xref: /openbmc/linux/net/sctp/socket.c (revision cd5d5810)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <linux-sctp@vger.kernel.org>
38  *
39  * Written or modified by:
40  *    La Monte H.P. Yarroll <piggy@acm.org>
41  *    Narasimha Budihal     <narsi@refcode.org>
42  *    Karl Knutson          <karl@athena.chicago.il.us>
43  *    Jon Grimm             <jgrimm@us.ibm.com>
44  *    Xingang Guo           <xingang.guo@intel.com>
45  *    Daisy Chang           <daisyc@us.ibm.com>
46  *    Sridhar Samudrala     <samudrala@us.ibm.com>
47  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
48  *    Ardelle Fan	    <ardelle.fan@intel.com>
49  *    Ryan Layer	    <rmlayer@us.ibm.com>
50  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
51  *    Kevin Gao             <kevin.gao@intel.com>
52  */
53 
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55 
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/crypto.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 
75 #include <linux/socket.h> /* for sa_family_t */
76 #include <linux/export.h>
77 #include <net/sock.h>
78 #include <net/sctp/sctp.h>
79 #include <net/sctp/sm.h>
80 
81 /* Forward declarations for internal helper functions. */
82 static int sctp_writeable(struct sock *sk);
83 static void sctp_wfree(struct sk_buff *skb);
84 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
85 				size_t msg_len);
86 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
87 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
88 static int sctp_wait_for_accept(struct sock *sk, long timeo);
89 static void sctp_wait_for_close(struct sock *sk, long timeo);
90 static void sctp_destruct_sock(struct sock *sk);
91 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
92 					union sctp_addr *addr, int len);
93 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
94 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
95 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf(struct sctp_association *asoc,
98 			    struct sctp_chunk *chunk);
99 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
100 static int sctp_autobind(struct sock *sk);
101 static void sctp_sock_migrate(struct sock *, struct sock *,
102 			      struct sctp_association *, sctp_socket_type_t);
103 
104 extern struct kmem_cache *sctp_bucket_cachep;
105 extern long sysctl_sctp_mem[3];
106 extern int sysctl_sctp_rmem[3];
107 extern int sysctl_sctp_wmem[3];
108 
109 static int sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	int amt;
123 
124 	if (asoc->ep->sndbuf_policy)
125 		amt = asoc->sndbuf_used;
126 	else
127 		amt = sk_wmem_alloc_get(asoc->base.sk);
128 
129 	if (amt >= asoc->base.sk->sk_sndbuf) {
130 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
131 			amt = 0;
132 		else {
133 			amt = sk_stream_wspace(asoc->base.sk);
134 			if (amt < 0)
135 				amt = 0;
136 		}
137 	} else {
138 		amt = asoc->base.sk->sk_sndbuf - amt;
139 	}
140 	return amt;
141 }
142 
143 /* Increment the used sndbuf space count of the corresponding association by
144  * the size of the outgoing data chunk.
145  * Also, set the skb destructor for sndbuf accounting later.
146  *
147  * Since it is always 1-1 between chunk and skb, and also a new skb is always
148  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
149  * destructor in the data chunk skb for the purpose of the sndbuf space
150  * tracking.
151  */
152 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
153 {
154 	struct sctp_association *asoc = chunk->asoc;
155 	struct sock *sk = asoc->base.sk;
156 
157 	/* The sndbuf space is tracked per association.  */
158 	sctp_association_hold(asoc);
159 
160 	skb_set_owner_w(chunk->skb, sk);
161 
162 	chunk->skb->destructor = sctp_wfree;
163 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
164 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
165 
166 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
167 				sizeof(struct sk_buff) +
168 				sizeof(struct sctp_chunk);
169 
170 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
171 	sk->sk_wmem_queued += chunk->skb->truesize;
172 	sk_mem_charge(sk, chunk->skb->truesize);
173 }
174 
175 /* Verify that this is a valid address. */
176 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
177 				   int len)
178 {
179 	struct sctp_af *af;
180 
181 	/* Verify basic sockaddr. */
182 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
183 	if (!af)
184 		return -EINVAL;
185 
186 	/* Is this a valid SCTP address?  */
187 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
188 		return -EINVAL;
189 
190 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
196 /* Look up the association by its id.  If this is not a UDP-style
197  * socket, the ID field is always ignored.
198  */
199 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
200 {
201 	struct sctp_association *asoc = NULL;
202 
203 	/* If this is not a UDP-style socket, assoc id should be ignored. */
204 	if (!sctp_style(sk, UDP)) {
205 		/* Return NULL if the socket state is not ESTABLISHED. It
206 		 * could be a TCP-style listening socket or a socket which
207 		 * hasn't yet called connect() to establish an association.
208 		 */
209 		if (!sctp_sstate(sk, ESTABLISHED))
210 			return NULL;
211 
212 		/* Get the first and the only association from the list. */
213 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
214 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
215 					  struct sctp_association, asocs);
216 		return asoc;
217 	}
218 
219 	/* Otherwise this is a UDP-style socket. */
220 	if (!id || (id == (sctp_assoc_t)-1))
221 		return NULL;
222 
223 	spin_lock_bh(&sctp_assocs_id_lock);
224 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
225 	spin_unlock_bh(&sctp_assocs_id_lock);
226 
227 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
228 		return NULL;
229 
230 	return asoc;
231 }
232 
233 /* Look up the transport from an address and an assoc id. If both address and
234  * id are specified, the associations matching the address and the id should be
235  * the same.
236  */
237 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
238 					      struct sockaddr_storage *addr,
239 					      sctp_assoc_t id)
240 {
241 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
242 	struct sctp_transport *transport;
243 	union sctp_addr *laddr = (union sctp_addr *)addr;
244 
245 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 					       laddr,
247 					       &transport);
248 
249 	if (!addr_asoc)
250 		return NULL;
251 
252 	id_asoc = sctp_id2assoc(sk, id);
253 	if (id_asoc && (id_asoc != addr_asoc))
254 		return NULL;
255 
256 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
257 						(union sctp_addr *)addr);
258 
259 	return transport;
260 }
261 
262 /* API 3.1.2 bind() - UDP Style Syntax
263  * The syntax of bind() is,
264  *
265  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
266  *
267  *   sd      - the socket descriptor returned by socket().
268  *   addr    - the address structure (struct sockaddr_in or struct
269  *             sockaddr_in6 [RFC 2553]),
270  *   addr_len - the size of the address structure.
271  */
272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273 {
274 	int retval = 0;
275 
276 	sctp_lock_sock(sk);
277 
278 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 		 addr, addr_len);
280 
281 	/* Disallow binding twice. */
282 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 				      addr_len);
285 	else
286 		retval = -EINVAL;
287 
288 	sctp_release_sock(sk);
289 
290 	return retval;
291 }
292 
293 static long sctp_get_port_local(struct sock *, union sctp_addr *);
294 
295 /* Verify this is a valid sockaddr. */
296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 					union sctp_addr *addr, int len)
298 {
299 	struct sctp_af *af;
300 
301 	/* Check minimum size.  */
302 	if (len < sizeof (struct sockaddr))
303 		return NULL;
304 
305 	/* V4 mapped address are really of AF_INET family */
306 	if (addr->sa.sa_family == AF_INET6 &&
307 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 		if (!opt->pf->af_supported(AF_INET, opt))
309 			return NULL;
310 	} else {
311 		/* Does this PF support this AF? */
312 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 			return NULL;
314 	}
315 
316 	/* If we get this far, af is valid. */
317 	af = sctp_get_af_specific(addr->sa.sa_family);
318 
319 	if (len < af->sockaddr_len)
320 		return NULL;
321 
322 	return af;
323 }
324 
325 /* Bind a local address either to an endpoint or to an association.  */
326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327 {
328 	struct net *net = sock_net(sk);
329 	struct sctp_sock *sp = sctp_sk(sk);
330 	struct sctp_endpoint *ep = sp->ep;
331 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 	struct sctp_af *af;
333 	unsigned short snum;
334 	int ret = 0;
335 
336 	/* Common sockaddr verification. */
337 	af = sctp_sockaddr_af(sp, addr, len);
338 	if (!af) {
339 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 			 __func__, sk, addr, len);
341 		return -EINVAL;
342 	}
343 
344 	snum = ntohs(addr->v4.sin_port);
345 
346 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 		 __func__, sk, &addr->sa, bp->port, snum, len);
348 
349 	/* PF specific bind() address verification. */
350 	if (!sp->pf->bind_verify(sp, addr))
351 		return -EADDRNOTAVAIL;
352 
353 	/* We must either be unbound, or bind to the same port.
354 	 * It's OK to allow 0 ports if we are already bound.
355 	 * We'll just inhert an already bound port in this case
356 	 */
357 	if (bp->port) {
358 		if (!snum)
359 			snum = bp->port;
360 		else if (snum != bp->port) {
361 			pr_debug("%s: new port %d doesn't match existing port "
362 				 "%d\n", __func__, snum, bp->port);
363 			return -EINVAL;
364 		}
365 	}
366 
367 	if (snum && snum < PROT_SOCK &&
368 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 		return -EACCES;
370 
371 	/* See if the address matches any of the addresses we may have
372 	 * already bound before checking against other endpoints.
373 	 */
374 	if (sctp_bind_addr_match(bp, addr, sp))
375 		return -EINVAL;
376 
377 	/* Make sure we are allowed to bind here.
378 	 * The function sctp_get_port_local() does duplicate address
379 	 * detection.
380 	 */
381 	addr->v4.sin_port = htons(snum);
382 	if ((ret = sctp_get_port_local(sk, addr))) {
383 		return -EADDRINUSE;
384 	}
385 
386 	/* Refresh ephemeral port.  */
387 	if (!bp->port)
388 		bp->port = inet_sk(sk)->inet_num;
389 
390 	/* Add the address to the bind address list.
391 	 * Use GFP_ATOMIC since BHs will be disabled.
392 	 */
393 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
394 
395 	/* Copy back into socket for getsockname() use. */
396 	if (!ret) {
397 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
398 		af->to_sk_saddr(addr, sk);
399 	}
400 
401 	return ret;
402 }
403 
404  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
405  *
406  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
407  * at any one time.  If a sender, after sending an ASCONF chunk, decides
408  * it needs to transfer another ASCONF Chunk, it MUST wait until the
409  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
410  * subsequent ASCONF. Note this restriction binds each side, so at any
411  * time two ASCONF may be in-transit on any given association (one sent
412  * from each endpoint).
413  */
414 static int sctp_send_asconf(struct sctp_association *asoc,
415 			    struct sctp_chunk *chunk)
416 {
417 	struct net 	*net = sock_net(asoc->base.sk);
418 	int		retval = 0;
419 
420 	/* If there is an outstanding ASCONF chunk, queue it for later
421 	 * transmission.
422 	 */
423 	if (asoc->addip_last_asconf) {
424 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
425 		goto out;
426 	}
427 
428 	/* Hold the chunk until an ASCONF_ACK is received. */
429 	sctp_chunk_hold(chunk);
430 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
431 	if (retval)
432 		sctp_chunk_free(chunk);
433 	else
434 		asoc->addip_last_asconf = chunk;
435 
436 out:
437 	return retval;
438 }
439 
440 /* Add a list of addresses as bind addresses to local endpoint or
441  * association.
442  *
443  * Basically run through each address specified in the addrs/addrcnt
444  * array/length pair, determine if it is IPv6 or IPv4 and call
445  * sctp_do_bind() on it.
446  *
447  * If any of them fails, then the operation will be reversed and the
448  * ones that were added will be removed.
449  *
450  * Only sctp_setsockopt_bindx() is supposed to call this function.
451  */
452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
453 {
454 	int cnt;
455 	int retval = 0;
456 	void *addr_buf;
457 	struct sockaddr *sa_addr;
458 	struct sctp_af *af;
459 
460 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
461 		 addrs, addrcnt);
462 
463 	addr_buf = addrs;
464 	for (cnt = 0; cnt < addrcnt; cnt++) {
465 		/* The list may contain either IPv4 or IPv6 address;
466 		 * determine the address length for walking thru the list.
467 		 */
468 		sa_addr = addr_buf;
469 		af = sctp_get_af_specific(sa_addr->sa_family);
470 		if (!af) {
471 			retval = -EINVAL;
472 			goto err_bindx_add;
473 		}
474 
475 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
476 				      af->sockaddr_len);
477 
478 		addr_buf += af->sockaddr_len;
479 
480 err_bindx_add:
481 		if (retval < 0) {
482 			/* Failed. Cleanup the ones that have been added */
483 			if (cnt > 0)
484 				sctp_bindx_rem(sk, addrs, cnt);
485 			return retval;
486 		}
487 	}
488 
489 	return retval;
490 }
491 
492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
493  * associations that are part of the endpoint indicating that a list of local
494  * addresses are added to the endpoint.
495  *
496  * If any of the addresses is already in the bind address list of the
497  * association, we do not send the chunk for that association.  But it will not
498  * affect other associations.
499  *
500  * Only sctp_setsockopt_bindx() is supposed to call this function.
501  */
502 static int sctp_send_asconf_add_ip(struct sock		*sk,
503 				   struct sockaddr	*addrs,
504 				   int 			addrcnt)
505 {
506 	struct net *net = sock_net(sk);
507 	struct sctp_sock		*sp;
508 	struct sctp_endpoint		*ep;
509 	struct sctp_association		*asoc;
510 	struct sctp_bind_addr		*bp;
511 	struct sctp_chunk		*chunk;
512 	struct sctp_sockaddr_entry	*laddr;
513 	union sctp_addr			*addr;
514 	union sctp_addr			saveaddr;
515 	void				*addr_buf;
516 	struct sctp_af			*af;
517 	struct list_head		*p;
518 	int 				i;
519 	int 				retval = 0;
520 
521 	if (!net->sctp.addip_enable)
522 		return retval;
523 
524 	sp = sctp_sk(sk);
525 	ep = sp->ep;
526 
527 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
528 		 __func__, sk, addrs, addrcnt);
529 
530 	list_for_each_entry(asoc, &ep->asocs, asocs) {
531 		if (!asoc->peer.asconf_capable)
532 			continue;
533 
534 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
535 			continue;
536 
537 		if (!sctp_state(asoc, ESTABLISHED))
538 			continue;
539 
540 		/* Check if any address in the packed array of addresses is
541 		 * in the bind address list of the association. If so,
542 		 * do not send the asconf chunk to its peer, but continue with
543 		 * other associations.
544 		 */
545 		addr_buf = addrs;
546 		for (i = 0; i < addrcnt; i++) {
547 			addr = addr_buf;
548 			af = sctp_get_af_specific(addr->v4.sin_family);
549 			if (!af) {
550 				retval = -EINVAL;
551 				goto out;
552 			}
553 
554 			if (sctp_assoc_lookup_laddr(asoc, addr))
555 				break;
556 
557 			addr_buf += af->sockaddr_len;
558 		}
559 		if (i < addrcnt)
560 			continue;
561 
562 		/* Use the first valid address in bind addr list of
563 		 * association as Address Parameter of ASCONF CHUNK.
564 		 */
565 		bp = &asoc->base.bind_addr;
566 		p = bp->address_list.next;
567 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
568 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
569 						   addrcnt, SCTP_PARAM_ADD_IP);
570 		if (!chunk) {
571 			retval = -ENOMEM;
572 			goto out;
573 		}
574 
575 		/* Add the new addresses to the bind address list with
576 		 * use_as_src set to 0.
577 		 */
578 		addr_buf = addrs;
579 		for (i = 0; i < addrcnt; i++) {
580 			addr = addr_buf;
581 			af = sctp_get_af_specific(addr->v4.sin_family);
582 			memcpy(&saveaddr, addr, af->sockaddr_len);
583 			retval = sctp_add_bind_addr(bp, &saveaddr,
584 						    SCTP_ADDR_NEW, GFP_ATOMIC);
585 			addr_buf += af->sockaddr_len;
586 		}
587 		if (asoc->src_out_of_asoc_ok) {
588 			struct sctp_transport *trans;
589 
590 			list_for_each_entry(trans,
591 			    &asoc->peer.transport_addr_list, transports) {
592 				/* Clear the source and route cache */
593 				dst_release(trans->dst);
594 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
595 				    2*asoc->pathmtu, 4380));
596 				trans->ssthresh = asoc->peer.i.a_rwnd;
597 				trans->rto = asoc->rto_initial;
598 				sctp_max_rto(asoc, trans);
599 				trans->rtt = trans->srtt = trans->rttvar = 0;
600 				sctp_transport_route(trans, NULL,
601 				    sctp_sk(asoc->base.sk));
602 			}
603 		}
604 		retval = sctp_send_asconf(asoc, chunk);
605 	}
606 
607 out:
608 	return retval;
609 }
610 
611 /* Remove a list of addresses from bind addresses list.  Do not remove the
612  * last address.
613  *
614  * Basically run through each address specified in the addrs/addrcnt
615  * array/length pair, determine if it is IPv6 or IPv4 and call
616  * sctp_del_bind() on it.
617  *
618  * If any of them fails, then the operation will be reversed and the
619  * ones that were removed will be added back.
620  *
621  * At least one address has to be left; if only one address is
622  * available, the operation will return -EBUSY.
623  *
624  * Only sctp_setsockopt_bindx() is supposed to call this function.
625  */
626 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
627 {
628 	struct sctp_sock *sp = sctp_sk(sk);
629 	struct sctp_endpoint *ep = sp->ep;
630 	int cnt;
631 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
632 	int retval = 0;
633 	void *addr_buf;
634 	union sctp_addr *sa_addr;
635 	struct sctp_af *af;
636 
637 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
638 		 __func__, sk, addrs, addrcnt);
639 
640 	addr_buf = addrs;
641 	for (cnt = 0; cnt < addrcnt; cnt++) {
642 		/* If the bind address list is empty or if there is only one
643 		 * bind address, there is nothing more to be removed (we need
644 		 * at least one address here).
645 		 */
646 		if (list_empty(&bp->address_list) ||
647 		    (sctp_list_single_entry(&bp->address_list))) {
648 			retval = -EBUSY;
649 			goto err_bindx_rem;
650 		}
651 
652 		sa_addr = addr_buf;
653 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
654 		if (!af) {
655 			retval = -EINVAL;
656 			goto err_bindx_rem;
657 		}
658 
659 		if (!af->addr_valid(sa_addr, sp, NULL)) {
660 			retval = -EADDRNOTAVAIL;
661 			goto err_bindx_rem;
662 		}
663 
664 		if (sa_addr->v4.sin_port &&
665 		    sa_addr->v4.sin_port != htons(bp->port)) {
666 			retval = -EINVAL;
667 			goto err_bindx_rem;
668 		}
669 
670 		if (!sa_addr->v4.sin_port)
671 			sa_addr->v4.sin_port = htons(bp->port);
672 
673 		/* FIXME - There is probably a need to check if sk->sk_saddr and
674 		 * sk->sk_rcv_addr are currently set to one of the addresses to
675 		 * be removed. This is something which needs to be looked into
676 		 * when we are fixing the outstanding issues with multi-homing
677 		 * socket routing and failover schemes. Refer to comments in
678 		 * sctp_do_bind(). -daisy
679 		 */
680 		retval = sctp_del_bind_addr(bp, sa_addr);
681 
682 		addr_buf += af->sockaddr_len;
683 err_bindx_rem:
684 		if (retval < 0) {
685 			/* Failed. Add the ones that has been removed back */
686 			if (cnt > 0)
687 				sctp_bindx_add(sk, addrs, cnt);
688 			return retval;
689 		}
690 	}
691 
692 	return retval;
693 }
694 
695 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
696  * the associations that are part of the endpoint indicating that a list of
697  * local addresses are removed from the endpoint.
698  *
699  * If any of the addresses is already in the bind address list of the
700  * association, we do not send the chunk for that association.  But it will not
701  * affect other associations.
702  *
703  * Only sctp_setsockopt_bindx() is supposed to call this function.
704  */
705 static int sctp_send_asconf_del_ip(struct sock		*sk,
706 				   struct sockaddr	*addrs,
707 				   int			addrcnt)
708 {
709 	struct net *net = sock_net(sk);
710 	struct sctp_sock	*sp;
711 	struct sctp_endpoint	*ep;
712 	struct sctp_association	*asoc;
713 	struct sctp_transport	*transport;
714 	struct sctp_bind_addr	*bp;
715 	struct sctp_chunk	*chunk;
716 	union sctp_addr		*laddr;
717 	void			*addr_buf;
718 	struct sctp_af		*af;
719 	struct sctp_sockaddr_entry *saddr;
720 	int 			i;
721 	int 			retval = 0;
722 	int			stored = 0;
723 
724 	chunk = NULL;
725 	if (!net->sctp.addip_enable)
726 		return retval;
727 
728 	sp = sctp_sk(sk);
729 	ep = sp->ep;
730 
731 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
732 		 __func__, sk, addrs, addrcnt);
733 
734 	list_for_each_entry(asoc, &ep->asocs, asocs) {
735 
736 		if (!asoc->peer.asconf_capable)
737 			continue;
738 
739 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
740 			continue;
741 
742 		if (!sctp_state(asoc, ESTABLISHED))
743 			continue;
744 
745 		/* Check if any address in the packed array of addresses is
746 		 * not present in the bind address list of the association.
747 		 * If so, do not send the asconf chunk to its peer, but
748 		 * continue with other associations.
749 		 */
750 		addr_buf = addrs;
751 		for (i = 0; i < addrcnt; i++) {
752 			laddr = addr_buf;
753 			af = sctp_get_af_specific(laddr->v4.sin_family);
754 			if (!af) {
755 				retval = -EINVAL;
756 				goto out;
757 			}
758 
759 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
760 				break;
761 
762 			addr_buf += af->sockaddr_len;
763 		}
764 		if (i < addrcnt)
765 			continue;
766 
767 		/* Find one address in the association's bind address list
768 		 * that is not in the packed array of addresses. This is to
769 		 * make sure that we do not delete all the addresses in the
770 		 * association.
771 		 */
772 		bp = &asoc->base.bind_addr;
773 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
774 					       addrcnt, sp);
775 		if ((laddr == NULL) && (addrcnt == 1)) {
776 			if (asoc->asconf_addr_del_pending)
777 				continue;
778 			asoc->asconf_addr_del_pending =
779 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
780 			if (asoc->asconf_addr_del_pending == NULL) {
781 				retval = -ENOMEM;
782 				goto out;
783 			}
784 			asoc->asconf_addr_del_pending->sa.sa_family =
785 				    addrs->sa_family;
786 			asoc->asconf_addr_del_pending->v4.sin_port =
787 				    htons(bp->port);
788 			if (addrs->sa_family == AF_INET) {
789 				struct sockaddr_in *sin;
790 
791 				sin = (struct sockaddr_in *)addrs;
792 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
793 			} else if (addrs->sa_family == AF_INET6) {
794 				struct sockaddr_in6 *sin6;
795 
796 				sin6 = (struct sockaddr_in6 *)addrs;
797 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
798 			}
799 
800 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
801 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
802 				 asoc->asconf_addr_del_pending);
803 
804 			asoc->src_out_of_asoc_ok = 1;
805 			stored = 1;
806 			goto skip_mkasconf;
807 		}
808 
809 		if (laddr == NULL)
810 			return -EINVAL;
811 
812 		/* We do not need RCU protection throughout this loop
813 		 * because this is done under a socket lock from the
814 		 * setsockopt call.
815 		 */
816 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
817 						   SCTP_PARAM_DEL_IP);
818 		if (!chunk) {
819 			retval = -ENOMEM;
820 			goto out;
821 		}
822 
823 skip_mkasconf:
824 		/* Reset use_as_src flag for the addresses in the bind address
825 		 * list that are to be deleted.
826 		 */
827 		addr_buf = addrs;
828 		for (i = 0; i < addrcnt; i++) {
829 			laddr = addr_buf;
830 			af = sctp_get_af_specific(laddr->v4.sin_family);
831 			list_for_each_entry(saddr, &bp->address_list, list) {
832 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
833 					saddr->state = SCTP_ADDR_DEL;
834 			}
835 			addr_buf += af->sockaddr_len;
836 		}
837 
838 		/* Update the route and saddr entries for all the transports
839 		 * as some of the addresses in the bind address list are
840 		 * about to be deleted and cannot be used as source addresses.
841 		 */
842 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
843 					transports) {
844 			dst_release(transport->dst);
845 			sctp_transport_route(transport, NULL,
846 					     sctp_sk(asoc->base.sk));
847 		}
848 
849 		if (stored)
850 			/* We don't need to transmit ASCONF */
851 			continue;
852 		retval = sctp_send_asconf(asoc, chunk);
853 	}
854 out:
855 	return retval;
856 }
857 
858 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
859 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
860 {
861 	struct sock *sk = sctp_opt2sk(sp);
862 	union sctp_addr *addr;
863 	struct sctp_af *af;
864 
865 	/* It is safe to write port space in caller. */
866 	addr = &addrw->a;
867 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
868 	af = sctp_get_af_specific(addr->sa.sa_family);
869 	if (!af)
870 		return -EINVAL;
871 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
872 		return -EINVAL;
873 
874 	if (addrw->state == SCTP_ADDR_NEW)
875 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
876 	else
877 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
878 }
879 
880 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
881  *
882  * API 8.1
883  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
884  *                int flags);
885  *
886  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
887  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
888  * or IPv6 addresses.
889  *
890  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
891  * Section 3.1.2 for this usage.
892  *
893  * addrs is a pointer to an array of one or more socket addresses. Each
894  * address is contained in its appropriate structure (i.e. struct
895  * sockaddr_in or struct sockaddr_in6) the family of the address type
896  * must be used to distinguish the address length (note that this
897  * representation is termed a "packed array" of addresses). The caller
898  * specifies the number of addresses in the array with addrcnt.
899  *
900  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
901  * -1, and sets errno to the appropriate error code.
902  *
903  * For SCTP, the port given in each socket address must be the same, or
904  * sctp_bindx() will fail, setting errno to EINVAL.
905  *
906  * The flags parameter is formed from the bitwise OR of zero or more of
907  * the following currently defined flags:
908  *
909  * SCTP_BINDX_ADD_ADDR
910  *
911  * SCTP_BINDX_REM_ADDR
912  *
913  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
914  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
915  * addresses from the association. The two flags are mutually exclusive;
916  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
917  * not remove all addresses from an association; sctp_bindx() will
918  * reject such an attempt with EINVAL.
919  *
920  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
921  * additional addresses with an endpoint after calling bind().  Or use
922  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
923  * socket is associated with so that no new association accepted will be
924  * associated with those addresses. If the endpoint supports dynamic
925  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
926  * endpoint to send the appropriate message to the peer to change the
927  * peers address lists.
928  *
929  * Adding and removing addresses from a connected association is
930  * optional functionality. Implementations that do not support this
931  * functionality should return EOPNOTSUPP.
932  *
933  * Basically do nothing but copying the addresses from user to kernel
934  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
935  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
936  * from userspace.
937  *
938  * We don't use copy_from_user() for optimization: we first do the
939  * sanity checks (buffer size -fast- and access check-healthy
940  * pointer); if all of those succeed, then we can alloc the memory
941  * (expensive operation) needed to copy the data to kernel. Then we do
942  * the copying without checking the user space area
943  * (__copy_from_user()).
944  *
945  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
946  * it.
947  *
948  * sk        The sk of the socket
949  * addrs     The pointer to the addresses in user land
950  * addrssize Size of the addrs buffer
951  * op        Operation to perform (add or remove, see the flags of
952  *           sctp_bindx)
953  *
954  * Returns 0 if ok, <0 errno code on error.
