1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <linux-sctp@vger.kernel.org> 38 * 39 * Written or modified by: 40 * La Monte H.P. Yarroll <piggy@acm.org> 41 * Narasimha Budihal <narsi@refcode.org> 42 * Karl Knutson <karl@athena.chicago.il.us> 43 * Jon Grimm <jgrimm@us.ibm.com> 44 * Xingang Guo <xingang.guo@intel.com> 45 * Daisy Chang <daisyc@us.ibm.com> 46 * Sridhar Samudrala <samudrala@us.ibm.com> 47 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 48 * Ardelle Fan <ardelle.fan@intel.com> 49 * Ryan Layer <rmlayer@us.ibm.com> 50 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 51 * Kevin Gao <kevin.gao@intel.com> 52 */ 53 54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 55 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/ip.h> 61 #include <linux/capability.h> 62 #include <linux/fcntl.h> 63 #include <linux/poll.h> 64 #include <linux/init.h> 65 #include <linux/crypto.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 69 #include <net/ip.h> 70 #include <net/icmp.h> 71 #include <net/route.h> 72 #include <net/ipv6.h> 73 #include <net/inet_common.h> 74 75 #include <linux/socket.h> /* for sa_family_t */ 76 #include <linux/export.h> 77 #include <net/sock.h> 78 #include <net/sctp/sctp.h> 79 #include <net/sctp/sm.h> 80 81 /* Forward declarations for internal helper functions. */ 82 static int sctp_writeable(struct sock *sk); 83 static void sctp_wfree(struct sk_buff *skb); 84 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 85 size_t msg_len); 86 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 87 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 88 static int sctp_wait_for_accept(struct sock *sk, long timeo); 89 static void sctp_wait_for_close(struct sock *sk, long timeo); 90 static void sctp_destruct_sock(struct sock *sk); 91 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 92 union sctp_addr *addr, int len); 93 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 94 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 95 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 96 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf(struct sctp_association *asoc, 98 struct sctp_chunk *chunk); 99 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 100 static int sctp_autobind(struct sock *sk); 101 static void sctp_sock_migrate(struct sock *, struct sock *, 102 struct sctp_association *, sctp_socket_type_t); 103 104 extern struct kmem_cache *sctp_bucket_cachep; 105 extern long sysctl_sctp_mem[3]; 106 extern int sysctl_sctp_rmem[3]; 107 extern int sysctl_sctp_wmem[3]; 108 109 static int sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 int amt; 123 124 if (asoc->ep->sndbuf_policy) 125 amt = asoc->sndbuf_used; 126 else 127 amt = sk_wmem_alloc_get(asoc->base.sk); 128 129 if (amt >= asoc->base.sk->sk_sndbuf) { 130 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 131 amt = 0; 132 else { 133 amt = sk_stream_wspace(asoc->base.sk); 134 if (amt < 0) 135 amt = 0; 136 } 137 } else { 138 amt = asoc->base.sk->sk_sndbuf - amt; 139 } 140 return amt; 141 } 142 143 /* Increment the used sndbuf space count of the corresponding association by 144 * the size of the outgoing data chunk. 145 * Also, set the skb destructor for sndbuf accounting later. 146 * 147 * Since it is always 1-1 between chunk and skb, and also a new skb is always 148 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 149 * destructor in the data chunk skb for the purpose of the sndbuf space 150 * tracking. 151 */ 152 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 153 { 154 struct sctp_association *asoc = chunk->asoc; 155 struct sock *sk = asoc->base.sk; 156 157 /* The sndbuf space is tracked per association. */ 158 sctp_association_hold(asoc); 159 160 skb_set_owner_w(chunk->skb, sk); 161 162 chunk->skb->destructor = sctp_wfree; 163 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 164 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 165 166 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 167 sizeof(struct sk_buff) + 168 sizeof(struct sctp_chunk); 169 170 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 171 sk->sk_wmem_queued += chunk->skb->truesize; 172 sk_mem_charge(sk, chunk->skb->truesize); 173 } 174 175 /* Verify that this is a valid address. */ 176 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 177 int len) 178 { 179 struct sctp_af *af; 180 181 /* Verify basic sockaddr. */ 182 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 183 if (!af) 184 return -EINVAL; 185 186 /* Is this a valid SCTP address? */ 187 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 188 return -EINVAL; 189 190 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 191 return -EINVAL; 192 193 return 0; 194 } 195 196 /* Look up the association by its id. If this is not a UDP-style 197 * socket, the ID field is always ignored. 198 */ 199 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 200 { 201 struct sctp_association *asoc = NULL; 202 203 /* If this is not a UDP-style socket, assoc id should be ignored. */ 204 if (!sctp_style(sk, UDP)) { 205 /* Return NULL if the socket state is not ESTABLISHED. It 206 * could be a TCP-style listening socket or a socket which 207 * hasn't yet called connect() to establish an association. 208 */ 209 if (!sctp_sstate(sk, ESTABLISHED)) 210 return NULL; 211 212 /* Get the first and the only association from the list. */ 213 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 214 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 215 struct sctp_association, asocs); 216 return asoc; 217 } 218 219 /* Otherwise this is a UDP-style socket. */ 220 if (!id || (id == (sctp_assoc_t)-1)) 221 return NULL; 222 223 spin_lock_bh(&sctp_assocs_id_lock); 224 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 225 spin_unlock_bh(&sctp_assocs_id_lock); 226 227 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 228 return NULL; 229 230 return asoc; 231 } 232 233 /* Look up the transport from an address and an assoc id. If both address and 234 * id are specified, the associations matching the address and the id should be 235 * the same. 236 */ 237 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 238 struct sockaddr_storage *addr, 239 sctp_assoc_t id) 240 { 241 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 242 struct sctp_transport *transport; 243 union sctp_addr *laddr = (union sctp_addr *)addr; 244 245 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 246 laddr, 247 &transport); 248 249 if (!addr_asoc) 250 return NULL; 251 252 id_asoc = sctp_id2assoc(sk, id); 253 if (id_asoc && (id_asoc != addr_asoc)) 254 return NULL; 255 256 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 257 (union sctp_addr *)addr); 258 259 return transport; 260 } 261 262 /* API 3.1.2 bind() - UDP Style Syntax 263 * The syntax of bind() is, 264 * 265 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 266 * 267 * sd - the socket descriptor returned by socket(). 268 * addr - the address structure (struct sockaddr_in or struct 269 * sockaddr_in6 [RFC 2553]), 270 * addr_len - the size of the address structure. 271 */ 272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 273 { 274 int retval = 0; 275 276 sctp_lock_sock(sk); 277 278 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 279 addr, addr_len); 280 281 /* Disallow binding twice. */ 282 if (!sctp_sk(sk)->ep->base.bind_addr.port) 283 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 284 addr_len); 285 else 286 retval = -EINVAL; 287 288 sctp_release_sock(sk); 289 290 return retval; 291 } 292 293 static long sctp_get_port_local(struct sock *, union sctp_addr *); 294 295 /* Verify this is a valid sockaddr. */ 296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 297 union sctp_addr *addr, int len) 298 { 299 struct sctp_af *af; 300 301 /* Check minimum size. */ 302 if (len < sizeof (struct sockaddr)) 303 return NULL; 304 305 /* V4 mapped address are really of AF_INET family */ 306 if (addr->sa.sa_family == AF_INET6 && 307 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 308 if (!opt->pf->af_supported(AF_INET, opt)) 309 return NULL; 310 } else { 311 /* Does this PF support this AF? */ 312 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 313 return NULL; 314 } 315 316 /* If we get this far, af is valid. */ 317 af = sctp_get_af_specific(addr->sa.sa_family); 318 319 if (len < af->sockaddr_len) 320 return NULL; 321 322 return af; 323 } 324 325 /* Bind a local address either to an endpoint or to an association. */ 326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 327 { 328 struct net *net = sock_net(sk); 329 struct sctp_sock *sp = sctp_sk(sk); 330 struct sctp_endpoint *ep = sp->ep; 331 struct sctp_bind_addr *bp = &ep->base.bind_addr; 332 struct sctp_af *af; 333 unsigned short snum; 334 int ret = 0; 335 336 /* Common sockaddr verification. */ 337 af = sctp_sockaddr_af(sp, addr, len); 338 if (!af) { 339 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 340 __func__, sk, addr, len); 341 return -EINVAL; 342 } 343 344 snum = ntohs(addr->v4.sin_port); 345 346 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 347 __func__, sk, &addr->sa, bp->port, snum, len); 348 349 /* PF specific bind() address verification. */ 350 if (!sp->pf->bind_verify(sp, addr)) 351 return -EADDRNOTAVAIL; 352 353 /* We must either be unbound, or bind to the same port. 354 * It's OK to allow 0 ports if we are already bound. 355 * We'll just inhert an already bound port in this case 356 */ 357 if (bp->port) { 358 if (!snum) 359 snum = bp->port; 360 else if (snum != bp->port) { 361 pr_debug("%s: new port %d doesn't match existing port " 362 "%d\n", __func__, snum, bp->port); 363 return -EINVAL; 364 } 365 } 366 367 if (snum && snum < PROT_SOCK && 368 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 369 return -EACCES; 370 371 /* See if the address matches any of the addresses we may have 372 * already bound before checking against other endpoints. 373 */ 374 if (sctp_bind_addr_match(bp, addr, sp)) 375 return -EINVAL; 376 377 /* Make sure we are allowed to bind here. 378 * The function sctp_get_port_local() does duplicate address 379 * detection. 380 */ 381 addr->v4.sin_port = htons(snum); 382 if ((ret = sctp_get_port_local(sk, addr))) { 383 return -EADDRINUSE; 384 } 385 386 /* Refresh ephemeral port. */ 387 if (!bp->port) 388 bp->port = inet_sk(sk)->inet_num; 389 390 /* Add the address to the bind address list. 391 * Use GFP_ATOMIC since BHs will be disabled. 392 */ 393 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 394 395 /* Copy back into socket for getsockname() use. */ 396 if (!ret) { 397 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 398 af->to_sk_saddr(addr, sk); 399 } 400 401 return ret; 402 } 403 404 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 405 * 406 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 407 * at any one time. If a sender, after sending an ASCONF chunk, decides 408 * it needs to transfer another ASCONF Chunk, it MUST wait until the 409 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 410 * subsequent ASCONF. Note this restriction binds each side, so at any 411 * time two ASCONF may be in-transit on any given association (one sent 412 * from each endpoint). 413 */ 414 static int sctp_send_asconf(struct sctp_association *asoc, 415 struct sctp_chunk *chunk) 416 { 417 struct net *net = sock_net(asoc->base.sk); 418 int retval = 0; 419 420 /* If there is an outstanding ASCONF chunk, queue it for later 421 * transmission. 422 */ 423 if (asoc->addip_last_asconf) { 424 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 425 goto out; 426 } 427 428 /* Hold the chunk until an ASCONF_ACK is received. */ 429 sctp_chunk_hold(chunk); 430 retval = sctp_primitive_ASCONF(net, asoc, chunk); 431 if (retval) 432 sctp_chunk_free(chunk); 433 else 434 asoc->addip_last_asconf = chunk; 435 436 out: 437 return retval; 438 } 439 440 /* Add a list of addresses as bind addresses to local endpoint or 441 * association. 442 * 443 * Basically run through each address specified in the addrs/addrcnt 444 * array/length pair, determine if it is IPv6 or IPv4 and call 445 * sctp_do_bind() on it. 446 * 447 * If any of them fails, then the operation will be reversed and the 448 * ones that were added will be removed. 449 * 450 * Only sctp_setsockopt_bindx() is supposed to call this function. 451 */ 452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 453 { 454 int cnt; 455 int retval = 0; 456 void *addr_buf; 457 struct sockaddr *sa_addr; 458 struct sctp_af *af; 459 460 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 461 addrs, addrcnt); 462 463 addr_buf = addrs; 464 for (cnt = 0; cnt < addrcnt; cnt++) { 465 /* The list may contain either IPv4 or IPv6 address; 466 * determine the address length for walking thru the list. 467 */ 468 sa_addr = addr_buf; 469 af = sctp_get_af_specific(sa_addr->sa_family); 470 if (!af) { 471 retval = -EINVAL; 472 goto err_bindx_add; 473 } 474 475 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 476 af->sockaddr_len); 477 478 addr_buf += af->sockaddr_len; 479 480 err_bindx_add: 481 if (retval < 0) { 482 /* Failed. Cleanup the ones that have been added */ 483 if (cnt > 0) 484 sctp_bindx_rem(sk, addrs, cnt); 485 return retval; 486 } 487 } 488 489 return retval; 490 } 491 492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 493 * associations that are part of the endpoint indicating that a list of local 494 * addresses are added to the endpoint. 495 * 496 * If any of the addresses is already in the bind address list of the 497 * association, we do not send the chunk for that association. But it will not 498 * affect other associations. 499 * 500 * Only sctp_setsockopt_bindx() is supposed to call this function. 501 */ 502 static int sctp_send_asconf_add_ip(struct sock *sk, 503 struct sockaddr *addrs, 504 int addrcnt) 505 { 506 struct net *net = sock_net(sk); 507 struct sctp_sock *sp; 508 struct sctp_endpoint *ep; 509 struct sctp_association *asoc; 510 struct sctp_bind_addr *bp; 511 struct sctp_chunk *chunk; 512 struct sctp_sockaddr_entry *laddr; 513 union sctp_addr *addr; 514 union sctp_addr saveaddr; 515 void *addr_buf; 516 struct sctp_af *af; 517 struct list_head *p; 518 int i; 519 int retval = 0; 520 521 if (!net->sctp.addip_enable) 522 return retval; 523 524 sp = sctp_sk(sk); 525 ep = sp->ep; 526 527 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 528 __func__, sk, addrs, addrcnt); 529 530 list_for_each_entry(asoc, &ep->asocs, asocs) { 531 if (!asoc->peer.asconf_capable) 532 continue; 533 534 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 535 continue; 536 537 if (!sctp_state(asoc, ESTABLISHED)) 538 continue; 539 540 /* Check if any address in the packed array of addresses is 541 * in the bind address list of the association. If so, 542 * do not send the asconf chunk to its peer, but continue with 543 * other associations. 544 */ 545 addr_buf = addrs; 546 for (i = 0; i < addrcnt; i++) { 547 addr = addr_buf; 548 af = sctp_get_af_specific(addr->v4.sin_family); 549 if (!af) { 550 retval = -EINVAL; 551 goto out; 552 } 553 554 if (sctp_assoc_lookup_laddr(asoc, addr)) 555 break; 556 557 addr_buf += af->sockaddr_len; 558 } 559 if (i < addrcnt) 560 continue; 561 562 /* Use the first valid address in bind addr list of 563 * association as Address Parameter of ASCONF CHUNK. 564 */ 565 bp = &asoc->base.bind_addr; 566 p = bp->address_list.next; 567 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 568 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 569 addrcnt, SCTP_PARAM_ADD_IP); 570 if (!chunk) { 571 retval = -ENOMEM; 572 goto out; 573 } 574 575 /* Add the new addresses to the bind address list with 576 * use_as_src set to 0. 577 */ 578 addr_buf = addrs; 579 for (i = 0; i < addrcnt; i++) { 580 addr = addr_buf; 581 af = sctp_get_af_specific(addr->v4.sin_family); 582 memcpy(&saveaddr, addr, af->sockaddr_len); 583 retval = sctp_add_bind_addr(bp, &saveaddr, 584 SCTP_ADDR_NEW, GFP_ATOMIC); 585 addr_buf += af->sockaddr_len; 586 } 587 if (asoc->src_out_of_asoc_ok) { 588 struct sctp_transport *trans; 589 590 list_for_each_entry(trans, 591 &asoc->peer.transport_addr_list, transports) { 592 /* Clear the source and route cache */ 593 dst_release(trans->dst); 594 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 595 2*asoc->pathmtu, 4380)); 596 trans->ssthresh = asoc->peer.i.a_rwnd; 597 trans->rto = asoc->rto_initial; 598 sctp_max_rto(asoc, trans); 599 trans->rtt = trans->srtt = trans->rttvar = 0; 600 sctp_transport_route(trans, NULL, 601 sctp_sk(asoc->base.sk)); 602 } 603 } 604 retval = sctp_send_asconf(asoc, chunk); 605 } 606 607 out: 608 return retval; 609 } 610 611 /* Remove a list of addresses from bind addresses list. Do not remove the 612 * last address. 613 * 614 * Basically run through each address specified in the addrs/addrcnt 615 * array/length pair, determine if it is IPv6 or IPv4 and call 616 * sctp_del_bind() on it. 617 * 618 * If any of them fails, then the operation will be reversed and the 619 * ones that were removed will be added back. 620 * 621 * At least one address has to be left; if only one address is 622 * available, the operation will return -EBUSY. 623 * 624 * Only sctp_setsockopt_bindx() is supposed to call this function. 625 */ 626 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 627 { 628 struct sctp_sock *sp = sctp_sk(sk); 629 struct sctp_endpoint *ep = sp->ep; 630 int cnt; 631 struct sctp_bind_addr *bp = &ep->base.bind_addr; 632 int retval = 0; 633 void *addr_buf; 634 union sctp_addr *sa_addr; 635 struct sctp_af *af; 636 637 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 638 __func__, sk, addrs, addrcnt); 639 640 addr_buf = addrs; 641 for (cnt = 0; cnt < addrcnt; cnt++) { 642 /* If the bind address list is empty or if there is only one 643 * bind address, there is nothing more to be removed (we need 644 * at least one address here). 645 */ 646 if (list_empty(&bp->address_list) || 647 (sctp_list_single_entry(&bp->address_list))) { 648 retval = -EBUSY; 649 goto err_bindx_rem; 650 } 651 652 sa_addr = addr_buf; 653 af = sctp_get_af_specific(sa_addr->sa.sa_family); 654 if (!af) { 655 retval = -EINVAL; 656 goto err_bindx_rem; 657 } 658 659 if (!af->addr_valid(sa_addr, sp, NULL)) { 660 retval = -EADDRNOTAVAIL; 661 goto err_bindx_rem; 662 } 663 664 if (sa_addr->v4.sin_port && 665 sa_addr->v4.sin_port != htons(bp->port)) { 666 retval = -EINVAL; 667 goto err_bindx_rem; 668 } 669 670 if (!sa_addr->v4.sin_port) 671 sa_addr->v4.sin_port = htons(bp->port); 672 673 /* FIXME - There is probably a need to check if sk->sk_saddr and 674 * sk->sk_rcv_addr are currently set to one of the addresses to 675 * be removed. This is something which needs to be looked into 676 * when we are fixing the outstanding issues with multi-homing 677 * socket routing and failover schemes. Refer to comments in 678 * sctp_do_bind(). -daisy 679 */ 680 retval = sctp_del_bind_addr(bp, sa_addr); 681 682 addr_buf += af->sockaddr_len; 683 err_bindx_rem: 684 if (retval < 0) { 685 /* Failed. Add the ones that has been removed back */ 686 if (cnt > 0) 687 sctp_bindx_add(sk, addrs, cnt); 688 return retval; 689 } 690 } 691 692 return retval; 693 } 694 695 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 696 * the associations that are part of the endpoint indicating that a list of 697 * local addresses are removed from the endpoint. 698 * 699 * If any of the addresses is already in the bind address list of the 700 * association, we do not send the chunk for that association. But it will not 701 * affect other associations. 702 * 703 * Only sctp_setsockopt_bindx() is supposed to call this function. 704 */ 705 static int sctp_send_asconf_del_ip(struct sock *sk, 706 struct sockaddr *addrs, 707 int addrcnt) 708 { 709 struct net *net = sock_net(sk); 710 struct sctp_sock *sp; 711 struct sctp_endpoint *ep; 712 struct sctp_association *asoc; 713 struct sctp_transport *transport; 714 struct sctp_bind_addr *bp; 715 struct sctp_chunk *chunk; 716 union sctp_addr *laddr; 717 void *addr_buf; 718 struct sctp_af *af; 719 struct sctp_sockaddr_entry *saddr; 720 int i; 721 int retval = 0; 722 int stored = 0; 723 724 chunk = NULL; 725 if (!net->sctp.addip_enable) 726 return retval; 727 728 sp = sctp_sk(sk); 729 ep = sp->ep; 730 731 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 732 __func__, sk, addrs, addrcnt); 733 734 list_for_each_entry(asoc, &ep->asocs, asocs) { 735 736 if (!asoc->peer.asconf_capable) 737 continue; 738 739 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 740 continue; 741 742 if (!sctp_state(asoc, ESTABLISHED)) 743 continue; 744 745 /* Check if any address in the packed array of addresses is 746 * not present in the bind address list of the association. 747 * If so, do not send the asconf chunk to its peer, but 748 * continue with other associations. 749 */ 750 addr_buf = addrs; 751 for (i = 0; i < addrcnt; i++) { 752 laddr = addr_buf; 753 af = sctp_get_af_specific(laddr->v4.sin_family); 754 if (!af) { 755 retval = -EINVAL; 756 goto out; 757 } 758 759 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 760 break; 761 762 addr_buf += af->sockaddr_len; 763 } 764 if (i < addrcnt) 765 continue; 766 767 /* Find one address in the association's bind address list 768 * that is not in the packed array of addresses. This is to 769 * make sure that we do not delete all the addresses in the 770 * association. 771 */ 772 bp = &asoc->base.bind_addr; 773 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 774 addrcnt, sp); 775 if ((laddr == NULL) && (addrcnt == 1)) { 776 if (asoc->asconf_addr_del_pending) 777 continue; 778 asoc->asconf_addr_del_pending = 779 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 780 if (asoc->asconf_addr_del_pending == NULL) { 781 retval = -ENOMEM; 782 goto out; 783 } 784 asoc->asconf_addr_del_pending->sa.sa_family = 785 addrs->sa_family; 786 asoc->asconf_addr_del_pending->v4.sin_port = 787 htons(bp->port); 788 if (addrs->sa_family == AF_INET) { 789 struct sockaddr_in *sin; 790 791 sin = (struct sockaddr_in *)addrs; 792 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 793 } else if (addrs->sa_family == AF_INET6) { 794 struct sockaddr_in6 *sin6; 795 796 sin6 = (struct sockaddr_in6 *)addrs; 797 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 798 } 799 800 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 801 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 802 asoc->asconf_addr_del_pending); 803 804 asoc->src_out_of_asoc_ok = 1; 805 stored = 1; 806 goto skip_mkasconf; 807 } 808 809 if (laddr == NULL) 810 return -EINVAL; 811 812 /* We do not need RCU protection throughout this loop 813 * because this is done under a socket lock from the 814 * setsockopt call. 815 */ 816 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 817 SCTP_PARAM_DEL_IP); 818 if (!chunk) { 819 retval = -ENOMEM; 820 goto out; 821 } 822 823 skip_mkasconf: 824 /* Reset use_as_src flag for the addresses in the bind address 825 * list that are to be deleted. 826 */ 827 addr_buf = addrs; 828 for (i = 0; i < addrcnt; i++) { 829 laddr = addr_buf; 830 af = sctp_get_af_specific(laddr->v4.sin_family); 831 list_for_each_entry(saddr, &bp->address_list, list) { 832 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 833 saddr->state = SCTP_ADDR_DEL; 834 } 835 addr_buf += af->sockaddr_len; 836 } 837 838 /* Update the route and saddr entries for all the transports 839 * as some of the addresses in the bind address list are 840 * about to be deleted and cannot be used as source addresses. 841 */ 842 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 843 transports) { 844 dst_release(transport->dst); 845 sctp_transport_route(transport, NULL, 846 sctp_sk(asoc->base.sk)); 847 } 848 849 if (stored) 850 /* We don't need to transmit ASCONF */ 851 continue; 852 retval = sctp_send_asconf(asoc, chunk); 853 } 854 out: 855 return retval; 856 } 857 858 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 859 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 860 { 861 struct sock *sk = sctp_opt2sk(sp); 862 union sctp_addr *addr; 863 struct sctp_af *af; 864 865 /* It is safe to write port space in caller. */ 866 addr = &addrw->a; 867 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 868 af = sctp_get_af_specific(addr->sa.sa_family); 869 if (!af) 870 return -EINVAL; 871 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 872 return -EINVAL; 873 874 if (addrw->state == SCTP_ADDR_NEW) 875 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 876 else 877 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 878 } 879 880 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 881 * 882 * API 8.1 883 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 884 * int flags); 885 * 886 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 887 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 888 * or IPv6 addresses. 889 * 890 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 891 * Section 3.1.2 for this usage. 892 * 893 * addrs is a pointer to an array of one or more socket addresses. Each 894 * address is contained in its appropriate structure (i.e. struct 895 * sockaddr_in or struct sockaddr_in6) the family of the address type 896 * must be used to distinguish the address length (note that this 897 * representation is termed a "packed array" of addresses). The caller 898 * specifies the number of addresses in the array with addrcnt. 899 * 900 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 901 * -1, and sets errno to the appropriate error code. 902 * 903 * For SCTP, the port given in each socket address must be the same, or 904 * sctp_bindx() will fail, setting errno to EINVAL. 905 * 906 * The flags parameter is formed from the bitwise OR of zero or more of 907 * the following currently defined flags: 908 * 909 * SCTP_BINDX_ADD_ADDR 910 * 911 * SCTP_BINDX_REM_ADDR 912 * 913 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 914 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 915 * addresses from the association. The two flags are mutually exclusive; 916 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 917 * not remove all addresses from an association; sctp_bindx() will 918 * reject such an attempt with EINVAL. 919 * 920 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 921 * additional addresses with an endpoint after calling bind(). Or use 922 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 923 * socket is associated with so that no new association accepted will be 924 * associated with those addresses. If the endpoint supports dynamic 925 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 926 * endpoint to send the appropriate message to the peer to change the 927 * peers address lists. 928 * 929 * Adding and removing addresses from a connected association is 930 * optional functionality. Implementations that do not support this 931 * functionality should return EOPNOTSUPP. 932 * 933 * Basically do nothing but copying the addresses from user to kernel 934 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 935 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 936 * from userspace. 