send_asconf(struct sctp_association *asoc, 468 struct sctp_chunk *chunk) 469 { 470 int retval = 0; 471 472 /* If there is an outstanding ASCONF chunk, queue it for later 473 * transmission. 474 */ 475 if (asoc->addip_last_asconf) { 476 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 477 goto out; 478 } 479 480 /* Hold the chunk until an ASCONF_ACK is received. */ 481 sctp_chunk_hold(chunk); 482 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 483 if (retval) 484 sctp_chunk_free(chunk); 485 else 486 asoc->addip_last_asconf = chunk; 487 488 out: 489 return retval; 490 } 491 492 /* Add a list of addresses as bind addresses to local endpoint or 493 * association. 494 * 495 * Basically run through each address specified in the addrs/addrcnt 496 * array/length pair, determine if it is IPv6 or IPv4 and call 497 * sctp_do_bind() on it. 498 * 499 * If any of them fails, then the operation will be reversed and the 500 * ones that were added will be removed. 501 * 502 * Only sctp_setsockopt_bindx() is supposed to call this function. 503 */ 504 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 505 { 506 int cnt; 507 int retval = 0; 508 void *addr_buf; 509 struct sockaddr *sa_addr; 510 struct sctp_af *af; 511 512 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 513 addrs, addrcnt); 514 515 addr_buf = addrs; 516 for (cnt = 0; cnt < addrcnt; cnt++) { 517 /* The list may contain either IPv4 or IPv6 address; 518 * determine the address length for walking thru the list. 519 */ 520 sa_addr = addr_buf; 521 af = sctp_get_af_specific(sa_addr->sa_family); 522 if (!af) { 523 retval = -EINVAL; 524 goto err_bindx_add; 525 } 526 527 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 528 af->sockaddr_len); 529 530 addr_buf += af->sockaddr_len; 531 532 err_bindx_add: 533 if (retval < 0) { 534 /* Failed. Cleanup the ones that have been added */ 535 if (cnt > 0) 536 sctp_bindx_rem(sk, addrs, cnt); 537 return retval; 538 } 539 } 540 541 return retval; 542 } 543 544 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 545 * associations that are part of the endpoint indicating that a list of local 546 * addresses are added to the endpoint. 547 * 548 * If any of the addresses is already in the bind address list of the 549 * association, we do not send the chunk for that association. But it will not 550 * affect other associations. 551 * 552 * Only sctp_setsockopt_bindx() is supposed to call this function. 553 */ 554 static int sctp_send_asconf_add_ip(struct sock *sk, 555 struct sockaddr *addrs, 556 int addrcnt) 557 { 558 struct sctp_sock *sp; 559 struct sctp_endpoint *ep; 560 struct sctp_association *asoc; 561 struct sctp_bind_addr *bp; 562 struct sctp_chunk *chunk; 563 struct sctp_sockaddr_entry *laddr; 564 union sctp_addr *addr; 565 union sctp_addr saveaddr; 566 void *addr_buf; 567 struct sctp_af *af; 568 struct list_head *p; 569 int i; 570 int retval = 0; 571 572 sp = sctp_sk(sk); 573 ep = sp->ep; 574 575 if (!ep->asconf_enable) 576 return retval; 577 578 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 579 __func__, sk, addrs, addrcnt); 580 581 list_for_each_entry(asoc, &ep->asocs, asocs) { 582 if (!asoc->peer.asconf_capable) 583 continue; 584 585 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 586 continue; 587 588 if (!sctp_state(asoc, ESTABLISHED)) 589 continue; 590 591 /* Check if any address in the packed array of addresses is 592 * in the bind address list of the association. If so, 593 * do not send the asconf chunk to its peer, but continue with 594 * other associations. 595 */ 596 addr_buf = addrs; 597 for (i = 0; i < addrcnt; i++) { 598 addr = addr_buf; 599 af = sctp_get_af_specific(addr->v4.sin_family); 600 if (!af) { 601 retval = -EINVAL; 602 goto out; 603 } 604 605 if (sctp_assoc_lookup_laddr(asoc, addr)) 606 break; 607 608 addr_buf += af->sockaddr_len; 609 } 610 if (i < addrcnt) 611 continue; 612 613 /* Use the first valid address in bind addr list of 614 * association as Address Parameter of ASCONF CHUNK. 615 */ 616 bp = &asoc->base.bind_addr; 617 p = bp->address_list.next; 618 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 619 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 620 addrcnt, SCTP_PARAM_ADD_IP); 621 if (!chunk) { 622 retval = -ENOMEM; 623 goto out; 624 } 625 626 /* Add the new addresses to the bind address list with 627 * use_as_src set to 0. 628 */ 629 addr_buf = addrs; 630 for (i = 0; i < addrcnt; i++) { 631 addr = addr_buf; 632 af = sctp_get_af_specific(addr->v4.sin_family); 633 memcpy(&saveaddr, addr, af->sockaddr_len); 634 retval = sctp_add_bind_addr(bp, &saveaddr, 635 sizeof(saveaddr), 636 SCTP_ADDR_NEW, GFP_ATOMIC); 637 addr_buf += af->sockaddr_len; 638 } 639 if (asoc->src_out_of_asoc_ok) { 640 struct sctp_transport *trans; 641 642 list_for_each_entry(trans, 643 &asoc->peer.transport_addr_list, transports) { 644 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 645 2*asoc->pathmtu, 4380)); 646 trans->ssthresh = asoc->peer.i.a_rwnd; 647 trans->rto = asoc->rto_initial; 648 sctp_max_rto(asoc, trans); 649 trans->rtt = trans->srtt = trans->rttvar = 0; 650 /* Clear the source and route cache */ 651 sctp_transport_route(trans, NULL, 652 sctp_sk(asoc->base.sk)); 653 } 654 } 655 retval = sctp_send_asconf(asoc, chunk); 656 } 657 658 out: 659 return retval; 660 } 661 662 /* Remove a list of addresses from bind addresses list. Do not remove the 663 * last address. 664 * 665 * Basically run through each address specified in the addrs/addrcnt 666 * array/length pair, determine if it is IPv6 or IPv4 and call 667 * sctp_del_bind() on it. 668 * 669 * If any of them fails, then the operation will be reversed and the 670 * ones that were removed will be added back. 671 * 672 * At least one address has to be left; if only one address is 673 * available, the operation will return -EBUSY. 674 * 675 * Only sctp_setsockopt_bindx() is supposed to call this function. 676 */ 677 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 678 { 679 struct sctp_sock *sp = sctp_sk(sk); 680 struct sctp_endpoint *ep = sp->ep; 681 int cnt; 682 struct sctp_bind_addr *bp = &ep->base.bind_addr; 683 int retval = 0; 684 void *addr_buf; 685 union sctp_addr *sa_addr; 686 struct sctp_af *af; 687 688 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 689 __func__, sk, addrs, addrcnt); 690 691 addr_buf = addrs; 692 for (cnt = 0; cnt < addrcnt; cnt++) { 693 /* If the bind address list is empty or if there is only one 694 * bind address, there is nothing more to be removed (we need 695 * at least one address here). 696 */ 697 if (list_empty(&bp->address_list) || 698 (sctp_list_single_entry(&bp->address_list))) { 699 retval = -EBUSY; 700 goto err_bindx_rem; 701 } 702 703 sa_addr = addr_buf; 704 af = sctp_get_af_specific(sa_addr->sa.sa_family); 705 if (!af) { 706 retval = -EINVAL; 707 goto err_bindx_rem; 708 } 709 710 if (!af->addr_valid(sa_addr, sp, NULL)) { 711 retval = -EADDRNOTAVAIL; 712 goto err_bindx_rem; 713 } 714 715 if (sa_addr->v4.sin_port && 716 sa_addr->v4.sin_port != htons(bp->port)) { 717 retval = -EINVAL; 718 goto err_bindx_rem; 719 } 720 721 if (!sa_addr->v4.sin_port) 722 sa_addr->v4.sin_port = htons(bp->port); 723 724 /* FIXME - There is probably a need to check if sk->sk_saddr and 725 * sk->sk_rcv_addr are currently set to one of the addresses to 726 * be removed. This is something which needs to be looked into 727 * when we are fixing the outstanding issues with multi-homing 728 * socket routing and failover schemes. Refer to comments in 729 * sctp_do_bind(). -daisy 730 */ 731 retval = sctp_del_bind_addr(bp, sa_addr); 732 733 addr_buf += af->sockaddr_len; 734 err_bindx_rem: 735 if (retval < 0) { 736 /* Failed. Add the ones that has been removed back */ 737 if (cnt > 0) 738 sctp_bindx_add(sk, addrs, cnt); 739 return retval; 740 } 741 } 742 743 return retval; 744 } 745 746 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 747 * the associations that are part of the endpoint indicating that a list of 748 * local addresses are removed from the endpoint. 749 * 750 * If any of the addresses is already in the bind address list of the 751 * association, we do not send the chunk for that association. But it will not 752 * affect other associations. 753 * 754 * Only sctp_setsockopt_bindx() is supposed to call this function. 755 */ 756 static int sctp_send_asconf_del_ip(struct sock *sk, 757 struct sockaddr *addrs, 758 int addrcnt) 759 { 760 struct sctp_sock *sp; 761 struct sctp_endpoint *ep; 762 struct sctp_association *asoc; 763 struct sctp_transport *transport; 764 struct sctp_bind_addr *bp; 765 struct sctp_chunk *chunk; 766 union sctp_addr *laddr; 767 void *addr_buf; 768 struct sctp_af *af; 769 struct sctp_sockaddr_entry *saddr; 770 int i; 771 int retval = 0; 772 int stored = 0; 773 774 chunk = NULL; 775 sp = sctp_sk(sk); 776 ep = sp->ep; 777 778 if (!ep->asconf_enable) 779 return retval; 780 781 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 782 __func__, sk, addrs, addrcnt); 783 784 list_for_each_entry(asoc, &ep->asocs, asocs) { 785 786 if (!asoc->peer.asconf_capable) 787 continue; 788 789 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 790 continue; 791 792 if (!sctp_state(asoc, ESTABLISHED)) 793 continue; 794 795 /* Check if any address in the packed array of addresses is 796 * not present in the bind address list of the association. 797 * If so, do not send the asconf chunk to its peer, but 798 * continue with other associations. 799 */ 800 addr_buf = addrs; 801 for (i = 0; i < addrcnt; i++) { 802 laddr = addr_buf; 803 af = sctp_get_af_specific(laddr->v4.sin_family); 804 if (!af) { 805 retval = -EINVAL; 806 goto out; 807 } 808 809 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 810 break; 811 812 addr_buf += af->sockaddr_len; 813 } 814 if (i < addrcnt) 815 continue; 816 817 /* Find one address in the association's bind address list 818 * that is not in the packed array of addresses. This is to 819 * make sure that we do not delete all the addresses in the 820 * association. 821 */ 822 bp = &asoc->base.bind_addr; 823 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 824 addrcnt, sp); 825 if ((laddr == NULL) && (addrcnt == 1)) { 826 if (asoc->asconf_addr_del_pending) 827 continue; 828 asoc->asconf_addr_del_pending = 829 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 830 if (asoc->asconf_addr_del_pending == NULL) { 831 retval = -ENOMEM; 832 goto out; 833 } 834 asoc->asconf_addr_del_pending->sa.sa_family = 835 addrs->sa_family; 836 asoc->asconf_addr_del_pending->v4.sin_port = 837 htons(bp->port); 838 if (addrs->sa_family == AF_INET) { 839 struct sockaddr_in *sin; 840 841 sin = (struct sockaddr_in *)addrs; 842 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 843 } else if (addrs->sa_family == AF_INET6) { 844 struct sockaddr_in6 *sin6; 845 846 sin6 = (struct sockaddr_in6 *)addrs; 847 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 848 } 849 850 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 851 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 852 asoc->asconf_addr_del_pending); 853 854 asoc->src_out_of_asoc_ok = 1; 855 stored = 1; 856 goto skip_mkasconf; 857 } 858 859 if (laddr == NULL) 860 return -EINVAL; 861 862 /* We do not need RCU protection throughout this loop 863 * because this is done under a socket lock from the 864 * setsockopt call. 865 */ 866 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 867 SCTP_PARAM_DEL_IP); 868 if (!chunk) { 869 retval = -ENOMEM; 870 goto out; 871 } 872 873 skip_mkasconf: 874 /* Reset use_as_src flag for the addresses in the bind address 875 * list that are to be deleted. 876 */ 877 addr_buf = addrs; 878 for (i = 0; i < addrcnt; i++) { 879 laddr = addr_buf; 880 af = sctp_get_af_specific(laddr->v4.sin_family); 881 list_for_each_entry(saddr, &bp->address_list, list) { 882 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 883 saddr->state = SCTP_ADDR_DEL; 884 } 885 addr_buf += af->sockaddr_len; 886 } 887 888 /* Update the route and saddr entries for all the transports 889 * as some of the addresses in the bind address list are 890 * about to be deleted and cannot be used as source addresses. 891 */ 892 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 893 transports) { 894 sctp_transport_route(transport, NULL, 895 sctp_sk(asoc->base.sk)); 896 } 897 898 if (stored) 899 /* We don't need to transmit ASCONF */ 900 continue; 901 retval = sctp_send_asconf(asoc, chunk); 902 } 903 out: 904 return retval; 905 } 906 907 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 908 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 909 { 910 struct sock *sk = sctp_opt2sk(sp); 911 union sctp_addr *addr; 912 struct sctp_af *af; 913 914 /* It is safe to write port space in caller. */ 915 addr = &addrw->a; 916 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 917 af = sctp_get_af_specific(addr->sa.sa_family); 918 if (!af) 919 return -EINVAL; 920 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 921 return -EINVAL; 922 923 if (addrw->state == SCTP_ADDR_NEW) 924 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 925 else 926 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 927 } 928 929 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 930 * 931 * API 8.1 932 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 933 * int flags); 934 * 935 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 936 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 937 * or IPv6 addresses. 938 * 939 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 940 * Section 3.1.2 for this usage. 941 * 942 * addrs is a pointer to an array of one or more socket addresses. Each 943 * address is contained in its appropriate structure (i.e. struct 944 * sockaddr_in or struct sockaddr_in6) the family of the address type 945 * must be used to distinguish the address length (note that this 946 * representation is termed a "packed array" of addresses). The caller 947 * specifies the number of addresses in the array with addrcnt. 948 * 949 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 950 * -1, and sets errno to the appropriate error code. 951 * 952 * For SCTP, the port given in each socket address must be the same, or 953 * sctp_bindx() will fail, setting errno to EINVAL. 954 * 955 * The flags parameter is formed from the bitwise OR of zero or more of 956 * the following currently defined flags: 957 * 958 * SCTP_BINDX_ADD_ADDR 959 * 960 * SCTP_BINDX_REM_ADDR 961 * 962 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 963 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 964 * addresses from the association. The two flags are mutually exclusive; 965 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 966 * not remove all addresses from an association; sctp_bindx() will 967 * reject such an attempt with EINVAL. 968 * 969 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 970 * additional addresses with an endpoint after calling bind(). Or use 971 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 972 * socket is associated with so that no new association accepted will be 973 * associated with those addresses. If the endpoint supports dynamic 974 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 975 * endpoint to send the appropriate message to the peer to change the 976 * peers address lists. 977 * 978 * Adding and removing addresses from a connected association is 979 * optional functionality. Implementations that do not support this 980 * functionality should return EOPNOTSUPP. 981 * 982 * Basically do nothing but copying the addresses from user to kernel 983 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 984 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 985 * from userspace. 986 * 987 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 988 * it. 989 * 990 * sk The sk of the socket 991 * addrs The pointer to the addresses 992 * addrssize Size of the addrs buffer 993 * op Operation to perform (add or remove, see the flags of 994 * sctp_bindx) 995 * 996 * Returns 0 if ok, <0 errno code on error. 997 */ 998 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 999 int addrs_size, int op) 1000 { 1001 int err; 1002 int addrcnt = 0; 1003 int walk_size = 0; 1004 struct sockaddr *sa_addr; 1005 void *addr_buf = addrs; 1006 struct sctp_af *af; 1007 1008 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1009 __func__, sk, addr_buf, addrs_size, op); 1010 1011 if (unlikely(addrs_size <= 0)) 1012 return -EINVAL; 1013 1014 /* Walk through the addrs buffer and count the number of addresses. */ 1015 while (walk_size < addrs_size) { 1016 if (walk_size + sizeof(sa_family_t) > addrs_size) 1017 return -EINVAL; 1018 1019 sa_addr = addr_buf; 1020 af = sctp_get_af_specific(sa_addr->sa_family); 1021 1022 /* If the address family is not supported or if this address 1023 * causes the address buffer to overflow return EINVAL. 1024 */ 1025 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1026 return -EINVAL; 1027 addrcnt++; 1028 addr_buf += af->sockaddr_len; 1029 walk_size += af->sockaddr_len; 1030 } 1031 1032 /* Do the work. */ 1033 switch (op) { 1034 case SCTP_BINDX_ADD_ADDR: 1035 /* Allow security module to validate bindx addresses. */ 1036 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1037 addrs, addrs_size); 1038 if (err) 1039 return err; 1040 err = sctp_bindx_add(sk, addrs, addrcnt); 1041 if (err) 1042 return err; 1043 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, addrs, addrcnt); 1046 if (err) 1047 return err; 1048 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1049 1050 default: 1051 return -EINVAL; 1052 } 1053 } 1054 1055 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1056 int addrlen) 1057 { 1058 int err; 1059 1060 lock_sock(sk); 1061 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1062 release_sock(sk); 1063 return err; 1064 } 1065 1066 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1067 const union sctp_addr *daddr, 1068 const struct sctp_initmsg *init, 1069 struct sctp_transport **tp) 1070 { 1071 struct sctp_association *asoc; 1072 struct sock *sk = ep->base.sk; 1073 struct net *net = sock_net(sk); 1074 enum sctp_scope scope; 1075 int err; 1076 1077 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1078 return -EADDRNOTAVAIL; 1079 1080 if (!ep->base.bind_addr.port) { 1081 if (sctp_autobind(sk)) 1082 return -EAGAIN; 1083 } else { 1084 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1085 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1086 return -EACCES; 1087 } 1088 1089 scope = sctp_scope(daddr); 1090 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1091 if (!asoc) 1092 return -ENOMEM; 1093 1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1095 if (err < 0) 1096 goto free; 1097 1098 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1099 if (!*tp) { 1100 err = -ENOMEM; 1101 goto free; 1102 } 1103 1104 if (!init) 1105 return 0; 1106 1107 if (init->sinit_num_ostreams) { 1108 __u16 outcnt = init->sinit_num_ostreams; 1109 1110 asoc->c.sinit_num_ostreams = outcnt; 1111 /* outcnt has been changed, need to re-init stream */ 1112 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1113 if (err) 1114 goto free; 1115 } 1116 1117 if (init->sinit_max_instreams) 1118 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1119 1120 if (init->sinit_max_attempts) 1121 asoc->max_init_attempts = init->sinit_max_attempts; 1122 1123 if (init->sinit_max_init_timeo) 1124 asoc->max_init_timeo = 1125 msecs_to_jiffies(init->sinit_max_init_timeo); 1126 1127 return 0; 1128 free: 1129 sctp_association_free(asoc); 1130 return err; 1131 } 1132 1133 static int sctp_connect_add_peer(struct sctp_association *asoc, 1134 union sctp_addr *daddr, int addr_len) 1135 { 1136 struct sctp_endpoint *ep = asoc->ep; 1137 struct sctp_association *old; 1138 struct sctp_transport *t; 1139 int err; 1140 1141 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1142 if (err) 1143 return err; 1144 1145 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1146 if (old && old != asoc) 1147 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1148 : -EALREADY; 1149 1150 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1151 return -EADDRNOTAVAIL; 1152 1153 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1154 if (!t) 1155 return -ENOMEM; 1156 1157 return 0; 1158 } 1159 1160 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1161 * 1162 * Common routine for handling connect() and sctp_connectx(). 1163 * Connect will come in with just a single address. 1164 */ 1165 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1166 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1167 { 1168 struct sctp_sock *sp = sctp_sk(sk); 1169 struct sctp_endpoint *ep = sp->ep; 1170 struct sctp_transport *transport; 1171 struct sctp_association *asoc; 1172 void *addr_buf = kaddrs; 1173 union sctp_addr *daddr; 1174 struct sctp_af *af; 1175 int walk_size, err; 1176 long timeo; 1177 1178 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1179 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1180 return -EISCONN; 1181 1182 daddr = addr_buf; 1183 af = sctp_get_af_specific(daddr->sa.sa_family); 1184 if (!af || af->sockaddr_len > addrs_size) 1185 return -EINVAL; 1186 1187 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1188 if (err) 1189 return err; 1190 1191 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1192 if (asoc) 1193 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1194 : -EALREADY; 1195 1196 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1197 if (err) 1198 return err; 1199 asoc = transport->asoc; 1200 1201 addr_buf += af->sockaddr_len; 1202 walk_size = af->sockaddr_len; 1203 while (walk_size < addrs_size) { 1204 err = -EINVAL; 1205 if (walk_size + sizeof(sa_family_t) > addrs_size) 1206 goto out_free; 1207 1208 daddr = addr_buf; 1209 af = sctp_get_af_specific(daddr->sa.sa_family); 1210 if (!af || af->sockaddr_len + walk_size > addrs_size) 1211 goto out_free; 1212 1213 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1214 goto out_free; 1215 1216 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1217 if (err) 1218 goto out_free; 1219 1220 addr_buf += af->sockaddr_len; 1221 walk_size += af->sockaddr_len; 1222 } 1223 1224 /* In case the user of sctp_connectx() wants an association 1225 * id back, assign one now. 1226 */ 1227 if (assoc_id) { 1228 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1229 if (err < 0) 1230 goto out_free; 1231 } 1232 1233 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1234 if (err < 0) 1235 goto out_free; 1236 1237 /* Initialize sk's dport and daddr for getpeername() */ 1238 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1239 sp->pf->to_sk_daddr(daddr, sk); 1240 sk->sk_err = 0; 1241 1242 if (assoc_id) 1243 *assoc_id = asoc->assoc_id; 1244 1245 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1246 return sctp_wait_for_connect(asoc, &timeo); 1247 1248 out_free: 1249 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1250 __func__, asoc, kaddrs, err); 1251 sctp_association_free(asoc); 1252 return err; 1253 } 1254 1255 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1256 * 1257 * API 8.9 1258 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1259 * sctp_assoc_t *asoc); 1260 * 1261 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1262 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1263 * or IPv6 addresses. 1264 * 1265 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1266 * Section 3.1.2 for this usage. 1267 * 1268 * addrs is a pointer to an array of one or more socket addresses. Each 1269 * address is contained in its appropriate structure (i.e. struct 1270 * sockaddr_in or struct sockaddr_in6) the family of the address type 1271 * must be used to distengish the address length (note that this 1272 * representation is termed a "packed array" of addresses). The caller 1273 * specifies the number of addresses in the array with addrcnt. 1274 * 1275 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1276 * the association id of the new association. On failure, sctp_connectx() 1277 * returns -1, and sets errno to the appropriate error code. The assoc_id 1278 * is not touched by the kernel. 1279 * 1280 * For SCTP, the port given in each socket address must be the same, or 1281 * sctp_connectx() will fail, setting errno to EINVAL. 1282 * 1283 * An application can use sctp_connectx to initiate an association with 1284 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1285 * allows a caller to specify multiple addresses at which a peer can be 1286 * reached. The way the SCTP stack uses the list of addresses to set up 1287 * the association is implementation dependent. This function only 1288 * specifies that the stack will try to make use of all the addresses in 1289 * the list when needed. 1290 * 1291 * Note that the list of addresses passed in is only used for setting up 1292 * the association. It does not necessarily equal the set of addresses 1293 * the peer uses for the resulting association. If the caller wants to 1294 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1295 * retrieve them after the association has been set up. 1296 * 1297 * Basically do nothing but copying the addresses from user to kernel 1298 * land and invoking either sctp_connectx(). This is used for tunneling 1299 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1300 * 1301 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1302 * it. 1303 * 1304 * sk The sk of the socket 1305 * addrs The pointer to the addresses 1306 * addrssize Size of the addrs buffer 1307 * 1308 * Returns >=0 if ok, <0 errno code on error. 1309 */ 1310 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1311 int addrs_size, sctp_assoc_t *assoc_id) 1312 { 1313 int err = 0, flags = 0; 1314 1315 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1316 __func__, sk, kaddrs, addrs_size); 1317 1318 /* make sure the 1st addr's sa_family is accessible later */ 1319 if (unlikely(addrs_size < sizeof(sa_family_t))) 1320 return -EINVAL; 1321 1322 /* Allow security module to validate connectx addresses. */ 1323 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1324 (struct sockaddr *)kaddrs, 1325 addrs_size); 1326 if (err) 1327 return err; 1328 1329 /* in-kernel sockets don't generally have a file allocated to them 1330 * if all they do is call sock_create_kern(). 1331 */ 1332 if (sk->sk_socket->file) 1333 flags = sk->sk_socket->file->f_flags; 1334 1335 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1336 } 1337 1338 /* 1339 * This is an older interface. It's kept for backward compatibility 1340 * to the option that doesn't provide association id. 1341 */ 1342 static int sctp_setsockopt_connectx_old(struct sock *sk, 1343 struct sockaddr *kaddrs, 1344 int addrs_size) 1345 { 1346 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1347 } 1348 1349 /* 1350 * New interface for the API. The since the API is done with a socket 1351 * option, to make it simple we feed back the association id is as a return 1352 * indication to the call. Error is always negative and association id is 1353 * always positive. 1354 */ 1355 static int sctp_setsockopt_connectx(struct sock *sk, 1356 struct sockaddr *kaddrs, 1357 int addrs_size) 1358 { 1359 sctp_assoc_t assoc_id = 0; 1360 int err = 0; 1361 1362 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1363 1364 if (err) 1365 return err; 1366 else 1367 return assoc_id; 1368 } 1369 1370 /* 1371 * New (hopefully final) interface for the API. 1372 * We use the sctp_getaddrs_old structure so that use-space library 1373 * can avoid any unnecessary allocations. The only different part 1374 * is that we store the actual length of the address buffer into the 1375 * addrs_num structure member. That way we can re-use the existing 1376 * code. 1377 */ 1378 #ifdef CONFIG_COMPAT 1379 struct compat_sctp_getaddrs_old { 1380 sctp_assoc_t assoc_id; 1381 s32 addr_num; 1382 compat_uptr_t addrs; /* struct sockaddr * */ 1383 }; 1384 #endif 1385 1386 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1387 char __user *optval, 1388 int __user *optlen) 1389 { 1390 struct sctp_getaddrs_old param; 1391 sctp_assoc_t assoc_id = 0; 1392 struct sockaddr *kaddrs; 1393 int err = 0; 1394 1395 #ifdef CONFIG_COMPAT 1396 if (in_compat_syscall()) { 1397 struct compat_sctp_getaddrs_old param32; 1398 1399 if (len < sizeof(param32)) 1400 return -EINVAL; 1401 if (copy_from_user(¶m32, optval, sizeof(param32))) 1402 return -EFAULT; 1403 1404 param.assoc_id = param32.assoc_id; 1405 param.addr_num = param32.addr_num; 1406 param.addrs = compat_ptr(param32.addrs); 1407 } else 1408 #endif 1409 { 1410 if (len < sizeof(param)) 1411 return -EINVAL; 1412 if (copy_from_user(¶m, optval, sizeof(param))) 1413 return -EFAULT; 1414 } 1415 1416 kaddrs = memdup_user(param.addrs, param.addr_num); 1417 if (IS_ERR(kaddrs)) 1418 return PTR_ERR(kaddrs); 1419 1420 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1421 kfree(kaddrs); 1422 if (err == 0 || err == -EINPROGRESS) { 1423 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1424 return -EFAULT; 1425 if (put_user(sizeof(assoc_id), optlen)) 1426 return -EFAULT; 1427 } 1428 1429 return err; 1430 } 1431 1432 /* API 3.1.4 close() - UDP Style Syntax 1433 * Applications use close() to perform graceful shutdown (as described in 1434 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1435 * by a UDP-style socket. 1436 * 1437 * The syntax is 1438 * 1439 * ret = close(int sd); 1440 * 1441 * sd - the socket descriptor of the associations to be closed. 1442 * 1443 * To gracefully shutdown a specific association represented by the 1444 * UDP-style socket, an application should use the sendmsg() call, 1445 * passing no user data, but including the appropriate flag in the 1446 * ancillary data (see Section xxxx). 1447 * 1448 * If sd in the close() call is a branched-off socket representing only 1449 * one association, the shutdown is performed on that association only. 1450 * 1451 * 4.1.6 close() - TCP Style Syntax 1452 * 1453 * Applications use close() to gracefully close down an association. 1454 * 1455 * The syntax is: 1456 * 1457 * int close(int sd); 1458 * 1459 * sd - the socket descriptor of the association to be closed. 1460 * 1461 * After an application calls close() on a socket descriptor, no further 1462 * socket operations will succeed on that descriptor. 1463 * 1464 * API 7.1.4 SO_LINGER 1465 * 1466 * An application using the TCP-style socket can use this option to 1467 * perform the SCTP ABORT primitive. The linger option structure is: 1468 * 1469 * struct linger { 1470 * int l_onoff; // option on/off 1471 * int l_linger; // linger time 1472 * }; 1473 * 1474 * To enable the option, set l_onoff to 1. If the l_linger value is set 1475 * to 0, calling close() is the same as the ABORT primitive. If the 1476 * value is set to a negative value, the setsockopt() call will return 1477 * an error. If the value is set to a positive value linger_time, the 1478 * close() can be blocked for at most linger_time ms. If the graceful 1479 * shutdown phase does not finish during this period, close() will 1480 * return but the graceful shutdown phase continues in the system. 1481 */ 1482 static void sctp_close(struct sock *sk, long timeout) 1483 { 1484 struct net *net = sock_net(sk); 1485 struct sctp_endpoint *ep; 1486 struct sctp_association *asoc; 1487 struct list_head *pos, *temp; 1488 unsigned int data_was_unread; 1489 1490 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1491 1492 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1493 sk->sk_shutdown = SHUTDOWN_MASK; 1494 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1495 1496 ep = sctp_sk(sk)->ep; 1497 1498 /* Clean up any skbs sitting on the receive queue. */ 1499 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1500 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1501 1502 /* Walk all associations on an endpoint. */ 1503 list_for_each_safe(pos, temp, &ep->asocs) { 1504 asoc = list_entry(pos, struct sctp_association, asocs); 1505 1506 if (sctp_style(sk, TCP)) { 1507 /* A closed association can still be in the list if 1508 * it belongs to a TCP-style listening socket that is 1509 * not yet accepted. If so, free it. If not, send an 1510 * ABORT or SHUTDOWN based on the linger options. 1511 */ 1512 if (sctp_state(asoc, CLOSED)) { 1513 sctp_association_free(asoc); 1514 continue; 1515 } 1516 } 1517 1518 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1519 !skb_queue_empty(&asoc->ulpq.reasm) || 1520 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1521 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1522 struct sctp_chunk *chunk; 1523 1524 chunk = sctp_make_abort_user(asoc, NULL, 0); 1525 sctp_primitive_ABORT(net, asoc, chunk); 1526 } else 1527 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1528 } 1529 1530 /* On a TCP-style socket, block for at most linger_time if set. */ 1531 if (sctp_style(sk, TCP) && timeout) 1532 sctp_wait_for_close(sk, timeout); 1533 1534 /* This will run the backlog queue. */ 1535 release_sock(sk); 1536 1537 /* Supposedly, no process has access to the socket, but 1538 * the net layers still may. 1539 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1540 * held and that should be grabbed before socket lock. 1541 */ 1542 spin_lock_bh(&net->sctp.addr_wq_lock); 1543 bh_lock_sock_nested(sk); 1544 1545 /* Hold the sock, since sk_common_release() will put sock_put() 1546 * and we have just a little more cleanup. 1547 */ 1548 sock_hold(sk); 1549 sk_common_release(sk); 1550 1551 bh_unlock_sock(sk); 1552 spin_unlock_bh(&net->sctp.addr_wq_lock); 1553 1554 sock_put(sk); 1555 1556 SCTP_DBG_OBJCNT_DEC(sock); 1557 } 1558 1559 /* Handle EPIPE error. */ 1560 static int sctp_error(struct sock *sk, int flags, int err) 1561 { 1562 if (err == -EPIPE) 1563 err = sock_error(sk) ? : -EPIPE; 1564 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1565 send_sig(SIGPIPE, current, 0); 1566 return err; 1567 } 1568 1569 /* API 3.1.3 sendmsg() - UDP Style Syntax 1570 * 1571 * An application uses sendmsg() and recvmsg() calls to transmit data to 1572 * and receive data from its peer. 1573 * 1574 * ssize_t sendmsg(int socket, const struct msghdr *message, 1575 * int flags); 1576 * 1577 * socket - the socket descriptor of the endpoint. 1578 * message - pointer to the msghdr structure which contains a single 1579 * user message and possibly some ancillary data. 1580 * 1581 * See Section 5 for complete description of the data 1582 * structures. 1583 * 1584 * flags - flags sent or received with the user message, see Section 1585 * 5 for complete description of the flags. 