955  */
956 static int sctp_setsockopt_bindx(struct sock* sk,
957 				 struct sockaddr __user *addrs,
958 				 int addrs_size, int op)
959 {
960 	struct sockaddr *kaddrs;
961 	int err;
962 	int addrcnt = 0;
963 	int walk_size = 0;
964 	struct sockaddr *sa_addr;
965 	void *addr_buf;
966 	struct sctp_af *af;
967 
968 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
969 		 __func__, sk, addrs, addrs_size, op);
970 
971 	if (unlikely(addrs_size <= 0))
972 		return -EINVAL;
973 
974 	/* Check the user passed a healthy pointer.  */
975 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
976 		return -EFAULT;
977 
978 	/* Alloc space for the address array in kernel memory.  */
979 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
980 	if (unlikely(!kaddrs))
981 		return -ENOMEM;
982 
983 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
984 		kfree(kaddrs);
985 		return -EFAULT;
986 	}
987 
988 	/* Walk through the addrs buffer and count the number of addresses. */
989 	addr_buf = kaddrs;
990 	while (walk_size < addrs_size) {
991 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
992 			kfree(kaddrs);
993 			return -EINVAL;
994 		}
995 
996 		sa_addr = addr_buf;
997 		af = sctp_get_af_specific(sa_addr->sa_family);
998 
999 		/* If the address family is not supported or if this address
1000 		 * causes the address buffer to overflow return EINVAL.
1001 		 */
1002 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1003 			kfree(kaddrs);
1004 			return -EINVAL;
1005 		}
1006 		addrcnt++;
1007 		addr_buf += af->sockaddr_len;
1008 		walk_size += af->sockaddr_len;
1009 	}
1010 
1011 	/* Do the work. */
1012 	switch (op) {
1013 	case SCTP_BINDX_ADD_ADDR:
1014 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1015 		if (err)
1016 			goto out;
1017 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1018 		break;
1019 
1020 	case SCTP_BINDX_REM_ADDR:
1021 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1022 		if (err)
1023 			goto out;
1024 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1025 		break;
1026 
1027 	default:
1028 		err = -EINVAL;
1029 		break;
1030 	}
1031 
1032 out:
1033 	kfree(kaddrs);
1034 
1035 	return err;
1036 }
1037 
1038 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1039  *
1040  * Common routine for handling connect() and sctp_connectx().
1041  * Connect will come in with just a single address.
1042  */
1043 static int __sctp_connect(struct sock* sk,
1044 			  struct sockaddr *kaddrs,
1045 			  int addrs_size,
1046 			  sctp_assoc_t *assoc_id)
1047 {
1048 	struct net *net = sock_net(sk);
1049 	struct sctp_sock *sp;
1050 	struct sctp_endpoint *ep;
1051 	struct sctp_association *asoc = NULL;
1052 	struct sctp_association *asoc2;
1053 	struct sctp_transport *transport;
1054 	union sctp_addr to;
1055 	struct sctp_af *af;
1056 	sctp_scope_t scope;
1057 	long timeo;
1058 	int err = 0;
1059 	int addrcnt = 0;
1060 	int walk_size = 0;
1061 	union sctp_addr *sa_addr = NULL;
1062 	void *addr_buf;
1063 	unsigned short port;
1064 	unsigned int f_flags = 0;
1065 
1066 	sp = sctp_sk(sk);
1067 	ep = sp->ep;
1068 
1069 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1070 	 * state - UDP-style peeled off socket or a TCP-style socket that
1071 	 * is already connected.
1072 	 * It cannot be done even on a TCP-style listening socket.
1073 	 */
1074 	if (sctp_sstate(sk, ESTABLISHED) ||
1075 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1076 		err = -EISCONN;
1077 		goto out_free;
1078 	}
1079 
1080 	/* Walk through the addrs buffer and count the number of addresses. */
1081 	addr_buf = kaddrs;
1082 	while (walk_size < addrs_size) {
1083 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1084 			err = -EINVAL;
1085 			goto out_free;
1086 		}
1087 
1088 		sa_addr = addr_buf;
1089 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1090 
1091 		/* If the address family is not supported or if this address
1092 		 * causes the address buffer to overflow return EINVAL.
1093 		 */
1094 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1095 			err = -EINVAL;
1096 			goto out_free;
1097 		}
1098 
1099 		port = ntohs(sa_addr->v4.sin_port);
1100 
1101 		/* Save current address so we can work with it */
1102 		memcpy(&to, sa_addr, af->sockaddr_len);
1103 
1104 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1105 		if (err)
1106 			goto out_free;
1107 
1108 		/* Make sure the destination port is correctly set
1109 		 * in all addresses.
1110 		 */
1111 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1112 			err = -EINVAL;
1113 			goto out_free;
1114 		}
1115 
1116 		/* Check if there already is a matching association on the
1117 		 * endpoint (other than the one created here).
1118 		 */
1119 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1120 		if (asoc2 && asoc2 != asoc) {
1121 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1122 				err = -EISCONN;
1123 			else
1124 				err = -EALREADY;
1125 			goto out_free;
1126 		}
1127 
1128 		/* If we could not find a matching association on the endpoint,
1129 		 * make sure that there is no peeled-off association matching
1130 		 * the peer address even on another socket.
1131 		 */
1132 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1133 			err = -EADDRNOTAVAIL;
1134 			goto out_free;
1135 		}
1136 
1137 		if (!asoc) {
1138 			/* If a bind() or sctp_bindx() is not called prior to
1139 			 * an sctp_connectx() call, the system picks an
1140 			 * ephemeral port and will choose an address set
1141 			 * equivalent to binding with a wildcard address.
1142 			 */
1143 			if (!ep->base.bind_addr.port) {
1144 				if (sctp_autobind(sk)) {
1145 					err = -EAGAIN;
1146 					goto out_free;
1147 				}
1148 			} else {
1149 				/*
1150 				 * If an unprivileged user inherits a 1-many
1151 				 * style socket with open associations on a
1152 				 * privileged port, it MAY be permitted to
1153 				 * accept new associations, but it SHOULD NOT
1154 				 * be permitted to open new associations.
1155 				 */
1156 				if (ep->base.bind_addr.port < PROT_SOCK &&
1157 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1158 					err = -EACCES;
1159 					goto out_free;
1160 				}
1161 			}
1162 
1163 			scope = sctp_scope(&to);
1164 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1165 			if (!asoc) {
1166 				err = -ENOMEM;
1167 				goto out_free;
1168 			}
1169 
1170 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1171 							      GFP_KERNEL);
1172 			if (err < 0) {
1173 				goto out_free;
1174 			}
1175 
1176 		}
1177 
1178 		/* Prime the peer's transport structures.  */
1179 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1180 						SCTP_UNKNOWN);
1181 		if (!transport) {
1182 			err = -ENOMEM;
1183 			goto out_free;
1184 		}
1185 
1186 		addrcnt++;
1187 		addr_buf += af->sockaddr_len;
1188 		walk_size += af->sockaddr_len;
1189 	}
1190 
1191 	/* In case the user of sctp_connectx() wants an association
1192 	 * id back, assign one now.
1193 	 */
1194 	if (assoc_id) {
1195 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1196 		if (err < 0)
1197 			goto out_free;
1198 	}
1199 
1200 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1201 	if (err < 0) {
1202 		goto out_free;
1203 	}
1204 
1205 	/* Initialize sk's dport and daddr for getpeername() */
1206 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1207 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1208 	af->to_sk_daddr(sa_addr, sk);
1209 	sk->sk_err = 0;
1210 
1211 	/* in-kernel sockets don't generally have a file allocated to them
1212 	 * if all they do is call sock_create_kern().
1213 	 */
1214 	if (sk->sk_socket->file)
1215 		f_flags = sk->sk_socket->file->f_flags;
1216 
1217 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1218 
1219 	err = sctp_wait_for_connect(asoc, &timeo);
1220 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1221 		*assoc_id = asoc->assoc_id;
1222 
1223 	/* Don't free association on exit. */
1224 	asoc = NULL;
1225 
1226 out_free:
1227 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1228 		 __func__, asoc, kaddrs, err);
1229 
1230 	if (asoc) {
1231 		/* sctp_primitive_ASSOCIATE may have added this association
1232 		 * To the hash table, try to unhash it, just in case, its a noop
1233 		 * if it wasn't hashed so we're safe
1234 		 */
1235 		sctp_unhash_established(asoc);
1236 		sctp_association_free(asoc);
1237 	}
1238 	return err;
1239 }
1240 
1241 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1242  *
1243  * API 8.9
1244  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1245  * 			sctp_assoc_t *asoc);
1246  *
1247  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1248  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1249  * or IPv6 addresses.
1250  *
1251  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1252  * Section 3.1.2 for this usage.
1253  *
1254  * addrs is a pointer to an array of one or more socket addresses. Each
1255  * address is contained in its appropriate structure (i.e. struct
1256  * sockaddr_in or struct sockaddr_in6) the family of the address type
1257  * must be used to distengish the address length (note that this
1258  * representation is termed a "packed array" of addresses). The caller
1259  * specifies the number of addresses in the array with addrcnt.
1260  *
1261  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1262  * the association id of the new association.  On failure, sctp_connectx()
1263  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1264  * is not touched by the kernel.
1265  *
1266  * For SCTP, the port given in each socket address must be the same, or
1267  * sctp_connectx() will fail, setting errno to EINVAL.
1268  *
1269  * An application can use sctp_connectx to initiate an association with
1270  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1271  * allows a caller to specify multiple addresses at which a peer can be
1272  * reached.  The way the SCTP stack uses the list of addresses to set up
1273  * the association is implementation dependent.  This function only
1274  * specifies that the stack will try to make use of all the addresses in
1275  * the list when needed.
1276  *
1277  * Note that the list of addresses passed in is only used for setting up
1278  * the association.  It does not necessarily equal the set of addresses
1279  * the peer uses for the resulting association.  If the caller wants to
1280  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1281  * retrieve them after the association has been set up.
1282  *
1283  * Basically do nothing but copying the addresses from user to kernel
1284  * land and invoking either sctp_connectx(). This is used for tunneling
1285  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1286  *
1287  * We don't use copy_from_user() for optimization: we first do the
1288  * sanity checks (buffer size -fast- and access check-healthy
1289  * pointer); if all of those succeed, then we can alloc the memory
1290  * (expensive operation) needed to copy the data to kernel. Then we do
1291  * the copying without checking the user space area
1292  * (__copy_from_user()).
1293  *
1294  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1295  * it.
1296  *
1297  * sk        The sk of the socket
1298  * addrs     The pointer to the addresses in user land
1299  * addrssize Size of the addrs buffer
1300  *
1301  * Returns >=0 if ok, <0 errno code on error.
1302  */
1303 static int __sctp_setsockopt_connectx(struct sock* sk,
1304 				      struct sockaddr __user *addrs,
1305 				      int addrs_size,
1306 				      sctp_assoc_t *assoc_id)
1307 {
1308 	int err = 0;
1309 	struct sockaddr *kaddrs;
1310 
1311 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1312 		 __func__, sk, addrs, addrs_size);
1313 
1314 	if (unlikely(addrs_size <= 0))
1315 		return -EINVAL;
1316 
1317 	/* Check the user passed a healthy pointer.  */
1318 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1319 		return -EFAULT;
1320 
1321 	/* Alloc space for the address array in kernel memory.  */
1322 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1323 	if (unlikely(!kaddrs))
1324 		return -ENOMEM;
1325 
1326 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1327 		err = -EFAULT;
1328 	} else {
1329 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1330 	}
1331 
1332 	kfree(kaddrs);
1333 
1334 	return err;
1335 }
1336 
1337 /*
1338  * This is an older interface.  It's kept for backward compatibility
1339  * to the option that doesn't provide association id.
1340  */
1341 static int sctp_setsockopt_connectx_old(struct sock* sk,
1342 					struct sockaddr __user *addrs,
1343 					int addrs_size)
1344 {
1345 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1346 }
1347 
1348 /*
1349  * New interface for the API.  The since the API is done with a socket
1350  * option, to make it simple we feed back the association id is as a return
1351  * indication to the call.  Error is always negative and association id is
1352  * always positive.
1353  */
1354 static int sctp_setsockopt_connectx(struct sock* sk,
1355 				    struct sockaddr __user *addrs,
1356 				    int addrs_size)
1357 {
1358 	sctp_assoc_t assoc_id = 0;
1359 	int err = 0;
1360 
1361 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1362 
1363 	if (err)
1364 		return err;
1365 	else
1366 		return assoc_id;
1367 }
1368 
1369 /*
1370  * New (hopefully final) interface for the API.
1371  * We use the sctp_getaddrs_old structure so that use-space library
1372  * can avoid any unnecessary allocations.   The only defferent part
1373  * is that we store the actual length of the address buffer into the
1374  * addrs_num structure member.  That way we can re-use the existing
1375  * code.
1376  */
1377 static int sctp_getsockopt_connectx3(struct sock* sk, int len,
1378 				     char __user *optval,
1379 				     int __user *optlen)
1380 {
1381 	struct sctp_getaddrs_old param;
1382 	sctp_assoc_t assoc_id = 0;
1383 	int err = 0;
1384 
1385 	if (len < sizeof(param))
1386 		return -EINVAL;
1387 
1388 	if (copy_from_user(&param, optval, sizeof(param)))
1389 		return -EFAULT;
1390 
1391 	err = __sctp_setsockopt_connectx(sk,
1392 			(struct sockaddr __user *)param.addrs,
1393 			param.addr_num, &assoc_id);
1394 
1395 	if (err == 0 || err == -EINPROGRESS) {
1396 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1397 			return -EFAULT;
1398 		if (put_user(sizeof(assoc_id), optlen))
1399 			return -EFAULT;
1400 	}
1401 
1402 	return err;
1403 }
1404 
1405 /* API 3.1.4 close() - UDP Style Syntax
1406  * Applications use close() to perform graceful shutdown (as described in
1407  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1408  * by a UDP-style socket.
1409  *
1410  * The syntax is
1411  *
1412  *   ret = close(int sd);
1413  *
1414  *   sd      - the socket descriptor of the associations to be closed.
1415  *
1416  * To gracefully shutdown a specific association represented by the
1417  * UDP-style socket, an application should use the sendmsg() call,
1418  * passing no user data, but including the appropriate flag in the
1419  * ancillary data (see Section xxxx).
1420  *
1421  * If sd in the close() call is a branched-off socket representing only
1422  * one association, the shutdown is performed on that association only.
1423  *
1424  * 4.1.6 close() - TCP Style Syntax
1425  *
1426  * Applications use close() to gracefully close down an association.
1427  *
1428  * The syntax is:
1429  *
1430  *    int close(int sd);
1431  *
1432  *      sd      - the socket descriptor of the association to be closed.
1433  *
1434  * After an application calls close() on a socket descriptor, no further
1435  * socket operations will succeed on that descriptor.
1436  *
1437  * API 7.1.4 SO_LINGER
1438  *
1439  * An application using the TCP-style socket can use this option to
1440  * perform the SCTP ABORT primitive.  The linger option structure is:
1441  *
1442  *  struct  linger {
1443  *     int     l_onoff;                // option on/off
1444  *     int     l_linger;               // linger time
1445  * };
1446  *
1447  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1448  * to 0, calling close() is the same as the ABORT primitive.  If the
1449  * value is set to a negative value, the setsockopt() call will return
1450  * an error.  If the value is set to a positive value linger_time, the
1451  * close() can be blocked for at most linger_time ms.  If the graceful
1452  * shutdown phase does not finish during this period, close() will
1453  * return but the graceful shutdown phase continues in the system.
1454  */
1455 static void sctp_close(struct sock *sk, long timeout)
1456 {
1457 	struct net *net = sock_net(sk);
1458 	struct sctp_endpoint *ep;
1459 	struct sctp_association *asoc;
1460 	struct list_head *pos, *temp;
1461 	unsigned int data_was_unread;
1462 
1463 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1464 
1465 	sctp_lock_sock(sk);
1466 	sk->sk_shutdown = SHUTDOWN_MASK;
1467 	sk->sk_state = SCTP_SS_CLOSING;
1468 
1469 	ep = sctp_sk(sk)->ep;
1470 
1471 	/* Clean up any skbs sitting on the receive queue.  */
1472 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1473 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1474 
1475 	/* Walk all associations on an endpoint.  */
1476 	list_for_each_safe(pos, temp, &ep->asocs) {
1477 		asoc = list_entry(pos, struct sctp_association, asocs);
1478 
1479 		if (sctp_style(sk, TCP)) {
1480 			/* A closed association can still be in the list if
1481 			 * it belongs to a TCP-style listening socket that is
1482 			 * not yet accepted. If so, free it. If not, send an
1483 			 * ABORT or SHUTDOWN based on the linger options.
1484 			 */
1485 			if (sctp_state(asoc, CLOSED)) {
1486 				sctp_unhash_established(asoc);
1487 				sctp_association_free(asoc);
1488 				continue;
1489 			}
1490 		}
1491 
1492 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1493 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1494 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1495 			struct sctp_chunk *chunk;
1496 
1497 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1498 			if (chunk)
1499 				sctp_primitive_ABORT(net, asoc, chunk);
1500 		} else
1501 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1502 	}
1503 
1504 	/* On a TCP-style socket, block for at most linger_time if set. */
1505 	if (sctp_style(sk, TCP) && timeout)
1506 		sctp_wait_for_close(sk, timeout);
1507 
1508 	/* This will run the backlog queue.  */
1509 	sctp_release_sock(sk);
1510 
1511 	/* Supposedly, no process has access to the socket, but
1512 	 * the net layers still may.
1513 	 */
1514 	sctp_local_bh_disable();
1515 	sctp_bh_lock_sock(sk);
1516 
1517 	/* Hold the sock, since sk_common_release() will put sock_put()
1518 	 * and we have just a little more cleanup.
1519 	 */
1520 	sock_hold(sk);
1521 	sk_common_release(sk);
1522 
1523 	sctp_bh_unlock_sock(sk);
1524 	sctp_local_bh_enable();
1525 
1526 	sock_put(sk);
1527 
1528 	SCTP_DBG_OBJCNT_DEC(sock);
1529 }
1530 
1531 /* Handle EPIPE error. */
1532 static int sctp_error(struct sock *sk, int flags, int err)
1533 {
1534 	if (err == -EPIPE)
1535 		err = sock_error(sk) ? : -EPIPE;
1536 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1537 		send_sig(SIGPIPE, current, 0);
1538 	return err;
1539 }
1540 
1541 /* API 3.1.3 sendmsg() - UDP Style Syntax
1542  *
1543  * An application uses sendmsg() and recvmsg() calls to transmit data to
1544  * and receive data from its peer.
1545  *
1546  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1547  *                  int flags);
1548  *
1549  *  socket  - the socket descriptor of the endpoint.
1550  *  message - pointer to the msghdr structure which contains a single
1551  *            user message and possibly some ancillary data.
1552  *
1553  *            See Section 5 for complete description of the data
1554  *            structures.
1555  *
1556  *  flags   - flags sent or received with the user message, see Section
1557  *            5 for complete description of the flags.
1558  *
1559  * Note:  This function could use a rewrite especially when explicit
1560  * connect support comes in.
1561  */
1562 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1563 
1564 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1565 
1566 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1567 			struct msghdr *msg, size_t msg_len)
1568 {
1569 	struct net *net = sock_net(sk);
1570 	struct sctp_sock *sp;
1571 	struct sctp_endpoint *ep;
1572 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1573 	struct sctp_transport *transport, *chunk_tp;
1574 	struct sctp_chunk *chunk;
1575 	union sctp_addr to;
1576 	struct sockaddr *msg_name = NULL;
1577 	struct sctp_sndrcvinfo default_sinfo;
1578 	struct sctp_sndrcvinfo *sinfo;
1579 	struct sctp_initmsg *sinit;
1580 	sctp_assoc_t associd = 0;
1581 	sctp_cmsgs_t cmsgs = { NULL };
1582 	int err;
1583 	sctp_scope_t scope;
1584 	long timeo;
1585 	__u16 sinfo_flags = 0;
1586 	struct sctp_datamsg *datamsg;
1587 	int msg_flags = msg->msg_flags;
1588 
1589 	err = 0;
1590 	sp = sctp_sk(sk);
1591 	ep = sp->ep;
1592 
1593 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1594 		 msg, msg_len, ep);
1595 
1596 	/* We cannot send a message over a TCP-style listening socket. */
1597 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1598 		err = -EPIPE;
1599 		goto out_nounlock;
1600 	}
1601 
1602 	/* Parse out the SCTP CMSGs.  */
1603 	err = sctp_msghdr_parse(msg, &cmsgs);
1604 	if (err) {
1605 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1606 		goto out_nounlock;
1607 	}
1608 
1609 	/* Fetch the destination address for this packet.  This
1610 	 * address only selects the association--it is not necessarily
1611 	 * the address we will send to.
1612 	 * For a peeled-off socket, msg_name is ignored.
1613 	 */
1614 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1615 		int msg_namelen = msg->msg_namelen;
1616 
1617 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1618 				       msg_namelen);
1619 		if (err)
1620 			return err;
1621 
1622 		if (msg_namelen > sizeof(to))
1623 			msg_namelen = sizeof(to);
1624 		memcpy(&to, msg->msg_name, msg_namelen);
1625 		msg_name = msg->msg_name;
1626 	}
1627 
1628 	sinfo = cmsgs.info;
1629 	sinit = cmsgs.init;
1630 
1631 	/* Did the user specify SNDRCVINFO?  */
1632 	if (sinfo) {
1633 		sinfo_flags = sinfo->sinfo_flags;
1634 		associd = sinfo->sinfo_assoc_id;
1635 	}
1636 
1637 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1638 		 msg_len, sinfo_flags);
1639 
1640 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1641 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1642 		err = -EINVAL;
1643 		goto out_nounlock;
1644 	}
1645 
1646 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1647 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1648 	 * If SCTP_ABORT is set, the message length could be non zero with
1649 	 * the msg_iov set to the user abort reason.
1650 	 */
1651 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1652 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1653 		err = -EINVAL;
1654 		goto out_nounlock;
1655 	}
1656 
1657 	/* If SCTP_ADDR_OVER is set, there must be an address
1658 	 * specified in msg_name.
1659 	 */
1660 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1661 		err = -EINVAL;
1662 		goto out_nounlock;
1663 	}
1664 
1665 	transport = NULL;
1666 
1667 	pr_debug("%s: about to look up association\n", __func__);
1668 
1669 	sctp_lock_sock(sk);
1670 
1671 	/* If a msg_name has been specified, assume this is to be used.  */
1672 	if (msg_name) {
1673 		/* Look for a matching association on the endpoint. */
1674 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1675 		if (!asoc) {
1676 			/* If we could not find a matching association on the
1677 			 * endpoint, make sure that it is not a TCP-style
1678 			 * socket that already has an association or there is
1679 			 * no peeled-off association on another socket.
1680 			 */
1681 			if ((sctp_style(sk, TCP) &&
1682 			     sctp_sstate(sk, ESTABLISHED)) ||
1683 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1684 				err = -EADDRNOTAVAIL;
1685 				goto out_unlock;
1686 			}
1687 		}
1688 	} else {
1689 		asoc = sctp_id2assoc(sk, associd);
1690 		if (!asoc) {
1691 			err = -EPIPE;
1692 			goto out_unlock;
1693 		}
1694 	}
1695 
1696 	if (asoc) {
1697 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1698 
1699 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1700 		 * socket that has an association in CLOSED state. This can
1701 		 * happen when an accepted socket has an association that is
1702 		 * already CLOSED.
1703 		 */
1704 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1705 			err = -EPIPE;
1706 			goto out_unlock;
1707 		}
1708 
1709 		if (sinfo_flags & SCTP_EOF) {
1710 			pr_debug("%s: shutting down association:%p\n",
1711 				 __func__, asoc);
1712 
1713 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1714 			err = 0;
1715 			goto out_unlock;
1716 		}
1717 		if (sinfo_flags & SCTP_ABORT) {
1718 
1719 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1720 			if (!chunk) {
1721 				err = -ENOMEM;
1722 				goto out_unlock;
1723 			}
1724 
1725 			pr_debug("%s: aborting association:%p\n",
1726 				 __func__, asoc);
1727 
1728 			sctp_primitive_ABORT(net, asoc, chunk);
1729 			err = 0;
1730 			goto out_unlock;
1731 		}
1732 	}
1733 
1734 	/* Do we need to create the association?  */
1735 	if (!asoc) {
1736 		pr_debug("%s: there is no association yet\n", __func__);
1737 
1738 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1739 			err = -EINVAL;
1740 			goto out_unlock;
1741 		}
1742 
1743 		/* Check for invalid stream against the stream counts,
1744 		 * either the default or the user specified stream counts.
1745 		 */
1746 		if (sinfo) {
1747 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1748 				/* Check against the defaults. */
1749 				if (sinfo->sinfo_stream >=
1750 				    sp->initmsg.sinit_num_ostreams) {
1751 					err = -EINVAL;
1752 					goto out_unlock;
1753 				}
1754 			} else {
1755 				/* Check against the requested.  */
1756 				if (sinfo->sinfo_stream >=
1757 				    sinit->sinit_num_ostreams) {
1758 					err = -EINVAL;
1759 					goto out_unlock;
1760 				}
1761 			}
1762 		}
1763 
1764 		/*
1765 		 * API 3.1.2 bind() - UDP Style Syntax
1766 		 * If a bind() or sctp_bindx() is not called prior to a
1767 		 * sendmsg() call that initiates a new association, the
1768 		 * system picks an ephemeral port and will choose an address
1769 		 * set equivalent to binding with a wildcard address.
1770 		 */
1771 		if (!ep->base.bind_addr.port) {
1772 			if (sctp_autobind(sk)) {
1773 				err = -EAGAIN;
1774 				goto out_unlock;
1775 			}
1776 		} else {
1777 			/*
1778 			 * If an unprivileged user inherits a one-to-many
1779 			 * style socket with open associations on a privileged
1780 			 * port, it MAY be permitted to accept new associations,
1781 			 * but it SHOULD NOT be permitted to open new
1782 			 * associations.
1783 			 */
1784 			if (ep->base.bind_addr.port < PROT_SOCK &&
1785 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1786 				err = -EACCES;
1787 				goto out_unlock;
1788 			}
1789 		}
1790 
1791 		scope = sctp_scope(&to);
1792 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1793 		if (!new_asoc) {
1794 			err = -ENOMEM;
1795 			goto out_unlock;
1796 		}
1797 		asoc = new_asoc;
1798 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1799 		if (err < 0) {
1800 			err = -ENOMEM;
1801 			goto out_free;
1802 		}
1803 
1804 		/* If the SCTP_INIT ancillary data is specified, set all
1805 		 * the association init values accordingly.
1806 		 */
1807 		if (sinit) {
1808 			if (sinit->sinit_num_ostreams) {
1809 				asoc->c.sinit_num_ostreams =
1810 					sinit->sinit_num_ostreams;
1811 			}
1812 			if (sinit->sinit_max_instreams) {
1813 				asoc->c.sinit_max_instreams =
1814 					sinit->sinit_max_instreams;
1815 			}
1816 			if (sinit->sinit_max_attempts) {
1817 				asoc->max_init_attempts
1818 					= sinit->sinit_max_attempts;
1819 			}
1820 			if (sinit->sinit_max_init_timeo) {
1821 				asoc->max_init_timeo =
1822 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1823 			}
1824 		}
1825 
1826 		/* Prime the peer's transport structures.  */
1827 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1828 		if (!transport) {
1829 			err = -ENOMEM;
1830 			goto out_free;
1831 		}
1832 	}
1833 
1834 	/* ASSERT: we have a valid association at this point.  */
1835 	pr_debug("%s: we have a valid association\n", __func__);
1836 
1837 	if (!sinfo) {
1838 		/* If the user didn't specify SNDRCVINFO, make up one with
1839 		 * some defaults.