937 * 938 * We don't use copy_from_user() for optimization: we first do the 939 * sanity checks (buffer size -fast- and access check-healthy 940 * pointer); if all of those succeed, then we can alloc the memory 941 * (expensive operation) needed to copy the data to kernel. Then we do 942 * the copying without checking the user space area 943 * (__copy_from_user()). 944 * 945 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 946 * it. 947 * 948 * sk The sk of the socket 949 * addrs The pointer to the addresses in user land 950 * addrssize Size of the addrs buffer 951 * op Operation to perform (add or remove, see the flags of 952 * sctp_bindx) 953 * 954 * Returns 0 if ok, <0 errno code on error. 955 */ 956 static int sctp_setsockopt_bindx(struct sock* sk, 957 struct sockaddr __user *addrs, 958 int addrs_size, int op) 959 { 960 struct sockaddr *kaddrs; 961 int err; 962 int addrcnt = 0; 963 int walk_size = 0; 964 struct sockaddr *sa_addr; 965 void *addr_buf; 966 struct sctp_af *af; 967 968 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 969 __func__, sk, addrs, addrs_size, op); 970 971 if (unlikely(addrs_size <= 0)) 972 return -EINVAL; 973 974 /* Check the user passed a healthy pointer. */ 975 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 976 return -EFAULT; 977 978 /* Alloc space for the address array in kernel memory. */ 979 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 980 if (unlikely(!kaddrs)) 981 return -ENOMEM; 982 983 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 984 kfree(kaddrs); 985 return -EFAULT; 986 } 987 988 /* Walk through the addrs buffer and count the number of addresses. */ 989 addr_buf = kaddrs; 990 while (walk_size < addrs_size) { 991 if (walk_size + sizeof(sa_family_t) > addrs_size) { 992 kfree(kaddrs); 993 return -EINVAL; 994 } 995 996 sa_addr = addr_buf; 997 af = sctp_get_af_specific(sa_addr->sa_family); 998 999 /* If the address family is not supported or if this address 1000 * causes the address buffer to overflow return EINVAL. 1001 */ 1002 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1003 kfree(kaddrs); 1004 return -EINVAL; 1005 } 1006 addrcnt++; 1007 addr_buf += af->sockaddr_len; 1008 walk_size += af->sockaddr_len; 1009 } 1010 1011 /* Do the work. */ 1012 switch (op) { 1013 case SCTP_BINDX_ADD_ADDR: 1014 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1015 if (err) 1016 goto out; 1017 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1018 break; 1019 1020 case SCTP_BINDX_REM_ADDR: 1021 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1022 if (err) 1023 goto out; 1024 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1025 break; 1026 1027 default: 1028 err = -EINVAL; 1029 break; 1030 } 1031 1032 out: 1033 kfree(kaddrs); 1034 1035 return err; 1036 } 1037 1038 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1039 * 1040 * Common routine for handling connect() and sctp_connectx(). 1041 * Connect will come in with just a single address. 1042 */ 1043 static int __sctp_connect(struct sock* sk, 1044 struct sockaddr *kaddrs, 1045 int addrs_size, 1046 sctp_assoc_t *assoc_id) 1047 { 1048 struct net *net = sock_net(sk); 1049 struct sctp_sock *sp; 1050 struct sctp_endpoint *ep; 1051 struct sctp_association *asoc = NULL; 1052 struct sctp_association *asoc2; 1053 struct sctp_transport *transport; 1054 union sctp_addr to; 1055 struct sctp_af *af; 1056 sctp_scope_t scope; 1057 long timeo; 1058 int err = 0; 1059 int addrcnt = 0; 1060 int walk_size = 0; 1061 union sctp_addr *sa_addr = NULL; 1062 void *addr_buf; 1063 unsigned short port; 1064 unsigned int f_flags = 0; 1065 1066 sp = sctp_sk(sk); 1067 ep = sp->ep; 1068 1069 /* connect() cannot be done on a socket that is already in ESTABLISHED 1070 * state - UDP-style peeled off socket or a TCP-style socket that 1071 * is already connected. 1072 * It cannot be done even on a TCP-style listening socket. 1073 */ 1074 if (sctp_sstate(sk, ESTABLISHED) || 1075 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1076 err = -EISCONN; 1077 goto out_free; 1078 } 1079 1080 /* Walk through the addrs buffer and count the number of addresses. */ 1081 addr_buf = kaddrs; 1082 while (walk_size < addrs_size) { 1083 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1084 err = -EINVAL; 1085 goto out_free; 1086 } 1087 1088 sa_addr = addr_buf; 1089 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1090 1091 /* If the address family is not supported or if this address 1092 * causes the address buffer to overflow return EINVAL. 1093 */ 1094 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1095 err = -EINVAL; 1096 goto out_free; 1097 } 1098 1099 port = ntohs(sa_addr->v4.sin_port); 1100 1101 /* Save current address so we can work with it */ 1102 memcpy(&to, sa_addr, af->sockaddr_len); 1103 1104 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1105 if (err) 1106 goto out_free; 1107 1108 /* Make sure the destination port is correctly set 1109 * in all addresses. 1110 */ 1111 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1112 err = -EINVAL; 1113 goto out_free; 1114 } 1115 1116 /* Check if there already is a matching association on the 1117 * endpoint (other than the one created here). 1118 */ 1119 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1120 if (asoc2 && asoc2 != asoc) { 1121 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1122 err = -EISCONN; 1123 else 1124 err = -EALREADY; 1125 goto out_free; 1126 } 1127 1128 /* If we could not find a matching association on the endpoint, 1129 * make sure that there is no peeled-off association matching 1130 * the peer address even on another socket. 1131 */ 1132 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1133 err = -EADDRNOTAVAIL; 1134 goto out_free; 1135 } 1136 1137 if (!asoc) { 1138 /* If a bind() or sctp_bindx() is not called prior to 1139 * an sctp_connectx() call, the system picks an 1140 * ephemeral port and will choose an address set 1141 * equivalent to binding with a wildcard address. 1142 */ 1143 if (!ep->base.bind_addr.port) { 1144 if (sctp_autobind(sk)) { 1145 err = -EAGAIN; 1146 goto out_free; 1147 } 1148 } else { 1149 /* 1150 * If an unprivileged user inherits a 1-many 1151 * style socket with open associations on a 1152 * privileged port, it MAY be permitted to 1153 * accept new associations, but it SHOULD NOT 1154 * be permitted to open new associations. 1155 */ 1156 if (ep->base.bind_addr.port < PROT_SOCK && 1157 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1158 err = -EACCES; 1159 goto out_free; 1160 } 1161 } 1162 1163 scope = sctp_scope(&to); 1164 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1165 if (!asoc) { 1166 err = -ENOMEM; 1167 goto out_free; 1168 } 1169 1170 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1171 GFP_KERNEL); 1172 if (err < 0) { 1173 goto out_free; 1174 } 1175 1176 } 1177 1178 /* Prime the peer's transport structures. */ 1179 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1180 SCTP_UNKNOWN); 1181 if (!transport) { 1182 err = -ENOMEM; 1183 goto out_free; 1184 } 1185 1186 addrcnt++; 1187 addr_buf += af->sockaddr_len; 1188 walk_size += af->sockaddr_len; 1189 } 1190 1191 /* In case the user of sctp_connectx() wants an association 1192 * id back, assign one now. 1193 */ 1194 if (assoc_id) { 1195 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1196 if (err < 0) 1197 goto out_free; 1198 } 1199 1200 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1201 if (err < 0) { 1202 goto out_free; 1203 } 1204 1205 /* Initialize sk's dport and daddr for getpeername() */ 1206 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1207 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1208 af->to_sk_daddr(sa_addr, sk); 1209 sk->sk_err = 0; 1210 1211 /* in-kernel sockets don't generally have a file allocated to them 1212 * if all they do is call sock_create_kern(). 1213 */ 1214 if (sk->sk_socket->file) 1215 f_flags = sk->sk_socket->file->f_flags; 1216 1217 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1218 1219 err = sctp_wait_for_connect(asoc, &timeo); 1220 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1221 *assoc_id = asoc->assoc_id; 1222 1223 /* Don't free association on exit. */ 1224 asoc = NULL; 1225 1226 out_free: 1227 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1228 __func__, asoc, kaddrs, err); 1229 1230 if (asoc) { 1231 /* sctp_primitive_ASSOCIATE may have added this association 1232 * To the hash table, try to unhash it, just in case, its a noop 1233 * if it wasn't hashed so we're safe 1234 */ 1235 sctp_unhash_established(asoc); 1236 sctp_association_free(asoc); 1237 } 1238 return err; 1239 } 1240 1241 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1242 * 1243 * API 8.9 1244 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1245 * sctp_assoc_t *asoc); 1246 * 1247 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1248 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1249 * or IPv6 addresses. 1250 * 1251 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1252 * Section 3.1.2 for this usage. 1253 * 1254 * addrs is a pointer to an array of one or more socket addresses. Each 1255 * address is contained in its appropriate structure (i.e. struct 1256 * sockaddr_in or struct sockaddr_in6) the family of the address type 1257 * must be used to distengish the address length (note that this 1258 * representation is termed a "packed array" of addresses). The caller 1259 * specifies the number of addresses in the array with addrcnt. 1260 * 1261 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1262 * the association id of the new association. On failure, sctp_connectx() 1263 * returns -1, and sets errno to the appropriate error code. The assoc_id 1264 * is not touched by the kernel. 1265 * 1266 * For SCTP, the port given in each socket address must be the same, or 1267 * sctp_connectx() will fail, setting errno to EINVAL. 1268 * 1269 * An application can use sctp_connectx to initiate an association with 1270 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1271 * allows a caller to specify multiple addresses at which a peer can be 1272 * reached. The way the SCTP stack uses the list of addresses to set up 1273 * the association is implementation dependent. This function only 1274 * specifies that the stack will try to make use of all the addresses in 1275 * the list when needed. 1276 * 1277 * Note that the list of addresses passed in is only used for setting up 1278 * the association. It does not necessarily equal the set of addresses 1279 * the peer uses for the resulting association. If the caller wants to 1280 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1281 * retrieve them after the association has been set up. 1282 * 1283 * Basically do nothing but copying the addresses from user to kernel 1284 * land and invoking either sctp_connectx(). This is used for tunneling 1285 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1286 * 1287 * We don't use copy_from_user() for optimization: we first do the 1288 * sanity checks (buffer size -fast- and access check-healthy 1289 * pointer); if all of those succeed, then we can alloc the memory 1290 * (expensive operation) needed to copy the data to kernel. Then we do 1291 * the copying without checking the user space area 1292 * (__copy_from_user()). 1293 * 1294 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1295 * it. 1296 * 1297 * sk The sk of the socket 1298 * addrs The pointer to the addresses in user land 1299 * addrssize Size of the addrs buffer 1300 * 1301 * Returns >=0 if ok, <0 errno code on error. 1302 */ 1303 static int __sctp_setsockopt_connectx(struct sock* sk, 1304 struct sockaddr __user *addrs, 1305 int addrs_size, 1306 sctp_assoc_t *assoc_id) 1307 { 1308 int err = 0; 1309 struct sockaddr *kaddrs; 1310 1311 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1312 __func__, sk, addrs, addrs_size); 1313 1314 if (unlikely(addrs_size <= 0)) 1315 return -EINVAL; 1316 1317 /* Check the user passed a healthy pointer. */ 1318 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1319 return -EFAULT; 1320 1321 /* Alloc space for the address array in kernel memory. */ 1322 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1323 if (unlikely(!kaddrs)) 1324 return -ENOMEM; 1325 1326 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1327 err = -EFAULT; 1328 } else { 1329 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1330 } 1331 1332 kfree(kaddrs); 1333 1334 return err; 1335 } 1336 1337 /* 1338 * This is an older interface. It's kept for backward compatibility 1339 * to the option that doesn't provide association id. 1340 */ 1341 static int sctp_setsockopt_connectx_old(struct sock* sk, 1342 struct sockaddr __user *addrs, 1343 int addrs_size) 1344 { 1345 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1346 } 1347 1348 /* 1349 * New interface for the API. The since the API is done with a socket 1350 * option, to make it simple we feed back the association id is as a return 1351 * indication to the call. Error is always negative and association id is 1352 * always positive. 1353 */ 1354 static int sctp_setsockopt_connectx(struct sock* sk, 1355 struct sockaddr __user *addrs, 1356 int addrs_size) 1357 { 1358 sctp_assoc_t assoc_id = 0; 1359 int err = 0; 1360 1361 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1362 1363 if (err) 1364 return err; 1365 else 1366 return assoc_id; 1367 } 1368 1369 /* 1370 * New (hopefully final) interface for the API. 1371 * We use the sctp_getaddrs_old structure so that use-space library 1372 * can avoid any unnecessary allocations. The only defferent part 1373 * is that we store the actual length of the address buffer into the 1374 * addrs_num structure member. That way we can re-use the existing 1375 * code. 1376 */ 1377 static int sctp_getsockopt_connectx3(struct sock* sk, int len, 1378 char __user *optval, 1379 int __user *optlen) 1380 { 1381 struct sctp_getaddrs_old param; 1382 sctp_assoc_t assoc_id = 0; 1383 int err = 0; 1384 1385 if (len < sizeof(param)) 1386 return -EINVAL; 1387 1388 if (copy_from_user(¶m, optval, sizeof(param))) 1389 return -EFAULT; 1390 1391 err = __sctp_setsockopt_connectx(sk, 1392 (struct sockaddr __user *)param.addrs, 1393 param.addr_num, &assoc_id); 1394 1395 if (err == 0 || err == -EINPROGRESS) { 1396 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1397 return -EFAULT; 1398 if (put_user(sizeof(assoc_id), optlen)) 1399 return -EFAULT; 1400 } 1401 1402 return err; 1403 } 1404 1405 /* API 3.1.4 close() - UDP Style Syntax 1406 * Applications use close() to perform graceful shutdown (as described in 1407 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1408 * by a UDP-style socket. 1409 * 1410 * The syntax is 1411 * 1412 * ret = close(int sd); 1413 * 1414 * sd - the socket descriptor of the associations to be closed. 1415 * 1416 * To gracefully shutdown a specific association represented by the 1417 * UDP-style socket, an application should use the sendmsg() call, 1418 * passing no user data, but including the appropriate flag in the 1419 * ancillary data (see Section xxxx). 1420 * 1421 * If sd in the close() call is a branched-off socket representing only 1422 * one association, the shutdown is performed on that association only. 1423 * 1424 * 4.1.6 close() - TCP Style Syntax 1425 * 1426 * Applications use close() to gracefully close down an association. 1427 * 1428 * The syntax is: 1429 * 1430 * int close(int sd); 1431 * 1432 * sd - the socket descriptor of the association to be closed. 1433 * 1434 * After an application calls close() on a socket descriptor, no further 1435 * socket operations will succeed on that descriptor. 1436 * 1437 * API 7.1.4 SO_LINGER 1438 * 1439 * An application using the TCP-style socket can use this option to 1440 * perform the SCTP ABORT primitive. The linger option structure is: 1441 * 1442 * struct linger { 1443 * int l_onoff; // option on/off 1444 * int l_linger; // linger time 1445 * }; 1446 * 1447 * To enable the option, set l_onoff to 1. If the l_linger value is set 1448 * to 0, calling close() is the same as the ABORT primitive. If the 1449 * value is set to a negative value, the setsockopt() call will return 1450 * an error. If the value is set to a positive value linger_time, the 1451 * close() can be blocked for at most linger_time ms. If the graceful 1452 * shutdown phase does not finish during this period, close() will 1453 * return but the graceful shutdown phase continues in the system. 1454 */ 1455 static void sctp_close(struct sock *sk, long timeout) 1456 { 1457 struct net *net = sock_net(sk); 1458 struct sctp_endpoint *ep; 1459 struct sctp_association *asoc; 1460 struct list_head *pos, *temp; 1461 unsigned int data_was_unread; 1462 1463 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1464 1465 sctp_lock_sock(sk); 1466 sk->sk_shutdown = SHUTDOWN_MASK; 1467 sk->sk_state = SCTP_SS_CLOSING; 1468 1469 ep = sctp_sk(sk)->ep; 1470 1471 /* Clean up any skbs sitting on the receive queue. */ 1472 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1473 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1474 1475 /* Walk all associations on an endpoint. */ 1476 list_for_each_safe(pos, temp, &ep->asocs) { 1477 asoc = list_entry(pos, struct sctp_association, asocs); 1478 1479 if (sctp_style(sk, TCP)) { 1480 /* A closed association can still be in the list if 1481 * it belongs to a TCP-style listening socket that is 1482 * not yet accepted. If so, free it. If not, send an 1483 * ABORT or SHUTDOWN based on the linger options. 1484 */ 1485 if (sctp_state(asoc, CLOSED)) { 1486 sctp_unhash_established(asoc); 1487 sctp_association_free(asoc); 1488 continue; 1489 } 1490 } 1491 1492 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1493 !skb_queue_empty(&asoc->ulpq.reasm) || 1494 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1495 struct sctp_chunk *chunk; 1496 1497 chunk = sctp_make_abort_user(asoc, NULL, 0); 1498 if (chunk) 1499 sctp_primitive_ABORT(net, asoc, chunk); 1500 } else 1501 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1502 } 1503 1504 /* On a TCP-style socket, block for at most linger_time if set. */ 1505 if (sctp_style(sk, TCP) && timeout) 1506 sctp_wait_for_close(sk, timeout); 1507 1508 /* This will run the backlog queue. */ 1509 sctp_release_sock(sk); 1510 1511 /* Supposedly, no process has access to the socket, but 1512 * the net layers still may. 1513 */ 1514 sctp_local_bh_disable(); 1515 sctp_bh_lock_sock(sk); 1516 1517 /* Hold the sock, since sk_common_release() will put sock_put() 1518 * and we have just a little more cleanup. 1519 */ 1520 sock_hold(sk); 1521 sk_common_release(sk); 1522 1523 sctp_bh_unlock_sock(sk); 1524 sctp_local_bh_enable(); 1525 1526 sock_put(sk); 1527 1528 SCTP_DBG_OBJCNT_DEC(sock); 1529 } 1530 1531 /* Handle EPIPE error. */ 1532 static int sctp_error(struct sock *sk, int flags, int err) 1533 { 1534 if (err == -EPIPE) 1535 err = sock_error(sk) ? : -EPIPE; 1536 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1537 send_sig(SIGPIPE, current, 0); 1538 return err; 1539 } 1540 1541 /* API 3.1.3 sendmsg() - UDP Style Syntax 1542 * 1543 * An application uses sendmsg() and recvmsg() calls to transmit data to 1544 * and receive data from its peer. 1545 * 1546 * ssize_t sendmsg(int socket, const struct msghdr *message, 1547 * int flags); 1548 * 1549 * socket - the socket descriptor of the endpoint. 1550 * message - pointer to the msghdr structure which contains a single 1551 * user message and possibly some ancillary data. 1552 * 1553 * See Section 5 for complete description of the data 1554 * structures. 1555 * 1556 * flags - flags sent or received with the user message, see Section 1557 * 5 for complete description of the flags. 1558 * 1559 * Note: This function could use a rewrite especially when explicit 1560 * connect support comes in. 1561 */ 1562 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1563 1564 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1565 1566 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1567 struct msghdr *msg, size_t msg_len) 1568 { 1569 struct net *net = sock_net(sk); 1570 struct sctp_sock *sp; 1571 struct sctp_endpoint *ep; 1572 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1573 struct sctp_transport *transport, *chunk_tp; 1574 struct sctp_chunk *chunk; 1575 union sctp_addr to; 1576 struct sockaddr *msg_name = NULL; 1577 struct sctp_sndrcvinfo default_sinfo; 1578 struct sctp_sndrcvinfo *sinfo; 1579 struct sctp_initmsg *sinit; 1580 sctp_assoc_t associd = 0; 1581 sctp_cmsgs_t cmsgs = { NULL }; 1582 int err; 1583 sctp_scope_t scope; 1584 long timeo; 1585 __u16 sinfo_flags = 0; 1586 struct sctp_datamsg *datamsg; 1587 int msg_flags = msg->msg_flags; 1588 1589 err = 0; 1590 sp = sctp_sk(sk); 1591 ep = sp->ep; 1592 1593 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1594 msg, msg_len, ep); 1595 1596 /* We cannot send a message over a TCP-style listening socket. */ 1597 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1598 err = -EPIPE; 1599 goto out_nounlock; 1600 } 1601 1602 /* Parse out the SCTP CMSGs. */ 1603 err = sctp_msghdr_parse(msg, &cmsgs); 1604 if (err) { 1605 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1606 goto out_nounlock; 1607 } 1608 1609 /* Fetch the destination address for this packet. This 1610 * address only selects the association--it is not necessarily 1611 * the address we will send to. 1612 * For a peeled-off socket, msg_name is ignored. 1613 */ 1614 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1615 int msg_namelen = msg->msg_namelen; 1616 1617 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1618 msg_namelen); 1619 if (err) 1620 return err; 1621 1622 if (msg_namelen > sizeof(to)) 1623 msg_namelen = sizeof(to); 1624 memcpy(&to, msg->msg_name, msg_namelen); 1625 msg_name = msg->msg_name; 1626 } 1627 1628 sinfo = cmsgs.info; 1629 sinit = cmsgs.init; 1630 1631 /* Did the user specify SNDRCVINFO? */ 1632 if (sinfo) { 1633 sinfo_flags = sinfo->sinfo_flags; 1634 associd = sinfo->sinfo_assoc_id; 1635 } 1636 1637 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1638 msg_len, sinfo_flags); 1639 1640 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1641 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1642 err = -EINVAL; 1643 goto out_nounlock; 1644 } 1645 1646 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1647 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1648 * If SCTP_ABORT is set, the message length could be non zero with 1649 * the msg_iov set to the user abort reason. 1650 */ 1651 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1652 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1653 err = -EINVAL; 1654 goto out_nounlock; 1655 } 1656 1657 /* If SCTP_ADDR_OVER is set, there must be an address 1658 * specified in msg_name. 1659 */ 1660 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1661 err = -EINVAL; 1662 goto out_nounlock; 1663 } 1664 1665 transport = NULL; 1666 1667 pr_debug("%s: about to look up association\n", __func__); 1668 1669 sctp_lock_sock(sk); 1670 1671 /* If a msg_name has been specified, assume this is to be used. */ 1672 if (msg_name) { 1673 /* Look for a matching association on the endpoint. */ 1674 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1675 if (!asoc) { 1676 /* If we could not find a matching association on the 1677 * endpoint, make sure that it is not a TCP-style 1678 * socket that already has an association or there is 1679 * no peeled-off association on another socket. 1680 */ 1681 if ((sctp_style(sk, TCP) && 1682 sctp_sstate(sk, ESTABLISHED)) || 1683 sctp_endpoint_is_peeled_off(ep, &to)) { 1684 err = -EADDRNOTAVAIL; 1685 goto out_unlock; 1686 } 1687 } 1688 } else { 1689 asoc = sctp_id2assoc(sk, associd); 1690 if (!asoc) { 1691 err = -EPIPE; 1692 goto out_unlock; 1693 } 1694 } 1695 1696 if (asoc) { 1697 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1698 1699 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1700 * socket that has an association in CLOSED state. This can 1701 * happen when an accepted socket has an association that is 1702 * already CLOSED. 1703 */ 1704 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1705 err = -EPIPE; 1706 goto out_unlock; 1707 } 1708 1709 if (sinfo_flags & SCTP_EOF) { 1710 pr_debug("%s: shutting down association:%p\n", 1711 __func__, asoc); 1712 1713 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1714 err = 0; 1715 goto out_unlock; 1716 } 1717 if (sinfo_flags & SCTP_ABORT) { 1718 1719 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1720 if (!chunk) { 1721 err = -ENOMEM; 1722 goto out_unlock; 1723 } 1724 1725 pr_debug("%s: aborting association:%p\n", 1726 __func__, asoc); 1727 1728 sctp_primitive_ABORT(net, asoc, chunk); 1729 err = 0; 1730 goto out_unlock; 1731 } 1732 } 1733 1734 /* Do we need to create the association? */ 1735 if (!asoc) { 1736 pr_debug("%s: there is no association yet\n", __func__); 1737 1738 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1739 err = -EINVAL; 1740 goto out_unlock; 1741 } 1742 1743 /* Check for invalid stream against the stream counts, 1744 * either the default or the user specified stream counts. 1745 */ 1746 if (sinfo) { 1747 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1748 /* Check against the defaults. */ 1749 if (sinfo->sinfo_stream >= 1750 sp->initmsg.sinit_num_ostreams) { 1751 err = -EINVAL; 1752 goto out_unlock; 1753 } 1754 } else { 1755 /* Check against the requested. */ 1756 if (sinfo->sinfo_stream >= 1757 sinit->sinit_num_ostreams) { 1758 err = -EINVAL; 1759 goto out_unlock; 1760 } 1761 } 1762 } 1763 1764 /* 1765 * API 3.1.2 bind() - UDP Style Syntax 1766 * If a bind() or sctp_bindx() is not called prior to a 1767 * sendmsg() call that initiates a new association, the 1768 * system picks an ephemeral port and will choose an address 1769 * set equivalent to binding with a wildcard address. 1770 */ 1771 if (!ep->base.bind_addr.port) { 1772 if (sctp_autobind(sk)) { 1773 err = -EAGAIN; 1774 goto out_unlock; 1775 } 1776 } else { 1777 /* 1778 * If an unprivileged user inherits a one-to-many 1779 * style socket with open associations on a privileged 1780 * port, it MAY be permitted to accept new associations, 1781 * but it SHOULD NOT be permitted to open new 1782 * associations. 1783 */ 1784 if (ep->base.bind_addr.port < PROT_SOCK && 1785 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1786 err = -EACCES; 1787 goto out_unlock; 1788 } 1789 } 1790 1791 scope = sctp_scope(&to); 1792 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1793 if (!new_asoc) { 1794 err = -ENOMEM; 1795 goto out_unlock; 1796 } 1797 asoc = new_asoc; 1798 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1799 if (err < 0) { 1800 err = -ENOMEM; 1801 goto out_free; 1802 } 1803 1804 /* If the SCTP_INIT ancillary data is specified, set all 1805 * the association init values accordingly. 