1586 * 1587 * Note: This function could use a rewrite especially when explicit 1588 * connect support comes in. 1589 */ 1590 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1591 1592 static int sctp_msghdr_parse(const struct msghdr *msg, 1593 struct sctp_cmsgs *cmsgs); 1594 1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1596 struct sctp_sndrcvinfo *srinfo, 1597 const struct msghdr *msg, size_t msg_len) 1598 { 1599 __u16 sflags; 1600 int err; 1601 1602 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1603 return -EPIPE; 1604 1605 if (msg_len > sk->sk_sndbuf) 1606 return -EMSGSIZE; 1607 1608 memset(cmsgs, 0, sizeof(*cmsgs)); 1609 err = sctp_msghdr_parse(msg, cmsgs); 1610 if (err) { 1611 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1612 return err; 1613 } 1614 1615 memset(srinfo, 0, sizeof(*srinfo)); 1616 if (cmsgs->srinfo) { 1617 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1618 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1619 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1620 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1621 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1622 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1623 } 1624 1625 if (cmsgs->sinfo) { 1626 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1627 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1628 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1629 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1630 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1631 } 1632 1633 if (cmsgs->prinfo) { 1634 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1635 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1636 cmsgs->prinfo->pr_policy); 1637 } 1638 1639 sflags = srinfo->sinfo_flags; 1640 if (!sflags && msg_len) 1641 return 0; 1642 1643 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1644 return -EINVAL; 1645 1646 if (((sflags & SCTP_EOF) && msg_len > 0) || 1647 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1648 return -EINVAL; 1649 1650 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1651 return -EINVAL; 1652 1653 return 0; 1654 } 1655 1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1657 struct sctp_cmsgs *cmsgs, 1658 union sctp_addr *daddr, 1659 struct sctp_transport **tp) 1660 { 1661 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1662 struct sctp_association *asoc; 1663 struct cmsghdr *cmsg; 1664 __be32 flowinfo = 0; 1665 struct sctp_af *af; 1666 int err; 1667 1668 *tp = NULL; 1669 1670 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1671 return -EINVAL; 1672 1673 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1674 sctp_sstate(sk, CLOSING))) 1675 return -EADDRNOTAVAIL; 1676 1677 /* Label connection socket for first association 1-to-many 1678 * style for client sequence socket()->sendmsg(). This 1679 * needs to be done before sctp_assoc_add_peer() as that will 1680 * set up the initial packet that needs to account for any 1681 * security ip options (CIPSO/CALIPSO) added to the packet. 1682 */ 1683 af = sctp_get_af_specific(daddr->sa.sa_family); 1684 if (!af) 1685 return -EINVAL; 1686 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1687 (struct sockaddr *)daddr, 1688 af->sockaddr_len); 1689 if (err < 0) 1690 return err; 1691 1692 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1693 if (err) 1694 return err; 1695 asoc = (*tp)->asoc; 1696 1697 if (!cmsgs->addrs_msg) 1698 return 0; 1699 1700 if (daddr->sa.sa_family == AF_INET6) 1701 flowinfo = daddr->v6.sin6_flowinfo; 1702 1703 /* sendv addr list parse */ 1704 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1705 union sctp_addr _daddr; 1706 int dlen; 1707 1708 if (cmsg->cmsg_level != IPPROTO_SCTP || 1709 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1710 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1711 continue; 1712 1713 daddr = &_daddr; 1714 memset(daddr, 0, sizeof(*daddr)); 1715 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1716 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1717 if (dlen < sizeof(struct in_addr)) { 1718 err = -EINVAL; 1719 goto free; 1720 } 1721 1722 dlen = sizeof(struct in_addr); 1723 daddr->v4.sin_family = AF_INET; 1724 daddr->v4.sin_port = htons(asoc->peer.port); 1725 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1726 } else { 1727 if (dlen < sizeof(struct in6_addr)) { 1728 err = -EINVAL; 1729 goto free; 1730 } 1731 1732 dlen = sizeof(struct in6_addr); 1733 daddr->v6.sin6_flowinfo = flowinfo; 1734 daddr->v6.sin6_family = AF_INET6; 1735 daddr->v6.sin6_port = htons(asoc->peer.port); 1736 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1737 } 1738 1739 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1740 if (err) 1741 goto free; 1742 } 1743 1744 return 0; 1745 1746 free: 1747 sctp_association_free(asoc); 1748 return err; 1749 } 1750 1751 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1752 __u16 sflags, struct msghdr *msg, 1753 size_t msg_len) 1754 { 1755 struct sock *sk = asoc->base.sk; 1756 struct net *net = sock_net(sk); 1757 1758 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1759 return -EPIPE; 1760 1761 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1762 !sctp_state(asoc, ESTABLISHED)) 1763 return 0; 1764 1765 if (sflags & SCTP_EOF) { 1766 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1767 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1768 1769 return 0; 1770 } 1771 1772 if (sflags & SCTP_ABORT) { 1773 struct sctp_chunk *chunk; 1774 1775 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1776 if (!chunk) 1777 return -ENOMEM; 1778 1779 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1780 sctp_primitive_ABORT(net, asoc, chunk); 1781 iov_iter_revert(&msg->msg_iter, msg_len); 1782 1783 return 0; 1784 } 1785 1786 return 1; 1787 } 1788 1789 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1790 struct msghdr *msg, size_t msg_len, 1791 struct sctp_transport *transport, 1792 struct sctp_sndrcvinfo *sinfo) 1793 { 1794 struct sock *sk = asoc->base.sk; 1795 struct sctp_sock *sp = sctp_sk(sk); 1796 struct net *net = sock_net(sk); 1797 struct sctp_datamsg *datamsg; 1798 bool wait_connect = false; 1799 struct sctp_chunk *chunk; 1800 long timeo; 1801 int err; 1802 1803 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1804 err = -EINVAL; 1805 goto err; 1806 } 1807 1808 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1809 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1810 if (err) 1811 goto err; 1812 } 1813 1814 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1815 err = -EMSGSIZE; 1816 goto err; 1817 } 1818 1819 if (asoc->pmtu_pending) { 1820 if (sp->param_flags & SPP_PMTUD_ENABLE) 1821 sctp_assoc_sync_pmtu(asoc); 1822 asoc->pmtu_pending = 0; 1823 } 1824 1825 if (sctp_wspace(asoc) < (int)msg_len) 1826 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1827 1828 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1829 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1830 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1831 if (err) 1832 goto err; 1833 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) { 1834 err = -EINVAL; 1835 goto err; 1836 } 1837 } 1838 1839 if (sctp_state(asoc, CLOSED)) { 1840 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1841 if (err) 1842 goto err; 1843 1844 if (asoc->ep->intl_enable) { 1845 timeo = sock_sndtimeo(sk, 0); 1846 err = sctp_wait_for_connect(asoc, &timeo); 1847 if (err) { 1848 err = -ESRCH; 1849 goto err; 1850 } 1851 } else { 1852 wait_connect = true; 1853 } 1854 1855 pr_debug("%s: we associated primitively\n", __func__); 1856 } 1857 1858 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1859 if (IS_ERR(datamsg)) { 1860 err = PTR_ERR(datamsg); 1861 goto err; 1862 } 1863 1864 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1865 1866 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1867 sctp_chunk_hold(chunk); 1868 sctp_set_owner_w(chunk); 1869 chunk->transport = transport; 1870 } 1871 1872 err = sctp_primitive_SEND(net, asoc, datamsg); 1873 if (err) { 1874 sctp_datamsg_free(datamsg); 1875 goto err; 1876 } 1877 1878 pr_debug("%s: we sent primitively\n", __func__); 1879 1880 sctp_datamsg_put(datamsg); 1881 1882 if (unlikely(wait_connect)) { 1883 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1884 sctp_wait_for_connect(asoc, &timeo); 1885 } 1886 1887 err = msg_len; 1888 1889 err: 1890 return err; 1891 } 1892 1893 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1894 const struct msghdr *msg, 1895 struct sctp_cmsgs *cmsgs) 1896 { 1897 union sctp_addr *daddr = NULL; 1898 int err; 1899 1900 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1901 int len = msg->msg_namelen; 1902 1903 if (len > sizeof(*daddr)) 1904 len = sizeof(*daddr); 1905 1906 daddr = (union sctp_addr *)msg->msg_name; 1907 1908 err = sctp_verify_addr(sk, daddr, len); 1909 if (err) 1910 return ERR_PTR(err); 1911 } 1912 1913 return daddr; 1914 } 1915 1916 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1917 struct sctp_sndrcvinfo *sinfo, 1918 struct sctp_cmsgs *cmsgs) 1919 { 1920 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1921 sinfo->sinfo_stream = asoc->default_stream; 1922 sinfo->sinfo_ppid = asoc->default_ppid; 1923 sinfo->sinfo_context = asoc->default_context; 1924 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1925 1926 if (!cmsgs->prinfo) 1927 sinfo->sinfo_flags = asoc->default_flags; 1928 } 1929 1930 if (!cmsgs->srinfo && !cmsgs->prinfo) 1931 sinfo->sinfo_timetolive = asoc->default_timetolive; 1932 1933 if (cmsgs->authinfo) { 1934 /* Reuse sinfo_tsn to indicate that authinfo was set and 1935 * sinfo_ssn to save the keyid on tx path. 1936 */ 1937 sinfo->sinfo_tsn = 1; 1938 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1939 } 1940 } 1941 1942 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1943 { 1944 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1945 struct sctp_transport *transport = NULL; 1946 struct sctp_sndrcvinfo _sinfo, *sinfo; 1947 struct sctp_association *asoc, *tmp; 1948 struct sctp_cmsgs cmsgs; 1949 union sctp_addr *daddr; 1950 bool new = false; 1951 __u16 sflags; 1952 int err; 1953 1954 /* Parse and get snd_info */ 1955 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1956 if (err) 1957 goto out; 1958 1959 sinfo = &_sinfo; 1960 sflags = sinfo->sinfo_flags; 1961 1962 /* Get daddr from msg */ 1963 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1964 if (IS_ERR(daddr)) { 1965 err = PTR_ERR(daddr); 1966 goto out; 1967 } 1968 1969 lock_sock(sk); 1970 1971 /* SCTP_SENDALL process */ 1972 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1973 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1974 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1975 msg_len); 1976 if (err == 0) 1977 continue; 1978 if (err < 0) 1979 goto out_unlock; 1980 1981 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1982 1983 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1984 NULL, sinfo); 1985 if (err < 0) 1986 goto out_unlock; 1987 1988 iov_iter_revert(&msg->msg_iter, err); 1989 } 1990 1991 goto out_unlock; 1992 } 1993 1994 /* Get and check or create asoc */ 1995 if (daddr) { 1996 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1997 if (asoc) { 1998 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1999 msg_len); 2000 if (err <= 0) 2001 goto out_unlock; 2002 } else { 2003 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2004 &transport); 2005 if (err) 2006 goto out_unlock; 2007 2008 asoc = transport->asoc; 2009 new = true; 2010 } 2011 2012 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2013 transport = NULL; 2014 } else { 2015 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2016 if (!asoc) { 2017 err = -EPIPE; 2018 goto out_unlock; 2019 } 2020 2021 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2022 if (err <= 0) 2023 goto out_unlock; 2024 } 2025 2026 /* Update snd_info with the asoc */ 2027 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2028 2029 /* Send msg to the asoc */ 2030 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2031 if (err < 0 && err != -ESRCH && new) 2032 sctp_association_free(asoc); 2033 2034 out_unlock: 2035 release_sock(sk); 2036 out: 2037 return sctp_error(sk, msg->msg_flags, err); 2038 } 2039 2040 /* This is an extended version of skb_pull() that removes the data from the 2041 * start of a skb even when data is spread across the list of skb's in the 2042 * frag_list. len specifies the total amount of data that needs to be removed. 2043 * when 'len' bytes could be removed from the skb, it returns 0. 2044 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2045 * could not be removed. 2046 */ 2047 static int sctp_skb_pull(struct sk_buff *skb, int len) 2048 { 2049 struct sk_buff *list; 2050 int skb_len = skb_headlen(skb); 2051 int rlen; 2052 2053 if (len <= skb_len) { 2054 __skb_pull(skb, len); 2055 return 0; 2056 } 2057 len -= skb_len; 2058 __skb_pull(skb, skb_len); 2059 2060 skb_walk_frags(skb, list) { 2061 rlen = sctp_skb_pull(list, len); 2062 skb->len -= (len-rlen); 2063 skb->data_len -= (len-rlen); 2064 2065 if (!rlen) 2066 return 0; 2067 2068 len = rlen; 2069 } 2070 2071 return len; 2072 } 2073 2074 /* API 3.1.3 recvmsg() - UDP Style Syntax 2075 * 2076 * ssize_t recvmsg(int socket, struct msghdr *message, 2077 * int flags); 2078 * 2079 * socket - the socket descriptor of the endpoint. 2080 * message - pointer to the msghdr structure which contains a single 2081 * user message and possibly some ancillary data. 2082 * 2083 * See Section 5 for complete description of the data 2084 * structures. 2085 * 2086 * flags - flags sent or received with the user message, see Section 2087 * 5 for complete description of the flags. 2088 */ 2089 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2090 int flags, int *addr_len) 2091 { 2092 struct sctp_ulpevent *event = NULL; 2093 struct sctp_sock *sp = sctp_sk(sk); 2094 struct sk_buff *skb, *head_skb; 2095 int copied; 2096 int err = 0; 2097 int skb_len; 2098 2099 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", 2100 __func__, sk, msg, len, flags, addr_len); 2101 2102 lock_sock(sk); 2103 2104 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2105 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2106 err = -ENOTCONN; 2107 goto out; 2108 } 2109 2110 skb = sctp_skb_recv_datagram(sk, flags, &err); 2111 if (!skb) 2112 goto out; 2113 2114 /* Get the total length of the skb including any skb's in the 2115 * frag_list. 2116 */ 2117 skb_len = skb->len; 2118 2119 copied = skb_len; 2120 if (copied > len) 2121 copied = len; 2122 2123 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2124 2125 event = sctp_skb2event(skb); 2126 2127 if (err) 2128 goto out_free; 2129 2130 if (event->chunk && event->chunk->head_skb) 2131 head_skb = event->chunk->head_skb; 2132 else 2133 head_skb = skb; 2134 sock_recv_cmsgs(msg, sk, head_skb); 2135 if (sctp_ulpevent_is_notification(event)) { 2136 msg->msg_flags |= MSG_NOTIFICATION; 2137 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2138 } else { 2139 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2140 } 2141 2142 /* Check if we allow SCTP_NXTINFO. */ 2143 if (sp->recvnxtinfo) 2144 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2145 /* Check if we allow SCTP_RCVINFO. */ 2146 if (sp->recvrcvinfo) 2147 sctp_ulpevent_read_rcvinfo(event, msg); 2148 /* Check if we allow SCTP_SNDRCVINFO. */ 2149 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2150 sctp_ulpevent_read_sndrcvinfo(event, msg); 2151 2152 err = copied; 2153 2154 /* If skb's length exceeds the user's buffer, update the skb and 2155 * push it back to the receive_queue so that the next call to 2156 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2157 */ 2158 if (skb_len > copied) { 2159 msg->msg_flags &= ~MSG_EOR; 2160 if (flags & MSG_PEEK) 2161 goto out_free; 2162 sctp_skb_pull(skb, copied); 2163 skb_queue_head(&sk->sk_receive_queue, skb); 2164 2165 /* When only partial message is copied to the user, increase 2166 * rwnd by that amount. If all the data in the skb is read, 2167 * rwnd is updated when the event is freed. 2168 */ 2169 if (!sctp_ulpevent_is_notification(event)) 2170 sctp_assoc_rwnd_increase(event->asoc, copied); 2171 goto out; 2172 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2173 (event->msg_flags & MSG_EOR)) 2174 msg->msg_flags |= MSG_EOR; 2175 else 2176 msg->msg_flags &= ~MSG_EOR; 2177 2178 out_free: 2179 if (flags & MSG_PEEK) { 2180 /* Release the skb reference acquired after peeking the skb in 2181 * sctp_skb_recv_datagram(). 2182 */ 2183 kfree_skb(skb); 2184 } else { 2185 /* Free the event which includes releasing the reference to 2186 * the owner of the skb, freeing the skb and updating the 2187 * rwnd. 2188 */ 2189 sctp_ulpevent_free(event); 2190 } 2191 out: 2192 release_sock(sk); 2193 return err; 2194 } 2195 2196 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2197 * 2198 * This option is a on/off flag. If enabled no SCTP message 2199 * fragmentation will be performed. Instead if a message being sent 2200 * exceeds the current PMTU size, the message will NOT be sent and 2201 * instead a error will be indicated to the user. 2202 */ 2203 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2204 unsigned int optlen) 2205 { 2206 if (optlen < sizeof(int)) 2207 return -EINVAL; 2208 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2209 return 0; 2210 } 2211 2212 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2213 unsigned int optlen) 2214 { 2215 struct sctp_sock *sp = sctp_sk(sk); 2216 struct sctp_association *asoc; 2217 int i; 2218 2219 if (optlen > sizeof(struct sctp_event_subscribe)) 2220 return -EINVAL; 2221 2222 for (i = 0; i < optlen; i++) 2223 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2224 sn_type[i]); 2225 2226 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2227 asoc->subscribe = sctp_sk(sk)->subscribe; 2228 2229 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2230 * if there is no data to be sent or retransmit, the stack will 2231 * immediately send up this notification. 2232 */ 2233 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2234 struct sctp_ulpevent *event; 2235 2236 asoc = sctp_id2assoc(sk, 0); 2237 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2238 event = sctp_ulpevent_make_sender_dry_event(asoc, 2239 GFP_USER | __GFP_NOWARN); 2240 if (!event) 2241 return -ENOMEM; 2242 2243 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2244 } 2245 } 2246 2247 return 0; 2248 } 2249 2250 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2251 * 2252 * This socket option is applicable to the UDP-style socket only. When 2253 * set it will cause associations that are idle for more than the 2254 * specified number of seconds to automatically close. An association 2255 * being idle is defined an association that has NOT sent or received 2256 * user data. The special value of '0' indicates that no automatic 2257 * close of any associations should be performed. The option expects an 2258 * integer defining the number of seconds of idle time before an 2259 * association is closed. 2260 */ 2261 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2262 unsigned int optlen) 2263 { 2264 struct sctp_sock *sp = sctp_sk(sk); 2265 struct net *net = sock_net(sk); 2266 2267 /* Applicable to UDP-style socket only */ 2268 if (sctp_style(sk, TCP)) 2269 return -EOPNOTSUPP; 2270 if (optlen != sizeof(int)) 2271 return -EINVAL; 2272 2273 sp->autoclose = *optval; 2274 if (sp->autoclose > net->sctp.max_autoclose) 2275 sp->autoclose = net->sctp.max_autoclose; 2276 2277 return 0; 2278 } 2279 2280 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2281 * 2282 * Applications can enable or disable heartbeats for any peer address of 2283 * an association, modify an address's heartbeat interval, force a 2284 * heartbeat to be sent immediately, and adjust the address's maximum 2285 * number of retransmissions sent before an address is considered 2286 * unreachable. The following structure is used to access and modify an 2287 * address's parameters: 2288 * 2289 * struct sctp_paddrparams { 2290 * sctp_assoc_t spp_assoc_id; 2291 * struct sockaddr_storage spp_address; 2292 * uint32_t spp_hbinterval; 2293 * uint16_t spp_pathmaxrxt; 2294 * uint32_t spp_pathmtu; 2295 * uint32_t spp_sackdelay; 2296 * uint32_t spp_flags; 2297 * uint32_t spp_ipv6_flowlabel; 2298 * uint8_t spp_dscp; 2299 * }; 2300 * 2301 * spp_assoc_id - (one-to-many style socket) This is filled in the 2302 * application, and identifies the association for 2303 * this query. 2304 * spp_address - This specifies which address is of interest. 2305 * spp_hbinterval - This contains the value of the heartbeat interval, 2306 * in milliseconds. If a value of zero 2307 * is present in this field then no changes are to 2308 * be made to this parameter. 2309 * spp_pathmaxrxt - This contains the maximum number of 2310 * retransmissions before this address shall be 2311 * considered unreachable. If a value of zero 2312 * is present in this field then no changes are to 2313 * be made to this parameter. 2314 * spp_pathmtu - When Path MTU discovery is disabled the value 2315 * specified here will be the "fixed" path mtu. 2316 * Note that if the spp_address field is empty 2317 * then all associations on this address will 2318 * have this fixed path mtu set upon them. 2319 * 2320 * spp_sackdelay - When delayed sack is enabled, this value specifies 2321 * the number of milliseconds that sacks will be delayed 2322 * for. This value will apply to all addresses of an 2323 * association if the spp_address field is empty. Note 2324 * also, that if delayed sack is enabled and this 2325 * value is set to 0, no change is made to the last 2326 * recorded delayed sack timer value. 2327 * 2328 * spp_flags - These flags are used to control various features 2329 * on an association. The flag field may contain 2330 * zero or more of the following options. 2331 * 2332 * SPP_HB_ENABLE - Enable heartbeats on the 2333 * specified address. Note that if the address 2334 * field is empty all addresses for the association 2335 * have heartbeats enabled upon them. 2336 * 2337 * SPP_HB_DISABLE - Disable heartbeats on the 2338 * speicifed address. Note that if the address 2339 * field is empty all addresses for the association 2340 * will have their heartbeats disabled. Note also 2341 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2342 * mutually exclusive, only one of these two should 2343 * be specified. Enabling both fields will have 2344 * undetermined results. 2345 * 2346 * SPP_HB_DEMAND - Request a user initiated heartbeat 2347 * to be made immediately. 2348 * 2349 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2350 * heartbeat delayis to be set to the value of 0 2351 * milliseconds. 2352 * 2353 * SPP_PMTUD_ENABLE - This field will enable PMTU 2354 * discovery upon the specified address. Note that 2355 * if the address feild is empty then all addresses 2356 * on the association are effected. 2357 * 2358 * SPP_PMTUD_DISABLE - This field will disable PMTU 2359 * discovery upon the specified address. Note that 2360 * if the address feild is empty then all addresses 2361 * on the association are effected. Not also that 2362 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2363 * exclusive. Enabling both will have undetermined 2364 * results. 2365 * 2366 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2367 * on delayed sack. The time specified in spp_sackdelay 2368 * is used to specify the sack delay for this address. Note 2369 * that if spp_address is empty then all addresses will 2370 * enable delayed sack and take on the sack delay 2371 * value specified in spp_sackdelay. 2372 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2373 * off delayed sack. If the spp_address field is blank then 2374 * delayed sack is disabled for the entire association. Note 2375 * also that this field is mutually exclusive to 2376 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2377 * results. 2378 * 2379 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2380 * setting of the IPV6 flow label value. The value is 2381 * contained in the spp_ipv6_flowlabel field. 2382 * Upon retrieval, this flag will be set to indicate that 2383 * the spp_ipv6_flowlabel field has a valid value returned. 2384 * If a specific destination address is set (in the 2385 * spp_address field), then the value returned is that of 2386 * the address. If just an association is specified (and 2387 * no address), then the association's default flow label 2388 * is returned. If neither an association nor a destination 2389 * is specified, then the socket's default flow label is 2390 * returned. For non-IPv6 sockets, this flag will be left 2391 * cleared. 2392 * 2393 * SPP_DSCP: Setting this flag enables the setting of the 2394 * Differentiated Services Code Point (DSCP) value 2395 * associated with either the association or a specific 2396 * address. The value is obtained in the spp_dscp field. 2397 * Upon retrieval, this flag will be set to indicate that 2398 * the spp_dscp field has a valid value returned. If a 2399 * specific destination address is set when called (in the 2400 * spp_address field), then that specific destination 2401 * address's DSCP value is returned. If just an association 2402 * is specified, then the association's default DSCP is 2403 * returned. If neither an association nor a destination is 2404 * specified, then the socket's default DSCP is returned. 2405 * 2406 * spp_ipv6_flowlabel 2407 * - This field is used in conjunction with the 2408 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2409 * The 20 least significant bits are used for the flow 2410 * label. This setting has precedence over any IPv6-layer 2411 * setting. 2412 * 2413 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2414 * and contains the DSCP. The 6 most significant bits are 2415 * used for the DSCP. This setting has precedence over any 2416 * IPv4- or IPv6- layer setting. 2417 */ 2418 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2419 struct sctp_transport *trans, 2420 struct sctp_association *asoc, 2421 struct sctp_sock *sp, 2422 int hb_change, 2423 int pmtud_change, 2424 int sackdelay_change) 2425 { 2426 int error; 2427 2428 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2429 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2430 trans->asoc, trans); 2431 if (error) 2432 return error; 2433 } 2434 2435 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2436 * this field is ignored. Note also that a value of zero indicates 2437 * the current setting should be left unchanged. 2438 */ 2439 if (params->spp_flags & SPP_HB_ENABLE) { 2440 2441 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2442 * set. This lets us use 0 value when this flag 2443 * is set. 2444 */ 2445 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2446 params->spp_hbinterval = 0; 2447 2448 if (params->spp_hbinterval || 2449 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2450 if (trans) { 2451 trans->hbinterval = 2452 msecs_to_jiffies(params->spp_hbinterval); 2453 } else if (asoc) { 2454 asoc->hbinterval = 2455 msecs_to_jiffies(params->spp_hbinterval); 2456 } else { 2457 sp->hbinterval = params->spp_hbinterval; 2458 } 2459 } 2460 } 2461 2462 if (hb_change) { 2463 if (trans) { 2464 trans->param_flags = 2465 (trans->param_flags & ~SPP_HB) | hb_change; 2466 } else if (asoc) { 2467 asoc->param_flags = 2468 (asoc->param_flags & ~SPP_HB) | hb_change; 2469 } else { 2470 sp->param_flags = 2471 (sp->param_flags & ~SPP_HB) | hb_change; 2472 } 2473 } 2474 2475 /* When Path MTU discovery is disabled the value specified here will 2476 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2477 * include the flag SPP_PMTUD_DISABLE for this field to have any 2478 * effect). 2479 */ 2480 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2481 if (trans) { 2482 trans->pathmtu = params->spp_pathmtu; 2483 sctp_assoc_sync_pmtu(asoc); 2484 } else if (asoc) { 2485 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2486 } else { 2487 sp->pathmtu = params->spp_pathmtu; 2488 } 2489 } 2490 2491 if (pmtud_change) { 2492 if (trans) { 2493 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2494 (params->spp_flags & SPP_PMTUD_ENABLE); 2495 trans->param_flags = 2496 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2497 if (update) { 2498 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2499 sctp_assoc_sync_pmtu(asoc); 2500 } 2501 sctp_transport_pl_reset(trans); 2502 } else if (asoc) { 2503 asoc->param_flags = 2504 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2505 } else { 2506 sp->param_flags = 2507 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2508 } 2509 } 2510 2511 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2512 * value of this field is ignored. Note also that a value of zero 2513 * indicates the current setting should be left unchanged. 2514 */ 2515 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2516 if (trans) { 2517 trans->sackdelay = 2518 msecs_to_jiffies(params->spp_sackdelay); 2519 } else if (asoc) { 2520 asoc->sackdelay = 2521 msecs_to_jiffies(params->spp_sackdelay); 2522 } else { 2523 sp->sackdelay = params->spp_sackdelay; 2524 } 2525 } 2526 2527 if (sackdelay_change) { 2528 if (trans) { 2529 trans->param_flags = 2530 (trans->param_flags & ~SPP_SACKDELAY) | 2531 sackdelay_change; 2532 } else if (asoc) { 2533 asoc->param_flags = 2534 (asoc->param_flags & ~SPP_SACKDELAY) | 2535 sackdelay_change; 2536 } else { 2537 sp->param_flags = 2538 (sp->param_flags & ~SPP_SACKDELAY) | 2539 sackdelay_change; 2540 } 2541 } 2542 2543 /* Note that a value of zero indicates the current setting should be 2544 left unchanged. 2545 */ 2546 if (params->spp_pathmaxrxt) { 2547 if (trans) { 2548 trans->pathmaxrxt = params->spp_pathmaxrxt; 2549 } else if (asoc) { 2550 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2551 } else { 2552 sp->pathmaxrxt = params->spp_pathmaxrxt; 2553 } 2554 } 2555 2556 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2557 if (trans) { 2558 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2559 trans->flowlabel = params->spp_ipv6_flowlabel & 2560 SCTP_FLOWLABEL_VAL_MASK; 2561 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2562 } 2563 } else if (asoc) { 2564 struct sctp_transport *t; 2565 2566 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2567 transports) { 2568 if (t->ipaddr.sa.sa_family != AF_INET6) 2569 continue; 2570 t->flowlabel = params->spp_ipv6_flowlabel & 2571 SCTP_FLOWLABEL_VAL_MASK; 2572 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2573 } 2574 asoc->flowlabel = params->spp_ipv6_flowlabel & 2575 SCTP_FLOWLABEL_VAL_MASK; 2576 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2577 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2578 sp->flowlabel = params->spp_ipv6_flowlabel & 2579 SCTP_FLOWLABEL_VAL_MASK; 2580 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2581 } 2582 } 2583 2584 if (params->spp_flags & SPP_DSCP) { 2585 if (trans) { 2586 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2587 trans->dscp |= SCTP_DSCP_SET_MASK; 2588 } else if (asoc) { 2589 struct sctp_transport *t; 2590 2591 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2592 transports) { 2593 t->dscp = params->spp_dscp & 2594 SCTP_DSCP_VAL_MASK; 2595 t->dscp |= SCTP_DSCP_SET_MASK; 2596 } 2597 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2598 asoc->dscp |= SCTP_DSCP_SET_MASK; 2599 } else { 2600 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2601 sp->dscp |= SCTP_DSCP_SET_MASK; 2602 } 2603 } 2604 2605 return 0; 2606 } 2607 2608 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2609 struct sctp_paddrparams *params, 2610 unsigned int optlen) 2611 { 2612 struct sctp_transport *trans = NULL; 2613 struct sctp_association *asoc = NULL; 2614 struct sctp_sock *sp = sctp_sk(sk); 2615 int error; 2616 int hb_change, pmtud_change, sackdelay_change; 2617 2618 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2619 spp_ipv6_flowlabel), 4)) { 2620 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2621 return -EINVAL; 2622 } else if (optlen != sizeof(*params)) { 2623 return -EINVAL; 2624 } 2625 2626 /* Validate flags and value parameters. */ 2627 hb_change = params->spp_flags & SPP_HB; 2628 pmtud_change = params->spp_flags & SPP_PMTUD; 2629 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2630 2631 if (hb_change == SPP_HB || 2632 pmtud_change == SPP_PMTUD || 2633 sackdelay_change == SPP_SACKDELAY || 2634 params->spp_sackdelay > 500 || 2635 (params->spp_pathmtu && 2636 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2637 return -EINVAL; 2638 2639 /* If an address other than INADDR_ANY is specified, and 2640 * no transport is found, then the request is invalid. 2641 */ 2642 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2643 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2644 params->spp_assoc_id); 2645 if (!trans) 2646 return -EINVAL; 2647 } 2648 2649 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2650 * socket is a one to many style socket, and an association 2651 * was not found, then the id was invalid. 2652 */ 2653 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2654 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2655 sctp_style(sk, UDP)) 2656 return -EINVAL; 2657 2658 /* Heartbeat demand can only be sent on a transport or 2659 * association, but not a socket. 2660 */ 2661 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2662 return -EINVAL; 2663 2664 /* Process parameters. */ 2665 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2666 hb_change, pmtud_change, 2667 sackdelay_change); 2668 2669 if (error) 2670 return error; 2671 2672 /* If changes are for association, also apply parameters to each 2673 * transport. 2674 */ 2675 if (!trans && asoc) { 2676 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2677 transports) { 2678 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2679 hb_change, pmtud_change, 2680 sackdelay_change); 2681 } 2682 } 2683 2684 return 0; 2685 } 2686 2687 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2688 { 2689 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2690 } 2691 2692 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2693 { 2694 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2695 } 2696 2697 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2698 struct sctp_association *asoc) 2699 { 2700 struct sctp_transport *trans; 2701 2702 if (params->sack_delay) { 2703 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2704 asoc->param_flags = 2705 sctp_spp_sackdelay_enable(asoc->param_flags); 2706 } 2707 if (params->sack_freq == 1) { 2708 asoc->param_flags = 2709 sctp_spp_sackdelay_disable(asoc->param_flags); 2710 } else if (params->sack_freq > 1) { 2711 asoc->sackfreq = params->sack_freq; 2712 asoc->param_flags = 2713 sctp_spp_sackdelay_enable(asoc->param_flags); 2714 } 2715 2716 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2717 transports) { 2718 if (params->sack_delay) { 2719 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2720 trans->param_flags = 2721 sctp_spp_sackdelay_enable(trans->param_flags); 2722 } 2723 if (params->sack_freq == 1) { 2724 trans->param_flags = 2725 sctp_spp_sackdelay_disable(trans->param_flags); 2726 } else if (params->sack_freq > 1) { 2727 trans->sackfreq = params->sack_freq; 2728 trans->param_flags = 2729 sctp_spp_sackdelay_enable(trans->param_flags); 2730 } 2731 } 2732 } 2733 2734 /* 2735 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2736 * 2737 * This option will effect the way delayed acks are performed. This 2738 * option allows you to get or set the delayed ack time, in 2739 * milliseconds. It also allows changing the delayed ack frequency. 