1840 		 */
1841 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1842 		default_sinfo.sinfo_stream = asoc->default_stream;
1843 		default_sinfo.sinfo_flags = asoc->default_flags;
1844 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1845 		default_sinfo.sinfo_context = asoc->default_context;
1846 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1847 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1848 		sinfo = &default_sinfo;
1849 	}
1850 
1851 	/* API 7.1.7, the sndbuf size per association bounds the
1852 	 * maximum size of data that can be sent in a single send call.
1853 	 */
1854 	if (msg_len > sk->sk_sndbuf) {
1855 		err = -EMSGSIZE;
1856 		goto out_free;
1857 	}
1858 
1859 	if (asoc->pmtu_pending)
1860 		sctp_assoc_pending_pmtu(sk, asoc);
1861 
1862 	/* If fragmentation is disabled and the message length exceeds the
1863 	 * association fragmentation point, return EMSGSIZE.  The I-D
1864 	 * does not specify what this error is, but this looks like
1865 	 * a great fit.
1866 	 */
1867 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1868 		err = -EMSGSIZE;
1869 		goto out_free;
1870 	}
1871 
1872 	/* Check for invalid stream. */
1873 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1874 		err = -EINVAL;
1875 		goto out_free;
1876 	}
1877 
1878 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1879 	if (!sctp_wspace(asoc)) {
1880 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1881 		if (err)
1882 			goto out_free;
1883 	}
1884 
1885 	/* If an address is passed with the sendto/sendmsg call, it is used
1886 	 * to override the primary destination address in the TCP model, or
1887 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1888 	 */
1889 	if ((sctp_style(sk, TCP) && msg_name) ||
1890 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1891 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1892 		if (!chunk_tp) {
1893 			err = -EINVAL;
1894 			goto out_free;
1895 		}
1896 	} else
1897 		chunk_tp = NULL;
1898 
1899 	/* Auto-connect, if we aren't connected already. */
1900 	if (sctp_state(asoc, CLOSED)) {
1901 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1902 		if (err < 0)
1903 			goto out_free;
1904 
1905 		pr_debug("%s: we associated primitively\n", __func__);
1906 	}
1907 
1908 	/* Break the message into multiple chunks of maximum size. */
1909 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1910 	if (IS_ERR(datamsg)) {
1911 		err = PTR_ERR(datamsg);
1912 		goto out_free;
1913 	}
1914 
1915 	/* Now send the (possibly) fragmented message. */
1916 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1917 		sctp_chunk_hold(chunk);
1918 
1919 		/* Do accounting for the write space.  */
1920 		sctp_set_owner_w(chunk);
1921 
1922 		chunk->transport = chunk_tp;
1923 	}
1924 
1925 	/* Send it to the lower layers.  Note:  all chunks
1926 	 * must either fail or succeed.   The lower layer
1927 	 * works that way today.  Keep it that way or this
1928 	 * breaks.
1929 	 */
1930 	err = sctp_primitive_SEND(net, asoc, datamsg);
1931 	/* Did the lower layer accept the chunk? */
1932 	if (err) {
1933 		sctp_datamsg_free(datamsg);
1934 		goto out_free;
1935 	}
1936 
1937 	pr_debug("%s: we sent primitively\n", __func__);
1938 
1939 	sctp_datamsg_put(datamsg);
1940 	err = msg_len;
1941 
1942 	/* If we are already past ASSOCIATE, the lower
1943 	 * layers are responsible for association cleanup.
1944 	 */
1945 	goto out_unlock;
1946 
1947 out_free:
1948 	if (new_asoc) {
1949 		sctp_unhash_established(asoc);
1950 		sctp_association_free(asoc);
1951 	}
1952 out_unlock:
1953 	sctp_release_sock(sk);
1954 
1955 out_nounlock:
1956 	return sctp_error(sk, msg_flags, err);
1957 
1958 #if 0
1959 do_sock_err:
1960 	if (msg_len)
1961 		err = msg_len;
1962 	else
1963 		err = sock_error(sk);
1964 	goto out;
1965 
1966 do_interrupted:
1967 	if (msg_len)
1968 		err = msg_len;
1969 	goto out;
1970 #endif /* 0 */
1971 }
1972 
1973 /* This is an extended version of skb_pull() that removes the data from the
1974  * start of a skb even when data is spread across the list of skb's in the
1975  * frag_list. len specifies the total amount of data that needs to be removed.
1976  * when 'len' bytes could be removed from the skb, it returns 0.
1977  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1978  * could not be removed.
1979  */
1980 static int sctp_skb_pull(struct sk_buff *skb, int len)
1981 {
1982 	struct sk_buff *list;
1983 	int skb_len = skb_headlen(skb);
1984 	int rlen;
1985 
1986 	if (len <= skb_len) {
1987 		__skb_pull(skb, len);
1988 		return 0;
1989 	}
1990 	len -= skb_len;
1991 	__skb_pull(skb, skb_len);
1992 
1993 	skb_walk_frags(skb, list) {
1994 		rlen = sctp_skb_pull(list, len);
1995 		skb->len -= (len-rlen);
1996 		skb->data_len -= (len-rlen);
1997 
1998 		if (!rlen)
1999 			return 0;
2000 
2001 		len = rlen;
2002 	}
2003 
2004 	return len;
2005 }
2006 
2007 /* API 3.1.3  recvmsg() - UDP Style Syntax
2008  *
2009  *  ssize_t recvmsg(int socket, struct msghdr *message,
2010  *                    int flags);
2011  *
2012  *  socket  - the socket descriptor of the endpoint.
2013  *  message - pointer to the msghdr structure which contains a single
2014  *            user message and possibly some ancillary data.
2015  *
2016  *            See Section 5 for complete description of the data
2017  *            structures.
2018  *
2019  *  flags   - flags sent or received with the user message, see Section
2020  *            5 for complete description of the flags.
2021  */
2022 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2023 
2024 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2025 			struct msghdr *msg, size_t len, int noblock,
2026 			int flags, int *addr_len)
2027 {
2028 	struct sctp_ulpevent *event = NULL;
2029 	struct sctp_sock *sp = sctp_sk(sk);
2030 	struct sk_buff *skb;
2031 	int copied;
2032 	int err = 0;
2033 	int skb_len;
2034 
2035 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2036 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2037 		 addr_len);
2038 
2039 	sctp_lock_sock(sk);
2040 
2041 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2042 		err = -ENOTCONN;
2043 		goto out;
2044 	}
2045 
2046 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2047 	if (!skb)
2048 		goto out;
2049 
2050 	/* Get the total length of the skb including any skb's in the
2051 	 * frag_list.
2052 	 */
2053 	skb_len = skb->len;
2054 
2055 	copied = skb_len;
2056 	if (copied > len)
2057 		copied = len;
2058 
2059 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2060 
2061 	event = sctp_skb2event(skb);
2062 
2063 	if (err)
2064 		goto out_free;
2065 
2066 	sock_recv_ts_and_drops(msg, sk, skb);
2067 	if (sctp_ulpevent_is_notification(event)) {
2068 		msg->msg_flags |= MSG_NOTIFICATION;
2069 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2070 	} else {
2071 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2072 	}
2073 
2074 	/* Check if we allow SCTP_SNDRCVINFO. */
2075 	if (sp->subscribe.sctp_data_io_event)
2076 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2077 #if 0
2078 	/* FIXME: we should be calling IP/IPv6 layers.  */
2079 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2080 		ip_cmsg_recv(msg, skb);
2081 #endif
2082 
2083 	err = copied;
2084 
2085 	/* If skb's length exceeds the user's buffer, update the skb and
2086 	 * push it back to the receive_queue so that the next call to
2087 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2088 	 */
2089 	if (skb_len > copied) {
2090 		msg->msg_flags &= ~MSG_EOR;
2091 		if (flags & MSG_PEEK)
2092 			goto out_free;
2093 		sctp_skb_pull(skb, copied);
2094 		skb_queue_head(&sk->sk_receive_queue, skb);
2095 
2096 		/* When only partial message is copied to the user, increase
2097 		 * rwnd by that amount. If all the data in the skb is read,
2098 		 * rwnd is updated when the event is freed.
2099 		 */
2100 		if (!sctp_ulpevent_is_notification(event))
2101 			sctp_assoc_rwnd_increase(event->asoc, copied);
2102 		goto out;
2103 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2104 		   (event->msg_flags & MSG_EOR))
2105 		msg->msg_flags |= MSG_EOR;
2106 	else
2107 		msg->msg_flags &= ~MSG_EOR;
2108 
2109 out_free:
2110 	if (flags & MSG_PEEK) {
2111 		/* Release the skb reference acquired after peeking the skb in
2112 		 * sctp_skb_recv_datagram().
2113 		 */
2114 		kfree_skb(skb);
2115 	} else {
2116 		/* Free the event which includes releasing the reference to
2117 		 * the owner of the skb, freeing the skb and updating the
2118 		 * rwnd.
2119 		 */
2120 		sctp_ulpevent_free(event);
2121 	}
2122 out:
2123 	sctp_release_sock(sk);
2124 	return err;
2125 }
2126 
2127 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2128  *
2129  * This option is a on/off flag.  If enabled no SCTP message
2130  * fragmentation will be performed.  Instead if a message being sent
2131  * exceeds the current PMTU size, the message will NOT be sent and
2132  * instead a error will be indicated to the user.
2133  */
2134 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2135 					     char __user *optval,
2136 					     unsigned int optlen)
2137 {
2138 	int val;
2139 
2140 	if (optlen < sizeof(int))
2141 		return -EINVAL;
2142 
2143 	if (get_user(val, (int __user *)optval))
2144 		return -EFAULT;
2145 
2146 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2147 
2148 	return 0;
2149 }
2150 
2151 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2152 				  unsigned int optlen)
2153 {
2154 	struct sctp_association *asoc;
2155 	struct sctp_ulpevent *event;
2156 
2157 	if (optlen > sizeof(struct sctp_event_subscribe))
2158 		return -EINVAL;
2159 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2160 		return -EFAULT;
2161 
2162 	/*
2163 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2164 	 * if there is no data to be sent or retransmit, the stack will
2165 	 * immediately send up this notification.
2166 	 */
2167 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2168 				       &sctp_sk(sk)->subscribe)) {
2169 		asoc = sctp_id2assoc(sk, 0);
2170 
2171 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2172 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2173 					GFP_ATOMIC);
2174 			if (!event)
2175 				return -ENOMEM;
2176 
2177 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2178 		}
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2185  *
2186  * This socket option is applicable to the UDP-style socket only.  When
2187  * set it will cause associations that are idle for more than the
2188  * specified number of seconds to automatically close.  An association
2189  * being idle is defined an association that has NOT sent or received
2190  * user data.  The special value of '0' indicates that no automatic
2191  * close of any associations should be performed.  The option expects an
2192  * integer defining the number of seconds of idle time before an
2193  * association is closed.
2194  */
2195 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2196 				     unsigned int optlen)
2197 {
2198 	struct sctp_sock *sp = sctp_sk(sk);
2199 
2200 	/* Applicable to UDP-style socket only */
2201 	if (sctp_style(sk, TCP))
2202 		return -EOPNOTSUPP;
2203 	if (optlen != sizeof(int))
2204 		return -EINVAL;
2205 	if (copy_from_user(&sp->autoclose, optval, optlen))
2206 		return -EFAULT;
2207 
2208 	return 0;
2209 }
2210 
2211 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2212  *
2213  * Applications can enable or disable heartbeats for any peer address of
2214  * an association, modify an address's heartbeat interval, force a
2215  * heartbeat to be sent immediately, and adjust the address's maximum
2216  * number of retransmissions sent before an address is considered
2217  * unreachable.  The following structure is used to access and modify an
2218  * address's parameters:
2219  *
2220  *  struct sctp_paddrparams {
2221  *     sctp_assoc_t            spp_assoc_id;
2222  *     struct sockaddr_storage spp_address;
2223  *     uint32_t                spp_hbinterval;
2224  *     uint16_t                spp_pathmaxrxt;
2225  *     uint32_t                spp_pathmtu;
2226  *     uint32_t                spp_sackdelay;
2227  *     uint32_t                spp_flags;
2228  * };
2229  *
2230  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2231  *                     application, and identifies the association for
2232  *                     this query.
2233  *   spp_address     - This specifies which address is of interest.
2234  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2235  *                     in milliseconds.  If a  value of zero
2236  *                     is present in this field then no changes are to
2237  *                     be made to this parameter.
2238  *   spp_pathmaxrxt  - This contains the maximum number of
2239  *                     retransmissions before this address shall be
2240  *                     considered unreachable. If a  value of zero
2241  *                     is present in this field then no changes are to
2242  *                     be made to this parameter.
2243  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2244  *                     specified here will be the "fixed" path mtu.
2245  *                     Note that if the spp_address field is empty
2246  *                     then all associations on this address will
2247  *                     have this fixed path mtu set upon them.
2248  *
2249  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2250  *                     the number of milliseconds that sacks will be delayed
2251  *                     for. This value will apply to all addresses of an
2252  *                     association if the spp_address field is empty. Note
2253  *                     also, that if delayed sack is enabled and this
2254  *                     value is set to 0, no change is made to the last
2255  *                     recorded delayed sack timer value.
2256  *
2257  *   spp_flags       - These flags are used to control various features
2258  *                     on an association. The flag field may contain
2259  *                     zero or more of the following options.
2260  *
2261  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2262  *                     specified address. Note that if the address
2263  *                     field is empty all addresses for the association
2264  *                     have heartbeats enabled upon them.
2265  *
2266  *                     SPP_HB_DISABLE - Disable heartbeats on the
2267  *                     speicifed address. Note that if the address
2268  *                     field is empty all addresses for the association
2269  *                     will have their heartbeats disabled. Note also
2270  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2271  *                     mutually exclusive, only one of these two should
2272  *                     be specified. Enabling both fields will have
2273  *                     undetermined results.
2274  *
2275  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2276  *                     to be made immediately.
2277  *
2278  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2279  *                     heartbeat delayis to be set to the value of 0
2280  *                     milliseconds.
2281  *
2282  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2283  *                     discovery upon the specified address. Note that
2284  *                     if the address feild is empty then all addresses
2285  *                     on the association are effected.
2286  *
2287  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2288  *                     discovery upon the specified address. Note that
2289  *                     if the address feild is empty then all addresses
2290  *                     on the association are effected. Not also that
2291  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2292  *                     exclusive. Enabling both will have undetermined
2293  *                     results.
2294  *
2295  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2296  *                     on delayed sack. The time specified in spp_sackdelay
2297  *                     is used to specify the sack delay for this address. Note
2298  *                     that if spp_address is empty then all addresses will
2299  *                     enable delayed sack and take on the sack delay
2300  *                     value specified in spp_sackdelay.
2301  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2302  *                     off delayed sack. If the spp_address field is blank then
2303  *                     delayed sack is disabled for the entire association. Note
2304  *                     also that this field is mutually exclusive to
2305  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2306  *                     results.
2307  */
2308 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2309 				       struct sctp_transport   *trans,
2310 				       struct sctp_association *asoc,
2311 				       struct sctp_sock        *sp,
2312 				       int                      hb_change,
2313 				       int                      pmtud_change,
2314 				       int                      sackdelay_change)
2315 {
2316 	int error;
2317 
2318 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2319 		struct net *net = sock_net(trans->asoc->base.sk);
2320 
2321 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2322 		if (error)
2323 			return error;
2324 	}
2325 
2326 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2327 	 * this field is ignored.  Note also that a value of zero indicates
2328 	 * the current setting should be left unchanged.
2329 	 */
2330 	if (params->spp_flags & SPP_HB_ENABLE) {
2331 
2332 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2333 		 * set.  This lets us use 0 value when this flag
2334 		 * is set.
2335 		 */
2336 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2337 			params->spp_hbinterval = 0;
2338 
2339 		if (params->spp_hbinterval ||
2340 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2341 			if (trans) {
2342 				trans->hbinterval =
2343 				    msecs_to_jiffies(params->spp_hbinterval);
2344 			} else if (asoc) {
2345 				asoc->hbinterval =
2346 				    msecs_to_jiffies(params->spp_hbinterval);
2347 			} else {
2348 				sp->hbinterval = params->spp_hbinterval;
2349 			}
2350 		}
2351 	}
2352 
2353 	if (hb_change) {
2354 		if (trans) {
2355 			trans->param_flags =
2356 				(trans->param_flags & ~SPP_HB) | hb_change;
2357 		} else if (asoc) {
2358 			asoc->param_flags =
2359 				(asoc->param_flags & ~SPP_HB) | hb_change;
2360 		} else {
2361 			sp->param_flags =
2362 				(sp->param_flags & ~SPP_HB) | hb_change;
2363 		}
2364 	}
2365 
2366 	/* When Path MTU discovery is disabled the value specified here will
2367 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2368 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2369 	 * effect).
2370 	 */
2371 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2372 		if (trans) {
2373 			trans->pathmtu = params->spp_pathmtu;
2374 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2375 		} else if (asoc) {
2376 			asoc->pathmtu = params->spp_pathmtu;
2377 			sctp_frag_point(asoc, params->spp_pathmtu);
2378 		} else {
2379 			sp->pathmtu = params->spp_pathmtu;
2380 		}
2381 	}
2382 
2383 	if (pmtud_change) {
2384 		if (trans) {
2385 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2386 				(params->spp_flags & SPP_PMTUD_ENABLE);
2387 			trans->param_flags =
2388 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2389 			if (update) {
2390 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2391 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2392 			}
2393 		} else if (asoc) {
2394 			asoc->param_flags =
2395 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2396 		} else {
2397 			sp->param_flags =
2398 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2399 		}
2400 	}
2401 
2402 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2403 	 * value of this field is ignored.  Note also that a value of zero
2404 	 * indicates the current setting should be left unchanged.
2405 	 */
2406 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2407 		if (trans) {
2408 			trans->sackdelay =
2409 				msecs_to_jiffies(params->spp_sackdelay);
2410 		} else if (asoc) {
2411 			asoc->sackdelay =
2412 				msecs_to_jiffies(params->spp_sackdelay);
2413 		} else {
2414 			sp->sackdelay = params->spp_sackdelay;
2415 		}
2416 	}
2417 
2418 	if (sackdelay_change) {
2419 		if (trans) {
2420 			trans->param_flags =
2421 				(trans->param_flags & ~SPP_SACKDELAY) |
2422 				sackdelay_change;
2423 		} else if (asoc) {
2424 			asoc->param_flags =
2425 				(asoc->param_flags & ~SPP_SACKDELAY) |
2426 				sackdelay_change;
2427 		} else {
2428 			sp->param_flags =
2429 				(sp->param_flags & ~SPP_SACKDELAY) |
2430 				sackdelay_change;
2431 		}
2432 	}
2433 
2434 	/* Note that a value of zero indicates the current setting should be
2435 	   left unchanged.
2436 	 */
2437 	if (params->spp_pathmaxrxt) {
2438 		if (trans) {
2439 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2440 		} else if (asoc) {
2441 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2442 		} else {
2443 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2444 		}
2445 	}
2446 
2447 	return 0;
2448 }
2449 
2450 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2451 					    char __user *optval,
2452 					    unsigned int optlen)
2453 {
2454 	struct sctp_paddrparams  params;
2455 	struct sctp_transport   *trans = NULL;
2456 	struct sctp_association *asoc = NULL;
2457 	struct sctp_sock        *sp = sctp_sk(sk);
2458 	int error;
2459 	int hb_change, pmtud_change, sackdelay_change;
2460 
2461 	if (optlen != sizeof(struct sctp_paddrparams))
2462 		return - EINVAL;
2463 
2464 	if (copy_from_user(&params, optval, optlen))
2465 		return -EFAULT;
2466 
2467 	/* Validate flags and value parameters. */
2468 	hb_change        = params.spp_flags & SPP_HB;
2469 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2470 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2471 
2472 	if (hb_change        == SPP_HB ||
2473 	    pmtud_change     == SPP_PMTUD ||
2474 	    sackdelay_change == SPP_SACKDELAY ||
2475 	    params.spp_sackdelay > 500 ||
2476 	    (params.spp_pathmtu &&
2477 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2478 		return -EINVAL;
2479 
2480 	/* If an address other than INADDR_ANY is specified, and
2481 	 * no transport is found, then the request is invalid.
2482 	 */
2483 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2484 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2485 					       params.spp_assoc_id);
2486 		if (!trans)
2487 			return -EINVAL;
2488 	}
2489 
2490 	/* Get association, if assoc_id != 0 and the socket is a one
2491 	 * to many style socket, and an association was not found, then
2492 	 * the id was invalid.
2493 	 */
2494 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2495 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2496 		return -EINVAL;
2497 
2498 	/* Heartbeat demand can only be sent on a transport or
2499 	 * association, but not a socket.
2500 	 */
2501 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2502 		return -EINVAL;
2503 
2504 	/* Process parameters. */
2505 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2506 					    hb_change, pmtud_change,
2507 					    sackdelay_change);
2508 
2509 	if (error)
2510 		return error;
2511 
2512 	/* If changes are for association, also apply parameters to each
2513 	 * transport.
2514 	 */
2515 	if (!trans && asoc) {
2516 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2517 				transports) {
2518 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2519 						    hb_change, pmtud_change,
2520 						    sackdelay_change);
2521 		}
2522 	}
2523 
2524 	return 0;
2525 }
2526 
2527 /*
2528  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2529  *
2530  * This option will effect the way delayed acks are performed.  This
2531  * option allows you to get or set the delayed ack time, in
2532  * milliseconds.  It also allows changing the delayed ack frequency.
2533  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2534  * the assoc_id is 0, then this sets or gets the endpoints default
2535  * values.  If the assoc_id field is non-zero, then the set or get
2536  * effects the specified association for the one to many model (the
2537  * assoc_id field is ignored by the one to one model).  Note that if
2538  * sack_delay or sack_freq are 0 when setting this option, then the
2539  * current values will remain unchanged.
2540  *
2541  * struct sctp_sack_info {
2542  *     sctp_assoc_t            sack_assoc_id;
2543  *     uint32_t                sack_delay;
2544  *     uint32_t                sack_freq;
2545  * };
2546  *
2547  * sack_assoc_id -  This parameter, indicates which association the user
2548  *    is performing an action upon.  Note that if this field's value is
2549  *    zero then the endpoints default value is changed (effecting future
2550  *    associations only).
2551  *
2552  * sack_delay -  This parameter contains the number of milliseconds that
2553  *    the user is requesting the delayed ACK timer be set to.  Note that
2554  *    this value is defined in the standard to be between 200 and 500
2555  *    milliseconds.
2556  *
2557  * sack_freq -  This parameter contains the number of packets that must
2558  *    be received before a sack is sent without waiting for the delay
2559  *    timer to expire.  The default value for this is 2, setting this
2560  *    value to 1 will disable the delayed sack algorithm.
2561  */
2562 
2563 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2564 				       char __user *optval, unsigned int optlen)
2565 {
2566 	struct sctp_sack_info    params;
2567 	struct sctp_transport   *trans = NULL;
2568 	struct sctp_association *asoc = NULL;
2569 	struct sctp_sock        *sp = sctp_sk(sk);
2570 
2571 	if (optlen == sizeof(struct sctp_sack_info)) {
2572 		if (copy_from_user(&params, optval, optlen))
2573 			return -EFAULT;
2574 
2575 		if (params.sack_delay == 0 && params.sack_freq == 0)
2576 			return 0;
2577 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2578 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2579 		pr_warn("Use struct sctp_sack_info instead\n");
2580 		if (copy_from_user(&params, optval, optlen))
2581 			return -EFAULT;
2582 
2583 		if (params.sack_delay == 0)
2584 			params.sack_freq = 1;
2585 		else
2586 			params.sack_freq = 0;
2587 	} else
2588 		return - EINVAL;
2589 
2590 	/* Validate value parameter. */
2591 	if (params.sack_delay > 500)
2592 		return -EINVAL;
2593 
2594 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2595 	 * to many style socket, and an association was not found, then
2596 	 * the id was invalid.
2597 	 */
2598 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2599 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2600 		return -EINVAL;
2601 
2602 	if (params.sack_delay) {
2603 		if (asoc) {
2604 			asoc->sackdelay =
2605 				msecs_to_jiffies(params.sack_delay);
2606 			asoc->param_flags =
2607 				(asoc->param_flags & ~SPP_SACKDELAY) |
2608 				SPP_SACKDELAY_ENABLE;
2609 		} else {
2610 			sp->sackdelay = params.sack_delay;
2611 			sp->param_flags =
2612 				(sp->param_flags & ~SPP_SACKDELAY) |
2613 				SPP_SACKDELAY_ENABLE;
2614 		}
2615 	}
2616 
2617 	if (params.sack_freq == 1) {
2618 		if (asoc) {
2619 			asoc->param_flags =
2620 				(asoc->param_flags & ~SPP_SACKDELAY) |
2621 				SPP_SACKDELAY_DISABLE;
2622 		} else {
2623 			sp->param_flags =
2624 				(sp->param_flags & ~SPP_SACKDELAY) |
2625 				SPP_SACKDELAY_DISABLE;
2626 		}
2627 	} else if (params.sack_freq > 1) {
2628 		if (asoc) {
2629 			asoc->sackfreq = params.sack_freq;
2630 			asoc->param_flags =
2631 				(asoc->param_flags & ~SPP_SACKDELAY) |
2632 				SPP_SACKDELAY_ENABLE;
2633 		} else {
2634 			sp->sackfreq = params.sack_freq;
2635 			sp->param_flags =
2636 				(sp->param_flags & ~SPP_SACKDELAY) |
2637 				SPP_SACKDELAY_ENABLE;
2638 		}
2639 	}
2640 
2641 	/* If change is for association, also apply to each transport. */
2642 	if (asoc) {
2643 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2644 				transports) {
2645 			if (params.sack_delay) {
2646 				trans->sackdelay =
2647 					msecs_to_jiffies(params.sack_delay);
2648 				trans->param_flags =
2649 					(trans->param_flags & ~SPP_SACKDELAY) |
2650 					SPP_SACKDELAY_ENABLE;
2651 			}
2652 			if (params.sack_freq == 1) {
2653 				trans->param_flags =
2654 					(trans->param_flags & ~SPP_SACKDELAY) |
2655 					SPP_SACKDELAY_DISABLE;
2656 			} else if (params.sack_freq > 1) {
2657 				trans->sackfreq = params.sack_freq;
2658 				trans->param_flags =
2659 					(trans->param_flags & ~SPP_SACKDELAY) |
2660 					SPP_SACKDELAY_ENABLE;
2661 			}
2662 		}
2663 	}
2664 
2665 	return 0;
2666 }
2667 
2668 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2669  *
2670  * Applications can specify protocol parameters for the default association
2671  * initialization.  The option name argument to setsockopt() and getsockopt()
2672  * is SCTP_INITMSG.
2673  *
2674  * Setting initialization parameters is effective only on an unconnected
2675  * socket (for UDP-style sockets only future associations are effected
2676  * by the change).  With TCP-style sockets, this option is inherited by
2677  * sockets derived from a listener socket.