1806 */ 1807 if (sinit) { 1808 if (sinit->sinit_num_ostreams) { 1809 asoc->c.sinit_num_ostreams = 1810 sinit->sinit_num_ostreams; 1811 } 1812 if (sinit->sinit_max_instreams) { 1813 asoc->c.sinit_max_instreams = 1814 sinit->sinit_max_instreams; 1815 } 1816 if (sinit->sinit_max_attempts) { 1817 asoc->max_init_attempts 1818 = sinit->sinit_max_attempts; 1819 } 1820 if (sinit->sinit_max_init_timeo) { 1821 asoc->max_init_timeo = 1822 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1823 } 1824 } 1825 1826 /* Prime the peer's transport structures. */ 1827 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1828 if (!transport) { 1829 err = -ENOMEM; 1830 goto out_free; 1831 } 1832 } 1833 1834 /* ASSERT: we have a valid association at this point. */ 1835 pr_debug("%s: we have a valid association\n", __func__); 1836 1837 if (!sinfo) { 1838 /* If the user didn't specify SNDRCVINFO, make up one with 1839 * some defaults. 1840 */ 1841 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1842 default_sinfo.sinfo_stream = asoc->default_stream; 1843 default_sinfo.sinfo_flags = asoc->default_flags; 1844 default_sinfo.sinfo_ppid = asoc->default_ppid; 1845 default_sinfo.sinfo_context = asoc->default_context; 1846 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1847 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1848 sinfo = &default_sinfo; 1849 } 1850 1851 /* API 7.1.7, the sndbuf size per association bounds the 1852 * maximum size of data that can be sent in a single send call. 1853 */ 1854 if (msg_len > sk->sk_sndbuf) { 1855 err = -EMSGSIZE; 1856 goto out_free; 1857 } 1858 1859 if (asoc->pmtu_pending) 1860 sctp_assoc_pending_pmtu(sk, asoc); 1861 1862 /* If fragmentation is disabled and the message length exceeds the 1863 * association fragmentation point, return EMSGSIZE. The I-D 1864 * does not specify what this error is, but this looks like 1865 * a great fit. 1866 */ 1867 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1868 err = -EMSGSIZE; 1869 goto out_free; 1870 } 1871 1872 /* Check for invalid stream. */ 1873 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1874 err = -EINVAL; 1875 goto out_free; 1876 } 1877 1878 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1879 if (!sctp_wspace(asoc)) { 1880 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1881 if (err) 1882 goto out_free; 1883 } 1884 1885 /* If an address is passed with the sendto/sendmsg call, it is used 1886 * to override the primary destination address in the TCP model, or 1887 * when SCTP_ADDR_OVER flag is set in the UDP model. 1888 */ 1889 if ((sctp_style(sk, TCP) && msg_name) || 1890 (sinfo_flags & SCTP_ADDR_OVER)) { 1891 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1892 if (!chunk_tp) { 1893 err = -EINVAL; 1894 goto out_free; 1895 } 1896 } else 1897 chunk_tp = NULL; 1898 1899 /* Auto-connect, if we aren't connected already. */ 1900 if (sctp_state(asoc, CLOSED)) { 1901 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1902 if (err < 0) 1903 goto out_free; 1904 1905 pr_debug("%s: we associated primitively\n", __func__); 1906 } 1907 1908 /* Break the message into multiple chunks of maximum size. */ 1909 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1910 if (IS_ERR(datamsg)) { 1911 err = PTR_ERR(datamsg); 1912 goto out_free; 1913 } 1914 1915 /* Now send the (possibly) fragmented message. */ 1916 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1917 sctp_chunk_hold(chunk); 1918 1919 /* Do accounting for the write space. */ 1920 sctp_set_owner_w(chunk); 1921 1922 chunk->transport = chunk_tp; 1923 } 1924 1925 /* Send it to the lower layers. Note: all chunks 1926 * must either fail or succeed. The lower layer 1927 * works that way today. Keep it that way or this 1928 * breaks. 1929 */ 1930 err = sctp_primitive_SEND(net, asoc, datamsg); 1931 /* Did the lower layer accept the chunk? */ 1932 if (err) { 1933 sctp_datamsg_free(datamsg); 1934 goto out_free; 1935 } 1936 1937 pr_debug("%s: we sent primitively\n", __func__); 1938 1939 sctp_datamsg_put(datamsg); 1940 err = msg_len; 1941 1942 /* If we are already past ASSOCIATE, the lower 1943 * layers are responsible for association cleanup. 1944 */ 1945 goto out_unlock; 1946 1947 out_free: 1948 if (new_asoc) { 1949 sctp_unhash_established(asoc); 1950 sctp_association_free(asoc); 1951 } 1952 out_unlock: 1953 sctp_release_sock(sk); 1954 1955 out_nounlock: 1956 return sctp_error(sk, msg_flags, err); 1957 1958 #if 0 1959 do_sock_err: 1960 if (msg_len) 1961 err = msg_len; 1962 else 1963 err = sock_error(sk); 1964 goto out; 1965 1966 do_interrupted: 1967 if (msg_len) 1968 err = msg_len; 1969 goto out; 1970 #endif /* 0 */ 1971 } 1972 1973 /* This is an extended version of skb_pull() that removes the data from the 1974 * start of a skb even when data is spread across the list of skb's in the 1975 * frag_list. len specifies the total amount of data that needs to be removed. 1976 * when 'len' bytes could be removed from the skb, it returns 0. 1977 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1978 * could not be removed. 1979 */ 1980 static int sctp_skb_pull(struct sk_buff *skb, int len) 1981 { 1982 struct sk_buff *list; 1983 int skb_len = skb_headlen(skb); 1984 int rlen; 1985 1986 if (len <= skb_len) { 1987 __skb_pull(skb, len); 1988 return 0; 1989 } 1990 len -= skb_len; 1991 __skb_pull(skb, skb_len); 1992 1993 skb_walk_frags(skb, list) { 1994 rlen = sctp_skb_pull(list, len); 1995 skb->len -= (len-rlen); 1996 skb->data_len -= (len-rlen); 1997 1998 if (!rlen) 1999 return 0; 2000 2001 len = rlen; 2002 } 2003 2004 return len; 2005 } 2006 2007 /* API 3.1.3 recvmsg() - UDP Style Syntax 2008 * 2009 * ssize_t recvmsg(int socket, struct msghdr *message, 2010 * int flags); 2011 * 2012 * socket - the socket descriptor of the endpoint. 2013 * message - pointer to the msghdr structure which contains a single 2014 * user message and possibly some ancillary data. 2015 * 2016 * See Section 5 for complete description of the data 2017 * structures. 2018 * 2019 * flags - flags sent or received with the user message, see Section 2020 * 5 for complete description of the flags. 2021 */ 2022 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2023 2024 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2025 struct msghdr *msg, size_t len, int noblock, 2026 int flags, int *addr_len) 2027 { 2028 struct sctp_ulpevent *event = NULL; 2029 struct sctp_sock *sp = sctp_sk(sk); 2030 struct sk_buff *skb; 2031 int copied; 2032 int err = 0; 2033 int skb_len; 2034 2035 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2036 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2037 addr_len); 2038 2039 sctp_lock_sock(sk); 2040 2041 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2042 err = -ENOTCONN; 2043 goto out; 2044 } 2045 2046 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2047 if (!skb) 2048 goto out; 2049 2050 /* Get the total length of the skb including any skb's in the 2051 * frag_list. 2052 */ 2053 skb_len = skb->len; 2054 2055 copied = skb_len; 2056 if (copied > len) 2057 copied = len; 2058 2059 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2060 2061 event = sctp_skb2event(skb); 2062 2063 if (err) 2064 goto out_free; 2065 2066 sock_recv_ts_and_drops(msg, sk, skb); 2067 if (sctp_ulpevent_is_notification(event)) { 2068 msg->msg_flags |= MSG_NOTIFICATION; 2069 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2070 } else { 2071 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2072 } 2073 2074 /* Check if we allow SCTP_SNDRCVINFO. */ 2075 if (sp->subscribe.sctp_data_io_event) 2076 sctp_ulpevent_read_sndrcvinfo(event, msg); 2077 #if 0 2078 /* FIXME: we should be calling IP/IPv6 layers. */ 2079 if (sk->sk_protinfo.af_inet.cmsg_flags) 2080 ip_cmsg_recv(msg, skb); 2081 #endif 2082 2083 err = copied; 2084 2085 /* If skb's length exceeds the user's buffer, update the skb and 2086 * push it back to the receive_queue so that the next call to 2087 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2088 */ 2089 if (skb_len > copied) { 2090 msg->msg_flags &= ~MSG_EOR; 2091 if (flags & MSG_PEEK) 2092 goto out_free; 2093 sctp_skb_pull(skb, copied); 2094 skb_queue_head(&sk->sk_receive_queue, skb); 2095 2096 /* When only partial message is copied to the user, increase 2097 * rwnd by that amount. If all the data in the skb is read, 2098 * rwnd is updated when the event is freed. 2099 */ 2100 if (!sctp_ulpevent_is_notification(event)) 2101 sctp_assoc_rwnd_increase(event->asoc, copied); 2102 goto out; 2103 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2104 (event->msg_flags & MSG_EOR)) 2105 msg->msg_flags |= MSG_EOR; 2106 else 2107 msg->msg_flags &= ~MSG_EOR; 2108 2109 out_free: 2110 if (flags & MSG_PEEK) { 2111 /* Release the skb reference acquired after peeking the skb in 2112 * sctp_skb_recv_datagram(). 2113 */ 2114 kfree_skb(skb); 2115 } else { 2116 /* Free the event which includes releasing the reference to 2117 * the owner of the skb, freeing the skb and updating the 2118 * rwnd. 2119 */ 2120 sctp_ulpevent_free(event); 2121 } 2122 out: 2123 sctp_release_sock(sk); 2124 return err; 2125 } 2126 2127 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2128 * 2129 * This option is a on/off flag. If enabled no SCTP message 2130 * fragmentation will be performed. Instead if a message being sent 2131 * exceeds the current PMTU size, the message will NOT be sent and 2132 * instead a error will be indicated to the user. 2133 */ 2134 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2135 char __user *optval, 2136 unsigned int optlen) 2137 { 2138 int val; 2139 2140 if (optlen < sizeof(int)) 2141 return -EINVAL; 2142 2143 if (get_user(val, (int __user *)optval)) 2144 return -EFAULT; 2145 2146 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2147 2148 return 0; 2149 } 2150 2151 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2152 unsigned int optlen) 2153 { 2154 struct sctp_association *asoc; 2155 struct sctp_ulpevent *event; 2156 2157 if (optlen > sizeof(struct sctp_event_subscribe)) 2158 return -EINVAL; 2159 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2160 return -EFAULT; 2161 2162 /* 2163 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2164 * if there is no data to be sent or retransmit, the stack will 2165 * immediately send up this notification. 2166 */ 2167 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2168 &sctp_sk(sk)->subscribe)) { 2169 asoc = sctp_id2assoc(sk, 0); 2170 2171 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2172 event = sctp_ulpevent_make_sender_dry_event(asoc, 2173 GFP_ATOMIC); 2174 if (!event) 2175 return -ENOMEM; 2176 2177 sctp_ulpq_tail_event(&asoc->ulpq, event); 2178 } 2179 } 2180 2181 return 0; 2182 } 2183 2184 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2185 * 2186 * This socket option is applicable to the UDP-style socket only. When 2187 * set it will cause associations that are idle for more than the 2188 * specified number of seconds to automatically close. An association 2189 * being idle is defined an association that has NOT sent or received 2190 * user data. The special value of '0' indicates that no automatic 2191 * close of any associations should be performed. The option expects an 2192 * integer defining the number of seconds of idle time before an 2193 * association is closed. 2194 */ 2195 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2196 unsigned int optlen) 2197 { 2198 struct sctp_sock *sp = sctp_sk(sk); 2199 2200 /* Applicable to UDP-style socket only */ 2201 if (sctp_style(sk, TCP)) 2202 return -EOPNOTSUPP; 2203 if (optlen != sizeof(int)) 2204 return -EINVAL; 2205 if (copy_from_user(&sp->autoclose, optval, optlen)) 2206 return -EFAULT; 2207 2208 return 0; 2209 } 2210 2211 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2212 * 2213 * Applications can enable or disable heartbeats for any peer address of 2214 * an association, modify an address's heartbeat interval, force a 2215 * heartbeat to be sent immediately, and adjust the address's maximum 2216 * number of retransmissions sent before an address is considered 2217 * unreachable. The following structure is used to access and modify an 2218 * address's parameters: 2219 * 2220 * struct sctp_paddrparams { 2221 * sctp_assoc_t spp_assoc_id; 2222 * struct sockaddr_storage spp_address; 2223 * uint32_t spp_hbinterval; 2224 * uint16_t spp_pathmaxrxt; 2225 * uint32_t spp_pathmtu; 2226 * uint32_t spp_sackdelay; 2227 * uint32_t spp_flags; 2228 * }; 2229 * 2230 * spp_assoc_id - (one-to-many style socket) This is filled in the 2231 * application, and identifies the association for 2232 * this query. 2233 * spp_address - This specifies which address is of interest. 2234 * spp_hbinterval - This contains the value of the heartbeat interval, 2235 * in milliseconds. If a value of zero 2236 * is present in this field then no changes are to 2237 * be made to this parameter. 2238 * spp_pathmaxrxt - This contains the maximum number of 2239 * retransmissions before this address shall be 2240 * considered unreachable. If a value of zero 2241 * is present in this field then no changes are to 2242 * be made to this parameter. 2243 * spp_pathmtu - When Path MTU discovery is disabled the value 2244 * specified here will be the "fixed" path mtu. 2245 * Note that if the spp_address field is empty 2246 * then all associations on this address will 2247 * have this fixed path mtu set upon them. 2248 * 2249 * spp_sackdelay - When delayed sack is enabled, this value specifies 2250 * the number of milliseconds that sacks will be delayed 2251 * for. This value will apply to all addresses of an 2252 * association if the spp_address field is empty. Note 2253 * also, that if delayed sack is enabled and this 2254 * value is set to 0, no change is made to the last 2255 * recorded delayed sack timer value. 2256 * 2257 * spp_flags - These flags are used to control various features 2258 * on an association. The flag field may contain 2259 * zero or more of the following options. 2260 * 2261 * SPP_HB_ENABLE - Enable heartbeats on the 2262 * specified address. Note that if the address 2263 * field is empty all addresses for the association 2264 * have heartbeats enabled upon them. 2265 * 2266 * SPP_HB_DISABLE - Disable heartbeats on the 2267 * speicifed address. Note that if the address 2268 * field is empty all addresses for the association 2269 * will have their heartbeats disabled. Note also 2270 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2271 * mutually exclusive, only one of these two should 2272 * be specified. Enabling both fields will have 2273 * undetermined results. 2274 * 2275 * SPP_HB_DEMAND - Request a user initiated heartbeat 2276 * to be made immediately. 2277 * 2278 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2279 * heartbeat delayis to be set to the value of 0 2280 * milliseconds. 2281 * 2282 * SPP_PMTUD_ENABLE - This field will enable PMTU 2283 * discovery upon the specified address. Note that 2284 * if the address feild is empty then all addresses 2285 * on the association are effected. 2286 * 2287 * SPP_PMTUD_DISABLE - This field will disable PMTU 2288 * discovery upon the specified address. Note that 2289 * if the address feild is empty then all addresses 2290 * on the association are effected. Not also that 2291 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2292 * exclusive. Enabling both will have undetermined 2293 * results. 2294 * 2295 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2296 * on delayed sack. The time specified in spp_sackdelay 2297 * is used to specify the sack delay for this address. Note 2298 * that if spp_address is empty then all addresses will 2299 * enable delayed sack and take on the sack delay 2300 * value specified in spp_sackdelay. 2301 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2302 * off delayed sack. If the spp_address field is blank then 2303 * delayed sack is disabled for the entire association. Note 2304 * also that this field is mutually exclusive to 2305 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2306 * results. 2307 */ 2308 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2309 struct sctp_transport *trans, 2310 struct sctp_association *asoc, 2311 struct sctp_sock *sp, 2312 int hb_change, 2313 int pmtud_change, 2314 int sackdelay_change) 2315 { 2316 int error; 2317 2318 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2319 struct net *net = sock_net(trans->asoc->base.sk); 2320 2321 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2322 if (error) 2323 return error; 2324 } 2325 2326 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2327 * this field is ignored. Note also that a value of zero indicates 2328 * the current setting should be left unchanged. 2329 */ 2330 if (params->spp_flags & SPP_HB_ENABLE) { 2331 2332 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2333 * set. This lets us use 0 value when this flag 2334 * is set. 2335 */ 2336 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2337 params->spp_hbinterval = 0; 2338 2339 if (params->spp_hbinterval || 2340 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2341 if (trans) { 2342 trans->hbinterval = 2343 msecs_to_jiffies(params->spp_hbinterval); 2344 } else if (asoc) { 2345 asoc->hbinterval = 2346 msecs_to_jiffies(params->spp_hbinterval); 2347 } else { 2348 sp->hbinterval = params->spp_hbinterval; 2349 } 2350 } 2351 } 2352 2353 if (hb_change) { 2354 if (trans) { 2355 trans->param_flags = 2356 (trans->param_flags & ~SPP_HB) | hb_change; 2357 } else if (asoc) { 2358 asoc->param_flags = 2359 (asoc->param_flags & ~SPP_HB) | hb_change; 2360 } else { 2361 sp->param_flags = 2362 (sp->param_flags & ~SPP_HB) | hb_change; 2363 } 2364 } 2365 2366 /* When Path MTU discovery is disabled the value specified here will 2367 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2368 * include the flag SPP_PMTUD_DISABLE for this field to have any 2369 * effect). 2370 */ 2371 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2372 if (trans) { 2373 trans->pathmtu = params->spp_pathmtu; 2374 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2375 } else if (asoc) { 2376 asoc->pathmtu = params->spp_pathmtu; 2377 sctp_frag_point(asoc, params->spp_pathmtu); 2378 } else { 2379 sp->pathmtu = params->spp_pathmtu; 2380 } 2381 } 2382 2383 if (pmtud_change) { 2384 if (trans) { 2385 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2386 (params->spp_flags & SPP_PMTUD_ENABLE); 2387 trans->param_flags = 2388 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2389 if (update) { 2390 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2391 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2392 } 2393 } else if (asoc) { 2394 asoc->param_flags = 2395 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2396 } else { 2397 sp->param_flags = 2398 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2399 } 2400 } 2401 2402 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2403 * value of this field is ignored. Note also that a value of zero 2404 * indicates the current setting should be left unchanged. 2405 */ 2406 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2407 if (trans) { 2408 trans->sackdelay = 2409 msecs_to_jiffies(params->spp_sackdelay); 2410 } else if (asoc) { 2411 asoc->sackdelay = 2412 msecs_to_jiffies(params->spp_sackdelay); 2413 } else { 2414 sp->sackdelay = params->spp_sackdelay; 2415 } 2416 } 2417 2418 if (sackdelay_change) { 2419 if (trans) { 2420 trans->param_flags = 2421 (trans->param_flags & ~SPP_SACKDELAY) | 2422 sackdelay_change; 2423 } else if (asoc) { 2424 asoc->param_flags = 2425 (asoc->param_flags & ~SPP_SACKDELAY) | 2426 sackdelay_change; 2427 } else { 2428 sp->param_flags = 2429 (sp->param_flags & ~SPP_SACKDELAY) | 2430 sackdelay_change; 2431 } 2432 } 2433 2434 /* Note that a value of zero indicates the current setting should be 2435 left unchanged. 2436 */ 2437 if (params->spp_pathmaxrxt) { 2438 if (trans) { 2439 trans->pathmaxrxt = params->spp_pathmaxrxt; 2440 } else if (asoc) { 2441 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2442 } else { 2443 sp->pathmaxrxt = params->spp_pathmaxrxt; 2444 } 2445 } 2446 2447 return 0; 2448 } 2449 2450 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2451 char __user *optval, 2452 unsigned int optlen) 2453 { 2454 struct sctp_paddrparams params; 2455 struct sctp_transport *trans = NULL; 2456 struct sctp_association *asoc = NULL; 2457 struct sctp_sock *sp = sctp_sk(sk); 2458 int error; 2459 int hb_change, pmtud_change, sackdelay_change; 2460 2461 if (optlen != sizeof(struct sctp_paddrparams)) 2462 return - EINVAL; 2463 2464 if (copy_from_user(¶ms, optval, optlen)) 2465 return -EFAULT; 2466 2467 /* Validate flags and value parameters. */ 2468 hb_change = params.spp_flags & SPP_HB; 2469 pmtud_change = params.spp_flags & SPP_PMTUD; 2470 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2471 2472 if (hb_change == SPP_HB || 2473 pmtud_change == SPP_PMTUD || 2474 sackdelay_change == SPP_SACKDELAY || 2475 params.spp_sackdelay > 500 || 2476 (params.spp_pathmtu && 2477 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2478 return -EINVAL; 2479 2480 /* If an address other than INADDR_ANY is specified, and 2481 * no transport is found, then the request is invalid. 2482 */ 2483 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2484 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2485 params.spp_assoc_id); 2486 if (!trans) 2487 return -EINVAL; 2488 } 2489 2490 /* Get association, if assoc_id != 0 and the socket is a one 2491 * to many style socket, and an association was not found, then 2492 * the id was invalid. 2493 */ 2494 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2495 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2496 return -EINVAL; 2497 2498 /* Heartbeat demand can only be sent on a transport or 2499 * association, but not a socket. 2500 */ 2501 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2502 return -EINVAL; 2503 2504 /* Process parameters. */ 2505 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2506 hb_change, pmtud_change, 2507 sackdelay_change); 2508 2509 if (error) 2510 return error; 2511 2512 /* If changes are for association, also apply parameters to each 2513 * transport. 2514 */ 2515 if (!trans && asoc) { 2516 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2517 transports) { 2518 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2519 hb_change, pmtud_change, 2520 sackdelay_change); 2521 } 2522 } 2523 2524 return 0; 2525 } 2526 2527 /* 2528 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2529 * 2530 * This option will effect the way delayed acks are performed. This 2531 * option allows you to get or set the delayed ack time, in 2532 * milliseconds. It also allows changing the delayed ack frequency. 2533 * Changing the frequency to 1 disables the delayed sack algorithm. If 2534 * the assoc_id is 0, then this sets or gets the endpoints default 2535 * values. If the assoc_id field is non-zero, then the set or get 2536 * effects the specified association for the one to many model (the 2537 * assoc_id field is ignored by the one to one model). Note that if 2538 * sack_delay or sack_freq are 0 when setting this option, then the 2539 * current values will remain unchanged. 2540 * 2541 * struct sctp_sack_info { 2542 * sctp_assoc_t sack_assoc_id; 2543 * uint32_t sack_delay; 2544 * uint32_t sack_freq; 2545 * }; 2546 * 2547 * sack_assoc_id - This parameter, indicates which association the user 2548 * is performing an action upon. Note that if this field's value is 2549 * zero then the endpoints default value is changed (effecting future 2550 * associations only). 2551 * 2552 * sack_delay - This parameter contains the number of milliseconds that 2553 * the user is requesting the delayed ACK timer be set to. Note that 2554 * this value is defined in the standard to be between 200 and 500 2555 * milliseconds. 2556 * 2557 * sack_freq - This parameter contains the number of packets that must 2558 * be received before a sack is sent without waiting for the delay 2559 * timer to expire. The default value for this is 2, setting this 2560 * value to 1 will disable the delayed sack algorithm. 2561 */ 2562 2563 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2564 char __user *optval, unsigned int optlen) 2565 { 2566 struct sctp_sack_info params; 2567 struct sctp_transport *trans = NULL; 2568 struct sctp_association *asoc = NULL; 2569 struct sctp_sock *sp = sctp_sk(sk); 2570 2571 if (optlen == sizeof(struct sctp_sack_info)) { 2572 if (copy_from_user(¶ms, optval, optlen)) 2573 return -EFAULT; 2574 2575 if (params.sack_delay == 0 && params.sack_freq == 0) 2576 return 0; 2577 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2578 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2579 pr_warn("Use struct sctp_sack_info instead\n"); 2580 if (copy_from_user(¶ms, optval, optlen)) 2581 return -EFAULT; 2582 2583 if (params.sack_delay == 0) 2584 params.sack_freq = 1; 2585 else 2586 params.sack_freq = 0; 2587 } else 2588 return - EINVAL; 2589 2590 /* Validate value parameter. */ 2591 if (params.sack_delay > 500) 2592 return -EINVAL; 2593 2594 /* Get association, if sack_assoc_id != 0 and the socket is a one 2595 * to many style socket, and an association was not found, then 2596 * the id was invalid. 2597 */ 2598 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2599 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2600 return -EINVAL; 2601 2602 if (params.sack_delay) { 2603 if (asoc) { 2604 asoc->sackdelay = 2605 msecs_to_jiffies(params.sack_delay); 2606 asoc->param_flags = 2607 (asoc->param_flags & ~SPP_SACKDELAY) | 2608 SPP_SACKDELAY_ENABLE; 2609 } else { 2610 sp->sackdelay = params.sack_delay; 2611 sp->param_flags = 2612 (sp->param_flags & ~SPP_SACKDELAY) | 2613 SPP_SACKDELAY_ENABLE; 2614 } 2615 } 2616 2617 if (params.sack_freq == 1) { 2618 if (asoc) { 2619 asoc->param_flags = 2620 (asoc->param_flags & ~SPP_SACKDELAY) | 2621 SPP_SACKDELAY_DISABLE; 2622 } else { 2623 sp->param_flags = 2624 (sp->param_flags & ~SPP_SACKDELAY) | 2625 SPP_SACKDELAY_DISABLE; 2626 } 2627 } else if (params.sack_freq > 1) { 2628 if (asoc) { 2629 asoc->sackfreq = params.sack_freq; 2630 asoc->param_flags = 2631 (asoc->param_flags & ~SPP_SACKDELAY) | 2632 SPP_SACKDELAY_ENABLE; 2633 } else { 2634 sp->sackfreq = params.sack_freq; 2635 sp->param_flags = 2636 (sp->param_flags & ~SPP_SACKDELAY) | 2637 SPP_SACKDELAY_ENABLE; 2638 } 2639 } 2640 2641 /* If change is for association, also apply to each transport. */ 2642 if (asoc) { 2643 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2644 transports) { 2645 if (params.sack_delay) { 2646 trans->sackdelay = 2647 msecs_to_jiffies(params.sack_delay); 2648 trans->param_flags = 2649 (trans->param_flags & ~SPP_SACKDELAY) | 2650 SPP_SACKDELAY_ENABLE; 2651 } 2652 if (params.sack_freq == 1) { 2653 trans->param_flags = 2654 (trans->param_flags & ~SPP_SACKDELAY) | 2655 SPP_SACKDELAY_DISABLE; 2656 } else if (params.sack_freq > 1) { 2657 trans->sackfreq = params.sack_freq; 2658 trans->param_flags = 2659 (trans->param_flags & ~SPP_SACKDELAY) | 2660 SPP_SACKDELAY_ENABLE; 2661 } 2662 } 2663 } 2664 2665 return 0; 2666 } 2667 2668 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2669 * 2670 * Applications can specify protocol parameters for the default association 2671 * initialization. The option name argument to setsockopt() and getsockopt() 2672 * is SCTP_INITMSG. 