2740 * Changing the frequency to 1 disables the delayed sack algorithm. If 2741 * the assoc_id is 0, then this sets or gets the endpoints default 2742 * values. If the assoc_id field is non-zero, then the set or get 2743 * effects the specified association for the one to many model (the 2744 * assoc_id field is ignored by the one to one model). Note that if 2745 * sack_delay or sack_freq are 0 when setting this option, then the 2746 * current values will remain unchanged. 2747 * 2748 * struct sctp_sack_info { 2749 * sctp_assoc_t sack_assoc_id; 2750 * uint32_t sack_delay; 2751 * uint32_t sack_freq; 2752 * }; 2753 * 2754 * sack_assoc_id - This parameter, indicates which association the user 2755 * is performing an action upon. Note that if this field's value is 2756 * zero then the endpoints default value is changed (effecting future 2757 * associations only). 2758 * 2759 * sack_delay - This parameter contains the number of milliseconds that 2760 * the user is requesting the delayed ACK timer be set to. Note that 2761 * this value is defined in the standard to be between 200 and 500 2762 * milliseconds. 2763 * 2764 * sack_freq - This parameter contains the number of packets that must 2765 * be received before a sack is sent without waiting for the delay 2766 * timer to expire. The default value for this is 2, setting this 2767 * value to 1 will disable the delayed sack algorithm. 2768 */ 2769 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2770 struct sctp_sack_info *params) 2771 { 2772 struct sctp_sock *sp = sctp_sk(sk); 2773 struct sctp_association *asoc; 2774 2775 /* Validate value parameter. */ 2776 if (params->sack_delay > 500) 2777 return -EINVAL; 2778 2779 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2780 * socket is a one to many style socket, and an association 2781 * was not found, then the id was invalid. 2782 */ 2783 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2784 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2785 sctp_style(sk, UDP)) 2786 return -EINVAL; 2787 2788 if (asoc) { 2789 sctp_apply_asoc_delayed_ack(params, asoc); 2790 2791 return 0; 2792 } 2793 2794 if (sctp_style(sk, TCP)) 2795 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2796 2797 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2798 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2799 if (params->sack_delay) { 2800 sp->sackdelay = params->sack_delay; 2801 sp->param_flags = 2802 sctp_spp_sackdelay_enable(sp->param_flags); 2803 } 2804 if (params->sack_freq == 1) { 2805 sp->param_flags = 2806 sctp_spp_sackdelay_disable(sp->param_flags); 2807 } else if (params->sack_freq > 1) { 2808 sp->sackfreq = params->sack_freq; 2809 sp->param_flags = 2810 sctp_spp_sackdelay_enable(sp->param_flags); 2811 } 2812 } 2813 2814 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2815 params->sack_assoc_id == SCTP_ALL_ASSOC) 2816 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2817 sctp_apply_asoc_delayed_ack(params, asoc); 2818 2819 return 0; 2820 } 2821 2822 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2823 struct sctp_sack_info *params, 2824 unsigned int optlen) 2825 { 2826 if (optlen == sizeof(struct sctp_assoc_value)) { 2827 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2828 struct sctp_sack_info p; 2829 2830 pr_warn_ratelimited(DEPRECATED 2831 "%s (pid %d) " 2832 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2833 "Use struct sctp_sack_info instead\n", 2834 current->comm, task_pid_nr(current)); 2835 2836 p.sack_assoc_id = v->assoc_id; 2837 p.sack_delay = v->assoc_value; 2838 p.sack_freq = v->assoc_value ? 0 : 1; 2839 return __sctp_setsockopt_delayed_ack(sk, &p); 2840 } 2841 2842 if (optlen != sizeof(struct sctp_sack_info)) 2843 return -EINVAL; 2844 if (params->sack_delay == 0 && params->sack_freq == 0) 2845 return 0; 2846 return __sctp_setsockopt_delayed_ack(sk, params); 2847 } 2848 2849 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2850 * 2851 * Applications can specify protocol parameters for the default association 2852 * initialization. The option name argument to setsockopt() and getsockopt() 2853 * is SCTP_INITMSG. 2854 * 2855 * Setting initialization parameters is effective only on an unconnected 2856 * socket (for UDP-style sockets only future associations are effected 2857 * by the change). With TCP-style sockets, this option is inherited by 2858 * sockets derived from a listener socket. 2859 */ 2860 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2861 unsigned int optlen) 2862 { 2863 struct sctp_sock *sp = sctp_sk(sk); 2864 2865 if (optlen != sizeof(struct sctp_initmsg)) 2866 return -EINVAL; 2867 2868 if (sinit->sinit_num_ostreams) 2869 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2870 if (sinit->sinit_max_instreams) 2871 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2872 if (sinit->sinit_max_attempts) 2873 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2874 if (sinit->sinit_max_init_timeo) 2875 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2876 2877 return 0; 2878 } 2879 2880 /* 2881 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2882 * 2883 * Applications that wish to use the sendto() system call may wish to 2884 * specify a default set of parameters that would normally be supplied 2885 * through the inclusion of ancillary data. This socket option allows 2886 * such an application to set the default sctp_sndrcvinfo structure. 2887 * The application that wishes to use this socket option simply passes 2888 * in to this call the sctp_sndrcvinfo structure defined in Section 2889 * 5.2.2) The input parameters accepted by this call include 2890 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2891 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2892 * to this call if the caller is using the UDP model. 2893 */ 2894 static int sctp_setsockopt_default_send_param(struct sock *sk, 2895 struct sctp_sndrcvinfo *info, 2896 unsigned int optlen) 2897 { 2898 struct sctp_sock *sp = sctp_sk(sk); 2899 struct sctp_association *asoc; 2900 2901 if (optlen != sizeof(*info)) 2902 return -EINVAL; 2903 if (info->sinfo_flags & 2904 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2905 SCTP_ABORT | SCTP_EOF)) 2906 return -EINVAL; 2907 2908 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2909 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2910 sctp_style(sk, UDP)) 2911 return -EINVAL; 2912 2913 if (asoc) { 2914 asoc->default_stream = info->sinfo_stream; 2915 asoc->default_flags = info->sinfo_flags; 2916 asoc->default_ppid = info->sinfo_ppid; 2917 asoc->default_context = info->sinfo_context; 2918 asoc->default_timetolive = info->sinfo_timetolive; 2919 2920 return 0; 2921 } 2922 2923 if (sctp_style(sk, TCP)) 2924 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2925 2926 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2927 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2928 sp->default_stream = info->sinfo_stream; 2929 sp->default_flags = info->sinfo_flags; 2930 sp->default_ppid = info->sinfo_ppid; 2931 sp->default_context = info->sinfo_context; 2932 sp->default_timetolive = info->sinfo_timetolive; 2933 } 2934 2935 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2936 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2937 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2938 asoc->default_stream = info->sinfo_stream; 2939 asoc->default_flags = info->sinfo_flags; 2940 asoc->default_ppid = info->sinfo_ppid; 2941 asoc->default_context = info->sinfo_context; 2942 asoc->default_timetolive = info->sinfo_timetolive; 2943 } 2944 } 2945 2946 return 0; 2947 } 2948 2949 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2950 * (SCTP_DEFAULT_SNDINFO) 2951 */ 2952 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2953 struct sctp_sndinfo *info, 2954 unsigned int optlen) 2955 { 2956 struct sctp_sock *sp = sctp_sk(sk); 2957 struct sctp_association *asoc; 2958 2959 if (optlen != sizeof(*info)) 2960 return -EINVAL; 2961 if (info->snd_flags & 2962 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2963 SCTP_ABORT | SCTP_EOF)) 2964 return -EINVAL; 2965 2966 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2967 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2968 sctp_style(sk, UDP)) 2969 return -EINVAL; 2970 2971 if (asoc) { 2972 asoc->default_stream = info->snd_sid; 2973 asoc->default_flags = info->snd_flags; 2974 asoc->default_ppid = info->snd_ppid; 2975 asoc->default_context = info->snd_context; 2976 2977 return 0; 2978 } 2979 2980 if (sctp_style(sk, TCP)) 2981 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2982 2983 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2984 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2985 sp->default_stream = info->snd_sid; 2986 sp->default_flags = info->snd_flags; 2987 sp->default_ppid = info->snd_ppid; 2988 sp->default_context = info->snd_context; 2989 } 2990 2991 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2992 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2993 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2994 asoc->default_stream = info->snd_sid; 2995 asoc->default_flags = info->snd_flags; 2996 asoc->default_ppid = info->snd_ppid; 2997 asoc->default_context = info->snd_context; 2998 } 2999 } 3000 3001 return 0; 3002 } 3003 3004 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3005 * 3006 * Requests that the local SCTP stack use the enclosed peer address as 3007 * the association primary. The enclosed address must be one of the 3008 * association peer's addresses. 3009 */ 3010 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3011 unsigned int optlen) 3012 { 3013 struct sctp_transport *trans; 3014 struct sctp_af *af; 3015 int err; 3016 3017 if (optlen != sizeof(struct sctp_prim)) 3018 return -EINVAL; 3019 3020 /* Allow security module to validate address but need address len. */ 3021 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3022 if (!af) 3023 return -EINVAL; 3024 3025 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3026 (struct sockaddr *)&prim->ssp_addr, 3027 af->sockaddr_len); 3028 if (err) 3029 return err; 3030 3031 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3032 if (!trans) 3033 return -EINVAL; 3034 3035 sctp_assoc_set_primary(trans->asoc, trans); 3036 3037 return 0; 3038 } 3039 3040 /* 3041 * 7.1.5 SCTP_NODELAY 3042 * 3043 * Turn on/off any Nagle-like algorithm. This means that packets are 3044 * generally sent as soon as possible and no unnecessary delays are 3045 * introduced, at the cost of more packets in the network. Expects an 3046 * integer boolean flag. 3047 */ 3048 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3049 unsigned int optlen) 3050 { 3051 if (optlen < sizeof(int)) 3052 return -EINVAL; 3053 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3054 return 0; 3055 } 3056 3057 /* 3058 * 3059 * 7.1.1 SCTP_RTOINFO 3060 * 3061 * The protocol parameters used to initialize and bound retransmission 3062 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3063 * and modify these parameters. 3064 * All parameters are time values, in milliseconds. A value of 0, when 3065 * modifying the parameters, indicates that the current value should not 3066 * be changed. 3067 * 3068 */ 3069 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3070 struct sctp_rtoinfo *rtoinfo, 3071 unsigned int optlen) 3072 { 3073 struct sctp_association *asoc; 3074 unsigned long rto_min, rto_max; 3075 struct sctp_sock *sp = sctp_sk(sk); 3076 3077 if (optlen != sizeof (struct sctp_rtoinfo)) 3078 return -EINVAL; 3079 3080 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3081 3082 /* Set the values to the specific association */ 3083 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3084 sctp_style(sk, UDP)) 3085 return -EINVAL; 3086 3087 rto_max = rtoinfo->srto_max; 3088 rto_min = rtoinfo->srto_min; 3089 3090 if (rto_max) 3091 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3092 else 3093 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3094 3095 if (rto_min) 3096 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3097 else 3098 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3099 3100 if (rto_min > rto_max) 3101 return -EINVAL; 3102 3103 if (asoc) { 3104 if (rtoinfo->srto_initial != 0) 3105 asoc->rto_initial = 3106 msecs_to_jiffies(rtoinfo->srto_initial); 3107 asoc->rto_max = rto_max; 3108 asoc->rto_min = rto_min; 3109 } else { 3110 /* If there is no association or the association-id = 0 3111 * set the values to the endpoint. 3112 */ 3113 if (rtoinfo->srto_initial != 0) 3114 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3115 sp->rtoinfo.srto_max = rto_max; 3116 sp->rtoinfo.srto_min = rto_min; 3117 } 3118 3119 return 0; 3120 } 3121 3122 /* 3123 * 3124 * 7.1.2 SCTP_ASSOCINFO 3125 * 3126 * This option is used to tune the maximum retransmission attempts 3127 * of the association. 3128 * Returns an error if the new association retransmission value is 3129 * greater than the sum of the retransmission value of the peer. 3130 * See [SCTP] for more information. 3131 * 3132 */ 3133 static int sctp_setsockopt_associnfo(struct sock *sk, 3134 struct sctp_assocparams *assocparams, 3135 unsigned int optlen) 3136 { 3137 3138 struct sctp_association *asoc; 3139 3140 if (optlen != sizeof(struct sctp_assocparams)) 3141 return -EINVAL; 3142 3143 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3144 3145 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3146 sctp_style(sk, UDP)) 3147 return -EINVAL; 3148 3149 /* Set the values to the specific association */ 3150 if (asoc) { 3151 if (assocparams->sasoc_asocmaxrxt != 0) { 3152 __u32 path_sum = 0; 3153 int paths = 0; 3154 struct sctp_transport *peer_addr; 3155 3156 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3157 transports) { 3158 path_sum += peer_addr->pathmaxrxt; 3159 paths++; 3160 } 3161 3162 /* Only validate asocmaxrxt if we have more than 3163 * one path/transport. We do this because path 3164 * retransmissions are only counted when we have more 3165 * then one path. 3166 */ 3167 if (paths > 1 && 3168 assocparams->sasoc_asocmaxrxt > path_sum) 3169 return -EINVAL; 3170 3171 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3172 } 3173 3174 if (assocparams->sasoc_cookie_life != 0) 3175 asoc->cookie_life = 3176 ms_to_ktime(assocparams->sasoc_cookie_life); 3177 } else { 3178 /* Set the values to the endpoint */ 3179 struct sctp_sock *sp = sctp_sk(sk); 3180 3181 if (assocparams->sasoc_asocmaxrxt != 0) 3182 sp->assocparams.sasoc_asocmaxrxt = 3183 assocparams->sasoc_asocmaxrxt; 3184 if (assocparams->sasoc_cookie_life != 0) 3185 sp->assocparams.sasoc_cookie_life = 3186 assocparams->sasoc_cookie_life; 3187 } 3188 return 0; 3189 } 3190 3191 /* 3192 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3193 * 3194 * This socket option is a boolean flag which turns on or off mapped V4 3195 * addresses. If this option is turned on and the socket is type 3196 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3197 * If this option is turned off, then no mapping will be done of V4 3198 * addresses and a user will receive both PF_INET6 and PF_INET type 3199 * addresses on the socket. 3200 */ 3201 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3202 unsigned int optlen) 3203 { 3204 struct sctp_sock *sp = sctp_sk(sk); 3205 3206 if (optlen < sizeof(int)) 3207 return -EINVAL; 3208 if (*val) 3209 sp->v4mapped = 1; 3210 else 3211 sp->v4mapped = 0; 3212 3213 return 0; 3214 } 3215 3216 /* 3217 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3218 * This option will get or set the maximum size to put in any outgoing 3219 * SCTP DATA chunk. If a message is larger than this size it will be 3220 * fragmented by SCTP into the specified size. Note that the underlying 3221 * SCTP implementation may fragment into smaller sized chunks when the 3222 * PMTU of the underlying association is smaller than the value set by 3223 * the user. The default value for this option is '0' which indicates 3224 * the user is NOT limiting fragmentation and only the PMTU will effect 3225 * SCTP's choice of DATA chunk size. Note also that values set larger 3226 * than the maximum size of an IP datagram will effectively let SCTP 3227 * control fragmentation (i.e. the same as setting this option to 0). 3228 * 3229 * The following structure is used to access and modify this parameter: 3230 * 3231 * struct sctp_assoc_value { 3232 * sctp_assoc_t assoc_id; 3233 * uint32_t assoc_value; 3234 * }; 3235 * 3236 * assoc_id: This parameter is ignored for one-to-one style sockets. 3237 * For one-to-many style sockets this parameter indicates which 3238 * association the user is performing an action upon. Note that if 3239 * this field's value is zero then the endpoints default value is 3240 * changed (effecting future associations only). 3241 * assoc_value: This parameter specifies the maximum size in bytes. 3242 */ 3243 static int sctp_setsockopt_maxseg(struct sock *sk, 3244 struct sctp_assoc_value *params, 3245 unsigned int optlen) 3246 { 3247 struct sctp_sock *sp = sctp_sk(sk); 3248 struct sctp_association *asoc; 3249 sctp_assoc_t assoc_id; 3250 int val; 3251 3252 if (optlen == sizeof(int)) { 3253 pr_warn_ratelimited(DEPRECATED 3254 "%s (pid %d) " 3255 "Use of int in maxseg socket option.\n" 3256 "Use struct sctp_assoc_value instead\n", 3257 current->comm, task_pid_nr(current)); 3258 assoc_id = SCTP_FUTURE_ASSOC; 3259 val = *(int *)params; 3260 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3261 assoc_id = params->assoc_id; 3262 val = params->assoc_value; 3263 } else { 3264 return -EINVAL; 3265 } 3266 3267 asoc = sctp_id2assoc(sk, assoc_id); 3268 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3269 sctp_style(sk, UDP)) 3270 return -EINVAL; 3271 3272 if (val) { 3273 int min_len, max_len; 3274 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3275 sizeof(struct sctp_data_chunk); 3276 3277 min_len = sctp_min_frag_point(sp, datasize); 3278 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3279 3280 if (val < min_len || val > max_len) 3281 return -EINVAL; 3282 } 3283 3284 if (asoc) { 3285 asoc->user_frag = val; 3286 sctp_assoc_update_frag_point(asoc); 3287 } else { 3288 sp->user_frag = val; 3289 } 3290 3291 return 0; 3292 } 3293 3294 3295 /* 3296 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3297 * 3298 * Requests that the peer mark the enclosed address as the association 3299 * primary. The enclosed address must be one of the association's 3300 * locally bound addresses. The following structure is used to make a 3301 * set primary request: 3302 */ 3303 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3304 struct sctp_setpeerprim *prim, 3305 unsigned int optlen) 3306 { 3307 struct sctp_sock *sp; 3308 struct sctp_association *asoc = NULL; 3309 struct sctp_chunk *chunk; 3310 struct sctp_af *af; 3311 int err; 3312 3313 sp = sctp_sk(sk); 3314 3315 if (!sp->ep->asconf_enable) 3316 return -EPERM; 3317 3318 if (optlen != sizeof(struct sctp_setpeerprim)) 3319 return -EINVAL; 3320 3321 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3322 if (!asoc) 3323 return -EINVAL; 3324 3325 if (!asoc->peer.asconf_capable) 3326 return -EPERM; 3327 3328 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3329 return -EPERM; 3330 3331 if (!sctp_state(asoc, ESTABLISHED)) 3332 return -ENOTCONN; 3333 3334 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3335 if (!af) 3336 return -EINVAL; 3337 3338 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3339 return -EADDRNOTAVAIL; 3340 3341 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3342 return -EADDRNOTAVAIL; 3343 3344 /* Allow security module to validate address. */ 3345 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3346 (struct sockaddr *)&prim->sspp_addr, 3347 af->sockaddr_len); 3348 if (err) 3349 return err; 3350 3351 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3352 chunk = sctp_make_asconf_set_prim(asoc, 3353 (union sctp_addr *)&prim->sspp_addr); 3354 if (!chunk) 3355 return -ENOMEM; 3356 3357 err = sctp_send_asconf(asoc, chunk); 3358 3359 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3360 3361 return err; 3362 } 3363 3364 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3365 struct sctp_setadaptation *adapt, 3366 unsigned int optlen) 3367 { 3368 if (optlen != sizeof(struct sctp_setadaptation)) 3369 return -EINVAL; 3370 3371 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3372 3373 return 0; 3374 } 3375 3376 /* 3377 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3378 * 3379 * The context field in the sctp_sndrcvinfo structure is normally only 3380 * used when a failed message is retrieved holding the value that was 3381 * sent down on the actual send call. This option allows the setting of 3382 * a default context on an association basis that will be received on 3383 * reading messages from the peer. This is especially helpful in the 3384 * one-2-many model for an application to keep some reference to an 3385 * internal state machine that is processing messages on the 3386 * association. Note that the setting of this value only effects 3387 * received messages from the peer and does not effect the value that is 3388 * saved with outbound messages. 3389 */ 3390 static int sctp_setsockopt_context(struct sock *sk, 3391 struct sctp_assoc_value *params, 3392 unsigned int optlen) 3393 { 3394 struct sctp_sock *sp = sctp_sk(sk); 3395 struct sctp_association *asoc; 3396 3397 if (optlen != sizeof(struct sctp_assoc_value)) 3398 return -EINVAL; 3399 3400 asoc = sctp_id2assoc(sk, params->assoc_id); 3401 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3402 sctp_style(sk, UDP)) 3403 return -EINVAL; 3404 3405 if (asoc) { 3406 asoc->default_rcv_context = params->assoc_value; 3407 3408 return 0; 3409 } 3410 3411 if (sctp_style(sk, TCP)) 3412 params->assoc_id = SCTP_FUTURE_ASSOC; 3413 3414 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3415 params->assoc_id == SCTP_ALL_ASSOC) 3416 sp->default_rcv_context = params->assoc_value; 3417 3418 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3419 params->assoc_id == SCTP_ALL_ASSOC) 3420 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3421 asoc->default_rcv_context = params->assoc_value; 3422 3423 return 0; 3424 } 3425 3426 /* 3427 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3428 * 3429 * This options will at a minimum specify if the implementation is doing 3430 * fragmented interleave. Fragmented interleave, for a one to many 3431 * socket, is when subsequent calls to receive a message may return 3432 * parts of messages from different associations. Some implementations 3433 * may allow you to turn this value on or off. If so, when turned off, 3434 * no fragment interleave will occur (which will cause a head of line 3435 * blocking amongst multiple associations sharing the same one to many 3436 * socket). When this option is turned on, then each receive call may 3437 * come from a different association (thus the user must receive data 3438 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3439 * association each receive belongs to. 3440 * 3441 * This option takes a boolean value. A non-zero value indicates that 3442 * fragmented interleave is on. A value of zero indicates that 3443 * fragmented interleave is off. 3444 * 3445 * Note that it is important that an implementation that allows this 3446 * option to be turned on, have it off by default. Otherwise an unaware 3447 * application using the one to many model may become confused and act 3448 * incorrectly. 3449 */ 3450 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3451 unsigned int optlen) 3452 { 3453 if (optlen != sizeof(int)) 3454 return -EINVAL; 3455 3456 sctp_sk(sk)->frag_interleave = !!*val; 3457 3458 if (!sctp_sk(sk)->frag_interleave) 3459 sctp_sk(sk)->ep->intl_enable = 0; 3460 3461 return 0; 3462 } 3463 3464 /* 3465 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3466 * (SCTP_PARTIAL_DELIVERY_POINT) 3467 * 3468 * This option will set or get the SCTP partial delivery point. This 3469 * point is the size of a message where the partial delivery API will be 3470 * invoked to help free up rwnd space for the peer. Setting this to a 3471 * lower value will cause partial deliveries to happen more often. The 3472 * calls argument is an integer that sets or gets the partial delivery 3473 * point. Note also that the call will fail if the user attempts to set 3474 * this value larger than the socket receive buffer size. 3475 * 3476 * Note that any single message having a length smaller than or equal to 3477 * the SCTP partial delivery point will be delivered in one single read 3478 * call as long as the user provided buffer is large enough to hold the 3479 * message. 3480 */ 3481 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3482 unsigned int optlen) 3483 { 3484 if (optlen != sizeof(u32)) 3485 return -EINVAL; 3486 3487 /* Note: We double the receive buffer from what the user sets 3488 * it to be, also initial rwnd is based on rcvbuf/2. 3489 */ 3490 if (*val > (sk->sk_rcvbuf >> 1)) 3491 return -EINVAL; 3492 3493 sctp_sk(sk)->pd_point = *val; 3494 3495 return 0; /* is this the right error code? */ 3496 } 3497 3498 /* 3499 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3500 * 3501 * This option will allow a user to change the maximum burst of packets 3502 * that can be emitted by this association. Note that the default value 3503 * is 4, and some implementations may restrict this setting so that it 3504 * can only be lowered. 3505 * 3506 * NOTE: This text doesn't seem right. Do this on a socket basis with 3507 * future associations inheriting the socket value. 3508 */ 3509 static int sctp_setsockopt_maxburst(struct sock *sk, 3510 struct sctp_assoc_value *params, 3511 unsigned int optlen) 3512 { 3513 struct sctp_sock *sp = sctp_sk(sk); 3514 struct sctp_association *asoc; 3515 sctp_assoc_t assoc_id; 3516 u32 assoc_value; 3517 3518 if (optlen == sizeof(int)) { 3519 pr_warn_ratelimited(DEPRECATED 3520 "%s (pid %d) " 3521 "Use of int in max_burst socket option deprecated.\n" 3522 "Use struct sctp_assoc_value instead\n", 3523 current->comm, task_pid_nr(current)); 3524 assoc_id = SCTP_FUTURE_ASSOC; 3525 assoc_value = *((int *)params); 3526 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3527 assoc_id = params->assoc_id; 3528 assoc_value = params->assoc_value; 3529 } else 3530 return -EINVAL; 3531 3532 asoc = sctp_id2assoc(sk, assoc_id); 3533 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3534 return -EINVAL; 3535 3536 if (asoc) { 3537 asoc->max_burst = assoc_value; 3538 3539 return 0; 3540 } 3541 3542 if (sctp_style(sk, TCP)) 3543 assoc_id = SCTP_FUTURE_ASSOC; 3544 3545 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3546 sp->max_burst = assoc_value; 3547 3548 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3549 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3550 asoc->max_burst = assoc_value; 3551 3552 return 0; 3553 } 3554 3555 /* 3556 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3557 * 3558 * This set option adds a chunk type that the user is requesting to be 3559 * received only in an authenticated way. Changes to the list of chunks 3560 * will only effect future associations on the socket. 3561 */ 3562 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3563 struct sctp_authchunk *val, 3564 unsigned int optlen) 3565 { 3566 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3567 3568 if (!ep->auth_enable) 3569 return -EACCES; 3570 3571 if (optlen != sizeof(struct sctp_authchunk)) 3572 return -EINVAL; 3573 3574 switch (val->sauth_chunk) { 3575 case SCTP_CID_INIT: 3576 case SCTP_CID_INIT_ACK: 3577 case SCTP_CID_SHUTDOWN_COMPLETE: 3578 case SCTP_CID_AUTH: 3579 return -EINVAL; 3580 } 3581 3582 /* add this chunk id to the endpoint */ 3583 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3584 } 3585 3586 /* 3587 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3588 * 3589 * This option gets or sets the list of HMAC algorithms that the local 3590 * endpoint requires the peer to use. 3591 */ 3592 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3593 struct sctp_hmacalgo *hmacs, 3594 unsigned int optlen) 3595 { 3596 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3597 u32 idents; 3598 3599 if (!ep->auth_enable) 3600 return -EACCES; 3601 3602 if (optlen < sizeof(struct sctp_hmacalgo)) 3603 return -EINVAL; 3604 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3605 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3606 3607 idents = hmacs->shmac_num_idents; 3608 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3609 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3610 return -EINVAL; 3611 3612 return sctp_auth_ep_set_hmacs(ep, hmacs); 3613 } 3614 3615 /* 3616 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3617 * 3618 * This option will set a shared secret key which is used to build an 3619 * association shared key. 3620 */ 3621 static int sctp_setsockopt_auth_key(struct sock *sk, 3622 struct sctp_authkey *authkey, 3623 unsigned int optlen) 3624 { 3625 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3626 struct sctp_association *asoc; 3627 int ret = -EINVAL; 3628 3629 if (optlen <= sizeof(struct sctp_authkey)) 3630 return -EINVAL; 3631 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3632 * this. 3633 */ 3634 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3635 3636 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3637 goto out; 3638 3639 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3640 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3641 sctp_style(sk, UDP)) 3642 goto out; 3643 3644 if (asoc) { 3645 ret = sctp_auth_set_key(ep, asoc, authkey); 3646 goto out; 3647 } 3648 3649 if (sctp_style(sk, TCP)) 3650 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3651 3652 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3653 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3654 ret = sctp_auth_set_key(ep, asoc, authkey); 3655 if (ret) 3656 goto out; 3657 } 3658 3659 ret = 0; 3660 3661 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3662 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3663 list_for_each_entry(asoc, &ep->asocs, asocs) { 3664 int res = sctp_auth_set_key(ep, asoc, authkey); 3665 3666 if (res && !ret) 3667 ret = res; 3668 } 3669 } 3670 3671 out: 3672 memzero_explicit(authkey, optlen); 3673 return ret; 3674 } 3675 3676 /* 3677 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3678 * 3679 * This option will get or set the active shared key to be used to build 3680 * the association shared key. 3681 */ 3682 static int sctp_setsockopt_active_key(struct sock *sk, 3683 struct sctp_authkeyid *val, 3684 unsigned int optlen) 3685 { 3686 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3687 struct sctp_association *asoc; 3688 int ret = 0; 3689 3690 if (optlen != sizeof(struct sctp_authkeyid)) 3691 return -EINVAL; 3692 3693 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3694 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3695 sctp_style(sk, UDP)) 3696 return -EINVAL; 3697 3698 if (asoc) 3699 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3700 3701 if (sctp_style(sk, TCP)) 3702 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3703 3704 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3705 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3706 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3707 if (ret) 3708 return ret; 3709 } 3710 3711 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3712 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3713 list_for_each_entry(asoc, &ep->asocs, asocs) { 3714 int res = sctp_auth_set_active_key(ep, asoc, 3715 val->scact_keynumber); 3716 3717 if (res && !ret) 3718 ret = res; 3719 } 3720 } 3721 3722 return ret; 3723 } 3724 3725 /* 3726 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3727 * 3728 * This set option will delete a shared secret key from use. 3729 */ 3730 static int sctp_setsockopt_del_key(struct sock *sk, 3731 struct sctp_authkeyid *val, 3732 unsigned int optlen) 3733 { 3734 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3735 struct sctp_association *asoc; 3736 int ret = 0; 3737 3738 if (optlen != sizeof(struct sctp_authkeyid)) 3739 return -EINVAL; 3740 3741 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3742 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3743 sctp_style(sk, UDP)) 3744 return -EINVAL; 3745 3746 if (asoc) 3747 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3748 3749 if (sctp_style(sk, TCP)) 3750 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3751 3752 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3753 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3754 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3755 if (ret) 3756 return ret; 3757 } 3758 3759 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3760 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3761 list_for_each_entry(asoc, &ep->asocs, asocs) { 3762 int res = sctp_auth_del_key_id(ep, asoc, 3763 val->scact_keynumber); 3764 3765 if (res && !ret) 3766 ret = res; 3767 } 3768 } 3769 3770 return ret; 3771 } 3772 3773 /* 3774 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3775 * 3776 * This set option will deactivate a shared secret key. 3777 */ 3778 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3779 struct sctp_authkeyid *val, 3780 unsigned int optlen) 3781 { 3782 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3783 struct sctp_association *asoc; 3784 int ret = 0; 3785 3786 if (optlen != sizeof(struct sctp_authkeyid)) 3787 return -EINVAL; 3788 3789 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3790 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3791 sctp_style(sk, UDP)) 3792 return -EINVAL; 3793 3794 if (asoc) 3795 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3796 3797 if (sctp_style(sk, TCP)) 3798 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3799 3800 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3801 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3802 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3803 if (ret) 3804 return ret; 3805 } 3806 3807 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3808 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3809 list_for_each_entry(asoc, &ep->asocs, asocs) { 3810 int res = sctp_auth_deact_key_id(ep, asoc, 3811 val->scact_keynumber); 3812 3813 if (res && !ret) 3814 ret = res; 3815 } 3816 } 3817 3818 return ret; 3819 } 3820 3821 /* 3822 * 8.1.23 SCTP_AUTO_ASCONF 3823 * 3824 * This option will enable or disable the use of the automatic generation of 3825 * ASCONF chunks to add and delete addresses to an existing association. Note 3826 * that this option has two caveats namely: a) it only affects sockets that 3827 * are bound to all addresses available to the SCTP stack, and b) the system 3828 * administrator may have an overriding control that turns the ASCONF feature 3829 * off no matter what setting the socket option may have. 3830 * This option expects an integer boolean flag, where a non-zero value turns on 3831 * the option, and a zero value turns off the option. 