2678  */
2679 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2680 {
2681 	struct sctp_initmsg sinit;
2682 	struct sctp_sock *sp = sctp_sk(sk);
2683 
2684 	if (optlen != sizeof(struct sctp_initmsg))
2685 		return -EINVAL;
2686 	if (copy_from_user(&sinit, optval, optlen))
2687 		return -EFAULT;
2688 
2689 	if (sinit.sinit_num_ostreams)
2690 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2691 	if (sinit.sinit_max_instreams)
2692 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2693 	if (sinit.sinit_max_attempts)
2694 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2695 	if (sinit.sinit_max_init_timeo)
2696 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2697 
2698 	return 0;
2699 }
2700 
2701 /*
2702  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2703  *
2704  *   Applications that wish to use the sendto() system call may wish to
2705  *   specify a default set of parameters that would normally be supplied
2706  *   through the inclusion of ancillary data.  This socket option allows
2707  *   such an application to set the default sctp_sndrcvinfo structure.
2708  *   The application that wishes to use this socket option simply passes
2709  *   in to this call the sctp_sndrcvinfo structure defined in Section
2710  *   5.2.2) The input parameters accepted by this call include
2711  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2712  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2713  *   to this call if the caller is using the UDP model.
2714  */
2715 static int sctp_setsockopt_default_send_param(struct sock *sk,
2716 					      char __user *optval,
2717 					      unsigned int optlen)
2718 {
2719 	struct sctp_sndrcvinfo info;
2720 	struct sctp_association *asoc;
2721 	struct sctp_sock *sp = sctp_sk(sk);
2722 
2723 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2724 		return -EINVAL;
2725 	if (copy_from_user(&info, optval, optlen))
2726 		return -EFAULT;
2727 
2728 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2729 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2730 		return -EINVAL;
2731 
2732 	if (asoc) {
2733 		asoc->default_stream = info.sinfo_stream;
2734 		asoc->default_flags = info.sinfo_flags;
2735 		asoc->default_ppid = info.sinfo_ppid;
2736 		asoc->default_context = info.sinfo_context;
2737 		asoc->default_timetolive = info.sinfo_timetolive;
2738 	} else {
2739 		sp->default_stream = info.sinfo_stream;
2740 		sp->default_flags = info.sinfo_flags;
2741 		sp->default_ppid = info.sinfo_ppid;
2742 		sp->default_context = info.sinfo_context;
2743 		sp->default_timetolive = info.sinfo_timetolive;
2744 	}
2745 
2746 	return 0;
2747 }
2748 
2749 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2750  *
2751  * Requests that the local SCTP stack use the enclosed peer address as
2752  * the association primary.  The enclosed address must be one of the
2753  * association peer's addresses.
2754  */
2755 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2756 					unsigned int optlen)
2757 {
2758 	struct sctp_prim prim;
2759 	struct sctp_transport *trans;
2760 
2761 	if (optlen != sizeof(struct sctp_prim))
2762 		return -EINVAL;
2763 
2764 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2765 		return -EFAULT;
2766 
2767 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2768 	if (!trans)
2769 		return -EINVAL;
2770 
2771 	sctp_assoc_set_primary(trans->asoc, trans);
2772 
2773 	return 0;
2774 }
2775 
2776 /*
2777  * 7.1.5 SCTP_NODELAY
2778  *
2779  * Turn on/off any Nagle-like algorithm.  This means that packets are
2780  * generally sent as soon as possible and no unnecessary delays are
2781  * introduced, at the cost of more packets in the network.  Expects an
2782  *  integer boolean flag.
2783  */
2784 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2785 				   unsigned int optlen)
2786 {
2787 	int val;
2788 
2789 	if (optlen < sizeof(int))
2790 		return -EINVAL;
2791 	if (get_user(val, (int __user *)optval))
2792 		return -EFAULT;
2793 
2794 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2795 	return 0;
2796 }
2797 
2798 /*
2799  *
2800  * 7.1.1 SCTP_RTOINFO
2801  *
2802  * The protocol parameters used to initialize and bound retransmission
2803  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2804  * and modify these parameters.
2805  * All parameters are time values, in milliseconds.  A value of 0, when
2806  * modifying the parameters, indicates that the current value should not
2807  * be changed.
2808  *
2809  */
2810 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2811 {
2812 	struct sctp_rtoinfo rtoinfo;
2813 	struct sctp_association *asoc;
2814 
2815 	if (optlen != sizeof (struct sctp_rtoinfo))
2816 		return -EINVAL;
2817 
2818 	if (copy_from_user(&rtoinfo, optval, optlen))
2819 		return -EFAULT;
2820 
2821 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2822 
2823 	/* Set the values to the specific association */
2824 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2825 		return -EINVAL;
2826 
2827 	if (asoc) {
2828 		if (rtoinfo.srto_initial != 0)
2829 			asoc->rto_initial =
2830 				msecs_to_jiffies(rtoinfo.srto_initial);
2831 		if (rtoinfo.srto_max != 0)
2832 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2833 		if (rtoinfo.srto_min != 0)
2834 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2835 	} else {
2836 		/* If there is no association or the association-id = 0
2837 		 * set the values to the endpoint.
2838 		 */
2839 		struct sctp_sock *sp = sctp_sk(sk);
2840 
2841 		if (rtoinfo.srto_initial != 0)
2842 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2843 		if (rtoinfo.srto_max != 0)
2844 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2845 		if (rtoinfo.srto_min != 0)
2846 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2847 	}
2848 
2849 	return 0;
2850 }
2851 
2852 /*
2853  *
2854  * 7.1.2 SCTP_ASSOCINFO
2855  *
2856  * This option is used to tune the maximum retransmission attempts
2857  * of the association.
2858  * Returns an error if the new association retransmission value is
2859  * greater than the sum of the retransmission value  of the peer.
2860  * See [SCTP] for more information.
2861  *
2862  */
2863 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2864 {
2865 
2866 	struct sctp_assocparams assocparams;
2867 	struct sctp_association *asoc;
2868 
2869 	if (optlen != sizeof(struct sctp_assocparams))
2870 		return -EINVAL;
2871 	if (copy_from_user(&assocparams, optval, optlen))
2872 		return -EFAULT;
2873 
2874 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2875 
2876 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2877 		return -EINVAL;
2878 
2879 	/* Set the values to the specific association */
2880 	if (asoc) {
2881 		if (assocparams.sasoc_asocmaxrxt != 0) {
2882 			__u32 path_sum = 0;
2883 			int   paths = 0;
2884 			struct sctp_transport *peer_addr;
2885 
2886 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2887 					transports) {
2888 				path_sum += peer_addr->pathmaxrxt;
2889 				paths++;
2890 			}
2891 
2892 			/* Only validate asocmaxrxt if we have more than
2893 			 * one path/transport.  We do this because path
2894 			 * retransmissions are only counted when we have more
2895 			 * then one path.
2896 			 */
2897 			if (paths > 1 &&
2898 			    assocparams.sasoc_asocmaxrxt > path_sum)
2899 				return -EINVAL;
2900 
2901 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2902 		}
2903 
2904 		if (assocparams.sasoc_cookie_life != 0)
2905 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
2906 	} else {
2907 		/* Set the values to the endpoint */
2908 		struct sctp_sock *sp = sctp_sk(sk);
2909 
2910 		if (assocparams.sasoc_asocmaxrxt != 0)
2911 			sp->assocparams.sasoc_asocmaxrxt =
2912 						assocparams.sasoc_asocmaxrxt;
2913 		if (assocparams.sasoc_cookie_life != 0)
2914 			sp->assocparams.sasoc_cookie_life =
2915 						assocparams.sasoc_cookie_life;
2916 	}
2917 	return 0;
2918 }
2919 
2920 /*
2921  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2922  *
2923  * This socket option is a boolean flag which turns on or off mapped V4
2924  * addresses.  If this option is turned on and the socket is type
2925  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2926  * If this option is turned off, then no mapping will be done of V4
2927  * addresses and a user will receive both PF_INET6 and PF_INET type
2928  * addresses on the socket.
2929  */
2930 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2931 {
2932 	int val;
2933 	struct sctp_sock *sp = sctp_sk(sk);
2934 
2935 	if (optlen < sizeof(int))
2936 		return -EINVAL;
2937 	if (get_user(val, (int __user *)optval))
2938 		return -EFAULT;
2939 	if (val)
2940 		sp->v4mapped = 1;
2941 	else
2942 		sp->v4mapped = 0;
2943 
2944 	return 0;
2945 }
2946 
2947 /*
2948  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2949  * This option will get or set the maximum size to put in any outgoing
2950  * SCTP DATA chunk.  If a message is larger than this size it will be
2951  * fragmented by SCTP into the specified size.  Note that the underlying
2952  * SCTP implementation may fragment into smaller sized chunks when the
2953  * PMTU of the underlying association is smaller than the value set by
2954  * the user.  The default value for this option is '0' which indicates
2955  * the user is NOT limiting fragmentation and only the PMTU will effect
2956  * SCTP's choice of DATA chunk size.  Note also that values set larger
2957  * than the maximum size of an IP datagram will effectively let SCTP
2958  * control fragmentation (i.e. the same as setting this option to 0).
2959  *
2960  * The following structure is used to access and modify this parameter:
2961  *
2962  * struct sctp_assoc_value {
2963  *   sctp_assoc_t assoc_id;
2964  *   uint32_t assoc_value;
2965  * };
2966  *
2967  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2968  *    For one-to-many style sockets this parameter indicates which
2969  *    association the user is performing an action upon.  Note that if
2970  *    this field's value is zero then the endpoints default value is
2971  *    changed (effecting future associations only).
2972  * assoc_value:  This parameter specifies the maximum size in bytes.
2973  */
2974 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2975 {
2976 	struct sctp_assoc_value params;
2977 	struct sctp_association *asoc;
2978 	struct sctp_sock *sp = sctp_sk(sk);
2979 	int val;
2980 
2981 	if (optlen == sizeof(int)) {
2982 		pr_warn("Use of int in maxseg socket option deprecated\n");
2983 		pr_warn("Use struct sctp_assoc_value instead\n");
2984 		if (copy_from_user(&val, optval, optlen))
2985 			return -EFAULT;
2986 		params.assoc_id = 0;
2987 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2988 		if (copy_from_user(&params, optval, optlen))
2989 			return -EFAULT;
2990 		val = params.assoc_value;
2991 	} else
2992 		return -EINVAL;
2993 
2994 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2995 		return -EINVAL;
2996 
2997 	asoc = sctp_id2assoc(sk, params.assoc_id);
2998 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2999 		return -EINVAL;
3000 
3001 	if (asoc) {
3002 		if (val == 0) {
3003 			val = asoc->pathmtu;
3004 			val -= sp->pf->af->net_header_len;
3005 			val -= sizeof(struct sctphdr) +
3006 					sizeof(struct sctp_data_chunk);
3007 		}
3008 		asoc->user_frag = val;
3009 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3010 	} else {
3011 		sp->user_frag = val;
3012 	}
3013 
3014 	return 0;
3015 }
3016 
3017 
3018 /*
3019  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3020  *
3021  *   Requests that the peer mark the enclosed address as the association
3022  *   primary. The enclosed address must be one of the association's
3023  *   locally bound addresses. The following structure is used to make a
3024  *   set primary request:
3025  */
3026 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3027 					     unsigned int optlen)
3028 {
3029 	struct net *net = sock_net(sk);
3030 	struct sctp_sock	*sp;
3031 	struct sctp_association	*asoc = NULL;
3032 	struct sctp_setpeerprim	prim;
3033 	struct sctp_chunk	*chunk;
3034 	struct sctp_af		*af;
3035 	int 			err;
3036 
3037 	sp = sctp_sk(sk);
3038 
3039 	if (!net->sctp.addip_enable)
3040 		return -EPERM;
3041 
3042 	if (optlen != sizeof(struct sctp_setpeerprim))
3043 		return -EINVAL;
3044 
3045 	if (copy_from_user(&prim, optval, optlen))
3046 		return -EFAULT;
3047 
3048 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3049 	if (!asoc)
3050 		return -EINVAL;
3051 
3052 	if (!asoc->peer.asconf_capable)
3053 		return -EPERM;
3054 
3055 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3056 		return -EPERM;
3057 
3058 	if (!sctp_state(asoc, ESTABLISHED))
3059 		return -ENOTCONN;
3060 
3061 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3062 	if (!af)
3063 		return -EINVAL;
3064 
3065 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3066 		return -EADDRNOTAVAIL;
3067 
3068 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3069 		return -EADDRNOTAVAIL;
3070 
3071 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3072 	chunk = sctp_make_asconf_set_prim(asoc,
3073 					  (union sctp_addr *)&prim.sspp_addr);
3074 	if (!chunk)
3075 		return -ENOMEM;
3076 
3077 	err = sctp_send_asconf(asoc, chunk);
3078 
3079 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3080 
3081 	return err;
3082 }
3083 
3084 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3085 					    unsigned int optlen)
3086 {
3087 	struct sctp_setadaptation adaptation;
3088 
3089 	if (optlen != sizeof(struct sctp_setadaptation))
3090 		return -EINVAL;
3091 	if (copy_from_user(&adaptation, optval, optlen))
3092 		return -EFAULT;
3093 
3094 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3095 
3096 	return 0;
3097 }
3098 
3099 /*
3100  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3101  *
3102  * The context field in the sctp_sndrcvinfo structure is normally only
3103  * used when a failed message is retrieved holding the value that was
3104  * sent down on the actual send call.  This option allows the setting of
3105  * a default context on an association basis that will be received on
3106  * reading messages from the peer.  This is especially helpful in the
3107  * one-2-many model for an application to keep some reference to an
3108  * internal state machine that is processing messages on the
3109  * association.  Note that the setting of this value only effects
3110  * received messages from the peer and does not effect the value that is
3111  * saved with outbound messages.
3112  */
3113 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3114 				   unsigned int optlen)
3115 {
3116 	struct sctp_assoc_value params;
3117 	struct sctp_sock *sp;
3118 	struct sctp_association *asoc;
3119 
3120 	if (optlen != sizeof(struct sctp_assoc_value))
3121 		return -EINVAL;
3122 	if (copy_from_user(&params, optval, optlen))
3123 		return -EFAULT;
3124 
3125 	sp = sctp_sk(sk);
3126 
3127 	if (params.assoc_id != 0) {
3128 		asoc = sctp_id2assoc(sk, params.assoc_id);
3129 		if (!asoc)
3130 			return -EINVAL;
3131 		asoc->default_rcv_context = params.assoc_value;
3132 	} else {
3133 		sp->default_rcv_context = params.assoc_value;
3134 	}
3135 
3136 	return 0;
3137 }
3138 
3139 /*
3140  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3141  *
3142  * This options will at a minimum specify if the implementation is doing
3143  * fragmented interleave.  Fragmented interleave, for a one to many
3144  * socket, is when subsequent calls to receive a message may return
3145  * parts of messages from different associations.  Some implementations
3146  * may allow you to turn this value on or off.  If so, when turned off,
3147  * no fragment interleave will occur (which will cause a head of line
3148  * blocking amongst multiple associations sharing the same one to many
3149  * socket).  When this option is turned on, then each receive call may
3150  * come from a different association (thus the user must receive data
3151  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3152  * association each receive belongs to.
3153  *
3154  * This option takes a boolean value.  A non-zero value indicates that
3155  * fragmented interleave is on.  A value of zero indicates that
3156  * fragmented interleave is off.
3157  *
3158  * Note that it is important that an implementation that allows this
3159  * option to be turned on, have it off by default.  Otherwise an unaware
3160  * application using the one to many model may become confused and act
3161  * incorrectly.
3162  */
3163 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3164 					       char __user *optval,
3165 					       unsigned int optlen)
3166 {
3167 	int val;
3168 
3169 	if (optlen != sizeof(int))
3170 		return -EINVAL;
3171 	if (get_user(val, (int __user *)optval))
3172 		return -EFAULT;
3173 
3174 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3175 
3176 	return 0;
3177 }
3178 
3179 /*
3180  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3181  *       (SCTP_PARTIAL_DELIVERY_POINT)
3182  *
3183  * This option will set or get the SCTP partial delivery point.  This
3184  * point is the size of a message where the partial delivery API will be
3185  * invoked to help free up rwnd space for the peer.  Setting this to a
3186  * lower value will cause partial deliveries to happen more often.  The
3187  * calls argument is an integer that sets or gets the partial delivery
3188  * point.  Note also that the call will fail if the user attempts to set
3189  * this value larger than the socket receive buffer size.
3190  *
3191  * Note that any single message having a length smaller than or equal to
3192  * the SCTP partial delivery point will be delivered in one single read
3193  * call as long as the user provided buffer is large enough to hold the
3194  * message.
3195  */
3196 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3197 						  char __user *optval,
3198 						  unsigned int optlen)
3199 {
3200 	u32 val;
3201 
3202 	if (optlen != sizeof(u32))
3203 		return -EINVAL;
3204 	if (get_user(val, (int __user *)optval))
3205 		return -EFAULT;
3206 
3207 	/* Note: We double the receive buffer from what the user sets
3208 	 * it to be, also initial rwnd is based on rcvbuf/2.
3209 	 */
3210 	if (val > (sk->sk_rcvbuf >> 1))
3211 		return -EINVAL;
3212 
3213 	sctp_sk(sk)->pd_point = val;
3214 
3215 	return 0; /* is this the right error code? */
3216 }
3217 
3218 /*
3219  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3220  *
3221  * This option will allow a user to change the maximum burst of packets
3222  * that can be emitted by this association.  Note that the default value
3223  * is 4, and some implementations may restrict this setting so that it
3224  * can only be lowered.
3225  *
3226  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3227  * future associations inheriting the socket value.
3228  */
3229 static int sctp_setsockopt_maxburst(struct sock *sk,
3230 				    char __user *optval,
3231 				    unsigned int optlen)
3232 {
3233 	struct sctp_assoc_value params;
3234 	struct sctp_sock *sp;
3235 	struct sctp_association *asoc;
3236 	int val;
3237 	int assoc_id = 0;
3238 
3239 	if (optlen == sizeof(int)) {
3240 		pr_warn("Use of int in max_burst socket option deprecated\n");
3241 		pr_warn("Use struct sctp_assoc_value instead\n");
3242 		if (copy_from_user(&val, optval, optlen))
3243 			return -EFAULT;
3244 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3245 		if (copy_from_user(&params, optval, optlen))
3246 			return -EFAULT;
3247 		val = params.assoc_value;
3248 		assoc_id = params.assoc_id;
3249 	} else
3250 		return -EINVAL;
3251 
3252 	sp = sctp_sk(sk);
3253 
3254 	if (assoc_id != 0) {
3255 		asoc = sctp_id2assoc(sk, assoc_id);
3256 		if (!asoc)
3257 			return -EINVAL;
3258 		asoc->max_burst = val;
3259 	} else
3260 		sp->max_burst = val;
3261 
3262 	return 0;
3263 }
3264 
3265 /*
3266  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3267  *
3268  * This set option adds a chunk type that the user is requesting to be
3269  * received only in an authenticated way.  Changes to the list of chunks
3270  * will only effect future associations on the socket.
3271  */
3272 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3273 				      char __user *optval,
3274 				      unsigned int optlen)
3275 {
3276 	struct net *net = sock_net(sk);
3277 	struct sctp_authchunk val;
3278 
3279 	if (!net->sctp.auth_enable)
3280 		return -EACCES;
3281 
3282 	if (optlen != sizeof(struct sctp_authchunk))
3283 		return -EINVAL;
3284 	if (copy_from_user(&val, optval, optlen))
3285 		return -EFAULT;
3286 
3287 	switch (val.sauth_chunk) {
3288 	case SCTP_CID_INIT:
3289 	case SCTP_CID_INIT_ACK:
3290 	case SCTP_CID_SHUTDOWN_COMPLETE:
3291 	case SCTP_CID_AUTH:
3292 		return -EINVAL;
3293 	}
3294 
3295 	/* add this chunk id to the endpoint */
3296 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3297 }
3298 
3299 /*
3300  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3301  *
3302  * This option gets or sets the list of HMAC algorithms that the local
3303  * endpoint requires the peer to use.
3304  */
3305 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3306 				      char __user *optval,
3307 				      unsigned int optlen)
3308 {
3309 	struct net *net = sock_net(sk);
3310 	struct sctp_hmacalgo *hmacs;
3311 	u32 idents;
3312 	int err;
3313 
3314 	if (!net->sctp.auth_enable)
3315 		return -EACCES;
3316 
3317 	if (optlen < sizeof(struct sctp_hmacalgo))
3318 		return -EINVAL;
3319 
3320 	hmacs= memdup_user(optval, optlen);
3321 	if (IS_ERR(hmacs))
3322 		return PTR_ERR(hmacs);
3323 
3324 	idents = hmacs->shmac_num_idents;
3325 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3326 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3327 		err = -EINVAL;
3328 		goto out;
3329 	}
3330 
3331 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3332 out:
3333 	kfree(hmacs);
3334 	return err;
3335 }
3336 
3337 /*
3338  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3339  *
3340  * This option will set a shared secret key which is used to build an
3341  * association shared key.
3342  */
3343 static int sctp_setsockopt_auth_key(struct sock *sk,
3344 				    char __user *optval,
3345 				    unsigned int optlen)
3346 {
3347 	struct net *net = sock_net(sk);
3348 	struct sctp_authkey *authkey;
3349 	struct sctp_association *asoc;
3350 	int ret;
3351 
3352 	if (!net->sctp.auth_enable)
3353 		return -EACCES;
3354 
3355 	if (optlen <= sizeof(struct sctp_authkey))
3356 		return -EINVAL;
3357 
3358 	authkey= memdup_user(optval, optlen);
3359 	if (IS_ERR(authkey))
3360 		return PTR_ERR(authkey);
3361 
3362 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3363 		ret = -EINVAL;
3364 		goto out;
3365 	}
3366 
3367 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3368 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3369 		ret = -EINVAL;
3370 		goto out;
3371 	}
3372 
3373 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3374 out:
3375 	kzfree(authkey);
3376 	return ret;
3377 }
3378 
3379 /*
3380  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3381  *
3382  * This option will get or set the active shared key to be used to build
3383  * the association shared key.
3384  */
3385 static int sctp_setsockopt_active_key(struct sock *sk,
3386 				      char __user *optval,
3387 				      unsigned int optlen)
3388 {
3389 	struct net *net = sock_net(sk);
3390 	struct sctp_authkeyid val;
3391 	struct sctp_association *asoc;
3392 
3393 	if (!net->sctp.auth_enable)
3394 		return -EACCES;
3395 
3396 	if (optlen != sizeof(struct sctp_authkeyid))
3397 		return -EINVAL;
3398 	if (copy_from_user(&val, optval, optlen))
3399 		return -EFAULT;
3400 
3401 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3402 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3403 		return -EINVAL;
3404 
3405 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3406 					val.scact_keynumber);
3407 }
3408 
3409 /*
3410  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3411  *
3412  * This set option will delete a shared secret key from use.
3413  */
3414 static int sctp_setsockopt_del_key(struct sock *sk,
3415 				   char __user *optval,
3416 				   unsigned int optlen)
3417 {
3418 	struct net *net = sock_net(sk);
3419 	struct sctp_authkeyid val;
3420 	struct sctp_association *asoc;
3421 
3422 	if (!net->sctp.auth_enable)
3423 		return -EACCES;
3424 
3425 	if (optlen != sizeof(struct sctp_authkeyid))
3426 		return -EINVAL;
3427 	if (copy_from_user(&val, optval, optlen))
3428 		return -EFAULT;
3429 
3430 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3431 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3432 		return -EINVAL;
3433 
3434 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3435 				    val.scact_keynumber);
3436 
3437 }
3438 
3439 /*
3440  * 8.1.23 SCTP_AUTO_ASCONF
3441  *
3442  * This option will enable or disable the use of the automatic generation of
3443  * ASCONF chunks to add and delete addresses to an existing association.  Note
3444  * that this option has two caveats namely: a) it only affects sockets that
3445  * are bound to all addresses available to the SCTP stack, and b) the system
3446  * administrator may have an overriding control that turns the ASCONF feature
3447  * off no matter what setting the socket option may have.
3448  * This option expects an integer boolean flag, where a non-zero value turns on
3449  * the option, and a zero value turns off the option.
3450  * Note. In this implementation, socket operation overrides default parameter
3451  * being set by sysctl as well as FreeBSD implementation
3452  */
3453 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3454 					unsigned int optlen)
3455 {
3456 	int val;
3457 	struct sctp_sock *sp = sctp_sk(sk);
3458 
3459 	if (optlen < sizeof(int))
3460 		return -EINVAL;
3461 	if (get_user(val, (int __user *)optval))
3462 		return -EFAULT;
3463 	if (!sctp_is_ep_boundall(sk) && val)
3464 		return -EINVAL;
3465 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3466 		return 0;
3467 
3468 	if (val == 0 && sp->do_auto_asconf) {
3469 		list_del(&sp->auto_asconf_list);
3470 		sp->do_auto_asconf = 0;
3471 	} else if (val && !sp->do_auto_asconf) {
3472 		list_add_tail(&sp->auto_asconf_list,
3473 		    &sock_net(sk)->sctp.auto_asconf_splist);
3474 		sp->do_auto_asconf = 1;
3475 	}
3476 	return 0;
3477 }
3478 
3479 
3480 /*
3481  * SCTP_PEER_ADDR_THLDS
3482  *
3483  * This option allows us to alter the partially failed threshold for one or all
3484  * transports in an association.  See Section 6.1 of:
3485  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3486  */
3487 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3488 					    char __user *optval,
3489 					    unsigned int optlen)
3490 {
3491 	struct sctp_paddrthlds val;
3492 	struct sctp_transport *trans;
3493 	struct sctp_association *asoc;
3494 
3495 	if (optlen < sizeof(struct sctp_paddrthlds))
3496 		return -EINVAL;
3497 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3498 			   sizeof(struct sctp_paddrthlds)))
3499 		return -EFAULT;
3500 
3501 
3502 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3503 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3504 		if (!asoc)
3505 			return -ENOENT;
3506 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3507 				    transports) {
3508 			if (val.spt_pathmaxrxt)
3509 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3510 			trans->pf_retrans = val.spt_pathpfthld;
3511 		}
3512 
3513 		if (val.spt_pathmaxrxt)
3514 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3515 		asoc->pf_retrans = val.spt_pathpfthld;
3516 	} else {
3517 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3518 					       val.spt_assoc_id);
3519 		if (!trans)
3520 			return -ENOENT;
3521 
3522 		if (val.spt_pathmaxrxt)
3523 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3524 		trans->pf_retrans = val.spt_pathpfthld;
3525 	}
3526 
3527 	return 0;
3528 }
3529 
3530 /* API 6.2 setsockopt(), getsockopt()
3531  *
3532  * Applications use setsockopt() and getsockopt() to set or retrieve
3533  * socket options.  Socket options are used to change the default
3534  * behavior of sockets calls.  They are described in Section 7.
3535  *
3536  * The syntax is:
3537  *
3538  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3539  *                    int __user *optlen);
3540  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3541  *                    int optlen);
3542  *
3543  *   sd      - the socket descript.
3544  *   level   - set to IPPROTO_SCTP for all SCTP options.
3545  *   optname - the option name.
3546  *   optval  - the buffer to store the value of the option.
3547  *   optlen  - the size of the buffer.
3548  */
3549 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3550 			   char __user *optval, unsigned int optlen)
3551 {
3552 	int retval = 0;
3553 
3554 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3555 
3556 	/* I can hardly begin to describe how wrong this is.  This is
3557 	 * so broken as to be worse than useless.  The API draft
3558 	 * REALLY is NOT helpful here...  I am not convinced that the
3559 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3560 	 * are at all well-founded.