2673 * 2674 * Setting initialization parameters is effective only on an unconnected 2675 * socket (for UDP-style sockets only future associations are effected 2676 * by the change). With TCP-style sockets, this option is inherited by 2677 * sockets derived from a listener socket. 2678 */ 2679 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2680 { 2681 struct sctp_initmsg sinit; 2682 struct sctp_sock *sp = sctp_sk(sk); 2683 2684 if (optlen != sizeof(struct sctp_initmsg)) 2685 return -EINVAL; 2686 if (copy_from_user(&sinit, optval, optlen)) 2687 return -EFAULT; 2688 2689 if (sinit.sinit_num_ostreams) 2690 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2691 if (sinit.sinit_max_instreams) 2692 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2693 if (sinit.sinit_max_attempts) 2694 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2695 if (sinit.sinit_max_init_timeo) 2696 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2697 2698 return 0; 2699 } 2700 2701 /* 2702 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2703 * 2704 * Applications that wish to use the sendto() system call may wish to 2705 * specify a default set of parameters that would normally be supplied 2706 * through the inclusion of ancillary data. This socket option allows 2707 * such an application to set the default sctp_sndrcvinfo structure. 2708 * The application that wishes to use this socket option simply passes 2709 * in to this call the sctp_sndrcvinfo structure defined in Section 2710 * 5.2.2) The input parameters accepted by this call include 2711 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2712 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2713 * to this call if the caller is using the UDP model. 2714 */ 2715 static int sctp_setsockopt_default_send_param(struct sock *sk, 2716 char __user *optval, 2717 unsigned int optlen) 2718 { 2719 struct sctp_sndrcvinfo info; 2720 struct sctp_association *asoc; 2721 struct sctp_sock *sp = sctp_sk(sk); 2722 2723 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2724 return -EINVAL; 2725 if (copy_from_user(&info, optval, optlen)) 2726 return -EFAULT; 2727 2728 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2729 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2730 return -EINVAL; 2731 2732 if (asoc) { 2733 asoc->default_stream = info.sinfo_stream; 2734 asoc->default_flags = info.sinfo_flags; 2735 asoc->default_ppid = info.sinfo_ppid; 2736 asoc->default_context = info.sinfo_context; 2737 asoc->default_timetolive = info.sinfo_timetolive; 2738 } else { 2739 sp->default_stream = info.sinfo_stream; 2740 sp->default_flags = info.sinfo_flags; 2741 sp->default_ppid = info.sinfo_ppid; 2742 sp->default_context = info.sinfo_context; 2743 sp->default_timetolive = info.sinfo_timetolive; 2744 } 2745 2746 return 0; 2747 } 2748 2749 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2750 * 2751 * Requests that the local SCTP stack use the enclosed peer address as 2752 * the association primary. The enclosed address must be one of the 2753 * association peer's addresses. 2754 */ 2755 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2756 unsigned int optlen) 2757 { 2758 struct sctp_prim prim; 2759 struct sctp_transport *trans; 2760 2761 if (optlen != sizeof(struct sctp_prim)) 2762 return -EINVAL; 2763 2764 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2765 return -EFAULT; 2766 2767 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2768 if (!trans) 2769 return -EINVAL; 2770 2771 sctp_assoc_set_primary(trans->asoc, trans); 2772 2773 return 0; 2774 } 2775 2776 /* 2777 * 7.1.5 SCTP_NODELAY 2778 * 2779 * Turn on/off any Nagle-like algorithm. This means that packets are 2780 * generally sent as soon as possible and no unnecessary delays are 2781 * introduced, at the cost of more packets in the network. Expects an 2782 * integer boolean flag. 2783 */ 2784 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2785 unsigned int optlen) 2786 { 2787 int val; 2788 2789 if (optlen < sizeof(int)) 2790 return -EINVAL; 2791 if (get_user(val, (int __user *)optval)) 2792 return -EFAULT; 2793 2794 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2795 return 0; 2796 } 2797 2798 /* 2799 * 2800 * 7.1.1 SCTP_RTOINFO 2801 * 2802 * The protocol parameters used to initialize and bound retransmission 2803 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2804 * and modify these parameters. 2805 * All parameters are time values, in milliseconds. A value of 0, when 2806 * modifying the parameters, indicates that the current value should not 2807 * be changed. 2808 * 2809 */ 2810 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2811 { 2812 struct sctp_rtoinfo rtoinfo; 2813 struct sctp_association *asoc; 2814 2815 if (optlen != sizeof (struct sctp_rtoinfo)) 2816 return -EINVAL; 2817 2818 if (copy_from_user(&rtoinfo, optval, optlen)) 2819 return -EFAULT; 2820 2821 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2822 2823 /* Set the values to the specific association */ 2824 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2825 return -EINVAL; 2826 2827 if (asoc) { 2828 if (rtoinfo.srto_initial != 0) 2829 asoc->rto_initial = 2830 msecs_to_jiffies(rtoinfo.srto_initial); 2831 if (rtoinfo.srto_max != 0) 2832 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2833 if (rtoinfo.srto_min != 0) 2834 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2835 } else { 2836 /* If there is no association or the association-id = 0 2837 * set the values to the endpoint. 2838 */ 2839 struct sctp_sock *sp = sctp_sk(sk); 2840 2841 if (rtoinfo.srto_initial != 0) 2842 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2843 if (rtoinfo.srto_max != 0) 2844 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2845 if (rtoinfo.srto_min != 0) 2846 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2847 } 2848 2849 return 0; 2850 } 2851 2852 /* 2853 * 2854 * 7.1.2 SCTP_ASSOCINFO 2855 * 2856 * This option is used to tune the maximum retransmission attempts 2857 * of the association. 2858 * Returns an error if the new association retransmission value is 2859 * greater than the sum of the retransmission value of the peer. 2860 * See [SCTP] for more information. 2861 * 2862 */ 2863 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2864 { 2865 2866 struct sctp_assocparams assocparams; 2867 struct sctp_association *asoc; 2868 2869 if (optlen != sizeof(struct sctp_assocparams)) 2870 return -EINVAL; 2871 if (copy_from_user(&assocparams, optval, optlen)) 2872 return -EFAULT; 2873 2874 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2875 2876 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2877 return -EINVAL; 2878 2879 /* Set the values to the specific association */ 2880 if (asoc) { 2881 if (assocparams.sasoc_asocmaxrxt != 0) { 2882 __u32 path_sum = 0; 2883 int paths = 0; 2884 struct sctp_transport *peer_addr; 2885 2886 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2887 transports) { 2888 path_sum += peer_addr->pathmaxrxt; 2889 paths++; 2890 } 2891 2892 /* Only validate asocmaxrxt if we have more than 2893 * one path/transport. We do this because path 2894 * retransmissions are only counted when we have more 2895 * then one path. 2896 */ 2897 if (paths > 1 && 2898 assocparams.sasoc_asocmaxrxt > path_sum) 2899 return -EINVAL; 2900 2901 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2902 } 2903 2904 if (assocparams.sasoc_cookie_life != 0) 2905 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 2906 } else { 2907 /* Set the values to the endpoint */ 2908 struct sctp_sock *sp = sctp_sk(sk); 2909 2910 if (assocparams.sasoc_asocmaxrxt != 0) 2911 sp->assocparams.sasoc_asocmaxrxt = 2912 assocparams.sasoc_asocmaxrxt; 2913 if (assocparams.sasoc_cookie_life != 0) 2914 sp->assocparams.sasoc_cookie_life = 2915 assocparams.sasoc_cookie_life; 2916 } 2917 return 0; 2918 } 2919 2920 /* 2921 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2922 * 2923 * This socket option is a boolean flag which turns on or off mapped V4 2924 * addresses. If this option is turned on and the socket is type 2925 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2926 * If this option is turned off, then no mapping will be done of V4 2927 * addresses and a user will receive both PF_INET6 and PF_INET type 2928 * addresses on the socket. 2929 */ 2930 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2931 { 2932 int val; 2933 struct sctp_sock *sp = sctp_sk(sk); 2934 2935 if (optlen < sizeof(int)) 2936 return -EINVAL; 2937 if (get_user(val, (int __user *)optval)) 2938 return -EFAULT; 2939 if (val) 2940 sp->v4mapped = 1; 2941 else 2942 sp->v4mapped = 0; 2943 2944 return 0; 2945 } 2946 2947 /* 2948 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2949 * This option will get or set the maximum size to put in any outgoing 2950 * SCTP DATA chunk. If a message is larger than this size it will be 2951 * fragmented by SCTP into the specified size. Note that the underlying 2952 * SCTP implementation may fragment into smaller sized chunks when the 2953 * PMTU of the underlying association is smaller than the value set by 2954 * the user. The default value for this option is '0' which indicates 2955 * the user is NOT limiting fragmentation and only the PMTU will effect 2956 * SCTP's choice of DATA chunk size. Note also that values set larger 2957 * than the maximum size of an IP datagram will effectively let SCTP 2958 * control fragmentation (i.e. the same as setting this option to 0). 2959 * 2960 * The following structure is used to access and modify this parameter: 2961 * 2962 * struct sctp_assoc_value { 2963 * sctp_assoc_t assoc_id; 2964 * uint32_t assoc_value; 2965 * }; 2966 * 2967 * assoc_id: This parameter is ignored for one-to-one style sockets. 2968 * For one-to-many style sockets this parameter indicates which 2969 * association the user is performing an action upon. Note that if 2970 * this field's value is zero then the endpoints default value is 2971 * changed (effecting future associations only). 2972 * assoc_value: This parameter specifies the maximum size in bytes. 2973 */ 2974 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2975 { 2976 struct sctp_assoc_value params; 2977 struct sctp_association *asoc; 2978 struct sctp_sock *sp = sctp_sk(sk); 2979 int val; 2980 2981 if (optlen == sizeof(int)) { 2982 pr_warn("Use of int in maxseg socket option deprecated\n"); 2983 pr_warn("Use struct sctp_assoc_value instead\n"); 2984 if (copy_from_user(&val, optval, optlen)) 2985 return -EFAULT; 2986 params.assoc_id = 0; 2987 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2988 if (copy_from_user(¶ms, optval, optlen)) 2989 return -EFAULT; 2990 val = params.assoc_value; 2991 } else 2992 return -EINVAL; 2993 2994 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2995 return -EINVAL; 2996 2997 asoc = sctp_id2assoc(sk, params.assoc_id); 2998 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2999 return -EINVAL; 3000 3001 if (asoc) { 3002 if (val == 0) { 3003 val = asoc->pathmtu; 3004 val -= sp->pf->af->net_header_len; 3005 val -= sizeof(struct sctphdr) + 3006 sizeof(struct sctp_data_chunk); 3007 } 3008 asoc->user_frag = val; 3009 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3010 } else { 3011 sp->user_frag = val; 3012 } 3013 3014 return 0; 3015 } 3016 3017 3018 /* 3019 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3020 * 3021 * Requests that the peer mark the enclosed address as the association 3022 * primary. The enclosed address must be one of the association's 3023 * locally bound addresses. The following structure is used to make a 3024 * set primary request: 3025 */ 3026 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3027 unsigned int optlen) 3028 { 3029 struct net *net = sock_net(sk); 3030 struct sctp_sock *sp; 3031 struct sctp_association *asoc = NULL; 3032 struct sctp_setpeerprim prim; 3033 struct sctp_chunk *chunk; 3034 struct sctp_af *af; 3035 int err; 3036 3037 sp = sctp_sk(sk); 3038 3039 if (!net->sctp.addip_enable) 3040 return -EPERM; 3041 3042 if (optlen != sizeof(struct sctp_setpeerprim)) 3043 return -EINVAL; 3044 3045 if (copy_from_user(&prim, optval, optlen)) 3046 return -EFAULT; 3047 3048 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3049 if (!asoc) 3050 return -EINVAL; 3051 3052 if (!asoc->peer.asconf_capable) 3053 return -EPERM; 3054 3055 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3056 return -EPERM; 3057 3058 if (!sctp_state(asoc, ESTABLISHED)) 3059 return -ENOTCONN; 3060 3061 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3062 if (!af) 3063 return -EINVAL; 3064 3065 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3066 return -EADDRNOTAVAIL; 3067 3068 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3069 return -EADDRNOTAVAIL; 3070 3071 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3072 chunk = sctp_make_asconf_set_prim(asoc, 3073 (union sctp_addr *)&prim.sspp_addr); 3074 if (!chunk) 3075 return -ENOMEM; 3076 3077 err = sctp_send_asconf(asoc, chunk); 3078 3079 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3080 3081 return err; 3082 } 3083 3084 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3085 unsigned int optlen) 3086 { 3087 struct sctp_setadaptation adaptation; 3088 3089 if (optlen != sizeof(struct sctp_setadaptation)) 3090 return -EINVAL; 3091 if (copy_from_user(&adaptation, optval, optlen)) 3092 return -EFAULT; 3093 3094 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3095 3096 return 0; 3097 } 3098 3099 /* 3100 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3101 * 3102 * The context field in the sctp_sndrcvinfo structure is normally only 3103 * used when a failed message is retrieved holding the value that was 3104 * sent down on the actual send call. This option allows the setting of 3105 * a default context on an association basis that will be received on 3106 * reading messages from the peer. This is especially helpful in the 3107 * one-2-many model for an application to keep some reference to an 3108 * internal state machine that is processing messages on the 3109 * association. Note that the setting of this value only effects 3110 * received messages from the peer and does not effect the value that is 3111 * saved with outbound messages. 3112 */ 3113 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3114 unsigned int optlen) 3115 { 3116 struct sctp_assoc_value params; 3117 struct sctp_sock *sp; 3118 struct sctp_association *asoc; 3119 3120 if (optlen != sizeof(struct sctp_assoc_value)) 3121 return -EINVAL; 3122 if (copy_from_user(¶ms, optval, optlen)) 3123 return -EFAULT; 3124 3125 sp = sctp_sk(sk); 3126 3127 if (params.assoc_id != 0) { 3128 asoc = sctp_id2assoc(sk, params.assoc_id); 3129 if (!asoc) 3130 return -EINVAL; 3131 asoc->default_rcv_context = params.assoc_value; 3132 } else { 3133 sp->default_rcv_context = params.assoc_value; 3134 } 3135 3136 return 0; 3137 } 3138 3139 /* 3140 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3141 * 3142 * This options will at a minimum specify if the implementation is doing 3143 * fragmented interleave. Fragmented interleave, for a one to many 3144 * socket, is when subsequent calls to receive a message may return 3145 * parts of messages from different associations. Some implementations 3146 * may allow you to turn this value on or off. If so, when turned off, 3147 * no fragment interleave will occur (which will cause a head of line 3148 * blocking amongst multiple associations sharing the same one to many 3149 * socket). When this option is turned on, then each receive call may 3150 * come from a different association (thus the user must receive data 3151 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3152 * association each receive belongs to. 3153 * 3154 * This option takes a boolean value. A non-zero value indicates that 3155 * fragmented interleave is on. A value of zero indicates that 3156 * fragmented interleave is off. 3157 * 3158 * Note that it is important that an implementation that allows this 3159 * option to be turned on, have it off by default. Otherwise an unaware 3160 * application using the one to many model may become confused and act 3161 * incorrectly. 3162 */ 3163 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3164 char __user *optval, 3165 unsigned int optlen) 3166 { 3167 int val; 3168 3169 if (optlen != sizeof(int)) 3170 return -EINVAL; 3171 if (get_user(val, (int __user *)optval)) 3172 return -EFAULT; 3173 3174 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3175 3176 return 0; 3177 } 3178 3179 /* 3180 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3181 * (SCTP_PARTIAL_DELIVERY_POINT) 3182 * 3183 * This option will set or get the SCTP partial delivery point. This 3184 * point is the size of a message where the partial delivery API will be 3185 * invoked to help free up rwnd space for the peer. Setting this to a 3186 * lower value will cause partial deliveries to happen more often. The 3187 * calls argument is an integer that sets or gets the partial delivery 3188 * point. Note also that the call will fail if the user attempts to set 3189 * this value larger than the socket receive buffer size. 3190 * 3191 * Note that any single message having a length smaller than or equal to 3192 * the SCTP partial delivery point will be delivered in one single read 3193 * call as long as the user provided buffer is large enough to hold the 3194 * message. 3195 */ 3196 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3197 char __user *optval, 3198 unsigned int optlen) 3199 { 3200 u32 val; 3201 3202 if (optlen != sizeof(u32)) 3203 return -EINVAL; 3204 if (get_user(val, (int __user *)optval)) 3205 return -EFAULT; 3206 3207 /* Note: We double the receive buffer from what the user sets 3208 * it to be, also initial rwnd is based on rcvbuf/2. 3209 */ 3210 if (val > (sk->sk_rcvbuf >> 1)) 3211 return -EINVAL; 3212 3213 sctp_sk(sk)->pd_point = val; 3214 3215 return 0; /* is this the right error code? */ 3216 } 3217 3218 /* 3219 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3220 * 3221 * This option will allow a user to change the maximum burst of packets 3222 * that can be emitted by this association. Note that the default value 3223 * is 4, and some implementations may restrict this setting so that it 3224 * can only be lowered. 3225 * 3226 * NOTE: This text doesn't seem right. Do this on a socket basis with 3227 * future associations inheriting the socket value. 3228 */ 3229 static int sctp_setsockopt_maxburst(struct sock *sk, 3230 char __user *optval, 3231 unsigned int optlen) 3232 { 3233 struct sctp_assoc_value params; 3234 struct sctp_sock *sp; 3235 struct sctp_association *asoc; 3236 int val; 3237 int assoc_id = 0; 3238 3239 if (optlen == sizeof(int)) { 3240 pr_warn("Use of int in max_burst socket option deprecated\n"); 3241 pr_warn("Use struct sctp_assoc_value instead\n"); 3242 if (copy_from_user(&val, optval, optlen)) 3243 return -EFAULT; 3244 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3245 if (copy_from_user(¶ms, optval, optlen)) 3246 return -EFAULT; 3247 val = params.assoc_value; 3248 assoc_id = params.assoc_id; 3249 } else 3250 return -EINVAL; 3251 3252 sp = sctp_sk(sk); 3253 3254 if (assoc_id != 0) { 3255 asoc = sctp_id2assoc(sk, assoc_id); 3256 if (!asoc) 3257 return -EINVAL; 3258 asoc->max_burst = val; 3259 } else 3260 sp->max_burst = val; 3261 3262 return 0; 3263 } 3264 3265 /* 3266 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3267 * 3268 * This set option adds a chunk type that the user is requesting to be 3269 * received only in an authenticated way. Changes to the list of chunks 3270 * will only effect future associations on the socket. 3271 */ 3272 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3273 char __user *optval, 3274 unsigned int optlen) 3275 { 3276 struct net *net = sock_net(sk); 3277 struct sctp_authchunk val; 3278 3279 if (!net->sctp.auth_enable) 3280 return -EACCES; 3281 3282 if (optlen != sizeof(struct sctp_authchunk)) 3283 return -EINVAL; 3284 if (copy_from_user(&val, optval, optlen)) 3285 return -EFAULT; 3286 3287 switch (val.sauth_chunk) { 3288 case SCTP_CID_INIT: 3289 case SCTP_CID_INIT_ACK: 3290 case SCTP_CID_SHUTDOWN_COMPLETE: 3291 case SCTP_CID_AUTH: 3292 return -EINVAL; 3293 } 3294 3295 /* add this chunk id to the endpoint */ 3296 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3297 } 3298 3299 /* 3300 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3301 * 3302 * This option gets or sets the list of HMAC algorithms that the local 3303 * endpoint requires the peer to use. 3304 */ 3305 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3306 char __user *optval, 3307 unsigned int optlen) 3308 { 3309 struct net *net = sock_net(sk); 3310 struct sctp_hmacalgo *hmacs; 3311 u32 idents; 3312 int err; 3313 3314 if (!net->sctp.auth_enable) 3315 return -EACCES; 3316 3317 if (optlen < sizeof(struct sctp_hmacalgo)) 3318 return -EINVAL; 3319 3320 hmacs= memdup_user(optval, optlen); 3321 if (IS_ERR(hmacs)) 3322 return PTR_ERR(hmacs); 3323 3324 idents = hmacs->shmac_num_idents; 3325 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3326 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3327 err = -EINVAL; 3328 goto out; 3329 } 3330 3331 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3332 out: 3333 kfree(hmacs); 3334 return err; 3335 } 3336 3337 /* 3338 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3339 * 3340 * This option will set a shared secret key which is used to build an 3341 * association shared key. 3342 */ 3343 static int sctp_setsockopt_auth_key(struct sock *sk, 3344 char __user *optval, 3345 unsigned int optlen) 3346 { 3347 struct net *net = sock_net(sk); 3348 struct sctp_authkey *authkey; 3349 struct sctp_association *asoc; 3350 int ret; 3351 3352 if (!net->sctp.auth_enable) 3353 return -EACCES; 3354 3355 if (optlen <= sizeof(struct sctp_authkey)) 3356 return -EINVAL; 3357 3358 authkey= memdup_user(optval, optlen); 3359 if (IS_ERR(authkey)) 3360 return PTR_ERR(authkey); 3361 3362 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3363 ret = -EINVAL; 3364 goto out; 3365 } 3366 3367 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3368 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3369 ret = -EINVAL; 3370 goto out; 3371 } 3372 3373 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3374 out: 3375 kzfree(authkey); 3376 return ret; 3377 } 3378 3379 /* 3380 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3381 * 3382 * This option will get or set the active shared key to be used to build 3383 * the association shared key. 3384 */ 3385 static int sctp_setsockopt_active_key(struct sock *sk, 3386 char __user *optval, 3387 unsigned int optlen) 3388 { 3389 struct net *net = sock_net(sk); 3390 struct sctp_authkeyid val; 3391 struct sctp_association *asoc; 3392 3393 if (!net->sctp.auth_enable) 3394 return -EACCES; 3395 3396 if (optlen != sizeof(struct sctp_authkeyid)) 3397 return -EINVAL; 3398 if (copy_from_user(&val, optval, optlen)) 3399 return -EFAULT; 3400 3401 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3402 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3403 return -EINVAL; 3404 3405 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3406 val.scact_keynumber); 3407 } 3408 3409 /* 3410 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3411 * 3412 * This set option will delete a shared secret key from use. 3413 */ 3414 static int sctp_setsockopt_del_key(struct sock *sk, 3415 char __user *optval, 3416 unsigned int optlen) 3417 { 3418 struct net *net = sock_net(sk); 3419 struct sctp_authkeyid val; 3420 struct sctp_association *asoc; 3421 3422 if (!net->sctp.auth_enable) 3423 return -EACCES; 3424 3425 if (optlen != sizeof(struct sctp_authkeyid)) 3426 return -EINVAL; 3427 if (copy_from_user(&val, optval, optlen)) 3428 return -EFAULT; 3429 3430 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3431 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3432 return -EINVAL; 3433 3434 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3435 val.scact_keynumber); 3436 3437 } 3438 3439 /* 3440 * 8.1.23 SCTP_AUTO_ASCONF 3441 * 3442 * This option will enable or disable the use of the automatic generation of 3443 * ASCONF chunks to add and delete addresses to an existing association. Note 3444 * that this option has two caveats namely: a) it only affects sockets that 3445 * are bound to all addresses available to the SCTP stack, and b) the system 3446 * administrator may have an overriding control that turns the ASCONF feature 3447 * off no matter what setting the socket option may have. 3448 * This option expects an integer boolean flag, where a non-zero value turns on 3449 * the option, and a zero value turns off the option. 3450 * Note. In this implementation, socket operation overrides default parameter 3451 * being set by sysctl as well as FreeBSD implementation 3452 */ 3453 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3454 unsigned int optlen) 3455 { 3456 int val; 3457 struct sctp_sock *sp = sctp_sk(sk); 3458 3459 if (optlen < sizeof(int)) 3460 return -EINVAL; 3461 if (get_user(val, (int __user *)optval)) 3462 return -EFAULT; 3463 if (!sctp_is_ep_boundall(sk) && val) 3464 return -EINVAL; 3465 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3466 return 0; 3467 3468 if (val == 0 && sp->do_auto_asconf) { 3469 list_del(&sp->auto_asconf_list); 3470 sp->do_auto_asconf = 0; 3471 } else if (val && !sp->do_auto_asconf) { 3472 list_add_tail(&sp->auto_asconf_list, 3473 &sock_net(sk)->sctp.auto_asconf_splist); 3474 sp->do_auto_asconf = 1; 3475 } 3476 return 0; 3477 } 3478 3479 3480 /* 3481 * SCTP_PEER_ADDR_THLDS 3482 * 3483 * This option allows us to alter the partially failed threshold for one or all 3484 * transports in an association. See Section 6.1 of: 3485 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3486 */ 3487 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3488 char __user *optval, 3489 unsigned int optlen) 3490 { 3491 struct sctp_paddrthlds val; 3492 struct sctp_transport *trans; 3493 struct sctp_association *asoc; 3494 3495 if (optlen < sizeof(struct sctp_paddrthlds)) 3496 return -EINVAL; 3497 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3498 sizeof(struct sctp_paddrthlds))) 3499 return -EFAULT; 3500 3501 3502 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3503 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3504 if (!asoc) 3505 return -ENOENT; 3506 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3507 transports) { 3508 if (val.spt_pathmaxrxt) 3509 trans->pathmaxrxt = val.spt_pathmaxrxt; 3510 trans->pf_retrans = val.spt_pathpfthld; 3511 } 3512 3513 if (val.spt_pathmaxrxt) 3514 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3515 asoc->pf_retrans = val.spt_pathpfthld; 3516 } else { 3517 trans = sctp_addr_id2transport(sk, &val.spt_address, 3518 val.spt_assoc_id); 3519 if (!trans) 3520 return -ENOENT; 3521 3522 if (val.spt_pathmaxrxt) 3523 trans->pathmaxrxt = val.spt_pathmaxrxt; 3524 trans->pf_retrans = val.spt_pathpfthld; 3525 } 3526 3527 return 0; 3528 } 3529 3530 /* API 6.2 setsockopt(), getsockopt() 3531 * 3532 * Applications use setsockopt() and getsockopt() to set or retrieve 3533 * socket options. Socket options are used to change the default 3534 * behavior of sockets calls. They are described in Section 7. 