3832 * Note. In this implementation, socket operation overrides default parameter 3833 * being set by sysctl as well as FreeBSD implementation 3834 */ 3835 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3836 unsigned int optlen) 3837 { 3838 struct sctp_sock *sp = sctp_sk(sk); 3839 3840 if (optlen < sizeof(int)) 3841 return -EINVAL; 3842 if (!sctp_is_ep_boundall(sk) && *val) 3843 return -EINVAL; 3844 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3845 return 0; 3846 3847 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3848 if (*val == 0 && sp->do_auto_asconf) { 3849 list_del(&sp->auto_asconf_list); 3850 sp->do_auto_asconf = 0; 3851 } else if (*val && !sp->do_auto_asconf) { 3852 list_add_tail(&sp->auto_asconf_list, 3853 &sock_net(sk)->sctp.auto_asconf_splist); 3854 sp->do_auto_asconf = 1; 3855 } 3856 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3857 return 0; 3858 } 3859 3860 /* 3861 * SCTP_PEER_ADDR_THLDS 3862 * 3863 * This option allows us to alter the partially failed threshold for one or all 3864 * transports in an association. See Section 6.1 of: 3865 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3866 */ 3867 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3868 struct sctp_paddrthlds_v2 *val, 3869 unsigned int optlen, bool v2) 3870 { 3871 struct sctp_transport *trans; 3872 struct sctp_association *asoc; 3873 int len; 3874 3875 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3876 if (optlen < len) 3877 return -EINVAL; 3878 3879 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3880 return -EINVAL; 3881 3882 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3883 trans = sctp_addr_id2transport(sk, &val->spt_address, 3884 val->spt_assoc_id); 3885 if (!trans) 3886 return -ENOENT; 3887 3888 if (val->spt_pathmaxrxt) 3889 trans->pathmaxrxt = val->spt_pathmaxrxt; 3890 if (v2) 3891 trans->ps_retrans = val->spt_pathcpthld; 3892 trans->pf_retrans = val->spt_pathpfthld; 3893 3894 return 0; 3895 } 3896 3897 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3898 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3899 sctp_style(sk, UDP)) 3900 return -EINVAL; 3901 3902 if (asoc) { 3903 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3904 transports) { 3905 if (val->spt_pathmaxrxt) 3906 trans->pathmaxrxt = val->spt_pathmaxrxt; 3907 if (v2) 3908 trans->ps_retrans = val->spt_pathcpthld; 3909 trans->pf_retrans = val->spt_pathpfthld; 3910 } 3911 3912 if (val->spt_pathmaxrxt) 3913 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3914 if (v2) 3915 asoc->ps_retrans = val->spt_pathcpthld; 3916 asoc->pf_retrans = val->spt_pathpfthld; 3917 } else { 3918 struct sctp_sock *sp = sctp_sk(sk); 3919 3920 if (val->spt_pathmaxrxt) 3921 sp->pathmaxrxt = val->spt_pathmaxrxt; 3922 if (v2) 3923 sp->ps_retrans = val->spt_pathcpthld; 3924 sp->pf_retrans = val->spt_pathpfthld; 3925 } 3926 3927 return 0; 3928 } 3929 3930 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3931 unsigned int optlen) 3932 { 3933 if (optlen < sizeof(int)) 3934 return -EINVAL; 3935 3936 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3937 3938 return 0; 3939 } 3940 3941 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3942 unsigned int optlen) 3943 { 3944 if (optlen < sizeof(int)) 3945 return -EINVAL; 3946 3947 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3948 3949 return 0; 3950 } 3951 3952 static int sctp_setsockopt_pr_supported(struct sock *sk, 3953 struct sctp_assoc_value *params, 3954 unsigned int optlen) 3955 { 3956 struct sctp_association *asoc; 3957 3958 if (optlen != sizeof(*params)) 3959 return -EINVAL; 3960 3961 asoc = sctp_id2assoc(sk, params->assoc_id); 3962 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3963 sctp_style(sk, UDP)) 3964 return -EINVAL; 3965 3966 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3967 3968 return 0; 3969 } 3970 3971 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3972 struct sctp_default_prinfo *info, 3973 unsigned int optlen) 3974 { 3975 struct sctp_sock *sp = sctp_sk(sk); 3976 struct sctp_association *asoc; 3977 int retval = -EINVAL; 3978 3979 if (optlen != sizeof(*info)) 3980 goto out; 3981 3982 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3983 goto out; 3984 3985 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3986 info->pr_value = 0; 3987 3988 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3989 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3990 sctp_style(sk, UDP)) 3991 goto out; 3992 3993 retval = 0; 3994 3995 if (asoc) { 3996 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 3997 asoc->default_timetolive = info->pr_value; 3998 goto out; 3999 } 4000 4001 if (sctp_style(sk, TCP)) 4002 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4003 4004 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4005 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4006 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4007 sp->default_timetolive = info->pr_value; 4008 } 4009 4010 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4011 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4012 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4013 SCTP_PR_SET_POLICY(asoc->default_flags, 4014 info->pr_policy); 4015 asoc->default_timetolive = info->pr_value; 4016 } 4017 } 4018 4019 out: 4020 return retval; 4021 } 4022 4023 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4024 struct sctp_assoc_value *params, 4025 unsigned int optlen) 4026 { 4027 struct sctp_association *asoc; 4028 int retval = -EINVAL; 4029 4030 if (optlen != sizeof(*params)) 4031 goto out; 4032 4033 asoc = sctp_id2assoc(sk, params->assoc_id); 4034 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4035 sctp_style(sk, UDP)) 4036 goto out; 4037 4038 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4039 4040 retval = 0; 4041 4042 out: 4043 return retval; 4044 } 4045 4046 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4047 struct sctp_assoc_value *params, 4048 unsigned int optlen) 4049 { 4050 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4051 struct sctp_association *asoc; 4052 int retval = -EINVAL; 4053 4054 if (optlen != sizeof(*params)) 4055 goto out; 4056 4057 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4058 goto out; 4059 4060 asoc = sctp_id2assoc(sk, params->assoc_id); 4061 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4062 sctp_style(sk, UDP)) 4063 goto out; 4064 4065 retval = 0; 4066 4067 if (asoc) { 4068 asoc->strreset_enable = params->assoc_value; 4069 goto out; 4070 } 4071 4072 if (sctp_style(sk, TCP)) 4073 params->assoc_id = SCTP_FUTURE_ASSOC; 4074 4075 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4076 params->assoc_id == SCTP_ALL_ASSOC) 4077 ep->strreset_enable = params->assoc_value; 4078 4079 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4080 params->assoc_id == SCTP_ALL_ASSOC) 4081 list_for_each_entry(asoc, &ep->asocs, asocs) 4082 asoc->strreset_enable = params->assoc_value; 4083 4084 out: 4085 return retval; 4086 } 4087 4088 static int sctp_setsockopt_reset_streams(struct sock *sk, 4089 struct sctp_reset_streams *params, 4090 unsigned int optlen) 4091 { 4092 struct sctp_association *asoc; 4093 4094 if (optlen < sizeof(*params)) 4095 return -EINVAL; 4096 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4097 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4098 sizeof(__u16) * sizeof(*params)); 4099 4100 if (params->srs_number_streams * sizeof(__u16) > 4101 optlen - sizeof(*params)) 4102 return -EINVAL; 4103 4104 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4105 if (!asoc) 4106 return -EINVAL; 4107 4108 return sctp_send_reset_streams(asoc, params); 4109 } 4110 4111 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4112 unsigned int optlen) 4113 { 4114 struct sctp_association *asoc; 4115 4116 if (optlen != sizeof(*associd)) 4117 return -EINVAL; 4118 4119 asoc = sctp_id2assoc(sk, *associd); 4120 if (!asoc) 4121 return -EINVAL; 4122 4123 return sctp_send_reset_assoc(asoc); 4124 } 4125 4126 static int sctp_setsockopt_add_streams(struct sock *sk, 4127 struct sctp_add_streams *params, 4128 unsigned int optlen) 4129 { 4130 struct sctp_association *asoc; 4131 4132 if (optlen != sizeof(*params)) 4133 return -EINVAL; 4134 4135 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4136 if (!asoc) 4137 return -EINVAL; 4138 4139 return sctp_send_add_streams(asoc, params); 4140 } 4141 4142 static int sctp_setsockopt_scheduler(struct sock *sk, 4143 struct sctp_assoc_value *params, 4144 unsigned int optlen) 4145 { 4146 struct sctp_sock *sp = sctp_sk(sk); 4147 struct sctp_association *asoc; 4148 int retval = 0; 4149 4150 if (optlen < sizeof(*params)) 4151 return -EINVAL; 4152 4153 if (params->assoc_value > SCTP_SS_MAX) 4154 return -EINVAL; 4155 4156 asoc = sctp_id2assoc(sk, params->assoc_id); 4157 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4158 sctp_style(sk, UDP)) 4159 return -EINVAL; 4160 4161 if (asoc) 4162 return sctp_sched_set_sched(asoc, params->assoc_value); 4163 4164 if (sctp_style(sk, TCP)) 4165 params->assoc_id = SCTP_FUTURE_ASSOC; 4166 4167 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4168 params->assoc_id == SCTP_ALL_ASSOC) 4169 sp->default_ss = params->assoc_value; 4170 4171 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4172 params->assoc_id == SCTP_ALL_ASSOC) { 4173 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4174 int ret = sctp_sched_set_sched(asoc, 4175 params->assoc_value); 4176 4177 if (ret && !retval) 4178 retval = ret; 4179 } 4180 } 4181 4182 return retval; 4183 } 4184 4185 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4186 struct sctp_stream_value *params, 4187 unsigned int optlen) 4188 { 4189 struct sctp_association *asoc; 4190 int retval = -EINVAL; 4191 4192 if (optlen < sizeof(*params)) 4193 goto out; 4194 4195 asoc = sctp_id2assoc(sk, params->assoc_id); 4196 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4197 sctp_style(sk, UDP)) 4198 goto out; 4199 4200 if (asoc) { 4201 retval = sctp_sched_set_value(asoc, params->stream_id, 4202 params->stream_value, GFP_KERNEL); 4203 goto out; 4204 } 4205 4206 retval = 0; 4207 4208 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4209 int ret = sctp_sched_set_value(asoc, params->stream_id, 4210 params->stream_value, 4211 GFP_KERNEL); 4212 if (ret && !retval) /* try to return the 1st error. */ 4213 retval = ret; 4214 } 4215 4216 out: 4217 return retval; 4218 } 4219 4220 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4221 struct sctp_assoc_value *p, 4222 unsigned int optlen) 4223 { 4224 struct sctp_sock *sp = sctp_sk(sk); 4225 struct sctp_association *asoc; 4226 4227 if (optlen < sizeof(*p)) 4228 return -EINVAL; 4229 4230 asoc = sctp_id2assoc(sk, p->assoc_id); 4231 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4232 return -EINVAL; 4233 4234 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4235 return -EPERM; 4236 } 4237 4238 sp->ep->intl_enable = !!p->assoc_value; 4239 return 0; 4240 } 4241 4242 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4243 unsigned int optlen) 4244 { 4245 if (!sctp_style(sk, TCP)) 4246 return -EOPNOTSUPP; 4247 4248 if (sctp_sk(sk)->ep->base.bind_addr.port) 4249 return -EFAULT; 4250 4251 if (optlen < sizeof(int)) 4252 return -EINVAL; 4253 4254 sctp_sk(sk)->reuse = !!*val; 4255 4256 return 0; 4257 } 4258 4259 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4260 struct sctp_association *asoc) 4261 { 4262 struct sctp_ulpevent *event; 4263 4264 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4265 4266 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4267 if (sctp_outq_is_empty(&asoc->outqueue)) { 4268 event = sctp_ulpevent_make_sender_dry_event(asoc, 4269 GFP_USER | __GFP_NOWARN); 4270 if (!event) 4271 return -ENOMEM; 4272 4273 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4274 } 4275 } 4276 4277 return 0; 4278 } 4279 4280 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4281 unsigned int optlen) 4282 { 4283 struct sctp_sock *sp = sctp_sk(sk); 4284 struct sctp_association *asoc; 4285 int retval = 0; 4286 4287 if (optlen < sizeof(*param)) 4288 return -EINVAL; 4289 4290 if (param->se_type < SCTP_SN_TYPE_BASE || 4291 param->se_type > SCTP_SN_TYPE_MAX) 4292 return -EINVAL; 4293 4294 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4295 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4296 sctp_style(sk, UDP)) 4297 return -EINVAL; 4298 4299 if (asoc) 4300 return sctp_assoc_ulpevent_type_set(param, asoc); 4301 4302 if (sctp_style(sk, TCP)) 4303 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4304 4305 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4306 param->se_assoc_id == SCTP_ALL_ASSOC) 4307 sctp_ulpevent_type_set(&sp->subscribe, 4308 param->se_type, param->se_on); 4309 4310 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4311 param->se_assoc_id == SCTP_ALL_ASSOC) { 4312 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4313 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4314 4315 if (ret && !retval) 4316 retval = ret; 4317 } 4318 } 4319 4320 return retval; 4321 } 4322 4323 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4324 struct sctp_assoc_value *params, 4325 unsigned int optlen) 4326 { 4327 struct sctp_association *asoc; 4328 struct sctp_endpoint *ep; 4329 int retval = -EINVAL; 4330 4331 if (optlen != sizeof(*params)) 4332 goto out; 4333 4334 asoc = sctp_id2assoc(sk, params->assoc_id); 4335 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4336 sctp_style(sk, UDP)) 4337 goto out; 4338 4339 ep = sctp_sk(sk)->ep; 4340 ep->asconf_enable = !!params->assoc_value; 4341 4342 if (ep->asconf_enable && ep->auth_enable) { 4343 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4344 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4345 } 4346 4347 retval = 0; 4348 4349 out: 4350 return retval; 4351 } 4352 4353 static int sctp_setsockopt_auth_supported(struct sock *sk, 4354 struct sctp_assoc_value *params, 4355 unsigned int optlen) 4356 { 4357 struct sctp_association *asoc; 4358 struct sctp_endpoint *ep; 4359 int retval = -EINVAL; 4360 4361 if (optlen != sizeof(*params)) 4362 goto out; 4363 4364 asoc = sctp_id2assoc(sk, params->assoc_id); 4365 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4366 sctp_style(sk, UDP)) 4367 goto out; 4368 4369 ep = sctp_sk(sk)->ep; 4370 if (params->assoc_value) { 4371 retval = sctp_auth_init(ep, GFP_KERNEL); 4372 if (retval) 4373 goto out; 4374 if (ep->asconf_enable) { 4375 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4376 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4377 } 4378 } 4379 4380 ep->auth_enable = !!params->assoc_value; 4381 retval = 0; 4382 4383 out: 4384 return retval; 4385 } 4386 4387 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4388 struct sctp_assoc_value *params, 4389 unsigned int optlen) 4390 { 4391 struct sctp_association *asoc; 4392 int retval = -EINVAL; 4393 4394 if (optlen != sizeof(*params)) 4395 goto out; 4396 4397 asoc = sctp_id2assoc(sk, params->assoc_id); 4398 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4399 sctp_style(sk, UDP)) 4400 goto out; 4401 4402 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4403 retval = 0; 4404 4405 out: 4406 return retval; 4407 } 4408 4409 static int sctp_setsockopt_pf_expose(struct sock *sk, 4410 struct sctp_assoc_value *params, 4411 unsigned int optlen) 4412 { 4413 struct sctp_association *asoc; 4414 int retval = -EINVAL; 4415 4416 if (optlen != sizeof(*params)) 4417 goto out; 4418 4419 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4420 goto out; 4421 4422 asoc = sctp_id2assoc(sk, params->assoc_id); 4423 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4424 sctp_style(sk, UDP)) 4425 goto out; 4426 4427 if (asoc) 4428 asoc->pf_expose = params->assoc_value; 4429 else 4430 sctp_sk(sk)->pf_expose = params->assoc_value; 4431 retval = 0; 4432 4433 out: 4434 return retval; 4435 } 4436 4437 static int sctp_setsockopt_encap_port(struct sock *sk, 4438 struct sctp_udpencaps *encap, 4439 unsigned int optlen) 4440 { 4441 struct sctp_association *asoc; 4442 struct sctp_transport *t; 4443 __be16 encap_port; 4444 4445 if (optlen != sizeof(*encap)) 4446 return -EINVAL; 4447 4448 /* If an address other than INADDR_ANY is specified, and 4449 * no transport is found, then the request is invalid. 4450 */ 4451 encap_port = (__force __be16)encap->sue_port; 4452 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4453 t = sctp_addr_id2transport(sk, &encap->sue_address, 4454 encap->sue_assoc_id); 4455 if (!t) 4456 return -EINVAL; 4457 4458 t->encap_port = encap_port; 4459 return 0; 4460 } 4461 4462 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4463 * socket is a one to many style socket, and an association 4464 * was not found, then the id was invalid. 4465 */ 4466 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4467 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4468 sctp_style(sk, UDP)) 4469 return -EINVAL; 4470 4471 /* If changes are for association, also apply encap_port to 4472 * each transport. 4473 */ 4474 if (asoc) { 4475 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4476 transports) 4477 t->encap_port = encap_port; 4478 4479 asoc->encap_port = encap_port; 4480 return 0; 4481 } 4482 4483 sctp_sk(sk)->encap_port = encap_port; 4484 return 0; 4485 } 4486 4487 static int sctp_setsockopt_probe_interval(struct sock *sk, 4488 struct sctp_probeinterval *params, 4489 unsigned int optlen) 4490 { 4491 struct sctp_association *asoc; 4492 struct sctp_transport *t; 4493 __u32 probe_interval; 4494 4495 if (optlen != sizeof(*params)) 4496 return -EINVAL; 4497 4498 probe_interval = params->spi_interval; 4499 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4500 return -EINVAL; 4501 4502 /* If an address other than INADDR_ANY is specified, and 4503 * no transport is found, then the request is invalid. 4504 */ 4505 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4506 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4507 params->spi_assoc_id); 4508 if (!t) 4509 return -EINVAL; 4510 4511 t->probe_interval = msecs_to_jiffies(probe_interval); 4512 sctp_transport_pl_reset(t); 4513 return 0; 4514 } 4515 4516 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4517 * socket is a one to many style socket, and an association 4518 * was not found, then the id was invalid. 4519 */ 4520 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4521 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4522 sctp_style(sk, UDP)) 4523 return -EINVAL; 4524 4525 /* If changes are for association, also apply probe_interval to 4526 * each transport. 4527 */ 4528 if (asoc) { 4529 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4530 t->probe_interval = msecs_to_jiffies(probe_interval); 4531 sctp_transport_pl_reset(t); 4532 } 4533 4534 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4535 return 0; 4536 } 4537 4538 sctp_sk(sk)->probe_interval = probe_interval; 4539 return 0; 4540 } 4541 4542 /* API 6.2 setsockopt(), getsockopt() 4543 * 4544 * Applications use setsockopt() and getsockopt() to set or retrieve 4545 * socket options. Socket options are used to change the default 4546 * behavior of sockets calls. They are described in Section 7. 4547 * 4548 * The syntax is: 4549 * 4550 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4551 * int __user *optlen); 4552 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4553 * int optlen); 4554 * 4555 * sd - the socket descript. 4556 * level - set to IPPROTO_SCTP for all SCTP options. 4557 * optname - the option name. 4558 * optval - the buffer to store the value of the option. 4559 * optlen - the size of the buffer. 4560 */ 4561 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4562 sockptr_t optval, unsigned int optlen) 4563 { 4564 void *kopt = NULL; 4565 int retval = 0; 4566 4567 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4568 4569 /* I can hardly begin to describe how wrong this is. This is 4570 * so broken as to be worse than useless. The API draft 4571 * REALLY is NOT helpful here... I am not convinced that the 4572 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4573 * are at all well-founded. 4574 */ 4575 if (level != SOL_SCTP) { 4576 struct sctp_af *af = sctp_sk(sk)->pf->af; 4577 4578 return af->setsockopt(sk, level, optname, optval, optlen); 4579 } 4580 4581 if (optlen > 0) { 4582 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4583 optlen = min_t(unsigned int, optlen, 4584 PAGE_ALIGN(USHRT_MAX + 4585 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4586 kopt = memdup_sockptr(optval, optlen); 4587 if (IS_ERR(kopt)) 4588 return PTR_ERR(kopt); 4589 } 4590 4591 lock_sock(sk); 4592 4593 switch (optname) { 4594 case SCTP_SOCKOPT_BINDX_ADD: 4595 /* 'optlen' is the size of the addresses buffer. */ 4596 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4597 SCTP_BINDX_ADD_ADDR); 4598 break; 4599 4600 case SCTP_SOCKOPT_BINDX_REM: 4601 /* 'optlen' is the size of the addresses buffer. */ 4602 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4603 SCTP_BINDX_REM_ADDR); 4604 break; 4605 4606 case SCTP_SOCKOPT_CONNECTX_OLD: 4607 /* 'optlen' is the size of the addresses buffer. */ 4608 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4609 break; 4610 4611 case SCTP_SOCKOPT_CONNECTX: 4612 /* 'optlen' is the size of the addresses buffer. */ 4613 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4614 break; 4615 4616 case SCTP_DISABLE_FRAGMENTS: 4617 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4618 break; 4619 4620 case SCTP_EVENTS: 4621 retval = sctp_setsockopt_events(sk, kopt, optlen); 4622 break; 4623 4624 case SCTP_AUTOCLOSE: 4625 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4626 break; 4627 4628 case SCTP_PEER_ADDR_PARAMS: 4629 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4630 break; 4631 4632 case SCTP_DELAYED_SACK: 4633 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4634 break; 4635 case SCTP_PARTIAL_DELIVERY_POINT: 4636 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4637 break; 4638 4639 case SCTP_INITMSG: 4640 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4641 break; 4642 case SCTP_DEFAULT_SEND_PARAM: 4643 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4644 break; 4645 case SCTP_DEFAULT_SNDINFO: 4646 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4647 break; 4648 case SCTP_PRIMARY_ADDR: 4649 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4650 break; 4651 case SCTP_SET_PEER_PRIMARY_ADDR: 4652 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4653 break; 4654 case SCTP_NODELAY: 4655 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4656 break; 4657 case SCTP_RTOINFO: 4658 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4659 break; 4660 case SCTP_ASSOCINFO: 4661 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4662 break; 4663 case SCTP_I_WANT_MAPPED_V4_ADDR: 4664 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4665 break; 4666 case SCTP_MAXSEG: 4667 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4668 break; 4669 case SCTP_ADAPTATION_LAYER: 4670 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4671 break; 4672 case SCTP_CONTEXT: 4673 retval = sctp_setsockopt_context(sk, kopt, optlen); 4674 break; 4675 case SCTP_FRAGMENT_INTERLEAVE: 4676 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4677 break; 4678 case SCTP_MAX_BURST: 4679 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4680 break; 4681 case SCTP_AUTH_CHUNK: 4682 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4683 break; 4684 case SCTP_HMAC_IDENT: 4685 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4686 break; 4687 case SCTP_AUTH_KEY: 4688 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4689 break; 4690 case SCTP_AUTH_ACTIVE_KEY: 4691 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4692 break; 4693 case SCTP_AUTH_DELETE_KEY: 4694 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4695 break; 4696 case SCTP_AUTH_DEACTIVATE_KEY: 4697 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4698 break; 4699 case SCTP_AUTO_ASCONF: 4700 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4701 break; 4702 case SCTP_PEER_ADDR_THLDS: 4703 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4704 false); 4705 break; 4706 case SCTP_PEER_ADDR_THLDS_V2: 4707 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4708 true); 4709 break; 4710 case SCTP_RECVRCVINFO: 4711 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4712 break; 4713 case SCTP_RECVNXTINFO: 4714 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4715 break; 4716 case SCTP_PR_SUPPORTED: 4717 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4718 break; 4719 case SCTP_DEFAULT_PRINFO: 4720 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4721 break; 4722 case SCTP_RECONFIG_SUPPORTED: 4723 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4724 break; 4725 case SCTP_ENABLE_STREAM_RESET: 4726 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4727 break; 4728 case SCTP_RESET_STREAMS: 4729 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4730 break; 4731 case SCTP_RESET_ASSOC: 4732 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4733 break; 4734 case SCTP_ADD_STREAMS: 4735 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4736 break; 4737 case SCTP_STREAM_SCHEDULER: 4738 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4739 break; 4740 case SCTP_STREAM_SCHEDULER_VALUE: 4741 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4742 break; 4743 case SCTP_INTERLEAVING_SUPPORTED: 4744 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4745 optlen); 4746 break; 4747 case SCTP_REUSE_PORT: 4748 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4749 break; 4750 case SCTP_EVENT: 4751 retval = sctp_setsockopt_event(sk, kopt, optlen); 4752 break; 4753 case SCTP_ASCONF_SUPPORTED: 4754 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4755 break; 4756 case SCTP_AUTH_SUPPORTED: 4757 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4758 break; 4759 case SCTP_ECN_SUPPORTED: 4760 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4761 break; 4762 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4763 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4764 break; 4765 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4766 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4767 break; 4768 case SCTP_PLPMTUD_PROBE_INTERVAL: 4769 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4770 break; 4771 default: 4772 retval = -ENOPROTOOPT; 4773 break; 4774 } 4775 4776 release_sock(sk); 4777 kfree(kopt); 4778 return retval; 4779 } 4780 4781 /* API 3.1.6 connect() - UDP Style Syntax 4782 * 4783 * An application may use the connect() call in the UDP model to initiate an 4784 * association without sending data. 4785 * 4786 * The syntax is: 4787 * 4788 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4789 * 4790 * sd: the socket descriptor to have a new association added to. 4791 * 4792 * nam: the address structure (either struct sockaddr_in or struct 4793 * sockaddr_in6 defined in RFC2553 [7]). 4794 * 4795 * len: the size of the address. 4796 */ 4797 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4798 int addr_len, int flags) 4799 { 4800 struct sctp_af *af; 4801 int err = -EINVAL; 4802 4803 lock_sock(sk); 4804 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4805 addr, addr_len); 4806 4807 /* Validate addr_len before calling common connect/connectx routine. */ 4808 af = sctp_get_af_specific(addr->sa_family); 4809 if (af && addr_len >= af->sockaddr_len) 4810 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4811 4812 release_sock(sk); 4813 return err; 4814 } 4815 4816 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4817 int addr_len, int flags) 4818 { 4819 if (addr_len < sizeof(uaddr->sa_family)) 4820 return -EINVAL; 4821 4822 if (uaddr->sa_family == AF_UNSPEC) 4823 return -EOPNOTSUPP; 4824 4825 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4826 } 4827 4828 /* FIXME: Write comments. */ 4829 static int sctp_disconnect(struct sock *sk, int flags) 4830 { 4831 return -EOPNOTSUPP; /* STUB */ 4832 } 4833 4834 /* 4.1.4 accept() - TCP Style Syntax 4835 * 4836 * Applications use accept() call to remove an established SCTP 4837 * association from the accept queue of the endpoint. A new socket 4838 * descriptor will be returned from accept() to represent the newly 4839 * formed association. 4840 */ 4841 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4842 { 4843 struct sctp_sock *sp; 4844 struct sctp_endpoint *ep; 4845 struct sock *newsk = NULL; 4846 struct sctp_association *asoc; 4847 long timeo; 4848 int error = 0; 4849 4850 lock_sock(sk); 4851 4852 sp = sctp_sk(sk); 4853 ep = sp->ep; 4854 4855 if (!sctp_style(sk, TCP)) { 4856 error = -EOPNOTSUPP; 4857 goto out; 4858 } 4859 4860 if (!sctp_sstate(sk, LISTENING)) { 4861 error = -EINVAL; 4862 goto out; 4863 } 4864 4865 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4866 4867 error = sctp_wait_for_accept(sk, timeo); 4868 if (error) 4869 goto out; 4870 4871 /* We treat the list of associations on the endpoint as the accept 4872 * queue and pick the first association on the list. 4873 */ 4874 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4875 4876 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4877 if (!newsk) { 4878 error = -ENOMEM; 4879 goto out; 4880 } 4881 4882 /* Populate the fields of the newsk from the oldsk and migrate the 4883 * asoc to the newsk. 4884 */ 4885 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4886 if (error) { 4887 sk_common_release(newsk); 4888 newsk = NULL; 4889 } 4890 4891 out: 4892 release_sock(sk); 4893 *err = error; 4894 return newsk; 4895 } 4896 4897 /* The SCTP ioctl handler. */ 4898 static int sctp_ioctl(struct sock *sk, int cmd, int *karg) 4899 { 4900 int rc = -ENOTCONN; 4901 4902 lock_sock(sk); 4903 4904 /* 4905 * SEQPACKET-style sockets in LISTENING state are valid, for 4906 * SCTP, so only discard TCP-style sockets in LISTENING state. 4907 */ 4908 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4909 goto out; 4910 4911 switch (cmd) { 4912 case SIOCINQ: { 4913 struct sk_buff *skb; 4914 *karg = 0; 4915 4916 skb = skb_peek(&sk->sk_receive_queue); 4917 if (skb != NULL) { 4918 /* 4919 * We will only return the amount of this packet since 4920 * that is all that will be read. 4921 */ 4922 *karg = skb->len; 4923 } 4924 rc = 0; 4925 break; 4926 } 4927 default: 4928 rc = -ENOIOCTLCMD; 4929 break; 4930 } 4931 out: 4932 release_sock(sk); 4933 return rc; 4934 } 4935 4936 /* This is the function which gets called during socket creation to 4937 * initialized the SCTP-specific portion of the sock. 4938 * The sock structure should already be zero-filled memory. 4939 */ 4940 static int sctp_init_sock(struct sock *sk) 4941 { 4942 struct net *net = sock_net(sk); 4943 struct sctp_sock *sp; 4944 4945 pr_debug("%s: sk:%p\n", __func__, sk); 4946 4947 sp = sctp_sk(sk); 4948 4949 /* Initialize the SCTP per socket area. */ 4950 switch (sk->sk_type) { 4951 case SOCK_SEQPACKET: 4952 sp->type = SCTP_SOCKET_UDP; 4953 break; 4954 case SOCK_STREAM: 4955 sp->type = SCTP_SOCKET_TCP; 4956 break; 4957 default: 4958 return -ESOCKTNOSUPPORT; 4959 } 4960 4961 sk->sk_gso_type = SKB_GSO_SCTP; 4962 4963 /* Initialize default send parameters. These parameters can be 4964 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4965 */ 4966 sp->default_stream = 0; 4967 sp->default_ppid = 0; 4968 sp->default_flags = 0; 4969 sp->default_context = 0; 4970 sp->default_timetolive = 0; 4971 4972 sp->default_rcv_context = 0; 4973 sp->max_burst = net->sctp.max_burst; 4974 4975 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4976 4977 /* Initialize default setup parameters. These parameters 4978 * can be modified with the SCTP_INITMSG socket option or 4979 * overridden by the SCTP_INIT CMSG. 4980 */ 4981 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4982 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4983 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4984 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4985 4986 /* Initialize default RTO related parameters. These parameters can 4987 * be modified for with the SCTP_RTOINFO socket option. 4988 */ 4989 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4990 sp->rtoinfo.srto_max = net->sctp.rto_max; 4991 sp->rtoinfo.srto_min = net->sctp.rto_min; 4992 4993 /* Initialize default association related parameters. These parameters 4994 * can be modified with the SCTP_ASSOCINFO socket option. 4995 */ 4996 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4997 sp->assocparams.sasoc_number_peer_destinations = 0; 4998 sp->assocparams.sasoc_peer_rwnd = 0; 4999 sp->assocparams.sasoc_local_rwnd = 0; 5000 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5001 5002 /* Initialize default event subscriptions. By default, all the 5003 * options are off. 5004 */ 5005 sp->subscribe = 0; 5006 5007 /* Default Peer Address Parameters. These defaults can 5008 * be modified via SCTP_PEER_ADDR_PARAMS 5009 */ 5010 sp->hbinterval = net->sctp.hb_interval; 5011 sp->udp_port = htons(net->sctp.udp_port); 5012 sp->encap_port = htons(net->sctp.encap_port); 5013 sp->pathmaxrxt = net->sctp.max_retrans_path; 5014 sp->pf_retrans = net->sctp.pf_retrans; 5015 sp->ps_retrans = net->sctp.ps_retrans; 5016 sp->pf_expose = net->sctp.pf_expose; 5017 sp->pathmtu = 0; /* allow default discovery */ 5018 sp->sackdelay = net->sctp.sack_timeout; 5019 sp->sackfreq = 2; 5020 sp->param_flags = SPP_HB_ENABLE | 5021 SPP_PMTUD_ENABLE | 5022 SPP_SACKDELAY_ENABLE; 5023 sp->default_ss = SCTP_SS_DEFAULT; 5024 5025 /* If enabled no SCTP message fragmentation will be performed. 