3561 	 */
3562 	if (level != SOL_SCTP) {
3563 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3564 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3565 		goto out_nounlock;
3566 	}
3567 
3568 	sctp_lock_sock(sk);
3569 
3570 	switch (optname) {
3571 	case SCTP_SOCKOPT_BINDX_ADD:
3572 		/* 'optlen' is the size of the addresses buffer. */
3573 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3574 					       optlen, SCTP_BINDX_ADD_ADDR);
3575 		break;
3576 
3577 	case SCTP_SOCKOPT_BINDX_REM:
3578 		/* 'optlen' is the size of the addresses buffer. */
3579 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3580 					       optlen, SCTP_BINDX_REM_ADDR);
3581 		break;
3582 
3583 	case SCTP_SOCKOPT_CONNECTX_OLD:
3584 		/* 'optlen' is the size of the addresses buffer. */
3585 		retval = sctp_setsockopt_connectx_old(sk,
3586 					    (struct sockaddr __user *)optval,
3587 					    optlen);
3588 		break;
3589 
3590 	case SCTP_SOCKOPT_CONNECTX:
3591 		/* 'optlen' is the size of the addresses buffer. */
3592 		retval = sctp_setsockopt_connectx(sk,
3593 					    (struct sockaddr __user *)optval,
3594 					    optlen);
3595 		break;
3596 
3597 	case SCTP_DISABLE_FRAGMENTS:
3598 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3599 		break;
3600 
3601 	case SCTP_EVENTS:
3602 		retval = sctp_setsockopt_events(sk, optval, optlen);
3603 		break;
3604 
3605 	case SCTP_AUTOCLOSE:
3606 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3607 		break;
3608 
3609 	case SCTP_PEER_ADDR_PARAMS:
3610 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3611 		break;
3612 
3613 	case SCTP_DELAYED_SACK:
3614 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3615 		break;
3616 	case SCTP_PARTIAL_DELIVERY_POINT:
3617 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3618 		break;
3619 
3620 	case SCTP_INITMSG:
3621 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3622 		break;
3623 	case SCTP_DEFAULT_SEND_PARAM:
3624 		retval = sctp_setsockopt_default_send_param(sk, optval,
3625 							    optlen);
3626 		break;
3627 	case SCTP_PRIMARY_ADDR:
3628 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3629 		break;
3630 	case SCTP_SET_PEER_PRIMARY_ADDR:
3631 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3632 		break;
3633 	case SCTP_NODELAY:
3634 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3635 		break;
3636 	case SCTP_RTOINFO:
3637 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3638 		break;
3639 	case SCTP_ASSOCINFO:
3640 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3641 		break;
3642 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3643 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3644 		break;
3645 	case SCTP_MAXSEG:
3646 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3647 		break;
3648 	case SCTP_ADAPTATION_LAYER:
3649 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3650 		break;
3651 	case SCTP_CONTEXT:
3652 		retval = sctp_setsockopt_context(sk, optval, optlen);
3653 		break;
3654 	case SCTP_FRAGMENT_INTERLEAVE:
3655 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3656 		break;
3657 	case SCTP_MAX_BURST:
3658 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3659 		break;
3660 	case SCTP_AUTH_CHUNK:
3661 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3662 		break;
3663 	case SCTP_HMAC_IDENT:
3664 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3665 		break;
3666 	case SCTP_AUTH_KEY:
3667 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3668 		break;
3669 	case SCTP_AUTH_ACTIVE_KEY:
3670 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3671 		break;
3672 	case SCTP_AUTH_DELETE_KEY:
3673 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3674 		break;
3675 	case SCTP_AUTO_ASCONF:
3676 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3677 		break;
3678 	case SCTP_PEER_ADDR_THLDS:
3679 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3680 		break;
3681 	default:
3682 		retval = -ENOPROTOOPT;
3683 		break;
3684 	}
3685 
3686 	sctp_release_sock(sk);
3687 
3688 out_nounlock:
3689 	return retval;
3690 }
3691 
3692 /* API 3.1.6 connect() - UDP Style Syntax
3693  *
3694  * An application may use the connect() call in the UDP model to initiate an
3695  * association without sending data.
3696  *
3697  * The syntax is:
3698  *
3699  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3700  *
3701  * sd: the socket descriptor to have a new association added to.
3702  *
3703  * nam: the address structure (either struct sockaddr_in or struct
3704  *    sockaddr_in6 defined in RFC2553 [7]).
3705  *
3706  * len: the size of the address.
3707  */
3708 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3709 			int addr_len)
3710 {
3711 	int err = 0;
3712 	struct sctp_af *af;
3713 
3714 	sctp_lock_sock(sk);
3715 
3716 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3717 		 addr, addr_len);
3718 
3719 	/* Validate addr_len before calling common connect/connectx routine. */
3720 	af = sctp_get_af_specific(addr->sa_family);
3721 	if (!af || addr_len < af->sockaddr_len) {
3722 		err = -EINVAL;
3723 	} else {
3724 		/* Pass correct addr len to common routine (so it knows there
3725 		 * is only one address being passed.
3726 		 */
3727 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3728 	}
3729 
3730 	sctp_release_sock(sk);
3731 	return err;
3732 }
3733 
3734 /* FIXME: Write comments. */
3735 static int sctp_disconnect(struct sock *sk, int flags)
3736 {
3737 	return -EOPNOTSUPP; /* STUB */
3738 }
3739 
3740 /* 4.1.4 accept() - TCP Style Syntax
3741  *
3742  * Applications use accept() call to remove an established SCTP
3743  * association from the accept queue of the endpoint.  A new socket
3744  * descriptor will be returned from accept() to represent the newly
3745  * formed association.
3746  */
3747 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3748 {
3749 	struct sctp_sock *sp;
3750 	struct sctp_endpoint *ep;
3751 	struct sock *newsk = NULL;
3752 	struct sctp_association *asoc;
3753 	long timeo;
3754 	int error = 0;
3755 
3756 	sctp_lock_sock(sk);
3757 
3758 	sp = sctp_sk(sk);
3759 	ep = sp->ep;
3760 
3761 	if (!sctp_style(sk, TCP)) {
3762 		error = -EOPNOTSUPP;
3763 		goto out;
3764 	}
3765 
3766 	if (!sctp_sstate(sk, LISTENING)) {
3767 		error = -EINVAL;
3768 		goto out;
3769 	}
3770 
3771 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3772 
3773 	error = sctp_wait_for_accept(sk, timeo);
3774 	if (error)
3775 		goto out;
3776 
3777 	/* We treat the list of associations on the endpoint as the accept
3778 	 * queue and pick the first association on the list.
3779 	 */
3780 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3781 
3782 	newsk = sp->pf->create_accept_sk(sk, asoc);
3783 	if (!newsk) {
3784 		error = -ENOMEM;
3785 		goto out;
3786 	}
3787 
3788 	/* Populate the fields of the newsk from the oldsk and migrate the
3789 	 * asoc to the newsk.
3790 	 */
3791 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3792 
3793 out:
3794 	sctp_release_sock(sk);
3795 	*err = error;
3796 	return newsk;
3797 }
3798 
3799 /* The SCTP ioctl handler. */
3800 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3801 {
3802 	int rc = -ENOTCONN;
3803 
3804 	sctp_lock_sock(sk);
3805 
3806 	/*
3807 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3808 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3809 	 */
3810 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3811 		goto out;
3812 
3813 	switch (cmd) {
3814 	case SIOCINQ: {
3815 		struct sk_buff *skb;
3816 		unsigned int amount = 0;
3817 
3818 		skb = skb_peek(&sk->sk_receive_queue);
3819 		if (skb != NULL) {
3820 			/*
3821 			 * We will only return the amount of this packet since
3822 			 * that is all that will be read.
3823 			 */
3824 			amount = skb->len;
3825 		}
3826 		rc = put_user(amount, (int __user *)arg);
3827 		break;
3828 	}
3829 	default:
3830 		rc = -ENOIOCTLCMD;
3831 		break;
3832 	}
3833 out:
3834 	sctp_release_sock(sk);
3835 	return rc;
3836 }
3837 
3838 /* This is the function which gets called during socket creation to
3839  * initialized the SCTP-specific portion of the sock.
3840  * The sock structure should already be zero-filled memory.
3841  */
3842 static int sctp_init_sock(struct sock *sk)
3843 {
3844 	struct net *net = sock_net(sk);
3845 	struct sctp_sock *sp;
3846 
3847 	pr_debug("%s: sk:%p\n", __func__, sk);
3848 
3849 	sp = sctp_sk(sk);
3850 
3851 	/* Initialize the SCTP per socket area.  */
3852 	switch (sk->sk_type) {
3853 	case SOCK_SEQPACKET:
3854 		sp->type = SCTP_SOCKET_UDP;
3855 		break;
3856 	case SOCK_STREAM:
3857 		sp->type = SCTP_SOCKET_TCP;
3858 		break;
3859 	default:
3860 		return -ESOCKTNOSUPPORT;
3861 	}
3862 
3863 	/* Initialize default send parameters. These parameters can be
3864 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3865 	 */
3866 	sp->default_stream = 0;
3867 	sp->default_ppid = 0;
3868 	sp->default_flags = 0;
3869 	sp->default_context = 0;
3870 	sp->default_timetolive = 0;
3871 
3872 	sp->default_rcv_context = 0;
3873 	sp->max_burst = net->sctp.max_burst;
3874 
3875 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3876 
3877 	/* Initialize default setup parameters. These parameters
3878 	 * can be modified with the SCTP_INITMSG socket option or
3879 	 * overridden by the SCTP_INIT CMSG.
3880 	 */
3881 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3882 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3883 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3884 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3885 
3886 	/* Initialize default RTO related parameters.  These parameters can
3887 	 * be modified for with the SCTP_RTOINFO socket option.
3888 	 */
3889 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3890 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3891 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3892 
3893 	/* Initialize default association related parameters. These parameters
3894 	 * can be modified with the SCTP_ASSOCINFO socket option.
3895 	 */
3896 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3897 	sp->assocparams.sasoc_number_peer_destinations = 0;
3898 	sp->assocparams.sasoc_peer_rwnd = 0;
3899 	sp->assocparams.sasoc_local_rwnd = 0;
3900 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3901 
3902 	/* Initialize default event subscriptions. By default, all the
3903 	 * options are off.
3904 	 */
3905 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3906 
3907 	/* Default Peer Address Parameters.  These defaults can
3908 	 * be modified via SCTP_PEER_ADDR_PARAMS
3909 	 */
3910 	sp->hbinterval  = net->sctp.hb_interval;
3911 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3912 	sp->pathmtu     = 0; // allow default discovery
3913 	sp->sackdelay   = net->sctp.sack_timeout;
3914 	sp->sackfreq	= 2;
3915 	sp->param_flags = SPP_HB_ENABLE |
3916 			  SPP_PMTUD_ENABLE |
3917 			  SPP_SACKDELAY_ENABLE;
3918 
3919 	/* If enabled no SCTP message fragmentation will be performed.
3920 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3921 	 */
3922 	sp->disable_fragments = 0;
3923 
3924 	/* Enable Nagle algorithm by default.  */
3925 	sp->nodelay           = 0;
3926 
3927 	/* Enable by default. */
3928 	sp->v4mapped          = 1;
3929 
3930 	/* Auto-close idle associations after the configured
3931 	 * number of seconds.  A value of 0 disables this
3932 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3933 	 * for UDP-style sockets only.
3934 	 */
3935 	sp->autoclose         = 0;
3936 
3937 	/* User specified fragmentation limit. */
3938 	sp->user_frag         = 0;
3939 
3940 	sp->adaptation_ind = 0;
3941 
3942 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3943 
3944 	/* Control variables for partial data delivery. */
3945 	atomic_set(&sp->pd_mode, 0);
3946 	skb_queue_head_init(&sp->pd_lobby);
3947 	sp->frag_interleave = 0;
3948 
3949 	/* Create a per socket endpoint structure.  Even if we
3950 	 * change the data structure relationships, this may still
3951 	 * be useful for storing pre-connect address information.
3952 	 */
3953 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
3954 	if (!sp->ep)
3955 		return -ENOMEM;
3956 
3957 	sp->hmac = NULL;
3958 
3959 	sk->sk_destruct = sctp_destruct_sock;
3960 
3961 	SCTP_DBG_OBJCNT_INC(sock);
3962 
3963 	local_bh_disable();
3964 	percpu_counter_inc(&sctp_sockets_allocated);
3965 	sock_prot_inuse_add(net, sk->sk_prot, 1);
3966 	if (net->sctp.default_auto_asconf) {
3967 		list_add_tail(&sp->auto_asconf_list,
3968 		    &net->sctp.auto_asconf_splist);
3969 		sp->do_auto_asconf = 1;
3970 	} else
3971 		sp->do_auto_asconf = 0;
3972 	local_bh_enable();
3973 
3974 	return 0;
3975 }
3976 
3977 /* Cleanup any SCTP per socket resources.  */
3978 static void sctp_destroy_sock(struct sock *sk)
3979 {
3980 	struct sctp_sock *sp;
3981 
3982 	pr_debug("%s: sk:%p\n", __func__, sk);
3983 
3984 	/* Release our hold on the endpoint. */
3985 	sp = sctp_sk(sk);
3986 	/* This could happen during socket init, thus we bail out
3987 	 * early, since the rest of the below is not setup either.
3988 	 */
3989 	if (sp->ep == NULL)
3990 		return;
3991 
3992 	if (sp->do_auto_asconf) {
3993 		sp->do_auto_asconf = 0;
3994 		list_del(&sp->auto_asconf_list);
3995 	}
3996 	sctp_endpoint_free(sp->ep);
3997 	local_bh_disable();
3998 	percpu_counter_dec(&sctp_sockets_allocated);
3999 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4000 	local_bh_enable();
4001 }
4002 
4003 /* Triggered when there are no references on the socket anymore */
4004 static void sctp_destruct_sock(struct sock *sk)
4005 {
4006 	struct sctp_sock *sp = sctp_sk(sk);
4007 
4008 	/* Free up the HMAC transform. */
4009 	crypto_free_hash(sp->hmac);
4010 
4011 	inet_sock_destruct(sk);
4012 }
4013 
4014 /* API 4.1.7 shutdown() - TCP Style Syntax
4015  *     int shutdown(int socket, int how);
4016  *
4017  *     sd      - the socket descriptor of the association to be closed.
4018  *     how     - Specifies the type of shutdown.  The  values  are
4019  *               as follows:
4020  *               SHUT_RD
4021  *                     Disables further receive operations. No SCTP
4022  *                     protocol action is taken.
4023  *               SHUT_WR
4024  *                     Disables further send operations, and initiates
4025  *                     the SCTP shutdown sequence.
4026  *               SHUT_RDWR
4027  *                     Disables further send  and  receive  operations
4028  *                     and initiates the SCTP shutdown sequence.
4029  */
4030 static void sctp_shutdown(struct sock *sk, int how)
4031 {
4032 	struct net *net = sock_net(sk);
4033 	struct sctp_endpoint *ep;
4034 	struct sctp_association *asoc;
4035 
4036 	if (!sctp_style(sk, TCP))
4037 		return;
4038 
4039 	if (how & SEND_SHUTDOWN) {
4040 		ep = sctp_sk(sk)->ep;
4041 		if (!list_empty(&ep->asocs)) {
4042 			asoc = list_entry(ep->asocs.next,
4043 					  struct sctp_association, asocs);
4044 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4045 		}
4046 	}
4047 }
4048 
4049 /* 7.2.1 Association Status (SCTP_STATUS)
4050 
4051  * Applications can retrieve current status information about an
4052  * association, including association state, peer receiver window size,
4053  * number of unacked data chunks, and number of data chunks pending
4054  * receipt.  This information is read-only.
4055  */
4056 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4057 				       char __user *optval,
4058 				       int __user *optlen)
4059 {
4060 	struct sctp_status status;
4061 	struct sctp_association *asoc = NULL;
4062 	struct sctp_transport *transport;
4063 	sctp_assoc_t associd;
4064 	int retval = 0;
4065 
4066 	if (len < sizeof(status)) {
4067 		retval = -EINVAL;
4068 		goto out;
4069 	}
4070 
4071 	len = sizeof(status);
4072 	if (copy_from_user(&status, optval, len)) {
4073 		retval = -EFAULT;
4074 		goto out;
4075 	}
4076 
4077 	associd = status.sstat_assoc_id;
4078 	asoc = sctp_id2assoc(sk, associd);
4079 	if (!asoc) {
4080 		retval = -EINVAL;
4081 		goto out;
4082 	}
4083 
4084 	transport = asoc->peer.primary_path;
4085 
4086 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4087 	status.sstat_state = asoc->state;
4088 	status.sstat_rwnd =  asoc->peer.rwnd;
4089 	status.sstat_unackdata = asoc->unack_data;
4090 
4091 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4092 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4093 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4094 	status.sstat_fragmentation_point = asoc->frag_point;
4095 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4096 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4097 			transport->af_specific->sockaddr_len);
4098 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4099 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4100 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4101 	status.sstat_primary.spinfo_state = transport->state;
4102 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4103 	status.sstat_primary.spinfo_srtt = transport->srtt;
4104 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4105 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4106 
4107 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4108 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4109 
4110 	if (put_user(len, optlen)) {
4111 		retval = -EFAULT;
4112 		goto out;
4113 	}
4114 
4115 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4116 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4117 		 status.sstat_assoc_id);
4118 
4119 	if (copy_to_user(optval, &status, len)) {
4120 		retval = -EFAULT;
4121 		goto out;
4122 	}
4123 
4124 out:
4125 	return retval;
4126 }
4127 
4128 
4129 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4130  *
4131  * Applications can retrieve information about a specific peer address
4132  * of an association, including its reachability state, congestion
4133  * window, and retransmission timer values.  This information is
4134  * read-only.
4135  */
4136 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4137 					  char __user *optval,
4138 					  int __user *optlen)
4139 {
4140 	struct sctp_paddrinfo pinfo;
4141 	struct sctp_transport *transport;
4142 	int retval = 0;
4143 
4144 	if (len < sizeof(pinfo)) {
4145 		retval = -EINVAL;
4146 		goto out;
4147 	}
4148 
4149 	len = sizeof(pinfo);
4150 	if (copy_from_user(&pinfo, optval, len)) {
4151 		retval = -EFAULT;
4152 		goto out;
4153 	}
4154 
4155 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4156 					   pinfo.spinfo_assoc_id);
4157 	if (!transport)
4158 		return -EINVAL;
4159 
4160 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4161 	pinfo.spinfo_state = transport->state;
4162 	pinfo.spinfo_cwnd = transport->cwnd;
4163 	pinfo.spinfo_srtt = transport->srtt;
4164 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4165 	pinfo.spinfo_mtu = transport->pathmtu;
4166 
4167 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4168 		pinfo.spinfo_state = SCTP_ACTIVE;
4169 
4170 	if (put_user(len, optlen)) {
4171 		retval = -EFAULT;
4172 		goto out;
4173 	}
4174 
4175 	if (copy_to_user(optval, &pinfo, len)) {
4176 		retval = -EFAULT;
4177 		goto out;
4178 	}
4179 
4180 out:
4181 	return retval;
4182 }
4183 
4184 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4185  *
4186  * This option is a on/off flag.  If enabled no SCTP message
4187  * fragmentation will be performed.  Instead if a message being sent
4188  * exceeds the current PMTU size, the message will NOT be sent and
4189  * instead a error will be indicated to the user.
4190  */
4191 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4192 					char __user *optval, int __user *optlen)
4193 {
4194 	int val;
4195 
4196 	if (len < sizeof(int))
4197 		return -EINVAL;
4198 
4199 	len = sizeof(int);
4200 	val = (sctp_sk(sk)->disable_fragments == 1);
4201 	if (put_user(len, optlen))
4202 		return -EFAULT;
4203 	if (copy_to_user(optval, &val, len))
4204 		return -EFAULT;
4205 	return 0;
4206 }
4207 
4208 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4209  *
4210  * This socket option is used to specify various notifications and
4211  * ancillary data the user wishes to receive.
4212  */
4213 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4214 				  int __user *optlen)
4215 {
4216 	if (len <= 0)
4217 		return -EINVAL;
4218 	if (len > sizeof(struct sctp_event_subscribe))
4219 		len = sizeof(struct sctp_event_subscribe);
4220 	if (put_user(len, optlen))
4221 		return -EFAULT;
4222 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4223 		return -EFAULT;
4224 	return 0;
4225 }
4226 
4227 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4228  *
4229  * This socket option is applicable to the UDP-style socket only.  When
4230  * set it will cause associations that are idle for more than the
4231  * specified number of seconds to automatically close.  An association
4232  * being idle is defined an association that has NOT sent or received
4233  * user data.  The special value of '0' indicates that no automatic
4234  * close of any associations should be performed.  The option expects an
4235  * integer defining the number of seconds of idle time before an
4236  * association is closed.
4237  */
4238 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4239 {
4240 	/* Applicable to UDP-style socket only */
4241 	if (sctp_style(sk, TCP))
4242 		return -EOPNOTSUPP;
4243 	if (len < sizeof(int))
4244 		return -EINVAL;
4245 	len = sizeof(int);
4246 	if (put_user(len, optlen))
4247 		return -EFAULT;
4248 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4249 		return -EFAULT;
4250 	return 0;
4251 }
4252 
4253 /* Helper routine to branch off an association to a new socket.  */
4254 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4255 {
4256 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4257 	struct socket *sock;
4258 	struct sctp_af *af;
4259 	int err = 0;
4260 
4261 	if (!asoc)
4262 		return -EINVAL;
4263 
4264 	/* An association cannot be branched off from an already peeled-off
4265 	 * socket, nor is this supported for tcp style sockets.
4266 	 */
4267 	if (!sctp_style(sk, UDP))
4268 		return -EINVAL;
4269 
4270 	/* Create a new socket.  */
4271 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4272 	if (err < 0)
4273 		return err;
4274 
4275 	sctp_copy_sock(sock->sk, sk, asoc);
4276 
4277 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4278 	 * Set the daddr and initialize id to something more random
4279 	 */
4280 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4281 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4282 
4283 	/* Populate the fields of the newsk from the oldsk and migrate the
4284 	 * asoc to the newsk.
4285 	 */
4286 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4287 
4288 	*sockp = sock;
4289 
4290 	return err;
4291 }
4292 EXPORT_SYMBOL(sctp_do_peeloff);
4293 
4294 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4295 {
4296 	sctp_peeloff_arg_t peeloff;
4297 	struct socket *newsock;
4298 	struct file *newfile;
4299 	int retval = 0;
4300 
4301 	if (len < sizeof(sctp_peeloff_arg_t))
4302 		return -EINVAL;
4303 	len = sizeof(sctp_peeloff_arg_t);
4304 	if (copy_from_user(&peeloff, optval, len))
4305 		return -EFAULT;
4306 
4307 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4308 	if (retval < 0)
4309 		goto out;
4310 
4311 	/* Map the socket to an unused fd that can be returned to the user.  */
4312 	retval = get_unused_fd_flags(0);
4313 	if (retval < 0) {
4314 		sock_release(newsock);
4315 		goto out;
4316 	}
4317 
4318 	newfile = sock_alloc_file(newsock, 0, NULL);
4319 	if (unlikely(IS_ERR(newfile))) {
4320 		put_unused_fd(retval);
4321 		sock_release(newsock);
4322 		return PTR_ERR(newfile);
4323 	}
4324 
4325 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4326 		 retval);
4327 
4328 	/* Return the fd mapped to the new socket.  */
4329 	if (put_user(len, optlen)) {
4330 		fput(newfile);
4331 		put_unused_fd(retval);
4332 		return -EFAULT;
4333 	}
4334 	peeloff.sd = retval;
4335 	if (copy_to_user(optval, &peeloff, len)) {
4336 		fput(newfile);
4337 		put_unused_fd(retval);
4338 		return -EFAULT;
4339 	}
4340 	fd_install(retval, newfile);
4341 out:
4342 	return retval;
4343 }
4344 
4345 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4346  *
4347  * Applications can enable or disable heartbeats for any peer address of
4348  * an association, modify an address's heartbeat interval, force a
4349  * heartbeat to be sent immediately, and adjust the address's maximum
4350  * number of retransmissions sent before an address is considered
4351  * unreachable.  The following structure is used to access and modify an
4352  * address's parameters:
4353  *
4354  *  struct sctp_paddrparams {
4355  *     sctp_assoc_t            spp_assoc_id;
4356  *     struct sockaddr_storage spp_address;
4357  *     uint32_t                spp_hbinterval;
4358  *     uint16_t                spp_pathmaxrxt;
4359  *     uint32_t                spp_pathmtu;
4360  *     uint32_t                spp_sackdelay;
4361  *     uint32_t                spp_flags;
4362  * };
4363  *
4364  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4365  *                     application, and identifies the association for
4366  *                     this query.
4367  *   spp_address     - This specifies which address is of interest.
4368  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4369  *                     in milliseconds.  If a  value of zero
4370  *                     is present in this field then no changes are to
4371  *                     be made to this parameter.
4372  *   spp_pathmaxrxt  - This contains the maximum number of
4373  *                     retransmissions before this address shall be
4374  *                     considered unreachable. If a  value of zero
4375  *                     is present in this field then no changes are to
4376  *                     be made to this parameter.
4377  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4378  *                     specified here will be the "fixed" path mtu.
4379  *                     Note that if the spp_address field is empty
4380  *                     then all associations on this address will
4381  *                     have this fixed path mtu set upon them.
4382  *
4383  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4384  *                     the number of milliseconds that sacks will be delayed
4385  *                     for. This value will apply to all addresses of an
4386  *                     association if the spp_address field is empty. Note
4387  *                     also, that if delayed sack is enabled and this
4388  *                     value is set to 0, no change is made to the last
4389  *                     recorded delayed sack timer value.
4390  *
4391  *   spp_flags       - These flags are used to control various features
4392  *                     on an association. The flag field may contain
4393  *                     zero or more of the following options.
4394  *
4395  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4396  *                     specified address. Note that if the address
4397  *                     field is empty all addresses for the association
4398  *                     have heartbeats enabled upon them.
4399  *
4400  *                     SPP_HB_DISABLE - Disable heartbeats on the
4401  *                     speicifed address. Note that if the address
4402  *                     field is empty all addresses for the association
4403  *                     will have their heartbeats disabled. Note also
4404  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4405  *                     mutually exclusive, only one of these two should
4406  *                     be specified. Enabling both fields will have
4407  *                     undetermined results.
4408  *
4409  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4410  *                     to be made immediately.
4411  *
4412  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4413  *                     discovery upon the specified address. Note that
4414  *                     if the address feild is empty then all addresses
4415  *                     on the association are effected.
4416  *
4417  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4418  *                     discovery upon the specified address. Note that
4419  *                     if the address feild is empty then all addresses
4420  *                     on the association are effected. Not also that
4421  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4422  *                     exclusive. Enabling both will have undetermined
4423  *                     results.
4424  *
4425  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4426  *                     on delayed sack. The time specified in spp_sackdelay
4427  *                     is used to specify the sack delay for this address. Note
4428  *                     that if spp_address is empty then all addresses will
4429  *                     enable delayed sack and take on the sack delay
4430  *                     value specified in spp_sackdelay.
4431  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4432  *                     off delayed sack. If the spp_address field is blank then
4433  *                     delayed sack is disabled for the entire association. Note
4434  *                     also that this field is mutually exclusive to
4435  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4436  *                     results.