3535 * 3536 * The syntax is: 3537 * 3538 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3539 * int __user *optlen); 3540 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3541 * int optlen); 3542 * 3543 * sd - the socket descript. 3544 * level - set to IPPROTO_SCTP for all SCTP options. 3545 * optname - the option name. 3546 * optval - the buffer to store the value of the option. 3547 * optlen - the size of the buffer. 3548 */ 3549 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3550 char __user *optval, unsigned int optlen) 3551 { 3552 int retval = 0; 3553 3554 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3555 3556 /* I can hardly begin to describe how wrong this is. This is 3557 * so broken as to be worse than useless. The API draft 3558 * REALLY is NOT helpful here... I am not convinced that the 3559 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3560 * are at all well-founded. 3561 */ 3562 if (level != SOL_SCTP) { 3563 struct sctp_af *af = sctp_sk(sk)->pf->af; 3564 retval = af->setsockopt(sk, level, optname, optval, optlen); 3565 goto out_nounlock; 3566 } 3567 3568 sctp_lock_sock(sk); 3569 3570 switch (optname) { 3571 case SCTP_SOCKOPT_BINDX_ADD: 3572 /* 'optlen' is the size of the addresses buffer. */ 3573 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3574 optlen, SCTP_BINDX_ADD_ADDR); 3575 break; 3576 3577 case SCTP_SOCKOPT_BINDX_REM: 3578 /* 'optlen' is the size of the addresses buffer. */ 3579 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3580 optlen, SCTP_BINDX_REM_ADDR); 3581 break; 3582 3583 case SCTP_SOCKOPT_CONNECTX_OLD: 3584 /* 'optlen' is the size of the addresses buffer. */ 3585 retval = sctp_setsockopt_connectx_old(sk, 3586 (struct sockaddr __user *)optval, 3587 optlen); 3588 break; 3589 3590 case SCTP_SOCKOPT_CONNECTX: 3591 /* 'optlen' is the size of the addresses buffer. */ 3592 retval = sctp_setsockopt_connectx(sk, 3593 (struct sockaddr __user *)optval, 3594 optlen); 3595 break; 3596 3597 case SCTP_DISABLE_FRAGMENTS: 3598 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3599 break; 3600 3601 case SCTP_EVENTS: 3602 retval = sctp_setsockopt_events(sk, optval, optlen); 3603 break; 3604 3605 case SCTP_AUTOCLOSE: 3606 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3607 break; 3608 3609 case SCTP_PEER_ADDR_PARAMS: 3610 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3611 break; 3612 3613 case SCTP_DELAYED_SACK: 3614 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3615 break; 3616 case SCTP_PARTIAL_DELIVERY_POINT: 3617 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3618 break; 3619 3620 case SCTP_INITMSG: 3621 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3622 break; 3623 case SCTP_DEFAULT_SEND_PARAM: 3624 retval = sctp_setsockopt_default_send_param(sk, optval, 3625 optlen); 3626 break; 3627 case SCTP_PRIMARY_ADDR: 3628 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3629 break; 3630 case SCTP_SET_PEER_PRIMARY_ADDR: 3631 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3632 break; 3633 case SCTP_NODELAY: 3634 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3635 break; 3636 case SCTP_RTOINFO: 3637 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3638 break; 3639 case SCTP_ASSOCINFO: 3640 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3641 break; 3642 case SCTP_I_WANT_MAPPED_V4_ADDR: 3643 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3644 break; 3645 case SCTP_MAXSEG: 3646 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3647 break; 3648 case SCTP_ADAPTATION_LAYER: 3649 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3650 break; 3651 case SCTP_CONTEXT: 3652 retval = sctp_setsockopt_context(sk, optval, optlen); 3653 break; 3654 case SCTP_FRAGMENT_INTERLEAVE: 3655 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3656 break; 3657 case SCTP_MAX_BURST: 3658 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3659 break; 3660 case SCTP_AUTH_CHUNK: 3661 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3662 break; 3663 case SCTP_HMAC_IDENT: 3664 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3665 break; 3666 case SCTP_AUTH_KEY: 3667 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3668 break; 3669 case SCTP_AUTH_ACTIVE_KEY: 3670 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3671 break; 3672 case SCTP_AUTH_DELETE_KEY: 3673 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3674 break; 3675 case SCTP_AUTO_ASCONF: 3676 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3677 break; 3678 case SCTP_PEER_ADDR_THLDS: 3679 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3680 break; 3681 default: 3682 retval = -ENOPROTOOPT; 3683 break; 3684 } 3685 3686 sctp_release_sock(sk); 3687 3688 out_nounlock: 3689 return retval; 3690 } 3691 3692 /* API 3.1.6 connect() - UDP Style Syntax 3693 * 3694 * An application may use the connect() call in the UDP model to initiate an 3695 * association without sending data. 3696 * 3697 * The syntax is: 3698 * 3699 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3700 * 3701 * sd: the socket descriptor to have a new association added to. 3702 * 3703 * nam: the address structure (either struct sockaddr_in or struct 3704 * sockaddr_in6 defined in RFC2553 [7]). 3705 * 3706 * len: the size of the address. 3707 */ 3708 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 3709 int addr_len) 3710 { 3711 int err = 0; 3712 struct sctp_af *af; 3713 3714 sctp_lock_sock(sk); 3715 3716 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 3717 addr, addr_len); 3718 3719 /* Validate addr_len before calling common connect/connectx routine. */ 3720 af = sctp_get_af_specific(addr->sa_family); 3721 if (!af || addr_len < af->sockaddr_len) { 3722 err = -EINVAL; 3723 } else { 3724 /* Pass correct addr len to common routine (so it knows there 3725 * is only one address being passed. 3726 */ 3727 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3728 } 3729 3730 sctp_release_sock(sk); 3731 return err; 3732 } 3733 3734 /* FIXME: Write comments. */ 3735 static int sctp_disconnect(struct sock *sk, int flags) 3736 { 3737 return -EOPNOTSUPP; /* STUB */ 3738 } 3739 3740 /* 4.1.4 accept() - TCP Style Syntax 3741 * 3742 * Applications use accept() call to remove an established SCTP 3743 * association from the accept queue of the endpoint. A new socket 3744 * descriptor will be returned from accept() to represent the newly 3745 * formed association. 3746 */ 3747 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3748 { 3749 struct sctp_sock *sp; 3750 struct sctp_endpoint *ep; 3751 struct sock *newsk = NULL; 3752 struct sctp_association *asoc; 3753 long timeo; 3754 int error = 0; 3755 3756 sctp_lock_sock(sk); 3757 3758 sp = sctp_sk(sk); 3759 ep = sp->ep; 3760 3761 if (!sctp_style(sk, TCP)) { 3762 error = -EOPNOTSUPP; 3763 goto out; 3764 } 3765 3766 if (!sctp_sstate(sk, LISTENING)) { 3767 error = -EINVAL; 3768 goto out; 3769 } 3770 3771 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3772 3773 error = sctp_wait_for_accept(sk, timeo); 3774 if (error) 3775 goto out; 3776 3777 /* We treat the list of associations on the endpoint as the accept 3778 * queue and pick the first association on the list. 3779 */ 3780 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3781 3782 newsk = sp->pf->create_accept_sk(sk, asoc); 3783 if (!newsk) { 3784 error = -ENOMEM; 3785 goto out; 3786 } 3787 3788 /* Populate the fields of the newsk from the oldsk and migrate the 3789 * asoc to the newsk. 3790 */ 3791 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3792 3793 out: 3794 sctp_release_sock(sk); 3795 *err = error; 3796 return newsk; 3797 } 3798 3799 /* The SCTP ioctl handler. */ 3800 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3801 { 3802 int rc = -ENOTCONN; 3803 3804 sctp_lock_sock(sk); 3805 3806 /* 3807 * SEQPACKET-style sockets in LISTENING state are valid, for 3808 * SCTP, so only discard TCP-style sockets in LISTENING state. 3809 */ 3810 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3811 goto out; 3812 3813 switch (cmd) { 3814 case SIOCINQ: { 3815 struct sk_buff *skb; 3816 unsigned int amount = 0; 3817 3818 skb = skb_peek(&sk->sk_receive_queue); 3819 if (skb != NULL) { 3820 /* 3821 * We will only return the amount of this packet since 3822 * that is all that will be read. 3823 */ 3824 amount = skb->len; 3825 } 3826 rc = put_user(amount, (int __user *)arg); 3827 break; 3828 } 3829 default: 3830 rc = -ENOIOCTLCMD; 3831 break; 3832 } 3833 out: 3834 sctp_release_sock(sk); 3835 return rc; 3836 } 3837 3838 /* This is the function which gets called during socket creation to 3839 * initialized the SCTP-specific portion of the sock. 3840 * The sock structure should already be zero-filled memory. 3841 */ 3842 static int sctp_init_sock(struct sock *sk) 3843 { 3844 struct net *net = sock_net(sk); 3845 struct sctp_sock *sp; 3846 3847 pr_debug("%s: sk:%p\n", __func__, sk); 3848 3849 sp = sctp_sk(sk); 3850 3851 /* Initialize the SCTP per socket area. */ 3852 switch (sk->sk_type) { 3853 case SOCK_SEQPACKET: 3854 sp->type = SCTP_SOCKET_UDP; 3855 break; 3856 case SOCK_STREAM: 3857 sp->type = SCTP_SOCKET_TCP; 3858 break; 3859 default: 3860 return -ESOCKTNOSUPPORT; 3861 } 3862 3863 /* Initialize default send parameters. These parameters can be 3864 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3865 */ 3866 sp->default_stream = 0; 3867 sp->default_ppid = 0; 3868 sp->default_flags = 0; 3869 sp->default_context = 0; 3870 sp->default_timetolive = 0; 3871 3872 sp->default_rcv_context = 0; 3873 sp->max_burst = net->sctp.max_burst; 3874 3875 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 3876 3877 /* Initialize default setup parameters. These parameters 3878 * can be modified with the SCTP_INITMSG socket option or 3879 * overridden by the SCTP_INIT CMSG. 3880 */ 3881 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3882 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3883 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 3884 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 3885 3886 /* Initialize default RTO related parameters. These parameters can 3887 * be modified for with the SCTP_RTOINFO socket option. 3888 */ 3889 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 3890 sp->rtoinfo.srto_max = net->sctp.rto_max; 3891 sp->rtoinfo.srto_min = net->sctp.rto_min; 3892 3893 /* Initialize default association related parameters. These parameters 3894 * can be modified with the SCTP_ASSOCINFO socket option. 3895 */ 3896 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 3897 sp->assocparams.sasoc_number_peer_destinations = 0; 3898 sp->assocparams.sasoc_peer_rwnd = 0; 3899 sp->assocparams.sasoc_local_rwnd = 0; 3900 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 3901 3902 /* Initialize default event subscriptions. By default, all the 3903 * options are off. 3904 */ 3905 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3906 3907 /* Default Peer Address Parameters. These defaults can 3908 * be modified via SCTP_PEER_ADDR_PARAMS 3909 */ 3910 sp->hbinterval = net->sctp.hb_interval; 3911 sp->pathmaxrxt = net->sctp.max_retrans_path; 3912 sp->pathmtu = 0; // allow default discovery 3913 sp->sackdelay = net->sctp.sack_timeout; 3914 sp->sackfreq = 2; 3915 sp->param_flags = SPP_HB_ENABLE | 3916 SPP_PMTUD_ENABLE | 3917 SPP_SACKDELAY_ENABLE; 3918 3919 /* If enabled no SCTP message fragmentation will be performed. 3920 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3921 */ 3922 sp->disable_fragments = 0; 3923 3924 /* Enable Nagle algorithm by default. */ 3925 sp->nodelay = 0; 3926 3927 /* Enable by default. */ 3928 sp->v4mapped = 1; 3929 3930 /* Auto-close idle associations after the configured 3931 * number of seconds. A value of 0 disables this 3932 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3933 * for UDP-style sockets only. 3934 */ 3935 sp->autoclose = 0; 3936 3937 /* User specified fragmentation limit. */ 3938 sp->user_frag = 0; 3939 3940 sp->adaptation_ind = 0; 3941 3942 sp->pf = sctp_get_pf_specific(sk->sk_family); 3943 3944 /* Control variables for partial data delivery. */ 3945 atomic_set(&sp->pd_mode, 0); 3946 skb_queue_head_init(&sp->pd_lobby); 3947 sp->frag_interleave = 0; 3948 3949 /* Create a per socket endpoint structure. Even if we 3950 * change the data structure relationships, this may still 3951 * be useful for storing pre-connect address information. 3952 */ 3953 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 3954 if (!sp->ep) 3955 return -ENOMEM; 3956 3957 sp->hmac = NULL; 3958 3959 sk->sk_destruct = sctp_destruct_sock; 3960 3961 SCTP_DBG_OBJCNT_INC(sock); 3962 3963 local_bh_disable(); 3964 percpu_counter_inc(&sctp_sockets_allocated); 3965 sock_prot_inuse_add(net, sk->sk_prot, 1); 3966 if (net->sctp.default_auto_asconf) { 3967 list_add_tail(&sp->auto_asconf_list, 3968 &net->sctp.auto_asconf_splist); 3969 sp->do_auto_asconf = 1; 3970 } else 3971 sp->do_auto_asconf = 0; 3972 local_bh_enable(); 3973 3974 return 0; 3975 } 3976 3977 /* Cleanup any SCTP per socket resources. */ 3978 static void sctp_destroy_sock(struct sock *sk) 3979 { 3980 struct sctp_sock *sp; 3981 3982 pr_debug("%s: sk:%p\n", __func__, sk); 3983 3984 /* Release our hold on the endpoint. */ 3985 sp = sctp_sk(sk); 3986 /* This could happen during socket init, thus we bail out 3987 * early, since the rest of the below is not setup either. 3988 */ 3989 if (sp->ep == NULL) 3990 return; 3991 3992 if (sp->do_auto_asconf) { 3993 sp->do_auto_asconf = 0; 3994 list_del(&sp->auto_asconf_list); 3995 } 3996 sctp_endpoint_free(sp->ep); 3997 local_bh_disable(); 3998 percpu_counter_dec(&sctp_sockets_allocated); 3999 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4000 local_bh_enable(); 4001 } 4002 4003 /* Triggered when there are no references on the socket anymore */ 4004 static void sctp_destruct_sock(struct sock *sk) 4005 { 4006 struct sctp_sock *sp = sctp_sk(sk); 4007 4008 /* Free up the HMAC transform. */ 4009 crypto_free_hash(sp->hmac); 4010 4011 inet_sock_destruct(sk); 4012 } 4013 4014 /* API 4.1.7 shutdown() - TCP Style Syntax 4015 * int shutdown(int socket, int how); 4016 * 4017 * sd - the socket descriptor of the association to be closed. 4018 * how - Specifies the type of shutdown. The values are 4019 * as follows: 4020 * SHUT_RD 4021 * Disables further receive operations. No SCTP 4022 * protocol action is taken. 4023 * SHUT_WR 4024 * Disables further send operations, and initiates 4025 * the SCTP shutdown sequence. 4026 * SHUT_RDWR 4027 * Disables further send and receive operations 4028 * and initiates the SCTP shutdown sequence. 4029 */ 4030 static void sctp_shutdown(struct sock *sk, int how) 4031 { 4032 struct net *net = sock_net(sk); 4033 struct sctp_endpoint *ep; 4034 struct sctp_association *asoc; 4035 4036 if (!sctp_style(sk, TCP)) 4037 return; 4038 4039 if (how & SEND_SHUTDOWN) { 4040 ep = sctp_sk(sk)->ep; 4041 if (!list_empty(&ep->asocs)) { 4042 asoc = list_entry(ep->asocs.next, 4043 struct sctp_association, asocs); 4044 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4045 } 4046 } 4047 } 4048 4049 /* 7.2.1 Association Status (SCTP_STATUS) 4050 4051 * Applications can retrieve current status information about an 4052 * association, including association state, peer receiver window size, 4053 * number of unacked data chunks, and number of data chunks pending 4054 * receipt. This information is read-only. 4055 */ 4056 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4057 char __user *optval, 4058 int __user *optlen) 4059 { 4060 struct sctp_status status; 4061 struct sctp_association *asoc = NULL; 4062 struct sctp_transport *transport; 4063 sctp_assoc_t associd; 4064 int retval = 0; 4065 4066 if (len < sizeof(status)) { 4067 retval = -EINVAL; 4068 goto out; 4069 } 4070 4071 len = sizeof(status); 4072 if (copy_from_user(&status, optval, len)) { 4073 retval = -EFAULT; 4074 goto out; 4075 } 4076 4077 associd = status.sstat_assoc_id; 4078 asoc = sctp_id2assoc(sk, associd); 4079 if (!asoc) { 4080 retval = -EINVAL; 4081 goto out; 4082 } 4083 4084 transport = asoc->peer.primary_path; 4085 4086 status.sstat_assoc_id = sctp_assoc2id(asoc); 4087 status.sstat_state = asoc->state; 4088 status.sstat_rwnd = asoc->peer.rwnd; 4089 status.sstat_unackdata = asoc->unack_data; 4090 4091 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4092 status.sstat_instrms = asoc->c.sinit_max_instreams; 4093 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4094 status.sstat_fragmentation_point = asoc->frag_point; 4095 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4096 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4097 transport->af_specific->sockaddr_len); 4098 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4099 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4100 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4101 status.sstat_primary.spinfo_state = transport->state; 4102 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4103 status.sstat_primary.spinfo_srtt = transport->srtt; 4104 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4105 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4106 4107 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4108 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4109 4110 if (put_user(len, optlen)) { 4111 retval = -EFAULT; 4112 goto out; 4113 } 4114 4115 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4116 __func__, len, status.sstat_state, status.sstat_rwnd, 4117 status.sstat_assoc_id); 4118 4119 if (copy_to_user(optval, &status, len)) { 4120 retval = -EFAULT; 4121 goto out; 4122 } 4123 4124 out: 4125 return retval; 4126 } 4127 4128 4129 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4130 * 4131 * Applications can retrieve information about a specific peer address 4132 * of an association, including its reachability state, congestion 4133 * window, and retransmission timer values. This information is 4134 * read-only. 4135 */ 4136 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4137 char __user *optval, 4138 int __user *optlen) 4139 { 4140 struct sctp_paddrinfo pinfo; 4141 struct sctp_transport *transport; 4142 int retval = 0; 4143 4144 if (len < sizeof(pinfo)) { 4145 retval = -EINVAL; 4146 goto out; 4147 } 4148 4149 len = sizeof(pinfo); 4150 if (copy_from_user(&pinfo, optval, len)) { 4151 retval = -EFAULT; 4152 goto out; 4153 } 4154 4155 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4156 pinfo.spinfo_assoc_id); 4157 if (!transport) 4158 return -EINVAL; 4159 4160 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4161 pinfo.spinfo_state = transport->state; 4162 pinfo.spinfo_cwnd = transport->cwnd; 4163 pinfo.spinfo_srtt = transport->srtt; 4164 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4165 pinfo.spinfo_mtu = transport->pathmtu; 4166 4167 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4168 pinfo.spinfo_state = SCTP_ACTIVE; 4169 4170 if (put_user(len, optlen)) { 4171 retval = -EFAULT; 4172 goto out; 4173 } 4174 4175 if (copy_to_user(optval, &pinfo, len)) { 4176 retval = -EFAULT; 4177 goto out; 4178 } 4179 4180 out: 4181 return retval; 4182 } 4183 4184 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4185 * 4186 * This option is a on/off flag. If enabled no SCTP message 4187 * fragmentation will be performed. Instead if a message being sent 4188 * exceeds the current PMTU size, the message will NOT be sent and 4189 * instead a error will be indicated to the user. 4190 */ 4191 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4192 char __user *optval, int __user *optlen) 4193 { 4194 int val; 4195 4196 if (len < sizeof(int)) 4197 return -EINVAL; 4198 4199 len = sizeof(int); 4200 val = (sctp_sk(sk)->disable_fragments == 1); 4201 if (put_user(len, optlen)) 4202 return -EFAULT; 4203 if (copy_to_user(optval, &val, len)) 4204 return -EFAULT; 4205 return 0; 4206 } 4207 4208 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4209 * 4210 * This socket option is used to specify various notifications and 4211 * ancillary data the user wishes to receive. 4212 */ 4213 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4214 int __user *optlen) 4215 { 4216 if (len <= 0) 4217 return -EINVAL; 4218 if (len > sizeof(struct sctp_event_subscribe)) 4219 len = sizeof(struct sctp_event_subscribe); 4220 if (put_user(len, optlen)) 4221 return -EFAULT; 4222 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4223 return -EFAULT; 4224 return 0; 4225 } 4226 4227 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4228 * 4229 * This socket option is applicable to the UDP-style socket only. When 4230 * set it will cause associations that are idle for more than the 4231 * specified number of seconds to automatically close. An association 4232 * being idle is defined an association that has NOT sent or received 4233 * user data. The special value of '0' indicates that no automatic 4234 * close of any associations should be performed. The option expects an 4235 * integer defining the number of seconds of idle time before an 4236 * association is closed. 4237 */ 4238 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4239 { 4240 /* Applicable to UDP-style socket only */ 4241 if (sctp_style(sk, TCP)) 4242 return -EOPNOTSUPP; 4243 if (len < sizeof(int)) 4244 return -EINVAL; 4245 len = sizeof(int); 4246 if (put_user(len, optlen)) 4247 return -EFAULT; 4248 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4249 return -EFAULT; 4250 return 0; 4251 } 4252 4253 /* Helper routine to branch off an association to a new socket. */ 4254 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4255 { 4256 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4257 struct socket *sock; 4258 struct sctp_af *af; 4259 int err = 0; 4260 4261 if (!asoc) 4262 return -EINVAL; 4263 4264 /* An association cannot be branched off from an already peeled-off 4265 * socket, nor is this supported for tcp style sockets. 4266 */ 4267 if (!sctp_style(sk, UDP)) 4268 return -EINVAL; 4269 4270 /* Create a new socket. */ 4271 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4272 if (err < 0) 4273 return err; 4274 4275 sctp_copy_sock(sock->sk, sk, asoc); 4276 4277 /* Make peeled-off sockets more like 1-1 accepted sockets. 4278 * Set the daddr and initialize id to something more random 4279 */ 4280 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4281 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4282 4283 /* Populate the fields of the newsk from the oldsk and migrate the 4284 * asoc to the newsk. 4285 */ 4286 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4287 4288 *sockp = sock; 4289 4290 return err; 4291 } 4292 EXPORT_SYMBOL(sctp_do_peeloff); 4293 4294 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4295 { 4296 sctp_peeloff_arg_t peeloff; 4297 struct socket *newsock; 4298 struct file *newfile; 4299 int retval = 0; 4300 4301 if (len < sizeof(sctp_peeloff_arg_t)) 4302 return -EINVAL; 4303 len = sizeof(sctp_peeloff_arg_t); 4304 if (copy_from_user(&peeloff, optval, len)) 4305 return -EFAULT; 4306 4307 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4308 if (retval < 0) 4309 goto out; 4310 4311 /* Map the socket to an unused fd that can be returned to the user. */ 4312 retval = get_unused_fd_flags(0); 4313 if (retval < 0) { 4314 sock_release(newsock); 4315 goto out; 4316 } 4317 4318 newfile = sock_alloc_file(newsock, 0, NULL); 4319 if (unlikely(IS_ERR(newfile))) { 4320 put_unused_fd(retval); 4321 sock_release(newsock); 4322 return PTR_ERR(newfile); 4323 } 4324 4325 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4326 retval); 4327 4328 /* Return the fd mapped to the new socket. */ 4329 if (put_user(len, optlen)) { 4330 fput(newfile); 4331 put_unused_fd(retval); 4332 return -EFAULT; 4333 } 4334 peeloff.sd = retval; 4335 if (copy_to_user(optval, &peeloff, len)) { 4336 fput(newfile); 4337 put_unused_fd(retval); 4338 return -EFAULT; 4339 } 4340 fd_install(retval, newfile); 4341 out: 4342 return retval; 4343 } 4344 4345 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4346 * 4347 * Applications can enable or disable heartbeats for any peer address of 4348 * an association, modify an address's heartbeat interval, force a 4349 * heartbeat to be sent immediately, and adjust the address's maximum 4350 * number of retransmissions sent before an address is considered 4351 * unreachable. The following structure is used to access and modify an 4352 * address's parameters: 4353 * 4354 * struct sctp_paddrparams { 4355 * sctp_assoc_t spp_assoc_id; 4356 * struct sockaddr_storage spp_address; 4357 * uint32_t spp_hbinterval; 4358 * uint16_t spp_pathmaxrxt; 4359 * uint32_t spp_pathmtu; 4360 * uint32_t spp_sackdelay; 4361 * uint32_t spp_flags; 4362 * }; 4363 * 4364 * spp_assoc_id - (one-to-many style socket) This is filled in the 4365 * application, and identifies the association for 4366 * this query. 4367 * spp_address - This specifies which address is of interest. 4368 * spp_hbinterval - This contains the value of the heartbeat interval, 4369 * in milliseconds. If a value of zero 4370 * is present in this field then no changes are to 4371 * be made to this parameter. 4372 * spp_pathmaxrxt - This contains the maximum number of 4373 * retransmissions before this address shall be 4374 * considered unreachable. If a value of zero 4375 * is present in this field then no changes are to 4376 * be made to this parameter. 4377 * spp_pathmtu - When Path MTU discovery is disabled the value 4378 * specified here will be the "fixed" path mtu. 4379 * Note that if the spp_address field is empty 4380 * then all associations on this address will 4381 * have this fixed path mtu set upon them. 4382 * 4383 * spp_sackdelay - When delayed sack is enabled, this value specifies 4384 * the number of milliseconds that sacks will be delayed 4385 * for. This value will apply to all addresses of an 4386 * association if the spp_address field is empty. Note 4387 * also, that if delayed sack is enabled and this 4388 * value is set to 0, no change is made to the last 4389 * recorded delayed sack timer value. 4390 * 4391 * spp_flags - These flags are used to control various features 4392 * on an association. The flag field may contain 4393 * zero or more of the following options. 