5026 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5027 */ 5028 sp->disable_fragments = 0; 5029 5030 /* Enable Nagle algorithm by default. */ 5031 sp->nodelay = 0; 5032 5033 sp->recvrcvinfo = 0; 5034 sp->recvnxtinfo = 0; 5035 5036 /* Enable by default. */ 5037 sp->v4mapped = 1; 5038 5039 /* Auto-close idle associations after the configured 5040 * number of seconds. A value of 0 disables this 5041 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5042 * for UDP-style sockets only. 5043 */ 5044 sp->autoclose = 0; 5045 5046 /* User specified fragmentation limit. */ 5047 sp->user_frag = 0; 5048 5049 sp->adaptation_ind = 0; 5050 5051 sp->pf = sctp_get_pf_specific(sk->sk_family); 5052 5053 /* Control variables for partial data delivery. */ 5054 atomic_set(&sp->pd_mode, 0); 5055 skb_queue_head_init(&sp->pd_lobby); 5056 sp->frag_interleave = 0; 5057 sp->probe_interval = net->sctp.probe_interval; 5058 5059 /* Create a per socket endpoint structure. Even if we 5060 * change the data structure relationships, this may still 5061 * be useful for storing pre-connect address information. 5062 */ 5063 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5064 if (!sp->ep) 5065 return -ENOMEM; 5066 5067 sp->hmac = NULL; 5068 5069 sk->sk_destruct = sctp_destruct_sock; 5070 5071 SCTP_DBG_OBJCNT_INC(sock); 5072 5073 sk_sockets_allocated_inc(sk); 5074 sock_prot_inuse_add(net, sk->sk_prot, 1); 5075 5076 return 0; 5077 } 5078 5079 /* Cleanup any SCTP per socket resources. Must be called with 5080 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5081 */ 5082 static void sctp_destroy_sock(struct sock *sk) 5083 { 5084 struct sctp_sock *sp; 5085 5086 pr_debug("%s: sk:%p\n", __func__, sk); 5087 5088 /* Release our hold on the endpoint. */ 5089 sp = sctp_sk(sk); 5090 /* This could happen during socket init, thus we bail out 5091 * early, since the rest of the below is not setup either. 5092 */ 5093 if (sp->ep == NULL) 5094 return; 5095 5096 if (sp->do_auto_asconf) { 5097 sp->do_auto_asconf = 0; 5098 list_del(&sp->auto_asconf_list); 5099 } 5100 sctp_endpoint_free(sp->ep); 5101 sk_sockets_allocated_dec(sk); 5102 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5103 } 5104 5105 /* Triggered when there are no references on the socket anymore */ 5106 static void sctp_destruct_common(struct sock *sk) 5107 { 5108 struct sctp_sock *sp = sctp_sk(sk); 5109 5110 /* Free up the HMAC transform. */ 5111 crypto_free_shash(sp->hmac); 5112 } 5113 5114 static void sctp_destruct_sock(struct sock *sk) 5115 { 5116 sctp_destruct_common(sk); 5117 inet_sock_destruct(sk); 5118 } 5119 5120 /* API 4.1.7 shutdown() - TCP Style Syntax 5121 * int shutdown(int socket, int how); 5122 * 5123 * sd - the socket descriptor of the association to be closed. 5124 * how - Specifies the type of shutdown. The values are 5125 * as follows: 5126 * SHUT_RD 5127 * Disables further receive operations. No SCTP 5128 * protocol action is taken. 5129 * SHUT_WR 5130 * Disables further send operations, and initiates 5131 * the SCTP shutdown sequence. 5132 * SHUT_RDWR 5133 * Disables further send and receive operations 5134 * and initiates the SCTP shutdown sequence. 5135 */ 5136 static void sctp_shutdown(struct sock *sk, int how) 5137 { 5138 struct net *net = sock_net(sk); 5139 struct sctp_endpoint *ep; 5140 5141 if (!sctp_style(sk, TCP)) 5142 return; 5143 5144 ep = sctp_sk(sk)->ep; 5145 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5146 struct sctp_association *asoc; 5147 5148 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5149 asoc = list_entry(ep->asocs.next, 5150 struct sctp_association, asocs); 5151 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5152 } 5153 } 5154 5155 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5156 struct sctp_info *info) 5157 { 5158 struct sctp_transport *prim; 5159 struct list_head *pos; 5160 int mask; 5161 5162 memset(info, 0, sizeof(*info)); 5163 if (!asoc) { 5164 struct sctp_sock *sp = sctp_sk(sk); 5165 5166 info->sctpi_s_autoclose = sp->autoclose; 5167 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5168 info->sctpi_s_pd_point = sp->pd_point; 5169 info->sctpi_s_nodelay = sp->nodelay; 5170 info->sctpi_s_disable_fragments = sp->disable_fragments; 5171 info->sctpi_s_v4mapped = sp->v4mapped; 5172 info->sctpi_s_frag_interleave = sp->frag_interleave; 5173 info->sctpi_s_type = sp->type; 5174 5175 return 0; 5176 } 5177 5178 info->sctpi_tag = asoc->c.my_vtag; 5179 info->sctpi_state = asoc->state; 5180 info->sctpi_rwnd = asoc->a_rwnd; 5181 info->sctpi_unackdata = asoc->unack_data; 5182 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5183 info->sctpi_instrms = asoc->stream.incnt; 5184 info->sctpi_outstrms = asoc->stream.outcnt; 5185 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5186 info->sctpi_inqueue++; 5187 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5188 info->sctpi_outqueue++; 5189 info->sctpi_overall_error = asoc->overall_error_count; 5190 info->sctpi_max_burst = asoc->max_burst; 5191 info->sctpi_maxseg = asoc->frag_point; 5192 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5193 info->sctpi_peer_tag = asoc->c.peer_vtag; 5194 5195 mask = asoc->peer.intl_capable << 1; 5196 mask = (mask | asoc->peer.ecn_capable) << 1; 5197 mask = (mask | asoc->peer.ipv4_address) << 1; 5198 mask = (mask | asoc->peer.ipv6_address) << 1; 5199 mask = (mask | asoc->peer.reconf_capable) << 1; 5200 mask = (mask | asoc->peer.asconf_capable) << 1; 5201 mask = (mask | asoc->peer.prsctp_capable) << 1; 5202 mask = (mask | asoc->peer.auth_capable); 5203 info->sctpi_peer_capable = mask; 5204 mask = asoc->peer.sack_needed << 1; 5205 mask = (mask | asoc->peer.sack_generation) << 1; 5206 mask = (mask | asoc->peer.zero_window_announced); 5207 info->sctpi_peer_sack = mask; 5208 5209 info->sctpi_isacks = asoc->stats.isacks; 5210 info->sctpi_osacks = asoc->stats.osacks; 5211 info->sctpi_opackets = asoc->stats.opackets; 5212 info->sctpi_ipackets = asoc->stats.ipackets; 5213 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5214 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5215 info->sctpi_idupchunks = asoc->stats.idupchunks; 5216 info->sctpi_gapcnt = asoc->stats.gapcnt; 5217 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5218 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5219 info->sctpi_oodchunks = asoc->stats.oodchunks; 5220 info->sctpi_iodchunks = asoc->stats.iodchunks; 5221 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5222 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5223 5224 prim = asoc->peer.primary_path; 5225 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5226 info->sctpi_p_state = prim->state; 5227 info->sctpi_p_cwnd = prim->cwnd; 5228 info->sctpi_p_srtt = prim->srtt; 5229 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5230 info->sctpi_p_hbinterval = prim->hbinterval; 5231 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5232 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5233 info->sctpi_p_ssthresh = prim->ssthresh; 5234 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5235 info->sctpi_p_flight_size = prim->flight_size; 5236 info->sctpi_p_error = prim->error_count; 5237 5238 return 0; 5239 } 5240 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5241 5242 /* use callback to avoid exporting the core structure */ 5243 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5244 { 5245 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5246 5247 rhashtable_walk_start(iter); 5248 } 5249 5250 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5251 { 5252 rhashtable_walk_stop(iter); 5253 rhashtable_walk_exit(iter); 5254 } 5255 5256 struct sctp_transport *sctp_transport_get_next(struct net *net, 5257 struct rhashtable_iter *iter) 5258 { 5259 struct sctp_transport *t; 5260 5261 t = rhashtable_walk_next(iter); 5262 for (; t; t = rhashtable_walk_next(iter)) { 5263 if (IS_ERR(t)) { 5264 if (PTR_ERR(t) == -EAGAIN) 5265 continue; 5266 break; 5267 } 5268 5269 if (!sctp_transport_hold(t)) 5270 continue; 5271 5272 if (net_eq(t->asoc->base.net, net) && 5273 t->asoc->peer.primary_path == t) 5274 break; 5275 5276 sctp_transport_put(t); 5277 } 5278 5279 return t; 5280 } 5281 5282 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5283 struct rhashtable_iter *iter, 5284 int pos) 5285 { 5286 struct sctp_transport *t; 5287 5288 if (!pos) 5289 return SEQ_START_TOKEN; 5290 5291 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5292 if (!--pos) 5293 break; 5294 sctp_transport_put(t); 5295 } 5296 5297 return t; 5298 } 5299 5300 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5301 void *p) { 5302 int err = 0; 5303 int hash = 0; 5304 struct sctp_endpoint *ep; 5305 struct sctp_hashbucket *head; 5306 5307 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5308 hash++, head++) { 5309 read_lock_bh(&head->lock); 5310 sctp_for_each_hentry(ep, &head->chain) { 5311 err = cb(ep, p); 5312 if (err) 5313 break; 5314 } 5315 read_unlock_bh(&head->lock); 5316 } 5317 5318 return err; 5319 } 5320 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5321 5322 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, 5323 const union sctp_addr *laddr, 5324 const union sctp_addr *paddr, void *p, int dif) 5325 { 5326 struct sctp_transport *transport; 5327 struct sctp_endpoint *ep; 5328 int err = -ENOENT; 5329 5330 rcu_read_lock(); 5331 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif); 5332 if (!transport) { 5333 rcu_read_unlock(); 5334 return err; 5335 } 5336 ep = transport->asoc->ep; 5337 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5338 sctp_transport_put(transport); 5339 rcu_read_unlock(); 5340 return err; 5341 } 5342 rcu_read_unlock(); 5343 5344 err = cb(ep, transport, p); 5345 sctp_endpoint_put(ep); 5346 sctp_transport_put(transport); 5347 return err; 5348 } 5349 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5350 5351 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, 5352 struct net *net, int *pos, void *p) 5353 { 5354 struct rhashtable_iter hti; 5355 struct sctp_transport *tsp; 5356 struct sctp_endpoint *ep; 5357 int ret; 5358 5359 again: 5360 ret = 0; 5361 sctp_transport_walk_start(&hti); 5362 5363 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5364 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5365 ep = tsp->asoc->ep; 5366 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5367 ret = cb(ep, tsp, p); 5368 if (ret) 5369 break; 5370 sctp_endpoint_put(ep); 5371 } 5372 (*pos)++; 5373 sctp_transport_put(tsp); 5374 } 5375 sctp_transport_walk_stop(&hti); 5376 5377 if (ret) { 5378 if (cb_done && !cb_done(ep, tsp, p)) { 5379 (*pos)++; 5380 sctp_endpoint_put(ep); 5381 sctp_transport_put(tsp); 5382 goto again; 5383 } 5384 sctp_endpoint_put(ep); 5385 sctp_transport_put(tsp); 5386 } 5387 5388 return ret; 5389 } 5390 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); 5391 5392 /* 7.2.1 Association Status (SCTP_STATUS) 5393 5394 * Applications can retrieve current status information about an 5395 * association, including association state, peer receiver window size, 5396 * number of unacked data chunks, and number of data chunks pending 5397 * receipt. This information is read-only. 5398 */ 5399 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5400 char __user *optval, 5401 int __user *optlen) 5402 { 5403 struct sctp_status status; 5404 struct sctp_association *asoc = NULL; 5405 struct sctp_transport *transport; 5406 sctp_assoc_t associd; 5407 int retval = 0; 5408 5409 if (len < sizeof(status)) { 5410 retval = -EINVAL; 5411 goto out; 5412 } 5413 5414 len = sizeof(status); 5415 if (copy_from_user(&status, optval, len)) { 5416 retval = -EFAULT; 5417 goto out; 5418 } 5419 5420 associd = status.sstat_assoc_id; 5421 asoc = sctp_id2assoc(sk, associd); 5422 if (!asoc) { 5423 retval = -EINVAL; 5424 goto out; 5425 } 5426 5427 transport = asoc->peer.primary_path; 5428 5429 status.sstat_assoc_id = sctp_assoc2id(asoc); 5430 status.sstat_state = sctp_assoc_to_state(asoc); 5431 status.sstat_rwnd = asoc->peer.rwnd; 5432 status.sstat_unackdata = asoc->unack_data; 5433 5434 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5435 status.sstat_instrms = asoc->stream.incnt; 5436 status.sstat_outstrms = asoc->stream.outcnt; 5437 status.sstat_fragmentation_point = asoc->frag_point; 5438 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5439 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5440 transport->af_specific->sockaddr_len); 5441 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5442 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5443 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5444 status.sstat_primary.spinfo_state = transport->state; 5445 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5446 status.sstat_primary.spinfo_srtt = transport->srtt; 5447 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5448 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5449 5450 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5451 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5452 5453 if (put_user(len, optlen)) { 5454 retval = -EFAULT; 5455 goto out; 5456 } 5457 5458 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5459 __func__, len, status.sstat_state, status.sstat_rwnd, 5460 status.sstat_assoc_id); 5461 5462 if (copy_to_user(optval, &status, len)) { 5463 retval = -EFAULT; 5464 goto out; 5465 } 5466 5467 out: 5468 return retval; 5469 } 5470 5471 5472 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5473 * 5474 * Applications can retrieve information about a specific peer address 5475 * of an association, including its reachability state, congestion 5476 * window, and retransmission timer values. This information is 5477 * read-only. 5478 */ 5479 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5480 char __user *optval, 5481 int __user *optlen) 5482 { 5483 struct sctp_paddrinfo pinfo; 5484 struct sctp_transport *transport; 5485 int retval = 0; 5486 5487 if (len < sizeof(pinfo)) { 5488 retval = -EINVAL; 5489 goto out; 5490 } 5491 5492 len = sizeof(pinfo); 5493 if (copy_from_user(&pinfo, optval, len)) { 5494 retval = -EFAULT; 5495 goto out; 5496 } 5497 5498 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5499 pinfo.spinfo_assoc_id); 5500 if (!transport) { 5501 retval = -EINVAL; 5502 goto out; 5503 } 5504 5505 if (transport->state == SCTP_PF && 5506 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5507 retval = -EACCES; 5508 goto out; 5509 } 5510 5511 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5512 pinfo.spinfo_state = transport->state; 5513 pinfo.spinfo_cwnd = transport->cwnd; 5514 pinfo.spinfo_srtt = transport->srtt; 5515 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5516 pinfo.spinfo_mtu = transport->pathmtu; 5517 5518 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5519 pinfo.spinfo_state = SCTP_ACTIVE; 5520 5521 if (put_user(len, optlen)) { 5522 retval = -EFAULT; 5523 goto out; 5524 } 5525 5526 if (copy_to_user(optval, &pinfo, len)) { 5527 retval = -EFAULT; 5528 goto out; 5529 } 5530 5531 out: 5532 return retval; 5533 } 5534 5535 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5536 * 5537 * This option is a on/off flag. If enabled no SCTP message 5538 * fragmentation will be performed. Instead if a message being sent 5539 * exceeds the current PMTU size, the message will NOT be sent and 5540 * instead a error will be indicated to the user. 5541 */ 5542 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5543 char __user *optval, int __user *optlen) 5544 { 5545 int val; 5546 5547 if (len < sizeof(int)) 5548 return -EINVAL; 5549 5550 len = sizeof(int); 5551 val = (sctp_sk(sk)->disable_fragments == 1); 5552 if (put_user(len, optlen)) 5553 return -EFAULT; 5554 if (copy_to_user(optval, &val, len)) 5555 return -EFAULT; 5556 return 0; 5557 } 5558 5559 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5560 * 5561 * This socket option is used to specify various notifications and 5562 * ancillary data the user wishes to receive. 5563 */ 5564 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5565 int __user *optlen) 5566 { 5567 struct sctp_event_subscribe subscribe; 5568 __u8 *sn_type = (__u8 *)&subscribe; 5569 int i; 5570 5571 if (len == 0) 5572 return -EINVAL; 5573 if (len > sizeof(struct sctp_event_subscribe)) 5574 len = sizeof(struct sctp_event_subscribe); 5575 if (put_user(len, optlen)) 5576 return -EFAULT; 5577 5578 for (i = 0; i < len; i++) 5579 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5580 SCTP_SN_TYPE_BASE + i); 5581 5582 if (copy_to_user(optval, &subscribe, len)) 5583 return -EFAULT; 5584 5585 return 0; 5586 } 5587 5588 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5589 * 5590 * This socket option is applicable to the UDP-style socket only. When 5591 * set it will cause associations that are idle for more than the 5592 * specified number of seconds to automatically close. An association 5593 * being idle is defined an association that has NOT sent or received 5594 * user data. The special value of '0' indicates that no automatic 5595 * close of any associations should be performed. The option expects an 5596 * integer defining the number of seconds of idle time before an 5597 * association is closed. 5598 */ 5599 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5600 { 5601 /* Applicable to UDP-style socket only */ 5602 if (sctp_style(sk, TCP)) 5603 return -EOPNOTSUPP; 5604 if (len < sizeof(int)) 5605 return -EINVAL; 5606 len = sizeof(int); 5607 if (put_user(len, optlen)) 5608 return -EFAULT; 5609 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5610 return -EFAULT; 5611 return 0; 5612 } 5613 5614 /* Helper routine to branch off an association to a new socket. */ 5615 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5616 { 5617 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5618 struct sctp_sock *sp = sctp_sk(sk); 5619 struct socket *sock; 5620 int err = 0; 5621 5622 /* Do not peel off from one netns to another one. */ 5623 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5624 return -EINVAL; 5625 5626 if (!asoc) 5627 return -EINVAL; 5628 5629 /* An association cannot be branched off from an already peeled-off 5630 * socket, nor is this supported for tcp style sockets. 5631 */ 5632 if (!sctp_style(sk, UDP)) 5633 return -EINVAL; 5634 5635 /* Create a new socket. */ 5636 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5637 if (err < 0) 5638 return err; 5639 5640 sctp_copy_sock(sock->sk, sk, asoc); 5641 5642 /* Make peeled-off sockets more like 1-1 accepted sockets. 5643 * Set the daddr and initialize id to something more random and also 5644 * copy over any ip options. 5645 */ 5646 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk); 5647 sp->pf->copy_ip_options(sk, sock->sk); 5648 5649 /* Populate the fields of the newsk from the oldsk and migrate the 5650 * asoc to the newsk. 5651 */ 5652 err = sctp_sock_migrate(sk, sock->sk, asoc, 5653 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5654 if (err) { 5655 sock_release(sock); 5656 sock = NULL; 5657 } 5658 5659 *sockp = sock; 5660 5661 return err; 5662 } 5663 EXPORT_SYMBOL(sctp_do_peeloff); 5664 5665 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5666 struct file **newfile, unsigned flags) 5667 { 5668 struct socket *newsock; 5669 int retval; 5670 5671 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5672 if (retval < 0) 5673 goto out; 5674 5675 /* Map the socket to an unused fd that can be returned to the user. */ 5676 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5677 if (retval < 0) { 5678 sock_release(newsock); 5679 goto out; 5680 } 5681 5682 *newfile = sock_alloc_file(newsock, 0, NULL); 5683 if (IS_ERR(*newfile)) { 5684 put_unused_fd(retval); 5685 retval = PTR_ERR(*newfile); 5686 *newfile = NULL; 5687 return retval; 5688 } 5689 5690 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5691 retval); 5692 5693 peeloff->sd = retval; 5694 5695 if (flags & SOCK_NONBLOCK) 5696 (*newfile)->f_flags |= O_NONBLOCK; 5697 out: 5698 return retval; 5699 } 5700 5701 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5702 { 5703 sctp_peeloff_arg_t peeloff; 5704 struct file *newfile = NULL; 5705 int retval = 0; 5706 5707 if (len < sizeof(sctp_peeloff_arg_t)) 5708 return -EINVAL; 5709 len = sizeof(sctp_peeloff_arg_t); 5710 if (copy_from_user(&peeloff, optval, len)) 5711 return -EFAULT; 5712 5713 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5714 if (retval < 0) 5715 goto out; 5716 5717 /* Return the fd mapped to the new socket. */ 5718 if (put_user(len, optlen)) { 5719 fput(newfile); 5720 put_unused_fd(retval); 5721 return -EFAULT; 5722 } 5723 5724 if (copy_to_user(optval, &peeloff, len)) { 5725 fput(newfile); 5726 put_unused_fd(retval); 5727 return -EFAULT; 5728 } 5729 fd_install(retval, newfile); 5730 out: 5731 return retval; 5732 } 5733 5734 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5735 char __user *optval, int __user *optlen) 5736 { 5737 sctp_peeloff_flags_arg_t peeloff; 5738 struct file *newfile = NULL; 5739 int retval = 0; 5740 5741 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5742 return -EINVAL; 5743 len = sizeof(sctp_peeloff_flags_arg_t); 5744 if (copy_from_user(&peeloff, optval, len)) 5745 return -EFAULT; 5746 5747 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5748 &newfile, peeloff.flags); 5749 if (retval < 0) 5750 goto out; 5751 5752 /* Return the fd mapped to the new socket. */ 5753 if (put_user(len, optlen)) { 5754 fput(newfile); 5755 put_unused_fd(retval); 5756 return -EFAULT; 5757 } 5758 5759 if (copy_to_user(optval, &peeloff, len)) { 5760 fput(newfile); 5761 put_unused_fd(retval); 5762 return -EFAULT; 5763 } 5764 fd_install(retval, newfile); 5765 out: 5766 return retval; 5767 } 5768 5769 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5770 * 5771 * Applications can enable or disable heartbeats for any peer address of 5772 * an association, modify an address's heartbeat interval, force a 5773 * heartbeat to be sent immediately, and adjust the address's maximum 5774 * number of retransmissions sent before an address is considered 5775 * unreachable. The following structure is used to access and modify an 5776 * address's parameters: 5777 * 5778 * struct sctp_paddrparams { 5779 * sctp_assoc_t spp_assoc_id; 5780 * struct sockaddr_storage spp_address; 5781 * uint32_t spp_hbinterval; 5782 * uint16_t spp_pathmaxrxt; 5783 * uint32_t spp_pathmtu; 5784 * uint32_t spp_sackdelay; 5785 * uint32_t spp_flags; 5786 * }; 5787 * 5788 * spp_assoc_id - (one-to-many style socket) This is filled in the 5789 * application, and identifies the association for 5790 * this query. 5791 * spp_address - This specifies which address is of interest. 5792 * spp_hbinterval - This contains the value of the heartbeat interval, 5793 * in milliseconds. If a value of zero 5794 * is present in this field then no changes are to 5795 * be made to this parameter. 5796 * spp_pathmaxrxt - This contains the maximum number of 5797 * retransmissions before this address shall be 5798 * considered unreachable. If a value of zero 5799 * is present in this field then no changes are to 5800 * be made to this parameter. 5801 * spp_pathmtu - When Path MTU discovery is disabled the value 5802 * specified here will be the "fixed" path mtu. 5803 * Note that if the spp_address field is empty 5804 * then all associations on this address will 5805 * have this fixed path mtu set upon them. 5806 * 5807 * spp_sackdelay - When delayed sack is enabled, this value specifies 5808 * the number of milliseconds that sacks will be delayed 5809 * for. This value will apply to all addresses of an 5810 * association if the spp_address field is empty. Note 5811 * also, that if delayed sack is enabled and this 5812 * value is set to 0, no change is made to the last 5813 * recorded delayed sack timer value. 5814 * 5815 * spp_flags - These flags are used to control various features 5816 * on an association. The flag field may contain 5817 * zero or more of the following options. 5818 * 5819 * SPP_HB_ENABLE - Enable heartbeats on the 5820 * specified address. Note that if the address 5821 * field is empty all addresses for the association 5822 * have heartbeats enabled upon them. 5823 * 5824 * SPP_HB_DISABLE - Disable heartbeats on the 5825 * speicifed address. Note that if the address 5826 * field is empty all addresses for the association 5827 * will have their heartbeats disabled. Note also 5828 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5829 * mutually exclusive, only one of these two should 5830 * be specified. Enabling both fields will have 5831 * undetermined results. 5832 * 5833 * SPP_HB_DEMAND - Request a user initiated heartbeat 5834 * to be made immediately. 5835 * 5836 * SPP_PMTUD_ENABLE - This field will enable PMTU 5837 * discovery upon the specified address. Note that 5838 * if the address feild is empty then all addresses 5839 * on the association are effected. 5840 * 5841 * SPP_PMTUD_DISABLE - This field will disable PMTU 5842 * discovery upon the specified address. Note that 5843 * if the address feild is empty then all addresses 5844 * on the association are effected. Not also that 5845 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5846 * exclusive. Enabling both will have undetermined 5847 * results. 5848 * 5849 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5850 * on delayed sack. The time specified in spp_sackdelay 5851 * is used to specify the sack delay for this address. Note 5852 * that if spp_address is empty then all addresses will 5853 * enable delayed sack and take on the sack delay 5854 * value specified in spp_sackdelay. 5855 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5856 * off delayed sack. If the spp_address field is blank then 5857 * delayed sack is disabled for the entire association. Note 5858 * also that this field is mutually exclusive to 5859 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5860 * results. 5861 * 5862 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5863 * setting of the IPV6 flow label value. The value is 5864 * contained in the spp_ipv6_flowlabel field. 5865 * Upon retrieval, this flag will be set to indicate that 5866 * the spp_ipv6_flowlabel field has a valid value returned. 5867 * If a specific destination address is set (in the 5868 * spp_address field), then the value returned is that of 5869 * the address. If just an association is specified (and 5870 * no address), then the association's default flow label 5871 * is returned. If neither an association nor a destination 5872 * is specified, then the socket's default flow label is 5873 * returned. For non-IPv6 sockets, this flag will be left 5874 * cleared. 5875 * 5876 * SPP_DSCP: Setting this flag enables the setting of the 5877 * Differentiated Services Code Point (DSCP) value 5878 * associated with either the association or a specific 5879 * address. The value is obtained in the spp_dscp field. 5880 * Upon retrieval, this flag will be set to indicate that 5881 * the spp_dscp field has a valid value returned. If a 5882 * specific destination address is set when called (in the 5883 * spp_address field), then that specific destination 5884 * address's DSCP value is returned. If just an association 5885 * is specified, then the association's default DSCP is 5886 * returned. If neither an association nor a destination is 5887 * specified, then the socket's default DSCP is returned. 5888 * 5889 * spp_ipv6_flowlabel 5890 * - This field is used in conjunction with the 5891 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5892 * The 20 least significant bits are used for the flow 5893 * label. This setting has precedence over any IPv6-layer 5894 * setting. 5895 * 5896 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5897 * and contains the DSCP. The 6 most significant bits are 5898 * used for the DSCP. This setting has precedence over any 5899 * IPv4- or IPv6- layer setting. 5900 */ 5901 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5902 char __user *optval, int __user *optlen) 5903 { 5904 struct sctp_paddrparams params; 5905 struct sctp_transport *trans = NULL; 5906 struct sctp_association *asoc = NULL; 5907 struct sctp_sock *sp = sctp_sk(sk); 5908 5909 if (len >= sizeof(params)) 5910 len = sizeof(params); 5911 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5912 spp_ipv6_flowlabel), 4)) 5913 len = ALIGN(offsetof(struct sctp_paddrparams, 5914 spp_ipv6_flowlabel), 4); 5915 else 5916 return -EINVAL; 5917 5918 if (copy_from_user(¶ms, optval, len)) 5919 return -EFAULT; 5920 5921 /* If an address other than INADDR_ANY is specified, and 5922 * no transport is found, then the request is invalid. 5923 */ 5924 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5925 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5926 params.spp_assoc_id); 5927 if (!trans) { 5928 pr_debug("%s: failed no transport\n", __func__); 5929 return -EINVAL; 5930 } 5931 } 5932 5933 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5934 * socket is a one to many style socket, and an association 5935 * was not found, then the id was invalid. 5936 */ 5937 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5938 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5939 sctp_style(sk, UDP)) { 5940 pr_debug("%s: failed no association\n", __func__); 5941 return -EINVAL; 5942 } 5943 5944 if (trans) { 5945 /* Fetch transport values. */ 5946 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5947 params.spp_pathmtu = trans->pathmtu; 5948 params.spp_pathmaxrxt = trans->pathmaxrxt; 5949 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5950 5951 /*draft-11 doesn't say what to return in spp_flags*/ 5952 params.spp_flags = trans->param_flags; 5953 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5954 params.spp_ipv6_flowlabel = trans->flowlabel & 5955 SCTP_FLOWLABEL_VAL_MASK; 5956 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5957 } 5958 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5959 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5960 params.spp_flags |= SPP_DSCP; 5961 } 5962 } else if (asoc) { 5963 /* Fetch association values. */ 5964 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5965 params.spp_pathmtu = asoc->pathmtu; 5966 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5967 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5968 5969 /*draft-11 doesn't say what to return in spp_flags*/ 5970 params.spp_flags = asoc->param_flags; 5971 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5972 params.spp_ipv6_flowlabel = asoc->flowlabel & 5973 SCTP_FLOWLABEL_VAL_MASK; 5974 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5975 } 5976 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5977 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5978 params.spp_flags |= SPP_DSCP; 5979 } 5980 } else { 5981 /* Fetch socket values. */ 5982 params.spp_hbinterval = sp->hbinterval; 5983 params.spp_pathmtu = sp->pathmtu; 5984 params.spp_sackdelay = sp->sackdelay; 5985 params.spp_pathmaxrxt = sp->pathmaxrxt; 5986 5987 /*draft-11 doesn't say what to return in spp_flags*/ 5988 params.spp_flags = sp->param_flags; 5989 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5990 params.spp_ipv6_flowlabel = sp->flowlabel & 5991 SCTP_FLOWLABEL_VAL_MASK; 5992 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5993 } 5994 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5995 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5996 params.spp_flags |= SPP_DSCP; 5997 } 5998 } 5999 6000 if (copy_to_user(optval, ¶ms, len)) 6001 return -EFAULT; 6002 6003 if (put_user(len, optlen)) 6004 return -EFAULT; 6005 6006 return 0; 6007 } 6008 6009 /* 6010 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6011 * 6012 * This option will effect the way delayed acks are performed. This 6013 * option allows you to get or set the delayed ack time, in 6014 * milliseconds. It also allows changing the delayed ack frequency. 6015 * Changing the frequency to 1 disables the delayed sack algorithm. If 6016 * the assoc_id is 0, then this sets or gets the endpoints default 6017 * values. If the assoc_id field is non-zero, then the set or get 6018 * effects the specified association for the one to many model (the 6019 * assoc_id field is ignored by the one to one model). Note that if 6020 * sack_delay or sack_freq are 0 when setting this option, then the 6021 * current values will remain unchanged. 6022 * 6023 * struct sctp_sack_info { 6024 * sctp_assoc_t sack_assoc_id; 6025 * uint32_t sack_delay; 6026 * uint32_t sack_freq; 6027 * }; 6028 * 6029 * sack_assoc_id - This parameter, indicates which association the user 6030 * is performing an action upon. Note that if this field's value is 6031 * zero then the endpoints default value is changed (effecting future 6032 * associations only). 6033 * 6034 * sack_delay - This parameter contains the number of milliseconds that 6035 * the user is requesting the delayed ACK timer be set to. Note that 6036 * this value is defined in the standard to be between 200 and 500 6037 * milliseconds. 6038 * 6039 * sack_freq - This parameter contains the number of packets that must 6040 * be received before a sack is sent without waiting for the delay 6041 * timer to expire. The default value for this is 2, setting this 6042 * value to 1 will disable the delayed sack algorithm. 6043 */ 6044 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6045 char __user *optval, 6046 int __user *optlen) 6047 { 6048 struct sctp_sack_info params; 6049 struct sctp_association *asoc = NULL; 6050 struct sctp_sock *sp = sctp_sk(sk); 6051 6052 if (len >= sizeof(struct sctp_sack_info)) { 6053 len = sizeof(struct sctp_sack_info); 6054 6055 if (copy_from_user(¶ms, optval, len)) 6056 return -EFAULT; 6057 } else if (len == sizeof(struct sctp_assoc_value)) { 6058 pr_warn_ratelimited(DEPRECATED 6059 "%s (pid %d) " 6060 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6061 "Use struct sctp_sack_info instead\n", 6062 current->comm, task_pid_nr(current)); 6063 if (copy_from_user(¶ms, optval, len)) 6064 return -EFAULT; 6065 } else 6066 return -EINVAL; 6067 6068 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6069 * socket is a one to many style socket, and an association 6070 * was not found, then the id was invalid. 