4437  */
4438 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4439 					    char __user *optval, int __user *optlen)
4440 {
4441 	struct sctp_paddrparams  params;
4442 	struct sctp_transport   *trans = NULL;
4443 	struct sctp_association *asoc = NULL;
4444 	struct sctp_sock        *sp = sctp_sk(sk);
4445 
4446 	if (len < sizeof(struct sctp_paddrparams))
4447 		return -EINVAL;
4448 	len = sizeof(struct sctp_paddrparams);
4449 	if (copy_from_user(&params, optval, len))
4450 		return -EFAULT;
4451 
4452 	/* If an address other than INADDR_ANY is specified, and
4453 	 * no transport is found, then the request is invalid.
4454 	 */
4455 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4456 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4457 					       params.spp_assoc_id);
4458 		if (!trans) {
4459 			pr_debug("%s: failed no transport\n", __func__);
4460 			return -EINVAL;
4461 		}
4462 	}
4463 
4464 	/* Get association, if assoc_id != 0 and the socket is a one
4465 	 * to many style socket, and an association was not found, then
4466 	 * the id was invalid.
4467 	 */
4468 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4469 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4470 		pr_debug("%s: failed no association\n", __func__);
4471 		return -EINVAL;
4472 	}
4473 
4474 	if (trans) {
4475 		/* Fetch transport values. */
4476 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4477 		params.spp_pathmtu    = trans->pathmtu;
4478 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4479 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4480 
4481 		/*draft-11 doesn't say what to return in spp_flags*/
4482 		params.spp_flags      = trans->param_flags;
4483 	} else if (asoc) {
4484 		/* Fetch association values. */
4485 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4486 		params.spp_pathmtu    = asoc->pathmtu;
4487 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4488 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4489 
4490 		/*draft-11 doesn't say what to return in spp_flags*/
4491 		params.spp_flags      = asoc->param_flags;
4492 	} else {
4493 		/* Fetch socket values. */
4494 		params.spp_hbinterval = sp->hbinterval;
4495 		params.spp_pathmtu    = sp->pathmtu;
4496 		params.spp_sackdelay  = sp->sackdelay;
4497 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4498 
4499 		/*draft-11 doesn't say what to return in spp_flags*/
4500 		params.spp_flags      = sp->param_flags;
4501 	}
4502 
4503 	if (copy_to_user(optval, &params, len))
4504 		return -EFAULT;
4505 
4506 	if (put_user(len, optlen))
4507 		return -EFAULT;
4508 
4509 	return 0;
4510 }
4511 
4512 /*
4513  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4514  *
4515  * This option will effect the way delayed acks are performed.  This
4516  * option allows you to get or set the delayed ack time, in
4517  * milliseconds.  It also allows changing the delayed ack frequency.
4518  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4519  * the assoc_id is 0, then this sets or gets the endpoints default
4520  * values.  If the assoc_id field is non-zero, then the set or get
4521  * effects the specified association for the one to many model (the
4522  * assoc_id field is ignored by the one to one model).  Note that if
4523  * sack_delay or sack_freq are 0 when setting this option, then the
4524  * current values will remain unchanged.
4525  *
4526  * struct sctp_sack_info {
4527  *     sctp_assoc_t            sack_assoc_id;
4528  *     uint32_t                sack_delay;
4529  *     uint32_t                sack_freq;
4530  * };
4531  *
4532  * sack_assoc_id -  This parameter, indicates which association the user
4533  *    is performing an action upon.  Note that if this field's value is
4534  *    zero then the endpoints default value is changed (effecting future
4535  *    associations only).
4536  *
4537  * sack_delay -  This parameter contains the number of milliseconds that
4538  *    the user is requesting the delayed ACK timer be set to.  Note that
4539  *    this value is defined in the standard to be between 200 and 500
4540  *    milliseconds.
4541  *
4542  * sack_freq -  This parameter contains the number of packets that must
4543  *    be received before a sack is sent without waiting for the delay
4544  *    timer to expire.  The default value for this is 2, setting this
4545  *    value to 1 will disable the delayed sack algorithm.
4546  */
4547 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4548 					    char __user *optval,
4549 					    int __user *optlen)
4550 {
4551 	struct sctp_sack_info    params;
4552 	struct sctp_association *asoc = NULL;
4553 	struct sctp_sock        *sp = sctp_sk(sk);
4554 
4555 	if (len >= sizeof(struct sctp_sack_info)) {
4556 		len = sizeof(struct sctp_sack_info);
4557 
4558 		if (copy_from_user(&params, optval, len))
4559 			return -EFAULT;
4560 	} else if (len == sizeof(struct sctp_assoc_value)) {
4561 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4562 		pr_warn("Use struct sctp_sack_info instead\n");
4563 		if (copy_from_user(&params, optval, len))
4564 			return -EFAULT;
4565 	} else
4566 		return - EINVAL;
4567 
4568 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4569 	 * to many style socket, and an association was not found, then
4570 	 * the id was invalid.
4571 	 */
4572 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4573 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4574 		return -EINVAL;
4575 
4576 	if (asoc) {
4577 		/* Fetch association values. */
4578 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4579 			params.sack_delay = jiffies_to_msecs(
4580 				asoc->sackdelay);
4581 			params.sack_freq = asoc->sackfreq;
4582 
4583 		} else {
4584 			params.sack_delay = 0;
4585 			params.sack_freq = 1;
4586 		}
4587 	} else {
4588 		/* Fetch socket values. */
4589 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4590 			params.sack_delay  = sp->sackdelay;
4591 			params.sack_freq = sp->sackfreq;
4592 		} else {
4593 			params.sack_delay  = 0;
4594 			params.sack_freq = 1;
4595 		}
4596 	}
4597 
4598 	if (copy_to_user(optval, &params, len))
4599 		return -EFAULT;
4600 
4601 	if (put_user(len, optlen))
4602 		return -EFAULT;
4603 
4604 	return 0;
4605 }
4606 
4607 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4608  *
4609  * Applications can specify protocol parameters for the default association
4610  * initialization.  The option name argument to setsockopt() and getsockopt()
4611  * is SCTP_INITMSG.
4612  *
4613  * Setting initialization parameters is effective only on an unconnected
4614  * socket (for UDP-style sockets only future associations are effected
4615  * by the change).  With TCP-style sockets, this option is inherited by
4616  * sockets derived from a listener socket.
4617  */
4618 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4619 {
4620 	if (len < sizeof(struct sctp_initmsg))
4621 		return -EINVAL;
4622 	len = sizeof(struct sctp_initmsg);
4623 	if (put_user(len, optlen))
4624 		return -EFAULT;
4625 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4626 		return -EFAULT;
4627 	return 0;
4628 }
4629 
4630 
4631 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4632 				      char __user *optval, int __user *optlen)
4633 {
4634 	struct sctp_association *asoc;
4635 	int cnt = 0;
4636 	struct sctp_getaddrs getaddrs;
4637 	struct sctp_transport *from;
4638 	void __user *to;
4639 	union sctp_addr temp;
4640 	struct sctp_sock *sp = sctp_sk(sk);
4641 	int addrlen;
4642 	size_t space_left;
4643 	int bytes_copied;
4644 
4645 	if (len < sizeof(struct sctp_getaddrs))
4646 		return -EINVAL;
4647 
4648 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4649 		return -EFAULT;
4650 
4651 	/* For UDP-style sockets, id specifies the association to query.  */
4652 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4653 	if (!asoc)
4654 		return -EINVAL;
4655 
4656 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4657 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4658 
4659 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4660 				transports) {
4661 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4662 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4663 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4664 		if (space_left < addrlen)
4665 			return -ENOMEM;
4666 		if (copy_to_user(to, &temp, addrlen))
4667 			return -EFAULT;
4668 		to += addrlen;
4669 		cnt++;
4670 		space_left -= addrlen;
4671 	}
4672 
4673 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4674 		return -EFAULT;
4675 	bytes_copied = ((char __user *)to) - optval;
4676 	if (put_user(bytes_copied, optlen))
4677 		return -EFAULT;
4678 
4679 	return 0;
4680 }
4681 
4682 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4683 			    size_t space_left, int *bytes_copied)
4684 {
4685 	struct sctp_sockaddr_entry *addr;
4686 	union sctp_addr temp;
4687 	int cnt = 0;
4688 	int addrlen;
4689 	struct net *net = sock_net(sk);
4690 
4691 	rcu_read_lock();
4692 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4693 		if (!addr->valid)
4694 			continue;
4695 
4696 		if ((PF_INET == sk->sk_family) &&
4697 		    (AF_INET6 == addr->a.sa.sa_family))
4698 			continue;
4699 		if ((PF_INET6 == sk->sk_family) &&
4700 		    inet_v6_ipv6only(sk) &&
4701 		    (AF_INET == addr->a.sa.sa_family))
4702 			continue;
4703 		memcpy(&temp, &addr->a, sizeof(temp));
4704 		if (!temp.v4.sin_port)
4705 			temp.v4.sin_port = htons(port);
4706 
4707 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4708 								&temp);
4709 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4710 		if (space_left < addrlen) {
4711 			cnt =  -ENOMEM;
4712 			break;
4713 		}
4714 		memcpy(to, &temp, addrlen);
4715 
4716 		to += addrlen;
4717 		cnt ++;
4718 		space_left -= addrlen;
4719 		*bytes_copied += addrlen;
4720 	}
4721 	rcu_read_unlock();
4722 
4723 	return cnt;
4724 }
4725 
4726 
4727 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4728 				       char __user *optval, int __user *optlen)
4729 {
4730 	struct sctp_bind_addr *bp;
4731 	struct sctp_association *asoc;
4732 	int cnt = 0;
4733 	struct sctp_getaddrs getaddrs;
4734 	struct sctp_sockaddr_entry *addr;
4735 	void __user *to;
4736 	union sctp_addr temp;
4737 	struct sctp_sock *sp = sctp_sk(sk);
4738 	int addrlen;
4739 	int err = 0;
4740 	size_t space_left;
4741 	int bytes_copied = 0;
4742 	void *addrs;
4743 	void *buf;
4744 
4745 	if (len < sizeof(struct sctp_getaddrs))
4746 		return -EINVAL;
4747 
4748 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4749 		return -EFAULT;
4750 
4751 	/*
4752 	 *  For UDP-style sockets, id specifies the association to query.
4753 	 *  If the id field is set to the value '0' then the locally bound
4754 	 *  addresses are returned without regard to any particular
4755 	 *  association.
4756 	 */
4757 	if (0 == getaddrs.assoc_id) {
4758 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4759 	} else {
4760 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4761 		if (!asoc)
4762 			return -EINVAL;
4763 		bp = &asoc->base.bind_addr;
4764 	}
4765 
4766 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4767 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4768 
4769 	addrs = kmalloc(space_left, GFP_KERNEL);
4770 	if (!addrs)
4771 		return -ENOMEM;
4772 
4773 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4774 	 * addresses from the global local address list.
4775 	 */
4776 	if (sctp_list_single_entry(&bp->address_list)) {
4777 		addr = list_entry(bp->address_list.next,
4778 				  struct sctp_sockaddr_entry, list);
4779 		if (sctp_is_any(sk, &addr->a)) {
4780 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4781 						space_left, &bytes_copied);
4782 			if (cnt < 0) {
4783 				err = cnt;
4784 				goto out;
4785 			}
4786 			goto copy_getaddrs;
4787 		}
4788 	}
4789 
4790 	buf = addrs;
4791 	/* Protection on the bound address list is not needed since
4792 	 * in the socket option context we hold a socket lock and
4793 	 * thus the bound address list can't change.
4794 	 */
4795 	list_for_each_entry(addr, &bp->address_list, list) {
4796 		memcpy(&temp, &addr->a, sizeof(temp));
4797 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4798 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4799 		if (space_left < addrlen) {
4800 			err =  -ENOMEM; /*fixme: right error?*/
4801 			goto out;
4802 		}
4803 		memcpy(buf, &temp, addrlen);
4804 		buf += addrlen;
4805 		bytes_copied += addrlen;
4806 		cnt ++;
4807 		space_left -= addrlen;
4808 	}
4809 
4810 copy_getaddrs:
4811 	if (copy_to_user(to, addrs, bytes_copied)) {
4812 		err = -EFAULT;
4813 		goto out;
4814 	}
4815 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4816 		err = -EFAULT;
4817 		goto out;
4818 	}
4819 	if (put_user(bytes_copied, optlen))
4820 		err = -EFAULT;
4821 out:
4822 	kfree(addrs);
4823 	return err;
4824 }
4825 
4826 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4827  *
4828  * Requests that the local SCTP stack use the enclosed peer address as
4829  * the association primary.  The enclosed address must be one of the
4830  * association peer's addresses.
4831  */
4832 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4833 					char __user *optval, int __user *optlen)
4834 {
4835 	struct sctp_prim prim;
4836 	struct sctp_association *asoc;
4837 	struct sctp_sock *sp = sctp_sk(sk);
4838 
4839 	if (len < sizeof(struct sctp_prim))
4840 		return -EINVAL;
4841 
4842 	len = sizeof(struct sctp_prim);
4843 
4844 	if (copy_from_user(&prim, optval, len))
4845 		return -EFAULT;
4846 
4847 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4848 	if (!asoc)
4849 		return -EINVAL;
4850 
4851 	if (!asoc->peer.primary_path)
4852 		return -ENOTCONN;
4853 
4854 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4855 		asoc->peer.primary_path->af_specific->sockaddr_len);
4856 
4857 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4858 			(union sctp_addr *)&prim.ssp_addr);
4859 
4860 	if (put_user(len, optlen))
4861 		return -EFAULT;
4862 	if (copy_to_user(optval, &prim, len))
4863 		return -EFAULT;
4864 
4865 	return 0;
4866 }
4867 
4868 /*
4869  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4870  *
4871  * Requests that the local endpoint set the specified Adaptation Layer
4872  * Indication parameter for all future INIT and INIT-ACK exchanges.
4873  */
4874 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4875 				  char __user *optval, int __user *optlen)
4876 {
4877 	struct sctp_setadaptation adaptation;
4878 
4879 	if (len < sizeof(struct sctp_setadaptation))
4880 		return -EINVAL;
4881 
4882 	len = sizeof(struct sctp_setadaptation);
4883 
4884 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4885 
4886 	if (put_user(len, optlen))
4887 		return -EFAULT;
4888 	if (copy_to_user(optval, &adaptation, len))
4889 		return -EFAULT;
4890 
4891 	return 0;
4892 }
4893 
4894 /*
4895  *
4896  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4897  *
4898  *   Applications that wish to use the sendto() system call may wish to
4899  *   specify a default set of parameters that would normally be supplied
4900  *   through the inclusion of ancillary data.  This socket option allows
4901  *   such an application to set the default sctp_sndrcvinfo structure.
4902 
4903 
4904  *   The application that wishes to use this socket option simply passes
4905  *   in to this call the sctp_sndrcvinfo structure defined in Section
4906  *   5.2.2) The input parameters accepted by this call include
4907  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4908  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4909  *   to this call if the caller is using the UDP model.
4910  *
4911  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4912  */
4913 static int sctp_getsockopt_default_send_param(struct sock *sk,
4914 					int len, char __user *optval,
4915 					int __user *optlen)
4916 {
4917 	struct sctp_sndrcvinfo info;
4918 	struct sctp_association *asoc;
4919 	struct sctp_sock *sp = sctp_sk(sk);
4920 
4921 	if (len < sizeof(struct sctp_sndrcvinfo))
4922 		return -EINVAL;
4923 
4924 	len = sizeof(struct sctp_sndrcvinfo);
4925 
4926 	if (copy_from_user(&info, optval, len))
4927 		return -EFAULT;
4928 
4929 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4930 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4931 		return -EINVAL;
4932 
4933 	if (asoc) {
4934 		info.sinfo_stream = asoc->default_stream;
4935 		info.sinfo_flags = asoc->default_flags;
4936 		info.sinfo_ppid = asoc->default_ppid;
4937 		info.sinfo_context = asoc->default_context;
4938 		info.sinfo_timetolive = asoc->default_timetolive;
4939 	} else {
4940 		info.sinfo_stream = sp->default_stream;
4941 		info.sinfo_flags = sp->default_flags;
4942 		info.sinfo_ppid = sp->default_ppid;
4943 		info.sinfo_context = sp->default_context;
4944 		info.sinfo_timetolive = sp->default_timetolive;
4945 	}
4946 
4947 	if (put_user(len, optlen))
4948 		return -EFAULT;
4949 	if (copy_to_user(optval, &info, len))
4950 		return -EFAULT;
4951 
4952 	return 0;
4953 }
4954 
4955 /*
4956  *
4957  * 7.1.5 SCTP_NODELAY
4958  *
4959  * Turn on/off any Nagle-like algorithm.  This means that packets are
4960  * generally sent as soon as possible and no unnecessary delays are
4961  * introduced, at the cost of more packets in the network.  Expects an
4962  * integer boolean flag.
4963  */
4964 
4965 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4966 				   char __user *optval, int __user *optlen)
4967 {
4968 	int val;
4969 
4970 	if (len < sizeof(int))
4971 		return -EINVAL;
4972 
4973 	len = sizeof(int);
4974 	val = (sctp_sk(sk)->nodelay == 1);
4975 	if (put_user(len, optlen))
4976 		return -EFAULT;
4977 	if (copy_to_user(optval, &val, len))
4978 		return -EFAULT;
4979 	return 0;
4980 }
4981 
4982 /*
4983  *
4984  * 7.1.1 SCTP_RTOINFO
4985  *
4986  * The protocol parameters used to initialize and bound retransmission
4987  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4988  * and modify these parameters.
4989  * All parameters are time values, in milliseconds.  A value of 0, when
4990  * modifying the parameters, indicates that the current value should not
4991  * be changed.
4992  *
4993  */
4994 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4995 				char __user *optval,
4996 				int __user *optlen) {
4997 	struct sctp_rtoinfo rtoinfo;
4998 	struct sctp_association *asoc;
4999 
5000 	if (len < sizeof (struct sctp_rtoinfo))
5001 		return -EINVAL;
5002 
5003 	len = sizeof(struct sctp_rtoinfo);
5004 
5005 	if (copy_from_user(&rtoinfo, optval, len))
5006 		return -EFAULT;
5007 
5008 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5009 
5010 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5011 		return -EINVAL;
5012 
5013 	/* Values corresponding to the specific association. */
5014 	if (asoc) {
5015 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5016 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5017 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5018 	} else {
5019 		/* Values corresponding to the endpoint. */
5020 		struct sctp_sock *sp = sctp_sk(sk);
5021 
5022 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5023 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5024 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5025 	}
5026 
5027 	if (put_user(len, optlen))
5028 		return -EFAULT;
5029 
5030 	if (copy_to_user(optval, &rtoinfo, len))
5031 		return -EFAULT;
5032 
5033 	return 0;
5034 }
5035 
5036 /*
5037  *
5038  * 7.1.2 SCTP_ASSOCINFO
5039  *
5040  * This option is used to tune the maximum retransmission attempts
5041  * of the association.
5042  * Returns an error if the new association retransmission value is
5043  * greater than the sum of the retransmission value  of the peer.
5044  * See [SCTP] for more information.
5045  *
5046  */
5047 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5048 				     char __user *optval,
5049 				     int __user *optlen)
5050 {
5051 
5052 	struct sctp_assocparams assocparams;
5053 	struct sctp_association *asoc;
5054 	struct list_head *pos;
5055 	int cnt = 0;
5056 
5057 	if (len < sizeof (struct sctp_assocparams))
5058 		return -EINVAL;
5059 
5060 	len = sizeof(struct sctp_assocparams);
5061 
5062 	if (copy_from_user(&assocparams, optval, len))
5063 		return -EFAULT;
5064 
5065 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5066 
5067 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5068 		return -EINVAL;
5069 
5070 	/* Values correspoinding to the specific association */
5071 	if (asoc) {
5072 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5073 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5074 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5075 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5076 
5077 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5078 			cnt ++;
5079 		}
5080 
5081 		assocparams.sasoc_number_peer_destinations = cnt;
5082 	} else {
5083 		/* Values corresponding to the endpoint */
5084 		struct sctp_sock *sp = sctp_sk(sk);
5085 
5086 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5087 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5088 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5089 		assocparams.sasoc_cookie_life =
5090 					sp->assocparams.sasoc_cookie_life;
5091 		assocparams.sasoc_number_peer_destinations =
5092 					sp->assocparams.
5093 					sasoc_number_peer_destinations;
5094 	}
5095 
5096 	if (put_user(len, optlen))
5097 		return -EFAULT;
5098 
5099 	if (copy_to_user(optval, &assocparams, len))
5100 		return -EFAULT;
5101 
5102 	return 0;
5103 }
5104 
5105 /*
5106  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5107  *
5108  * This socket option is a boolean flag which turns on or off mapped V4
5109  * addresses.  If this option is turned on and the socket is type
5110  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5111  * If this option is turned off, then no mapping will be done of V4
5112  * addresses and a user will receive both PF_INET6 and PF_INET type
5113  * addresses on the socket.
5114  */
5115 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5116 				    char __user *optval, int __user *optlen)
5117 {
5118 	int val;
5119 	struct sctp_sock *sp = sctp_sk(sk);
5120 
5121 	if (len < sizeof(int))
5122 		return -EINVAL;
5123 
5124 	len = sizeof(int);
5125 	val = sp->v4mapped;
5126 	if (put_user(len, optlen))
5127 		return -EFAULT;
5128 	if (copy_to_user(optval, &val, len))
5129 		return -EFAULT;
5130 
5131 	return 0;
5132 }
5133 
5134 /*
5135  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5136  * (chapter and verse is quoted at sctp_setsockopt_context())
5137  */
5138 static int sctp_getsockopt_context(struct sock *sk, int len,
5139 				   char __user *optval, int __user *optlen)
5140 {
5141 	struct sctp_assoc_value params;
5142 	struct sctp_sock *sp;
5143 	struct sctp_association *asoc;
5144 
5145 	if (len < sizeof(struct sctp_assoc_value))
5146 		return -EINVAL;
5147 
5148 	len = sizeof(struct sctp_assoc_value);
5149 
5150 	if (copy_from_user(&params, optval, len))
5151 		return -EFAULT;
5152 
5153 	sp = sctp_sk(sk);
5154 
5155 	if (params.assoc_id != 0) {
5156 		asoc = sctp_id2assoc(sk, params.assoc_id);
5157 		if (!asoc)
5158 			return -EINVAL;
5159 		params.assoc_value = asoc->default_rcv_context;
5160 	} else {
5161 		params.assoc_value = sp->default_rcv_context;
5162 	}
5163 
5164 	if (put_user(len, optlen))
5165 		return -EFAULT;
5166 	if (copy_to_user(optval, &params, len))
5167 		return -EFAULT;
5168 
5169 	return 0;
5170 }
5171 
5172 /*
5173  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5174  * This option will get or set the maximum size to put in any outgoing
5175  * SCTP DATA chunk.  If a message is larger than this size it will be
5176  * fragmented by SCTP into the specified size.  Note that the underlying
5177  * SCTP implementation may fragment into smaller sized chunks when the
5178  * PMTU of the underlying association is smaller than the value set by
5179  * the user.  The default value for this option is '0' which indicates
5180  * the user is NOT limiting fragmentation and only the PMTU will effect
5181  * SCTP's choice of DATA chunk size.  Note also that values set larger
5182  * than the maximum size of an IP datagram will effectively let SCTP
5183  * control fragmentation (i.e. the same as setting this option to 0).
5184  *
5185  * The following structure is used to access and modify this parameter:
5186  *
5187  * struct sctp_assoc_value {
5188  *   sctp_assoc_t assoc_id;
5189  *   uint32_t assoc_value;
5190  * };
5191  *
5192  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5193  *    For one-to-many style sockets this parameter indicates which
5194  *    association the user is performing an action upon.  Note that if
5195  *    this field's value is zero then the endpoints default value is
5196  *    changed (effecting future associations only).
5197  * assoc_value:  This parameter specifies the maximum size in bytes.