4394 * 4395 * SPP_HB_ENABLE - Enable heartbeats on the 4396 * specified address. Note that if the address 4397 * field is empty all addresses for the association 4398 * have heartbeats enabled upon them. 4399 * 4400 * SPP_HB_DISABLE - Disable heartbeats on the 4401 * speicifed address. Note that if the address 4402 * field is empty all addresses for the association 4403 * will have their heartbeats disabled. Note also 4404 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4405 * mutually exclusive, only one of these two should 4406 * be specified. Enabling both fields will have 4407 * undetermined results. 4408 * 4409 * SPP_HB_DEMAND - Request a user initiated heartbeat 4410 * to be made immediately. 4411 * 4412 * SPP_PMTUD_ENABLE - This field will enable PMTU 4413 * discovery upon the specified address. Note that 4414 * if the address feild is empty then all addresses 4415 * on the association are effected. 4416 * 4417 * SPP_PMTUD_DISABLE - This field will disable PMTU 4418 * discovery upon the specified address. Note that 4419 * if the address feild is empty then all addresses 4420 * on the association are effected. Not also that 4421 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4422 * exclusive. Enabling both will have undetermined 4423 * results. 4424 * 4425 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4426 * on delayed sack. The time specified in spp_sackdelay 4427 * is used to specify the sack delay for this address. Note 4428 * that if spp_address is empty then all addresses will 4429 * enable delayed sack and take on the sack delay 4430 * value specified in spp_sackdelay. 4431 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4432 * off delayed sack. If the spp_address field is blank then 4433 * delayed sack is disabled for the entire association. Note 4434 * also that this field is mutually exclusive to 4435 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4436 * results. 4437 */ 4438 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4439 char __user *optval, int __user *optlen) 4440 { 4441 struct sctp_paddrparams params; 4442 struct sctp_transport *trans = NULL; 4443 struct sctp_association *asoc = NULL; 4444 struct sctp_sock *sp = sctp_sk(sk); 4445 4446 if (len < sizeof(struct sctp_paddrparams)) 4447 return -EINVAL; 4448 len = sizeof(struct sctp_paddrparams); 4449 if (copy_from_user(¶ms, optval, len)) 4450 return -EFAULT; 4451 4452 /* If an address other than INADDR_ANY is specified, and 4453 * no transport is found, then the request is invalid. 4454 */ 4455 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4456 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4457 params.spp_assoc_id); 4458 if (!trans) { 4459 pr_debug("%s: failed no transport\n", __func__); 4460 return -EINVAL; 4461 } 4462 } 4463 4464 /* Get association, if assoc_id != 0 and the socket is a one 4465 * to many style socket, and an association was not found, then 4466 * the id was invalid. 4467 */ 4468 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4469 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4470 pr_debug("%s: failed no association\n", __func__); 4471 return -EINVAL; 4472 } 4473 4474 if (trans) { 4475 /* Fetch transport values. */ 4476 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4477 params.spp_pathmtu = trans->pathmtu; 4478 params.spp_pathmaxrxt = trans->pathmaxrxt; 4479 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4480 4481 /*draft-11 doesn't say what to return in spp_flags*/ 4482 params.spp_flags = trans->param_flags; 4483 } else if (asoc) { 4484 /* Fetch association values. */ 4485 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4486 params.spp_pathmtu = asoc->pathmtu; 4487 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4488 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4489 4490 /*draft-11 doesn't say what to return in spp_flags*/ 4491 params.spp_flags = asoc->param_flags; 4492 } else { 4493 /* Fetch socket values. */ 4494 params.spp_hbinterval = sp->hbinterval; 4495 params.spp_pathmtu = sp->pathmtu; 4496 params.spp_sackdelay = sp->sackdelay; 4497 params.spp_pathmaxrxt = sp->pathmaxrxt; 4498 4499 /*draft-11 doesn't say what to return in spp_flags*/ 4500 params.spp_flags = sp->param_flags; 4501 } 4502 4503 if (copy_to_user(optval, ¶ms, len)) 4504 return -EFAULT; 4505 4506 if (put_user(len, optlen)) 4507 return -EFAULT; 4508 4509 return 0; 4510 } 4511 4512 /* 4513 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4514 * 4515 * This option will effect the way delayed acks are performed. This 4516 * option allows you to get or set the delayed ack time, in 4517 * milliseconds. It also allows changing the delayed ack frequency. 4518 * Changing the frequency to 1 disables the delayed sack algorithm. If 4519 * the assoc_id is 0, then this sets or gets the endpoints default 4520 * values. If the assoc_id field is non-zero, then the set or get 4521 * effects the specified association for the one to many model (the 4522 * assoc_id field is ignored by the one to one model). Note that if 4523 * sack_delay or sack_freq are 0 when setting this option, then the 4524 * current values will remain unchanged. 4525 * 4526 * struct sctp_sack_info { 4527 * sctp_assoc_t sack_assoc_id; 4528 * uint32_t sack_delay; 4529 * uint32_t sack_freq; 4530 * }; 4531 * 4532 * sack_assoc_id - This parameter, indicates which association the user 4533 * is performing an action upon. Note that if this field's value is 4534 * zero then the endpoints default value is changed (effecting future 4535 * associations only). 4536 * 4537 * sack_delay - This parameter contains the number of milliseconds that 4538 * the user is requesting the delayed ACK timer be set to. Note that 4539 * this value is defined in the standard to be between 200 and 500 4540 * milliseconds. 4541 * 4542 * sack_freq - This parameter contains the number of packets that must 4543 * be received before a sack is sent without waiting for the delay 4544 * timer to expire. The default value for this is 2, setting this 4545 * value to 1 will disable the delayed sack algorithm. 4546 */ 4547 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4548 char __user *optval, 4549 int __user *optlen) 4550 { 4551 struct sctp_sack_info params; 4552 struct sctp_association *asoc = NULL; 4553 struct sctp_sock *sp = sctp_sk(sk); 4554 4555 if (len >= sizeof(struct sctp_sack_info)) { 4556 len = sizeof(struct sctp_sack_info); 4557 4558 if (copy_from_user(¶ms, optval, len)) 4559 return -EFAULT; 4560 } else if (len == sizeof(struct sctp_assoc_value)) { 4561 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4562 pr_warn("Use struct sctp_sack_info instead\n"); 4563 if (copy_from_user(¶ms, optval, len)) 4564 return -EFAULT; 4565 } else 4566 return - EINVAL; 4567 4568 /* Get association, if sack_assoc_id != 0 and the socket is a one 4569 * to many style socket, and an association was not found, then 4570 * the id was invalid. 4571 */ 4572 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4573 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4574 return -EINVAL; 4575 4576 if (asoc) { 4577 /* Fetch association values. */ 4578 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4579 params.sack_delay = jiffies_to_msecs( 4580 asoc->sackdelay); 4581 params.sack_freq = asoc->sackfreq; 4582 4583 } else { 4584 params.sack_delay = 0; 4585 params.sack_freq = 1; 4586 } 4587 } else { 4588 /* Fetch socket values. */ 4589 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4590 params.sack_delay = sp->sackdelay; 4591 params.sack_freq = sp->sackfreq; 4592 } else { 4593 params.sack_delay = 0; 4594 params.sack_freq = 1; 4595 } 4596 } 4597 4598 if (copy_to_user(optval, ¶ms, len)) 4599 return -EFAULT; 4600 4601 if (put_user(len, optlen)) 4602 return -EFAULT; 4603 4604 return 0; 4605 } 4606 4607 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4608 * 4609 * Applications can specify protocol parameters for the default association 4610 * initialization. The option name argument to setsockopt() and getsockopt() 4611 * is SCTP_INITMSG. 4612 * 4613 * Setting initialization parameters is effective only on an unconnected 4614 * socket (for UDP-style sockets only future associations are effected 4615 * by the change). With TCP-style sockets, this option is inherited by 4616 * sockets derived from a listener socket. 4617 */ 4618 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4619 { 4620 if (len < sizeof(struct sctp_initmsg)) 4621 return -EINVAL; 4622 len = sizeof(struct sctp_initmsg); 4623 if (put_user(len, optlen)) 4624 return -EFAULT; 4625 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4626 return -EFAULT; 4627 return 0; 4628 } 4629 4630 4631 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4632 char __user *optval, int __user *optlen) 4633 { 4634 struct sctp_association *asoc; 4635 int cnt = 0; 4636 struct sctp_getaddrs getaddrs; 4637 struct sctp_transport *from; 4638 void __user *to; 4639 union sctp_addr temp; 4640 struct sctp_sock *sp = sctp_sk(sk); 4641 int addrlen; 4642 size_t space_left; 4643 int bytes_copied; 4644 4645 if (len < sizeof(struct sctp_getaddrs)) 4646 return -EINVAL; 4647 4648 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4649 return -EFAULT; 4650 4651 /* For UDP-style sockets, id specifies the association to query. */ 4652 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4653 if (!asoc) 4654 return -EINVAL; 4655 4656 to = optval + offsetof(struct sctp_getaddrs,addrs); 4657 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4658 4659 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4660 transports) { 4661 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4662 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4663 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4664 if (space_left < addrlen) 4665 return -ENOMEM; 4666 if (copy_to_user(to, &temp, addrlen)) 4667 return -EFAULT; 4668 to += addrlen; 4669 cnt++; 4670 space_left -= addrlen; 4671 } 4672 4673 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4674 return -EFAULT; 4675 bytes_copied = ((char __user *)to) - optval; 4676 if (put_user(bytes_copied, optlen)) 4677 return -EFAULT; 4678 4679 return 0; 4680 } 4681 4682 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4683 size_t space_left, int *bytes_copied) 4684 { 4685 struct sctp_sockaddr_entry *addr; 4686 union sctp_addr temp; 4687 int cnt = 0; 4688 int addrlen; 4689 struct net *net = sock_net(sk); 4690 4691 rcu_read_lock(); 4692 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 4693 if (!addr->valid) 4694 continue; 4695 4696 if ((PF_INET == sk->sk_family) && 4697 (AF_INET6 == addr->a.sa.sa_family)) 4698 continue; 4699 if ((PF_INET6 == sk->sk_family) && 4700 inet_v6_ipv6only(sk) && 4701 (AF_INET == addr->a.sa.sa_family)) 4702 continue; 4703 memcpy(&temp, &addr->a, sizeof(temp)); 4704 if (!temp.v4.sin_port) 4705 temp.v4.sin_port = htons(port); 4706 4707 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4708 &temp); 4709 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4710 if (space_left < addrlen) { 4711 cnt = -ENOMEM; 4712 break; 4713 } 4714 memcpy(to, &temp, addrlen); 4715 4716 to += addrlen; 4717 cnt ++; 4718 space_left -= addrlen; 4719 *bytes_copied += addrlen; 4720 } 4721 rcu_read_unlock(); 4722 4723 return cnt; 4724 } 4725 4726 4727 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4728 char __user *optval, int __user *optlen) 4729 { 4730 struct sctp_bind_addr *bp; 4731 struct sctp_association *asoc; 4732 int cnt = 0; 4733 struct sctp_getaddrs getaddrs; 4734 struct sctp_sockaddr_entry *addr; 4735 void __user *to; 4736 union sctp_addr temp; 4737 struct sctp_sock *sp = sctp_sk(sk); 4738 int addrlen; 4739 int err = 0; 4740 size_t space_left; 4741 int bytes_copied = 0; 4742 void *addrs; 4743 void *buf; 4744 4745 if (len < sizeof(struct sctp_getaddrs)) 4746 return -EINVAL; 4747 4748 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4749 return -EFAULT; 4750 4751 /* 4752 * For UDP-style sockets, id specifies the association to query. 4753 * If the id field is set to the value '0' then the locally bound 4754 * addresses are returned without regard to any particular 4755 * association. 4756 */ 4757 if (0 == getaddrs.assoc_id) { 4758 bp = &sctp_sk(sk)->ep->base.bind_addr; 4759 } else { 4760 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4761 if (!asoc) 4762 return -EINVAL; 4763 bp = &asoc->base.bind_addr; 4764 } 4765 4766 to = optval + offsetof(struct sctp_getaddrs,addrs); 4767 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4768 4769 addrs = kmalloc(space_left, GFP_KERNEL); 4770 if (!addrs) 4771 return -ENOMEM; 4772 4773 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4774 * addresses from the global local address list. 4775 */ 4776 if (sctp_list_single_entry(&bp->address_list)) { 4777 addr = list_entry(bp->address_list.next, 4778 struct sctp_sockaddr_entry, list); 4779 if (sctp_is_any(sk, &addr->a)) { 4780 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4781 space_left, &bytes_copied); 4782 if (cnt < 0) { 4783 err = cnt; 4784 goto out; 4785 } 4786 goto copy_getaddrs; 4787 } 4788 } 4789 4790 buf = addrs; 4791 /* Protection on the bound address list is not needed since 4792 * in the socket option context we hold a socket lock and 4793 * thus the bound address list can't change. 4794 */ 4795 list_for_each_entry(addr, &bp->address_list, list) { 4796 memcpy(&temp, &addr->a, sizeof(temp)); 4797 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4798 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4799 if (space_left < addrlen) { 4800 err = -ENOMEM; /*fixme: right error?*/ 4801 goto out; 4802 } 4803 memcpy(buf, &temp, addrlen); 4804 buf += addrlen; 4805 bytes_copied += addrlen; 4806 cnt ++; 4807 space_left -= addrlen; 4808 } 4809 4810 copy_getaddrs: 4811 if (copy_to_user(to, addrs, bytes_copied)) { 4812 err = -EFAULT; 4813 goto out; 4814 } 4815 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4816 err = -EFAULT; 4817 goto out; 4818 } 4819 if (put_user(bytes_copied, optlen)) 4820 err = -EFAULT; 4821 out: 4822 kfree(addrs); 4823 return err; 4824 } 4825 4826 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4827 * 4828 * Requests that the local SCTP stack use the enclosed peer address as 4829 * the association primary. The enclosed address must be one of the 4830 * association peer's addresses. 4831 */ 4832 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4833 char __user *optval, int __user *optlen) 4834 { 4835 struct sctp_prim prim; 4836 struct sctp_association *asoc; 4837 struct sctp_sock *sp = sctp_sk(sk); 4838 4839 if (len < sizeof(struct sctp_prim)) 4840 return -EINVAL; 4841 4842 len = sizeof(struct sctp_prim); 4843 4844 if (copy_from_user(&prim, optval, len)) 4845 return -EFAULT; 4846 4847 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4848 if (!asoc) 4849 return -EINVAL; 4850 4851 if (!asoc->peer.primary_path) 4852 return -ENOTCONN; 4853 4854 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4855 asoc->peer.primary_path->af_specific->sockaddr_len); 4856 4857 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4858 (union sctp_addr *)&prim.ssp_addr); 4859 4860 if (put_user(len, optlen)) 4861 return -EFAULT; 4862 if (copy_to_user(optval, &prim, len)) 4863 return -EFAULT; 4864 4865 return 0; 4866 } 4867 4868 /* 4869 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4870 * 4871 * Requests that the local endpoint set the specified Adaptation Layer 4872 * Indication parameter for all future INIT and INIT-ACK exchanges. 4873 */ 4874 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4875 char __user *optval, int __user *optlen) 4876 { 4877 struct sctp_setadaptation adaptation; 4878 4879 if (len < sizeof(struct sctp_setadaptation)) 4880 return -EINVAL; 4881 4882 len = sizeof(struct sctp_setadaptation); 4883 4884 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4885 4886 if (put_user(len, optlen)) 4887 return -EFAULT; 4888 if (copy_to_user(optval, &adaptation, len)) 4889 return -EFAULT; 4890 4891 return 0; 4892 } 4893 4894 /* 4895 * 4896 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4897 * 4898 * Applications that wish to use the sendto() system call may wish to 4899 * specify a default set of parameters that would normally be supplied 4900 * through the inclusion of ancillary data. This socket option allows 4901 * such an application to set the default sctp_sndrcvinfo structure. 4902 4903 4904 * The application that wishes to use this socket option simply passes 4905 * in to this call the sctp_sndrcvinfo structure defined in Section 4906 * 5.2.2) The input parameters accepted by this call include 4907 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4908 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4909 * to this call if the caller is using the UDP model. 4910 * 4911 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4912 */ 4913 static int sctp_getsockopt_default_send_param(struct sock *sk, 4914 int len, char __user *optval, 4915 int __user *optlen) 4916 { 4917 struct sctp_sndrcvinfo info; 4918 struct sctp_association *asoc; 4919 struct sctp_sock *sp = sctp_sk(sk); 4920 4921 if (len < sizeof(struct sctp_sndrcvinfo)) 4922 return -EINVAL; 4923 4924 len = sizeof(struct sctp_sndrcvinfo); 4925 4926 if (copy_from_user(&info, optval, len)) 4927 return -EFAULT; 4928 4929 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4930 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4931 return -EINVAL; 4932 4933 if (asoc) { 4934 info.sinfo_stream = asoc->default_stream; 4935 info.sinfo_flags = asoc->default_flags; 4936 info.sinfo_ppid = asoc->default_ppid; 4937 info.sinfo_context = asoc->default_context; 4938 info.sinfo_timetolive = asoc->default_timetolive; 4939 } else { 4940 info.sinfo_stream = sp->default_stream; 4941 info.sinfo_flags = sp->default_flags; 4942 info.sinfo_ppid = sp->default_ppid; 4943 info.sinfo_context = sp->default_context; 4944 info.sinfo_timetolive = sp->default_timetolive; 4945 } 4946 4947 if (put_user(len, optlen)) 4948 return -EFAULT; 4949 if (copy_to_user(optval, &info, len)) 4950 return -EFAULT; 4951 4952 return 0; 4953 } 4954 4955 /* 4956 * 4957 * 7.1.5 SCTP_NODELAY 4958 * 4959 * Turn on/off any Nagle-like algorithm. This means that packets are 4960 * generally sent as soon as possible and no unnecessary delays are 4961 * introduced, at the cost of more packets in the network. Expects an 4962 * integer boolean flag. 4963 */ 4964 4965 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4966 char __user *optval, int __user *optlen) 4967 { 4968 int val; 4969 4970 if (len < sizeof(int)) 4971 return -EINVAL; 4972 4973 len = sizeof(int); 4974 val = (sctp_sk(sk)->nodelay == 1); 4975 if (put_user(len, optlen)) 4976 return -EFAULT; 4977 if (copy_to_user(optval, &val, len)) 4978 return -EFAULT; 4979 return 0; 4980 } 4981 4982 /* 4983 * 4984 * 7.1.1 SCTP_RTOINFO 4985 * 4986 * The protocol parameters used to initialize and bound retransmission 4987 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4988 * and modify these parameters. 4989 * All parameters are time values, in milliseconds. A value of 0, when 4990 * modifying the parameters, indicates that the current value should not 4991 * be changed. 4992 * 4993 */ 4994 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4995 char __user *optval, 4996 int __user *optlen) { 4997 struct sctp_rtoinfo rtoinfo; 4998 struct sctp_association *asoc; 4999 5000 if (len < sizeof (struct sctp_rtoinfo)) 5001 return -EINVAL; 5002 5003 len = sizeof(struct sctp_rtoinfo); 5004 5005 if (copy_from_user(&rtoinfo, optval, len)) 5006 return -EFAULT; 5007 5008 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5009 5010 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5011 return -EINVAL; 5012 5013 /* Values corresponding to the specific association. */ 5014 if (asoc) { 5015 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5016 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5017 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5018 } else { 5019 /* Values corresponding to the endpoint. */ 5020 struct sctp_sock *sp = sctp_sk(sk); 5021 5022 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5023 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5024 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5025 } 5026 5027 if (put_user(len, optlen)) 5028 return -EFAULT; 5029 5030 if (copy_to_user(optval, &rtoinfo, len)) 5031 return -EFAULT; 5032 5033 return 0; 5034 } 5035 5036 /* 5037 * 5038 * 7.1.2 SCTP_ASSOCINFO 5039 * 5040 * This option is used to tune the maximum retransmission attempts 5041 * of the association. 5042 * Returns an error if the new association retransmission value is 5043 * greater than the sum of the retransmission value of the peer. 5044 * See [SCTP] for more information. 5045 * 5046 */ 5047 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5048 char __user *optval, 5049 int __user *optlen) 5050 { 5051 5052 struct sctp_assocparams assocparams; 5053 struct sctp_association *asoc; 5054 struct list_head *pos; 5055 int cnt = 0; 5056 5057 if (len < sizeof (struct sctp_assocparams)) 5058 return -EINVAL; 5059 5060 len = sizeof(struct sctp_assocparams); 5061 5062 if (copy_from_user(&assocparams, optval, len)) 5063 return -EFAULT; 5064 5065 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5066 5067 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5068 return -EINVAL; 5069 5070 /* Values correspoinding to the specific association */ 5071 if (asoc) { 5072 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5073 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5074 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5075 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5076 5077 list_for_each(pos, &asoc->peer.transport_addr_list) { 5078 cnt ++; 5079 } 5080 5081 assocparams.sasoc_number_peer_destinations = cnt; 5082 } else { 5083 /* Values corresponding to the endpoint */ 5084 struct sctp_sock *sp = sctp_sk(sk); 5085 5086 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5087 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5088 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5089 assocparams.sasoc_cookie_life = 5090 sp->assocparams.sasoc_cookie_life; 5091 assocparams.sasoc_number_peer_destinations = 5092 sp->assocparams. 5093 sasoc_number_peer_destinations; 5094 } 5095 5096 if (put_user(len, optlen)) 5097 return -EFAULT; 5098 5099 if (copy_to_user(optval, &assocparams, len)) 5100 return -EFAULT; 5101 5102 return 0; 5103 } 5104 5105 /* 5106 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5107 * 5108 * This socket option is a boolean flag which turns on or off mapped V4 5109 * addresses. If this option is turned on and the socket is type 5110 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5111 * If this option is turned off, then no mapping will be done of V4 5112 * addresses and a user will receive both PF_INET6 and PF_INET type 5113 * addresses on the socket. 5114 */ 5115 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5116 char __user *optval, int __user *optlen) 5117 { 5118 int val; 5119 struct sctp_sock *sp = sctp_sk(sk); 5120 5121 if (len < sizeof(int)) 5122 return -EINVAL; 5123 5124 len = sizeof(int); 5125 val = sp->v4mapped; 5126 if (put_user(len, optlen)) 5127 return -EFAULT; 5128 if (copy_to_user(optval, &val, len)) 5129 return -EFAULT; 5130 5131 return 0; 5132 } 5133 5134 /* 5135 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5136 * (chapter and verse is quoted at sctp_setsockopt_context()) 5137 */ 5138 static int sctp_getsockopt_context(struct sock *sk, int len, 5139 char __user *optval, int __user *optlen) 5140 { 5141 struct sctp_assoc_value params; 5142 struct sctp_sock *sp; 5143 struct sctp_association *asoc; 5144 5145 if (len < sizeof(struct sctp_assoc_value)) 5146 return -EINVAL; 5147 5148 len = sizeof(struct sctp_assoc_value); 5149 5150 if (copy_from_user(¶ms, optval, len)) 5151 return -EFAULT; 5152 5153 sp = sctp_sk(sk); 5154 5155 if (params.assoc_id != 0) { 5156 asoc = sctp_id2assoc(sk, params.assoc_id); 5157 if (!asoc) 5158 return -EINVAL; 5159 params.assoc_value = asoc->default_rcv_context; 5160 } else { 5161 params.assoc_value = sp->default_rcv_context; 5162 } 5163 5164 if (put_user(len, optlen)) 5165 return -EFAULT; 5166 if (copy_to_user(optval, ¶ms, len)) 5167 return -EFAULT; 5168 5169 return 0; 5170 } 5171 5172 /* 5173 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5174 * This option will get or set the maximum size to put in any outgoing 5175 * SCTP DATA chunk. If a message is larger than this size it will be 5176 * fragmented by SCTP into the specified size. Note that the underlying 5177 * SCTP implementation may fragment into smaller sized chunks when the 5178 * PMTU of the underlying association is smaller than the value set by 5179 * the user. The default value for this option is '0' which indicates 5180 * the user is NOT limiting fragmentation and only the PMTU will effect 5181 * SCTP's choice of DATA chunk size. Note also that values set larger 5182 * than the maximum size of an IP datagram will effectively let SCTP 5183 * control fragmentation (i.e. the same as setting this option to 0). 5184 * 5185 * The following structure is used to access and modify this parameter: 5186 * 5187 * struct sctp_assoc_value { 5188 * sctp_assoc_t assoc_id; 5189 * uint32_t assoc_value; 5190 * }; 5191 * 5192 * assoc_id: This parameter is ignored for one-to-one style sockets. 5193 * For one-to-many style sockets this parameter indicates which 5194 * association the user is performing an action upon. Note that if 5195 * this field's value is zero then the endpoints default value is 5196 * changed (effecting future associations only). 5197 * assoc_value: This parameter specifies the maximum size in bytes. 