6071 */ 6072 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6073 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6074 sctp_style(sk, UDP)) 6075 return -EINVAL; 6076 6077 if (asoc) { 6078 /* Fetch association values. */ 6079 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6080 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6081 params.sack_freq = asoc->sackfreq; 6082 6083 } else { 6084 params.sack_delay = 0; 6085 params.sack_freq = 1; 6086 } 6087 } else { 6088 /* Fetch socket values. */ 6089 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6090 params.sack_delay = sp->sackdelay; 6091 params.sack_freq = sp->sackfreq; 6092 } else { 6093 params.sack_delay = 0; 6094 params.sack_freq = 1; 6095 } 6096 } 6097 6098 if (copy_to_user(optval, ¶ms, len)) 6099 return -EFAULT; 6100 6101 if (put_user(len, optlen)) 6102 return -EFAULT; 6103 6104 return 0; 6105 } 6106 6107 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6108 * 6109 * Applications can specify protocol parameters for the default association 6110 * initialization. The option name argument to setsockopt() and getsockopt() 6111 * is SCTP_INITMSG. 6112 * 6113 * Setting initialization parameters is effective only on an unconnected 6114 * socket (for UDP-style sockets only future associations are effected 6115 * by the change). With TCP-style sockets, this option is inherited by 6116 * sockets derived from a listener socket. 6117 */ 6118 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6119 { 6120 if (len < sizeof(struct sctp_initmsg)) 6121 return -EINVAL; 6122 len = sizeof(struct sctp_initmsg); 6123 if (put_user(len, optlen)) 6124 return -EFAULT; 6125 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6126 return -EFAULT; 6127 return 0; 6128 } 6129 6130 6131 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6132 char __user *optval, int __user *optlen) 6133 { 6134 struct sctp_association *asoc; 6135 int cnt = 0; 6136 struct sctp_getaddrs getaddrs; 6137 struct sctp_transport *from; 6138 void __user *to; 6139 union sctp_addr temp; 6140 struct sctp_sock *sp = sctp_sk(sk); 6141 int addrlen; 6142 size_t space_left; 6143 int bytes_copied; 6144 6145 if (len < sizeof(struct sctp_getaddrs)) 6146 return -EINVAL; 6147 6148 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6149 return -EFAULT; 6150 6151 /* For UDP-style sockets, id specifies the association to query. */ 6152 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6153 if (!asoc) 6154 return -EINVAL; 6155 6156 to = optval + offsetof(struct sctp_getaddrs, addrs); 6157 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6158 6159 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6160 transports) { 6161 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6162 addrlen = sctp_get_pf_specific(sk->sk_family) 6163 ->addr_to_user(sp, &temp); 6164 if (space_left < addrlen) 6165 return -ENOMEM; 6166 if (copy_to_user(to, &temp, addrlen)) 6167 return -EFAULT; 6168 to += addrlen; 6169 cnt++; 6170 space_left -= addrlen; 6171 } 6172 6173 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6174 return -EFAULT; 6175 bytes_copied = ((char __user *)to) - optval; 6176 if (put_user(bytes_copied, optlen)) 6177 return -EFAULT; 6178 6179 return 0; 6180 } 6181 6182 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6183 size_t space_left, int *bytes_copied) 6184 { 6185 struct sctp_sockaddr_entry *addr; 6186 union sctp_addr temp; 6187 int cnt = 0; 6188 int addrlen; 6189 struct net *net = sock_net(sk); 6190 6191 rcu_read_lock(); 6192 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6193 if (!addr->valid) 6194 continue; 6195 6196 if ((PF_INET == sk->sk_family) && 6197 (AF_INET6 == addr->a.sa.sa_family)) 6198 continue; 6199 if ((PF_INET6 == sk->sk_family) && 6200 inet_v6_ipv6only(sk) && 6201 (AF_INET == addr->a.sa.sa_family)) 6202 continue; 6203 memcpy(&temp, &addr->a, sizeof(temp)); 6204 if (!temp.v4.sin_port) 6205 temp.v4.sin_port = htons(port); 6206 6207 addrlen = sctp_get_pf_specific(sk->sk_family) 6208 ->addr_to_user(sctp_sk(sk), &temp); 6209 6210 if (space_left < addrlen) { 6211 cnt = -ENOMEM; 6212 break; 6213 } 6214 memcpy(to, &temp, addrlen); 6215 6216 to += addrlen; 6217 cnt++; 6218 space_left -= addrlen; 6219 *bytes_copied += addrlen; 6220 } 6221 rcu_read_unlock(); 6222 6223 return cnt; 6224 } 6225 6226 6227 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6228 char __user *optval, int __user *optlen) 6229 { 6230 struct sctp_bind_addr *bp; 6231 struct sctp_association *asoc; 6232 int cnt = 0; 6233 struct sctp_getaddrs getaddrs; 6234 struct sctp_sockaddr_entry *addr; 6235 void __user *to; 6236 union sctp_addr temp; 6237 struct sctp_sock *sp = sctp_sk(sk); 6238 int addrlen; 6239 int err = 0; 6240 size_t space_left; 6241 int bytes_copied = 0; 6242 void *addrs; 6243 void *buf; 6244 6245 if (len < sizeof(struct sctp_getaddrs)) 6246 return -EINVAL; 6247 6248 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6249 return -EFAULT; 6250 6251 /* 6252 * For UDP-style sockets, id specifies the association to query. 6253 * If the id field is set to the value '0' then the locally bound 6254 * addresses are returned without regard to any particular 6255 * association. 6256 */ 6257 if (0 == getaddrs.assoc_id) { 6258 bp = &sctp_sk(sk)->ep->base.bind_addr; 6259 } else { 6260 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6261 if (!asoc) 6262 return -EINVAL; 6263 bp = &asoc->base.bind_addr; 6264 } 6265 6266 to = optval + offsetof(struct sctp_getaddrs, addrs); 6267 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6268 6269 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6270 if (!addrs) 6271 return -ENOMEM; 6272 6273 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6274 * addresses from the global local address list. 6275 */ 6276 if (sctp_list_single_entry(&bp->address_list)) { 6277 addr = list_entry(bp->address_list.next, 6278 struct sctp_sockaddr_entry, list); 6279 if (sctp_is_any(sk, &addr->a)) { 6280 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6281 space_left, &bytes_copied); 6282 if (cnt < 0) { 6283 err = cnt; 6284 goto out; 6285 } 6286 goto copy_getaddrs; 6287 } 6288 } 6289 6290 buf = addrs; 6291 /* Protection on the bound address list is not needed since 6292 * in the socket option context we hold a socket lock and 6293 * thus the bound address list can't change. 6294 */ 6295 list_for_each_entry(addr, &bp->address_list, list) { 6296 memcpy(&temp, &addr->a, sizeof(temp)); 6297 addrlen = sctp_get_pf_specific(sk->sk_family) 6298 ->addr_to_user(sp, &temp); 6299 if (space_left < addrlen) { 6300 err = -ENOMEM; /*fixme: right error?*/ 6301 goto out; 6302 } 6303 memcpy(buf, &temp, addrlen); 6304 buf += addrlen; 6305 bytes_copied += addrlen; 6306 cnt++; 6307 space_left -= addrlen; 6308 } 6309 6310 copy_getaddrs: 6311 if (copy_to_user(to, addrs, bytes_copied)) { 6312 err = -EFAULT; 6313 goto out; 6314 } 6315 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6316 err = -EFAULT; 6317 goto out; 6318 } 6319 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6320 * but we can't change it anymore. 6321 */ 6322 if (put_user(bytes_copied, optlen)) 6323 err = -EFAULT; 6324 out: 6325 kfree(addrs); 6326 return err; 6327 } 6328 6329 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6330 * 6331 * Requests that the local SCTP stack use the enclosed peer address as 6332 * the association primary. The enclosed address must be one of the 6333 * association peer's addresses. 6334 */ 6335 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6336 char __user *optval, int __user *optlen) 6337 { 6338 struct sctp_prim prim; 6339 struct sctp_association *asoc; 6340 struct sctp_sock *sp = sctp_sk(sk); 6341 6342 if (len < sizeof(struct sctp_prim)) 6343 return -EINVAL; 6344 6345 len = sizeof(struct sctp_prim); 6346 6347 if (copy_from_user(&prim, optval, len)) 6348 return -EFAULT; 6349 6350 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6351 if (!asoc) 6352 return -EINVAL; 6353 6354 if (!asoc->peer.primary_path) 6355 return -ENOTCONN; 6356 6357 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6358 asoc->peer.primary_path->af_specific->sockaddr_len); 6359 6360 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6361 (union sctp_addr *)&prim.ssp_addr); 6362 6363 if (put_user(len, optlen)) 6364 return -EFAULT; 6365 if (copy_to_user(optval, &prim, len)) 6366 return -EFAULT; 6367 6368 return 0; 6369 } 6370 6371 /* 6372 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6373 * 6374 * Requests that the local endpoint set the specified Adaptation Layer 6375 * Indication parameter for all future INIT and INIT-ACK exchanges. 6376 */ 6377 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6378 char __user *optval, int __user *optlen) 6379 { 6380 struct sctp_setadaptation adaptation; 6381 6382 if (len < sizeof(struct sctp_setadaptation)) 6383 return -EINVAL; 6384 6385 len = sizeof(struct sctp_setadaptation); 6386 6387 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6388 6389 if (put_user(len, optlen)) 6390 return -EFAULT; 6391 if (copy_to_user(optval, &adaptation, len)) 6392 return -EFAULT; 6393 6394 return 0; 6395 } 6396 6397 /* 6398 * 6399 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6400 * 6401 * Applications that wish to use the sendto() system call may wish to 6402 * specify a default set of parameters that would normally be supplied 6403 * through the inclusion of ancillary data. This socket option allows 6404 * such an application to set the default sctp_sndrcvinfo structure. 6405 6406 6407 * The application that wishes to use this socket option simply passes 6408 * in to this call the sctp_sndrcvinfo structure defined in Section 6409 * 5.2.2) The input parameters accepted by this call include 6410 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6411 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6412 * to this call if the caller is using the UDP model. 6413 * 6414 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6415 */ 6416 static int sctp_getsockopt_default_send_param(struct sock *sk, 6417 int len, char __user *optval, 6418 int __user *optlen) 6419 { 6420 struct sctp_sock *sp = sctp_sk(sk); 6421 struct sctp_association *asoc; 6422 struct sctp_sndrcvinfo info; 6423 6424 if (len < sizeof(info)) 6425 return -EINVAL; 6426 6427 len = sizeof(info); 6428 6429 if (copy_from_user(&info, optval, len)) 6430 return -EFAULT; 6431 6432 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6433 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6434 sctp_style(sk, UDP)) 6435 return -EINVAL; 6436 6437 if (asoc) { 6438 info.sinfo_stream = asoc->default_stream; 6439 info.sinfo_flags = asoc->default_flags; 6440 info.sinfo_ppid = asoc->default_ppid; 6441 info.sinfo_context = asoc->default_context; 6442 info.sinfo_timetolive = asoc->default_timetolive; 6443 } else { 6444 info.sinfo_stream = sp->default_stream; 6445 info.sinfo_flags = sp->default_flags; 6446 info.sinfo_ppid = sp->default_ppid; 6447 info.sinfo_context = sp->default_context; 6448 info.sinfo_timetolive = sp->default_timetolive; 6449 } 6450 6451 if (put_user(len, optlen)) 6452 return -EFAULT; 6453 if (copy_to_user(optval, &info, len)) 6454 return -EFAULT; 6455 6456 return 0; 6457 } 6458 6459 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6460 * (SCTP_DEFAULT_SNDINFO) 6461 */ 6462 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6463 char __user *optval, 6464 int __user *optlen) 6465 { 6466 struct sctp_sock *sp = sctp_sk(sk); 6467 struct sctp_association *asoc; 6468 struct sctp_sndinfo info; 6469 6470 if (len < sizeof(info)) 6471 return -EINVAL; 6472 6473 len = sizeof(info); 6474 6475 if (copy_from_user(&info, optval, len)) 6476 return -EFAULT; 6477 6478 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6479 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6480 sctp_style(sk, UDP)) 6481 return -EINVAL; 6482 6483 if (asoc) { 6484 info.snd_sid = asoc->default_stream; 6485 info.snd_flags = asoc->default_flags; 6486 info.snd_ppid = asoc->default_ppid; 6487 info.snd_context = asoc->default_context; 6488 } else { 6489 info.snd_sid = sp->default_stream; 6490 info.snd_flags = sp->default_flags; 6491 info.snd_ppid = sp->default_ppid; 6492 info.snd_context = sp->default_context; 6493 } 6494 6495 if (put_user(len, optlen)) 6496 return -EFAULT; 6497 if (copy_to_user(optval, &info, len)) 6498 return -EFAULT; 6499 6500 return 0; 6501 } 6502 6503 /* 6504 * 6505 * 7.1.5 SCTP_NODELAY 6506 * 6507 * Turn on/off any Nagle-like algorithm. This means that packets are 6508 * generally sent as soon as possible and no unnecessary delays are 6509 * introduced, at the cost of more packets in the network. Expects an 6510 * integer boolean flag. 6511 */ 6512 6513 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6514 char __user *optval, int __user *optlen) 6515 { 6516 int val; 6517 6518 if (len < sizeof(int)) 6519 return -EINVAL; 6520 6521 len = sizeof(int); 6522 val = (sctp_sk(sk)->nodelay == 1); 6523 if (put_user(len, optlen)) 6524 return -EFAULT; 6525 if (copy_to_user(optval, &val, len)) 6526 return -EFAULT; 6527 return 0; 6528 } 6529 6530 /* 6531 * 6532 * 7.1.1 SCTP_RTOINFO 6533 * 6534 * The protocol parameters used to initialize and bound retransmission 6535 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6536 * and modify these parameters. 6537 * All parameters are time values, in milliseconds. A value of 0, when 6538 * modifying the parameters, indicates that the current value should not 6539 * be changed. 6540 * 6541 */ 6542 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6543 char __user *optval, 6544 int __user *optlen) { 6545 struct sctp_rtoinfo rtoinfo; 6546 struct sctp_association *asoc; 6547 6548 if (len < sizeof (struct sctp_rtoinfo)) 6549 return -EINVAL; 6550 6551 len = sizeof(struct sctp_rtoinfo); 6552 6553 if (copy_from_user(&rtoinfo, optval, len)) 6554 return -EFAULT; 6555 6556 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6557 6558 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6559 sctp_style(sk, UDP)) 6560 return -EINVAL; 6561 6562 /* Values corresponding to the specific association. */ 6563 if (asoc) { 6564 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6565 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6566 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6567 } else { 6568 /* Values corresponding to the endpoint. */ 6569 struct sctp_sock *sp = sctp_sk(sk); 6570 6571 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6572 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6573 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6574 } 6575 6576 if (put_user(len, optlen)) 6577 return -EFAULT; 6578 6579 if (copy_to_user(optval, &rtoinfo, len)) 6580 return -EFAULT; 6581 6582 return 0; 6583 } 6584 6585 /* 6586 * 6587 * 7.1.2 SCTP_ASSOCINFO 6588 * 6589 * This option is used to tune the maximum retransmission attempts 6590 * of the association. 6591 * Returns an error if the new association retransmission value is 6592 * greater than the sum of the retransmission value of the peer. 6593 * See [SCTP] for more information. 6594 * 6595 */ 6596 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6597 char __user *optval, 6598 int __user *optlen) 6599 { 6600 6601 struct sctp_assocparams assocparams; 6602 struct sctp_association *asoc; 6603 struct list_head *pos; 6604 int cnt = 0; 6605 6606 if (len < sizeof (struct sctp_assocparams)) 6607 return -EINVAL; 6608 6609 len = sizeof(struct sctp_assocparams); 6610 6611 if (copy_from_user(&assocparams, optval, len)) 6612 return -EFAULT; 6613 6614 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6615 6616 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6617 sctp_style(sk, UDP)) 6618 return -EINVAL; 6619 6620 /* Values correspoinding to the specific association */ 6621 if (asoc) { 6622 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6623 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6624 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6625 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6626 6627 list_for_each(pos, &asoc->peer.transport_addr_list) { 6628 cnt++; 6629 } 6630 6631 assocparams.sasoc_number_peer_destinations = cnt; 6632 } else { 6633 /* Values corresponding to the endpoint */ 6634 struct sctp_sock *sp = sctp_sk(sk); 6635 6636 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6637 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6638 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6639 assocparams.sasoc_cookie_life = 6640 sp->assocparams.sasoc_cookie_life; 6641 assocparams.sasoc_number_peer_destinations = 6642 sp->assocparams. 6643 sasoc_number_peer_destinations; 6644 } 6645 6646 if (put_user(len, optlen)) 6647 return -EFAULT; 6648 6649 if (copy_to_user(optval, &assocparams, len)) 6650 return -EFAULT; 6651 6652 return 0; 6653 } 6654 6655 /* 6656 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6657 * 6658 * This socket option is a boolean flag which turns on or off mapped V4 6659 * addresses. If this option is turned on and the socket is type 6660 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6661 * If this option is turned off, then no mapping will be done of V4 6662 * addresses and a user will receive both PF_INET6 and PF_INET type 6663 * addresses on the socket. 6664 */ 6665 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6666 char __user *optval, int __user *optlen) 6667 { 6668 int val; 6669 struct sctp_sock *sp = sctp_sk(sk); 6670 6671 if (len < sizeof(int)) 6672 return -EINVAL; 6673 6674 len = sizeof(int); 6675 val = sp->v4mapped; 6676 if (put_user(len, optlen)) 6677 return -EFAULT; 6678 if (copy_to_user(optval, &val, len)) 6679 return -EFAULT; 6680 6681 return 0; 6682 } 6683 6684 /* 6685 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6686 * (chapter and verse is quoted at sctp_setsockopt_context()) 6687 */ 6688 static int sctp_getsockopt_context(struct sock *sk, int len, 6689 char __user *optval, int __user *optlen) 6690 { 6691 struct sctp_assoc_value params; 6692 struct sctp_association *asoc; 6693 6694 if (len < sizeof(struct sctp_assoc_value)) 6695 return -EINVAL; 6696 6697 len = sizeof(struct sctp_assoc_value); 6698 6699 if (copy_from_user(¶ms, optval, len)) 6700 return -EFAULT; 6701 6702 asoc = sctp_id2assoc(sk, params.assoc_id); 6703 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6704 sctp_style(sk, UDP)) 6705 return -EINVAL; 6706 6707 params.assoc_value = asoc ? asoc->default_rcv_context 6708 : sctp_sk(sk)->default_rcv_context; 6709 6710 if (put_user(len, optlen)) 6711 return -EFAULT; 6712 if (copy_to_user(optval, ¶ms, len)) 6713 return -EFAULT; 6714 6715 return 0; 6716 } 6717 6718 /* 6719 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6720 * This option will get or set the maximum size to put in any outgoing 6721 * SCTP DATA chunk. If a message is larger than this size it will be 6722 * fragmented by SCTP into the specified size. Note that the underlying 6723 * SCTP implementation may fragment into smaller sized chunks when the 6724 * PMTU of the underlying association is smaller than the value set by 6725 * the user. The default value for this option is '0' which indicates 6726 * the user is NOT limiting fragmentation and only the PMTU will effect 6727 * SCTP's choice of DATA chunk size. Note also that values set larger 6728 * than the maximum size of an IP datagram will effectively let SCTP 6729 * control fragmentation (i.e. the same as setting this option to 0). 6730 * 6731 * The following structure is used to access and modify this parameter: 6732 * 6733 * struct sctp_assoc_value { 6734 * sctp_assoc_t assoc_id; 6735 * uint32_t assoc_value; 6736 * }; 6737 * 6738 * assoc_id: This parameter is ignored for one-to-one style sockets. 6739 * For one-to-many style sockets this parameter indicates which 6740 * association the user is performing an action upon. Note that if 6741 * this field's value is zero then the endpoints default value is 6742 * changed (effecting future associations only). 6743 * assoc_value: This parameter specifies the maximum size in bytes. 6744 */ 6745 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6746 char __user *optval, int __user *optlen) 6747 { 6748 struct sctp_assoc_value params; 6749 struct sctp_association *asoc; 6750 6751 if (len == sizeof(int)) { 6752 pr_warn_ratelimited(DEPRECATED 6753 "%s (pid %d) " 6754 "Use of int in maxseg socket option.\n" 6755 "Use struct sctp_assoc_value instead\n", 6756 current->comm, task_pid_nr(current)); 6757 params.assoc_id = SCTP_FUTURE_ASSOC; 6758 } else if (len >= sizeof(struct sctp_assoc_value)) { 6759 len = sizeof(struct sctp_assoc_value); 6760 if (copy_from_user(¶ms, optval, len)) 6761 return -EFAULT; 6762 } else 6763 return -EINVAL; 6764 6765 asoc = sctp_id2assoc(sk, params.assoc_id); 6766 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6767 sctp_style(sk, UDP)) 6768 return -EINVAL; 6769 6770 if (asoc) 6771 params.assoc_value = asoc->frag_point; 6772 else 6773 params.assoc_value = sctp_sk(sk)->user_frag; 6774 6775 if (put_user(len, optlen)) 6776 return -EFAULT; 6777 if (len == sizeof(int)) { 6778 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6779 return -EFAULT; 6780 } else { 6781 if (copy_to_user(optval, ¶ms, len)) 6782 return -EFAULT; 6783 } 6784 6785 return 0; 6786 } 6787 6788 /* 6789 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6790 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6791 */ 6792 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6793 char __user *optval, int __user *optlen) 6794 { 6795 int val; 6796 6797 if (len < sizeof(int)) 6798 return -EINVAL; 6799 6800 len = sizeof(int); 6801 6802 val = sctp_sk(sk)->frag_interleave; 6803 if (put_user(len, optlen)) 6804 return -EFAULT; 6805 if (copy_to_user(optval, &val, len)) 6806 return -EFAULT; 6807 6808 return 0; 6809 } 6810 6811 /* 6812 * 7.1.25. Set or Get the sctp partial delivery point 6813 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6814 */ 6815 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6816 char __user *optval, 6817 int __user *optlen) 6818 { 6819 u32 val; 6820 6821 if (len < sizeof(u32)) 6822 return -EINVAL; 6823 6824 len = sizeof(u32); 6825 6826 val = sctp_sk(sk)->pd_point; 6827 if (put_user(len, optlen)) 6828 return -EFAULT; 6829 if (copy_to_user(optval, &val, len)) 6830 return -EFAULT; 6831 6832 return 0; 6833 } 6834 6835 /* 6836 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6837 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6838 */ 6839 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6840 char __user *optval, 6841 int __user *optlen) 6842 { 6843 struct sctp_assoc_value params; 6844 struct sctp_association *asoc; 6845 6846 if (len == sizeof(int)) { 6847 pr_warn_ratelimited(DEPRECATED 6848 "%s (pid %d) " 6849 "Use of int in max_burst socket option.\n" 6850 "Use struct sctp_assoc_value instead\n", 6851 current->comm, task_pid_nr(current)); 6852 params.assoc_id = SCTP_FUTURE_ASSOC; 6853 } else if (len >= sizeof(struct sctp_assoc_value)) { 6854 len = sizeof(struct sctp_assoc_value); 6855 if (copy_from_user(¶ms, optval, len)) 6856 return -EFAULT; 6857 } else 6858 return -EINVAL; 6859 6860 asoc = sctp_id2assoc(sk, params.assoc_id); 6861 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6862 sctp_style(sk, UDP)) 6863 return -EINVAL; 6864 6865 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6866 6867 if (len == sizeof(int)) { 6868 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6869 return -EFAULT; 6870 } else { 6871 if (copy_to_user(optval, ¶ms, len)) 6872 return -EFAULT; 6873 } 6874 6875 return 0; 6876 6877 } 6878 6879 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6880 char __user *optval, int __user *optlen) 6881 { 6882 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6883 struct sctp_hmacalgo __user *p = (void __user *)optval; 6884 struct sctp_hmac_algo_param *hmacs; 6885 __u16 data_len = 0; 6886 u32 num_idents; 6887 int i; 6888 6889 if (!ep->auth_enable) 6890 return -EACCES; 6891 6892 hmacs = ep->auth_hmacs_list; 6893 data_len = ntohs(hmacs->param_hdr.length) - 6894 sizeof(struct sctp_paramhdr); 6895 6896 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6897 return -EINVAL; 6898 6899 len = sizeof(struct sctp_hmacalgo) + data_len; 6900 num_idents = data_len / sizeof(u16); 6901 6902 if (put_user(len, optlen)) 6903 return -EFAULT; 6904 if (put_user(num_idents, &p->shmac_num_idents)) 6905 return -EFAULT; 6906 for (i = 0; i < num_idents; i++) { 6907 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6908 6909 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6910 return -EFAULT; 6911 } 6912 return 0; 6913 } 6914 6915 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6916 char __user *optval, int __user *optlen) 6917 { 6918 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6919 struct sctp_authkeyid val; 6920 struct sctp_association *asoc; 6921 6922 if (len < sizeof(struct sctp_authkeyid)) 6923 return -EINVAL; 6924 6925 len = sizeof(struct sctp_authkeyid); 6926 if (copy_from_user(&val, optval, len)) 6927 return -EFAULT; 6928 6929 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6930 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6931 return -EINVAL; 6932 6933 if (asoc) { 6934 if (!asoc->peer.auth_capable) 6935 return -EACCES; 6936 val.scact_keynumber = asoc->active_key_id; 6937 } else { 6938 if (!ep->auth_enable) 6939 return -EACCES; 6940 val.scact_keynumber = ep->active_key_id; 6941 } 6942 6943 if (put_user(len, optlen)) 6944 return -EFAULT; 6945 if (copy_to_user(optval, &val, len)) 6946 return -EFAULT; 6947 6948 return 0; 6949 } 6950 6951 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6952 char __user *optval, int __user *optlen) 6953 { 6954 struct sctp_authchunks __user *p = (void __user *)optval; 6955 struct sctp_authchunks val; 6956 struct sctp_association *asoc; 6957 struct sctp_chunks_param *ch; 6958 u32 num_chunks = 0; 6959 char __user *to; 6960 6961 if (len < sizeof(struct sctp_authchunks)) 6962 return -EINVAL; 6963 6964 if (copy_from_user(&val, optval, sizeof(val))) 6965 return -EFAULT; 6966 6967 to = p->gauth_chunks; 6968 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6969 if (!asoc) 6970 return -EINVAL; 6971 6972 if (!asoc->peer.auth_capable) 6973 return -EACCES; 6974 6975 ch = asoc->peer.peer_chunks; 6976 if (!ch) 6977 goto num; 6978 6979 /* See if the user provided enough room for all the data */ 6980 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6981 if (len < num_chunks) 6982 return -EINVAL; 6983 6984 if (copy_to_user(to, ch->chunks, num_chunks)) 6985 return -EFAULT; 6986 num: 6987 len = sizeof(struct sctp_authchunks) + num_chunks; 6988 if (put_user(len, optlen)) 6989 return -EFAULT; 6990 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6991 return -EFAULT; 6992 return 0; 6993 } 6994 6995 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6996 char __user *optval, int __user *optlen) 6997 { 6998 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6999 struct sctp_authchunks __user *p = (void __user *)optval; 7000 struct sctp_authchunks val; 7001 struct sctp_association *asoc; 7002 struct sctp_chunks_param *ch; 7003 u32 num_chunks = 0; 7004 char __user *to; 7005 7006 if (len < sizeof(struct sctp_authchunks)) 7007 return -EINVAL; 7008 7009 if (copy_from_user(&val, optval, sizeof(val))) 7010 return -EFAULT; 7011 7012 to = p->gauth_chunks; 7013 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7014 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7015 sctp_style(sk, UDP)) 7016 return -EINVAL; 7017 7018 if (asoc) { 7019 if (!asoc->peer.auth_capable) 7020 return -EACCES; 7021 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7022 } else { 7023 if (!ep->auth_enable) 7024 return -EACCES; 7025 ch = ep->auth_chunk_list; 7026 } 7027 if (!ch) 7028 goto num; 7029 7030 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7031 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7032 return -EINVAL; 7033 7034 if (copy_to_user(to, ch->chunks, num_chunks)) 7035 return -EFAULT; 7036 num: 7037 len = sizeof(struct sctp_authchunks) + num_chunks; 7038 if (put_user(len, optlen)) 7039 return -EFAULT; 7040 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7041 return -EFAULT; 7042 7043 return 0; 7044 } 7045 7046 /* 7047 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7048 * This option gets the current number of associations that are attached 7049 * to a one-to-many style socket. The option value is an uint32_t. 7050 */ 7051 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7052 char __user *optval, int __user *optlen) 7053 { 7054 struct sctp_sock *sp = sctp_sk(sk); 7055 struct sctp_association *asoc; 7056 u32 val = 0; 7057 7058 if (sctp_style(sk, TCP)) 7059 return -EOPNOTSUPP; 7060 7061 if (len < sizeof(u32)) 7062 return -EINVAL; 7063 7064 len = sizeof(u32); 7065 7066 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7067 val++; 7068 } 7069 7070 if (put_user(len, optlen)) 7071 return -EFAULT; 7072 if (copy_to_user(optval, &val, len)) 7073 return -EFAULT; 7074 7075 return 0; 7076 } 7077 7078 /* 7079 * 8.1.23 SCTP_AUTO_ASCONF 7080 * See the corresponding setsockopt entry as description 7081 */ 7082 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7083 char __user *optval, int __user *optlen) 7084 { 7085 int val = 0; 7086 7087 if (len < sizeof(int)) 7088 return -EINVAL; 7089 7090 len = sizeof(int); 7091 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7092 val = 1; 7093 if (put_user(len, optlen)) 7094 return -EFAULT; 7095 if (copy_to_user(optval, &val, len)) 7096 return -EFAULT; 7097 return 0; 7098 } 7099 7100 /* 7101 * 8.2.6. Get the Current Identifiers of Associations 7102 * (SCTP_GET_ASSOC_ID_LIST) 7103 * 7104 * This option gets the current list of SCTP association identifiers of 7105 * the SCTP associations handled by a one-to-many style socket. 7106 */ 7107 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7108 char __user *optval, int __user *optlen) 7109 { 7110 struct sctp_sock *sp = sctp_sk(sk); 7111 struct sctp_association *asoc; 7112 struct sctp_assoc_ids *ids; 7113 u32 num = 0; 7114 7115 if (sctp_style(sk, TCP)) 7116 return -EOPNOTSUPP; 7117 7118 if (len < sizeof(struct sctp_assoc_ids)) 7119 return -EINVAL; 7120 7121 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7122 num++; 7123 } 7124 7125 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7126 return -EINVAL; 7127 7128 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7129 7130 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7131 if (unlikely(!ids)) 7132 return -ENOMEM; 7133 7134 ids->gaids_number_of_ids = num; 7135 num = 0; 7136 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7137 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7138 } 7139 7140 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7141 kfree(ids); 7142 return -EFAULT; 7143 } 7144 7145 kfree(ids); 7146 return 0; 7147 } 7148 7149 /* 7150 * SCTP_PEER_ADDR_THLDS 7151 * 7152 * This option allows us to fetch the partially failed threshold for one or all 7153 * transports in an association. See Section 6.1 of: 7154 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7155 */ 7156 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7157 char __user *optval, int len, 7158 int __user *optlen, bool v2) 7159 { 7160 struct sctp_paddrthlds_v2 val; 7161 struct sctp_transport *trans; 7162 struct sctp_association *asoc; 7163 int min; 7164 7165 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7166 if (len < min) 7167 return -EINVAL; 7168 len = min; 7169 if (copy_from_user(&val, optval, len)) 7170 return -EFAULT; 7171 7172 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7173 trans = sctp_addr_id2transport(sk, &val.spt_address, 7174 val.spt_assoc_id); 7175 if (!trans) 7176 return -ENOENT; 7177 7178 val.spt_pathmaxrxt = trans->pathmaxrxt; 7179 val.spt_pathpfthld = trans->pf_retrans; 7180 val.spt_pathcpthld = trans->ps_retrans; 7181 7182 goto out; 7183 } 7184 7185 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7186 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7187 sctp_style(sk, UDP)) 7188 return -EINVAL; 7189 7190 if (asoc) { 7191 val.spt_pathpfthld = asoc->pf_retrans; 7192 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7193 val.spt_pathcpthld = asoc->ps_retrans; 7194 } else { 7195 struct sctp_sock *sp = sctp_sk(sk); 7196 7197 val.spt_pathpfthld = sp->pf_retrans; 7198 val.spt_pathmaxrxt = sp->pathmaxrxt; 7199 val.spt_pathcpthld = sp->ps_retrans; 7200 } 7201 7202 out: 7203 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7204 return -EFAULT; 7205 7206 return 0; 7207 } 7208 7209 /* 7210 * SCTP_GET_ASSOC_STATS 7211 * 7212 * This option retrieves local per endpoint statistics. It is modeled 7213 * after OpenSolaris' implementation 7214 */ 7215 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7216 char __user *optval, 7217 int __user *optlen) 7218 { 7219 struct sctp_assoc_stats sas; 7220 struct sctp_association *asoc = NULL; 7221 7222 /* User must provide at least the assoc id */ 7223 if (len < sizeof(sctp_assoc_t)) 7224 return -EINVAL; 7225 7226 /* Allow the struct to grow and fill in as much as possible */ 7227 len = min_t(size_t, len, sizeof(sas)); 7228 7229 if (copy_from_user(&sas, optval, len)) 7230 return -EFAULT; 7231 7232 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7233 if (!asoc) 7234 return -EINVAL; 7235 7236 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7237 sas.sas_gapcnt = asoc->stats.gapcnt; 7238 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7239 sas.sas_osacks = asoc->stats.osacks; 7240 sas.sas_isacks = asoc->stats.isacks; 7241 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7242 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7243 sas.sas_oodchunks = asoc->stats.oodchunks; 7244 sas.sas_iodchunks = asoc->stats.iodchunks; 7245 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7246 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7247 sas.sas_idupchunks = asoc->stats.idupchunks; 7248 sas.sas_opackets = asoc->stats.opackets; 7249 sas.sas_ipackets = asoc->stats.ipackets; 7250 7251 /* New high max rto observed, will return 0 if not a single 7252 * RTO update took place. obs_rto_ipaddr will be bogus 7253 * in such a case 7254 */ 7255 sas.sas_maxrto = asoc->stats.max_obs_rto; 7256 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7257 sizeof(struct sockaddr_storage)); 7258 7259 /* Mark beginning of a new observation period */ 7260 asoc->stats.max_obs_rto = asoc->rto_min; 7261 7262 if (put_user(len, optlen)) 7263 return -EFAULT; 7264 7265 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7266 7267 if (copy_to_user(optval, &sas, len)) 7268 return -EFAULT; 7269 7270 return 0; 7271 } 7272 7273 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7274 char __user *optval, 7275 int __user *optlen) 7276 { 7277 int val = 0; 7278 7279 if (len < sizeof(int)) 7280 return -EINVAL; 7281 7282 len = sizeof(int); 7283 if (sctp_sk(sk)->recvrcvinfo) 7284 val = 1; 7285 if (put_user(len, optlen)) 7286 return -EFAULT; 7287 if (copy_to_user(optval, &val, len)) 7288 return -EFAULT; 7289 7290 return 0; 7291 } 7292 7293 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7294 char __user *optval, 7295 int __user *optlen) 7296 { 7297 int val = 0; 7298 7299 if (len < sizeof(int)) 7300 return -EINVAL; 7301 7302 len = sizeof(int); 7303 if (sctp_sk(sk)->recvnxtinfo) 7304 val = 1; 7305 if (put_user(len, optlen)) 7306 return -EFAULT; 7307 if (copy_to_user(optval, &val, len)) 7308 return -EFAULT; 7309 7310 return 0; 7311 } 7312 7313 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7314 char __user *optval, 7315 int __user *optlen) 7316 { 7317 struct sctp_assoc_value params; 7318 struct sctp_association *asoc; 7319 int retval = -EFAULT; 7320 7321 if (len < sizeof(params)) { 7322 retval = -EINVAL; 7323 goto out; 7324 } 7325 7326 len = sizeof(params); 7327 if (copy_from_user(¶ms, optval, len)) 7328 goto out; 7329 7330 asoc = sctp_id2assoc(sk, params.assoc_id); 7331 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7332 sctp_style(sk, UDP)) { 7333 retval = -EINVAL; 7334 goto out; 7335 } 7336 7337 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7338 : sctp_sk(sk)->ep->prsctp_enable; 7339 7340 if (put_user(len, optlen)) 7341 goto out; 7342 7343 if (copy_to_user(optval, ¶ms, len)) 7344 goto out; 7345 7346 retval = 0; 7347 7348 out: 7349 return retval; 7350 } 7351 7352 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7353 char __user *optval, 7354 int __user *optlen) 7355 { 7356 struct sctp_default_prinfo info; 7357 struct sctp_association *asoc; 7358 int retval = -EFAULT; 7359 7360 if (len < sizeof(info)) { 7361 retval = -EINVAL; 7362 goto out; 7363 } 7364 7365 len = sizeof(info); 7366 if (copy_from_user(&info, optval, len)) 7367 goto out; 7368 7369 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7370 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7371 sctp_style(sk, UDP)) { 7372 retval = -EINVAL; 7373 goto out; 7374 } 7375 7376 if (asoc) { 7377 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7378 info.pr_value = asoc->default_timetolive; 7379 } else { 7380 struct sctp_sock *sp = sctp_sk(sk); 7381 7382 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7383 info.pr_value = sp->default_timetolive; 7384 } 7385 7386 if (put_user(len, optlen)) 7387 goto out; 7388 7389 if (copy_to_user(optval, &info, len)) 7390 goto out; 7391 7392 retval = 0; 7393 7394 out: 7395 return retval; 7396 } 7397 7398 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7399 char __user *optval, 7400 int __user *optlen) 7401 { 7402 struct sctp_prstatus params; 7403 struct sctp_association *asoc; 7404 int policy; 7405 int retval = -EINVAL; 7406 7407 if (len < sizeof(params)) 7408 goto out; 7409 7410 len = sizeof(params); 7411 if (copy_from_user(¶ms, optval, len)) { 7412 retval = -EFAULT; 7413 goto out; 7414 } 7415 7416 policy = params.sprstat_policy; 7417 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7418 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7419 goto out; 7420 7421 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7422 if (!asoc) 7423 goto out; 7424 7425 if (policy == SCTP_PR_SCTP_ALL) { 7426 params.sprstat_abandoned_unsent = 0; 7427 params.sprstat_abandoned_sent = 0; 7428 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7429 params.sprstat_abandoned_unsent += 7430 asoc->abandoned_unsent[policy]; 7431 params.sprstat_abandoned_sent += 7432 asoc->abandoned_sent[policy]; 7433 } 7434 } else { 7435 params.sprstat_abandoned_unsent = 7436 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7437 params.sprstat_abandoned_sent = 7438 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7439 } 7440 7441 if (put_user(len, optlen)) { 7442 retval = -EFAULT; 7443 goto out; 7444 } 7445 7446 if (copy_to_user(optval, ¶ms, len)) { 7447 retval = -EFAULT; 7448 goto out; 7449 } 7450 7451 retval = 0; 7452 7453 out: 7454 return retval; 7455 } 7456 7457 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7458 char __user *optval, 7459 int __user *optlen) 7460 { 7461 struct sctp_stream_out_ext *streamoute; 7462 struct sctp_association *asoc; 7463 struct sctp_prstatus params; 7464 int retval = -EINVAL; 7465 int policy; 7466 7467 if (len < sizeof(params)) 7468 goto out; 7469 7470 len = sizeof(params); 7471 if (copy_from_user(¶ms, optval, len)) { 7472 retval = -EFAULT; 7473 goto out; 7474 } 7475 7476 policy = params.sprstat_policy; 7477 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7478 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7479 goto out; 7480 7481 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7482 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7483 goto out; 7484 7485 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7486 if (!streamoute) { 7487 /* Not allocated yet, means all stats are 0 */ 7488 params.sprstat_abandoned_unsent = 0; 7489 params.sprstat_abandoned_sent = 0; 7490 retval = 0; 7491 goto out; 7492 } 7493 7494 if (policy == SCTP_PR_SCTP_ALL) { 7495 params.sprstat_abandoned_unsent = 0; 7496 params.sprstat_abandoned_sent = 0; 7497 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7498 params.sprstat_abandoned_unsent += 7499 streamoute->abandoned_unsent[policy]; 7500 params.sprstat_abandoned_sent += 7501 streamoute->abandoned_sent[policy]; 7502 } 7503 } else { 7504 params.sprstat_abandoned_unsent = 7505 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7506 params.sprstat_abandoned_sent = 7507 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7508 } 7509 7510 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7511 retval = -EFAULT; 7512 goto out; 7513 } 7514 7515 retval = 0; 7516 7517 out: 7518 return retval; 7519 } 7520 7521 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7522 char __user *optval, 7523 int __user *optlen) 7524 { 7525 struct sctp_assoc_value params; 7526 struct sctp_association *asoc; 7527 int retval = -EFAULT; 7528 7529 if (len < sizeof(params)) { 7530 retval = -EINVAL; 7531 goto out; 7532 } 7533 7534 len = sizeof(params); 7535 if (copy_from_user(¶ms, optval, len)) 7536 goto out; 7537 7538 asoc = sctp_id2assoc(sk, params.assoc_id); 7539 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7540 sctp_style(sk, UDP)) { 7541 retval = -EINVAL; 7542 goto out; 7543 } 7544 7545 params.assoc_value = asoc ? asoc->peer.reconf_capable 7546 : sctp_sk(sk)->ep->reconf_enable; 7547 7548 if (put_user(len, optlen)) 7549 goto out; 7550 7551 if (copy_to_user(optval, ¶ms, len)) 7552 goto out; 7553 7554 retval = 0; 7555 7556 out: 7557 return retval; 7558 } 7559 7560 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7561 char __user *optval, 7562 int __user *optlen) 7563 { 7564 struct sctp_assoc_value params; 7565 struct sctp_association *asoc; 7566 int retval = -EFAULT; 7567 7568 if (len < sizeof(params)) { 7569 retval = -EINVAL; 7570 goto out; 7571 } 7572 7573 len = sizeof(params); 7574 if (copy_from_user(¶ms, optval, len)) 7575 goto out; 7576 7577 asoc = sctp_id2assoc(sk, params.assoc_id); 7578 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7579 sctp_style(sk, UDP)) { 7580 retval = -EINVAL; 7581 goto out; 7582 } 7583 7584 params.assoc_value = asoc ? asoc->strreset_enable 7585 : sctp_sk(sk)->ep->strreset_enable; 7586 7587 if (put_user(len, optlen)) 7588 goto out; 7589 7590 if (copy_to_user(optval, ¶ms, len)) 7591 goto out; 7592 7593 retval = 0; 7594 7595 out: 7596 return retval; 7597 } 7598 7599 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7600 char __user *optval, 7601 int __user *optlen) 7602 { 7603 struct sctp_assoc_value params; 7604 struct sctp_association *asoc; 7605 int retval = -EFAULT; 7606 7607 if (len < sizeof(params)) { 7608 retval = -EINVAL; 7609 goto out; 7610 } 7611 7612 len = sizeof(params); 7613 if (copy_from_user(¶ms, optval, len)) 7614 goto out; 7615 7616 asoc = sctp_id2assoc(sk, params.assoc_id); 7617 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7618 sctp_style(sk, UDP)) { 7619 retval = -EINVAL; 7620 goto out; 7621 } 7622 7623 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7624 : sctp_sk(sk)->default_ss; 7625 7626 if (put_user(len, optlen)) 7627 goto out; 7628 7629 if (copy_to_user(optval, ¶ms, len)) 7630 goto out; 7631 7632 retval = 0; 7633 7634 out: 7635 return retval; 7636 } 7637 7638 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7639 char __user *optval, 7640 int __user *optlen) 7641 { 7642 struct sctp_stream_value params; 7643 struct sctp_association *asoc; 7644 int retval = -EFAULT; 7645 7646 if (len < sizeof(params)) { 7647 retval = -EINVAL; 7648 goto out; 7649 } 7650 7651 len = sizeof(params); 7652 if (copy_from_user(¶ms, optval, len)) 7653 goto out; 7654 7655 asoc = sctp_id2assoc(sk, params.assoc_id); 7656 if (!asoc) { 7657 retval = -EINVAL; 7658 goto out; 7659 } 7660 7661 retval = sctp_sched_get_value(asoc, params.stream_id, 7662 ¶ms.stream_value); 7663 if (retval) 7664 goto out; 7665 7666 if (put_user(len, optlen)) { 7667 retval = -EFAULT; 7668 goto out; 7669 } 7670 7671 if (copy_to_user(optval, ¶ms, len)) { 7672 retval = -EFAULT; 7673 goto out; 7674 } 7675 7676 out: 7677 return retval; 7678 } 7679 7680 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7681 char __user *optval, 7682 int __user *optlen) 7683 { 7684 struct sctp_assoc_value params; 7685 struct sctp_association *asoc; 7686 int retval = -EFAULT; 7687 7688 if (len < sizeof(params)) { 7689 retval = -EINVAL; 7690 goto out; 7691 } 7692 7693 len = sizeof(params); 7694 if (copy_from_user(¶ms, optval, len)) 7695 goto out; 7696 7697 asoc = sctp_id2assoc(sk, params.assoc_id); 7698 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7699 sctp_style(sk, UDP)) { 7700 retval = -EINVAL; 7701 goto out; 7702 } 7703 7704 params.assoc_value = asoc ? asoc->peer.intl_capable 7705 : sctp_sk(sk)->ep->intl_enable; 7706 7707 if (put_user(len, optlen)) 7708 goto out; 7709 7710 if (copy_to_user(optval, ¶ms, len)) 7711 goto out; 7712 7713 retval = 0; 7714 7715 out: 7716 return retval; 7717 } 7718 7719 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7720 char __user *optval, 7721 int __user *optlen) 7722 { 7723 int val; 7724 7725 if (len < sizeof(int)) 7726 return -EINVAL; 7727 7728 len = sizeof(int); 7729 val = sctp_sk(sk)->reuse; 7730 if (put_user(len, optlen)) 7731 return -EFAULT; 7732 7733 if (copy_to_user(optval, &val, len)) 7734 return -EFAULT; 7735 7736 return 0; 7737 } 7738 7739 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7740 int __user *optlen) 7741 { 7742 struct sctp_association *asoc; 7743 struct sctp_event param; 7744 __u16 subscribe; 7745 7746 if (len < sizeof(param)) 7747 return -EINVAL; 7748 7749 len = sizeof(param); 7750 if (copy_from_user(¶m, optval, len)) 7751 return -EFAULT; 7752 7753 if (param.se_type < SCTP_SN_TYPE_BASE || 7754 param.se_type > SCTP_SN_TYPE_MAX) 7755 return -EINVAL; 7756 7757 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7758 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7759 sctp_style(sk, UDP)) 7760 return -EINVAL; 7761 7762 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7763 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7764 7765 if (put_user(len, optlen)) 7766 return -EFAULT; 7767 7768 if (copy_to_user(optval, ¶m, len)) 7769 return -EFAULT; 7770 7771 return 0; 7772 } 7773 7774 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7775 char __user *optval, 7776 int __user *optlen) 7777 { 7778 struct sctp_assoc_value params; 7779 struct sctp_association *asoc; 7780 int retval = -EFAULT; 7781 7782 if (len < sizeof(params)) { 7783 retval = -EINVAL; 7784 goto out; 7785 } 7786 7787 len = sizeof(params); 7788 if (copy_from_user(¶ms, optval, len)) 7789 goto out; 7790 7791 asoc = sctp_id2assoc(sk, params.assoc_id); 7792 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7793 sctp_style(sk, UDP)) { 7794 retval = -EINVAL; 7795 goto out; 7796 } 7797 7798 params.assoc_value = asoc ? asoc->peer.asconf_capable 7799 : sctp_sk(sk)->ep->asconf_enable; 7800 7801 if (put_user(len, optlen)) 7802 goto out; 7803 7804 if (copy_to_user(optval, ¶ms, len)) 7805 goto out; 7806 7807 retval = 0; 7808 7809 out: 7810 return retval; 7811 } 7812 7813 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7814 char __user *optval, 7815 int __user *optlen) 7816 { 7817 struct sctp_assoc_value params; 7818 struct sctp_association *asoc; 7819 int retval = -EFAULT; 7820 7821 if (len < sizeof(params)) { 7822 retval = -EINVAL; 7823 goto out; 7824 } 7825 7826 len = sizeof(params); 7827 if (copy_from_user(¶ms, optval, len)) 7828 goto out; 7829 7830 asoc = sctp_id2assoc(sk, params.assoc_id); 7831 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7832 sctp_style(sk, UDP)) { 7833 retval = -EINVAL; 7834 goto out; 7835 } 7836 7837 params.assoc_value = asoc ? asoc->peer.auth_capable 7838 : sctp_sk(sk)->ep->auth_enable; 7839 7840 if (put_user(len, optlen)) 7841 goto out; 7842 7843 if (copy_to_user(optval, ¶ms, len)) 7844 goto out; 7845 7846 retval = 0; 7847 7848 out: 7849 return retval; 7850 } 7851 7852 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7853 char __user *optval, 7854 int __user *optlen) 7855 { 7856 struct sctp_assoc_value params; 7857 struct sctp_association *asoc; 7858 int retval = -EFAULT; 7859 7860 if (len < sizeof(params)) { 7861 retval = -EINVAL; 7862 goto out; 7863 } 7864 7865 len = sizeof(params); 7866 if (copy_from_user(¶ms, optval, len)) 7867 goto out; 7868 7869 asoc = sctp_id2assoc(sk, params.assoc_id); 7870 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7871 sctp_style(sk, UDP)) { 7872 retval = -EINVAL; 7873 goto out; 7874 } 7875 7876 params.assoc_value = asoc ? asoc->peer.ecn_capable 7877 : sctp_sk(sk)->ep->ecn_enable; 7878 7879 if (put_user(len, optlen)) 7880 goto out; 7881 7882 if (copy_to_user(optval, ¶ms, len)) 7883 goto out; 7884 7885 retval = 0; 7886 7887 out: 7888 return retval; 7889 } 7890 7891 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7892 char __user *optval, 7893 int __user *optlen) 7894 { 7895 struct sctp_assoc_value params; 7896 struct sctp_association *asoc; 7897 int retval = -EFAULT; 7898 7899 if (len < sizeof(params)) { 7900 retval = -EINVAL; 7901 goto out; 7902 } 7903 7904 len = sizeof(params); 7905 if (copy_from_user(¶ms, optval, len)) 7906 goto out; 7907 7908 asoc = sctp_id2assoc(sk, params.assoc_id); 7909 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7910 sctp_style(sk, UDP)) { 7911 retval = -EINVAL; 7912 goto out; 7913 } 7914 7915 params.assoc_value = asoc ? asoc->pf_expose 7916 : sctp_sk(sk)->pf_expose; 7917 7918 if (put_user(len, optlen)) 7919 goto out; 7920 7921 if (copy_to_user(optval, ¶ms, len)) 7922 goto out; 7923 7924 retval = 0; 7925 7926 out: 7927 return retval; 7928 } 7929 7930 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7931 char __user *optval, int __user *optlen) 7932 { 7933 struct sctp_association *asoc; 7934 struct sctp_udpencaps encap; 7935 struct sctp_transport *t; 7936 __be16 encap_port; 7937 7938 if (len < sizeof(encap)) 7939 return -EINVAL; 7940 7941 len = sizeof(encap); 7942 if (copy_from_user(&encap, optval, len)) 7943 return -EFAULT; 7944 7945 /* If an address other than INADDR_ANY is specified, and 7946 * no transport is found, then the request is invalid. 7947 */ 7948 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7949 t = sctp_addr_id2transport(sk, &encap.sue_address, 7950 encap.sue_assoc_id); 7951 if (!t) { 7952 pr_debug("%s: failed no transport\n", __func__); 7953 return -EINVAL; 7954 } 7955 7956 encap_port = t->encap_port; 7957 goto out; 7958 } 7959 7960 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7961 * socket is a one to many style socket, and an association 7962 * was not found, then the id was invalid. 7963 */ 7964 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7965 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7966 sctp_style(sk, UDP)) { 7967 pr_debug("%s: failed no association\n", __func__); 7968 return -EINVAL; 7969 } 7970 7971 if (asoc) { 7972 encap_port = asoc->encap_port; 7973 goto out; 7974 } 7975 7976 encap_port = sctp_sk(sk)->encap_port; 7977 7978 out: 7979 encap.sue_port = (__force uint16_t)encap_port; 7980 if (copy_to_user(optval, &encap, len)) 7981 return -EFAULT; 7982 7983 if (put_user(len, optlen)) 7984 return -EFAULT; 7985 7986 return 0; 7987 } 7988 7989 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 7990 char __user *optval, 7991 int __user *optlen) 7992 { 7993 struct sctp_probeinterval params; 7994 struct sctp_association *asoc; 7995 struct sctp_transport *t; 7996 __u32 probe_interval; 7997 7998 if (len < sizeof(params)) 7999 return -EINVAL; 8000 8001 len = sizeof(params); 8002 if (copy_from_user(¶ms, optval, len)) 8003 return -EFAULT; 8004 8005 /* If an address other than INADDR_ANY is specified, and 8006 * no transport is found, then the request is invalid. 8007 */ 8008 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 8009 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 8010 params.spi_assoc_id); 8011 if (!t) { 8012 pr_debug("%s: failed no transport\n", __func__); 8013 return -EINVAL; 8014 } 8015 8016 probe_interval = jiffies_to_msecs(t->probe_interval); 8017 goto out; 8018 } 8019 8020 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8021 * socket is a one to many style socket, and an association 8022 * was not found, then the id was invalid. 8023 */ 8024 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8025 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8026 sctp_style(sk, UDP)) { 8027 pr_debug("%s: failed no association\n", __func__); 8028 return -EINVAL; 8029 } 8030 8031 if (asoc) { 8032 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8033 goto out; 8034 } 8035 8036 probe_interval = sctp_sk(sk)->probe_interval; 8037 8038 out: 8039 params.spi_interval = probe_interval; 8040 if (copy_to_user(optval, ¶ms, len)) 8041 return -EFAULT; 8042 8043 if (put_user(len, optlen)) 8044 return -EFAULT; 8045 8046 return 0; 8047 } 8048 8049 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8050 char __user *optval, int __user *optlen) 8051 { 8052 int retval = 0; 8053 int len; 8054 8055 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8056 8057 /* I can hardly begin to describe how wrong this is. This is 8058 * so broken as to be worse than useless. The API draft 8059 * REALLY is NOT helpful here... I am not convinced that the 8060 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8061 * are at all well-founded. 8062 */ 8063 if (level != SOL_SCTP) { 8064 struct sctp_af *af = sctp_sk(sk)->pf->af; 8065 8066 retval = af->getsockopt(sk, level, optname, optval, optlen); 8067 return retval; 8068 } 8069 8070 if (get_user(len, optlen)) 8071 return -EFAULT; 8072 8073 if (len < 0) 8074 return -EINVAL; 8075 8076 lock_sock(sk); 8077 8078 switch (optname) { 8079 case SCTP_STATUS: 8080 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8081 break; 8082 case SCTP_DISABLE_FRAGMENTS: 8083 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8084 optlen); 8085 break; 8086 case SCTP_EVENTS: 8087 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8088 break; 8089 case SCTP_AUTOCLOSE: 8090 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8091 break; 8092 case SCTP_SOCKOPT_PEELOFF: 8093 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8094 break; 8095 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8096 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8097 break; 8098 case SCTP_PEER_ADDR_PARAMS: 8099 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8100 optlen); 8101 break; 8102 case SCTP_DELAYED_SACK: 8103 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8104 optlen); 8105 break; 8106 case SCTP_INITMSG: 8107 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8108 break; 8109 case SCTP_GET_PEER_ADDRS: 8110 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8111 optlen); 8112 break; 8113 case SCTP_GET_LOCAL_ADDRS: 8114 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8115 optlen); 8116 break; 8117 case SCTP_SOCKOPT_CONNECTX3: 8118 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8119 break; 8120 case SCTP_DEFAULT_SEND_PARAM: 8121 retval = sctp_getsockopt_default_send_param(sk, len, 8122 optval, optlen); 8123 break; 8124 case SCTP_DEFAULT_SNDINFO: 8125 retval = sctp_getsockopt_default_sndinfo(sk, len, 8126 optval, optlen); 8127 break; 8128 case SCTP_PRIMARY_ADDR: 8129 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8130 break; 8131 case SCTP_NODELAY: 8132 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8133 break; 8134 case SCTP_RTOINFO: 8135 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8136 break; 8137 case SCTP_ASSOCINFO: 8138 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8139 break; 8140 case SCTP_I_WANT_MAPPED_V4_ADDR: 8141 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8142 break; 8143 case SCTP_MAXSEG: 8144 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8145 break; 8146 case SCTP_GET_PEER_ADDR_INFO: 8147 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8148 optlen); 8149 break; 8150 case SCTP_ADAPTATION_LAYER: 8151 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8152 optlen); 8153 break; 8154 case SCTP_CONTEXT: 8155 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8156 break; 8157 case SCTP_FRAGMENT_INTERLEAVE: 8158 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8159 optlen); 8160 break; 8161 case SCTP_PARTIAL_DELIVERY_POINT: 8162 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8163 optlen); 8164 break; 8165 case SCTP_MAX_BURST: 8166 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8167 break; 8168 case SCTP_AUTH_KEY: 8169 case SCTP_AUTH_CHUNK: 8170 case SCTP_AUTH_DELETE_KEY: 8171 case SCTP_AUTH_DEACTIVATE_KEY: 8172 retval = -EOPNOTSUPP; 8173 break; 8174 case SCTP_HMAC_IDENT: 8175 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8176 break; 8177 case SCTP_AUTH_ACTIVE_KEY: 8178 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8179 break; 8180 case SCTP_PEER_AUTH_CHUNKS: 8181 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8182 optlen); 8183 break; 8184 case SCTP_LOCAL_AUTH_CHUNKS: 8185 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8186 optlen); 8187 break; 8188 case SCTP_GET_ASSOC_NUMBER: 8189 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8190 break; 8191 case SCTP_GET_ASSOC_ID_LIST: 8192 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8193 break; 8194 case SCTP_AUTO_ASCONF: 8195 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8196 break; 8197 case SCTP_PEER_ADDR_THLDS: 8198 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8199 optlen, false); 8200 break; 8201 case SCTP_PEER_ADDR_THLDS_V2: 8202 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8203 optlen, true); 8204 break; 8205 case SCTP_GET_ASSOC_STATS: 8206 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8207 break; 8208 case SCTP_RECVRCVINFO: 8209 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8210 break; 8211 case SCTP_RECVNXTINFO: 8212 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8213 break; 8214 case SCTP_PR_SUPPORTED: 8215 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8216 break; 8217 case SCTP_DEFAULT_PRINFO: 8218 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8219 optlen); 8220 break; 8221 case SCTP_PR_ASSOC_STATUS: 8222 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8223 optlen); 8224 break; 8225 case SCTP_PR_STREAM_STATUS: 8226 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8227 optlen); 8228 break; 8229 case SCTP_RECONFIG_SUPPORTED: 8230 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8231 optlen); 8232 break; 8233 case SCTP_ENABLE_STREAM_RESET: 8234 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8235 optlen); 8236 break; 8237 case SCTP_STREAM_SCHEDULER: 8238 retval = sctp_getsockopt_scheduler(sk, len, optval, 8239 optlen); 8240 break; 8241 case SCTP_STREAM_SCHEDULER_VALUE: 8242 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8243 optlen); 8244 break; 8245 case SCTP_INTERLEAVING_SUPPORTED: 8246 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8247 optlen); 8248 break; 8249 case SCTP_REUSE_PORT: 8250 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8251 break; 8252 case SCTP_EVENT: 8253 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8254 break; 8255 case SCTP_ASCONF_SUPPORTED: 8256 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8257 optlen); 8258 break; 8259 case SCTP_AUTH_SUPPORTED: 8260 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8261 optlen); 8262 break; 8263 case SCTP_ECN_SUPPORTED: 8264 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8265 break; 8266 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8267 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8268 break; 8269 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8270 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8271 break; 8272 case SCTP_PLPMTUD_PROBE_INTERVAL: 8273 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8274 break; 8275 default: 8276 retval = -ENOPROTOOPT; 8277 break; 8278 } 8279 8280 release_sock(sk); 8281 return retval; 8282 } 8283 8284 static bool sctp_bpf_bypass_getsockopt(int level, int optname) 8285 { 8286 if (level == SOL_SCTP) { 8287 switch (optname) { 8288 case SCTP_SOCKOPT_PEELOFF: 8289 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8290 case SCTP_SOCKOPT_CONNECTX3: 8291 return true; 8292 default: 8293 return false; 8294 } 8295 } 8296 8297 return false; 8298 } 8299 8300 static int sctp_hash(struct sock *sk) 8301 { 8302 /* STUB */ 8303 return 0; 8304 } 8305 8306 static void sctp_unhash(struct sock *sk) 8307 { 8308 /* STUB */ 8309 } 8310 8311 /* Check if port is acceptable. Possibly find first available port. 8312 * 8313 * The port hash table (contained in the 'global' SCTP protocol storage 8314 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8315 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8316 * list (the list number is the port number hashed out, so as you 8317 * would expect from a hash function, all the ports in a given list have 8318 * such a number that hashes out to the same list number; you were 8319 * expecting that, right?); so each list has a set of ports, with a 8320 * link to the socket (struct sock) that uses it, the port number and 8321 * a fastreuse flag (FIXME: NPI ipg). 8322 */ 8323 static struct sctp_bind_bucket *sctp_bucket_create( 8324 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8325 8326 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8327 { 8328 struct sctp_sock *sp = sctp_sk(sk); 8329 bool reuse = (sk->sk_reuse || sp->reuse); 8330 struct sctp_bind_hashbucket *head; /* hash list */ 8331 struct net *net = sock_net(sk); 8332 kuid_t uid = sock_i_uid(sk); 8333 struct sctp_bind_bucket *pp; 8334 unsigned short snum; 8335 int ret; 8336 8337 snum = ntohs(addr->v4.sin_port); 8338 8339 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8340 8341 if (snum == 0) { 8342 /* Search for an available port. */ 8343 int low, high, remaining, index; 8344 unsigned int rover; 8345 8346 inet_sk_get_local_port_range(sk, &low, &high); 8347 remaining = (high - low) + 1; 8348 rover = get_random_u32_below(remaining) + low; 8349 8350 do { 8351 rover++; 8352 if ((rover < low) || (rover > high)) 8353 rover = low; 8354 if (inet_is_local_reserved_port(net, rover)) 8355 continue; 8356 index = sctp_phashfn(net, rover); 8357 head = &sctp_port_hashtable[index]; 8358 spin_lock_bh(&head->lock); 8359 sctp_for_each_hentry(pp, &head->chain) 8360 if ((pp->port == rover) && 8361 net_eq(net, pp->net)) 8362 goto next; 8363 break; 8364 next: 8365 spin_unlock_bh(&head->lock); 8366 cond_resched(); 8367 } while (--remaining > 0); 8368 8369 /* Exhausted local port range during search? */ 8370 ret = 1; 8371 if (remaining <= 0) 8372 return ret; 8373 8374 /* OK, here is the one we will use. HEAD (the port 8375 * hash table list entry) is non-NULL and we hold it's 8376 * mutex. 8377 */ 8378 snum = rover; 8379 } else { 8380 /* We are given an specific port number; we verify 8381 * that it is not being used. If it is used, we will 8382 * exahust the search in the hash list corresponding 8383 * to the port number (snum) - we detect that with the 8384 * port iterator, pp being NULL. 8385 */ 8386 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8387 spin_lock_bh(&head->lock); 8388 sctp_for_each_hentry(pp, &head->chain) { 8389 if ((pp->port == snum) && net_eq(pp->net, net)) 8390 goto pp_found; 8391 } 8392 } 8393 pp = NULL; 8394 goto pp_not_found; 8395 pp_found: 8396 if (!hlist_empty(&pp->owner)) { 8397 /* We had a port hash table hit - there is an 8398 * available port (pp != NULL) and it is being 8399 * used by other socket (pp->owner not empty); that other 8400 * socket is going to be sk2. 8401 */ 8402 struct sock *sk2; 8403 8404 pr_debug("%s: found a possible match\n", __func__); 8405 8406 if ((pp->fastreuse && reuse && 8407 sk->sk_state != SCTP_SS_LISTENING) || 8408 (pp->fastreuseport && sk->sk_reuseport && 8409 uid_eq(pp->fastuid, uid))) 8410 goto success; 8411 8412 /* Run through the list of sockets bound to the port 8413 * (pp->port) [via the pointers bind_next and 8414 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8415 * we get the endpoint they describe and run through 8416 * the endpoint's list of IP (v4 or v6) addresses, 8417 * comparing each of the addresses with the address of 8418 * the socket sk. If we find a match, then that means 8419 * that this port/socket (sk) combination are already 8420 * in an endpoint. 8421 */ 8422 sk_for_each_bound(sk2, &pp->owner) { 8423 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 8424 struct sctp_sock *sp2 = sctp_sk(sk2); 8425 struct sctp_endpoint *ep2 = sp2->ep; 8426 8427 if (sk == sk2 || 8428 (reuse && (sk2->sk_reuse || sp2->reuse) && 8429 sk2->sk_state != SCTP_SS_LISTENING) || 8430 (sk->sk_reuseport && sk2->sk_reuseport && 8431 uid_eq(uid, sock_i_uid(sk2)))) 8432 continue; 8433 8434 if ((!sk->sk_bound_dev_if || !bound_dev_if2 || 8435 sk->sk_bound_dev_if == bound_dev_if2) && 8436 sctp_bind_addr_conflict(&ep2->base.bind_addr, 8437 addr, sp2, sp)) { 8438 ret = 1; 8439 goto fail_unlock; 8440 } 8441 } 8442 8443 pr_debug("%s: found a match\n", __func__); 8444 } 8445 pp_not_found: 8446 /* If there was a hash table miss, create a new port. */ 8447 ret = 1; 8448 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8449 goto fail_unlock; 8450 8451 /* In either case (hit or miss), make sure fastreuse is 1 only 8452 * if sk->sk_reuse is too (that is, if the caller requested 8453 * SO_REUSEADDR on this socket -sk-). 8454 */ 8455 if (hlist_empty(&pp->owner)) { 8456 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8457 pp->fastreuse = 1; 8458 else 8459 pp->fastreuse = 0; 8460 8461 if (sk->sk_reuseport) { 8462 pp->fastreuseport = 1; 8463 pp->fastuid = uid; 8464 } else { 8465 pp->fastreuseport = 0; 8466 } 8467 } else { 8468 if (pp->fastreuse && 8469 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8470 pp->fastreuse = 0; 8471 8472 if (pp->fastreuseport && 8473 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8474 pp->fastreuseport = 0; 8475 } 8476 8477 /* We are set, so fill up all the data in the hash table 8478 * entry, tie the socket list information with the rest of the 8479 * sockets FIXME: Blurry, NPI (ipg). 8480 */ 8481 success: 8482 if (!sp->bind_hash) { 8483 inet_sk(sk)->inet_num = snum; 8484 sk_add_bind_node(sk, &pp->owner); 8485 sp->bind_hash = pp; 8486 } 8487 ret = 0; 8488 8489 fail_unlock: 8490 spin_unlock_bh(&head->lock); 8491 return ret; 8492 } 8493 8494 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8495 * port is requested. 8496 */ 8497 static int sctp_get_port(struct sock *sk, unsigned short snum) 8498 { 8499 union sctp_addr addr; 8500 struct sctp_af *af = sctp_sk(sk)->pf->af; 8501 8502 /* Set up a dummy address struct from the sk. */ 8503 af->from_sk(&addr, sk); 8504 addr.v4.sin_port = htons(snum); 8505 8506 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8507 return sctp_get_port_local(sk, &addr); 8508 } 8509 8510 /* 8511 * Move a socket to LISTENING state. 8512 */ 8513 static int sctp_listen_start(struct sock *sk, int backlog) 8514 { 8515 struct sctp_sock *sp = sctp_sk(sk); 8516 struct sctp_endpoint *ep = sp->ep; 8517 struct crypto_shash *tfm = NULL; 8518 char alg[32]; 8519 8520 /* Allocate HMAC for generating cookie. */ 8521 if (!sp->hmac && sp->sctp_hmac_alg) { 8522 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8523 tfm = crypto_alloc_shash(alg, 0, 0); 8524 if (IS_ERR(tfm)) { 8525 net_info_ratelimited("failed to load transform for %s: %ld\n", 8526 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8527 return -ENOSYS; 8528 } 8529 sctp_sk(sk)->hmac = tfm; 8530 } 8531 8532 /* 8533 * If a bind() or sctp_bindx() is not called prior to a listen() 8534 * call that allows new associations to be accepted, the system 8535 * picks an ephemeral port and will choose an address set equivalent 8536 * to binding with a wildcard address. 8537 * 8538 * This is not currently spelled out in the SCTP sockets 8539 * extensions draft, but follows the practice as seen in TCP 8540 * sockets. 8541 * 8542 */ 8543 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8544 if (!ep->base.bind_addr.port) { 8545 if (sctp_autobind(sk)) 8546 return -EAGAIN; 8547 } else { 8548 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8549 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8550 return -EADDRINUSE; 8551 } 8552 } 8553 8554 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8555 return sctp_hash_endpoint(ep); 8556 } 8557 8558 /* 8559 * 4.1.3 / 5.1.3 listen() 8560 * 8561 * By default, new associations are not accepted for UDP style sockets. 8562 * An application uses listen() to mark a socket as being able to 8563 * accept new associations. 8564 * 8565 * On TCP style sockets, applications use listen() to ready the SCTP 8566 * endpoint for accepting inbound associations. 8567 * 8568 * On both types of endpoints a backlog of '0' disables listening. 8569 * 8570 * Move a socket to LISTENING state. 8571 */ 8572 int sctp_inet_listen(struct socket *sock, int backlog) 8573 { 8574 struct sock *sk = sock->sk; 8575 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8576 int err = -EINVAL; 8577 8578 if (unlikely(backlog < 0)) 8579 return err; 8580 8581 lock_sock(sk); 8582 8583 /* Peeled-off sockets are not allowed to listen(). */ 8584 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8585 goto out; 8586 8587 if (sock->state != SS_UNCONNECTED) 8588 goto out; 8589 8590 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8591 goto out; 8592 8593 /* If backlog is zero, disable listening. */ 8594 if (!backlog) { 8595 if (sctp_sstate(sk, CLOSED)) 8596 goto out; 8597 8598 err = 0; 8599 sctp_unhash_endpoint(ep); 8600 sk->sk_state = SCTP_SS_CLOSED; 8601 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8602 sctp_sk(sk)->bind_hash->fastreuse = 1; 8603 goto out; 8604 } 8605 8606 /* If we are already listening, just update the backlog */ 8607 if (sctp_sstate(sk, LISTENING)) 8608 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8609 else { 8610 err = sctp_listen_start(sk, backlog); 8611 if (err) 8612 goto out; 8613 } 8614 8615 err = 0; 8616 out: 8617 release_sock(sk); 8618 return err; 8619 } 8620 8621 /* 8622 * This function is done by modeling the current datagram_poll() and the 8623 * tcp_poll(). Note that, based on these implementations, we don't 8624 * lock the socket in this function, even though it seems that, 8625 * ideally, locking or some other mechanisms can be used to ensure 8626 * the integrity of the counters (sndbuf and wmem_alloc) used 8627 * in this place. We assume that we don't need locks either until proven 8628 * otherwise. 