5198  */
5199 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5200 				  char __user *optval, int __user *optlen)
5201 {
5202 	struct sctp_assoc_value params;
5203 	struct sctp_association *asoc;
5204 
5205 	if (len == sizeof(int)) {
5206 		pr_warn("Use of int in maxseg socket option deprecated\n");
5207 		pr_warn("Use struct sctp_assoc_value instead\n");
5208 		params.assoc_id = 0;
5209 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5210 		len = sizeof(struct sctp_assoc_value);
5211 		if (copy_from_user(&params, optval, sizeof(params)))
5212 			return -EFAULT;
5213 	} else
5214 		return -EINVAL;
5215 
5216 	asoc = sctp_id2assoc(sk, params.assoc_id);
5217 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5218 		return -EINVAL;
5219 
5220 	if (asoc)
5221 		params.assoc_value = asoc->frag_point;
5222 	else
5223 		params.assoc_value = sctp_sk(sk)->user_frag;
5224 
5225 	if (put_user(len, optlen))
5226 		return -EFAULT;
5227 	if (len == sizeof(int)) {
5228 		if (copy_to_user(optval, &params.assoc_value, len))
5229 			return -EFAULT;
5230 	} else {
5231 		if (copy_to_user(optval, &params, len))
5232 			return -EFAULT;
5233 	}
5234 
5235 	return 0;
5236 }
5237 
5238 /*
5239  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5240  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5241  */
5242 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5243 					       char __user *optval, int __user *optlen)
5244 {
5245 	int val;
5246 
5247 	if (len < sizeof(int))
5248 		return -EINVAL;
5249 
5250 	len = sizeof(int);
5251 
5252 	val = sctp_sk(sk)->frag_interleave;
5253 	if (put_user(len, optlen))
5254 		return -EFAULT;
5255 	if (copy_to_user(optval, &val, len))
5256 		return -EFAULT;
5257 
5258 	return 0;
5259 }
5260 
5261 /*
5262  * 7.1.25.  Set or Get the sctp partial delivery point
5263  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5264  */
5265 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5266 						  char __user *optval,
5267 						  int __user *optlen)
5268 {
5269 	u32 val;
5270 
5271 	if (len < sizeof(u32))
5272 		return -EINVAL;
5273 
5274 	len = sizeof(u32);
5275 
5276 	val = sctp_sk(sk)->pd_point;
5277 	if (put_user(len, optlen))
5278 		return -EFAULT;
5279 	if (copy_to_user(optval, &val, len))
5280 		return -EFAULT;
5281 
5282 	return 0;
5283 }
5284 
5285 /*
5286  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5287  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5288  */
5289 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5290 				    char __user *optval,
5291 				    int __user *optlen)
5292 {
5293 	struct sctp_assoc_value params;
5294 	struct sctp_sock *sp;
5295 	struct sctp_association *asoc;
5296 
5297 	if (len == sizeof(int)) {
5298 		pr_warn("Use of int in max_burst socket option deprecated\n");
5299 		pr_warn("Use struct sctp_assoc_value instead\n");
5300 		params.assoc_id = 0;
5301 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5302 		len = sizeof(struct sctp_assoc_value);
5303 		if (copy_from_user(&params, optval, len))
5304 			return -EFAULT;
5305 	} else
5306 		return -EINVAL;
5307 
5308 	sp = sctp_sk(sk);
5309 
5310 	if (params.assoc_id != 0) {
5311 		asoc = sctp_id2assoc(sk, params.assoc_id);
5312 		if (!asoc)
5313 			return -EINVAL;
5314 		params.assoc_value = asoc->max_burst;
5315 	} else
5316 		params.assoc_value = sp->max_burst;
5317 
5318 	if (len == sizeof(int)) {
5319 		if (copy_to_user(optval, &params.assoc_value, len))
5320 			return -EFAULT;
5321 	} else {
5322 		if (copy_to_user(optval, &params, len))
5323 			return -EFAULT;
5324 	}
5325 
5326 	return 0;
5327 
5328 }
5329 
5330 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5331 				    char __user *optval, int __user *optlen)
5332 {
5333 	struct net *net = sock_net(sk);
5334 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5335 	struct sctp_hmac_algo_param *hmacs;
5336 	__u16 data_len = 0;
5337 	u32 num_idents;
5338 
5339 	if (!net->sctp.auth_enable)
5340 		return -EACCES;
5341 
5342 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5343 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5344 
5345 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5346 		return -EINVAL;
5347 
5348 	len = sizeof(struct sctp_hmacalgo) + data_len;
5349 	num_idents = data_len / sizeof(u16);
5350 
5351 	if (put_user(len, optlen))
5352 		return -EFAULT;
5353 	if (put_user(num_idents, &p->shmac_num_idents))
5354 		return -EFAULT;
5355 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5356 		return -EFAULT;
5357 	return 0;
5358 }
5359 
5360 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5361 				    char __user *optval, int __user *optlen)
5362 {
5363 	struct net *net = sock_net(sk);
5364 	struct sctp_authkeyid val;
5365 	struct sctp_association *asoc;
5366 
5367 	if (!net->sctp.auth_enable)
5368 		return -EACCES;
5369 
5370 	if (len < sizeof(struct sctp_authkeyid))
5371 		return -EINVAL;
5372 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5373 		return -EFAULT;
5374 
5375 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5376 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5377 		return -EINVAL;
5378 
5379 	if (asoc)
5380 		val.scact_keynumber = asoc->active_key_id;
5381 	else
5382 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5383 
5384 	len = sizeof(struct sctp_authkeyid);
5385 	if (put_user(len, optlen))
5386 		return -EFAULT;
5387 	if (copy_to_user(optval, &val, len))
5388 		return -EFAULT;
5389 
5390 	return 0;
5391 }
5392 
5393 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5394 				    char __user *optval, int __user *optlen)
5395 {
5396 	struct net *net = sock_net(sk);
5397 	struct sctp_authchunks __user *p = (void __user *)optval;
5398 	struct sctp_authchunks val;
5399 	struct sctp_association *asoc;
5400 	struct sctp_chunks_param *ch;
5401 	u32    num_chunks = 0;
5402 	char __user *to;
5403 
5404 	if (!net->sctp.auth_enable)
5405 		return -EACCES;
5406 
5407 	if (len < sizeof(struct sctp_authchunks))
5408 		return -EINVAL;
5409 
5410 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5411 		return -EFAULT;
5412 
5413 	to = p->gauth_chunks;
5414 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5415 	if (!asoc)
5416 		return -EINVAL;
5417 
5418 	ch = asoc->peer.peer_chunks;
5419 	if (!ch)
5420 		goto num;
5421 
5422 	/* See if the user provided enough room for all the data */
5423 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5424 	if (len < num_chunks)
5425 		return -EINVAL;
5426 
5427 	if (copy_to_user(to, ch->chunks, num_chunks))
5428 		return -EFAULT;
5429 num:
5430 	len = sizeof(struct sctp_authchunks) + num_chunks;
5431 	if (put_user(len, optlen)) return -EFAULT;
5432 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5433 		return -EFAULT;
5434 	return 0;
5435 }
5436 
5437 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5438 				    char __user *optval, int __user *optlen)
5439 {
5440 	struct net *net = sock_net(sk);
5441 	struct sctp_authchunks __user *p = (void __user *)optval;
5442 	struct sctp_authchunks val;
5443 	struct sctp_association *asoc;
5444 	struct sctp_chunks_param *ch;
5445 	u32    num_chunks = 0;
5446 	char __user *to;
5447 
5448 	if (!net->sctp.auth_enable)
5449 		return -EACCES;
5450 
5451 	if (len < sizeof(struct sctp_authchunks))
5452 		return -EINVAL;
5453 
5454 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5455 		return -EFAULT;
5456 
5457 	to = p->gauth_chunks;
5458 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5459 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5460 		return -EINVAL;
5461 
5462 	if (asoc)
5463 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5464 	else
5465 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5466 
5467 	if (!ch)
5468 		goto num;
5469 
5470 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5471 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5472 		return -EINVAL;
5473 
5474 	if (copy_to_user(to, ch->chunks, num_chunks))
5475 		return -EFAULT;
5476 num:
5477 	len = sizeof(struct sctp_authchunks) + num_chunks;
5478 	if (put_user(len, optlen))
5479 		return -EFAULT;
5480 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5481 		return -EFAULT;
5482 
5483 	return 0;
5484 }
5485 
5486 /*
5487  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5488  * This option gets the current number of associations that are attached
5489  * to a one-to-many style socket.  The option value is an uint32_t.
5490  */
5491 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5492 				    char __user *optval, int __user *optlen)
5493 {
5494 	struct sctp_sock *sp = sctp_sk(sk);
5495 	struct sctp_association *asoc;
5496 	u32 val = 0;
5497 
5498 	if (sctp_style(sk, TCP))
5499 		return -EOPNOTSUPP;
5500 
5501 	if (len < sizeof(u32))
5502 		return -EINVAL;
5503 
5504 	len = sizeof(u32);
5505 
5506 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5507 		val++;
5508 	}
5509 
5510 	if (put_user(len, optlen))
5511 		return -EFAULT;
5512 	if (copy_to_user(optval, &val, len))
5513 		return -EFAULT;
5514 
5515 	return 0;
5516 }
5517 
5518 /*
5519  * 8.1.23 SCTP_AUTO_ASCONF
5520  * See the corresponding setsockopt entry as description
5521  */
5522 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5523 				   char __user *optval, int __user *optlen)
5524 {
5525 	int val = 0;
5526 
5527 	if (len < sizeof(int))
5528 		return -EINVAL;
5529 
5530 	len = sizeof(int);
5531 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5532 		val = 1;
5533 	if (put_user(len, optlen))
5534 		return -EFAULT;
5535 	if (copy_to_user(optval, &val, len))
5536 		return -EFAULT;
5537 	return 0;
5538 }
5539 
5540 /*
5541  * 8.2.6. Get the Current Identifiers of Associations
5542  *        (SCTP_GET_ASSOC_ID_LIST)
5543  *
5544  * This option gets the current list of SCTP association identifiers of
5545  * the SCTP associations handled by a one-to-many style socket.
5546  */
5547 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5548 				    char __user *optval, int __user *optlen)
5549 {
5550 	struct sctp_sock *sp = sctp_sk(sk);
5551 	struct sctp_association *asoc;
5552 	struct sctp_assoc_ids *ids;
5553 	u32 num = 0;
5554 
5555 	if (sctp_style(sk, TCP))
5556 		return -EOPNOTSUPP;
5557 
5558 	if (len < sizeof(struct sctp_assoc_ids))
5559 		return -EINVAL;
5560 
5561 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5562 		num++;
5563 	}
5564 
5565 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5566 		return -EINVAL;
5567 
5568 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5569 
5570 	ids = kmalloc(len, GFP_KERNEL);
5571 	if (unlikely(!ids))
5572 		return -ENOMEM;
5573 
5574 	ids->gaids_number_of_ids = num;
5575 	num = 0;
5576 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5577 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5578 	}
5579 
5580 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5581 		kfree(ids);
5582 		return -EFAULT;
5583 	}
5584 
5585 	kfree(ids);
5586 	return 0;
5587 }
5588 
5589 /*
5590  * SCTP_PEER_ADDR_THLDS
5591  *
5592  * This option allows us to fetch the partially failed threshold for one or all
5593  * transports in an association.  See Section 6.1 of:
5594  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5595  */
5596 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5597 					    char __user *optval,
5598 					    int len,
5599 					    int __user *optlen)
5600 {
5601 	struct sctp_paddrthlds val;
5602 	struct sctp_transport *trans;
5603 	struct sctp_association *asoc;
5604 
5605 	if (len < sizeof(struct sctp_paddrthlds))
5606 		return -EINVAL;
5607 	len = sizeof(struct sctp_paddrthlds);
5608 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5609 		return -EFAULT;
5610 
5611 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5612 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5613 		if (!asoc)
5614 			return -ENOENT;
5615 
5616 		val.spt_pathpfthld = asoc->pf_retrans;
5617 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5618 	} else {
5619 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5620 					       val.spt_assoc_id);
5621 		if (!trans)
5622 			return -ENOENT;
5623 
5624 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5625 		val.spt_pathpfthld = trans->pf_retrans;
5626 	}
5627 
5628 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5629 		return -EFAULT;
5630 
5631 	return 0;
5632 }
5633 
5634 /*
5635  * SCTP_GET_ASSOC_STATS
5636  *
5637  * This option retrieves local per endpoint statistics. It is modeled
5638  * after OpenSolaris' implementation
5639  */
5640 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5641 				       char __user *optval,
5642 				       int __user *optlen)
5643 {
5644 	struct sctp_assoc_stats sas;
5645 	struct sctp_association *asoc = NULL;
5646 
5647 	/* User must provide at least the assoc id */
5648 	if (len < sizeof(sctp_assoc_t))
5649 		return -EINVAL;
5650 
5651 	/* Allow the struct to grow and fill in as much as possible */
5652 	len = min_t(size_t, len, sizeof(sas));
5653 
5654 	if (copy_from_user(&sas, optval, len))
5655 		return -EFAULT;
5656 
5657 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5658 	if (!asoc)
5659 		return -EINVAL;
5660 
5661 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5662 	sas.sas_gapcnt = asoc->stats.gapcnt;
5663 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5664 	sas.sas_osacks = asoc->stats.osacks;
5665 	sas.sas_isacks = asoc->stats.isacks;
5666 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5667 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5668 	sas.sas_oodchunks = asoc->stats.oodchunks;
5669 	sas.sas_iodchunks = asoc->stats.iodchunks;
5670 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5671 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5672 	sas.sas_idupchunks = asoc->stats.idupchunks;
5673 	sas.sas_opackets = asoc->stats.opackets;
5674 	sas.sas_ipackets = asoc->stats.ipackets;
5675 
5676 	/* New high max rto observed, will return 0 if not a single
5677 	 * RTO update took place. obs_rto_ipaddr will be bogus
5678 	 * in such a case
5679 	 */
5680 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5681 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5682 		sizeof(struct sockaddr_storage));
5683 
5684 	/* Mark beginning of a new observation period */
5685 	asoc->stats.max_obs_rto = asoc->rto_min;
5686 
5687 	if (put_user(len, optlen))
5688 		return -EFAULT;
5689 
5690 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5691 
5692 	if (copy_to_user(optval, &sas, len))
5693 		return -EFAULT;
5694 
5695 	return 0;
5696 }
5697 
5698 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5699 			   char __user *optval, int __user *optlen)
5700 {
5701 	int retval = 0;
5702 	int len;
5703 
5704 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5705 
5706 	/* I can hardly begin to describe how wrong this is.  This is
5707 	 * so broken as to be worse than useless.  The API draft
5708 	 * REALLY is NOT helpful here...  I am not convinced that the
5709 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5710 	 * are at all well-founded.
5711 	 */
5712 	if (level != SOL_SCTP) {
5713 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5714 
5715 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5716 		return retval;
5717 	}
5718 
5719 	if (get_user(len, optlen))
5720 		return -EFAULT;
5721 
5722 	sctp_lock_sock(sk);
5723 
5724 	switch (optname) {
5725 	case SCTP_STATUS:
5726 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5727 		break;
5728 	case SCTP_DISABLE_FRAGMENTS:
5729 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5730 							   optlen);
5731 		break;
5732 	case SCTP_EVENTS:
5733 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5734 		break;
5735 	case SCTP_AUTOCLOSE:
5736 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5737 		break;
5738 	case SCTP_SOCKOPT_PEELOFF:
5739 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5740 		break;
5741 	case SCTP_PEER_ADDR_PARAMS:
5742 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5743 							  optlen);
5744 		break;
5745 	case SCTP_DELAYED_SACK:
5746 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5747 							  optlen);
5748 		break;
5749 	case SCTP_INITMSG:
5750 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5751 		break;
5752 	case SCTP_GET_PEER_ADDRS:
5753 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5754 						    optlen);
5755 		break;
5756 	case SCTP_GET_LOCAL_ADDRS:
5757 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5758 						     optlen);
5759 		break;
5760 	case SCTP_SOCKOPT_CONNECTX3:
5761 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5762 		break;
5763 	case SCTP_DEFAULT_SEND_PARAM:
5764 		retval = sctp_getsockopt_default_send_param(sk, len,
5765 							    optval, optlen);
5766 		break;
5767 	case SCTP_PRIMARY_ADDR:
5768 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5769 		break;
5770 	case SCTP_NODELAY:
5771 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5772 		break;
5773 	case SCTP_RTOINFO:
5774 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5775 		break;
5776 	case SCTP_ASSOCINFO:
5777 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5778 		break;
5779 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5780 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5781 		break;
5782 	case SCTP_MAXSEG:
5783 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5784 		break;
5785 	case SCTP_GET_PEER_ADDR_INFO:
5786 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5787 							optlen);
5788 		break;
5789 	case SCTP_ADAPTATION_LAYER:
5790 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5791 							optlen);
5792 		break;
5793 	case SCTP_CONTEXT:
5794 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5795 		break;
5796 	case SCTP_FRAGMENT_INTERLEAVE:
5797 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5798 							     optlen);
5799 		break;
5800 	case SCTP_PARTIAL_DELIVERY_POINT:
5801 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5802 								optlen);
5803 		break;
5804 	case SCTP_MAX_BURST:
5805 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5806 		break;
5807 	case SCTP_AUTH_KEY:
5808 	case SCTP_AUTH_CHUNK:
5809 	case SCTP_AUTH_DELETE_KEY:
5810 		retval = -EOPNOTSUPP;
5811 		break;
5812 	case SCTP_HMAC_IDENT:
5813 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5814 		break;
5815 	case SCTP_AUTH_ACTIVE_KEY:
5816 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5817 		break;
5818 	case SCTP_PEER_AUTH_CHUNKS:
5819 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5820 							optlen);
5821 		break;
5822 	case SCTP_LOCAL_AUTH_CHUNKS:
5823 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5824 							optlen);
5825 		break;
5826 	case SCTP_GET_ASSOC_NUMBER:
5827 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5828 		break;
5829 	case SCTP_GET_ASSOC_ID_LIST:
5830 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5831 		break;
5832 	case SCTP_AUTO_ASCONF:
5833 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5834 		break;
5835 	case SCTP_PEER_ADDR_THLDS:
5836 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5837 		break;
5838 	case SCTP_GET_ASSOC_STATS:
5839 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5840 		break;
5841 	default:
5842 		retval = -ENOPROTOOPT;
5843 		break;
5844 	}
5845 
5846 	sctp_release_sock(sk);
5847 	return retval;
5848 }
5849 
5850 static void sctp_hash(struct sock *sk)
5851 {
5852 	/* STUB */
5853 }
5854 
5855 static void sctp_unhash(struct sock *sk)
5856 {
5857 	/* STUB */
5858 }
5859 
5860 /* Check if port is acceptable.  Possibly find first available port.
5861  *
5862  * The port hash table (contained in the 'global' SCTP protocol storage
5863  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5864  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5865  * list (the list number is the port number hashed out, so as you
5866  * would expect from a hash function, all the ports in a given list have
5867  * such a number that hashes out to the same list number; you were
5868  * expecting that, right?); so each list has a set of ports, with a
5869  * link to the socket (struct sock) that uses it, the port number and
5870  * a fastreuse flag (FIXME: NPI ipg).
5871  */
5872 static struct sctp_bind_bucket *sctp_bucket_create(
5873 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5874 
5875 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5876 {
5877 	struct sctp_bind_hashbucket *head; /* hash list */
5878 	struct sctp_bind_bucket *pp;
5879 	unsigned short snum;
5880 	int ret;
5881 
5882 	snum = ntohs(addr->v4.sin_port);
5883 
5884 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
5885 
5886 	sctp_local_bh_disable();
5887 
5888 	if (snum == 0) {
5889 		/* Search for an available port. */
5890 		int low, high, remaining, index;
5891 		unsigned int rover;
5892 
5893 		inet_get_local_port_range(&low, &high);
5894 		remaining = (high - low) + 1;
5895 		rover = net_random() % remaining + low;
5896 
5897 		do {
5898 			rover++;
5899 			if ((rover < low) || (rover > high))
5900 				rover = low;
5901 			if (inet_is_reserved_local_port(rover))
5902 				continue;
5903 			index = sctp_phashfn(sock_net(sk), rover);
5904 			head = &sctp_port_hashtable[index];
5905 			sctp_spin_lock(&head->lock);
5906 			sctp_for_each_hentry(pp, &head->chain)
5907 				if ((pp->port == rover) &&
5908 				    net_eq(sock_net(sk), pp->net))
5909 					goto next;
5910 			break;
5911 		next:
5912 			sctp_spin_unlock(&head->lock);
5913 		} while (--remaining > 0);
5914 
5915 		/* Exhausted local port range during search? */
5916 		ret = 1;
5917 		if (remaining <= 0)
5918 			goto fail;
5919 
5920 		/* OK, here is the one we will use.  HEAD (the port
5921 		 * hash table list entry) is non-NULL and we hold it's
5922 		 * mutex.
5923 		 */
5924 		snum = rover;
5925 	} else {
5926 		/* We are given an specific port number; we verify
5927 		 * that it is not being used. If it is used, we will
5928 		 * exahust the search in the hash list corresponding
5929 		 * to the port number (snum) - we detect that with the
5930 		 * port iterator, pp being NULL.
5931 		 */
5932 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5933 		sctp_spin_lock(&head->lock);
5934 		sctp_for_each_hentry(pp, &head->chain) {
5935 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5936 				goto pp_found;
5937 		}
5938 	}
5939 	pp = NULL;
5940 	goto pp_not_found;
5941 pp_found:
5942 	if (!hlist_empty(&pp->owner)) {
5943 		/* We had a port hash table hit - there is an
5944 		 * available port (pp != NULL) and it is being
5945 		 * used by other socket (pp->owner not empty); that other
5946 		 * socket is going to be sk2.
5947 		 */
5948 		int reuse = sk->sk_reuse;
5949 		struct sock *sk2;
5950 
5951 		pr_debug("%s: found a possible match\n", __func__);
5952 
5953 		if (pp->fastreuse && sk->sk_reuse &&
5954 			sk->sk_state != SCTP_SS_LISTENING)
5955 			goto success;
5956 
5957 		/* Run through the list of sockets bound to the port
5958 		 * (pp->port) [via the pointers bind_next and
5959 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5960 		 * we get the endpoint they describe and run through
5961 		 * the endpoint's list of IP (v4 or v6) addresses,
5962 		 * comparing each of the addresses with the address of
5963 		 * the socket sk. If we find a match, then that means
5964 		 * that this port/socket (sk) combination are already
5965 		 * in an endpoint.
5966 		 */
5967 		sk_for_each_bound(sk2, &pp->owner) {
5968 			struct sctp_endpoint *ep2;
5969 			ep2 = sctp_sk(sk2)->ep;
5970 
5971 			if (sk == sk2 ||
5972 			    (reuse && sk2->sk_reuse &&
5973 			     sk2->sk_state != SCTP_SS_LISTENING))
5974 				continue;
5975 
5976 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5977 						 sctp_sk(sk2), sctp_sk(sk))) {
5978 				ret = (long)sk2;
5979 				goto fail_unlock;
5980 			}
5981 		}
5982 
5983 		pr_debug("%s: found a match\n", __func__);
5984 	}
5985 pp_not_found:
5986 	/* If there was a hash table miss, create a new port.  */
5987 	ret = 1;
5988 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
5989 		goto fail_unlock;
5990 
5991 	/* In either case (hit or miss), make sure fastreuse is 1 only
5992 	 * if sk->sk_reuse is too (that is, if the caller requested
5993 	 * SO_REUSEADDR on this socket -sk-).
5994 	 */
5995 	if (hlist_empty(&pp->owner)) {
5996 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5997 			pp->fastreuse = 1;
5998 		else
5999 			pp->fastreuse = 0;
6000 	} else if (pp->fastreuse &&
6001 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6002 		pp->fastreuse = 0;
6003 
6004 	/* We are set, so fill up all the data in the hash table
6005 	 * entry, tie the socket list information with the rest of the
6006 	 * sockets FIXME: Blurry, NPI (ipg).
6007 	 */
6008 success:
6009 	if (!sctp_sk(sk)->bind_hash) {
6010 		inet_sk(sk)->inet_num = snum;
6011 		sk_add_bind_node(sk, &pp->owner);
6012 		sctp_sk(sk)->bind_hash = pp;
6013 	}
6014 	ret = 0;
6015 
6016 fail_unlock:
6017 	sctp_spin_unlock(&head->lock);
6018 
6019 fail:
6020 	sctp_local_bh_enable();
6021 	return ret;
6022 }
6023 
6024 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6025  * port is requested.
6026  */
6027 static int sctp_get_port(struct sock *sk, unsigned short snum)
6028 {
6029 	union sctp_addr addr;
6030 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6031 
6032 	/* Set up a dummy address struct from the sk. */
6033 	af->from_sk(&addr, sk);
6034 	addr.v4.sin_port = htons(snum);
6035 
6036 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6037 	return !!sctp_get_port_local(sk, &addr);
6038 }
6039 
6040 /*
6041  *  Move a socket to LISTENING state.
6042  */
6043 static int sctp_listen_start(struct sock *sk, int backlog)
6044 {
6045 	struct sctp_sock *sp = sctp_sk(sk);
6046 	struct sctp_endpoint *ep = sp->ep;
6047 	struct crypto_hash *tfm = NULL;
6048 	char alg[32];
6049 
6050 	/* Allocate HMAC for generating cookie. */
6051 	if (!sp->hmac && sp->sctp_hmac_alg) {
6052 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6053 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6054 		if (IS_ERR(tfm)) {
6055 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6056 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6057 			return -ENOSYS;
6058 		}
6059 		sctp_sk(sk)->hmac = tfm;
6060 	}
6061 
6062 	/*
6063 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6064 	 * call that allows new associations to be accepted, the system
6065 	 * picks an ephemeral port and will choose an address set equivalent
6066 	 * to binding with a wildcard address.
6067 	 *
6068 	 * This is not currently spelled out in the SCTP sockets
6069 	 * extensions draft, but follows the practice as seen in TCP
6070 	 * sockets.
6071 	 *
6072 	 */
6073 	sk->sk_state = SCTP_SS_LISTENING;
6074 	if (!ep->base.bind_addr.port) {
6075 		if (sctp_autobind(sk))
6076 			return -EAGAIN;
6077 	} else {
6078 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6079 			sk->sk_state = SCTP_SS_CLOSED;
6080 			return -EADDRINUSE;
6081 		}
6082 	}
6083 
6084 	sk->sk_max_ack_backlog = backlog;
6085 	sctp_hash_endpoint(ep);
6086 	return 0;
6087 }
6088 
6089 /*
6090  * 4.1.3 / 5.1.3 listen()
6091  *
6092  *   By default, new associations are not accepted for UDP style sockets.
6093  *   An application uses listen() to mark a socket as being able to
6094  *   accept new associations.
6095  *
6096  *   On TCP style sockets, applications use listen() to ready the SCTP
6097  *   endpoint for accepting inbound associations.
6098  *
6099  *   On both types of endpoints a backlog of '0' disables listening.
6100  *
6101  *  Move a socket to LISTENING state.
6102  */
6103 int sctp_inet_listen(struct socket *sock, int backlog)
6104 {
6105 	struct sock *sk = sock->sk;
6106 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6107 	int err = -EINVAL;
6108 
6109 	if (unlikely(backlog < 0))
6110 		return err;
6111 
6112 	sctp_lock_sock(sk);
6113 
6114 	/* Peeled-off sockets are not allowed to listen().  */
6115 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6116 		goto out;
6117 
6118 	if (sock->state != SS_UNCONNECTED)
6119 		goto out;
6120 
6121 	/* If backlog is zero, disable listening. */
6122 	if (!backlog) {
6123 		if (sctp_sstate(sk, CLOSED))
6124 			goto out;
6125 
6126 		err = 0;
6127 		sctp_unhash_endpoint(ep);
6128 		sk->sk_state = SCTP_SS_CLOSED;
6129 		if (sk->sk_reuse)
6130 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6131 		goto out;
6132 	}
6133 
6134 	/* If we are already listening, just update the backlog */
6135 	if (sctp_sstate(sk, LISTENING))
6136 		sk->sk_max_ack_backlog = backlog;
6137 	else {
6138 		err = sctp_listen_start(sk, backlog);
6139 		if (err)
6140 			goto out;
6141 	}
6142 
6143 	err = 0;
6144 out:
6145 	sctp_release_sock(sk);
6146 	return err;
6147 }
6148 
6149 /*
6150  * This function is done by modeling the current datagram_poll() and the
6151  * tcp_poll().  Note that, based on these implementations, we don't
6152  * lock the socket in this function, even though it seems that,
6153  * ideally, locking or some other mechanisms can be used to ensure
6154  * the integrity of the counters (sndbuf and wmem_alloc) used
6155  * in this place.  We assume that we don't need locks either until proven
6156  * otherwise.
6157  *
6158  * Another thing to note is that we include the Async I/O support
6159  * here, again, by modeling the current TCP/UDP code.  We don't have
6160  * a good way to test with it yet.
6161  */
6162 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6163 {
6164 	struct sock *sk = sock->sk;
6165 	struct sctp_sock *sp = sctp_sk(sk);
6166 	unsigned int mask;
6167 
6168 	poll_wait(file, sk_sleep(sk), wait);
6169 
6170 	/* A TCP-style listening socket becomes readable when the accept queue
6171 	 * is not empty.
6172 	 */
6173 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6174 		return (!list_empty(&sp->ep->asocs)) ?
6175 			(POLLIN | POLLRDNORM) : 0;
6176 
6177 	mask = 0;
6178 
6179 	/* Is there any exceptional events?  */
6180 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6181 		mask |= POLLERR |
6182 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6183 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6184 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6185 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6186 		mask |= POLLHUP;
6187 
6188 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6189 	if (!skb_queue_empty(&sk->sk_receive_queue))
6190 		mask |= POLLIN | POLLRDNORM;
6191 
6192 	/* The association is either gone or not ready.  */
6193 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6194 		return mask;
6195 
6196 	/* Is it writable?  */
6197 	if (sctp_writeable(sk)) {
6198 		mask |= POLLOUT | POLLWRNORM;
6199 	} else {
6200 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6201 		/*
6202 		 * Since the socket is not locked, the buffer
6203 		 * might be made available after the writeable check and
6204 		 * before the bit is set.  This could cause a lost I/O
6205 		 * signal.  tcp_poll() has a race breaker for this race
6206 		 * condition.  Based on their implementation, we put
6207 		 * in the following code to cover it as well.