5198 */ 5199 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5200 char __user *optval, int __user *optlen) 5201 { 5202 struct sctp_assoc_value params; 5203 struct sctp_association *asoc; 5204 5205 if (len == sizeof(int)) { 5206 pr_warn("Use of int in maxseg socket option deprecated\n"); 5207 pr_warn("Use struct sctp_assoc_value instead\n"); 5208 params.assoc_id = 0; 5209 } else if (len >= sizeof(struct sctp_assoc_value)) { 5210 len = sizeof(struct sctp_assoc_value); 5211 if (copy_from_user(¶ms, optval, sizeof(params))) 5212 return -EFAULT; 5213 } else 5214 return -EINVAL; 5215 5216 asoc = sctp_id2assoc(sk, params.assoc_id); 5217 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5218 return -EINVAL; 5219 5220 if (asoc) 5221 params.assoc_value = asoc->frag_point; 5222 else 5223 params.assoc_value = sctp_sk(sk)->user_frag; 5224 5225 if (put_user(len, optlen)) 5226 return -EFAULT; 5227 if (len == sizeof(int)) { 5228 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5229 return -EFAULT; 5230 } else { 5231 if (copy_to_user(optval, ¶ms, len)) 5232 return -EFAULT; 5233 } 5234 5235 return 0; 5236 } 5237 5238 /* 5239 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5240 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5241 */ 5242 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5243 char __user *optval, int __user *optlen) 5244 { 5245 int val; 5246 5247 if (len < sizeof(int)) 5248 return -EINVAL; 5249 5250 len = sizeof(int); 5251 5252 val = sctp_sk(sk)->frag_interleave; 5253 if (put_user(len, optlen)) 5254 return -EFAULT; 5255 if (copy_to_user(optval, &val, len)) 5256 return -EFAULT; 5257 5258 return 0; 5259 } 5260 5261 /* 5262 * 7.1.25. Set or Get the sctp partial delivery point 5263 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5264 */ 5265 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5266 char __user *optval, 5267 int __user *optlen) 5268 { 5269 u32 val; 5270 5271 if (len < sizeof(u32)) 5272 return -EINVAL; 5273 5274 len = sizeof(u32); 5275 5276 val = sctp_sk(sk)->pd_point; 5277 if (put_user(len, optlen)) 5278 return -EFAULT; 5279 if (copy_to_user(optval, &val, len)) 5280 return -EFAULT; 5281 5282 return 0; 5283 } 5284 5285 /* 5286 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5287 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5288 */ 5289 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5290 char __user *optval, 5291 int __user *optlen) 5292 { 5293 struct sctp_assoc_value params; 5294 struct sctp_sock *sp; 5295 struct sctp_association *asoc; 5296 5297 if (len == sizeof(int)) { 5298 pr_warn("Use of int in max_burst socket option deprecated\n"); 5299 pr_warn("Use struct sctp_assoc_value instead\n"); 5300 params.assoc_id = 0; 5301 } else if (len >= sizeof(struct sctp_assoc_value)) { 5302 len = sizeof(struct sctp_assoc_value); 5303 if (copy_from_user(¶ms, optval, len)) 5304 return -EFAULT; 5305 } else 5306 return -EINVAL; 5307 5308 sp = sctp_sk(sk); 5309 5310 if (params.assoc_id != 0) { 5311 asoc = sctp_id2assoc(sk, params.assoc_id); 5312 if (!asoc) 5313 return -EINVAL; 5314 params.assoc_value = asoc->max_burst; 5315 } else 5316 params.assoc_value = sp->max_burst; 5317 5318 if (len == sizeof(int)) { 5319 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5320 return -EFAULT; 5321 } else { 5322 if (copy_to_user(optval, ¶ms, len)) 5323 return -EFAULT; 5324 } 5325 5326 return 0; 5327 5328 } 5329 5330 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5331 char __user *optval, int __user *optlen) 5332 { 5333 struct net *net = sock_net(sk); 5334 struct sctp_hmacalgo __user *p = (void __user *)optval; 5335 struct sctp_hmac_algo_param *hmacs; 5336 __u16 data_len = 0; 5337 u32 num_idents; 5338 5339 if (!net->sctp.auth_enable) 5340 return -EACCES; 5341 5342 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5343 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5344 5345 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5346 return -EINVAL; 5347 5348 len = sizeof(struct sctp_hmacalgo) + data_len; 5349 num_idents = data_len / sizeof(u16); 5350 5351 if (put_user(len, optlen)) 5352 return -EFAULT; 5353 if (put_user(num_idents, &p->shmac_num_idents)) 5354 return -EFAULT; 5355 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5356 return -EFAULT; 5357 return 0; 5358 } 5359 5360 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5361 char __user *optval, int __user *optlen) 5362 { 5363 struct net *net = sock_net(sk); 5364 struct sctp_authkeyid val; 5365 struct sctp_association *asoc; 5366 5367 if (!net->sctp.auth_enable) 5368 return -EACCES; 5369 5370 if (len < sizeof(struct sctp_authkeyid)) 5371 return -EINVAL; 5372 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5373 return -EFAULT; 5374 5375 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5376 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5377 return -EINVAL; 5378 5379 if (asoc) 5380 val.scact_keynumber = asoc->active_key_id; 5381 else 5382 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5383 5384 len = sizeof(struct sctp_authkeyid); 5385 if (put_user(len, optlen)) 5386 return -EFAULT; 5387 if (copy_to_user(optval, &val, len)) 5388 return -EFAULT; 5389 5390 return 0; 5391 } 5392 5393 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5394 char __user *optval, int __user *optlen) 5395 { 5396 struct net *net = sock_net(sk); 5397 struct sctp_authchunks __user *p = (void __user *)optval; 5398 struct sctp_authchunks val; 5399 struct sctp_association *asoc; 5400 struct sctp_chunks_param *ch; 5401 u32 num_chunks = 0; 5402 char __user *to; 5403 5404 if (!net->sctp.auth_enable) 5405 return -EACCES; 5406 5407 if (len < sizeof(struct sctp_authchunks)) 5408 return -EINVAL; 5409 5410 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5411 return -EFAULT; 5412 5413 to = p->gauth_chunks; 5414 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5415 if (!asoc) 5416 return -EINVAL; 5417 5418 ch = asoc->peer.peer_chunks; 5419 if (!ch) 5420 goto num; 5421 5422 /* See if the user provided enough room for all the data */ 5423 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5424 if (len < num_chunks) 5425 return -EINVAL; 5426 5427 if (copy_to_user(to, ch->chunks, num_chunks)) 5428 return -EFAULT; 5429 num: 5430 len = sizeof(struct sctp_authchunks) + num_chunks; 5431 if (put_user(len, optlen)) return -EFAULT; 5432 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5433 return -EFAULT; 5434 return 0; 5435 } 5436 5437 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5438 char __user *optval, int __user *optlen) 5439 { 5440 struct net *net = sock_net(sk); 5441 struct sctp_authchunks __user *p = (void __user *)optval; 5442 struct sctp_authchunks val; 5443 struct sctp_association *asoc; 5444 struct sctp_chunks_param *ch; 5445 u32 num_chunks = 0; 5446 char __user *to; 5447 5448 if (!net->sctp.auth_enable) 5449 return -EACCES; 5450 5451 if (len < sizeof(struct sctp_authchunks)) 5452 return -EINVAL; 5453 5454 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5455 return -EFAULT; 5456 5457 to = p->gauth_chunks; 5458 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5459 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5460 return -EINVAL; 5461 5462 if (asoc) 5463 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5464 else 5465 ch = sctp_sk(sk)->ep->auth_chunk_list; 5466 5467 if (!ch) 5468 goto num; 5469 5470 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5471 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5472 return -EINVAL; 5473 5474 if (copy_to_user(to, ch->chunks, num_chunks)) 5475 return -EFAULT; 5476 num: 5477 len = sizeof(struct sctp_authchunks) + num_chunks; 5478 if (put_user(len, optlen)) 5479 return -EFAULT; 5480 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5481 return -EFAULT; 5482 5483 return 0; 5484 } 5485 5486 /* 5487 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5488 * This option gets the current number of associations that are attached 5489 * to a one-to-many style socket. The option value is an uint32_t. 5490 */ 5491 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5492 char __user *optval, int __user *optlen) 5493 { 5494 struct sctp_sock *sp = sctp_sk(sk); 5495 struct sctp_association *asoc; 5496 u32 val = 0; 5497 5498 if (sctp_style(sk, TCP)) 5499 return -EOPNOTSUPP; 5500 5501 if (len < sizeof(u32)) 5502 return -EINVAL; 5503 5504 len = sizeof(u32); 5505 5506 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5507 val++; 5508 } 5509 5510 if (put_user(len, optlen)) 5511 return -EFAULT; 5512 if (copy_to_user(optval, &val, len)) 5513 return -EFAULT; 5514 5515 return 0; 5516 } 5517 5518 /* 5519 * 8.1.23 SCTP_AUTO_ASCONF 5520 * See the corresponding setsockopt entry as description 5521 */ 5522 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5523 char __user *optval, int __user *optlen) 5524 { 5525 int val = 0; 5526 5527 if (len < sizeof(int)) 5528 return -EINVAL; 5529 5530 len = sizeof(int); 5531 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5532 val = 1; 5533 if (put_user(len, optlen)) 5534 return -EFAULT; 5535 if (copy_to_user(optval, &val, len)) 5536 return -EFAULT; 5537 return 0; 5538 } 5539 5540 /* 5541 * 8.2.6. Get the Current Identifiers of Associations 5542 * (SCTP_GET_ASSOC_ID_LIST) 5543 * 5544 * This option gets the current list of SCTP association identifiers of 5545 * the SCTP associations handled by a one-to-many style socket. 5546 */ 5547 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5548 char __user *optval, int __user *optlen) 5549 { 5550 struct sctp_sock *sp = sctp_sk(sk); 5551 struct sctp_association *asoc; 5552 struct sctp_assoc_ids *ids; 5553 u32 num = 0; 5554 5555 if (sctp_style(sk, TCP)) 5556 return -EOPNOTSUPP; 5557 5558 if (len < sizeof(struct sctp_assoc_ids)) 5559 return -EINVAL; 5560 5561 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5562 num++; 5563 } 5564 5565 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5566 return -EINVAL; 5567 5568 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5569 5570 ids = kmalloc(len, GFP_KERNEL); 5571 if (unlikely(!ids)) 5572 return -ENOMEM; 5573 5574 ids->gaids_number_of_ids = num; 5575 num = 0; 5576 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5577 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5578 } 5579 5580 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5581 kfree(ids); 5582 return -EFAULT; 5583 } 5584 5585 kfree(ids); 5586 return 0; 5587 } 5588 5589 /* 5590 * SCTP_PEER_ADDR_THLDS 5591 * 5592 * This option allows us to fetch the partially failed threshold for one or all 5593 * transports in an association. See Section 6.1 of: 5594 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 5595 */ 5596 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 5597 char __user *optval, 5598 int len, 5599 int __user *optlen) 5600 { 5601 struct sctp_paddrthlds val; 5602 struct sctp_transport *trans; 5603 struct sctp_association *asoc; 5604 5605 if (len < sizeof(struct sctp_paddrthlds)) 5606 return -EINVAL; 5607 len = sizeof(struct sctp_paddrthlds); 5608 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 5609 return -EFAULT; 5610 5611 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 5612 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 5613 if (!asoc) 5614 return -ENOENT; 5615 5616 val.spt_pathpfthld = asoc->pf_retrans; 5617 val.spt_pathmaxrxt = asoc->pathmaxrxt; 5618 } else { 5619 trans = sctp_addr_id2transport(sk, &val.spt_address, 5620 val.spt_assoc_id); 5621 if (!trans) 5622 return -ENOENT; 5623 5624 val.spt_pathmaxrxt = trans->pathmaxrxt; 5625 val.spt_pathpfthld = trans->pf_retrans; 5626 } 5627 5628 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 5629 return -EFAULT; 5630 5631 return 0; 5632 } 5633 5634 /* 5635 * SCTP_GET_ASSOC_STATS 5636 * 5637 * This option retrieves local per endpoint statistics. It is modeled 5638 * after OpenSolaris' implementation 5639 */ 5640 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 5641 char __user *optval, 5642 int __user *optlen) 5643 { 5644 struct sctp_assoc_stats sas; 5645 struct sctp_association *asoc = NULL; 5646 5647 /* User must provide at least the assoc id */ 5648 if (len < sizeof(sctp_assoc_t)) 5649 return -EINVAL; 5650 5651 /* Allow the struct to grow and fill in as much as possible */ 5652 len = min_t(size_t, len, sizeof(sas)); 5653 5654 if (copy_from_user(&sas, optval, len)) 5655 return -EFAULT; 5656 5657 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 5658 if (!asoc) 5659 return -EINVAL; 5660 5661 sas.sas_rtxchunks = asoc->stats.rtxchunks; 5662 sas.sas_gapcnt = asoc->stats.gapcnt; 5663 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 5664 sas.sas_osacks = asoc->stats.osacks; 5665 sas.sas_isacks = asoc->stats.isacks; 5666 sas.sas_octrlchunks = asoc->stats.octrlchunks; 5667 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 5668 sas.sas_oodchunks = asoc->stats.oodchunks; 5669 sas.sas_iodchunks = asoc->stats.iodchunks; 5670 sas.sas_ouodchunks = asoc->stats.ouodchunks; 5671 sas.sas_iuodchunks = asoc->stats.iuodchunks; 5672 sas.sas_idupchunks = asoc->stats.idupchunks; 5673 sas.sas_opackets = asoc->stats.opackets; 5674 sas.sas_ipackets = asoc->stats.ipackets; 5675 5676 /* New high max rto observed, will return 0 if not a single 5677 * RTO update took place. obs_rto_ipaddr will be bogus 5678 * in such a case 5679 */ 5680 sas.sas_maxrto = asoc->stats.max_obs_rto; 5681 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 5682 sizeof(struct sockaddr_storage)); 5683 5684 /* Mark beginning of a new observation period */ 5685 asoc->stats.max_obs_rto = asoc->rto_min; 5686 5687 if (put_user(len, optlen)) 5688 return -EFAULT; 5689 5690 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 5691 5692 if (copy_to_user(optval, &sas, len)) 5693 return -EFAULT; 5694 5695 return 0; 5696 } 5697 5698 static int sctp_getsockopt(struct sock *sk, int level, int optname, 5699 char __user *optval, int __user *optlen) 5700 { 5701 int retval = 0; 5702 int len; 5703 5704 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 5705 5706 /* I can hardly begin to describe how wrong this is. This is 5707 * so broken as to be worse than useless. The API draft 5708 * REALLY is NOT helpful here... I am not convinced that the 5709 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5710 * are at all well-founded. 5711 */ 5712 if (level != SOL_SCTP) { 5713 struct sctp_af *af = sctp_sk(sk)->pf->af; 5714 5715 retval = af->getsockopt(sk, level, optname, optval, optlen); 5716 return retval; 5717 } 5718 5719 if (get_user(len, optlen)) 5720 return -EFAULT; 5721 5722 sctp_lock_sock(sk); 5723 5724 switch (optname) { 5725 case SCTP_STATUS: 5726 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5727 break; 5728 case SCTP_DISABLE_FRAGMENTS: 5729 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5730 optlen); 5731 break; 5732 case SCTP_EVENTS: 5733 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5734 break; 5735 case SCTP_AUTOCLOSE: 5736 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5737 break; 5738 case SCTP_SOCKOPT_PEELOFF: 5739 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5740 break; 5741 case SCTP_PEER_ADDR_PARAMS: 5742 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5743 optlen); 5744 break; 5745 case SCTP_DELAYED_SACK: 5746 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5747 optlen); 5748 break; 5749 case SCTP_INITMSG: 5750 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5751 break; 5752 case SCTP_GET_PEER_ADDRS: 5753 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5754 optlen); 5755 break; 5756 case SCTP_GET_LOCAL_ADDRS: 5757 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5758 optlen); 5759 break; 5760 case SCTP_SOCKOPT_CONNECTX3: 5761 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5762 break; 5763 case SCTP_DEFAULT_SEND_PARAM: 5764 retval = sctp_getsockopt_default_send_param(sk, len, 5765 optval, optlen); 5766 break; 5767 case SCTP_PRIMARY_ADDR: 5768 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5769 break; 5770 case SCTP_NODELAY: 5771 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5772 break; 5773 case SCTP_RTOINFO: 5774 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5775 break; 5776 case SCTP_ASSOCINFO: 5777 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5778 break; 5779 case SCTP_I_WANT_MAPPED_V4_ADDR: 5780 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5781 break; 5782 case SCTP_MAXSEG: 5783 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5784 break; 5785 case SCTP_GET_PEER_ADDR_INFO: 5786 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5787 optlen); 5788 break; 5789 case SCTP_ADAPTATION_LAYER: 5790 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5791 optlen); 5792 break; 5793 case SCTP_CONTEXT: 5794 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5795 break; 5796 case SCTP_FRAGMENT_INTERLEAVE: 5797 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5798 optlen); 5799 break; 5800 case SCTP_PARTIAL_DELIVERY_POINT: 5801 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5802 optlen); 5803 break; 5804 case SCTP_MAX_BURST: 5805 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5806 break; 5807 case SCTP_AUTH_KEY: 5808 case SCTP_AUTH_CHUNK: 5809 case SCTP_AUTH_DELETE_KEY: 5810 retval = -EOPNOTSUPP; 5811 break; 5812 case SCTP_HMAC_IDENT: 5813 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5814 break; 5815 case SCTP_AUTH_ACTIVE_KEY: 5816 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5817 break; 5818 case SCTP_PEER_AUTH_CHUNKS: 5819 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5820 optlen); 5821 break; 5822 case SCTP_LOCAL_AUTH_CHUNKS: 5823 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5824 optlen); 5825 break; 5826 case SCTP_GET_ASSOC_NUMBER: 5827 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5828 break; 5829 case SCTP_GET_ASSOC_ID_LIST: 5830 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5831 break; 5832 case SCTP_AUTO_ASCONF: 5833 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5834 break; 5835 case SCTP_PEER_ADDR_THLDS: 5836 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 5837 break; 5838 case SCTP_GET_ASSOC_STATS: 5839 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 5840 break; 5841 default: 5842 retval = -ENOPROTOOPT; 5843 break; 5844 } 5845 5846 sctp_release_sock(sk); 5847 return retval; 5848 } 5849 5850 static void sctp_hash(struct sock *sk) 5851 { 5852 /* STUB */ 5853 } 5854 5855 static void sctp_unhash(struct sock *sk) 5856 { 5857 /* STUB */ 5858 } 5859 5860 /* Check if port is acceptable. Possibly find first available port. 5861 * 5862 * The port hash table (contained in the 'global' SCTP protocol storage 5863 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5864 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5865 * list (the list number is the port number hashed out, so as you 5866 * would expect from a hash function, all the ports in a given list have 5867 * such a number that hashes out to the same list number; you were 5868 * expecting that, right?); so each list has a set of ports, with a 5869 * link to the socket (struct sock) that uses it, the port number and 5870 * a fastreuse flag (FIXME: NPI ipg). 5871 */ 5872 static struct sctp_bind_bucket *sctp_bucket_create( 5873 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 5874 5875 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5876 { 5877 struct sctp_bind_hashbucket *head; /* hash list */ 5878 struct sctp_bind_bucket *pp; 5879 unsigned short snum; 5880 int ret; 5881 5882 snum = ntohs(addr->v4.sin_port); 5883 5884 pr_debug("%s: begins, snum:%d\n", __func__, snum); 5885 5886 sctp_local_bh_disable(); 5887 5888 if (snum == 0) { 5889 /* Search for an available port. */ 5890 int low, high, remaining, index; 5891 unsigned int rover; 5892 5893 inet_get_local_port_range(&low, &high); 5894 remaining = (high - low) + 1; 5895 rover = net_random() % remaining + low; 5896 5897 do { 5898 rover++; 5899 if ((rover < low) || (rover > high)) 5900 rover = low; 5901 if (inet_is_reserved_local_port(rover)) 5902 continue; 5903 index = sctp_phashfn(sock_net(sk), rover); 5904 head = &sctp_port_hashtable[index]; 5905 sctp_spin_lock(&head->lock); 5906 sctp_for_each_hentry(pp, &head->chain) 5907 if ((pp->port == rover) && 5908 net_eq(sock_net(sk), pp->net)) 5909 goto next; 5910 break; 5911 next: 5912 sctp_spin_unlock(&head->lock); 5913 } while (--remaining > 0); 5914 5915 /* Exhausted local port range during search? */ 5916 ret = 1; 5917 if (remaining <= 0) 5918 goto fail; 5919 5920 /* OK, here is the one we will use. HEAD (the port 5921 * hash table list entry) is non-NULL and we hold it's 5922 * mutex. 5923 */ 5924 snum = rover; 5925 } else { 5926 /* We are given an specific port number; we verify 5927 * that it is not being used. If it is used, we will 5928 * exahust the search in the hash list corresponding 5929 * to the port number (snum) - we detect that with the 5930 * port iterator, pp being NULL. 5931 */ 5932 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 5933 sctp_spin_lock(&head->lock); 5934 sctp_for_each_hentry(pp, &head->chain) { 5935 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 5936 goto pp_found; 5937 } 5938 } 5939 pp = NULL; 5940 goto pp_not_found; 5941 pp_found: 5942 if (!hlist_empty(&pp->owner)) { 5943 /* We had a port hash table hit - there is an 5944 * available port (pp != NULL) and it is being 5945 * used by other socket (pp->owner not empty); that other 5946 * socket is going to be sk2. 5947 */ 5948 int reuse = sk->sk_reuse; 5949 struct sock *sk2; 5950 5951 pr_debug("%s: found a possible match\n", __func__); 5952 5953 if (pp->fastreuse && sk->sk_reuse && 5954 sk->sk_state != SCTP_SS_LISTENING) 5955 goto success; 5956 5957 /* Run through the list of sockets bound to the port 5958 * (pp->port) [via the pointers bind_next and 5959 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5960 * we get the endpoint they describe and run through 5961 * the endpoint's list of IP (v4 or v6) addresses, 5962 * comparing each of the addresses with the address of 5963 * the socket sk. If we find a match, then that means 5964 * that this port/socket (sk) combination are already 5965 * in an endpoint. 5966 */ 5967 sk_for_each_bound(sk2, &pp->owner) { 5968 struct sctp_endpoint *ep2; 5969 ep2 = sctp_sk(sk2)->ep; 5970 5971 if (sk == sk2 || 5972 (reuse && sk2->sk_reuse && 5973 sk2->sk_state != SCTP_SS_LISTENING)) 5974 continue; 5975 5976 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5977 sctp_sk(sk2), sctp_sk(sk))) { 5978 ret = (long)sk2; 5979 goto fail_unlock; 5980 } 5981 } 5982 5983 pr_debug("%s: found a match\n", __func__); 5984 } 5985 pp_not_found: 5986 /* If there was a hash table miss, create a new port. */ 5987 ret = 1; 5988 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 5989 goto fail_unlock; 5990 5991 /* In either case (hit or miss), make sure fastreuse is 1 only 5992 * if sk->sk_reuse is too (that is, if the caller requested 5993 * SO_REUSEADDR on this socket -sk-). 5994 */ 5995 if (hlist_empty(&pp->owner)) { 5996 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5997 pp->fastreuse = 1; 5998 else 5999 pp->fastreuse = 0; 6000 } else if (pp->fastreuse && 6001 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6002 pp->fastreuse = 0; 6003 6004 /* We are set, so fill up all the data in the hash table 6005 * entry, tie the socket list information with the rest of the 6006 * sockets FIXME: Blurry, NPI (ipg). 6007 */ 6008 success: 6009 if (!sctp_sk(sk)->bind_hash) { 6010 inet_sk(sk)->inet_num = snum; 6011 sk_add_bind_node(sk, &pp->owner); 6012 sctp_sk(sk)->bind_hash = pp; 6013 } 6014 ret = 0; 6015 6016 fail_unlock: 6017 sctp_spin_unlock(&head->lock); 6018 6019 fail: 6020 sctp_local_bh_enable(); 6021 return ret; 6022 } 6023 6024 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6025 * port is requested. 6026 */ 6027 static int sctp_get_port(struct sock *sk, unsigned short snum) 6028 { 6029 union sctp_addr addr; 6030 struct sctp_af *af = sctp_sk(sk)->pf->af; 6031 6032 /* Set up a dummy address struct from the sk. */ 6033 af->from_sk(&addr, sk); 6034 addr.v4.sin_port = htons(snum); 6035 6036 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6037 return !!sctp_get_port_local(sk, &addr); 6038 } 6039 6040 /* 6041 * Move a socket to LISTENING state. 6042 */ 6043 static int sctp_listen_start(struct sock *sk, int backlog) 6044 { 6045 struct sctp_sock *sp = sctp_sk(sk); 6046 struct sctp_endpoint *ep = sp->ep; 6047 struct crypto_hash *tfm = NULL; 6048 char alg[32]; 6049 6050 /* Allocate HMAC for generating cookie. */ 6051 if (!sp->hmac && sp->sctp_hmac_alg) { 6052 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6053 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC); 6054 if (IS_ERR(tfm)) { 6055 net_info_ratelimited("failed to load transform for %s: %ld\n", 6056 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6057 return -ENOSYS; 6058 } 6059 sctp_sk(sk)->hmac = tfm; 6060 } 6061 6062 /* 6063 * If a bind() or sctp_bindx() is not called prior to a listen() 6064 * call that allows new associations to be accepted, the system 6065 * picks an ephemeral port and will choose an address set equivalent 6066 * to binding with a wildcard address. 6067 * 6068 * This is not currently spelled out in the SCTP sockets 6069 * extensions draft, but follows the practice as seen in TCP 6070 * sockets. 6071 * 6072 */ 6073 sk->sk_state = SCTP_SS_LISTENING; 6074 if (!ep->base.bind_addr.port) { 6075 if (sctp_autobind(sk)) 6076 return -EAGAIN; 6077 } else { 6078 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6079 sk->sk_state = SCTP_SS_CLOSED; 6080 return -EADDRINUSE; 6081 } 6082 } 6083 6084 sk->sk_max_ack_backlog = backlog; 6085 sctp_hash_endpoint(ep); 6086 return 0; 6087 } 6088 6089 /* 6090 * 4.1.3 / 5.1.3 listen() 6091 * 6092 * By default, new associations are not accepted for UDP style sockets. 6093 * An application uses listen() to mark a socket as being able to 6094 * accept new associations. 6095 * 6096 * On TCP style sockets, applications use listen() to ready the SCTP 6097 * endpoint for accepting inbound associations. 6098 * 6099 * On both types of endpoints a backlog of '0' disables listening. 6100 * 6101 * Move a socket to LISTENING state. 6102 */ 6103 int sctp_inet_listen(struct socket *sock, int backlog) 6104 { 6105 struct sock *sk = sock->sk; 6106 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6107 int err = -EINVAL; 6108 6109 if (unlikely(backlog < 0)) 6110 return err; 6111 6112 sctp_lock_sock(sk); 6113 6114 /* Peeled-off sockets are not allowed to listen(). */ 6115 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6116 goto out; 6117 6118 if (sock->state != SS_UNCONNECTED) 6119 goto out; 6120 6121 /* If backlog is zero, disable listening. */ 6122 if (!backlog) { 6123 if (sctp_sstate(sk, CLOSED)) 6124 goto out; 6125 6126 err = 0; 6127 sctp_unhash_endpoint(ep); 6128 sk->sk_state = SCTP_SS_CLOSED; 6129 if (sk->sk_reuse) 6130 sctp_sk(sk)->bind_hash->fastreuse = 1; 6131 goto out; 6132 } 6133 6134 /* If we are already listening, just update the backlog */ 6135 if (sctp_sstate(sk, LISTENING)) 6136 sk->sk_max_ack_backlog = backlog; 6137 else { 6138 err = sctp_listen_start(sk, backlog); 6139 if (err) 6140 goto out; 6141 } 6142 6143 err = 0; 6144 out: 6145 sctp_release_sock(sk); 6146 return err; 6147 } 6148 6149 /* 6150 * This function is done by modeling the current datagram_poll() and the 6151 * tcp_poll(). Note that, based on these implementations, we don't 6152 * lock the socket in this function, even though it seems that, 6153 * ideally, locking or some other mechanisms can be used to ensure 6154 * the integrity of the counters (sndbuf and wmem_alloc) used 6155 * in this place. We assume that we don't need locks either until proven 6156 * otherwise. 6157 * 6158 * Another thing to note is that we include the Async I/O support 6159 * here, again, by modeling the current TCP/UDP code. We don't have 6160 * a good way to test with it yet. 6161 */ 6162 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6163 { 6164 struct sock *sk = sock->sk; 6165 struct sctp_sock *sp = sctp_sk(sk); 6166 unsigned int mask; 6167 6168 poll_wait(file, sk_sleep(sk), wait); 6169 6170 /* A TCP-style listening socket becomes readable when the accept queue 6171 * is not empty. 6172 */ 6173 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6174 return (!list_empty(&sp->ep->asocs)) ? 