8629 * 8630 * Another thing to note is that we include the Async I/O support 8631 * here, again, by modeling the current TCP/UDP code. We don't have 8632 * a good way to test with it yet. 8633 */ 8634 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8635 { 8636 struct sock *sk = sock->sk; 8637 struct sctp_sock *sp = sctp_sk(sk); 8638 __poll_t mask; 8639 8640 poll_wait(file, sk_sleep(sk), wait); 8641 8642 sock_rps_record_flow(sk); 8643 8644 /* A TCP-style listening socket becomes readable when the accept queue 8645 * is not empty. 8646 */ 8647 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8648 return (!list_empty(&sp->ep->asocs)) ? 8649 (EPOLLIN | EPOLLRDNORM) : 0; 8650 8651 mask = 0; 8652 8653 /* Is there any exceptional events? */ 8654 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8655 mask |= EPOLLERR | 8656 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8657 if (sk->sk_shutdown & RCV_SHUTDOWN) 8658 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8659 if (sk->sk_shutdown == SHUTDOWN_MASK) 8660 mask |= EPOLLHUP; 8661 8662 /* Is it readable? Reconsider this code with TCP-style support. */ 8663 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8664 mask |= EPOLLIN | EPOLLRDNORM; 8665 8666 /* The association is either gone or not ready. */ 8667 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8668 return mask; 8669 8670 /* Is it writable? */ 8671 if (sctp_writeable(sk)) { 8672 mask |= EPOLLOUT | EPOLLWRNORM; 8673 } else { 8674 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8675 /* 8676 * Since the socket is not locked, the buffer 8677 * might be made available after the writeable check and 8678 * before the bit is set. This could cause a lost I/O 8679 * signal. tcp_poll() has a race breaker for this race 8680 * condition. Based on their implementation, we put 8681 * in the following code to cover it as well. 8682 */ 8683 if (sctp_writeable(sk)) 8684 mask |= EPOLLOUT | EPOLLWRNORM; 8685 } 8686 return mask; 8687 } 8688 8689 /******************************************************************** 8690 * 2nd Level Abstractions 8691 ********************************************************************/ 8692 8693 static struct sctp_bind_bucket *sctp_bucket_create( 8694 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8695 { 8696 struct sctp_bind_bucket *pp; 8697 8698 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8699 if (pp) { 8700 SCTP_DBG_OBJCNT_INC(bind_bucket); 8701 pp->port = snum; 8702 pp->fastreuse = 0; 8703 INIT_HLIST_HEAD(&pp->owner); 8704 pp->net = net; 8705 hlist_add_head(&pp->node, &head->chain); 8706 } 8707 return pp; 8708 } 8709 8710 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8711 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8712 { 8713 if (pp && hlist_empty(&pp->owner)) { 8714 __hlist_del(&pp->node); 8715 kmem_cache_free(sctp_bucket_cachep, pp); 8716 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8717 } 8718 } 8719 8720 /* Release this socket's reference to a local port. */ 8721 static inline void __sctp_put_port(struct sock *sk) 8722 { 8723 struct sctp_bind_hashbucket *head = 8724 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8725 inet_sk(sk)->inet_num)]; 8726 struct sctp_bind_bucket *pp; 8727 8728 spin_lock(&head->lock); 8729 pp = sctp_sk(sk)->bind_hash; 8730 __sk_del_bind_node(sk); 8731 sctp_sk(sk)->bind_hash = NULL; 8732 inet_sk(sk)->inet_num = 0; 8733 sctp_bucket_destroy(pp); 8734 spin_unlock(&head->lock); 8735 } 8736 8737 void sctp_put_port(struct sock *sk) 8738 { 8739 local_bh_disable(); 8740 __sctp_put_port(sk); 8741 local_bh_enable(); 8742 } 8743 8744 /* 8745 * The system picks an ephemeral port and choose an address set equivalent 8746 * to binding with a wildcard address. 8747 * One of those addresses will be the primary address for the association. 8748 * This automatically enables the multihoming capability of SCTP. 8749 */ 8750 static int sctp_autobind(struct sock *sk) 8751 { 8752 union sctp_addr autoaddr; 8753 struct sctp_af *af; 8754 __be16 port; 8755 8756 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8757 af = sctp_sk(sk)->pf->af; 8758 8759 port = htons(inet_sk(sk)->inet_num); 8760 af->inaddr_any(&autoaddr, port); 8761 8762 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8763 } 8764 8765 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8766 * 8767 * From RFC 2292 8768 * 4.2 The cmsghdr Structure * 8769 * 8770 * When ancillary data is sent or received, any number of ancillary data 8771 * objects can be specified by the msg_control and msg_controllen members of 8772 * the msghdr structure, because each object is preceded by 8773 * a cmsghdr structure defining the object's length (the cmsg_len member). 8774 * Historically Berkeley-derived implementations have passed only one object 8775 * at a time, but this API allows multiple objects to be 8776 * passed in a single call to sendmsg() or recvmsg(). The following example 8777 * shows two ancillary data objects in a control buffer. 8778 * 8779 * |<--------------------------- msg_controllen -------------------------->| 8780 * | | 8781 * 8782 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8783 * 8784 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8785 * | | | 8786 * 8787 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8788 * 8789 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8790 * | | | | | 8791 * 8792 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8793 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8794 * 8795 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8796 * 8797 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8798 * ^ 8799 * | 8800 * 8801 * msg_control 8802 * points here 8803 */ 8804 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8805 { 8806 struct msghdr *my_msg = (struct msghdr *)msg; 8807 struct cmsghdr *cmsg; 8808 8809 for_each_cmsghdr(cmsg, my_msg) { 8810 if (!CMSG_OK(my_msg, cmsg)) 8811 return -EINVAL; 8812 8813 /* Should we parse this header or ignore? */ 8814 if (cmsg->cmsg_level != IPPROTO_SCTP) 8815 continue; 8816 8817 /* Strictly check lengths following example in SCM code. */ 8818 switch (cmsg->cmsg_type) { 8819 case SCTP_INIT: 8820 /* SCTP Socket API Extension 8821 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8822 * 8823 * This cmsghdr structure provides information for 8824 * initializing new SCTP associations with sendmsg(). 8825 * The SCTP_INITMSG socket option uses this same data 8826 * structure. This structure is not used for 8827 * recvmsg(). 8828 * 8829 * cmsg_level cmsg_type cmsg_data[] 8830 * ------------ ------------ ---------------------- 8831 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8832 */ 8833 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8834 return -EINVAL; 8835 8836 cmsgs->init = CMSG_DATA(cmsg); 8837 break; 8838 8839 case SCTP_SNDRCV: 8840 /* SCTP Socket API Extension 8841 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8842 * 8843 * This cmsghdr structure specifies SCTP options for 8844 * sendmsg() and describes SCTP header information 8845 * about a received message through recvmsg(). 8846 * 8847 * cmsg_level cmsg_type cmsg_data[] 8848 * ------------ ------------ ---------------------- 8849 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8850 */ 8851 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8852 return -EINVAL; 8853 8854 cmsgs->srinfo = CMSG_DATA(cmsg); 8855 8856 if (cmsgs->srinfo->sinfo_flags & 8857 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8858 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8859 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8860 return -EINVAL; 8861 break; 8862 8863 case SCTP_SNDINFO: 8864 /* SCTP Socket API Extension 8865 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8866 * 8867 * This cmsghdr structure specifies SCTP options for 8868 * sendmsg(). This structure and SCTP_RCVINFO replaces 8869 * SCTP_SNDRCV which has been deprecated. 8870 * 8871 * cmsg_level cmsg_type cmsg_data[] 8872 * ------------ ------------ --------------------- 8873 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8874 */ 8875 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8876 return -EINVAL; 8877 8878 cmsgs->sinfo = CMSG_DATA(cmsg); 8879 8880 if (cmsgs->sinfo->snd_flags & 8881 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8882 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8883 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8884 return -EINVAL; 8885 break; 8886 case SCTP_PRINFO: 8887 /* SCTP Socket API Extension 8888 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8889 * 8890 * This cmsghdr structure specifies SCTP options for sendmsg(). 8891 * 8892 * cmsg_level cmsg_type cmsg_data[] 8893 * ------------ ------------ --------------------- 8894 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8895 */ 8896 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8897 return -EINVAL; 8898 8899 cmsgs->prinfo = CMSG_DATA(cmsg); 8900 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8901 return -EINVAL; 8902 8903 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8904 cmsgs->prinfo->pr_value = 0; 8905 break; 8906 case SCTP_AUTHINFO: 8907 /* SCTP Socket API Extension 8908 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8909 * 8910 * This cmsghdr structure specifies SCTP options for sendmsg(). 8911 * 8912 * cmsg_level cmsg_type cmsg_data[] 8913 * ------------ ------------ --------------------- 8914 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8915 */ 8916 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8917 return -EINVAL; 8918 8919 cmsgs->authinfo = CMSG_DATA(cmsg); 8920 break; 8921 case SCTP_DSTADDRV4: 8922 case SCTP_DSTADDRV6: 8923 /* SCTP Socket API Extension 8924 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8925 * 8926 * This cmsghdr structure specifies SCTP options for sendmsg(). 8927 * 8928 * cmsg_level cmsg_type cmsg_data[] 8929 * ------------ ------------ --------------------- 8930 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8931 * ------------ ------------ --------------------- 8932 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8933 */ 8934 cmsgs->addrs_msg = my_msg; 8935 break; 8936 default: 8937 return -EINVAL; 8938 } 8939 } 8940 8941 return 0; 8942 } 8943 8944 /* 8945 * Wait for a packet.. 8946 * Note: This function is the same function as in core/datagram.c 8947 * with a few modifications to make lksctp work. 8948 */ 8949 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8950 { 8951 int error; 8952 DEFINE_WAIT(wait); 8953 8954 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8955 8956 /* Socket errors? */ 8957 error = sock_error(sk); 8958 if (error) 8959 goto out; 8960 8961 if (!skb_queue_empty(&sk->sk_receive_queue)) 8962 goto ready; 8963 8964 /* Socket shut down? */ 8965 if (sk->sk_shutdown & RCV_SHUTDOWN) 8966 goto out; 8967 8968 /* Sequenced packets can come disconnected. If so we report the 8969 * problem. 8970 */ 8971 error = -ENOTCONN; 8972 8973 /* Is there a good reason to think that we may receive some data? */ 8974 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8975 goto out; 8976 8977 /* Handle signals. */ 8978 if (signal_pending(current)) 8979 goto interrupted; 8980 8981 /* Let another process have a go. Since we are going to sleep 8982 * anyway. Note: This may cause odd behaviors if the message 8983 * does not fit in the user's buffer, but this seems to be the 8984 * only way to honor MSG_DONTWAIT realistically. 8985 */ 8986 release_sock(sk); 8987 *timeo_p = schedule_timeout(*timeo_p); 8988 lock_sock(sk); 8989 8990 ready: 8991 finish_wait(sk_sleep(sk), &wait); 8992 return 0; 8993 8994 interrupted: 8995 error = sock_intr_errno(*timeo_p); 8996 8997 out: 8998 finish_wait(sk_sleep(sk), &wait); 8999 *err = error; 9000 return error; 9001 } 9002 9003 /* Receive a datagram. 9004 * Note: This is pretty much the same routine as in core/datagram.c 9005 * with a few changes to make lksctp work. 9006 */ 9007 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) 9008 { 9009 int error; 9010 struct sk_buff *skb; 9011 long timeo; 9012 9013 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 9014 9015 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 9016 MAX_SCHEDULE_TIMEOUT); 9017 9018 do { 9019 /* Again only user level code calls this function, 9020 * so nothing interrupt level 9021 * will suddenly eat the receive_queue. 9022 * 9023 * Look at current nfs client by the way... 9024 * However, this function was correct in any case. 8) 9025 */ 9026 if (flags & MSG_PEEK) { 9027 skb = skb_peek(&sk->sk_receive_queue); 9028 if (skb) 9029 refcount_inc(&skb->users); 9030 } else { 9031 skb = __skb_dequeue(&sk->sk_receive_queue); 9032 } 9033 9034 if (skb) 9035 return skb; 9036 9037 /* Caller is allowed not to check sk->sk_err before calling. */ 9038 error = sock_error(sk); 9039 if (error) 9040 goto no_packet; 9041 9042 if (sk->sk_shutdown & RCV_SHUTDOWN) 9043 break; 9044 9045 if (sk_can_busy_loop(sk)) { 9046 sk_busy_loop(sk, flags & MSG_DONTWAIT); 9047 9048 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 9049 continue; 9050 } 9051 9052 /* User doesn't want to wait. */ 9053 error = -EAGAIN; 9054 if (!timeo) 9055 goto no_packet; 9056 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9057 9058 return NULL; 9059 9060 no_packet: 9061 *err = error; 9062 return NULL; 9063 } 9064 9065 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9066 static void __sctp_write_space(struct sctp_association *asoc) 9067 { 9068 struct sock *sk = asoc->base.sk; 9069 9070 if (sctp_wspace(asoc) <= 0) 9071 return; 9072 9073 if (waitqueue_active(&asoc->wait)) 9074 wake_up_interruptible(&asoc->wait); 9075 9076 if (sctp_writeable(sk)) { 9077 struct socket_wq *wq; 9078 9079 rcu_read_lock(); 9080 wq = rcu_dereference(sk->sk_wq); 9081 if (wq) { 9082 if (waitqueue_active(&wq->wait)) 9083 wake_up_interruptible(&wq->wait); 9084 9085 /* Note that we try to include the Async I/O support 9086 * here by modeling from the current TCP/UDP code. 9087 * We have not tested with it yet. 9088 */ 9089 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9090 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9091 } 9092 rcu_read_unlock(); 9093 } 9094 } 9095 9096 static void sctp_wake_up_waiters(struct sock *sk, 9097 struct sctp_association *asoc) 9098 { 9099 struct sctp_association *tmp = asoc; 9100 9101 /* We do accounting for the sndbuf space per association, 9102 * so we only need to wake our own association. 9103 */ 9104 if (asoc->ep->sndbuf_policy) 9105 return __sctp_write_space(asoc); 9106 9107 /* If association goes down and is just flushing its 9108 * outq, then just normally notify others. 9109 */ 9110 if (asoc->base.dead) 9111 return sctp_write_space(sk); 9112 9113 /* Accounting for the sndbuf space is per socket, so we 9114 * need to wake up others, try to be fair and in case of 9115 * other associations, let them have a go first instead 9116 * of just doing a sctp_write_space() call. 9117 * 9118 * Note that we reach sctp_wake_up_waiters() only when 9119 * associations free up queued chunks, thus we are under 9120 * lock and the list of associations on a socket is 9121 * guaranteed not to change. 9122 */ 9123 for (tmp = list_next_entry(tmp, asocs); 1; 9124 tmp = list_next_entry(tmp, asocs)) { 9125 /* Manually skip the head element. */ 9126 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9127 continue; 9128 /* Wake up association. */ 9129 __sctp_write_space(tmp); 9130 /* We've reached the end. */ 9131 if (tmp == asoc) 9132 break; 9133 } 9134 } 9135 9136 /* Do accounting for the sndbuf space. 9137 * Decrement the used sndbuf space of the corresponding association by the 9138 * data size which was just transmitted(freed). 9139 */ 9140 static void sctp_wfree(struct sk_buff *skb) 9141 { 9142 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9143 struct sctp_association *asoc = chunk->asoc; 9144 struct sock *sk = asoc->base.sk; 9145 9146 sk_mem_uncharge(sk, skb->truesize); 9147 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 9148 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9149 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9150 &sk->sk_wmem_alloc)); 9151 9152 if (chunk->shkey) { 9153 struct sctp_shared_key *shkey = chunk->shkey; 9154 9155 /* refcnt == 2 and !list_empty mean after this release, it's 9156 * not being used anywhere, and it's time to notify userland 9157 * that this shkey can be freed if it's been deactivated. 9158 */ 9159 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9160 refcount_read(&shkey->refcnt) == 2) { 9161 struct sctp_ulpevent *ev; 9162 9163 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9164 SCTP_AUTH_FREE_KEY, 9165 GFP_KERNEL); 9166 if (ev) 9167 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9168 } 9169 sctp_auth_shkey_release(chunk->shkey); 9170 } 9171 9172 sock_wfree(skb); 9173 sctp_wake_up_waiters(sk, asoc); 9174 9175 sctp_association_put(asoc); 9176 } 9177 9178 /* Do accounting for the receive space on the socket. 9179 * Accounting for the association is done in ulpevent.c 9180 * We set this as a destructor for the cloned data skbs so that 9181 * accounting is done at the correct time. 9182 */ 9183 void sctp_sock_rfree(struct sk_buff *skb) 9184 { 9185 struct sock *sk = skb->sk; 9186 struct sctp_ulpevent *event = sctp_skb2event(skb); 9187 9188 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9189 9190 /* 9191 * Mimic the behavior of sock_rfree 9192 */ 9193 sk_mem_uncharge(sk, event->rmem_len); 9194 } 9195 9196 9197 /* Helper function to wait for space in the sndbuf. */ 9198 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9199 size_t msg_len) 9200 { 9201 struct sock *sk = asoc->base.sk; 9202 long current_timeo = *timeo_p; 9203 DEFINE_WAIT(wait); 9204 int err = 0; 9205 9206 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9207 *timeo_p, msg_len); 9208 9209 /* Increment the association's refcnt. */ 9210 sctp_association_hold(asoc); 9211 9212 /* Wait on the association specific sndbuf space. */ 9213 for (;;) { 9214 prepare_to_wait_exclusive(&asoc->wait, &wait, 9215 TASK_INTERRUPTIBLE); 9216 if (asoc->base.dead) 9217 goto do_dead; 9218 if (!*timeo_p) 9219 goto do_nonblock; 9220 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9221 goto do_error; 9222 if (signal_pending(current)) 9223 goto do_interrupted; 9224 if ((int)msg_len <= sctp_wspace(asoc) && 9225 sk_wmem_schedule(sk, msg_len)) 9226 break; 9227 9228 /* Let another process have a go. Since we are going 9229 * to sleep anyway. 9230 */ 9231 release_sock(sk); 9232 current_timeo = schedule_timeout(current_timeo); 9233 lock_sock(sk); 9234 if (sk != asoc->base.sk) 9235 goto do_error; 9236 9237 *timeo_p = current_timeo; 9238 } 9239 9240 out: 9241 finish_wait(&asoc->wait, &wait); 9242 9243 /* Release the association's refcnt. */ 9244 sctp_association_put(asoc); 9245 9246 return err; 9247 9248 do_dead: 9249 err = -ESRCH; 9250 goto out; 9251 9252 do_error: 9253 err = -EPIPE; 9254 goto out; 9255 9256 do_interrupted: 9257 err = sock_intr_errno(*timeo_p); 9258 goto out; 9259 9260 do_nonblock: 9261 err = -EAGAIN; 9262 goto out; 9263 } 9264 9265 void sctp_data_ready(struct sock *sk) 9266 { 9267 struct socket_wq *wq; 9268 9269 trace_sk_data_ready(sk); 9270 9271 rcu_read_lock(); 9272 wq = rcu_dereference(sk->sk_wq); 9273 if (skwq_has_sleeper(wq)) 9274 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9275 EPOLLRDNORM | EPOLLRDBAND); 9276 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9277 rcu_read_unlock(); 9278 } 9279 9280 /* If socket sndbuf has changed, wake up all per association waiters. */ 9281 void sctp_write_space(struct sock *sk) 9282 { 9283 struct sctp_association *asoc; 9284 9285 /* Wake up the tasks in each wait queue. */ 9286 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9287 __sctp_write_space(asoc); 9288 } 9289 } 9290 9291 /* Is there any sndbuf space available on the socket? 9292 * 9293 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9294 * associations on the same socket. For a UDP-style socket with 9295 * multiple associations, it is possible for it to be "unwriteable" 9296 * prematurely. I assume that this is acceptable because 9297 * a premature "unwriteable" is better than an accidental "writeable" which 9298 * would cause an unwanted block under certain circumstances. For the 1-1 9299 * UDP-style sockets or TCP-style sockets, this code should work. 9300 * - Daisy 9301 */ 9302 static bool sctp_writeable(struct sock *sk) 9303 { 9304 return sk->sk_sndbuf > sk->sk_wmem_queued; 9305 } 9306 9307 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9308 * returns immediately with EINPROGRESS. 9309 */ 9310 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9311 { 9312 struct sock *sk = asoc->base.sk; 9313 int err = 0; 9314 long current_timeo = *timeo_p; 9315 DEFINE_WAIT(wait); 9316 9317 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9318 9319 /* Increment the association's refcnt. */ 9320 sctp_association_hold(asoc); 9321 9322 for (;;) { 9323 prepare_to_wait_exclusive(&asoc->wait, &wait, 9324 TASK_INTERRUPTIBLE); 9325 if (!*timeo_p) 9326 goto do_nonblock; 9327 if (sk->sk_shutdown & RCV_SHUTDOWN) 9328 break; 9329 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9330 asoc->base.dead) 9331 goto do_error; 9332 if (signal_pending(current)) 9333 goto do_interrupted; 9334 9335 if (sctp_state(asoc, ESTABLISHED)) 9336 break; 9337 9338 /* Let another process have a go. Since we are going 9339 * to sleep anyway. 9340 */ 9341 release_sock(sk); 9342 current_timeo = schedule_timeout(current_timeo); 9343 lock_sock(sk); 9344 9345 *timeo_p = current_timeo; 9346 } 9347 9348 out: 9349 finish_wait(&asoc->wait, &wait); 9350 9351 /* Release the association's refcnt. */ 9352 sctp_association_put(asoc); 9353 9354 return err; 9355 9356 do_error: 9357 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9358 err = -ETIMEDOUT; 9359 else 9360 err = -ECONNREFUSED; 9361 goto out; 9362 9363 do_interrupted: 9364 err = sock_intr_errno(*timeo_p); 9365 goto out; 9366 9367 do_nonblock: 9368 err = -EINPROGRESS; 9369 goto out; 9370 } 9371 9372 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9373 { 9374 struct sctp_endpoint *ep; 9375 int err = 0; 9376 DEFINE_WAIT(wait); 9377 9378 ep = sctp_sk(sk)->ep; 9379 9380 9381 for (;;) { 9382 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9383 TASK_INTERRUPTIBLE); 9384 9385 if (list_empty(&ep->asocs)) { 9386 release_sock(sk); 9387 timeo = schedule_timeout(timeo); 9388 lock_sock(sk); 9389 } 9390 9391 err = -EINVAL; 9392 if (!sctp_sstate(sk, LISTENING)) 9393 break; 9394 9395 err = 0; 9396 if (!list_empty(&ep->asocs)) 9397 break; 9398 9399 err = sock_intr_errno(timeo); 9400 if (signal_pending(current)) 9401 break; 9402 9403 err = -EAGAIN; 9404 if (!timeo) 9405 break; 9406 } 9407 9408 finish_wait(sk_sleep(sk), &wait); 9409 9410 return err; 9411 } 9412 9413 static void sctp_wait_for_close(struct sock *sk, long timeout) 9414 { 9415 DEFINE_WAIT(wait); 9416 9417 do { 9418 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9419 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9420 break; 9421 release_sock(sk); 9422 timeout = schedule_timeout(timeout); 9423 lock_sock(sk); 9424 } while (!signal_pending(current) && timeout); 9425 9426 finish_wait(sk_sleep(sk), &wait); 9427 } 9428 9429 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9430 { 9431 struct sk_buff *frag; 9432 9433 if (!skb->data_len) 9434 goto done; 9435 9436 /* Don't forget the fragments. */ 9437 skb_walk_frags(skb, frag) 9438 sctp_skb_set_owner_r_frag(frag, sk); 9439 9440 done: 9441 sctp_skb_set_owner_r(skb, sk); 9442 } 9443 9444 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9445 struct sctp_association *asoc) 9446 { 9447 struct inet_sock *inet = inet_sk(sk); 9448 struct inet_sock *newinet; 9449 struct sctp_sock *sp = sctp_sk(sk); 9450 9451 newsk->sk_type = sk->sk_type; 9452 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9453 newsk->sk_flags = sk->sk_flags; 9454 newsk->sk_tsflags = sk->sk_tsflags; 9455 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9456 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9457 newsk->sk_reuse = sk->sk_reuse; 9458 sctp_sk(newsk)->reuse = sp->reuse; 9459 9460 newsk->sk_shutdown = sk->sk_shutdown; 9461 newsk->sk_destruct = sk->sk_destruct; 9462 newsk->sk_family = sk->sk_family; 9463 newsk->sk_protocol = IPPROTO_SCTP; 9464 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9465 newsk->sk_sndbuf = sk->sk_sndbuf; 9466 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9467 newsk->sk_lingertime = sk->sk_lingertime; 9468 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9469 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9470 newsk->sk_rxhash = sk->sk_rxhash; 9471 9472 newinet = inet_sk(newsk); 9473 9474 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9475 * getsockname() and getpeername() 9476 */ 9477 newinet->inet_sport = inet->inet_sport; 9478 newinet->inet_saddr = inet->inet_saddr; 9479 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9480 newinet->inet_dport = htons(asoc->peer.port); 9481 newinet->pmtudisc = inet->pmtudisc; 9482 atomic_set(&newinet->inet_id, get_random_u16()); 9483 9484 newinet->uc_ttl = inet->uc_ttl; 9485 inet_set_bit(MC_LOOP, newsk); 9486 newinet->mc_ttl = 1; 9487 newinet->mc_index = 0; 9488 newinet->mc_list = NULL; 9489 9490 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9491 net_enable_timestamp(); 9492 9493 /* Set newsk security attributes from original sk and connection 9494 * security attribute from asoc. 9495 */ 9496 security_sctp_sk_clone(asoc, sk, newsk); 9497 } 9498 9499 static inline void sctp_copy_descendant(struct sock *sk_to, 9500 const struct sock *sk_from) 9501 { 9502 size_t ancestor_size = sizeof(struct inet_sock); 9503 9504 ancestor_size += sk_from->sk_prot->obj_size; 9505 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9506 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9507 } 9508 9509 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9510 * and its messages to the newsk. 9511 */ 9512 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9513 struct sctp_association *assoc, 9514 enum sctp_socket_type type) 9515 { 9516 struct sctp_sock *oldsp = sctp_sk(oldsk); 9517 struct sctp_sock *newsp = sctp_sk(newsk); 9518 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9519 struct sctp_endpoint *newep = newsp->ep; 9520 struct sk_buff *skb, *tmp; 9521 struct sctp_ulpevent *event; 9522 struct sctp_bind_hashbucket *head; 9523 int err; 9524 9525 /* Migrate socket buffer sizes and all the socket level options to the 9526 * new socket. 9527 */ 9528 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9529 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9530 /* Brute force copy old sctp opt. */ 9531 sctp_copy_descendant(newsk, oldsk); 9532 9533 /* Restore the ep value that was overwritten with the above structure 9534 * copy. 9535 */ 9536 newsp->ep = newep; 9537 newsp->hmac = NULL; 9538 9539 /* Hook this new socket in to the bind_hash list. */ 9540 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9541 inet_sk(oldsk)->inet_num)]; 9542 spin_lock_bh(&head->lock); 9543 pp = sctp_sk(oldsk)->bind_hash; 9544 sk_add_bind_node(newsk, &pp->owner); 9545 sctp_sk(newsk)->bind_hash = pp; 9546 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9547 spin_unlock_bh(&head->lock); 9548 9549 /* Copy the bind_addr list from the original endpoint to the new 9550 * endpoint so that we can handle restarts properly 9551 */ 9552 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9553 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9554 if (err) 9555 return err; 9556 9557 /* New ep's auth_hmacs should be set if old ep's is set, in case 9558 * that net->sctp.auth_enable has been changed to 0 by users and 9559 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9560 */ 9561 if (oldsp->ep->auth_hmacs) { 9562 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9563 if (err) 9564 return err; 9565 } 9566 9567 sctp_auto_asconf_init(newsp); 9568 9569 /* Move any messages in the old socket's receive queue that are for the 9570 * peeled off association to the new socket's receive queue. 9571 */ 9572 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9573 event = sctp_skb2event(skb); 9574 if (event->asoc == assoc) { 9575 __skb_unlink(skb, &oldsk->sk_receive_queue); 9576 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9577 sctp_skb_set_owner_r_frag(skb, newsk); 9578 } 9579 } 9580 9581 /* Clean up any messages pending delivery due to partial 9582 * delivery. Three cases: 9583 * 1) No partial deliver; no work. 9584 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9585 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9586 */ 9587 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9588 9589 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9590 struct sk_buff_head *queue; 9591 9592 /* Decide which queue to move pd_lobby skbs to. */ 9593 if (assoc->ulpq.pd_mode) { 9594 queue = &newsp->pd_lobby; 9595 } else 9596 queue = &newsk->sk_receive_queue; 9597 9598 /* Walk through the pd_lobby, looking for skbs that 9599 * need moved to the new socket. 9600 */ 9601 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9602 event = sctp_skb2event(skb); 9603 if (event->asoc == assoc) { 9604 __skb_unlink(skb, &oldsp->pd_lobby); 9605 __skb_queue_tail(queue, skb); 9606 sctp_skb_set_owner_r_frag(skb, newsk); 9607 } 9608 } 9609 9610 /* Clear up any skbs waiting for the partial 9611 * delivery to finish. 9612 */ 9613 if (assoc->ulpq.pd_mode) 9614 sctp_clear_pd(oldsk, NULL); 9615 9616 } 9617 9618 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9619 9620 /* Set the type of socket to indicate that it is peeled off from the 9621 * original UDP-style socket or created with the accept() call on a 9622 * TCP-style socket.. 9623 */ 9624 newsp->type = type; 9625 9626 /* Mark the new socket "in-use" by the user so that any packets 9627 * that may arrive on the association after we've moved it are 9628 * queued to the backlog. This prevents a potential race between 9629 * backlog processing on the old socket and new-packet processing 9630 * on the new socket. 9631 * 9632 * The caller has just allocated newsk so we can guarantee that other 9633 * paths won't try to lock it and then oldsk. 9634 */ 9635 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9636 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9637 sctp_assoc_migrate(assoc, newsk); 9638 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9639 9640 /* If the association on the newsk is already closed before accept() 9641 * is called, set RCV_SHUTDOWN flag. 9642 */ 9643 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9644 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9645 newsk->sk_shutdown |= RCV_SHUTDOWN; 9646 } else { 9647 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9648 } 9649 9650 release_sock(newsk); 9651 9652 return 0; 9653 } 9654 9655 9656 /* This proto struct describes the ULP interface for SCTP. */ 9657 struct proto sctp_prot = { 9658 .name = "SCTP", 9659 .owner = THIS_MODULE, 9660 .close = sctp_close, 9661 .disconnect = sctp_disconnect, 9662 .accept = sctp_accept, 9663 .ioctl = sctp_ioctl, 9664 .init = sctp_init_sock, 9665 .destroy = sctp_destroy_sock, 9666 .shutdown = sctp_shutdown, 9667 .setsockopt = sctp_setsockopt, 9668 .getsockopt = sctp_getsockopt, 9669 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9670 .sendmsg = sctp_sendmsg, 9671 .recvmsg = sctp_recvmsg, 9672 .bind = sctp_bind, 9673 .bind_add = sctp_bind_add, 9674 .backlog_rcv = sctp_backlog_rcv, 9675 .hash = sctp_hash, 9676 .unhash = sctp_unhash, 9677 .no_autobind = true, 9678 .obj_size = sizeof(struct sctp_sock), 9679 .useroffset = offsetof(struct sctp_sock, subscribe), 9680 .usersize = offsetof(struct sctp_sock, initmsg) - 9681 offsetof(struct sctp_sock, subscribe) + 9682 sizeof_field(struct sctp_sock, initmsg), 9683 .sysctl_mem = sysctl_sctp_mem, 9684 .sysctl_rmem = sysctl_sctp_rmem, 9685 .sysctl_wmem = sysctl_sctp_wmem, 9686 .memory_pressure = &sctp_memory_pressure, 9687 .enter_memory_pressure = sctp_enter_memory_pressure, 9688 9689 .memory_allocated = &sctp_memory_allocated, 9690 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9691 9692 .sockets_allocated = &sctp_sockets_allocated, 9693 }; 9694 9695 #if IS_ENABLED(CONFIG_IPV6) 9696 9697 static void sctp_v6_destruct_sock(struct sock *sk) 9698 { 9699 sctp_destruct_common(sk); 9700 inet6_sock_destruct(sk); 9701 } 9702 9703 static int sctp_v6_init_sock(struct sock *sk) 9704 { 9705 int ret = sctp_init_sock(sk); 9706 9707 if (!ret) 9708 sk->sk_destruct = sctp_v6_destruct_sock; 9709 9710 return ret; 9711 } 9712 9713 struct proto sctpv6_prot = { 9714 .name = "SCTPv6", 9715 .owner = THIS_MODULE, 9716 .close = sctp_close, 9717 .disconnect = sctp_disconnect, 9718 .accept = sctp_accept, 9719 .ioctl = sctp_ioctl, 9720 .init = sctp_v6_init_sock, 9721 .destroy = sctp_destroy_sock, 9722 .shutdown = sctp_shutdown, 9723 .setsockopt = sctp_setsockopt, 9724 .getsockopt = sctp_getsockopt, 9725 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9726 .sendmsg = sctp_sendmsg, 9727 .recvmsg = sctp_recvmsg, 9728 .bind = sctp_bind, 9729 .bind_add = sctp_bind_add, 9730 .backlog_rcv = sctp_backlog_rcv, 9731 .hash = sctp_hash, 9732 .unhash = sctp_unhash, 9733 .no_autobind = true, 9734 .obj_size = sizeof(struct sctp6_sock), 9735 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6), 9736 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9737 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9738 offsetof(struct sctp6_sock, sctp.subscribe) + 9739 sizeof_field(struct sctp6_sock, sctp.initmsg), 9740 .sysctl_mem = sysctl_sctp_mem, 9741 .sysctl_rmem = sysctl_sctp_rmem, 9742 .sysctl_wmem = sysctl_sctp_wmem, 9743 .memory_pressure = &sctp_memory_pressure, 9744 .enter_memory_pressure = sctp_enter_memory_pressure, 9745 9746 .memory_allocated = &sctp_memory_allocated, 9747 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9748 9749 .sockets_allocated = &sctp_sockets_allocated, 9750 }; 9751 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9752