6208 		 */
6209 		if (sctp_writeable(sk))
6210 			mask |= POLLOUT | POLLWRNORM;
6211 	}
6212 	return mask;
6213 }
6214 
6215 /********************************************************************
6216  * 2nd Level Abstractions
6217  ********************************************************************/
6218 
6219 static struct sctp_bind_bucket *sctp_bucket_create(
6220 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6221 {
6222 	struct sctp_bind_bucket *pp;
6223 
6224 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6225 	if (pp) {
6226 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6227 		pp->port = snum;
6228 		pp->fastreuse = 0;
6229 		INIT_HLIST_HEAD(&pp->owner);
6230 		pp->net = net;
6231 		hlist_add_head(&pp->node, &head->chain);
6232 	}
6233 	return pp;
6234 }
6235 
6236 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6237 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6238 {
6239 	if (pp && hlist_empty(&pp->owner)) {
6240 		__hlist_del(&pp->node);
6241 		kmem_cache_free(sctp_bucket_cachep, pp);
6242 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6243 	}
6244 }
6245 
6246 /* Release this socket's reference to a local port.  */
6247 static inline void __sctp_put_port(struct sock *sk)
6248 {
6249 	struct sctp_bind_hashbucket *head =
6250 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6251 						  inet_sk(sk)->inet_num)];
6252 	struct sctp_bind_bucket *pp;
6253 
6254 	sctp_spin_lock(&head->lock);
6255 	pp = sctp_sk(sk)->bind_hash;
6256 	__sk_del_bind_node(sk);
6257 	sctp_sk(sk)->bind_hash = NULL;
6258 	inet_sk(sk)->inet_num = 0;
6259 	sctp_bucket_destroy(pp);
6260 	sctp_spin_unlock(&head->lock);
6261 }
6262 
6263 void sctp_put_port(struct sock *sk)
6264 {
6265 	sctp_local_bh_disable();
6266 	__sctp_put_port(sk);
6267 	sctp_local_bh_enable();
6268 }
6269 
6270 /*
6271  * The system picks an ephemeral port and choose an address set equivalent
6272  * to binding with a wildcard address.
6273  * One of those addresses will be the primary address for the association.
6274  * This automatically enables the multihoming capability of SCTP.
6275  */
6276 static int sctp_autobind(struct sock *sk)
6277 {
6278 	union sctp_addr autoaddr;
6279 	struct sctp_af *af;
6280 	__be16 port;
6281 
6282 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6283 	af = sctp_sk(sk)->pf->af;
6284 
6285 	port = htons(inet_sk(sk)->inet_num);
6286 	af->inaddr_any(&autoaddr, port);
6287 
6288 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6289 }
6290 
6291 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6292  *
6293  * From RFC 2292
6294  * 4.2 The cmsghdr Structure *
6295  *
6296  * When ancillary data is sent or received, any number of ancillary data
6297  * objects can be specified by the msg_control and msg_controllen members of
6298  * the msghdr structure, because each object is preceded by
6299  * a cmsghdr structure defining the object's length (the cmsg_len member).
6300  * Historically Berkeley-derived implementations have passed only one object
6301  * at a time, but this API allows multiple objects to be
6302  * passed in a single call to sendmsg() or recvmsg(). The following example
6303  * shows two ancillary data objects in a control buffer.
6304  *
6305  *   |<--------------------------- msg_controllen -------------------------->|
6306  *   |                                                                       |
6307  *
6308  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6309  *
6310  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6311  *   |                                   |                                   |
6312  *
6313  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6314  *
6315  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6316  *   |                                |  |                                |  |
6317  *
6318  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6319  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6320  *
6321  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6322  *
6323  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6324  *    ^
6325  *    |
6326  *
6327  * msg_control
6328  * points here
6329  */
6330 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6331 {
6332 	struct cmsghdr *cmsg;
6333 	struct msghdr *my_msg = (struct msghdr *)msg;
6334 
6335 	for (cmsg = CMSG_FIRSTHDR(msg);
6336 	     cmsg != NULL;
6337 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6338 		if (!CMSG_OK(my_msg, cmsg))
6339 			return -EINVAL;
6340 
6341 		/* Should we parse this header or ignore?  */
6342 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6343 			continue;
6344 
6345 		/* Strictly check lengths following example in SCM code.  */
6346 		switch (cmsg->cmsg_type) {
6347 		case SCTP_INIT:
6348 			/* SCTP Socket API Extension
6349 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6350 			 *
6351 			 * This cmsghdr structure provides information for
6352 			 * initializing new SCTP associations with sendmsg().
6353 			 * The SCTP_INITMSG socket option uses this same data
6354 			 * structure.  This structure is not used for
6355 			 * recvmsg().
6356 			 *
6357 			 * cmsg_level    cmsg_type      cmsg_data[]
6358 			 * ------------  ------------   ----------------------
6359 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6360 			 */
6361 			if (cmsg->cmsg_len !=
6362 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6363 				return -EINVAL;
6364 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6365 			break;
6366 
6367 		case SCTP_SNDRCV:
6368 			/* SCTP Socket API Extension
6369 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6370 			 *
6371 			 * This cmsghdr structure specifies SCTP options for
6372 			 * sendmsg() and describes SCTP header information
6373 			 * about a received message through recvmsg().
6374 			 *
6375 			 * cmsg_level    cmsg_type      cmsg_data[]
6376 			 * ------------  ------------   ----------------------
6377 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6378 			 */
6379 			if (cmsg->cmsg_len !=
6380 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6381 				return -EINVAL;
6382 
6383 			cmsgs->info =
6384 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6385 
6386 			/* Minimally, validate the sinfo_flags. */
6387 			if (cmsgs->info->sinfo_flags &
6388 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6389 			      SCTP_ABORT | SCTP_EOF))
6390 				return -EINVAL;
6391 			break;
6392 
6393 		default:
6394 			return -EINVAL;
6395 		}
6396 	}
6397 	return 0;
6398 }
6399 
6400 /*
6401  * Wait for a packet..
6402  * Note: This function is the same function as in core/datagram.c
6403  * with a few modifications to make lksctp work.
6404  */
6405 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6406 {
6407 	int error;
6408 	DEFINE_WAIT(wait);
6409 
6410 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6411 
6412 	/* Socket errors? */
6413 	error = sock_error(sk);
6414 	if (error)
6415 		goto out;
6416 
6417 	if (!skb_queue_empty(&sk->sk_receive_queue))
6418 		goto ready;
6419 
6420 	/* Socket shut down?  */
6421 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6422 		goto out;
6423 
6424 	/* Sequenced packets can come disconnected.  If so we report the
6425 	 * problem.
6426 	 */
6427 	error = -ENOTCONN;
6428 
6429 	/* Is there a good reason to think that we may receive some data?  */
6430 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6431 		goto out;
6432 
6433 	/* Handle signals.  */
6434 	if (signal_pending(current))
6435 		goto interrupted;
6436 
6437 	/* Let another process have a go.  Since we are going to sleep
6438 	 * anyway.  Note: This may cause odd behaviors if the message
6439 	 * does not fit in the user's buffer, but this seems to be the
6440 	 * only way to honor MSG_DONTWAIT realistically.
6441 	 */
6442 	sctp_release_sock(sk);
6443 	*timeo_p = schedule_timeout(*timeo_p);
6444 	sctp_lock_sock(sk);
6445 
6446 ready:
6447 	finish_wait(sk_sleep(sk), &wait);
6448 	return 0;
6449 
6450 interrupted:
6451 	error = sock_intr_errno(*timeo_p);
6452 
6453 out:
6454 	finish_wait(sk_sleep(sk), &wait);
6455 	*err = error;
6456 	return error;
6457 }
6458 
6459 /* Receive a datagram.
6460  * Note: This is pretty much the same routine as in core/datagram.c
6461  * with a few changes to make lksctp work.
6462  */
6463 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6464 					      int noblock, int *err)
6465 {
6466 	int error;
6467 	struct sk_buff *skb;
6468 	long timeo;
6469 
6470 	timeo = sock_rcvtimeo(sk, noblock);
6471 
6472 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6473 		 MAX_SCHEDULE_TIMEOUT);
6474 
6475 	do {
6476 		/* Again only user level code calls this function,
6477 		 * so nothing interrupt level
6478 		 * will suddenly eat the receive_queue.
6479 		 *
6480 		 *  Look at current nfs client by the way...
6481 		 *  However, this function was correct in any case. 8)
6482 		 */
6483 		if (flags & MSG_PEEK) {
6484 			spin_lock_bh(&sk->sk_receive_queue.lock);
6485 			skb = skb_peek(&sk->sk_receive_queue);
6486 			if (skb)
6487 				atomic_inc(&skb->users);
6488 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6489 		} else {
6490 			skb = skb_dequeue(&sk->sk_receive_queue);
6491 		}
6492 
6493 		if (skb)
6494 			return skb;
6495 
6496 		/* Caller is allowed not to check sk->sk_err before calling. */
6497 		error = sock_error(sk);
6498 		if (error)
6499 			goto no_packet;
6500 
6501 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6502 			break;
6503 
6504 		/* User doesn't want to wait.  */
6505 		error = -EAGAIN;
6506 		if (!timeo)
6507 			goto no_packet;
6508 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6509 
6510 	return NULL;
6511 
6512 no_packet:
6513 	*err = error;
6514 	return NULL;
6515 }
6516 
6517 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6518 static void __sctp_write_space(struct sctp_association *asoc)
6519 {
6520 	struct sock *sk = asoc->base.sk;
6521 	struct socket *sock = sk->sk_socket;
6522 
6523 	if ((sctp_wspace(asoc) > 0) && sock) {
6524 		if (waitqueue_active(&asoc->wait))
6525 			wake_up_interruptible(&asoc->wait);
6526 
6527 		if (sctp_writeable(sk)) {
6528 			wait_queue_head_t *wq = sk_sleep(sk);
6529 
6530 			if (wq && waitqueue_active(wq))
6531 				wake_up_interruptible(wq);
6532 
6533 			/* Note that we try to include the Async I/O support
6534 			 * here by modeling from the current TCP/UDP code.
6535 			 * We have not tested with it yet.
6536 			 */
6537 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6538 				sock_wake_async(sock,
6539 						SOCK_WAKE_SPACE, POLL_OUT);
6540 		}
6541 	}
6542 }
6543 
6544 /* Do accounting for the sndbuf space.
6545  * Decrement the used sndbuf space of the corresponding association by the
6546  * data size which was just transmitted(freed).
6547  */
6548 static void sctp_wfree(struct sk_buff *skb)
6549 {
6550 	struct sctp_association *asoc;
6551 	struct sctp_chunk *chunk;
6552 	struct sock *sk;
6553 
6554 	/* Get the saved chunk pointer.  */
6555 	chunk = *((struct sctp_chunk **)(skb->cb));
6556 	asoc = chunk->asoc;
6557 	sk = asoc->base.sk;
6558 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6559 				sizeof(struct sk_buff) +
6560 				sizeof(struct sctp_chunk);
6561 
6562 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6563 
6564 	/*
6565 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6566 	 */
6567 	sk->sk_wmem_queued   -= skb->truesize;
6568 	sk_mem_uncharge(sk, skb->truesize);
6569 
6570 	sock_wfree(skb);
6571 	__sctp_write_space(asoc);
6572 
6573 	sctp_association_put(asoc);
6574 }
6575 
6576 /* Do accounting for the receive space on the socket.
6577  * Accounting for the association is done in ulpevent.c
6578  * We set this as a destructor for the cloned data skbs so that
6579  * accounting is done at the correct time.
6580  */
6581 void sctp_sock_rfree(struct sk_buff *skb)
6582 {
6583 	struct sock *sk = skb->sk;
6584 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6585 
6586 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6587 
6588 	/*
6589 	 * Mimic the behavior of sock_rfree
6590 	 */
6591 	sk_mem_uncharge(sk, event->rmem_len);
6592 }
6593 
6594 
6595 /* Helper function to wait for space in the sndbuf.  */
6596 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6597 				size_t msg_len)
6598 {
6599 	struct sock *sk = asoc->base.sk;
6600 	int err = 0;
6601 	long current_timeo = *timeo_p;
6602 	DEFINE_WAIT(wait);
6603 
6604 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6605 		 *timeo_p, msg_len);
6606 
6607 	/* Increment the association's refcnt.  */
6608 	sctp_association_hold(asoc);
6609 
6610 	/* Wait on the association specific sndbuf space. */
6611 	for (;;) {
6612 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6613 					  TASK_INTERRUPTIBLE);
6614 		if (!*timeo_p)
6615 			goto do_nonblock;
6616 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6617 		    asoc->base.dead)
6618 			goto do_error;
6619 		if (signal_pending(current))
6620 			goto do_interrupted;
6621 		if (msg_len <= sctp_wspace(asoc))
6622 			break;
6623 
6624 		/* Let another process have a go.  Since we are going
6625 		 * to sleep anyway.
6626 		 */
6627 		sctp_release_sock(sk);
6628 		current_timeo = schedule_timeout(current_timeo);
6629 		BUG_ON(sk != asoc->base.sk);
6630 		sctp_lock_sock(sk);
6631 
6632 		*timeo_p = current_timeo;
6633 	}
6634 
6635 out:
6636 	finish_wait(&asoc->wait, &wait);
6637 
6638 	/* Release the association's refcnt.  */
6639 	sctp_association_put(asoc);
6640 
6641 	return err;
6642 
6643 do_error:
6644 	err = -EPIPE;
6645 	goto out;
6646 
6647 do_interrupted:
6648 	err = sock_intr_errno(*timeo_p);
6649 	goto out;
6650 
6651 do_nonblock:
6652 	err = -EAGAIN;
6653 	goto out;
6654 }
6655 
6656 void sctp_data_ready(struct sock *sk, int len)
6657 {
6658 	struct socket_wq *wq;
6659 
6660 	rcu_read_lock();
6661 	wq = rcu_dereference(sk->sk_wq);
6662 	if (wq_has_sleeper(wq))
6663 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6664 						POLLRDNORM | POLLRDBAND);
6665 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6666 	rcu_read_unlock();
6667 }
6668 
6669 /* If socket sndbuf has changed, wake up all per association waiters.  */
6670 void sctp_write_space(struct sock *sk)
6671 {
6672 	struct sctp_association *asoc;
6673 
6674 	/* Wake up the tasks in each wait queue.  */
6675 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6676 		__sctp_write_space(asoc);
6677 	}
6678 }
6679 
6680 /* Is there any sndbuf space available on the socket?
6681  *
6682  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6683  * associations on the same socket.  For a UDP-style socket with
6684  * multiple associations, it is possible for it to be "unwriteable"
6685  * prematurely.  I assume that this is acceptable because
6686  * a premature "unwriteable" is better than an accidental "writeable" which
6687  * would cause an unwanted block under certain circumstances.  For the 1-1
6688  * UDP-style sockets or TCP-style sockets, this code should work.
6689  *  - Daisy
6690  */
6691 static int sctp_writeable(struct sock *sk)
6692 {
6693 	int amt = 0;
6694 
6695 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6696 	if (amt < 0)
6697 		amt = 0;
6698 	return amt;
6699 }
6700 
6701 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6702  * returns immediately with EINPROGRESS.
6703  */
6704 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6705 {
6706 	struct sock *sk = asoc->base.sk;
6707 	int err = 0;
6708 	long current_timeo = *timeo_p;
6709 	DEFINE_WAIT(wait);
6710 
6711 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
6712 
6713 	/* Increment the association's refcnt.  */
6714 	sctp_association_hold(asoc);
6715 
6716 	for (;;) {
6717 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6718 					  TASK_INTERRUPTIBLE);
6719 		if (!*timeo_p)
6720 			goto do_nonblock;
6721 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6722 			break;
6723 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6724 		    asoc->base.dead)
6725 			goto do_error;
6726 		if (signal_pending(current))
6727 			goto do_interrupted;
6728 
6729 		if (sctp_state(asoc, ESTABLISHED))
6730 			break;
6731 
6732 		/* Let another process have a go.  Since we are going
6733 		 * to sleep anyway.
6734 		 */
6735 		sctp_release_sock(sk);
6736 		current_timeo = schedule_timeout(current_timeo);
6737 		sctp_lock_sock(sk);
6738 
6739 		*timeo_p = current_timeo;
6740 	}
6741 
6742 out:
6743 	finish_wait(&asoc->wait, &wait);
6744 
6745 	/* Release the association's refcnt.  */
6746 	sctp_association_put(asoc);
6747 
6748 	return err;
6749 
6750 do_error:
6751 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6752 		err = -ETIMEDOUT;
6753 	else
6754 		err = -ECONNREFUSED;
6755 	goto out;
6756 
6757 do_interrupted:
6758 	err = sock_intr_errno(*timeo_p);
6759 	goto out;
6760 
6761 do_nonblock:
6762 	err = -EINPROGRESS;
6763 	goto out;
6764 }
6765 
6766 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6767 {
6768 	struct sctp_endpoint *ep;
6769 	int err = 0;
6770 	DEFINE_WAIT(wait);
6771 
6772 	ep = sctp_sk(sk)->ep;
6773 
6774 
6775 	for (;;) {
6776 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6777 					  TASK_INTERRUPTIBLE);
6778 
6779 		if (list_empty(&ep->asocs)) {
6780 			sctp_release_sock(sk);
6781 			timeo = schedule_timeout(timeo);
6782 			sctp_lock_sock(sk);
6783 		}
6784 
6785 		err = -EINVAL;
6786 		if (!sctp_sstate(sk, LISTENING))
6787 			break;
6788 
6789 		err = 0;
6790 		if (!list_empty(&ep->asocs))
6791 			break;
6792 
6793 		err = sock_intr_errno(timeo);
6794 		if (signal_pending(current))
6795 			break;
6796 
6797 		err = -EAGAIN;
6798 		if (!timeo)
6799 			break;
6800 	}
6801 
6802 	finish_wait(sk_sleep(sk), &wait);
6803 
6804 	return err;
6805 }
6806 
6807 static void sctp_wait_for_close(struct sock *sk, long timeout)
6808 {
6809 	DEFINE_WAIT(wait);
6810 
6811 	do {
6812 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6813 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6814 			break;
6815 		sctp_release_sock(sk);
6816 		timeout = schedule_timeout(timeout);
6817 		sctp_lock_sock(sk);
6818 	} while (!signal_pending(current) && timeout);
6819 
6820 	finish_wait(sk_sleep(sk), &wait);
6821 }
6822 
6823 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6824 {
6825 	struct sk_buff *frag;
6826 
6827 	if (!skb->data_len)
6828 		goto done;
6829 
6830 	/* Don't forget the fragments. */
6831 	skb_walk_frags(skb, frag)
6832 		sctp_skb_set_owner_r_frag(frag, sk);
6833 
6834 done:
6835 	sctp_skb_set_owner_r(skb, sk);
6836 }
6837 
6838 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6839 		    struct sctp_association *asoc)
6840 {
6841 	struct inet_sock *inet = inet_sk(sk);
6842 	struct inet_sock *newinet;
6843 
6844 	newsk->sk_type = sk->sk_type;
6845 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6846 	newsk->sk_flags = sk->sk_flags;
6847 	newsk->sk_no_check = sk->sk_no_check;
6848 	newsk->sk_reuse = sk->sk_reuse;
6849 
6850 	newsk->sk_shutdown = sk->sk_shutdown;
6851 	newsk->sk_destruct = sctp_destruct_sock;
6852 	newsk->sk_family = sk->sk_family;
6853 	newsk->sk_protocol = IPPROTO_SCTP;
6854 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6855 	newsk->sk_sndbuf = sk->sk_sndbuf;
6856 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6857 	newsk->sk_lingertime = sk->sk_lingertime;
6858 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6859 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6860 
6861 	newinet = inet_sk(newsk);
6862 
6863 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6864 	 * getsockname() and getpeername()
6865 	 */
6866 	newinet->inet_sport = inet->inet_sport;
6867 	newinet->inet_saddr = inet->inet_saddr;
6868 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6869 	newinet->inet_dport = htons(asoc->peer.port);
6870 	newinet->pmtudisc = inet->pmtudisc;
6871 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6872 
6873 	newinet->uc_ttl = inet->uc_ttl;
6874 	newinet->mc_loop = 1;
6875 	newinet->mc_ttl = 1;
6876 	newinet->mc_index = 0;
6877 	newinet->mc_list = NULL;
6878 }
6879 
6880 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6881  * and its messages to the newsk.
6882  */
6883 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6884 			      struct sctp_association *assoc,
6885 			      sctp_socket_type_t type)
6886 {
6887 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6888 	struct sctp_sock *newsp = sctp_sk(newsk);
6889 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6890 	struct sctp_endpoint *newep = newsp->ep;
6891 	struct sk_buff *skb, *tmp;
6892 	struct sctp_ulpevent *event;
6893 	struct sctp_bind_hashbucket *head;
6894 	struct list_head tmplist;
6895 
6896 	/* Migrate socket buffer sizes and all the socket level options to the
6897 	 * new socket.
6898 	 */
6899 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6900 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6901 	/* Brute force copy old sctp opt. */
6902 	if (oldsp->do_auto_asconf) {
6903 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6904 		inet_sk_copy_descendant(newsk, oldsk);
6905 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6906 	} else
6907 		inet_sk_copy_descendant(newsk, oldsk);
6908 
6909 	/* Restore the ep value that was overwritten with the above structure
6910 	 * copy.
6911 	 */
6912 	newsp->ep = newep;
6913 	newsp->hmac = NULL;
6914 
6915 	/* Hook this new socket in to the bind_hash list. */
6916 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6917 						 inet_sk(oldsk)->inet_num)];
6918 	sctp_local_bh_disable();
6919 	sctp_spin_lock(&head->lock);
6920 	pp = sctp_sk(oldsk)->bind_hash;
6921 	sk_add_bind_node(newsk, &pp->owner);
6922 	sctp_sk(newsk)->bind_hash = pp;
6923 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6924 	sctp_spin_unlock(&head->lock);
6925 	sctp_local_bh_enable();
6926 
6927 	/* Copy the bind_addr list from the original endpoint to the new
6928 	 * endpoint so that we can handle restarts properly
6929 	 */
6930 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6931 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6932 
6933 	/* Move any messages in the old socket's receive queue that are for the
6934 	 * peeled off association to the new socket's receive queue.
6935 	 */
6936 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6937 		event = sctp_skb2event(skb);
6938 		if (event->asoc == assoc) {
6939 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6940 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6941 			sctp_skb_set_owner_r_frag(skb, newsk);
6942 		}
6943 	}
6944 
6945 	/* Clean up any messages pending delivery due to partial
6946 	 * delivery.   Three cases:
6947 	 * 1) No partial deliver;  no work.
6948 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6949 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6950 	 */
6951 	skb_queue_head_init(&newsp->pd_lobby);
6952 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6953 
6954 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6955 		struct sk_buff_head *queue;
6956 
6957 		/* Decide which queue to move pd_lobby skbs to. */
6958 		if (assoc->ulpq.pd_mode) {
6959 			queue = &newsp->pd_lobby;
6960 		} else
6961 			queue = &newsk->sk_receive_queue;
6962 
6963 		/* Walk through the pd_lobby, looking for skbs that
6964 		 * need moved to the new socket.
6965 		 */
6966 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6967 			event = sctp_skb2event(skb);
6968 			if (event->asoc == assoc) {
6969 				__skb_unlink(skb, &oldsp->pd_lobby);
6970 				__skb_queue_tail(queue, skb);
6971 				sctp_skb_set_owner_r_frag(skb, newsk);
6972 			}
6973 		}
6974 
6975 		/* Clear up any skbs waiting for the partial
6976 		 * delivery to finish.
6977 		 */
6978 		if (assoc->ulpq.pd_mode)
6979 			sctp_clear_pd(oldsk, NULL);
6980 
6981 	}
6982 
6983 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6984 		sctp_skb_set_owner_r_frag(skb, newsk);
6985 
6986 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6987 		sctp_skb_set_owner_r_frag(skb, newsk);
6988 
6989 	/* Set the type of socket to indicate that it is peeled off from the
6990 	 * original UDP-style socket or created with the accept() call on a
6991 	 * TCP-style socket..
6992 	 */
6993 	newsp->type = type;
6994 
6995 	/* Mark the new socket "in-use" by the user so that any packets
6996 	 * that may arrive on the association after we've moved it are
6997 	 * queued to the backlog.  This prevents a potential race between
6998 	 * backlog processing on the old socket and new-packet processing
6999 	 * on the new socket.
7000 	 *
7001 	 * The caller has just allocated newsk so we can guarantee that other
7002 	 * paths won't try to lock it and then oldsk.
7003 	 */
7004 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7005 	sctp_assoc_migrate(assoc, newsk);
7006 
7007 	/* If the association on the newsk is already closed before accept()
7008 	 * is called, set RCV_SHUTDOWN flag.
7009 	 */
7010 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7011 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7012 
7013 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7014 	sctp_release_sock(newsk);
7015 }
7016 
7017 
7018 /* This proto struct describes the ULP interface for SCTP.  */
7019 struct proto sctp_prot = {
7020 	.name        =	"SCTP",
7021 	.owner       =	THIS_MODULE,
7022 	.close       =	sctp_close,
7023 	.connect     =	sctp_connect,
7024 	.disconnect  =	sctp_disconnect,
7025 	.accept      =	sctp_accept,
7026 	.ioctl       =	sctp_ioctl,
7027 	.init        =	sctp_init_sock,
7028 	.destroy     =	sctp_destroy_sock,
7029 	.shutdown    =	sctp_shutdown,
7030 	.setsockopt  =	sctp_setsockopt,
7031 	.getsockopt  =	sctp_getsockopt,
7032 	.sendmsg     =	sctp_sendmsg,
7033 	.recvmsg     =	sctp_recvmsg,
7034 	.bind        =	sctp_bind,
7035 	.backlog_rcv =	sctp_backlog_rcv,
7036 	.hash        =	sctp_hash,
7037 	.unhash      =	sctp_unhash,
7038 	.get_port    =	sctp_get_port,
7039 	.obj_size    =  sizeof(struct sctp_sock),
7040 	.sysctl_mem  =  sysctl_sctp_mem,
7041 	.sysctl_rmem =  sysctl_sctp_rmem,
7042 	.sysctl_wmem =  sysctl_sctp_wmem,
7043 	.memory_pressure = &sctp_memory_pressure,
7044 	.enter_memory_pressure = sctp_enter_memory_pressure,
7045 	.memory_allocated = &sctp_memory_allocated,
7046 	.sockets_allocated = &sctp_sockets_allocated,
7047 };
7048 
7049 #if IS_ENABLED(CONFIG_IPV6)
7050 
7051 struct proto sctpv6_prot = {
7052 	.name		= "SCTPv6",
7053 	.owner		= THIS_MODULE,
7054 	.close		= sctp_close,
7055 	.connect	= sctp_connect,
7056 	.disconnect	= sctp_disconnect,
7057 	.accept		= sctp_accept,
7058 	.ioctl		= sctp_ioctl,
7059 	.init		= sctp_init_sock,
7060 	.destroy	= sctp_destroy_sock,
7061 	.shutdown	= sctp_shutdown,
7062 	.setsockopt	= sctp_setsockopt,
7063 	.getsockopt	= sctp_getsockopt,
7064 	.sendmsg	= sctp_sendmsg,
7065 	.recvmsg	= sctp_recvmsg,
7066 	.bind		= sctp_bind,
7067 	.backlog_rcv	= sctp_backlog_rcv,
7068 	.hash		= sctp_hash,
7069 	.unhash		= sctp_unhash,
7070 	.get_port	= sctp_get_port,
7071 	.obj_size	= sizeof(struct sctp6_sock),
7072 	.sysctl_mem	= sysctl_sctp_mem,
7073 	.sysctl_rmem	= sysctl_sctp_rmem,
7074 	.sysctl_wmem	= sysctl_sctp_wmem,
7075 	.memory_pressure = &sctp_memory_pressure,
7076 	.enter_memory_pressure = sctp_enter_memory_pressure,
7077 	.memory_allocated = &sctp_memory_allocated,
7078 	.sockets_allocated = &sctp_sockets_allocated,
7079 };
7080 #endif /* IS_ENABLED(CONFIG_IPV6) */
7081