6175 (POLLIN | POLLRDNORM) : 0; 6176 6177 mask = 0; 6178 6179 /* Is there any exceptional events? */ 6180 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6181 mask |= POLLERR | 6182 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 6183 if (sk->sk_shutdown & RCV_SHUTDOWN) 6184 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6185 if (sk->sk_shutdown == SHUTDOWN_MASK) 6186 mask |= POLLHUP; 6187 6188 /* Is it readable? Reconsider this code with TCP-style support. */ 6189 if (!skb_queue_empty(&sk->sk_receive_queue)) 6190 mask |= POLLIN | POLLRDNORM; 6191 6192 /* The association is either gone or not ready. */ 6193 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6194 return mask; 6195 6196 /* Is it writable? */ 6197 if (sctp_writeable(sk)) { 6198 mask |= POLLOUT | POLLWRNORM; 6199 } else { 6200 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6201 /* 6202 * Since the socket is not locked, the buffer 6203 * might be made available after the writeable check and 6204 * before the bit is set. This could cause a lost I/O 6205 * signal. tcp_poll() has a race breaker for this race 6206 * condition. Based on their implementation, we put 6207 * in the following code to cover it as well. 6208 */ 6209 if (sctp_writeable(sk)) 6210 mask |= POLLOUT | POLLWRNORM; 6211 } 6212 return mask; 6213 } 6214 6215 /******************************************************************** 6216 * 2nd Level Abstractions 6217 ********************************************************************/ 6218 6219 static struct sctp_bind_bucket *sctp_bucket_create( 6220 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6221 { 6222 struct sctp_bind_bucket *pp; 6223 6224 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6225 if (pp) { 6226 SCTP_DBG_OBJCNT_INC(bind_bucket); 6227 pp->port = snum; 6228 pp->fastreuse = 0; 6229 INIT_HLIST_HEAD(&pp->owner); 6230 pp->net = net; 6231 hlist_add_head(&pp->node, &head->chain); 6232 } 6233 return pp; 6234 } 6235 6236 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6237 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6238 { 6239 if (pp && hlist_empty(&pp->owner)) { 6240 __hlist_del(&pp->node); 6241 kmem_cache_free(sctp_bucket_cachep, pp); 6242 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6243 } 6244 } 6245 6246 /* Release this socket's reference to a local port. */ 6247 static inline void __sctp_put_port(struct sock *sk) 6248 { 6249 struct sctp_bind_hashbucket *head = 6250 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6251 inet_sk(sk)->inet_num)]; 6252 struct sctp_bind_bucket *pp; 6253 6254 sctp_spin_lock(&head->lock); 6255 pp = sctp_sk(sk)->bind_hash; 6256 __sk_del_bind_node(sk); 6257 sctp_sk(sk)->bind_hash = NULL; 6258 inet_sk(sk)->inet_num = 0; 6259 sctp_bucket_destroy(pp); 6260 sctp_spin_unlock(&head->lock); 6261 } 6262 6263 void sctp_put_port(struct sock *sk) 6264 { 6265 sctp_local_bh_disable(); 6266 __sctp_put_port(sk); 6267 sctp_local_bh_enable(); 6268 } 6269 6270 /* 6271 * The system picks an ephemeral port and choose an address set equivalent 6272 * to binding with a wildcard address. 6273 * One of those addresses will be the primary address for the association. 6274 * This automatically enables the multihoming capability of SCTP. 6275 */ 6276 static int sctp_autobind(struct sock *sk) 6277 { 6278 union sctp_addr autoaddr; 6279 struct sctp_af *af; 6280 __be16 port; 6281 6282 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6283 af = sctp_sk(sk)->pf->af; 6284 6285 port = htons(inet_sk(sk)->inet_num); 6286 af->inaddr_any(&autoaddr, port); 6287 6288 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6289 } 6290 6291 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6292 * 6293 * From RFC 2292 6294 * 4.2 The cmsghdr Structure * 6295 * 6296 * When ancillary data is sent or received, any number of ancillary data 6297 * objects can be specified by the msg_control and msg_controllen members of 6298 * the msghdr structure, because each object is preceded by 6299 * a cmsghdr structure defining the object's length (the cmsg_len member). 6300 * Historically Berkeley-derived implementations have passed only one object 6301 * at a time, but this API allows multiple objects to be 6302 * passed in a single call to sendmsg() or recvmsg(). The following example 6303 * shows two ancillary data objects in a control buffer. 6304 * 6305 * |<--------------------------- msg_controllen -------------------------->| 6306 * | | 6307 * 6308 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6309 * 6310 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6311 * | | | 6312 * 6313 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6314 * 6315 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6316 * | | | | | 6317 * 6318 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6319 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6320 * 6321 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6322 * 6323 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6324 * ^ 6325 * | 6326 * 6327 * msg_control 6328 * points here 6329 */ 6330 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 6331 { 6332 struct cmsghdr *cmsg; 6333 struct msghdr *my_msg = (struct msghdr *)msg; 6334 6335 for (cmsg = CMSG_FIRSTHDR(msg); 6336 cmsg != NULL; 6337 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6338 if (!CMSG_OK(my_msg, cmsg)) 6339 return -EINVAL; 6340 6341 /* Should we parse this header or ignore? */ 6342 if (cmsg->cmsg_level != IPPROTO_SCTP) 6343 continue; 6344 6345 /* Strictly check lengths following example in SCM code. */ 6346 switch (cmsg->cmsg_type) { 6347 case SCTP_INIT: 6348 /* SCTP Socket API Extension 6349 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6350 * 6351 * This cmsghdr structure provides information for 6352 * initializing new SCTP associations with sendmsg(). 6353 * The SCTP_INITMSG socket option uses this same data 6354 * structure. This structure is not used for 6355 * recvmsg(). 6356 * 6357 * cmsg_level cmsg_type cmsg_data[] 6358 * ------------ ------------ ---------------------- 6359 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6360 */ 6361 if (cmsg->cmsg_len != 6362 CMSG_LEN(sizeof(struct sctp_initmsg))) 6363 return -EINVAL; 6364 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6365 break; 6366 6367 case SCTP_SNDRCV: 6368 /* SCTP Socket API Extension 6369 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6370 * 6371 * This cmsghdr structure specifies SCTP options for 6372 * sendmsg() and describes SCTP header information 6373 * about a received message through recvmsg(). 6374 * 6375 * cmsg_level cmsg_type cmsg_data[] 6376 * ------------ ------------ ---------------------- 6377 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6378 */ 6379 if (cmsg->cmsg_len != 6380 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6381 return -EINVAL; 6382 6383 cmsgs->info = 6384 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6385 6386 /* Minimally, validate the sinfo_flags. */ 6387 if (cmsgs->info->sinfo_flags & 6388 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6389 SCTP_ABORT | SCTP_EOF)) 6390 return -EINVAL; 6391 break; 6392 6393 default: 6394 return -EINVAL; 6395 } 6396 } 6397 return 0; 6398 } 6399 6400 /* 6401 * Wait for a packet.. 6402 * Note: This function is the same function as in core/datagram.c 6403 * with a few modifications to make lksctp work. 6404 */ 6405 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6406 { 6407 int error; 6408 DEFINE_WAIT(wait); 6409 6410 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6411 6412 /* Socket errors? */ 6413 error = sock_error(sk); 6414 if (error) 6415 goto out; 6416 6417 if (!skb_queue_empty(&sk->sk_receive_queue)) 6418 goto ready; 6419 6420 /* Socket shut down? */ 6421 if (sk->sk_shutdown & RCV_SHUTDOWN) 6422 goto out; 6423 6424 /* Sequenced packets can come disconnected. If so we report the 6425 * problem. 6426 */ 6427 error = -ENOTCONN; 6428 6429 /* Is there a good reason to think that we may receive some data? */ 6430 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6431 goto out; 6432 6433 /* Handle signals. */ 6434 if (signal_pending(current)) 6435 goto interrupted; 6436 6437 /* Let another process have a go. Since we are going to sleep 6438 * anyway. Note: This may cause odd behaviors if the message 6439 * does not fit in the user's buffer, but this seems to be the 6440 * only way to honor MSG_DONTWAIT realistically. 6441 */ 6442 sctp_release_sock(sk); 6443 *timeo_p = schedule_timeout(*timeo_p); 6444 sctp_lock_sock(sk); 6445 6446 ready: 6447 finish_wait(sk_sleep(sk), &wait); 6448 return 0; 6449 6450 interrupted: 6451 error = sock_intr_errno(*timeo_p); 6452 6453 out: 6454 finish_wait(sk_sleep(sk), &wait); 6455 *err = error; 6456 return error; 6457 } 6458 6459 /* Receive a datagram. 6460 * Note: This is pretty much the same routine as in core/datagram.c 6461 * with a few changes to make lksctp work. 6462 */ 6463 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6464 int noblock, int *err) 6465 { 6466 int error; 6467 struct sk_buff *skb; 6468 long timeo; 6469 6470 timeo = sock_rcvtimeo(sk, noblock); 6471 6472 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 6473 MAX_SCHEDULE_TIMEOUT); 6474 6475 do { 6476 /* Again only user level code calls this function, 6477 * so nothing interrupt level 6478 * will suddenly eat the receive_queue. 6479 * 6480 * Look at current nfs client by the way... 6481 * However, this function was correct in any case. 8) 6482 */ 6483 if (flags & MSG_PEEK) { 6484 spin_lock_bh(&sk->sk_receive_queue.lock); 6485 skb = skb_peek(&sk->sk_receive_queue); 6486 if (skb) 6487 atomic_inc(&skb->users); 6488 spin_unlock_bh(&sk->sk_receive_queue.lock); 6489 } else { 6490 skb = skb_dequeue(&sk->sk_receive_queue); 6491 } 6492 6493 if (skb) 6494 return skb; 6495 6496 /* Caller is allowed not to check sk->sk_err before calling. */ 6497 error = sock_error(sk); 6498 if (error) 6499 goto no_packet; 6500 6501 if (sk->sk_shutdown & RCV_SHUTDOWN) 6502 break; 6503 6504 /* User doesn't want to wait. */ 6505 error = -EAGAIN; 6506 if (!timeo) 6507 goto no_packet; 6508 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6509 6510 return NULL; 6511 6512 no_packet: 6513 *err = error; 6514 return NULL; 6515 } 6516 6517 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6518 static void __sctp_write_space(struct sctp_association *asoc) 6519 { 6520 struct sock *sk = asoc->base.sk; 6521 struct socket *sock = sk->sk_socket; 6522 6523 if ((sctp_wspace(asoc) > 0) && sock) { 6524 if (waitqueue_active(&asoc->wait)) 6525 wake_up_interruptible(&asoc->wait); 6526 6527 if (sctp_writeable(sk)) { 6528 wait_queue_head_t *wq = sk_sleep(sk); 6529 6530 if (wq && waitqueue_active(wq)) 6531 wake_up_interruptible(wq); 6532 6533 /* Note that we try to include the Async I/O support 6534 * here by modeling from the current TCP/UDP code. 6535 * We have not tested with it yet. 6536 */ 6537 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6538 sock_wake_async(sock, 6539 SOCK_WAKE_SPACE, POLL_OUT); 6540 } 6541 } 6542 } 6543 6544 /* Do accounting for the sndbuf space. 6545 * Decrement the used sndbuf space of the corresponding association by the 6546 * data size which was just transmitted(freed). 6547 */ 6548 static void sctp_wfree(struct sk_buff *skb) 6549 { 6550 struct sctp_association *asoc; 6551 struct sctp_chunk *chunk; 6552 struct sock *sk; 6553 6554 /* Get the saved chunk pointer. */ 6555 chunk = *((struct sctp_chunk **)(skb->cb)); 6556 asoc = chunk->asoc; 6557 sk = asoc->base.sk; 6558 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6559 sizeof(struct sk_buff) + 6560 sizeof(struct sctp_chunk); 6561 6562 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6563 6564 /* 6565 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6566 */ 6567 sk->sk_wmem_queued -= skb->truesize; 6568 sk_mem_uncharge(sk, skb->truesize); 6569 6570 sock_wfree(skb); 6571 __sctp_write_space(asoc); 6572 6573 sctp_association_put(asoc); 6574 } 6575 6576 /* Do accounting for the receive space on the socket. 6577 * Accounting for the association is done in ulpevent.c 6578 * We set this as a destructor for the cloned data skbs so that 6579 * accounting is done at the correct time. 6580 */ 6581 void sctp_sock_rfree(struct sk_buff *skb) 6582 { 6583 struct sock *sk = skb->sk; 6584 struct sctp_ulpevent *event = sctp_skb2event(skb); 6585 6586 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6587 6588 /* 6589 * Mimic the behavior of sock_rfree 6590 */ 6591 sk_mem_uncharge(sk, event->rmem_len); 6592 } 6593 6594 6595 /* Helper function to wait for space in the sndbuf. */ 6596 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6597 size_t msg_len) 6598 { 6599 struct sock *sk = asoc->base.sk; 6600 int err = 0; 6601 long current_timeo = *timeo_p; 6602 DEFINE_WAIT(wait); 6603 6604 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 6605 *timeo_p, msg_len); 6606 6607 /* Increment the association's refcnt. */ 6608 sctp_association_hold(asoc); 6609 6610 /* Wait on the association specific sndbuf space. */ 6611 for (;;) { 6612 prepare_to_wait_exclusive(&asoc->wait, &wait, 6613 TASK_INTERRUPTIBLE); 6614 if (!*timeo_p) 6615 goto do_nonblock; 6616 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6617 asoc->base.dead) 6618 goto do_error; 6619 if (signal_pending(current)) 6620 goto do_interrupted; 6621 if (msg_len <= sctp_wspace(asoc)) 6622 break; 6623 6624 /* Let another process have a go. Since we are going 6625 * to sleep anyway. 6626 */ 6627 sctp_release_sock(sk); 6628 current_timeo = schedule_timeout(current_timeo); 6629 BUG_ON(sk != asoc->base.sk); 6630 sctp_lock_sock(sk); 6631 6632 *timeo_p = current_timeo; 6633 } 6634 6635 out: 6636 finish_wait(&asoc->wait, &wait); 6637 6638 /* Release the association's refcnt. */ 6639 sctp_association_put(asoc); 6640 6641 return err; 6642 6643 do_error: 6644 err = -EPIPE; 6645 goto out; 6646 6647 do_interrupted: 6648 err = sock_intr_errno(*timeo_p); 6649 goto out; 6650 6651 do_nonblock: 6652 err = -EAGAIN; 6653 goto out; 6654 } 6655 6656 void sctp_data_ready(struct sock *sk, int len) 6657 { 6658 struct socket_wq *wq; 6659 6660 rcu_read_lock(); 6661 wq = rcu_dereference(sk->sk_wq); 6662 if (wq_has_sleeper(wq)) 6663 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6664 POLLRDNORM | POLLRDBAND); 6665 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6666 rcu_read_unlock(); 6667 } 6668 6669 /* If socket sndbuf has changed, wake up all per association waiters. */ 6670 void sctp_write_space(struct sock *sk) 6671 { 6672 struct sctp_association *asoc; 6673 6674 /* Wake up the tasks in each wait queue. */ 6675 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6676 __sctp_write_space(asoc); 6677 } 6678 } 6679 6680 /* Is there any sndbuf space available on the socket? 6681 * 6682 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6683 * associations on the same socket. For a UDP-style socket with 6684 * multiple associations, it is possible for it to be "unwriteable" 6685 * prematurely. I assume that this is acceptable because 6686 * a premature "unwriteable" is better than an accidental "writeable" which 6687 * would cause an unwanted block under certain circumstances. For the 1-1 6688 * UDP-style sockets or TCP-style sockets, this code should work. 6689 * - Daisy 6690 */ 6691 static int sctp_writeable(struct sock *sk) 6692 { 6693 int amt = 0; 6694 6695 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6696 if (amt < 0) 6697 amt = 0; 6698 return amt; 6699 } 6700 6701 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6702 * returns immediately with EINPROGRESS. 6703 */ 6704 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6705 { 6706 struct sock *sk = asoc->base.sk; 6707 int err = 0; 6708 long current_timeo = *timeo_p; 6709 DEFINE_WAIT(wait); 6710 6711 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 6712 6713 /* Increment the association's refcnt. */ 6714 sctp_association_hold(asoc); 6715 6716 for (;;) { 6717 prepare_to_wait_exclusive(&asoc->wait, &wait, 6718 TASK_INTERRUPTIBLE); 6719 if (!*timeo_p) 6720 goto do_nonblock; 6721 if (sk->sk_shutdown & RCV_SHUTDOWN) 6722 break; 6723 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6724 asoc->base.dead) 6725 goto do_error; 6726 if (signal_pending(current)) 6727 goto do_interrupted; 6728 6729 if (sctp_state(asoc, ESTABLISHED)) 6730 break; 6731 6732 /* Let another process have a go. Since we are going 6733 * to sleep anyway. 6734 */ 6735 sctp_release_sock(sk); 6736 current_timeo = schedule_timeout(current_timeo); 6737 sctp_lock_sock(sk); 6738 6739 *timeo_p = current_timeo; 6740 } 6741 6742 out: 6743 finish_wait(&asoc->wait, &wait); 6744 6745 /* Release the association's refcnt. */ 6746 sctp_association_put(asoc); 6747 6748 return err; 6749 6750 do_error: 6751 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6752 err = -ETIMEDOUT; 6753 else 6754 err = -ECONNREFUSED; 6755 goto out; 6756 6757 do_interrupted: 6758 err = sock_intr_errno(*timeo_p); 6759 goto out; 6760 6761 do_nonblock: 6762 err = -EINPROGRESS; 6763 goto out; 6764 } 6765 6766 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6767 { 6768 struct sctp_endpoint *ep; 6769 int err = 0; 6770 DEFINE_WAIT(wait); 6771 6772 ep = sctp_sk(sk)->ep; 6773 6774 6775 for (;;) { 6776 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6777 TASK_INTERRUPTIBLE); 6778 6779 if (list_empty(&ep->asocs)) { 6780 sctp_release_sock(sk); 6781 timeo = schedule_timeout(timeo); 6782 sctp_lock_sock(sk); 6783 } 6784 6785 err = -EINVAL; 6786 if (!sctp_sstate(sk, LISTENING)) 6787 break; 6788 6789 err = 0; 6790 if (!list_empty(&ep->asocs)) 6791 break; 6792 6793 err = sock_intr_errno(timeo); 6794 if (signal_pending(current)) 6795 break; 6796 6797 err = -EAGAIN; 6798 if (!timeo) 6799 break; 6800 } 6801 6802 finish_wait(sk_sleep(sk), &wait); 6803 6804 return err; 6805 } 6806 6807 static void sctp_wait_for_close(struct sock *sk, long timeout) 6808 { 6809 DEFINE_WAIT(wait); 6810 6811 do { 6812 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6813 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6814 break; 6815 sctp_release_sock(sk); 6816 timeout = schedule_timeout(timeout); 6817 sctp_lock_sock(sk); 6818 } while (!signal_pending(current) && timeout); 6819 6820 finish_wait(sk_sleep(sk), &wait); 6821 } 6822 6823 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6824 { 6825 struct sk_buff *frag; 6826 6827 if (!skb->data_len) 6828 goto done; 6829 6830 /* Don't forget the fragments. */ 6831 skb_walk_frags(skb, frag) 6832 sctp_skb_set_owner_r_frag(frag, sk); 6833 6834 done: 6835 sctp_skb_set_owner_r(skb, sk); 6836 } 6837 6838 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6839 struct sctp_association *asoc) 6840 { 6841 struct inet_sock *inet = inet_sk(sk); 6842 struct inet_sock *newinet; 6843 6844 newsk->sk_type = sk->sk_type; 6845 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6846 newsk->sk_flags = sk->sk_flags; 6847 newsk->sk_no_check = sk->sk_no_check; 6848 newsk->sk_reuse = sk->sk_reuse; 6849 6850 newsk->sk_shutdown = sk->sk_shutdown; 6851 newsk->sk_destruct = sctp_destruct_sock; 6852 newsk->sk_family = sk->sk_family; 6853 newsk->sk_protocol = IPPROTO_SCTP; 6854 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6855 newsk->sk_sndbuf = sk->sk_sndbuf; 6856 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6857 newsk->sk_lingertime = sk->sk_lingertime; 6858 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6859 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6860 6861 newinet = inet_sk(newsk); 6862 6863 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6864 * getsockname() and getpeername() 6865 */ 6866 newinet->inet_sport = inet->inet_sport; 6867 newinet->inet_saddr = inet->inet_saddr; 6868 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6869 newinet->inet_dport = htons(asoc->peer.port); 6870 newinet->pmtudisc = inet->pmtudisc; 6871 newinet->inet_id = asoc->next_tsn ^ jiffies; 6872 6873 newinet->uc_ttl = inet->uc_ttl; 6874 newinet->mc_loop = 1; 6875 newinet->mc_ttl = 1; 6876 newinet->mc_index = 0; 6877 newinet->mc_list = NULL; 6878 } 6879 6880 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6881 * and its messages to the newsk. 6882 */ 6883 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6884 struct sctp_association *assoc, 6885 sctp_socket_type_t type) 6886 { 6887 struct sctp_sock *oldsp = sctp_sk(oldsk); 6888 struct sctp_sock *newsp = sctp_sk(newsk); 6889 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6890 struct sctp_endpoint *newep = newsp->ep; 6891 struct sk_buff *skb, *tmp; 6892 struct sctp_ulpevent *event; 6893 struct sctp_bind_hashbucket *head; 6894 struct list_head tmplist; 6895 6896 /* Migrate socket buffer sizes and all the socket level options to the 6897 * new socket. 6898 */ 6899 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6900 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6901 /* Brute force copy old sctp opt. */ 6902 if (oldsp->do_auto_asconf) { 6903 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6904 inet_sk_copy_descendant(newsk, oldsk); 6905 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6906 } else 6907 inet_sk_copy_descendant(newsk, oldsk); 6908 6909 /* Restore the ep value that was overwritten with the above structure 6910 * copy. 6911 */ 6912 newsp->ep = newep; 6913 newsp->hmac = NULL; 6914 6915 /* Hook this new socket in to the bind_hash list. */ 6916 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 6917 inet_sk(oldsk)->inet_num)]; 6918 sctp_local_bh_disable(); 6919 sctp_spin_lock(&head->lock); 6920 pp = sctp_sk(oldsk)->bind_hash; 6921 sk_add_bind_node(newsk, &pp->owner); 6922 sctp_sk(newsk)->bind_hash = pp; 6923 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6924 sctp_spin_unlock(&head->lock); 6925 sctp_local_bh_enable(); 6926 6927 /* Copy the bind_addr list from the original endpoint to the new 6928 * endpoint so that we can handle restarts properly 6929 */ 6930 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6931 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6932 6933 /* Move any messages in the old socket's receive queue that are for the 6934 * peeled off association to the new socket's receive queue. 6935 */ 6936 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6937 event = sctp_skb2event(skb); 6938 if (event->asoc == assoc) { 6939 __skb_unlink(skb, &oldsk->sk_receive_queue); 6940 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6941 sctp_skb_set_owner_r_frag(skb, newsk); 6942 } 6943 } 6944 6945 /* Clean up any messages pending delivery due to partial 6946 * delivery. Three cases: 6947 * 1) No partial deliver; no work. 6948 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6949 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6950 */ 6951 skb_queue_head_init(&newsp->pd_lobby); 6952 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6953 6954 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6955 struct sk_buff_head *queue; 6956 6957 /* Decide which queue to move pd_lobby skbs to. */ 6958 if (assoc->ulpq.pd_mode) { 6959 queue = &newsp->pd_lobby; 6960 } else 6961 queue = &newsk->sk_receive_queue; 6962 6963 /* Walk through the pd_lobby, looking for skbs that 6964 * need moved to the new socket. 6965 */ 6966 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6967 event = sctp_skb2event(skb); 6968 if (event->asoc == assoc) { 6969 __skb_unlink(skb, &oldsp->pd_lobby); 6970 __skb_queue_tail(queue, skb); 6971 sctp_skb_set_owner_r_frag(skb, newsk); 6972 } 6973 } 6974 6975 /* Clear up any skbs waiting for the partial 6976 * delivery to finish. 6977 */ 6978 if (assoc->ulpq.pd_mode) 6979 sctp_clear_pd(oldsk, NULL); 6980 6981 } 6982 6983 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6984 sctp_skb_set_owner_r_frag(skb, newsk); 6985 6986 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6987 sctp_skb_set_owner_r_frag(skb, newsk); 6988 6989 /* Set the type of socket to indicate that it is peeled off from the 6990 * original UDP-style socket or created with the accept() call on a 6991 * TCP-style socket.. 6992 */ 6993 newsp->type = type; 6994 6995 /* Mark the new socket "in-use" by the user so that any packets 6996 * that may arrive on the association after we've moved it are 6997 * queued to the backlog. This prevents a potential race between 6998 * backlog processing on the old socket and new-packet processing 6999 * on the new socket. 7000 * 7001 * The caller has just allocated newsk so we can guarantee that other 7002 * paths won't try to lock it and then oldsk. 7003 */ 7004 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7005 sctp_assoc_migrate(assoc, newsk); 7006 7007 /* If the association on the newsk is already closed before accept() 7008 * is called, set RCV_SHUTDOWN flag. 7009 */ 7010 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 7011 newsk->sk_shutdown |= RCV_SHUTDOWN; 7012 7013 newsk->sk_state = SCTP_SS_ESTABLISHED; 7014 sctp_release_sock(newsk); 7015 } 7016 7017 7018 /* This proto struct describes the ULP interface for SCTP. */ 7019 struct proto sctp_prot = { 7020 .name = "SCTP", 7021 .owner = THIS_MODULE, 7022 .close = sctp_close, 7023 .connect = sctp_connect, 7024 .disconnect = sctp_disconnect, 7025 .accept = sctp_accept, 7026 .ioctl = sctp_ioctl, 7027 .init = sctp_init_sock, 7028 .destroy = sctp_destroy_sock, 7029 .shutdown = sctp_shutdown, 7030 .setsockopt = sctp_setsockopt, 7031 .getsockopt = sctp_getsockopt, 7032 .sendmsg = sctp_sendmsg, 7033 .recvmsg = sctp_recvmsg, 7034 .bind = sctp_bind, 7035 .backlog_rcv = sctp_backlog_rcv, 7036 .hash = sctp_hash, 7037 .unhash = sctp_unhash, 7038 .get_port = sctp_get_port, 7039 .obj_size = sizeof(struct sctp_sock), 7040 .sysctl_mem = sysctl_sctp_mem, 7041 .sysctl_rmem = sysctl_sctp_rmem, 7042 .sysctl_wmem = sysctl_sctp_wmem, 7043 .memory_pressure = &sctp_memory_pressure, 7044 .enter_memory_pressure = sctp_enter_memory_pressure, 7045 .memory_allocated = &sctp_memory_allocated, 7046 .sockets_allocated = &sctp_sockets_allocated, 7047 }; 7048 7049 #if IS_ENABLED(CONFIG_IPV6) 7050 7051 struct proto sctpv6_prot = { 7052 .name = "SCTPv6", 7053 .owner = THIS_MODULE, 7054 .close = sctp_close, 7055 .connect = sctp_connect, 7056 .disconnect = sctp_disconnect, 7057 .accept = sctp_accept, 7058 .ioctl = sctp_ioctl, 7059 .init = sctp_init_sock, 7060 .destroy = sctp_destroy_sock, 7061 .shutdown = sctp_shutdown, 7062 .setsockopt = sctp_setsockopt, 7063 .getsockopt = sctp_getsockopt, 7064 .sendmsg = sctp_sendmsg, 7065 .recvmsg = sctp_recvmsg, 7066 .bind = sctp_bind, 7067 .backlog_rcv = sctp_backlog_rcv, 7068 .hash = sctp_hash, 7069 .unhash = sctp_unhash, 7070 .get_port = sctp_get_port, 7071 .obj_size = sizeof(struct sctp6_sock), 7072 .sysctl_mem = sysctl_sctp_mem, 7073 .sysctl_rmem = sysctl_sctp_rmem, 7074 .sysctl_wmem = sysctl_sctp_wmem, 7075 .memory_pressure = &sctp_memory_pressure, 7076 .enter_memory_pressure = sctp_enter_memory_pressure, 7077 .memory_allocated = &sctp_memory_allocated, 7078 .sockets_allocated = &sctp_sockets_allocated, 7079 }; 7080 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7081